Sample records for orb web spiders

  1. How Did the Spider Cross the River? Behavioral Adaptations for River-Bridging Webs in Caerostris darwini (Araneae: Araneidae)

    PubMed Central

    Gregorič, Matjaž; Agnarsson, Ingi; Blackledge, Todd A.; Kuntner, Matjaž

    2011-01-01

    Background Interspecific coevolution is well described, but we know significantly less about how multiple traits coevolve within a species, particularly between behavioral traits and biomechanical properties of animals' “extended phenotypes”. In orb weaving spiders, coevolution of spider behavior with ecological and physical traits of their webs is expected. Darwin's bark spider (Caerostris darwini) bridges large water bodies, building the largest known orb webs utilizing the toughest known silk. Here, we examine C. darwini web building behaviors to establish how bridge lines are formed over water. We also test the prediction that this spider's unique web ecology and architecture coevolved with new web building behaviors. Methodology We observed C. darwini in its natural habitat and filmed web building. We observed 90 web building events, and compared web building behaviors to other species of orb web spiders. Conclusions Caerostris darwini uses a unique set of behaviors, some unknown in other spiders, to construct its enormous webs. First, the spiders release unusually large amounts of bridging silk into the air, which is then carried downwind, across the water body, establishing bridge lines. Second, the spiders perform almost no web site exploration. Third, they construct the orb capture area below the initial bridge line. In contrast to all known orb-weavers, the web hub is therefore not part of the initial bridge line but is instead built de novo. Fourth, the orb contains two types of radial threads, with those in the upper half of the web doubled. These unique behaviors result in a giant, yet rather simplified web. Our results continue to build evidence for the coevolution of behavioral (web building), ecological (web microhabitat) and biomaterial (silk biomechanics) traits that combined allow C. darwini to occupy a unique niche among spiders. PMID:22046378

  2. Spider orb webs rely on radial threads to absorb prey kinetic energy

    PubMed Central

    Sensenig, Andrew T.; Lorentz, Kimberly A.; Kelly, Sean P.; Blackledge, Todd A.

    2012-01-01

    The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey. PMID:22431738

  3. Spider orb webs rely on radial threads to absorb prey kinetic energy.

    PubMed

    Sensenig, Andrew T; Lorentz, Kimberly A; Kelly, Sean P; Blackledge, Todd A

    2012-08-07

    The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey.

  4. Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in Cyclosa.

    PubMed

    Nakata, Kensuke; Zschokke, Samuel

    2010-10-07

    Almost all spiders building vertical orb webs face downwards when sitting on the hubs of their webs, and their webs exhibit an up-down size asymmetry, with the lower part of the capture area being larger than the upper. However, spiders of the genus Cyclosa, which all build vertical orb webs, exhibit inter- and intraspecific variation in orientation. In particular, Cyclosa ginnaga and C. argenteoalba always face upwards, and C. octotuberculata always face downwards, whereas some C. confusa face upwards and others face downwards or even sideways. These spiders provide a unique opportunity to examine why most spiders face downwards and have asymmetrical webs. We found that upward-facing spiders had upside-down webs with larger upper parts, downward-facing spiders had normal webs with larger lower parts and sideways-facing spiders had more symmetrical webs. Downward-facing C. confusa spiders were larger than upward- and sideways-facing individuals. We also found that during prey attacks, downward-facing spiders ran significantly faster downwards than upwards, which was not the case in upward-facing spiders. These results suggest that the spider's orientation at the hub and web asymmetry enhance its foraging efficiency by minimizing the time to reach prey trapped in the web.

  5. Upside-down spiders build upside-down orb webs: web asymmetry, spider orientation and running speed in Cyclosa

    PubMed Central

    Nakata, Kensuke; Zschokke, Samuel

    2010-01-01

    Almost all spiders building vertical orb webs face downwards when sitting on the hubs of their webs, and their webs exhibit an up–down size asymmetry, with the lower part of the capture area being larger than the upper. However, spiders of the genus Cyclosa, which all build vertical orb webs, exhibit inter- and intraspecific variation in orientation. In particular, Cyclosa ginnaga and C. argenteoalba always face upwards, and C. octotuberculata always face downwards, whereas some C. confusa face upwards and others face downwards or even sideways. These spiders provide a unique opportunity to examine why most spiders face downwards and have asymmetrical webs. We found that upward-facing spiders had upside-down webs with larger upper parts, downward-facing spiders had normal webs with larger lower parts and sideways-facing spiders had more symmetrical webs. Downward-facing C. confusa spiders were larger than upward- and sideways-facing individuals. We also found that during prey attacks, downward-facing spiders ran significantly faster downwards than upwards, which was not the case in upward-facing spiders. These results suggest that the spider's orientation at the hub and web asymmetry enhance its foraging efficiency by minimizing the time to reach prey trapped in the web. PMID:20462900

  6. Phylogenomics resolves a spider backbone phylogeny and rejects a prevailing paradigm for orb web evolution.

    PubMed

    Bond, Jason E; Garrison, Nicole L; Hamilton, Chris A; Godwin, Rebecca L; Hedin, Marshal; Agnarsson, Ingi

    2014-08-04

    Spiders represent an ancient predatory lineage known for their extraordinary biomaterials, including venoms and silks. These adaptations make spiders key arthropod predators in most terrestrial ecosystems. Despite ecological, biomedical, and biomaterial importance, relationships among major spider lineages remain unresolved or poorly supported. Current working hypotheses for a spider "backbone" phylogeny are largely based on morphological evidence, as most molecular markers currently employed are generally inadequate for resolving deeper-level relationships. We present here a phylogenomic analysis of spiders including taxa representing all major spider lineages. Our robust phylogenetic hypothesis recovers some fundamental and uncontroversial spider clades, but rejects the prevailing paradigm of a monophyletic Orbiculariae, the most diverse lineage, containing orb-weaving spiders. Based on our results, the orb web either evolved much earlier than previously hypothesized and is ancestral for a majority of spiders or else it has multiple independent origins, as hypothesized by precladistic authors. Cribellate deinopoid orb weavers that use mechanically adhesive silk are more closely related to a diverse clade of mostly webless spiders than to the araneoid orb-weaving spiders that use adhesive droplet silks. The fundamental shift in our understanding of spider phylogeny proposed here has broad implications for interpreting the evolution of spiders, their remarkable biomaterials, and a key extended phenotype--the spider web. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Prey interception drives web invasion and spider size determines successful web takeover in nocturnal orb-web spiders.

    PubMed

    Gan, Wenjin; Liu, Shengjie; Yang, Xiaodong; Li, Daiqin; Lei, Chaoliang

    2015-09-24

    A striking feature of web-building spiders is the use of silk to make webs, mainly for prey capture. However, building a web is energetically expensive and increases the risk of predation. To reduce such costs and still have access to abundant prey, some web-building spiders have evolved web invasion behaviour. In general, no consistent patterns of web invasion have emerged and the factors determining web invasion remain largely unexplored. Here we report web invasion among conspecifics in seven nocturnal species of orb-web spiders, and examined the factors determining the probability of webs that could be invaded and taken over by conspecifics. About 36% of webs were invaded by conspecifics, and 25% of invaded webs were taken over by the invaders. A web that was built higher and intercepted more prey was more likely to be invaded. Once a web was invaded, the smaller the size of the resident spider, the more likely its web would be taken over by the invader. This study suggests that web invasion, as a possible way of reducing costs, may be widespread in nocturnal orb-web spiders. © 2015. Published by The Company of Biologists Ltd.

  8. Prey interception drives web invasion and spider size determines successful web takeover in nocturnal orb-web spiders

    PubMed Central

    Gan, Wenjin; Liu, Shengjie; Yang, Xiaodong; Li, Daiqin; Lei, Chaoliang

    2015-01-01

    ABSTRACT A striking feature of web-building spiders is the use of silk to make webs, mainly for prey capture. However, building a web is energetically expensive and increases the risk of predation. To reduce such costs and still have access to abundant prey, some web-building spiders have evolved web invasion behaviour. In general, no consistent patterns of web invasion have emerged and the factors determining web invasion remain largely unexplored. Here we report web invasion among conspecifics in seven nocturnal species of orb-web spiders, and examined the factors determining the probability of webs that could be invaded and taken over by conspecifics. About 36% of webs were invaded by conspecifics, and 25% of invaded webs were taken over by the invaders. A web that was built higher and intercepted more prey was more likely to be invaded. Once a web was invaded, the smaller the size of the resident spider, the more likely its web would be taken over by the invader. This study suggests that web invasion, as a possible way of reducing costs, may be widespread in nocturnal orb-web spiders. PMID:26405048

  9. Optimal web investment in sub-optimal foraging conditions.

    PubMed

    Harmer, Aaron M T; Kokko, Hanna; Herberstein, Marie E; Madin, Joshua S

    2012-01-01

    Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.

  10. Optimal web investment in sub-optimal foraging conditions

    NASA Astrophysics Data System (ADS)

    Harmer, Aaron M. T.; Kokko, Hanna; Herberstein, Marie E.; Madin, Joshua S.

    2012-01-01

    Orb web spiders sit at the centre of their approximately circular webs when waiting for prey and so face many of the same challenges as central-place foragers. Prey value decreases with distance from the hub as a function of prey escape time. The further from the hub that prey are intercepted, the longer it takes a spider to reach them and the greater chance they have of escaping. Several species of orb web spiders build vertically elongated ladder-like orb webs against tree trunks, rather than circular orb webs in the open. As ladder web spiders invest disproportionately more web area further from the hub, it is expected they will experience reduced prey gain per unit area of web investment compared to spiders that build circular webs. We developed a model to investigate how building webs in the space-limited microhabitat on tree trunks influences the optimal size, shape and net prey gain of arboricolous ladder webs. The model suggests that as horizontal space becomes more limited, optimal web shape becomes more elongated, and optimal web area decreases. This change in web geometry results in decreased net prey gain compared to webs built without space constraints. However, when space is limited, spiders can achieve higher net prey gain compared to building typical circular webs in the same limited space. Our model shows how spiders optimise web investment in sub-optimal conditions and can be used to understand foraging investment trade-offs in other central-place foragers faced with constrained foraging arenas.

  11. The Effects of Alcohol on Spiders: What Happens to Web Construction after Spiders Consume Alcohol?

    ERIC Educational Resources Information Center

    Cross, Victor E.

    2006-01-01

    In the high school experiment reported in this paper, spiders were provided with 40% ethanol (ETOH) in order to determine the effects of alcohol on the web-spinning ability of orb weaver spiders. It was hypothesized that alcohol would have a deleterious effect on the number of radii, number of cells, and area of cells in the webs of orb weaving…

  12. The Effect of Wind Exposure on the Web Characteristics of a Tetragnathid Orb Spider.

    PubMed

    Tew, Nicholas; Hesselberg, Thomas

    2017-01-01

    Studies on spiders in their natural habitats are necessary for determining the full range of plasticity in their web-building behaviour. Plasticity in web design is hypothesised to be important for spiders building in habitats where environmental conditions cause considerable web damage. Here we compared web characteristics of the orb spider Metellina mengei (Araneae, Tetragnathidae) in two different forest habitats differing in their wind exposure. We found a notable lack of differences in web geometry, orientation and inclination between webs built along an exposed forest edge and those built inside the forest, despite marked differences in wind speed. This suggests that M. mengei did not exhibit web-building plasticity in response to wind in the field, contrasting with the findings of laboratory studies on other species of orb spiders. Instead, differences in prey capture and wind damage trade-offs between habitats may provide an explanation for our results, indicating that different species employ different strategies to cope with environmental constraints.

  13. Duplication and concerted evolution of MiSp-encoding genes underlie the material properties of minor ampullate silks of cobweb weaving spiders.

    PubMed

    Vienneau-Hathaway, Jannelle M; Brassfield, Elizabeth R; Lane, Amanda Kelly; Collin, Matthew A; Correa-Garhwal, Sandra M; Clarke, Thomas H; Schwager, Evelyn E; Garb, Jessica E; Hayashi, Cheryl Y; Ayoub, Nadia A

    2017-03-14

    Orb-web weaving spiders and their relatives use multiple types of task-specific silks. The majority of spider silk studies have focused on the ultra-tough dragline silk synthesized in major ampullate glands, but other silk types have impressive material properties. For instance, minor ampullate silks of orb-web weaving spiders are as tough as draglines, due to their higher extensibility despite lower strength. Differences in material properties between silk types result from differences in their component proteins, particularly members of the spidroin (spider fibroin) gene family. However, the extent to which variation in material properties within a single silk type can be explained by variation in spidroin sequences is unknown. Here, we compare the minor ampullate spidroins (MiSp) of orb-weavers and cobweb weavers. Orb-web weavers use minor ampullate silk to form the auxiliary spiral of the orb-web while cobweb weavers use it to wrap prey, suggesting that selection pressures on minor ampullate spidroins (MiSp) may differ between the two groups. We report complete or nearly complete MiSp sequences from five cobweb weaving spider species and measure material properties of minor ampullate silks in a subset of these species. We also compare MiSp sequences and silk properties of our cobweb weavers to published data for orb-web weavers. We demonstrate that all our cobweb weavers possess multiple MiSp loci and that one locus is more highly expressed in at least two species. We also find that the proportion of β-spiral-forming amino acid motifs in MiSp positively correlates with minor ampullate silk extensibility across orb-web and cobweb weavers. MiSp sequences vary dramatically within and among spider species, and have likely been subject to multiple rounds of gene duplication and concerted evolution, which have contributed to the diverse material properties of minor ampullate silks. Our sequences also provide templates for recombinant silk proteins with tailored properties.

  14. Free amino acids in spider hemolymph.

    PubMed

    Tillinghast, Edward K; Townley, Mark A

    2008-11-01

    We examined the free amino acid composition of hemolymph from representatives of five spider families with an interest in knowing if the amino acid profile in the hemolymph of orb-web-building spiders reflects the high demands for small organic compounds in the sticky droplets of their webs. In nearly all analyses, on both orb and non-orb builders, glutamine was the most abundant free amino acid. Glycine, taurine, proline, histidine, and alanine also tended to be well-represented in orb and non-orb builders. While indications of taxon-specific differences in amino acid composition were observed, it was not apparent that two presumptive precursors (glutamine, taurine) of orb web sticky droplet compounds were uniquely enriched in araneids (orb builders). However, total amino acid concentrations were invariably highest in the araneids and especially so in overwintering juveniles, even as several of the essential amino acids declined during this winter diapause. Comparing the data from this study with those from earlier studies revealed a number of discrepancies. The possible origins of these differences are discussed.

  15. Phylogenomics, Diversification Dynamics, and Comparative Transcriptomics across the Spider Tree of Life.

    PubMed

    Fernández, Rosa; Kallal, Robert J; Dimitrov, Dimitar; Ballesteros, Jesús A; Arnedo, Miquel A; Giribet, Gonzalo; Hormiga, Gustavo

    2018-05-07

    Dating back to almost 400 mya, spiders are among the most diverse terrestrial predators [1]. However, despite considerable effort [1-9], their phylogenetic relationships and diversification dynamics remain poorly understood. Here, we use a synergistic approach to study spider evolution through phylogenomics, comparative transcriptomics, and lineage diversification analyses. Our analyses, based on ca. 2,500 genes from 159 spider species, reject a single origin of the orb web (the "ancient orb-web hypothesis") and suggest that orb webs evolved multiple times since the late Triassic-Jurassic. We find no significant association between the loss of foraging webs and increases in diversification rates, suggesting that other factors (e.g., habitat heterogeneity or biotic interactions) potentially played a key role in spider diversification. Finally, we report notable genomic differences in the main spider lineages: while araneoids (ecribellate orb-weavers and their allies) reveal an enrichment in genes related to behavior and sensory reception, the retrolateral tibial apophysis (RTA) clade-the most diverse araneomorph spider lineage-shows enrichment in genes related to immune responses and polyphenic determination. This study, one of the largest invertebrate phylogenomic analyses to date, highlights the usefulness of transcriptomic data not only to build a robust backbone for the Spider Tree of Life, but also to address the genetic basis of diversification in the spider evolutionary chronicle. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Wind speed affects prey-catching behaviour in an orb web spider.

    PubMed

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  17. Wind speed affects prey-catching behaviour in an orb web spider

    NASA Astrophysics Data System (ADS)

    Turner, Joe; Vollrath, Fritz; Hesselberg, Thomas

    2011-12-01

    Wind has previously been shown to influence the location and orientation of spider web sites and also the geometry and material composition of constructed orb webs. We now show that wind also influences components of prey-catching behaviour within the web. A small wind tunnel was used to generate different wind speeds. Araneus diadematus ran more slowly towards entangled Drosophila melanogaster in windy conditions, which took less time to escape the web. This indicates a lower capture probability and a diminished overall predation efficiency for spiders at higher wind speeds. We conclude that spiders' behaviour of taking down their webs as wind speed increases may therefore not be a response only to possible web damage.

  18. Time till death affects spider mobility and web-building behavior during web construction in an orb-web spider.

    PubMed

    Anotaux, Mylène; Toscani, Camille; Leborgne, Raymond; Chaline, Nicolas; Pasquet, Alain

    2016-04-01

    It is well known that age influences organism mobility. This was demonstrated in vertebrates (such as mammals and birds) but has been less studied in invertebrates with the exception of Drosophila and the nematode Caenorhabditis elegans. Here we studied the influence of age on the mobility of the orb-weaving spider Zygiella x-notata during web construction. The orb-web is a good model because it has a characteristic geometrical structure and video tracking can be used to easily follow the spider's movements during web building. We investigated the influence of age (specifically chronological age, life span, and time till death) on different parameters of spider mobility during the construction of the capture spiral (distance traveled, duration of construction, spider velocity, spider movement, and spider inactivity) with a generalized linear model (GLM) procedure adjusted for the spider mass. The results showed that neither chronological age, nor life span affected the mobility parameters. However, when the time till death decreased, there was a decrease in the distance traveled, the duration of the construction of the capture spiral, and the spider movement. The spider velocity and the time of inactivity were not affected. These results could be correlated with a decrease in the length of the silky thread deposited for the construction of the capture spiral. Spiders with a shorter time till death built smaller web using less silk. Thus, our study suggests strongly that time till death affects spider mobility during web construction but not the chronological age and thus may be a good indicator of senescence.

  19. Time till death affects spider mobility and web-building behavior during web construction in an orb-web spider

    PubMed Central

    Anotaux, Mylène; Toscani, Camille; Leborgne, Raymond; Chaline, Nicolas; Pasquet, Alain

    2016-01-01

    Abstract It is well known that age influences organism mobility. This was demonstrated in vertebrates (such as mammals and birds) but has been less studied in invertebrates with the exception of Drosophila and the nematode Caenorhabditis elegans. Here we studied the influence of age on the mobility of the orb-weaving spider Zygiella x-notata during web construction. The orb-web is a good model because it has a characteristic geometrical structure and video tracking can be used to easily follow the spider’s movements during web building. We investigated the influence of age (specifically chronological age, life span, and time till death) on different parameters of spider mobility during the construction of the capture spiral (distance traveled, duration of construction, spider velocity, spider movement, and spider inactivity) with a generalized linear model (GLM) procedure adjusted for the spider mass. The results showed that neither chronological age, nor life span affected the mobility parameters. However, when the time till death decreased, there was a decrease in the distance traveled, the duration of the construction of the capture spiral, and the spider movement. The spider velocity and the time of inactivity were not affected. These results could be correlated with a decrease in the length of the silky thread deposited for the construction of the capture spiral. Spiders with a shorter time till death built smaller web using less silk. Thus, our study suggests strongly that time till death affects spider mobility during web construction but not the chronological age and thus may be a good indicator of senescence. PMID:29491899

  20. Oldest true orb-weaving spider (Araneae: Araneidae)

    PubMed Central

    Penney, David; Ortuño, Vicente M

    2006-01-01

    The aerial orb web woven by spiders of the family Araneidae typifies these organisms to laypersons and scientists alike. Here we describe the oldest fossil species of this family, which is preserved in amber from Álava, Spain and represents the first record of Araneidae from the Lower Cretaceous. The fossils provide direct evidence that all three major orb web weaving families: Araneidae, Tetragnathidae and Uloboridae had evolved by this time, confirming the antiquity of the use of this remarkable structure as a prey capture strategy by spiders. Given the complex and stereotyped movements that all orb weavers use to construct their webs, there is little question regarding their common origin, which must have occurred in the Jurassic or earlier. Thus, various forms of this formidable prey capture mechanism were already in place by the time of the explosive Cretaceous co-radiation of angiosperms and their flying insect pollinators. This permitted a similar co-radiation of spider predators with their flying insect prey, presumably without the need for a ‘catch-up lag phase’ for the spiders. PMID:17148427

  1. Web-building time in a spider: preliminary applications of ultrasonic detection.

    PubMed

    Ramousse, R; Davis, F

    1976-12-01

    Data collection on time and length of building in orb-weaving spiders has suffered from absence of light during construction and inconvenient hours. A simple apparatus is described which permits recording of the spiders' movements as they disturb an ultrasonic field. By varying onset and length of dark periods for two animals at even temperature and by registering the building periods for 127 webs, a definite influence of the light-dark cycle can be identified: there is a strong preference for building webs in the dark; this is superimposed on the circadian rhythm of orb-web construction. One of the spiders always built earlier than the other.

  2. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion.

    PubMed

    Smith, Jennifer N; Emlen, Douglas J; Pearson, Dean E

    2016-01-01

    Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe's architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations.

  3. A continuum membrane model for small deformations of a spider orb-web

    NASA Astrophysics Data System (ADS)

    Morassi, Antonino; Soler, Alejandro; Zaera, Ramón

    2017-09-01

    In this paper we propose a continuum membrane model for the infinitesimal deformation of a spider web. The model is derived in the simple context of axially-symmetric webs formed by radial threads connected with circumferential threads belonging to concentric circles. Under suitable assumption on the tensile pre-stress acting in the referential configuration, the out-of-plane static equilibrium and the free transverse and in-plane vibration of a supported circular orb-web are studied in detail. The accuracy of the model in describing a discrete spider web is numerically investigated.

  4. Optimal foraging, not biogenetic law, predicts spider orb web allometry.

    PubMed

    Gregorič, Matjaž; Kiesbüy, Heine C; Lebrón, Shakira G Quiñones; Rozman, Alenka; Agnarsson, Ingi; Kuntner, Matjaž

    2013-03-01

    The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.

  5. Herbivory in spiders: the importance of pollen for orb-weavers.

    PubMed

    Eggs, Benjamin; Sanders, Dirk

    2013-01-01

    Orb-weaving spiders (Araneidae) are commonly regarded as generalist insect predators but resources provided by plants such as pollen may be an important dietary supplementation. Their webs snare insect prey, but can also trap aerial plankton like pollen and fungal spores. When recycling their orb webs, the spiders may therefore also feed on adhering pollen grains or fungal spores via extraoral digestion. In this study we measured stable isotope ratios in the bodies of two araneid species (Aculepeira ceropegia and Araneus diadematus), their potential prey and pollen to determine the relative contribution of pollen to their diet. We found that about 25% of juvenile orb-weaving spiders' diet consisted of pollen, the other 75% of flying insects, mainly small dipterans and hymenopterans. The pollen grains in our study were too large to be taken up accidentally by the spiders and had first to be digested extraorally by enzymes in an active act of consumption. Therefore, pollen can be seen as a substantial component of the spiders' diet. This finding suggests that these spiders need to be classified as omnivores rather than pure carnivores.

  6. On the Colours of Spider Orb-Webs

    ERIC Educational Resources Information Center

    Suhr, Wilfried; Schlichting, H. Joachim

    2011-01-01

    A sticky capture thread from the spiral element of spider orb-webs is formed of almost regularly spaced droplets that surround a supporting axial fibre. From the perspective of physical optics it represents a periodic linear array of scattering elements that acts as a diffraction grating. This is a novel aspect, which is of vital importance for…

  7. Linking Native and Invader Traits Explains Native Spider Population Responses to Plant Invasion

    PubMed Central

    Emlen, Douglas J.; Pearson, Dean E.

    2016-01-01

    Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders’ web-building behaviors could explain differences in spider population responses to structural changes arising from C. stoebe invasion. After two years, irregular web-spiders were >30 times more abundant and orb weavers were >23 times more abundant on simulated invasion plots compared to controls. Additionally, irregular web-spiders on simulated invasion plots built webs that were 4.4 times larger and 5.0 times more likely to capture prey, leading to >2-fold increases in recruitment. Orb-weavers showed no differences in web size or prey captures between treatments. Web-spider responses to simulated invasion mimicked patterns following natural invasions, confirming that C. stoebe’s architecture is likely the primary attribute driving native spider responses to these invasions. Differences in spider responses were attributable to differences in web construction behaviors relative to historic web substrate constraints. Orb-weavers in this system constructed webs between multiple plants, so they were limited by the overall quantity of native substrates but not by the architecture of individual native plant species. Irregular web-spiders built their webs within individual plants and were greatly constrained by the diminutive architecture of native plant substrates, so they were limited both by quantity and quality of native substrates. Evaluating native species traits in the context of invader-driven change can explain invasion outcomes and help to identify factors limiting native populations. PMID:27082240

  8. Age variation in the body coloration of the orb-weaver spider Alpaida tuonabo and its implications on foraging.

    PubMed

    Gálvez, Dumas; Añino, Yostin; De la O, Jorge M

    2018-02-26

    Spiders show a repertoire of strategies to increase their foraging success. In particular, some orb-weaver spiders use attractive body colorations to lure prey. Interestingly, coloration varies with age in many species, which may result in ontogenetic variation of foraging success. By using field observations, laboratory experiments and spectrophotometric analysis, we investigated whether pale juveniles and bright adults of the orb-weaver Alpaida tuonabo use different foraging strategies due to ontogenetic variation in coloration. Field observations revealed that foraging success of juveniles and adults was influenced by web properties. However, foraging success increased with body size only in adults, supporting the idea that larger individuals produce a stronger visual signal for prey. The attractiveness of the adult coloration for prey was confirmed in the laboratory with frame-web-choice experiments, in which webs bearing a spider intercepted more bees than empty webs. Our spectrophotometric analysis suggests that the yellow coloration may produce the deceiving signal for prey. Moreover, we identified potential alternative foraging strategies: cryptic juveniles at higher heights and 'attractive' adults at lower heights. This study reveals how ontogenetic colour variation may favour the use of alternative foraging strategies in orb-weaver spiders and reduces intraspecific competition.

  9. Unfreezing the behaviour of two orb spiders.

    PubMed

    Zschokke, S; Vollrath, F

    1995-12-01

    Spider's webs reflect the builders behaviour pattern; yet there are aspects of the construction behaviour that cannot be "read" from the geometry of the finished web alone. Using computerised image analysis we developed an automatic surveillance method to track a spider's path during web-building. Thus we collected data on two orb-weaving spiders--the cribellate Uloborus walckenaerius and the ecribellate Araneus diadematus--for web geometry, movement pattern and time allocation. Representatives of these two species built webs of similar geometry but they used different movement patterns both spatially (which we describe qualitatively) and temporally (which we analyse quantitatively). Most importantly, temporal analysis showed that the two spiders differed significantly in some but not all web-building stages; and from this we deduce that Uloborus--unlike Araneus--was constrained by speed of silk production during the construction of its capture but not its auxiliary spiral.

  10. Does ontogenetic change in orb web asymmetry reflect biogenetic law?

    NASA Astrophysics Data System (ADS)

    Nakata, Kensuke

    2010-11-01

    Most orb web spiders face downward on the web hub, and their webs are vertically asymmetrical, that is, the lower part of the web is larger than the upper part and the ratio of the lower part to the whole web area increases as the spider grows. This phenomenon may reflect biogenetic law such that young animals exhibit a general ancestral trait whereas adults exhibit specific and derived traits. An alternative explanation is that vertical asymmetry may arise from the difference in time required by spiders to move up or down the web to capture prey. The present study tested these two hypotheses for Eriophora sagana. Subadults of this species build their webs with reverse asymmetry in that the upper part of the web area is larger than the lower part. In both subadults and adults, the upper proportion decreased with spider weight, and adult spiders built more symmetric webs. These results support the capture time difference hypothesis.

  11. Optics of spider "sticky" orb webs

    NASA Astrophysics Data System (ADS)

    Kane, Deb M.; Staib, Gregory R.; Naidoo, Nishen; Little, Douglas J.; Herberstein, Marie E.

    2011-04-01

    Spider orb webs are known to produce colour displays in nature, both in reflection and transmission of sunlight, under certain illumination conditions. The cause of these colours has been the subject of speculation since the time of Newton. It has also been the topic of observational interpretation and some experiment which has proposed diffraction by the fine silks, scattering from rough/structured surfaces and thin film effects as the primary causes. We report systematic studies carried out using the silks of Australian orb web weaving spiders. Studies of both white light and laser light scattering/propagation by natural spider silks have definitively determined the primary cause of the colour displays is rainbows that can be understood by the application of geometric optics combined with new knowledge of the optical properties of the spider web strands, silks, and proteins as optical materials. Additionally, a range of microscopies (optical, AFM, optical surface profiling) show the silks to be optically flat. Overall, spider silks emerge as fascinating optical materials with high dispersion, high birefringence and the potential for future research to show they have high nonlinear optical coefficients. Their importance as a bioinspiration in optics is only just beginning to be realised. Their special optical properties have been achieved by ~136 million years of evolution driven by the need for the web to evade detection by insect prey.

  12. Herbivory in Spiders: The Importance of Pollen for Orb-Weavers

    PubMed Central

    Eggs, Benjamin; Sanders, Dirk

    2013-01-01

    Orb-weaving spiders (Araneidae) are commonly regarded as generalist insect predators but resources provided by plants such as pollen may be an important dietary supplementation. Their webs snare insect prey, but can also trap aerial plankton like pollen and fungal spores. When recycling their orb webs, the spiders may therefore also feed on adhering pollen grains or fungal spores via extraoral digestion. In this study we measured stable isotope ratios in the bodies of two araneid species (Aculepeira ceropegia and Araneus diadematus), their potential prey and pollen to determine the relative contribution of pollen to their diet. We found that about 25% of juvenile orb-weaving spiders’ diet consisted of pollen, the other 75% of flying insects, mainly small dipterans and hymenopterans. The pollen grains in our study were too large to be taken up accidentally by the spiders and had first to be digested extraorally by enzymes in an active act of consumption. Therefore, pollen can be seen as a substantial component of the spiders’ diet. This finding suggests that these spiders need to be classified as omnivores rather than pure carnivores. PMID:24312430

  13. A virtual robot to model the use of regenerated legs in a web-building spider.

    PubMed

    Krink; Vollrath

    1999-01-01

    The garden cross orb-spider, Araneus diadematus, shows behavioural responses to leg loss and regeneration that are reflected in the geometry of the web's capture spiral. We created a virtual spider robot that mimicked the web construction behaviour of thus handicapped real spiders. We used this approach to test the correctness and consistency of hypotheses about orb web construction. The behaviour of our virtual robot was implemented in a rule-based system supervising behaviour patterns that communicated with the robot's sensors and motors. By building the typical web of a nonhandicapped spider our first model failed and led to new observations on real spiders. We realized that in addition to leg position, leg posture could also be of importance. The implementation of this new hypothesis greatly improved the results of our simulation of a handicapped spider. Now simulated webs, like the real webs of handicapped spiders, had significantly more gaps in successive spiral turns compared with webs of nonhandicapped spiders. Moreover, webs built by the improved virtual spiders intercepted prey as well as the digitized real webs. However, the main factors that affected web interception frequency were prey size, size of capture area and individual variance; having a regenerated leg, surprisingly, was relatively unimportant for this trait. Copyright 1999 The Association for the Study of Animal Behaviour.

  14. Uncovering changes in spider orb-web topology owing to aerodynamic effects

    PubMed Central

    Zaera, Ramón; Soler, Alejandro; Teus, Jaime

    2014-01-01

    An orb-weaving spider's likelihood of survival is influenced by its ability to retain prey with minimum damage to its web and at the lowest manufacturing cost. This set of requirements has forced the spider silk to evolve towards extreme strength and ductility to a degree that is rare among materials. Previous studies reveal that the performance of the web upon impact may not be based on the mechanical properties of silk alone, aerodynamic drag could play a role in the dissipation of the prey's energy. Here, we present a thorough analysis of the effect of the aerodynamic drag on wind load and prey impact. The hypothesis considered by previous authors for the evaluation of the drag force per unit length of thread has been revisited according to well-established principles of fluid mechanics, highlighting the functional dependence on thread diameter that was formerly ignored. Theoretical analysis and finite-element simulations permitted us to identify air drag as a relevant factor in reducing deterioration of the orb web, and to reveal how the spider can take greater—and not negligible—advantage of drag dissipation. The study shows the beneficial air drag effects of building smaller and less dense webs under wind load, and larger and denser webs under prey impact loads. In essence, it points out why the aerodynamics need to be considered as an additional driving force in the evolution of silk threads and orb webs. PMID:24966235

  15. Uncovering changes in spider orb-web topology owing to aerodynamic effects.

    PubMed

    Zaera, Ramón; Soler, Alejandro; Teus, Jaime

    2014-09-06

    An orb-weaving spider's likelihood of survival is influenced by its ability to retain prey with minimum damage to its web and at the lowest manufacturing cost. This set of requirements has forced the spider silk to evolve towards extreme strength and ductility to a degree that is rare among materials. Previous studies reveal that the performance of the web upon impact may not be based on the mechanical properties of silk alone, aerodynamic drag could play a role in the dissipation of the prey's energy. Here, we present a thorough analysis of the effect of the aerodynamic drag on wind load and prey impact. The hypothesis considered by previous authors for the evaluation of the drag force per unit length of thread has been revisited according to well-established principles of fluid mechanics, highlighting the functional dependence on thread diameter that was formerly ignored. Theoretical analysis and finite-element simulations permitted us to identify air drag as a relevant factor in reducing deterioration of the orb web, and to reveal how the spider can take greater-and not negligible-advantage of drag dissipation. The study shows the beneficial air drag effects of building smaller and less dense webs under wind load, and larger and denser webs under prey impact loads. In essence, it points out why the aerodynamics need to be considered as an additional driving force in the evolution of silk threads and orb webs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Optical surface profiling of orb-web spider capture silks.

    PubMed

    Kane, D M; Joyce, A M; Staib, G R; Herberstein, M E

    2010-09-01

    Much spider silk research to date has focused on its mechanical properties. However, the webs of many orb-web spiders have evolved for over 136 million years to evade visual detection by insect prey. It is therefore a photonic device in addition to being a mechanical device. Herein we use optical surface profiling of capture silks from the webs of adult female St Andrews cross spiders (Argiope keyserlingi) to successfully measure the geometry of adhesive silk droplets and to show a bowing in the aqueous layer on the spider capture silk between adhesive droplets. Optical surface profiling shows geometric features of the capture silk that have not been previously measured and contributes to understanding the links between the physical form and biological function. The research also demonstrates non-standard use of an optical surface profiler to measure the maximum width of a transparent micro-sized droplet (microlens).

  17. Remote monitoring of vibrational information in spider webs.

    PubMed

    Mortimer, B; Soler, A; Siviour, C R; Vollrath, F

    2018-05-22

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  18. Remote monitoring of vibrational information in spider webs

    NASA Astrophysics Data System (ADS)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  19. The effects of neurotoxins on web-geometry and web-building behaviour in Araneus diadematus Cl.

    PubMed

    Hesselberg, Thomas; Vollrath, Fritz

    2004-09-15

    The process of orb weaving and the resultant orb web constitute a good example of a complex behavioural pattern that is still governed by a relatively simple set of rules. We used the orb spider Araneus diadematus as a model organism to study the effect of the three neurotoxins (scopolamine, amphetamine, and caffeine) on the spider's behaviour. Scopolamine was given at two concentrations, with the lower one showing no effects but the higher one reducing web-building frequency; there also appeared to be a weak effect on web geometry. Amphetamine and caffeine, on the other hand, both resulted in significant changes in both building frequency and web geometry, compared to the controls. Amphetamine webs retained their size but showed an increase in spiral spacing and radius irregularity, as well as a decrease in building efficiency. Caffeine led to a general decrease in size and a slight increase in spiral spacing, as well as radius irregularity. Furthermore, caffeine caused webs to be rounder. Our observations suggest that these neurotoxins disturb different parts of the web-building programme presumably by affecting different actions in the spider's CNS.

  20. Loss of legs: is it or not a handicap for an orb-weaving spider?

    NASA Astrophysics Data System (ADS)

    Pasquet, Alain; Anotaux, Mylène; Leborgne, Raymond

    2011-07-01

    Leg loss is a common phenomenon in spiders, and according to the species 5% to 40% of the adults can present at least one missing leg. There is no possibility of regeneration after adult moult and the animal must manage with its missing appendages until its death. With the loss of one or more legs, female orb-weaving spiders can be penalized twice: firstly, because the legs are necessary for web construction and secondly, the legs are essential for the control of the prey after its interception by the web. During development, spiders may be also penalized because regeneration has energetic costs that take away resources for survival, growth and reproduction. All these consequences should influence negatively the development of the spider and thus its fitness. We investigated the impact of leg loss in the orb-weaving spider, Zygiella x-notata by studying its frequency in a natural population and web building and prey capture behaviours in laboratory. In field populations, 9.5% to 13%, of the adult females presented the loss of one or more legs; the majority of individuals had lost only one leg (in 48% of cases, a first one). Leg loss seems to affect all the adult spiders, as there is no difference of mass between intact spiders and those with missing leg. Data obtained with laboratory-reared spiders, showed that the loss of legs due to the moult is rare (less than 1%). Considering changes in web design, spiders with missing legs decreased their silk investment, increased the distance between spiral turns but did not change the capture surface of the web. Under our laboratory experimental conditions, spiders with one or two lost legs did not present any difference in prey capture efficiency. In laboratory conditions, spiders with lost leg(s) did not show any difference in egg sac production or in longevity (adult lifespan) compared to intact spiders.

  1. Punctuated evolution of viscid silk in spider orb webs supported by mechanical behavior of wet cribellate silk

    NASA Astrophysics Data System (ADS)

    Piorkowski, Dakota; Blackledge, Todd A.

    2017-08-01

    The origin of viscid capture silk in orb webs, from cribellate silk-spinning ancestors, is a key innovation correlated with significant diversification of web-building spiders. Ancestral cribellate silk consists of dry nanofibrils surrounding a stiff, axial fiber that adheres to prey through van der Waals interactions, capillary forces, and physical entanglement. In contrast, viscid silk uses chemically adhesive aqueous glue coated onto a highly compliant and extensible flagelliform core silk. The extensibility of the flagelliform fiber accounts for half of the total work of adhesion for viscid silk and is enabled by water in the aqueous coating. Recent cDNA libraries revealed the expression of flagelliform silk proteins in cribellate orb-weaving spiders. We hypothesized that the presence of flagelliform proteins in cribellate silk could have allowed for a gradual shift in mechanical performance of cribellate axial silk, whose effect was masked by the dry nature of its adhesive. We measured supercontraction and mechanical performance of cribellate axial silk, in wet and dry states, for two species of cribellate orb web-weaving spiders to see if water enabled flagelliform silk-like performance. We found that compliance and extensibility of wet cribellate silk increased compared to dry state as expected. However, when compared to other silk types, the response to water was more similar to other web silks, like major and minor ampullate silk, than to viscid silk. These findings support the punctuated evolution of viscid silk mechanical performance.

  2. Molecular phylogeny of moth-specialized spider sub-family Cyrtarachninae, which includes bolas spiders.

    PubMed

    Tanikawa, Akio; Shinkai, Akira; Miyashita, Tadashi

    2014-11-01

    The evolutionary process of the unique web architectures of spiders of the sub-family Cyrtarachninae, which includes the triangular web weaver, bolas spider, and webless spider, is thought to be derived from reduction of orbicular 'spanning-thread webs' resembling ordinal orb webs. A molecular phylogenetic analysis was conducted to explore this hypothesis using orbicular web spiders Cyrtarachne, Paraplectana, Poecilopachys, triangular web spider Pasilobus, bolas spiders Ordgarius and Mastophora, and webless spider Celaenia. The phylogeny inferred from partial sequences of mt-COI, nuclear 18S-rRNA and 28S-rRNA showed that the common ancestor of these spiders diverged into two clades: a spanning-thread web clade and a bolas or webless clade. This finding suggests that the triangular web evolved by reduction of an orbicular spanning web, but that bolas spiders evolved in the early stage, which does not support the gradual web reduction hypothesis.

  3. Evidence from Multiple Species that Spider Silk Glue Component ASG2 is a Spidroin

    PubMed Central

    Collin, Matthew A.; Clarke, Thomas H.; Ayoub, Nadia A.; Hayashi, Cheryl Y.

    2016-01-01

    Spiders in the superfamily Araneoidea produce viscous glue from aggregate silk glands. Aggregate glue coats prey-capture threads and hampers the escape of prey from webs, thereby increasing the foraging success of spiders. cDNAs for Aggregate Spider Glue 1 (ASG1) and 2 (ASG2) have been previously described from the golden orb-weaver, Nephila clavipes, and Western black widow, Latrodectus hesperus. To further investigate aggregate glues, we assembled ASG1 and ASG2 from genomic target capture libraries constructed from three species of cob-web weavers and three species of orb-web weavers, all araneoids. We show that ASG1 is unlikely to be a glue, but rather is part of a widespread arthropod gene family, the peritrophic matrix proteins. For ASG2, we demonstrate its remarkable architectural and sequence similarities to spider silk fibroins, indicating that ASG2 is a member of the spidroin gene family. Thus, spidroins have diversified into glues in addition to task-specific, high performance fibers. PMID:26875681

  4. Males of the orb-web spider Argiope bruennichi sacrifice themselves to unrelated females

    PubMed Central

    Welke, Klaas W.; Schneider, Jutta M.

    2010-01-01

    Costs of inbreeding can lead to total reproductive failure and inbreeding avoidance is, therefore, common. In classical sex roles with no paternal care, the selective pressure to avoid inbreeding is mostly on the female, which carries the higher costs. In some orb-web spiders, this situation is very different because females are polyandrous and males are monogynous or at most bigynous. Additionally, females of many entelegyne orb weavers are thought to bias paternity post-copulatorily towards a desired mate. This increases the selective pressure on males to adjust their investment in a mating with regard to the compatibility to a female. Here, we examine whether genetic relatedness influences mating behaviour in the orb-web spider Argiope bruennichi. We mated either a sibling or a non-sibling male to a female in single copulation trials and compared copulation duration, cannibalism rate and female fecundity. Our experiment revealed that males prolonged their copulation duration and were cannibalized more frequently when mating with a non-sibling female. Males mating with a sibling female were more likely to escape cannibalism by copulating briefly, thus presumably increasing their chances of re-mating with a more compatible female. This suggests that males can adaptively adjust their investment relating to the compatibility of a female. PMID:20410027

  5. Effect of 9. 6-GHz pulsed microwaves on the orb web spinning ability of the cross spider (Araneus diadematus)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liddle, C.G.; Putnam, J.P.; Lewter, O.L.

    1986-01-01

    Eight cross spiders (Araneus diadematus) were exposed overnight (16 h) during web-building activity to pulsed 9.6-GHz microwaves at average power densities of 10, 1, and 0.1 mW/sq. cm. (estimated SARs 40, 4, and 0.4 mW/g). Under these conditions, 9.6-GHz pulsed microwaves did not affect the web-spinning ability of the cross spider.

  6. Nutrient Deprivation Induces Property Variations in Spider Gluey Silk

    PubMed Central

    Blamires, Sean J.; Sahni, Vasav; Dhinojwala, Ali; Blackledge, Todd A.; Tso, I-Min

    2014-01-01

    Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition. PMID:24523902

  7. Ploy and counterploy in predator-prey interactions: Orb-weaving spiders versus bombardier beetles*

    PubMed Central

    Eisner, Thomas; Dean, Jeffrey

    1976-01-01

    Bombardier beetles (Brachinus spp.) offered to orb-weaving spiders are either captured or lost, depending on the attack strategy of the spider. Nephila clavipes grasps a beetle directly and attempts to bite it outright, but is repelled by the beetle's defensive spray. As the spider recovers from the spray, the beetle makes its escape from the web. Argiope first imprisons the beetle by wrapping it delicately in silk, without causing it to spray. When the spider then proceeds to bite, the wrapping protects it against the full effects of the spray. The wrapping strategy may be generally effective against chemically protected insects, and it is suggested that this may be one of its principal adaptive justifications. Images PMID:16592308

  8. Detritus decorations of an orb-weaving spider, Cyclosa mulmeinensis (Thorell): for food or camouflage?

    PubMed

    Tan, Eunice J; Li, Daiqin

    2009-06-01

    Many species of the orb-web spider genus Cyclosa often adorn their webs with decorations of prey remains, egg sacs and/or plant detritus, termed ;detritus decorations'. These detritus decorations have been hypothesised to camouflage the spider from predators or prey and thus reduce predation risk or increase foraging success. In the present study, we tested these two alternative hypotheses simultaneously using two types of detritus decorations (prey remain and egg sac) built by Cyclosa mulmeinensis (Thorell). By monitoring the possible responses of predators to spiders on their webs with and without decorations in the field, we tested whether web decorations would reduce the mortality of spiders. Wasp predators were observed to fly in the vicinity of webs with decorations slightly more often than in the vicinity of webs without decorations but there were very few attacks on spiders by wasps. By comparing the insect interception rates of webs with and without decorations in the field, we tested whether web decorations would increase the foraging success. Webs decorated with prey remains or egg sacs intercepted more insects than those without in the field. By calculating colour contrasts of both prey-remain and egg-sac decorations against spiders viewed by bird (blue tits) and hymenopteran (e.g. wasps) predators as well as hymenopteran (bees) prey, we showed that C. mulmeinensis spiders on webs with egg-sac decorations were invisible to both hymenopteran prey and predators and bird predators over short and long distances. While spiders on webs with prey-remain decorations were invisible to both hymenopterans and birds over short distances, spiders on webs with prey-remain decorations were visible to both predators and prey over long distances. Our results thus suggest that decorating webs with prey remains and egg sacs in C. mulmeinensis may primarily function as camouflage to conceal the spider from insects rather than as prey attractants, possibly contributing to the interception of more insect prey. However, the detritus decorations exhibit varying success as camouflage against predators, depending on whether predators are jumping spiders, wasps or birds, as well as on the decoration type.

  9. Female genital mutilation and monandry in an orb-web spider

    PubMed Central

    2016-01-01

    Monandry, in which a female has only one mating partner during the reproductive period, is established when a female spontaneously refrains from re-mating, or when a partner male interferes with the attempts of a female to mate again. In the latter case, however, females often have countermeasures against males, which may explain why polyandry is ubiquitous. Here, I demonstrate that the genital appendage, or scape, of the female orb-web spider (Cyclosa argenteoalba) is injured after her first mating, possibly by her first male partner. This female genital mutilation (FGM) permanently precludes copulation, and females appear to have no countermeasures. FGM is considered to confer a strong advantage to males in sexual conflicts over the number of female matings, and it may widely occur in spiders. PMID:26911338

  10. Female genital mutilation and monandry in an orb-web spider.

    PubMed

    Nakata, Kensuke

    2016-02-01

    Monandry, in which a female has only one mating partner during the reproductive period, is established when a female spontaneously refrains from re-mating, or when a partner male interferes with the attempts of a female to mate again. In the latter case, however, females often have countermeasures against males, which may explain why polyandry is ubiquitous. Here, I demonstrate that the genital appendage, or scape, of the female orb-web spider (Cyclosa argenteoalba) is injured after her first mating, possibly by her first male partner. This female genital mutilation (FGM) permanently precludes copulation, and females appear to have no countermeasures. FGM is considered to confer a strong advantage to males in sexual conflicts over the number of female matings, and it may widely occur in spiders. © 2016 The Author(s).

  11. The role of capture spiral silk properties in the diversification of orb webs.

    PubMed

    Tarakanova, Anna; Buehler, Markus J

    2012-12-07

    Among a myriad of spider web geometries, the orb web presents a fascinating, exquisite example in architecture and evolution. Orb webs can be divided into two categories according to the capture silk used in construction: cribellate orb webs (composed of pseudoflagelliform silk) coated with dry cribellate threads and ecribellate orb webs (composed of flagelliform silk fibres) coated by adhesive glue droplets. Cribellate capture silk is generally stronger but less-extensible than viscid capture silk, and a body of phylogenic evidence suggests that cribellate capture silk is more closely related to the ancestral form of capture spiral silk. Here, we use a coarse-grained web model to investigate how the mechanical properties of spiral capture silk affect the behaviour of the whole web, illustrating that more elastic capture spiral silk yields a decrease in web system energy absorption, suggesting that the function of the capture spiral shifted from prey capture to other structural roles. Additionally, we observe that in webs with more extensible capture silk, the effect of thread strength on web performance is reduced, indicating that thread elasticity is a dominant driving factor in web diversification.

  12. Tuning the instrument: sonic properties in the spider's web

    PubMed Central

    Soler, A.; Siviour, C. R.; Zaera, R.; Vollrath, F.

    2016-01-01

    Spider orb webs are multifunctional, acting to absorb prey impact energy and transmit vibratory information to the spider. This paper explores the links between silk material properties, propagation of vibrations within webs and the ability of the spider to control and balance web function. Combining experimental and modelling approaches, we contrast transverse and longitudinal wave propagation in the web. It emerged that both transverse and longitudinal wave amplitude in the web can be adjusted through changes in web tension and dragline silk stiffness, i.e. properties that can be controlled by the spider. In particular, we propose that dragline silk supercontraction may have evolved as a control mechanism for these multifunctional fibres. The various degrees of active influence on web engineering reveals the extraordinary ability of spiders to shape the physical properties of their self-made materials and architectures to affect biological functionality, balancing trade-offs between structural and sensory functions. PMID:27605164

  13. Spider phylogenomics: untangling the Spider Tree of Life.

    PubMed

    Garrison, Nicole L; Rodriguez, Juanita; Agnarsson, Ingi; Coddington, Jonathan A; Griswold, Charles E; Hamilton, Christopher A; Hedin, Marshal; Kocot, Kevin M; Ledford, Joel M; Bond, Jason E

    2016-01-01

    Spiders (Order Araneae) are massively abundant generalist arthropod predators that are found in nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have long served as evolutionary models for studying complex mating and web spinning behaviors, key innovation and adaptive radiation hypotheses, and have been inspiration for important theories like sexual selection by female choice. Unfortunately, past major attempts to reconstruct spider phylogeny typically employing the "usual suspect" genes have been unable to produce a well-supported phylogenetic framework for the entire order. To further resolve spider evolutionary relationships we have assembled a transcriptome-based data set comprising 70 ingroup spider taxa. Using maximum likelihood and shortcut coalescence-based approaches, we analyze eight data sets, the largest of which contains 3,398 gene regions and 696,652 amino acid sites forming the largest phylogenomic analysis of spider relationships produced to date. Contrary to long held beliefs that the orb web is the crowning achievement of spider evolution, ancestral state reconstructions of web type support a phylogenetically ancient origin of the orb web, and diversification analyses show that the mostly ground-dwelling, web-less RTA clade diversified faster than orb weavers. Consistent with molecular dating estimates we report herein, this may reflect a major increase in biomass of non-flying insects during the Cretaceous Terrestrial Revolution 125-90 million years ago favoring diversification of spiders that feed on cursorial rather than flying prey. Our results also have major implications for our understanding of spider systematics. Phylogenomic analyses corroborate several well-accepted high level groupings: Opisthothele, Mygalomorphae, Atypoidina, Avicularoidea, Theraphosoidina, Araneomorphae, Entelegynae, Araneoidea, the RTA clade, Dionycha and the Lycosoidea. Alternatively, our results challenge the monophyly of Eresoidea, Orbiculariae, and Deinopoidea. The composition of the major paleocribellate and neocribellate clades, the basal divisions of Araneomorphae, appear to be falsified. Traditional Haplogynae is in need of revision, as our findings appear to support the newly conceived concept of Synspermiata. The sister pairing of filistatids with hypochilids implies that some peculiar features of each family may in fact be synapomorphic for the pair. Leptonetids now are seen as a possible sister group to the Entelegynae, illustrating possible intermediates in the evolution of the more complex entelegyne genitalic condition, spinning organs and respiratory organs.

  14. Spider phylogenomics: untangling the Spider Tree of Life

    PubMed Central

    Garrison, Nicole L.; Rodriguez, Juanita; Agnarsson, Ingi; Coddington, Jonathan A.; Griswold, Charles E.; Hamilton, Christopher A.; Hedin, Marshal; Kocot, Kevin M.; Ledford, Joel M.

    2016-01-01

    Spiders (Order Araneae) are massively abundant generalist arthropod predators that are found in nearly every ecosystem on the planet and have persisted for over 380 million years. Spiders have long served as evolutionary models for studying complex mating and web spinning behaviors, key innovation and adaptive radiation hypotheses, and have been inspiration for important theories like sexual selection by female choice. Unfortunately, past major attempts to reconstruct spider phylogeny typically employing the “usual suspect” genes have been unable to produce a well-supported phylogenetic framework for the entire order. To further resolve spider evolutionary relationships we have assembled a transcriptome-based data set comprising 70 ingroup spider taxa. Using maximum likelihood and shortcut coalescence-based approaches, we analyze eight data sets, the largest of which contains 3,398 gene regions and 696,652 amino acid sites forming the largest phylogenomic analysis of spider relationships produced to date. Contrary to long held beliefs that the orb web is the crowning achievement of spider evolution, ancestral state reconstructions of web type support a phylogenetically ancient origin of the orb web, and diversification analyses show that the mostly ground-dwelling, web-less RTA clade diversified faster than orb weavers. Consistent with molecular dating estimates we report herein, this may reflect a major increase in biomass of non-flying insects during the Cretaceous Terrestrial Revolution 125–90 million years ago favoring diversification of spiders that feed on cursorial rather than flying prey. Our results also have major implications for our understanding of spider systematics. Phylogenomic analyses corroborate several well-accepted high level groupings: Opisthothele, Mygalomorphae, Atypoidina, Avicularoidea, Theraphosoidina, Araneomorphae, Entelegynae, Araneoidea, the RTA clade, Dionycha and the Lycosoidea. Alternatively, our results challenge the monophyly of Eresoidea, Orbiculariae, and Deinopoidea. The composition of the major paleocribellate and neocribellate clades, the basal divisions of Araneomorphae, appear to be falsified. Traditional Haplogynae is in need of revision, as our findings appear to support the newly conceived concept of Synspermiata. The sister pairing of filistatids with hypochilids implies that some peculiar features of each family may in fact be synapomorphic for the pair. Leptonetids now are seen as a possible sister group to the Entelegynae, illustrating possible intermediates in the evolution of the more complex entelegyne genitalic condition, spinning organs and respiratory organs. PMID:26925338

  15. Small organic solutes in sticky droplets from orb webs of the spider Zygiella atrica (Araneae; Araneidae): β-alaninamide is a novel and abundant component.

    PubMed

    Townley, Mark A; Pu, Qinglin; Zercher, Charles K; Neefus, Christopher D; Tillinghast, Edward K

    2012-10-01

    In northeastern North America, Zygiella atrica often build their orb webs near the ocean. We analyzed individual field-built Z. atrica webs to determine if organic low-molecular-mass solutes (LMM) in their sticky droplets showed any unusual features not previously seen in orb webs of other species living in less salty environments. While two of the three most abundant organic LMM (putrescine (butane-1,4-diamine) and GABamide (4-aminobutanamide)) are already well-known from webs of inland spiders, the third major LMM, β-alaninamide (3-aminopropanamide), a homolog of GABamide, has not been detected in sticky droplets from any other araneoid spiders (27 species). It remains to be established, however, whether or not use of β-alaninamide is related to proximity to saltwater. We observed variability in organic LMM composition in Z. atrica webs that appeared to be influenced more by an undetermined factor associated with different collecting locations and/or collection dates than by different genders or instars. Shifts in composition when adult females were transferred from the field to the laboratory were also observed. Structural similarities and inverse correlations among β-alaninamide, GABamide, and N-acetylputrescine suggest that they may form a series of LMM fulfilling essentially the same, as yet unknown, role in the webs of those species in which they occur. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  16. Nephila clavipes spiders (Araneae: Nephilidae) keep track of captured prey counts: testing for a sense of numerosity in an orb-weaver.

    PubMed

    Rodríguez, Rafael L; Briceño, R D; Briceño-Aguilar, Eduardo; Höbel, Gerlinde

    2015-01-01

    Nephila clavipes golden orb-web spiders accumulate prey larders on their webs and search for them if they are removed from their web. Spiders that lose larger larders (i.e., spiders that lose larders consisting of more prey items) search for longer intervals, indicating that the spiders form memories of the size of the prey larders they have accumulated, and use those memories to regulate recovery efforts when the larders are pilfered. Here, we ask whether the spiders represent prey counts (i.e., numerosity) or a continuous integration of prey quantity (mass) in their memories. We manipulated larder sizes in treatments that varied in either prey size or prey numbers but were equivalent in total prey quantity (mass). We then removed the larders to elicit searching and used the spiders' searching behavior as an assay of their representations in memory. Searching increased with prey quantity (larder size) and did so more steeply with higher prey counts than with single prey of larger sizes. Thus, Nephila spiders seem to track prey quantity in two ways, but to attend more to prey numerosity. We discuss alternatives for continuous accumulator mechanisms that remain to be tested against the numerosity hypothesis, and the evolutionary and adaptive significance of evidence suggestive of numerosity in a sit-and-wait invertebrate predator.

  17. Bat predation by spiders.

    PubMed

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.

  18. Bat Predation by Spiders

    PubMed Central

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (∼90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed. PMID:23516436

  19. Consequences of electrical conductivity in an orb spider's capture web

    NASA Astrophysics Data System (ADS)

    Vollrath, Fritz; Edmonds, Donald

    2013-12-01

    The glue-coated and wet capture spiral of the orb web of the garden cross spider Araneus diadematus is suspended between the dry silk radial and web frame threads. Here, we experimentally demonstrate that the capture spiral is electrically conductive because of necks of liquid connecting the droplets even if the thread is stretched. We examine how this conductivity of the capture spiral may lead to entrapment of charged airborne particles such as pollen, spray droplets and even insects. We further describe and model how the conducting spiral will also locally distort the Earth's ambient electric field. Finally, we examine the hypothesis that such distortion could be used by potential prey to detect the presence of a web but conclude that any effect would probably be too small to allow an insect to take evasive action.

  20. Differential accumulation of heavy metals by web spiders and ground spiders in an old-field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, K.J.; Brewer, S.R.; Taylor, D.H.

    1994-03-01

    Accumulation of the heavy metals Cd, Cu, Pb, and Zn by web spiders (orb weavers: Araneidae) and ground spiders was examined in an old-field that had been subjected to 11 years of nutrient enrichment. The study area consistent of six 0.1-ha plots treated from 1978 to 1988 with municipal sewage sludge containing heavy-metal contaminants, urea-phosphate fertilizer, or left as untreated controls. In 1991 and 1992, heavy-metal concentrations in the soil, ground spiders, and web spiders were measured with a flame AA spectrophotometer. Spiders accumulated Cd, Cu, and Zn to concentrations greater than those present in the soil but did notmore » accumulate Pb. Ground spiders contained significantly higher levels of Cd and Cu than web spiders, whereas web spiders contained slightly greater levels of Pb than ground spiders. No trend between spider guilds was apparent for Zn accumulation. To understand the impact of the application of metal-contaminated municipal sludge on ecosystem, the toxicological effects on the biology and behavior of major biotic components in terrestrial food webs must be known.« less

  1. Distinct spinning patterns gain differentiated loading tolerance of silk thread anchorages in spiders with different ecology.

    PubMed

    Wolff, Jonas O; van der Meijden, Arie; Herberstein, Marie E

    2017-07-26

    Building behaviour in animals extends biological functions beyond bodies. Many studies have emphasized the role of behavioural programmes, physiology and extrinsic factors for the structure and function of buildings. Structure attachments associated with animal constructions offer yet unrealized research opportunities. Spiders build a variety of one- to three-dimensional structures from silk fibres. The evolution of economic web shapes as a key for ecological success in spiders has been related to the emergence of high performance silks and thread coating glues. However, the role of thread anchorages has been widely neglected in those models. Here, we show that orb-web (Araneidae) and hunting spiders (Sparassidae) use different silk application patterns that determine the structure and robustness of the joint in silk thread anchorages. Silk anchorages of orb-web spiders show a greater robustness against different loading situations, whereas the silk anchorages of hunting spiders have their highest pull-off resistance when loaded parallel to the substrate along the direction of dragline spinning. This suggests that the behavioural 'printing' of silk into attachment discs along with spinneret morphology was a prerequisite for the evolution of extended silk use in a three-dimensional space. This highlights the ecological role of attachments in the evolution of animal architectures. © 2017 The Author(s).

  2. Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds.

    PubMed

    Townley, Mark A; Tillinghast, Edward K; Neefus, Christopher D

    2006-04-01

    The sticky spiral of araneoid spider orb webs consists of silk fibers coated with adhesive droplets. The droplets contain a variety of low-molecular-mass compounds (LMM). Within a species, a fairly consistent ratio of LMM is often observed, but substantial variability can exist. To gain insight into factors influencing LMM composition, spiders of three araneid species were starved and LMM from their webs were analyzed for changes in composition. To determine if these changes were consistent with the spider's ability to synthesize the different organic LMM, synthetic capacities were estimated following the feeding of radiolabeled metabolites. Some changes in droplet composition were broadly consistent with differing synthetic capacities: molar percentages of less readily synthesized compounds (e.g. choline, isethionate, N-acetyltaurine) typically declined with starvation, at least during a portion of the imposed fast, while more readily synthesized compounds (e.g. GABamide, glycine) tended to increase. Most striking was the apparent partial substitution of N-acetylputrescine by the more readily synthesized GABamide in fasting Argiope trifasciata. However, departures from expected compositional shifts demonstrated that synthetic capacity alone does not adequately predict sticky droplet compositional shifts with starvation. Moreover, feeding controls exhibited some changes in composition similar to starving spiders. As the webs of both feeding and starving spiders were removed for chemical analysis and could not be recycled, the loss of LMM contained in these webs likely contributed to similarities between treatments. In addition, feeding spiders molted, oviposited and/or built heavier webs. The added metabolic demands of these activities may have contributed to changes in composition similar to those resulting from starvation.

  3. Nutrient-mediated architectural plasticity of a predatory trap.

    PubMed

    Blamires, Sean J; Tso, I-Min

    2013-01-01

    Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA) silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders.

  4. Fighting for the web: competition between female feather-legged spiders (Uloborus plumipes).

    PubMed

    Joel, Anna-Christin; Habedank, Anne; Hausen, Jonas; Mey, Jörg

    2017-04-01

    Most spider species are solitary, and among the few social interactions among them, resource competition between females has received little attention. We discovered that females of the feather-legged spider Uloborus plumipes invade the orb webs of conspecifics and compete for webs. Following observations in the wild, intruder-defender interactions were studied in a terrarium and in controlled laboratory experiments. We found that contests for orb webs occurred spontaneously between adult females. Competitive interactions in U. plumipes were characterized by an escalation of ritualized behaviors. In 27% of the contests the winner was determined by interactions at a distance, which involved behaviors that caused vibratory signaling on the web. The remaining interactions escalated to physical contact, and in 78% of these a fight occurred between the contestants. Using multivariate logistic regression we determined the factors that predicted the outcome of the contests: (i) Web ownership did not give the defender a competitive advantage. (ii) The difference in physical size between the competing spiders was the most important predictor for the outcome of web contests. (iii) Independent of body size, the display of certain behaviors, specifically the ability to reach the hub before the contestant and the frequency of attacks, increased the probability of winning. (iv) Winning or losing a fight did not affect the chances of winning subsequent contests. The interactions reported here provide a promising approach to investigate communication in spiders and to test theoretical models of intraspecific competition. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Analysis of transcriptomes of three orb-web spider species reveals gene profiles involved in silk and toxin.

    PubMed

    Zhao, Ying-Jun; Zeng, Yan; Chen, Lei; Dong, Yang; Wang, Wen

    2014-12-01

    As an ancient arthropod with a history of 390 million years, spiders evolved numerous morphological forms resulting from adaptation to different environments. The venom and silk of spiders, which have promising commercial applications in agriculture, medicine and engineering fields, are of special interests to researchers. However, little is known about their genomic components, which hinders not only understanding spider biology but also utilizing their valuable genes. Here we report on deep sequenced and de novo assembled transcriptomes of three orb-web spider species, Gasteracantha arcuata, Nasoonaria sinensis and Gasteracantha hasselti which are distributed in tropical forests of south China. With Illumina paired-end RNA-seq technology, 54 871, 101 855 and 75 455 unigenes for the three spider species were obtained, respectively, among which 9 300, 10 001 and 10 494 unique genes are annotated, respectively. From these annotated unigenes, we comprehensively analyzed silk and toxin gene components and structures for the three spider species. Our study provides valuable transcriptome data for three spider species which previously lacked any genetic/genomic data. The results have laid the first fundamental genomic basis for exploiting gene resources from these spiders. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  6. The role of capture spiral silk properties in the diversification of orb webs

    PubMed Central

    Tarakanova, Anna; Buehler, Markus J.

    2012-01-01

    Among a myriad of spider web geometries, the orb web presents a fascinating, exquisite example in architecture and evolution. Orb webs can be divided into two categories according to the capture silk used in construction: cribellate orb webs (composed of pseudoflagelliform silk) coated with dry cribellate threads and ecribellate orb webs (composed of flagelliform silk fibres) coated by adhesive glue droplets. Cribellate capture silk is generally stronger but less-extensible than viscid capture silk, and a body of phylogenic evidence suggests that cribellate capture silk is more closely related to the ancestral form of capture spiral silk. Here, we use a coarse-grained web model to investigate how the mechanical properties of spiral capture silk affect the behaviour of the whole web, illustrating that more elastic capture spiral silk yields a decrease in web system energy absorption, suggesting that the function of the capture spiral shifted from prey capture to other structural roles. Additionally, we observe that in webs with more extensible capture silk, the effect of thread strength on web performance is reduced, indicating that thread elasticity is a dominant driving factor in web diversification. PMID:22896566

  7. Web Formation - Skylab Student Experiment ED-52

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed skylab student experiment ED-52, Web Formation. This experiment was a study of a spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. This photograph is of Arabella, a cross spider, in her initial attempt at spirning a web. This picture was taken by the crew of the Skylab 3 mission before Arabella adapted to her new environment.

  8. Proximate mechanism of behavioral manipulation of an orb-weaver spider host by a parasitoid wasp

    PubMed Central

    Gonzaga, Marcelo Oliveira; de Oliveira, Leandro Licursi; Sperber, Carlos Frankl

    2017-01-01

    Some ichneumonid wasps induce modifications in the web building behavior of their spider hosts to produce resistant “cocoon” webs. These structures hold and protect the wasp’s cocoon during pupa development. The mechanism responsible for host manipulation probably involves the inoculation of psychotropic chemicals by the parasitoid larva during a specific developmental period. Recent studies indicate that some spiders build cocoon webs similar to those normally built immediately before ecdysis, suggesting that this substance might be a molting hormone or a precursor chemical of this hormone. Here, we report that Cyclosa spider species exhibiting modified behavior presented higher 20-OH-ecdysone levels than parasitized spiders acting normally or unparasitized individuals. We suggest that the lack of control that spiders have when constructing modified webs can be triggered by anachronic activation of ecdysis. PMID:28158280

  9. Skylab

    NASA Image and Video Library

    1973-01-01

    Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed skylab student experiment ED-52, Web Formation. This experiment was a study of a spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. This photograph is of Arabella, a cross spider, in her initial attempt at spirning a web. This picture was taken by the crew of the Skylab 3 mission before Arabella adapted to her new environment.

  10. Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds

    PubMed Central

    Townley, Mark A.; Tillinghast, Edward K.; Neefus, Christopher D.

    2006-01-01

    Summary The sticky spiral of araneoid spider orb webs consists of silk fibers coated with adhesive droplets. The droplets contain a variety of low-molecular-mass compounds (LMM). Within a species, a fairly consistent ratio of LMM is often observed, but substantial variability can exist. To gain insight into factors influencing LMM composition, spiders of three araneid species were starved and LMM from their webs were analyzed for changes in composition. To determine if these changes were consistent with the spider’s ability to synthesize the different organic LMM, synthetic capacities were estimated following the feeding of radiolabeled metabolites. Some changes in droplet composition were broadly consistent with differing synthetic capacities: molar percentages of less readily synthesized compounds (e.g., choline, isethionate, n-acetyltaurine) typically declined with starvation, at least during a portion of the imposed fast, while more readily synthesized compounds (e.g., GABamide, glycine) tended to increase. Most striking was the apparent partial substitution of n-acetylputrescine by the more readily synthesized GABamide in fasting Argiope trifasciata. However, departures from expected compositional shifts demonstrated that synthetic capacity alone does not adequately predict sticky droplet compositional shifts with starvation. Moreover, feeding controls exhibited some changes in composition similar to starving spiders. As the webs of both feeding and starving spiders were removed for chemical analysis and could not be recycled, the loss of LMM contained in these webs likely contributed to similarities between treatments. In addition, feeding spiders molted, oviposited, and/or built heavier webs. The added metabolic demands of these activities may have contributed to changes in composition similar to those resulting from starvation. PMID:16574806

  11. Nutrient-Mediated Architectural Plasticity of a Predatory Trap

    PubMed Central

    Blamires, Sean J.; Tso, I-Min

    2013-01-01

    Background Nutrients such as protein may be actively sought by foraging animals. Many predators exhibit foraging plasticity, but how their foraging strategies are affected when faced with nutrient deprivation is largely unknown. In spiders, the assimilation of protein into silk may be in conflict with somatic processes so we predicted web building to be affected under protein depletion. Methodology/Principal Findings To assess the influence of protein intake on foraging plasticity we fed the orb-web spiders Argiope aemula and Cyclosa mulmeinensis high, low or no protein solutions over 10 days and allowed them to build webs. We compared post-feeding web architectural components and major ampullate (MA) silk amino acid compositions. We found that the number of radii in webs increased in both species when fed high protein solutions. Mesh size increased in A. aemula when fed a high protein solution. MA silk proline and alanine compositions varied in each species with contrasting variations in alanine between the two species. Glycine compositions only varied in C. mulmeinensis silk. No spiders significantly lost or gained mass on any feeding treatment, so they did not sacrifice somatic maintenance for amino acid investment in silk. Conclusions/Significance Our results show that the amount of protein taken in significantly affects the foraging decisions of trap-building predators, such as orb web spiders. Nevertheless, the subtle differences found between species in the association between protein intake, the amino acids invested in silk and web architectural plasticity show that the influence of protein deprivation on specific foraging strategies differs among different spiders. PMID:23349928

  12. High-performance spider webs: integrating biomechanics, ecology and behaviour

    PubMed Central

    Harmer, Aaron M. T.; Blackledge, Todd A.; Madin, Joshua S.; Herberstein, Marie E.

    2011-01-01

    Spider silks exhibit remarkable properties, surpassing most natural and synthetic materials in both strength and toughness. Orb-web spider dragline silk is the focus of intense research by material scientists attempting to mimic these naturally produced fibres. However, biomechanical research on spider silks is often removed from the context of web ecology and spider foraging behaviour. Similarly, evolutionary and ecological research on spiders rarely considers the significance of silk properties. Here, we highlight the critical need to integrate biomechanical and ecological perspectives on spider silks to generate a better understanding of (i) how silk biomechanics and web architectures interacted to influence spider web evolution along different structural pathways, and (ii) how silks function in an ecological context, which may identify novel silk applications. An integrative, mechanistic approach to understanding silk and web function, as well as the selective pressures driving their evolution, will help uncover the potential impacts of environmental change and species invasions (of both spiders and prey) on spider success. Integrating these fields will also allow us to take advantage of the remarkable properties of spider silks, expanding the range of possible silk applications from single threads to two- and three-dimensional thread networks. PMID:21036911

  13. Web Formation - Skylab Student Experiment ED-52

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This chart describes the Skylab student experiment Web Formation. Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed a study of the spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  14. KSC-06pd2059

    NASA Image and Video Library

    2006-09-06

    KENNEDY SPACE CENTER, FLA. - Among the palmettos near a road in NASA's Kennedy Space Center, a large web supports this female Golden-silk Spider, along with the considerably smaller male in front of her (more visible in an enlargement). Golden-silk spiders build a roundish web, with an orb-shaped center like a fishnet. Like the spider, the silk is bright yellow, leading to the alternate reference of "banana spider." In Florida, a single golden-silk spider can place a web across a 12-foot wide trail overnight. It is frequently about 6 to 9 feet above the ground and normally has an area from 8 to 36 square feet. They eat almost all insects; their natural enemies are wasps. Golden-silk spiders are found in Florida to the Carolinas, the West Indies, Central and South America. Photo credit: NASA/Ken Thornsley

  15. Nutrient intake determines post-maturity molting in the golden orb-web spider Nephila pilipes (Araneae: Araneidae).

    PubMed

    Cheng, Ren-Chung; Zhang, Shichang; Chen, Yu-Chun; Lee, Chia-Yi; Chou, Yi-Ling; Ye, Hui-Ying; Piorkowski, Dakota; Liao, Chen-Pan; Tso, I-Min

    2017-06-15

    While molting occurs in the development of many animals, especially arthropods, post-maturity molting (PMM, organisms continue to molt after sexual maturity) has received little attention. The mechanism of molting has been studied intensively; however, the mechanism of PMM remains unknown although it is suggested to be crucial for the development of body size. In this study, we investigated factors that potentially induce PMM in the golden orb-web spider Nephila pilipes , which has the greatest degree of sexual dimorphism among terrestrial animals. We manipulated the mating history and the nutrient consumption of the females to examine whether they affect PMM. The results showed that female spiders under low nutrition were more likely to molt as adults, and mating had no significant influence on the occurrence of PMM. Moreover, spiders that underwent PMM lived longer than those that did not and their body sizes were significantly increased. Therefore, we concluded that nutritional condition rather than mating history affect PMM. © 2017. Published by The Company of Biologists Ltd.

  16. Optimal Area Use in Orb Webs of the Spider Araneus diadematus

    NASA Astrophysics Data System (ADS)

    Krink, T.; Vollrath, F.

    We studied the abilities of the garden cross spider Araneus diadematus regarding adaptation of web geometry to spatial constraints. Spiders reacted to a spatial reduction in their building site from a square-shaped frame to a slimmer, rectangular frame (side ratio 1 : 2) by maintaining overall web geometry while reducing the web area covered by the sticky capture spiral. However, when the frames were changed further to a rectangular side ratio of 1 : 3, the spiders changed specific web properties in such a way that a further reduction in the capture spiral area was prevented. Construction of the threads making up the web frame and the auxiliary spiral requires that the spider explores the spatial constraints of its building site. The geometry of both frame and auxiliary spiral threads in turn determine the geometry of the capture threads. Since in very narrow frames the spider adjusted the auxiliary to suit the subsequent capture spiral, we suggest that an initial spatial survey led to the final adaptation of overall web geometry to a web site.

  17. Optimal area use in orb webs of the spider Araneus diadematus.

    PubMed

    Krink, T; Vollrath, F

    2000-02-01

    We studied the abilities of the garden cross spider Araneus diadematus regarding adaptation of web geometry to spatial constraints. Spiders reacted to a spatial reduction in their building site from a square-shaped frame to a slimmer, rectangular frame (side ratio 1 : 2) by maintaining overall web geometry while reducing the web area covered by the sticky capture spiral. However, when the frames were changed further to a rectangular side ratio of 1 : 3, the spiders changed specific web properties in such a way that a further reduction in the capture spiral area was prevented. Construction of the threads making up the web frame and the auxiliary spiral requires that the spider explores the spatial constraints of its building site. The geometry of both frame and auxiliary spiral threads in turn determine the geometry of the capture threads. Since in very narrow frames the spider adjusted the auxiliary to suit the subsequent capture spiral, we suggest that an initial spatial survey led to the final adaptation of overall web geometry to a web site.

  18. Skylab

    NASA Image and Video Library

    1973-01-01

    This chart describes the Skylab student experiment Web Formation. Judith S. Miles of Lexington High School, Lexington, Massachusetts, proposed a study of the spider's behavior in a weightless environment. The geometrical structure of the web of the orb-weaving spider provides a good measure of the condition of its central nervous system. Since the spider senses its own weight to determine the required thickness of web material and uses both the wind and gravity to initiate construction of its web, the lack of gravitational force in Skylab provided a new and different stimulus to the spider's behavioral response. Two common cross spiders, Arabella and Anita, were used for the experiment aboard the Skylab-3 mission. After initial disoriented attempts, both spiders produced almost Earth-like webs once they had adapted to weightlessness. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.

  19. Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders.

    PubMed

    Tapia-McClung, Horacio; Ajuria Ibarra, Helena; Rao, Dinesh

    2016-01-01

    Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology.

  20. Quantifying Human Visible Color Variation from High Definition Digital Images of Orb Web Spiders

    PubMed Central

    Ajuria Ibarra, Helena; Rao, Dinesh

    2016-01-01

    Digital processing and analysis of high resolution images of 30 individuals of the orb web spider Verrucosa arenata were performed to extract and quantify human visible colors present on the dorsal abdomen of this species. Color extraction was performed with minimal user intervention using an unsupervised algorithm to determine groups of colors on each individual spider, which was then analyzed in order to quantify and classify the colors obtained, both spatially and using energy and entropy measures of the digital images. Analysis shows that the colors cover a small region of the visible spectrum, are not spatially homogeneously distributed over the patterns and from an entropic point of view, colors that cover a smaller region on the whole pattern carry more information than colors covering a larger region. This study demonstrates the use of processing tools to create automatic systems to extract valuable information from digital images that are precise, efficient and helpful for the understanding of the underlying biology. PMID:27902724

  1. Structural and optical studies on selected web spinning spider silks

    NASA Astrophysics Data System (ADS)

    Karthikeyani, R.; Divya, A.; Mathavan, T.; Asath, R. Mohamed; Benial, A. Milton Franklin; Muthuchelian, K.

    2017-01-01

    This study investigates the structural and optical properties in the cribellate silk of the sheet web spider Stegodyphus sarasinorum Karsch (Eresidae) and the combined dragline, viscid silk of the orb-web spiders Argiope pulchella Thorell (Araneidae) and Nephila pilipes Fabricius (Nephilidae). X-ray diffraction (XRD), Fourier transform infra-red (FTIR), Ultraviolet-visible (UV-Vis) and fluorescence spectroscopic techniques were used to study these three spider silk species. X-ray diffraction data are consistent with the amorphous polymer network which is arising from the interaction of larger side chain amino acid contributions due to the poly-glycine rich sequences known to be present in the proteins of cribellate silk. The same amorphous polymer networks have been determined from the combined dragline and viscid silk of orb-web spiders. From FTIR spectra the results demonstrate that, cribellate silk of Stegodyphus sarasinorum, combined dragline viscid silk of Argiope pulchella and Nephila pilipes spider silks are showing protein peaks in the amide I, II and III regions. Further they proved that the functional groups present in the protein moieties are attributed to α-helical and side chain amino acid contributions. The optical properties of the obtained spider silks such as extinction coefficients, refractive index, real and imaginary dielectric constants and optical conductance were studied extensively from UV-Vis analysis. The important fluorescent amino acid tyrosine is present in the protein folding was investigated by using fluorescence spectroscopy. This research would explore the protein moieties present in the spider silks which were found to be associated with α-helix and side chain amino acid contributions than with β-sheet secondary structure and also the optical relationship between the three different spider silks are investigated. Successful spectroscopic knowledge of the internal protein structure and optical properties of the spider silks could permit industrial production of silk-based fibres with unique properties under benign conditions.

  2. Atomic force microscopy of orb-spider-web-silks to measure surface nanostructuring and evaluate silk fibers per strand

    NASA Astrophysics Data System (ADS)

    Kane, D. M.; Naidoo, N.; Staib, G. R.

    2010-10-01

    Atomic force microscopy (AFM) study is used to measure the surface topology and roughness of radial and capture spider silks on the micro- and nanoscale. This is done for silks of the orb weaver spider Argiope keyserlingi. Capture silk has a surface roughness that is five times less than that for radial silk. The capture silk has an equivalent flatness of λ /100 (5-6 nm deep surface features) as an optical surface. This is equivalent to a very highly polished optical surface. AFM does show the number of silk fibers that make up a silk thread but geometric distortion occurs during sample preparation. This prevented AFM from accurately measuring the silk topology on the microscale in this study.

  3. Effects of kaolin particle films on the life span of an orb-weaver spider.

    PubMed

    Benhadi-Marín, Jacinto; Pereira, José Alberto; Santos, Sónia A P

    2016-02-01

    Araniella cucurbitina (Araneae: Araneidae) is a widespread orb-weaver spider commonly found in agroecosystems. Mineral particle films such as kaolin, due to their protective or anti-feeding action, can represent an alternative to pesticides, especially in organic farming systems, but little is known about its effects on A. cucurbitina. Therefore, we tested the effect of kaolin sprays on the life span of A. cucurbitina under laboratory conditions. Four treatments were tested encompassing different exposure routes. Thus, kaolin sprays were applied on (i) the surface, (ii) the prey (fly), (iii) the spider and (iv) both spider & prey. A control group was tested with water in each treatment. Results showed that sprays of kaolin significantly affected the survival of A. curcubitina when applications were done on the surface and on both spider & prey registering a reduction of 48% and 56%, respectively. Spiders in control obtained higher probability of reaching alive at the end of the assay than those treated with kaolin. Differences observed can be explained by the feeding behavior of the species and may depend on the consumption of the web by the spider and the ratio spider/fly for body size. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Short and long-term effects of three neurotoxic insecticides on biological and behavioural attributes of the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs.

    PubMed

    Benamú, Marco A; Schneider, Marcela I; González, Alda; Sánchez, Norma E

    2013-09-01

    Soybean pest control in Argentina is done just by chemical control using broad-spectrum pesticides. Alpaida veniliae (Araneae, Araneidae) is one of the most abundant spider species of the orb web weaver guild in soybean, and it is considered a very important polyphagous predator, attacking different insects' families. The objective of this study was to determine if neurotoxic insecticides commonly used in soybean crops and a new active ingredient registered in Argentina (spinosad) adversely affected survival, prey consumption, mating behaviour, web building and reproductive capacity of A. veniliae females, under standard laboratory conditions. Spinosad was the most harmful insecticide due to high acute toxicity, even at lower concentrations than those registered for its field use and for its sublethal effects also. Cypermethrin caused several sublethal effects although its acute toxicity on spider was lower than other insecticides. It reduced prey consumption, affected web building, caused abnormalities in eggs sacs and decreased drastically the fecundity and fertility at sublethal concentrations. Endosulfan did not reduce prey consumption but it affected web building, caused abnormalities in eggs sacs and egg masses, and decreased the fecundity and fertility. Spinosad was also the compound with the most drastic effect on web building, it did not reduce prey consumption and fecundity, but fertility was reduced and abnormalities in egg sacs and egg masses were observed. The use of these insecticides in IPM programs according to their potential toxicity on spider communities is discussed.

  5. A golden orb-weaver spider (Araneae: Nephilidae: Nephila) from the Middle Jurassic of China.

    PubMed

    Selden, Paul A; Shih, ChungKun; Ren, Dong

    2011-10-23

    Nephila are large, conspicuous weavers of orb webs composed of golden silk, in tropical and subtropical regions. Nephilids have a sparse fossil record, the oldest described hitherto being Cretaraneus vilaltae from the Cretaceous of Spain. Five species from Neogene Dominican amber and one from the Eocene of Florissant, CO, USA, have been referred to the extant genus Nephila. Here, we report the largest known fossil spider, Nephila jurassica sp. nov., from Middle Jurassic (approx. 165 Ma) strata of Daohugou, Inner Mongolia, China. The new species extends the fossil record of the family by approximately 35 Ma and of the genus Nephila by approximately 130 Ma, making it the longest ranging spider genus known. Nephilidae originated somewhere on Pangaea, possibly the North China block, followed by dispersal almost worldwide before the break-up of the supercontinent later in the Mesozoic. The find suggests that the palaeoclimate was warm and humid at this time. This giant fossil orb-weaver provides evidence of predation on medium to large insects, well known from the Daohugou beds, and would have played an important role in the evolution of these insects.

  6. Spider web-inspired acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Miniaci, Marco; Krushynska, Anastasiia; Movchan, Alexander B.; Bosia, Federico; Pugno, Nicola M.

    2016-08-01

    Spider silk is a remarkable example of bio-material with superior mechanical characteristics. Its multilevel structural organization of dragline and viscid silk leads to unusual and tunable properties, extensively studied from a quasi-static point of view. In this study, inspired by the Nephila spider orb web architecture, we propose a design for mechanical metamaterials based on its periodic repetition. We demonstrate that spider-web metamaterial structure plays an important role in the dynamic response and wave attenuation mechanisms. The capability of the resulting structure to inhibit elastic wave propagation in sub-wavelength frequency ranges is assessed, and parametric studies are performed to derive optimal configurations and constituent mechanical properties. The results show promise for the design of innovative lightweight structures for tunable vibration damping and impact protection, or the protection of large scale infrastructure such as suspended bridges.

  7. Old maids have more appeal: effects of age and pheromone source on mate attraction in an orb-web spider.

    PubMed

    Cory, Anna-Lena; Schneider, Jutta M

    2016-01-01

    Background. In many insects and spider species, females attract males with volatile sex pheromones, but we know surprisingly little about the costs and benefits of female pheromone emission. Here, we test the hypothesis that mate attraction by females is dynamic and strategic in the sense that investment in mate attraction is matched to the needs of the female. We use the orb-web spider Argiope bruennichi in which females risk the production of unfertilised egg clutches if they do not receive a copulation within a certain time-frame. Methods. We designed field experiments to compare mate attraction by recently matured (young) females with females close to oviposition (old). In addition, we experimentally separated the potential sources of pheromone transmission, namely the female body and the web silk. Results. In accordance with the hypothesis of strategic pheromone production, the probability of mate attraction and the number of males attracted differed between age classes. While the bodies and webs of young females were hardly found by males, the majority of old females attracted up to two males within two hours. Old females not only increased pheromone emission from their bodies but also from their webs. Capture webs alone spun by old females were significantly more efficient in attracting males than webs of younger females. Discussion. Our results suggest that females modulate their investment in signalling according to the risk of remaining unmated and that they thereby economize on the costs associated with pheromone production and emission.

  8. Spider webs designed for rare but life-saving catches

    PubMed Central

    Venner, Samuel; Casas, Jérôme

    2005-01-01

    The impact of rare but positive events on the design of organisms has been largely ignored, probably due to the paucity of recordings of such events and to the difficulty of estimating their impact on lifetime reproductive success. In this respect, we investigated the size of spider webs in relation to rare but large prey catches. First, we collected field data on a short time-scale using the common orb-weaving spider Zygiella x-notata to determine the distribution of the size of prey caught and to quantify the relationship between web size and daily capture success. Second, we explored, with an energetic model, the consequences of an increase in web size on spider fitness. Our results showed that (i) the great majority of prey caught are quite small (body length less than 2 mm) while large prey (length greater than 10 mm) are rare, (ii) spiders cannot survive or produce eggs without catching these large but rare prey and (iii) increasing web size increases the daily number of prey caught and thus long-term survival and fecundity. Spider webs seem, therefore, designed for making the best of the rare but crucial event of catching large prey. PMID:16048774

  9. Optics of Spider Sticky Orb Webs

    DTIC Science & Technology

    2011-01-01

    biopolymer which is almost exclusively protein with repeated sequences of the amino acids glycine and alanine [16]. The capture silk is spiraled...Herberstein, M. E., Craig, C. L. and Separovic, F., "Solid-state NMR relaxation studies of Australian spider silks ", Biopolymers 61, 287-297 (2002). [17... silks , scattering from rough/structured surfaces and thin film effects as the primary causes. We report systematic studies carried out using the

  10. The effect of colour polymorphism on thermoregulation in an orb web spider.

    PubMed

    Rao, Dinesh; Mendoza-Cuenca, Luis

    2016-08-01

    Spiders that build aerial webs in open areas face the risk of overheating due to incident solar radiation. These spiders can counteract overheating by either moving the web to another site or by adopting behavioural thermoregulation within the web. Since moving can be costly, studies have suggested that a passive but effective method of reducing heat load is by light reflectance through body colouration. We explored the interaction between colour and thermoregulation in a colour polymorphic species, under both field and laboratory conditions. We show that in natural conditions, the spiders maintain their body temperature below that of the ambient, but with no difference in surface temperature between colour morphs. In laboratory experiments with internal temperature measurements, white morphs bore the risk of overheating better than the yellow morphs since they heated up slower and cooled faster. We suggest that the thermoregulatory properties of colour polymorphism in Verrucosa arenata have physiological consequences and may play an important role in the maintenance of colour polymorphism in this species.

  11. The effect of colour polymorphism on thermoregulation in an orb web spider

    NASA Astrophysics Data System (ADS)

    Rao, Dinesh; Mendoza-Cuenca, Luis

    2016-08-01

    Spiders that build aerial webs in open areas face the risk of overheating due to incident solar radiation. These spiders can counteract overheating by either moving the web to another site or by adopting behavioural thermoregulation within the web. Since moving can be costly, studies have suggested that a passive but effective method of reducing heat load is by light reflectance through body colouration. We explored the interaction between colour and thermoregulation in a colour polymorphic species, under both field and laboratory conditions. We show that in natural conditions, the spiders maintain their body temperature below that of the ambient, but with no difference in surface temperature between colour morphs. In laboratory experiments with internal temperature measurements, white morphs bore the risk of overheating better than the yellow morphs since they heated up slower and cooled faster. We suggest that the thermoregulatory properties of colour polymorphism in Verrucosa arenata have physiological consequences and may play an important role in the maintenance of colour polymorphism in this species.

  12. Artificial night light alters nocturnal prey interception outcomes for morphologically variable spiders.

    PubMed

    Yuen, Suet Wai; Bonebrake, Timothy C

    2017-01-01

    Artificial night light has the potential to significantly alter visually-dependent species interactions. However, examples of disruptions of species interactions through changes in light remain rare and how artificial night light may alter predator-prey relationships are particularly understudied. In this study, we examined whether artificial night light could impact prey attraction and interception in Nephila pilipes orb weaver spiders, conspicuous predators who make use of yellow color patterns to mimic floral resources and attract prey to their webs. We measured moth prey attraction and interception responses to treatments where we experimentally manipulated the color/contrast of spider individuals in the field (removed yellow markings) and also set up light manipulations. We found that lit webs had lower rates of moth interception than unlit webs. Spider color, however, had no clear impact on moth interception or attraction rates in lit nor unlit webs. The results show that night light can reduce prey interception for spiders. Additionally, this study highlights how environmental and morphological variation can complicate simple predictions of ecological light pollution's disruption of species interactions.

  13. Signal polymorphism under a constant environment: the odd cross in a web decorating spider

    NASA Astrophysics Data System (ADS)

    Walter, André; Elgar, Mark A.

    2016-12-01

    The quality of many animal signals varies, perhaps through their use in different contexts or by representing an adaptive response to reduce the risk of exploitation. Spiders of the orb weaver genus Argiope add linear, cruciate or circular silk structures to their orb webs, creating inter- and intra-specific polymorphic visual signals. Different decoration patterns are frequently attributed to different signal effects, but this view is contradicted by commonly observed intraspecific variation in decorating behaviour. Adults of Argiope mascordi are bimodal web decorators, building two distinct patterns, circular and cruciate silk structures. We investigated the variation of patterns under controlled, invariant laboratory conditions. Circular decorations were most frequent, but individuals often switch to the other pattern. This variation neither increased nor decreased over time, suggesting that pattern variability is primarily intrinsic rather than an exclusive response to environmental changes. Accordingly, we discuss the evolutionary implications in the light of the conservation of a single signal function through maintaining the variation of its quality and the alternative view that silk decorations may not represent adaptive signals at all.

  14. Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider

    PubMed Central

    Agnarsson, Ingi; Kuntner, Matjaž; Blackledge, Todd A.

    2010-01-01

    Background Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41.000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200.000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila) or simply from researchers' backyards. Are we limited to ‘blindly fishing’ in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? Methodology We examined the biomechanical properties of silk produced by the remarkable Malagasy ‘Darwin's bark spider’ (Caerostris darwini), which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m2) suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m3, with some samples reaching 520 MJ/m3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. Conclusions Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web into the river. This hypothesis predicts that rapid change in material properties of silk co-occurred with ecological shifts within the genus, and can thus be tested by combining material science, behavioral observations, and phylogenetics. Our findings highlight the potential benefits of natural history–informed bioprospecting to discover silks, as well as other materials, with novel and exceptional properties to serve as models in biomimicry. PMID:20856804

  15. Spider web and silk performance landscapes across nutrient space

    PubMed Central

    Blamires, Sean J.; Tseng, Yi-Hsuan; Wu, Chung-Lin; Toft, Søren; Raubenheimer, David; Tso, I.-Min

    2016-01-01

    Predators have been shown to alter their foraging as a regulatory response to recent feeding history, but it remains unknown whether trap building predators modulate their traps similarly as a regulatory strategy. Here we fed the orb web spider Nephila pilipes either live crickets, dead crickets with webs stimulated by flies, or dead crickets without web stimulation, over 21 days to enforce spiders to differentially extract nutrients from a single prey source. In addition to the nutrients extracted we measured web architectures, silk tensile properties, silk amino acid compositions, and web tension after each feeding round. We then plotted web and silk “performance landscapes” across nutrient space. The landscapes had multiple peaks and troughs for each web and silk performance parameter. The findings suggest that N. pilipes plastically adjusts the chemical and physical properties of their web and silk in accordance with its nutritional history. Our study expands the application of the geometric framework foraging model to include a type of predatory trap. Whether it can be applied to other predatory traps requires further testing. PMID:27216252

  16. Large orb-webs adapted to maximise total biomass not rare, large prey

    PubMed Central

    Harmer, Aaron M. T.; Clausen, Philip D.; Wroe, Stephen; Madin, Joshua S.

    2015-01-01

    Spider orb-webs are the ultimate anti-ballistic devices, capable of dissipating the relatively massive kinetic energy of flying prey. Increased web size and prey stopping capacity have co-evolved in a number orb-web taxa, but the selective forces driving web size and performance increases are under debate. The rare, large prey hypothesis maintains that the energetic benefits of rare, very large prey are so much greater than the gains from smaller, more common prey that smaller prey are irrelevant for reproduction. Here, we integrate biophysical and ecological data and models to test a major prediction of the rare, large prey hypothesis, that selection should favour webs with increased stopping capacity and that large prey should comprise a significant proportion of prey stopped by a web. We find that larger webs indeed have a greater capacity to stop large prey. However, based on prey ecology, we also find that these large prey make up a tiny fraction of the total biomass (=energy) potentially captured. We conclude that large webs are adapted to stop more total biomass, and that the capacity to stop rare, but very large, prey is an incidental consequence of the longer radial silks that scale with web size. PMID:26374379

  17. Adhesion modulation using glue droplet spreading in spider capture silk

    PubMed Central

    Zhang, Ci; Blackledge, Todd A.

    2017-01-01

    Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives. PMID:28490605

  18. Adhesion modulation using glue droplet spreading in spider capture silk.

    PubMed

    Amarpuri, Gaurav; Zhang, Ci; Blackledge, Todd A; Dhinojwala, Ali

    2017-05-01

    Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives. © 2017 The Author(s).

  19. Wind induces variations in spider web geometry and sticky spiral droplet volume.

    PubMed

    Wu, Chao-Chia; Blamires, Sean J; Wu, Chung-Lin; Tso, I-Min

    2013-09-01

    Trap building by animals is rare because it comes at a substantial cost. Using materials with properties that vary across environments maintains trap functionality. The sticky spiral silks of spider orb webs are used to catch flying prey. Web geometry, accompanied by compensatory changes in silk properties, may change across environments to sustain web functionality. We exposed the spider Cyclosa mulmeinensis to wind to test whether wind-induced changes in web geometry are accompanied by changes in aggregate silk droplet morphology, axial thread width or spiral stickiness. We compared: (i) web catching area, (ii) length of total silks, (iii) mesh height, (iv) number of radii, (v) aggregate droplet morphology and (vi) spiral thread stickiness, between webs made by spiders exposed to wind and those made by spiders not exposed to wind. We interpreted co-variation in droplet morphology or spiral stickiness with web capture area, mesh height or spiral length as the silk properties functionally compensating for changes in web geometry to reduce wind drag. Wind-exposed C. mulmeinensis built webs with smaller capture areas, shorter capture spiral lengths and more widely spaced capture spirals, resulting in the expenditure of less silk. Individuals that were exposed to wind also deposited larger droplets of sticky silk but the stickiness of the spiral threads remained unchanged. The larger droplets may be a product of a greater investment in water, or low molecular weight compounds facilitating atmospheric water uptake. Either way, droplet dehydration in wind is likely to be minimized.

  20. Miniaturized orb-weaving spiders: behavioural precision is not limited by small size

    PubMed Central

    Eberhard, William G

    2007-01-01

    The special problems confronted by very small animals in nervous system design that may impose limitations on their behaviour and evolution are reviewed. Previous attempts to test for such behavioural limitations have suffered from lack of detail in behavioural observations of tiny species and unsatisfactory measurements of their behavioural capacities. This study presents partial solutions to both problems. The orb-web construction behaviour of spiders provided data on the comparative behavioural capabilities of tiny animals in heretofore unparalleled detail; species ranged about five orders of magnitude in weight, from approximately 50–100 mg down to some of the smallest spiders known (less than 0.005 mg), whose small size is a derived trait. Previous attempts to quantify the ‘complexity’ of behaviour were abandoned in favour of using comparisons of behavioural imprecision in performing the same task. The prediction of the size limitation hypothesis that very small spiders would have a reduced ability to repeat one particular behaviour pattern precisely was not confirmed. The anatomical and physiological mechanisms by which these tiny animals achieve this precision and the possibility that they are more limited in the performance of higher-order behaviour patterns await further investigation. PMID:17609181

  1. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.

    PubMed

    Marhabaie, Mohammad; Leeper, Thomas C; Blackledge, Todd A

    2014-01-13

    We investigated the natural variation in silk composition and mechanical performance of the orb-weaving spider Argiope trifasciata at multiple spatial and temporal scales in order to assess how protein composition contributes to the remarkable material properties of spider dragline silk. Major ampullate silk in orb-weaving spiders consists predominantly of two proteins (MaSp1 and MaSp2) with divergent amino acid compositions and functionally different microstructures. Adjusting the expression of these two proteins therefore provides spiders with a simple mechanism to alter the material properties of their silk. We first assessed the reliability and precision of the Waters AccQ-Tag amino acid composition analysis kit for determining the amino acid composition of small quantities of spider silk. We then tested how protein composition varied within single draglines, across draglines spun by the same spider on different days, and finally between spiders. Then, we correlated chemical composition with the material properties of dragline silk. Overall, we found that the chemical composition of major ampullate silk was in general homogeneous among individuals of the same population. Variation in chemical composition was not detectable within silk spun by a single spider on a single day. However, we found that variation within a single spider's silk across different days could, in rare instances, be greater than variation among individual spiders. Most of the variation in silk composition in our investigation resulted from a small number of outliers (three out of sixteen individuals) with a recent history of stress, suggesting stress affects silk production process in orb web spiders. Based on reported sequences for MaSp genes, we developed a gene expression model showing the covariation of the most abundant amino acids in major ampullate silk. Our gene expression model supports that dragline silk composition was mostly determined by the relative abundance of MaSp1 and MaSp2. Finally, we showed that silk composition (especially proline content) strongly correlated with some measures of mechanical performance, particularly how much fibers shrunk during supercontraction as well as their breaking strains. Our findings suggest that spiders are able to change the relative expression rates of different MaSp genes to produce silk fibers with different chemical compositions, and hence, different material properties.

  2. Tuning orb spider glycoprotein glue performance to habitat humidity.

    PubMed

    Opell, Brent D; Jain, Dharamdeep; Dhinojwala, Ali; Blackledge, Todd A

    2018-03-26

    Orb-weaving spiders use adhesive threads to delay the escape of insects from their webs until the spiders can locate and subdue the insects. These viscous threads are spun as paired flagelliform axial fibers coated by a cylinder of solution derived from the aggregate glands. As low molecular mass compounds (LMMCs) in the aggregate solution attract atmospheric moisture, the enlarging cylinder becomes unstable and divides into droplets. Within each droplet an adhesive glycoprotein core condenses. The plasticity and axial line extensibility of the glycoproteins are maintained by hygroscopic LMMCs. These compounds cause droplet volume to track changes in humidity and glycoprotein viscosity to vary approximately 1000-fold over the course of a day. Natural selection has tuned the performance of glycoprotein cores to the humidity of a species' foraging environment by altering the composition of its LMMCs. Thus, species from low-humidity habits have more hygroscopic threads than those from humid forests. However, at their respective foraging humidities, these species' glycoproteins have remarkably similar viscosities, ensuring optimal droplet adhesion by balancing glycoprotein adhesion and cohesion. Optimal viscosity is also essential for integrating the adhesion force of multiple droplets. As force is transferred to a thread's support line, extending droplets draw it into a parabolic configuration, implementing a suspension bridge mechanism that sums the adhesive force generated over the thread span. Thus, viscous capture threads extend an orb spider's phenotype as a highly integrated complex of large proteins and small molecules that function as a self-assembling, highly tuned, environmentally responsive, adhesive biomaterial. Understanding the synergistic role of chemistry and design in spider adhesives, particularly the ability to stick in wet conditions, provides insight in designing synthetic adhesives for biomedical applications. © 2018. Published by The Company of Biologists Ltd.

  3. Plastic material investment in load-bearing silk attachments in spiders.

    PubMed

    Wolff, Jonas O; Jones, Braxton; Herberstein, Marie E

    2018-05-17

    The nature and size of attachments is a fundamental element of animal constructions. Presumably, these adhesive structures are plastically deployed to balance material investment and attachment strength. Here we studied plasticity in dragline anchorages of the golden orb web spider, Nephila plumipes. Specifically, we predict that spiders adjust the size and structure of dragline anchorages with load, i.e. spider mass. Mass was manipulated by attaching lead pieces to the spider's abdomen resulting in a 50 percent increase in mass. Loaded spiders spun larger but structurally similar thread anchorages than unloaded spiders. Thus, the spinning program that determines the overall anchor structure is highly stereotypic, and flexibility is introduced through varying the anchor size by increasing material investment. Our study showcases substrate attachments as suitable models to investigate the interplay between innate and changeable elements in the economy of building behaviours. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Synergistic adhesion mechanisms of spider capture silk.

    PubMed

    Guo, Yang; Chang, Zheng; Guo, Hao-Yuan; Fang, Wei; Li, Qunyang; Zhao, Hong-Ping; Feng, Xi-Qiao; Gao, Huajian

    2018-03-01

    It is well known that capture silk, the main sticky component of the orb web of a spider, plays an important role in the spider's ability to capture prey via adhesion. However, the detailed mechanism with which the spider achieves its unparalleled high-adhesion performance remains elusive. In this work, we combine experiments and theoretical analysis to investigate the adhesion mechanisms of spider silk. In addition to the widely recognized adhesion effect of the sticky glue, we reveal a synergistic enhancement mechanism due to the elasticity of silk fibres. A balance between silk stiffness, strength and glue stickiness is crucial to endow the silk with superior adhesion, as well as outstanding energy absorption capacity and structural robustness. The revealed mechanisms deepen our understanding of the working principles of spider silk and suggest guidelines for biomimetic designs of spider-inspired adhesion and capture devices. © 2018 The Author(s).

  5. Short and fast vs long and slow: age changes courtship in male orb-web spiders ( Argiope keyserlingi)

    NASA Astrophysics Data System (ADS)

    O'Hanlon, James C.; Wignall, Anne E.; Herberstein, Marie E.

    2018-02-01

    Male reproductive performance can vary with condition, age and future reproductive opportunities. Web-building spiders are ideal models to examine the effects of senescence on fitness-related behaviours due to strong selection on male courtship to reduce pre-copulatory sexual cannibalism. Argiope keyserlingi spiders generate courtship vibrations, or `shudders', that reduce female aggression. We found that male A. keyserlingi courtship slowed with chronological age. Older males took longer to travel across the courtship thread, and overall number of shudders increased. Males retained some ability to modulate courtship quality (shudder duration and number of rocks within each shudder) in response to female quality. A change in courtship performance over time, despite strong selection for repeatability, indicates that ageing in male A. keyserlingi may have direct impacts on reproductive performance.

  6. Short and fast vs long and slow: age changes courtship in male orb-web spiders (Argiope keyserlingi).

    PubMed

    O'Hanlon, James C; Wignall, Anne E; Herberstein, Marie E

    2017-12-05

    Male reproductive performance can vary with condition, age and future reproductive opportunities. Web-building spiders are ideal models to examine the effects of senescence on fitness-related behaviours due to strong selection on male courtship to reduce pre-copulatory sexual cannibalism. Argiope keyserlingi spiders generate courtship vibrations, or 'shudders', that reduce female aggression. We found that male A. keyserlingi courtship slowed with chronological age. Older males took longer to travel across the courtship thread, and overall number of shudders increased. Males retained some ability to modulate courtship quality (shudder duration and number of rocks within each shudder) in response to female quality. A change in courtship performance over time, despite strong selection for repeatability, indicates that ageing in male A. keyserlingi may have direct impacts on reproductive performance.

  7. Design variability in web geometry of an orb-weaving spider.

    PubMed

    Vollrath, F; Downes, M; Krackow, S

    1997-10-01

    We studied the effect of several variables (environmental and physiological) on web geometry in the garden cross spider Araneus diadematus. Variables were: web support, wind, temperature, humidity, and silk supply. All had an effect. The spiders generally attempted to fit their webs to the shape of the supporting frame (standard, small, vertical, or horizontal). Windy conditions (0.5 m s-1) during web construction caused spiders to build smaller and rounder webs, laying down fewer capture spirals while increasing the distances between capture-spiral meshes. Decreasing temperature from 24 degrees to 12 degrees C caused the capture spiral to have fewer and wider spaced meshes, which did not change overall capture area but reduced the length of capture-spiral threads laid down. Subsequent increase of temperature to 24 degrees C restored the number of meshes laid down, but the wider mesh was retained, causing the capture area to be increased over initial control values. Decreased humidity (from 70 to 20% rH) had the effect of reducing web and capture-spiral size, the latter by reducing mesh number while keeping mesh spacing constant. Subsequent increase of humidity to control level (70%) restored web and capture area. However, this was achieved by laying down capture meshes at larger distances, rather than returning to initial mesh numbers. Silk supply also had a strong effect. Webs built in unnaturally rapid succession by the same spider (4 in 24 h when 1 is the norm) became sequentially smaller, had fewer radii, shorter capture spirals, and were wider meshed.

  8. Verified spider bites in Oregon (USA) with the intent to assess hobo spider venom toxicity.

    PubMed

    McKeown, Nathanael; Vetter, Richard S; Hendrickson, Robert G

    2014-06-01

    This study compiled 33 verified spider bites from the state of Oregon (USA). The initial goal was to amass a series of bites by the hobo spider to assess whether it possesses toxic venom, a supposition which is currently in a contested state. None of the 33 bites from several spider species developed significant medical symptoms nor did dermonecrosis occur. The most common biters were the yellow sac spider, Cheiracanthium mildei (N = 10) and orb-weavers of the genus Araneus (N = 6). There were 10 bites from three genera of funnel web spiders of the family Agelenidae including one hobo spider bite and one from the congeneric giant house spider which is readily confused as a hobo spider. The hobo spider bite resulted in pain, redness, twitching in the calf muscle and resolved in 12 h. Also generated from this study were possibly the first records of bites from spiders of the genera Callobius (Amaurobiidae) and Antrodiaetus (Antrodiaetidae), both with minor manifestations. Published by Elsevier Ltd.

  9. Nanostructural and mechanical property changes to spider silk as a consequence of insecticide exposure.

    PubMed

    Benamú, Marco; Lacava, Mariángeles; García, Luis F; Santana, Martín; Fang, Jian; Wang, Xungai; Blamires, Sean J

    2017-08-01

    Neonicotinoids are one of the world's most extensively used insecticides, but their sub-lethal influences on non-target and beneficial organisms are not well known. Here we exposed the orb web spider Parawixia audax, which is found on arable lands in Uruguay, to a sub-lethal concentration of the broad spectrum insecticide Geonex (thiamethoxam + lambda-cyhalothrin) and monitored their web building. We collected their major ampullate silk and subjected it to tensile tests, wide-angle X-ray diffraction (WAXS) analysis, and amino acid composition analysis. Around half of the exposed spiders failed to build webs. Those that built webs produced irregular webs lacking spiral threads. The mechanical properties, nanostructures, and amino acid compositions of the silk were all significantly affected when the spiders were exposed to insecticides. We found that silk proline, glutamine, alanine and glycine compositions differed between treatments, indicating that insecticide exposure induced downregulation of the silk protein MaSp2. The spiders in the control group had stronger, tougher and more extensible silks than those in the insecticide exposed group. Our WAXS analyses showed the amorphous region nanostructures became misaligned in insecticide exposed silks, explaining their greater stiffness. While the insecticide dose we subjected P. audax to was evidently sub-lethal, the changes in silk physicochemical properties and the impairment to web building will indelibly affect their ability to catch prey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Two new species of the orb-weaving spider genus Alpaida (Araneae, Araneidae) from Peru.

    PubMed

    Deza, Mariajosé; Andía, Juan Manuel

    2014-07-02

    Two new species of the orb-weaving spider genus Alpaida O. P.-Cambridge, 1889 are described and illustrated; Alpaida losamigos n. sp. based on females from Madre de Dios, and Alpaida penca n. sp. based on females and males from Cajamarca.

  11. The male of the orb-weaving spider Plebs mitratus (Simon, 1895) and a redescription of the female (Araneae, Araneidae).

    PubMed

    Paul, Jimmy; Sankaran, Pradeep M; Joseph, Mathew M; Sebastian, Pothalil A

    2016-10-28

    The orb-weaving spider genus Plebs Joseph & Framenau, 2012 currently has only two representatives in India: Plebs himalayaensis (Tikader, 1975) from the Himalayas and Plebs mitratus (Simon, 1895) from the Nilgiris and Anamudi Shola National Park (World Spider Catalog 2016), both are found in high altitude mountainous habitats (Joseph & Framenau 2012). Both species were known only from females (World Spider Catalog 2016), although Sherriffs (1918, 1919) provided a description of an immature male of P. mitratus. In the present paper, we provide the first description of the adult male of P. mitratus, together with the detailed redescription of its female demonstrating considerable intraspecific variation.

  12. Remote copulation: male adaptation to female cannibalism.

    PubMed

    Li, Daiqin; Oh, Joelyn; Kralj-Fiser, Simona; Kuntner, Matjaz

    2012-08-23

    Sexual cannibalism by females and associated male behaviours may be driven by sexual conflict. One such male behaviour is the eunuch phenomenon in spiders, caused by total genital emasculation, which is a seemingly maladaptive behaviour. Here, we provide the first empirical testing of an adaptive hypothesis to explain this behaviour, the remote copulation, in a highly sexually cannibalistic orb-web spider Nephilengys malabarensis. We demonstrate that sperm transfer continues from the severed male organ into female genitals after the male has been detached from copula. Remote copulation increases the total amount of sperm transferred, and thus probably enhances paternity. We conclude that the mechanism may have evolved in response to sexual cannibalism and female-controlled short copulation duration.

  13. Remote copulation: male adaptation to female cannibalism

    PubMed Central

    Li, Daiqin; Oh, Joelyn; Kralj-Fišer, Simona; Kuntner, Matjaž

    2012-01-01

    Sexual cannibalism by females and associated male behaviours may be driven by sexual conflict. One such male behaviour is the eunuch phenomenon in spiders, caused by total genital emasculation, which is a seemingly maladaptive behaviour. Here, we provide the first empirical testing of an adaptive hypothesis to explain this behaviour, the remote copulation, in a highly sexually cannibalistic orb-web spider Nephilengys malabarensis. We demonstrate that sperm transfer continues from the severed male organ into female genitals after the male has been detached from copula. Remote copulation increases the total amount of sperm transferred, and thus probably enhances paternity. We conclude that the mechanism may have evolved in response to sexual cannibalism and female-controlled short copulation duration. PMID:22298805

  14. New Opportunities for an Ancient Material

    PubMed Central

    Omenetto, Fiorenzo G.; Kaplan, David L.

    2011-01-01

    Spiders and silkworms generate silk protein fibers that embody strength and beauty. Orb webs are fascinating feats of bioengineering in nature, displaying magnificent architectures while providing essential survival utility for spiders. The unusual combination of high strength and extensibility is a characteristic unavailable to date in synthetic materials yet is attained in nature with a relatively simple protein processed from water. This biological template suggests new directions to emulate in the pursuit of new high-performance, multifunctional materials generated with a green chemistry and processing approach. These bio-inspired and high-technology materials can lead to multifunctional material platforms that integrate with living systems for medical materials and a host of other applications. PMID:20671180

  15. Signal conflict in spider webs driven by predators and prey

    PubMed Central

    Blackledge, T. A.

    1998-01-01

    Variation in the sensory physiologies of organisms can bias the receptions of signals, driving the direction of signal evolution. Sensory drive in the evolution of signals may be particularly important for organisms that confront trade-offs in signal design between the need for conspicuousness to allow effective transfer of information and the need for crypsis of the signal to unintended receivers. Several genera of orb-weaving spiders include conspicuous silk designs, stabilimenta, in the centre of their webs. Stabilimenta can be highly visible signals to predators, warning them of the presence of a noxious, sticky silk web. However, stabilimenta can also be used by prey as a signal in avoidance of webs, creating a trade-off in signal visibility. I argue that the derived spectral properties of stabilimentum silk have resulted in part from this conflict. The innate colour preferences of insects, their ability to learn colours, and the spectral properties of flowers all suggest that the reflectance spectra of stabilimenta renders them relatively cryptic to many insect prey, while maintaining their visibility to vertebrate predators.

  16. Hg-contaminated terrestrial spiders pose a potential risk to songbirds at Caddo Lake (Texas/Louisiana, USA).

    PubMed

    Gann, Gretchen L; Powell, Cleveland H; Chumchal, Matthew M; Drenner, Ray W

    2015-02-01

    Methylmercury (MeHg) is an environmental contaminant that can have adverse effects on wildlife. Because MeHg is produced by bacteria in aquatic ecosystems, studies of MeHg contamination of food webs historically have focused on aquatic organisms. However, recent studies have shown that terrestrial organisms such as songbirds can be contaminated with MeHg by feeding on MeHg-contaminated spiders. In the present study, the authors examined the risk that MeHg-contaminated terrestrial long-jawed orb weaver spiders (Tetragnatha sp.) pose to songbirds at Caddo Lake (Texas/Louisiana, USA). Methylmercury concentrations in spiders were significantly different in river, wetland, and open-water habitats. The authors calculated spider-based wildlife values (the minimum spider MeHg concentrations causing physiologically significant doses in consumers) to assess exposure risks for arachnivorous birds. Methylmercury concentrations in spiders exceeded wildlife values for Carolina chickadee (Poecile carolinensis) nestlings, with the highest risk in the river habitat. The present study indicates that MeHg concentrations in terrestrial spiders vary with habitat and can pose a threat to small-bodied nestling birds that consume large amounts of spiders at Caddo Lake. This MeHg threat to songbirds may not be unique to Caddo Lake and may extend throughout the southeastern United States. © 2014 SETAC.

  17. Commercial Generic Bioprocessing Apparatus Science Insert - 03

    NASA Technical Reports Server (NTRS)

    Moreno, Nancy; Stodieck, Louis; Cushing, Paula; Stowe, Mark; Hamilton, Mary Ann; Werner, Ken

    2008-01-01

    Commercial Generic Bioprocessing Apparatus Science Insert - 03 (CSI-03) is the third set of investigations in the CSI program series. The CSI program provides the K-12 community opportunities to utilize the unique microgravity environment of the International Space Station as part of the regular classroom to encourage learning and interest in science, technology, engineering and math. CSI-03 will examine the complete life cycle of the painted lady butterfly and the ability of an orb weaving spider to spin a web, eat and remain healthy in space.

  18. Image Contrast Immersion Method for Measuring Refractive Index Applied to Spider Silks

    DTIC Science & Technology

    2011-09-26

    12.880665. 8. A. J. Werner, “Methods in high precision refractometry of optical glasses,” Appl. Opt. 7(5), 837–843 (1968). 9. Y. S. Liu, “Direct...transparent, low visibility orb web. Refractometry is the most widely used technique for accurately measuring n for transparent media. It has been...in use for more than a century. There are several standard refractometry methods [8]. Most require a bulk sample with surfaces polished to optical

  19. Mechanical properties of silk of the Australian golden orb weavers Nephila pilipes and Nephilaplumipes.

    PubMed

    Kerr, Genevieve G; Nahrung, Helen F; Wiegand, Aaron; Kristoffersen, Joanna; Killen, Peter; Brown, Cameron; Macdonald, Joanne

    2018-02-22

    Silks from orb-weaving spiders are exceptionally tough, producing a model polymer for biomimetic fibre development. The mechanical properties of naturally spun silk threads from two species of Australian orb-weavers, Nephila pilipes and Nephila plumipes , were examined here in relation to overall thread diameter, the size and number of fibres within threads, and spider size. N. pilipes , the larger of the two species, had significantly tougher silk with higher strain capacity than its smaller congener, producing threads with average toughness of 150 MJ m -3 , despite thread diameter, mean fibre diameter and number of fibres per thread not differing significantly between the two species. Within N. pilipes , smaller silk fibres were produced by larger spiders, yielding tougher threads. In contrast, while spider size was correlated with thread diameter in N. plumipes , there were no clear patterns relating to silk toughness, which suggests that the differences in properties between the silk of the two species arise through differing molecular structure. Our results support previous studies that found that the mechanical properties of silk differ between distantly related spider species, and extends on that work to show that the mechanical and physical properties of silk from more closely related species can also differ remarkably. © 2018. Published by The Company of Biologists Ltd.

  20. Spiders and subsidies: results from the riparian zone of a coastal temperate rainforest.

    PubMed

    Marczak, Laurie B; Richardson, John S

    2007-07-01

    1. Aquatic insects emerging from streams can provide an important energy subsidy to recipient consumers such as riparian web-building spiders. This subsidy has been hypothesized to be of little importance where the primary productivity of the recipient habitat exceeds that of the donor habitat. 2. To test this hypothesis, we manipulated emerging stream insect abundance in a productive riparian rainforest in a replicated design using greenhouse-type exclosures, contrasted with unmanipulated stream reaches (four exclosures on two streams). 3. Experimental exclosures resulted in a 62.9% decrease in aquatic insect abundance in exclusion reaches compared with control reaches. The overall density of riparian spiders was significantly positively correlated with aquatic insect abundances. Horizontal orb weavers (Tetragnathidae) showed a strong response to aquatic insect reduction - abundance at exclosure sites was 57% lower than at control sites. Several spider families that have not been associated with tracking aquatic insect subsidies also showed significantly decreased abundance when aquatic insects were reduced. 4. This result is contrary to predictions of weak subsidy effects where recipient net primary productivity is high. These results suggest that predicting the importance of resource subsidies for food webs requires a focus on the relative abundance of subsidy materials in recipient and donor habitats and not simply on the total flux of energy between systems.

  1. Jewelled spiders manipulate colour-lure geometry to deceive prey

    PubMed Central

    2017-01-01

    Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally ‘static’ signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. PMID:28356411

  2. Jewelled spiders manipulate colour-lure geometry to deceive prey.

    PubMed

    White, Thomas E

    2017-03-01

    Selection is expected to favour the evolution of efficacy in visual communication. This extends to deceptive systems, and predicts functional links between the structure of visual signals and their behavioural presentation. Work to date has primarily focused on colour, however, thereby understating the multicomponent nature of visual signals. Here I examined the relationship between signal structure, presentation behaviour, and efficacy in the context of colour-based prey luring. I used the polymorphic orb-web spider Gasteracantha fornicata , whose yellow- or white-and-black striped dorsal colours have been broadly implicated in prey attraction. In a manipulative assay, I found that spiders actively control the orientation of their conspicuous banded signals in the web, with a distinct preference for near-diagonal bearings. Further field-based study identified a predictive relationship between pattern orientation and prey interception rates, with a local maximum at the spiders' preferred orientation. There were no morph-specific effects on capture success, either singularly or via an interaction with pattern orientation. These results reveal a dynamic element in a traditionally 'static' signalling context, and imply differential functions for chromatic and geometric signal components across visual contexts. More broadly, they underscore how multicomponent signal designs and display behaviours may coevolve to enhance efficacy in visual deception. © 2017 The Author(s).

  3. Discovery of the Largest Orbweaving Spider Species: The Evolution of Gigantism in Nephila

    PubMed Central

    Kuntner, Matjaž; Coddington, Jonathan A.

    2009-01-01

    Background More than 41,000 spider species are known with about 400–500 added each year, but for some well-known groups, such as the giant golden orbweavers, Nephila, the last valid described species dates from the 19th century. Nephila are renowned for being the largest web-spinning spiders, making the largest orb webs, and are model organisms for the study of extreme sexual size dimorphism (SSD) and sexual biology. Here, we report on the discovery of a new, giant Nephila species from Africa and Madagascar, and review size evolution and SSD in Nephilidae. Methodology We formally describe N. komaci sp. nov., the largest web spinning species known, and place the species in phylogenetic context to reconstruct the evolution of mean size (via squared change parsimony). We then test female and male mean size correlation using phylogenetically independent contrasts, and simulate nephilid body size evolution using Monte Carlo statistics. Conclusions Nephila females increased in size almost monotonically to establish a mostly African clade of true giants. In contrast, Nephila male size is effectively decoupled and hovers around values roughly one fifth of female size. Although N. komaci females are the largest Nephila yet discovered, the males are also large and thus their SSD is not exceptional. PMID:19844575

  4. Discovery of the largest orbweaving spider species: the evolution of gigantism in Nephila.

    PubMed

    Kuntner, Matjaz; Coddington, Jonathan A

    2009-10-21

    More than 41,000 spider species are known with about 400-500 added each year, but for some well-known groups, such as the giant golden orbweavers, Nephila, the last valid described species dates from the 19(th) century. Nephila are renowned for being the largest web-spinning spiders, making the largest orb webs, and are model organisms for the study of extreme sexual size dimorphism (SSD) and sexual biology. Here, we report on the discovery of a new, giant Nephila species from Africa and Madagascar, and review size evolution and SSD in Nephilidae. We formally describe N. komaci sp. nov., the largest web spinning species known, and place the species in phylogenetic context to reconstruct the evolution of mean size (via squared change parsimony). We then test female and male mean size correlation using phylogenetically independent contrasts, and simulate nephilid body size evolution using Monte Carlo statistics. Nephila females increased in size almost monotonically to establish a mostly African clade of true giants. In contrast, Nephila male size is effectively decoupled and hovers around values roughly one fifth of female size. Although N. komaci females are the largest Nephila yet discovered, the males are also large and thus their SSD is not exceptional.

  5. Production And Characterization Of Synthetic Spider Silks Based On Nephila Clavipes Major Ampullate Silk Proteins

    NASA Astrophysics Data System (ADS)

    An, Bo

    The extraordinary mechanical properties of orb-weaving spider silks have served spiders for over 400 million years. However, only in the late 20th century did we start to understand the molecular nature of spider silk that contributes to its incredible properties as biomaterials. Among all seven types of spider silks, major ampullate silk from typical orb-weaving spiders is the toughest of all, it consists of primarily two proteins: MaSp1 and MaSp2. Variable ratios and conserved motifs of these two proteins in all the native spider silks demonstrate the significant role of MaSp1 and MaSp2 in controlling the mechanical properties of the fiber. The amino acid sequences of the orb weaving spider silk proteins have remained almost unchanged for more than 100 million years. Interestingly, MaSp1 and MaSp2 are the only two components in all studied dragline silk fibers from these spiders. The mechanical properties of native dragline silk vary slightly between species, which are believed to relate to the ratio of MaSp1 to MaSp2 in the silk. Both of these facts clearly indicate the importance of these two proteins to the mechanical properties of the fiber. Various types of synthetic spider silk fibers have been produced and studied in an effort to mass-produce man-made fibers with qualities comparable to native spider silk. To investigate the roles of MaSp1 and MaSp2 in silk fiber, synthetic MaSp1 (major abundant protein in Nephila clavipes major ampullate silks) only fibers, MaSp1/MaSp2 protein mixture fibers and chimeric protein fibers with both MaSp1 and MaSp2 sequence features have been produced and tested for mechanical properties. Solid-State Nuclear Magnetic Resonance was used to characterize the structure of silk fibers and reveal the relation between fiber spatial structure and mechanical properties.

  6. A Comparative Analysis of the Morphology and Evolution of Permanent Sperm Depletion in Spiders

    PubMed Central

    2011-01-01

    Once thought to be energetically cheap and easy to produce, empirical work has shown that sperm is a costly and limited resource for males. In some spider species, there is behavioral evidence that sperm are permanently depleted after a single mating. This extreme degree of mating investment appears to co-occur with other reproductive strategies common to spiders, e.g. genital mutilation and sexual cannibalism. Here we corroborate that sperm depletion in the golden orb-web spider Nephila clavipes is permanent by uncovering its mechanistic basis using light and electron microscopy. In addition, we use a phylogeny-based statistical analysis to test the evolutionary relationships between permanent sperm depletion (PSD) and other reproductive strategies in spiders. Male testes do not produce sperm during adulthood, which is unusual in spiders. Instead, spermatogenesis is nearly synchronous and ends before the maturation molt. Testis size decreases as males approach their maturation molt and reaches its lowest point after sperm is transferred into the male copulatory organs (pedipalps). As a consequence, the amount of sperm available to males for mating is limited to the sperm contained in the pedipalps, and once it is used, males lose their ability to fertilize eggs. Our data suggest that PSD has evolved independently at least three times within web-building spiders and is significantly correlated with the evolution of other mating strategies that limit males to monogamy, including genital mutilation and sexual cannibalism. We conclude that PSD may be an energy-saving adaptation in species where males are limited to monogamy. This could be particularly important in web-building spiders where extreme sexual size dimorphism results in large, sedentary females and small, searching males who rarely feed as adults and are vulnerable to starvation. Future work will explore possible energetic benefits and the evolutionary lability of PSD relative to other mate-limiting reproductive behaviors. PMID:21264312

  7. Nutrient balance affects foraging behaviour of a trap-building predator

    PubMed Central

    Mayntz, David; Toft, Søren; Vollrath, Fritz

    2009-01-01

    Predator foraging may be affected by previous prey capture, but it is unknown how nutrient balance affects foraging behaviour. Here, we use a trap-building predator to test whether nutrients from previous prey captures affect foraging behaviour. We fed orb-weaving spiders (Zygiella x-notata) prey flies of different nutrient composition and in different amounts during their first instar and measured the subsequent frequency of web building and aspects of web architecture. We found that both the likelihood of web building and the number of radii in the web were affected by prey nutrient composition while prey availability affected capture area and mesh height. Our results show that both the balance of nutrients in captured prey and the previous capture rate may affect future foraging behaviour of predators. PMID:19640870

  8. Female control of paternity in the sexually cannibalistic spider Argiope keyserlingi.

    PubMed Central

    Elgar, M A; Schneider, J M; Herberstein, M E

    2000-01-01

    Sexual conflict theory predicts an antagonistic coevolution, with each sex evolving adaptations and counter-adaptations to overcome a temporary dominance of the other sex over the control of paternity. Polyandry allows sexual selection to operate after mating has commenced, with male and female interests competing for control of fertilization. There are numerous examples of male control of paternity, but few studies have unambiguously revealed female control. Attributing variance in paternity to females is often difficult since male and female influences cannot be separated unambiguously. However, we show that polyandrous female orb-web spiders Argiope keserlingi (Arancidae) control the paternity of their offspring by adjusting the timing of sexual cannibalism. Our experiments reveal that females copulating with relatively smaller males delay sexual cannibalism, thereby prolonging the duration of copulation, and that these males consequently fertilize relatively more eggs. PMID:11133035

  9. Spider Trait Assembly Patterns and Resilience under Fire-Induced Vegetation Change in South Brazilian Grasslands

    PubMed Central

    Podgaiski, Luciana R.; Joner, Fernando; Lavorel, Sandra; Moretti, Marco; Ibanez, Sebastien; Mendonça, Milton de S.; Pillar, Valério D.

    2013-01-01

    Disturbances induce changes on habitat proprieties that may filter organism's functional traits thereby shaping the structure and interactions of many trophic levels. We tested if communities of predators with foraging traits dependent on habitat structure respond to environmental change through cascades affecting the functional traits of plants. We monitored the response of spider and plant communities to fire in South Brazilian Grasslands using pairs of burned and unburned plots. Spiders were determined to the family level and described in feeding behavioral and morphological traits measured on each individual. Life form and morphological traits were recorded for plant species. One month after fire the abundance of vegetation hunters and the mean size of the chelicera increased due to the presence of suitable feeding sites in the regrowing vegetation, but irregular web builders decreased due to the absence of microhabitats and dense foliage into which they build their webs. Six months after fire rosette-form plants with broader leaves increased, creating a favourable habitat for orb web builders which became more abundant, while graminoids and tall plants were reduced, resulting in a decrease of proper shelters and microclimate in soil surface to ground hunters which became less abundant. Hence, fire triggered changes in vegetation structure that lead both to trait-convergence and trait-divergence assembly patterns of spiders along gradients of plant biomass and functional diversity. Spider individuals occurring in more functionally diverse plant communities were more diverse in their traits probably because increased possibility of resource exploitation, following the habitat heterogeneity hypothesis. Finally, as an indication of resilience, after twelve months spider communities did not differ from those of unburned plots. Our findings show that functional traits provide a mechanistic understanding of the response of communities to environmental change, especially when more than one trophic level is considered. PMID:23555927

  10. Spider trait assembly patterns and resilience under fire-induced vegetation change in South Brazilian grasslands.

    PubMed

    Podgaiski, Luciana R; Joner, Fernando; Lavorel, Sandra; Moretti, Marco; Ibanez, Sebastien; Mendonça, Milton de S; Pillar, Valério D

    2013-01-01

    Disturbances induce changes on habitat proprieties that may filter organism's functional traits thereby shaping the structure and interactions of many trophic levels. We tested if communities of predators with foraging traits dependent on habitat structure respond to environmental change through cascades affecting the functional traits of plants. We monitored the response of spider and plant communities to fire in South Brazilian Grasslands using pairs of burned and unburned plots. Spiders were determined to the family level and described in feeding behavioral and morphological traits measured on each individual. Life form and morphological traits were recorded for plant species. One month after fire the abundance of vegetation hunters and the mean size of the chelicera increased due to the presence of suitable feeding sites in the regrowing vegetation, but irregular web builders decreased due to the absence of microhabitats and dense foliage into which they build their webs. Six months after fire rosette-form plants with broader leaves increased, creating a favourable habitat for orb web builders which became more abundant, while graminoids and tall plants were reduced, resulting in a decrease of proper shelters and microclimate in soil surface to ground hunters which became less abundant. Hence, fire triggered changes in vegetation structure that lead both to trait-convergence and trait-divergence assembly patterns of spiders along gradients of plant biomass and functional diversity. Spider individuals occurring in more functionally diverse plant communities were more diverse in their traits probably because increased possibility of resource exploitation, following the habitat heterogeneity hypothesis. Finally, as an indication of resilience, after twelve months spider communities did not differ from those of unburned plots. Our findings show that functional traits provide a mechanistic understanding of the response of communities to environmental change, especially when more than one trophic level is considered.

  11. Spontaneous male death during copulation in an orb-weaving spider.

    PubMed Central

    Foellmer, Matthias W; Fairbairn, Daphne J

    2003-01-01

    Males of some cannibalistic species of spiders and insects appear to sacrifice themselves by allowing the female to eat them, and the adaptive significance of such drastic terminal reproductive investment has recently been demonstrated for a spider. Typically, the female has to kill the male, but it has been suggested that males of some species in the cannibalistic orb-weaving spider genus Argiope may die in copula without female 'collaboration'. Here, we provide the first experimental evidence to our knowledge of programmed sudden death after onset of copulation in males of the spider Argiope aurantia. Our observations reveal that males invariably die during the insertion of their second pedipalp, regardless of whether they mate with newly moulted, defenceless females or with older mature females that often attack them. We determined experimentally that the death of males is triggered immediately upon insertion of the second palp, when males become unresponsive, and heartbeat ceases within minutes of insertion. We discuss the possible adaptive significance of programmed death during copulation, and argue that male death has evolved in a context other than sexual cannibalism. PMID:14667377

  12. Color polymorphic lures target different visual channels in prey.

    PubMed

    White, Thomas E; Kemp, Darrell J

    2016-06-01

    Selection for signal efficacy in variable environments may favor color polymorphism, but little is known about this possibility outside of sexual systems. Here we used the color polymorphic orb-web spider Gasteracantha fornicata, whose yellow- or white-banded dorsal signal attracts dipteran prey, to test the hypothesis that morphs may be tuned to optimize either chromatic or achromatic conspicuousness in their visually noisy forest environments. We used data from extensive observations of naturally existing spiders and precise assessments of visual environments to model signal conspicuousness according to dipteran vision. Modeling supported a distinct bias in the chromatic (yellow morph) or achromatic (white morph) contrast presented by spiders at the times when they caught prey, as opposed to all other times at which they may be viewed. Hence, yellow spiders were most successful when their signal produced maximum color contrast against viewing backgrounds, whereas white spiders were most successful when they presented relatively greatest luminance contrast. Further modeling across a hypothetical range of lure variation confirmed that yellow versus white signals should, respectively, enhance chromatic versus achromatic conspicuousness to flies, in G. fornicata's visual environments. These findings suggest that color polymorphism may be adaptively maintained by selection for conspicuousness within different visual channels in receivers. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  13. Biotechnology and Composite Materials

    DTIC Science & Technology

    1993-04-01

    protein fibroin which are glued together by the protein sericin . Many other insects produce silk, most notably spiders. Spider silks Zre proteins with...silk is boiled to remove the soluble sticky sericin protein, and the remaining fibroin portion of the silk is then unwound and used as silk fiber. Orb

  14. Intraspecific variation shapes community-level behavioral responses to urbanization in spiders.

    PubMed

    Dahirel, Maxime; Dierick, Jasper; De Cock, Maarten; Bonte, Dries

    2017-09-01

    Urban areas are an extreme example of human-changed environments, exposing organisms to multiple and strong selection pressures. Adaptive behavioral responses are thought to play a major role in animals' success or failure in such new environments. Approaches based on functional traits have proven especially valuable to understand how species communities respond to environmental gradients. Until recently, they have, however, often ignored the potential consequences of intraspecific trait variation (ITV). When ITV is prevalent, it may highly impact ecological processes and resilience against stressors. This may be especially relevant in animals, in which behavioral traits can be altered very flexibly at the individual level to track environmental changes. We investigated how species turnover and ITV influenced community-level behavioral responses in a set of 62 sites of varying levels of urbanization, using orb web spiders and their webs as models of foraging behavior. ITV alone explained around one-third of the total trait variation observed among communities. Spider web structure changed according to urbanization, in ways that increase the capture efficiency of webs in a context of smaller urban prey. These trait shifts were partly mediated by species turnover, but ITV increased their magnitude, potentially helping to buffer the effects of environmental changes on communities. The importance of ITV varied depending on traits and on the spatial scale at which urbanization was considered. Despite being neglected from community-level analyses in animals, our results highlight the importance of accounting for intraspecific trait variation to fully understand trait responses to (human-induced) environmental changes and their impact on ecosystem functioning. © 2017 by the Ecological Society of America.

  15. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties

    PubMed Central

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-01-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid–liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid–liquid materials. PMID:27185930

  16. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties.

    PubMed

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-31

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this "liquid wire" and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  17. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties

    NASA Astrophysics Data System (ADS)

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  18. NMR assignments of the N-terminal domain of Nephila clavipes spidroin 1

    PubMed Central

    Parnham, Stuart; Gaines, William A.; Duggan, Brendan M.; Marcotte, William R.

    2011-01-01

    The building blocks of spider dragline silk are two fibrous proteins secreted from the major ampullate gland named spidroins 1 and 2 (MaSp1, MaSp2). These proteins consist of a large central domain composed of approximately 100 tandem copies of a 35–40 amino acid repeat sequence. Non-repetitive N and C-terminal domains, of which the C-terminal domain has been implicated to transition from soluble and insoluble states during spinning, flank the repetitive core. The N-terminal domain until recently has been largely unknown due to difficulties in cloning and expression. Here, we report nearly complete assignment for all 1H, 13C, and 15N resonances in the 14 kDa N-terminal domain of major ampullate spidroin 1 (MaSp1-N) of the golden orb-web spider Nephila clavipes. PMID:21152998

  19. Discovery of radioactive silver ((110m)Ag) in spiders and other fauna in the terrestrial environment after the meltdown of Fukushima Dai-ichi nuclear power plant.

    PubMed

    Nakanishi, Hiromi; Mori, Atsushi; Takeda, Kouki; Tanaka, Houdo; Kobayashi, Natsuko; Tanoi, Keitaro; Yamakawa, Takashi; Mori, Satoshi

    2015-01-01

    Six months after the explosion of TEPCO's Fukushima Dai-ichi nuclear power plant, radioactive silver ((110m)Ag), was detected in concentrations of 3754 Bq/kg in Nephila clavata (the orb-web spider; Joro-gumo in Japanese) collected at Nimaibashi, Iitate village in Fukushima Prefecture, whereas (110m)Ag in the soil was 43.1 Bq/kg. A survey of 35 faunal species in the terrestrial environment during the 3.5 years after the accident showed that most of Anthropoda had two orders higher (110m)Ag in their tissues than soils, although silver is not an essential element for their life. However, tracing of the activity of (110m)Ag detected in spider Atypus karschi collected regularly at a fixed location showed that it declined much faster than the physical half-life. These results suggest that (110m)Ag was at once biologically concentrated by faunal species, especially Arthropoda, through food chain. The factors affecting the subsequent rapid decline of (110m)Ag concentration in faunal species are discussed.

  20. Discovery of radioactive silver (110mAg) in spiders and other fauna in the terrestrial environment after the meltdown of Fukushima Dai-ichi nuclear power plant

    PubMed Central

    NAKANISHI, Hiromi; MORI, Atsushi; TAKEDA, Kouki; TANAKA, Houdo; KOBAYASHI, Natsuko; TANOI, Keitaro; YAMAKAWA, Takashi; MORI, Satoshi

    2015-01-01

    Six months after the explosion of TEPCO’s Fukushima Dai-ichi nuclear power plant, radioactive silver (110mAg), was detected in concentrations of 3754 Bq/kg in Nephila clavata (the orb-web spider; Joro-gumo in Japanese) collected at Nimaibashi, Iitate village in Fukushima Prefecture, whereas 110mAg in the soil was 43.1 Bq/kg. A survey of 35 faunal species in the terrestrial environment during the 3.5 years after the accident showed that most of Anthropoda had two orders higher 110mAg in their tissues than soils, although silver is not an essential element for their life. However, tracing of the activity of 110mAg detected in spider Atypus karschi collected regularly at a fixed location showed that it declined much faster than the physical half-life. These results suggest that 110mAg was at once biologically concentrated by faunal species, especially Arthropoda, through food chain. The factors affecting the subsequent rapid decline of 110mAg concentration in faunal species are discussed. PMID:25864469

  1. Notes on the orb-weaving spider genus Alpaida (Araneae, Araneidae) with description of four new species from Rio de Janeiro, Brazil.

    PubMed

    Baptista, Renner Luiz Cerqueira; De Souza Castanheira, Pedro; Prado, AndrÉ Wanderley do

    2018-04-11

    Four new species of the orb-weaving spider genus Alpaida O. P.-Cambridge, 1889 from Rio de Janeiro state, Brazil are illustrated and described based on males and females from the following municipalities: Alpaida imperatrix new species (Macaé and Rio de Janeiro); Alpaida imperialis new species (Mendes and Rio de Janeiro); Alpaida marista new species (Mendes and Pinheiral); and Alpaida mendensis new species (Mendes). Furthermore, two new synonymies are herein proposed: Alpaida lanei Levi, 1988 = Alpaida atomaria (Simon, 1895) and Alpaida caxias Levi, 1988 = Alpaida tijuca Levi, 1988, alongside new records for both species and also Alpaida venger Castanheira Baptista, 2015.

  2. The influence of varied gravito-inertial fields on the cardiac response of orb-weaving spiders

    NASA Technical Reports Server (NTRS)

    Finck, A.

    1982-01-01

    The Gz transfer function was described for the orb weaving spider A. sericatus. The functional relationship between the heartrate and the intensity of G is linear in the form of: Y = a Log Gz-1 +k. The heartrate in unrestrained animals was recorded by a laser plethysmograph developed specifically for this purpose. Following a control, sample heartrate were taken postrotation between 1.001 and 1.5 Gz in 6 steps. The underlying distribution of heartrates does not appear significantly different from a Gaussian distribution. A method of varnishing the legs of the spider was developed. This was done in order to compromise the lyriform organs, especially those located on the patellae. The lyriform organ is hypothesized to serve the receptor role in the transduction of gravity related stimuli. In preliminary animals the Gz function, post varnishing of the patellae, appears to be changed in the direction of poorer discrimination. We also observed that the resting heartrate following the varnish procedure is substantially increased.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    An, Bo; Jenkins, Janelle E; Sampath, Sujatha

    Dragline silk from orb-weaving spiders is a copolymer of two large proteins, major ampullate spidroin 1 (MaSp1) and 2 (MaSp2). The ratio of these proteins is known to have a large variation across different species of orb-weaving spiders. NMR results from gland material of two different species of spiders, N. clavipes and A. aurantia, indicates that MaSp1 proteins are more easily formed into β-sheet nanostructures, while MaSp2 proteins form random coil and helical structures. To test if this behavior of natural silk proteins could be reproduced by recombinantly produced spider silk mimic protein, recombinant MaSp1/MaSp2 mixed fibers as well asmore » chimeric silk fibers from MaSp1 and MaSp2 sequences in a single protein were produced based on the variable ratio and conserved motifs of MaSp1 and MaSp2 in native silk fiber. Mechanical properties, solid-state NMR, and XRD results of tested synthetic fibers indicate the differing roles of MaSp1 and MaSp2 in the fiber and verify the importance of postspin stretching treatment in helping the fiber to form the proper spatial structure.« less

  4. Exploiting a moment of weakness: male spiders escape sexual cannibalism by copulating with moulting females.

    PubMed

    Uhl, Gabriele; Zimmer, Stefanie M; Renner, Dirk; Schneider, Jutta M

    2015-11-26

    Sexual cannibalism is a particularly extreme example of conflict between the sexes, depriving the male of future reproduction. Theory predicts that sexual conflict should induce counter-adaptations in the victim. Observations of male spiders mating with moulting and hence largely immobile females suggest that this behaviour functions to circumvent female control and cannibalism. However, we lack quantitative estimates of natural frequencies and fitness consequences of these unconventional matings. To understand the importance of mating while moulting in cannibalistic mating systems, we combined mating experiments and paternity assessment in the laboratory with extensive field observations using the sexually cannibalistic orb-web spider Argiope bruennichi. Copulations with moulting females resulted in 97% male survival compared with only 20% in conventional matings. Mating while moulting provided similar paternity benefits compared with conventional matings. Our findings support the hypothesis that mating with moulting females evolved under sexual conflict and safely evades sexual cannibalism. Despite male benefits, natural frequencies were estimated around 44% and directly predicted by a male guarding a subadult female. Since only adult females signal their presence, the difficulty for males to locate subadult females might limit further spreading of mating with moulting females.

  5. Exploiting a moment of weakness: male spiders escape sexual cannibalism by copulating with moulting females

    PubMed Central

    Uhl, Gabriele; Zimmer, Stefanie M.; Renner, Dirk; Schneider, Jutta M.

    2015-01-01

    Sexual cannibalism is a particularly extreme example of conflict between the sexes, depriving the male of future reproduction. Theory predicts that sexual conflict should induce counter-adaptations in the victim. Observations of male spiders mating with moulting and hence largely immobile females suggest that this behaviour functions to circumvent female control and cannibalism. However, we lack quantitative estimates of natural frequencies and fitness consequences of these unconventional matings. To understand the importance of mating while moulting in cannibalistic mating systems, we combined mating experiments and paternity assessment in the laboratory with extensive field observations using the sexually cannibalistic orb-web spider Argiope bruennichi. Copulations with moulting females resulted in 97% male survival compared with only 20% in conventional matings. Mating while moulting provided similar paternity benefits compared with conventional matings. Our findings support the hypothesis that mating with moulting females evolved under sexual conflict and safely evades sexual cannibalism. Despite male benefits, natural frequencies were estimated around 44% and directly predicted by a male guarding a subadult female. Since only adult females signal their presence, the difficulty for males to locate subadult females might limit further spreading of mating with moulting females. PMID:26607497

  6. Sperm dynamics in spiders (Araneae): ultrastructural analysis of the sperm activation process in the garden spider Argiope bruennichi (Scopoli, 1772).

    PubMed

    Vöcking, Oliver; Uhl, Gabriele; Michalik, Peter

    2013-01-01

    Storage of sperm inside the female genital tract is an integral phase of reproduction in many animal species. The sperm storage site constitutes the arena for sperm activation, sperm competition and female sperm choice. Consequently, to understand animal mating systems information on the processes that occur from sperm transfer to fertilization is required. Here, we focus on sperm activation in spiders. Male spiders produce sperm whose cell components are coiled within the sperm cell and that are surrounded by a proteinaceous sheath. These inactive and encapsulated sperm are transferred to the female spermathecae where they are stored for later fertilization. We analyzed the ultrastructural changes of sperm cells during residency time in the female genital system of the orb-web spider Argiope bruennichi. We found three clearly distinguishable sperm conditions: encapsulated sperm (secretion sheath present), decapsulated (secretion sheath absent) and uncoiled sperm (cell components uncoiled, presumably activated). After insemination, sperm remain in the encapsulated condition for several days and become decapsulated after variable periods of time. A variable portion of the decapsulated sperm transforms rapidly to the uncoiled condition resulting in a simultaneous occurrence of decapsulated and uncoiled sperm. After oviposition, only decapsulated and uncoiled sperm are left in the spermathecae, strongly suggesting that the activation process is not reversible. Furthermore, we found four different types of secretion in the spermathecae which might play a role in the decapsulation and activation process.

  7. Redescription of the orb-weaving spider Gasteracantha geminata (Fabricius, 1798) (Araneae, Araneidae).

    PubMed

    Sankaran, Pradeep M; Jobi, Malamel J; Sebastian, Pothalil A

    2015-02-02

    The orb-weaving spider genus Gasteracantha Sundevall, 1833 (Araneidae) is notable for its pronounced sexual size dimorphism. Gasteracantha females are characterized by having a highly sclerotized "spiny" abdomen varying in relative size and number of spines, as well as abdomen dorsally and ventrally provided with varying numbers of sigillae (Cambridge 1879). The genus currently includes 70 described species and 31 subspecies (World Spider Catalog 2014). The Oriental species Gasteracantha geminata (Fabricius, 1798) was originally described from Ramnad (now known as Ramanathapuram) in Tamilnadu State of Southern India based on an unspecified number of female specimen(s). The female of this species has been described and illustrated several times by various authors. Its male is only known from the description of Simon (1895). Simon's original description of the male of G. geminata was supported by two simple but beautiful and informative illustrations: a retrolateral view of the cephalothorax and a dorsal view of the abdomen (Simon 1895, figs. 886, 887). However we lack a clear and detailed description of the male genitalia. The present paper provides detailed redescription of G. geminata and illustrations of the male pedipalp. 

  8. Female fecundity and offspring survival are not increased through sexual cannibalism in the spider Larinioides sclopetarius.

    PubMed

    Deventer, S A; Herberstein, M E; Mayntz, D; O'Hanlon, J C; Schneider, J M

    2017-12-01

    Many hypotheses explaining the evolution and maintenance of sexual cannibalism incorporate the nutritional aspect of the consumption of males. Most studies have focused on a fecundity advantage through consumption of a male; however, recent studies have raised the intriguing possibility that consumption of a male may also affect offspring quality. In particular, recent studies suggest prolonged survival for offspring from sexually cannibalistic females. Here, we measured the protein and lipid content of males compared to insect prey (crickets), quantified female nutrient intake of both prey types and finally assessed how sexual cannibalism affects female fecundity and spiderling quality in the orb-web spider Larinioides sclopetarius. We found no evidence that sexual cannibalism increased fecundity when compared to a female control group fed a cricket. Contrary to previous studies, spiderlings from females fed a male showed reduced survival under food deprivation compared to spiderlings from the control group. Offspring from females fed a male also tended to begin web construction sooner. The low lipid content of males compared to crickets may have reduced offspring survival duration. Whether additional proteins obtained through consumption of a male translate to enhanced silk production in offspring requires further investigation. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  9. Gravito-inertial sensitivity of the spider - Araneus sericatus

    NASA Technical Reports Server (NTRS)

    Finck, A.

    1982-01-01

    The gravito-inertial transfer function of the orb-weaving spider was evaluated by changes in the cardiac reflex. A non-intrusive method, using a laser system recorded the cardiac pulse. Between 1.001 and 1.5 Gz the data are 'best-fit' by a log function (r-squared 0.92). The response of the neurogenic heart is seen to be a good dependent variable for invetebrate research. The arachnid lyriform organ has those qualities which complement the obtained gravity function. It is hypothesized that the cardiac pump maintains the spiders equilibrium in the gravito-inertial field.

  10. Spiders spinning electrically charged nano-fibres

    PubMed Central

    Kronenberger, Katrin; Vollrath, Fritz

    2015-01-01

    Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland–duct–spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders. PMID:25631231

  11. Spiders spinning electrically charged nano-fibres.

    PubMed

    Kronenberger, Katrin; Vollrath, Fritz

    2015-01-01

    Most spider threads are on the micrometre and sub-micrometre scale. Yet, there are some spiders that spin true nano-scale fibres such as the cribellate orb spider, Uloborus plumipes. Here, we analyse the highly specialized capture silk-spinning system of this spider and compare it with the silk extrusion systems of the more standard spider dragline threads. The cribellar silk extrusion system consists of tiny, morphologically basic glands each terminating through exceptionally long and narrow ducts in uniquely shaped silk outlets. Depending on spider size, hundreds to thousands of these outlet spigots cover the cribellum, a phylogenetically ancient spinning plate. We present details on the unique functional design of the cribellate gland-duct-spigot system and discuss design requirements for its specialist fibrils. The spinning of fibres on the nano-scale seems to have been facilitated by the evolution of a highly specialist way of direct spinning, which differs from the aqua-melt silk extrusion set-up more typical for other spiders. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Urbanisation at multiple scales is associated with larger size and higher fecundity of an orb-weaving spider.

    PubMed

    Lowe, Elizabeth C; Wilder, Shawn M; Hochuli, Dieter F

    2014-01-01

    Urbanisation modifies landscapes at multiple scales, impacting the local climate and changing the extent and quality of natural habitats. These habitat modifications significantly alter species distributions and can result in increased abundance of select species which are able to exploit novel ecosystems. We examined the effect of urbanisation at local and landscape scales on the body size, lipid reserves and ovary weight of Nephila plumipes, an orb weaving spider commonly found in both urban and natural landscapes. Habitat variables at landscape, local and microhabitat scales were integrated to create a series of indexes that quantified the degree of urbanisation at each site. Spider size was negatively associated with vegetation cover at a landscape scale, and positively associated with hard surfaces and anthropogenic disturbance on a local and microhabitat scale. Ovary weight increased in higher socioeconomic areas and was positively associated with hard surfaces and leaf litter at a local scale. The larger size and increased reproductive capacity of N.plumipes in urban areas show that some species benefit from the habitat changes associated with urbanisation. Our results also highlight the importance of incorporating environmental variables from multiple scales when quantifying species responses to landscape modification.

  13. Urbanisation at Multiple Scales Is Associated with Larger Size and Higher Fecundity of an Orb-Weaving Spider

    PubMed Central

    Lowe, Elizabeth C.; Wilder, Shawn M.; Hochuli, Dieter F.

    2014-01-01

    Urbanisation modifies landscapes at multiple scales, impacting the local climate and changing the extent and quality of natural habitats. These habitat modifications significantly alter species distributions and can result in increased abundance of select species which are able to exploit novel ecosystems. We examined the effect of urbanisation at local and landscape scales on the body size, lipid reserves and ovary weight of Nephila plumipes, an orb weaving spider commonly found in both urban and natural landscapes. Habitat variables at landscape, local and microhabitat scales were integrated to create a series of indexes that quantified the degree of urbanisation at each site. Spider size was negatively associated with vegetation cover at a landscape scale, and positively associated with hard surfaces and anthropogenic disturbance on a local and microhabitat scale. Ovary weight increased in higher socioeconomic areas and was positively associated with hard surfaces and leaf litter at a local scale. The larger size and increased reproductive capacity of N.plumipes in urban areas show that some species benefit from the habitat changes associated with urbanisation. Our results also highlight the importance of incorporating environmental variables from multiple scales when quantifying species responses to landscape modification. PMID:25140809

  14. The mechanical properties of the non-sticky spiral in Nephila orb webs (Araneae, Nephilidae).

    PubMed

    Hesselberg, Thomas; Vollrath, Fritz

    2012-10-01

    Detailed information on web geometry and the material properties of the various silks used enables the function of the web's different structures to be elucidated. In this study we investigated the non-sticky spiral in Nephila edulis webs, which in this species is not removed during web building. This permanent non-sticky spiral shows several modifications compared with others, e.g. temporary non-sticky spirals - it is zigzag shaped and wrapped around the radial thread at the elongated junctions. The material properties of the silk used in the non-sticky spiral and other scaffolding structures (i.e. radii, frame and anchor threads) were comparable. However, the fibre diameters differed, with the non-sticky spiral threads being significantly smaller. We used the measured data in a finite element (FE) model of the non-sticky spiral in a segment of the web. The FE analysis suggested that the observed zigzag index resulted from the application of very high pre-stresses to the outer turns of the non-sticky spiral. However, final pre-stress levels in the non-sticky spiral after reorganisation were down to 300 MPa or 1.5-2 times the stress in the radii, which is probably closer to the stress applied by the spider during web building.

  15. Spider leg autotomy induced by prey venom injection: An adaptive response to “pain”?*

    PubMed Central

    Eisner, Thomas; Camazine, Scott

    1983-01-01

    Field observations showed orb-weaving spiders (Argiope spp.) to undergo leg autotomy if they are stung in a leg by venomous insect prey (Phymata fasciata). The response occurs within seconds, before the venom can take lethal action by spread to the body of the spiders. Autotomy is induced also by honeybee venom and wasp venom, as well as by several venom components (serotonin, histamine, phospholipase A2, melittin) known to be responsible for the pain characteristically elicited by venom injection in humans. The sensing mechanism by which spiders detect injected harmful chemicals such as venoms therefore may be fundamentally similar to the one in humans that is coupled with the perception of pain. Images PMID:16593325

  16. Smart assembly of polymer fibers: lessons from major ampullate spider silk

    NASA Astrophysics Data System (ADS)

    Viney, Christopher

    1996-02-01

    Studies of major ampullate silk (MAS), especially the secretions and fibers produced by the spider Nephila clavipes (golden orb weaver), have yielded several results of potential value to the materials scientist/engineer. There are lessons to be learned about synthesis, processing and microstructural design of high-tensile polymer fibers. The 'smart' aspect of silk production in nature concerns the ability of the spider to rapidly process a concentrated, viscous aqueous solution of silk protein (stored in the gland) into water-insoluble fiber on demand. This process centers on the assembly of a shear-sensitive supramolecular liquid crystalline phase by aggregation of the solubilized globular protein molecules.

  17. STS-134 Tweetup

    NASA Image and Video Library

    2011-04-28

    Actor Seth Green, right, takes a quick photo of two NASA Tweeps holding a Golden Orb Spider during the STS-134 Tweetup, Thursday, April 28, 2011, at Kennedy Space Center in Cape Canaveral, Fla. About 150 NASA Twitter followers attended the event. Photo Credit: (NASA/Paul E. Alers)

  18. A phylotranscriptomic backbone of the orb-weaving spider family Araneidae (Arachnida, Araneae) supported by multiple methodological approaches.

    PubMed

    Kallal, Robert J; Fernández, Rosa; Giribet, Gonzalo; Hormiga, Gustavo

    2018-04-07

    The orb-weaving spider family Araneidae is extremely diverse (>3100 spp.) and its members can be charismatic terrestrial arthropods, many of them recognizable by their iconic orbicular snare web, such as the common garden spiders. Despite considerable effort to better understand their backbone relationships based on multiple sources of data (morphological, behavioral and molecular), pervasive low support remains in recent studies. In addition, no overarching phylogeny of araneids is available to date, hampering further comparative work. In this study, we analyze the transcriptomes of 33 taxa, including 19 araneids - 12 of them new to this study - representing most of the core family lineages, to examine the relationships within the family using genomic-scale datasets resulting from various methodological treatments, namely ortholog selection and gene occupancy as a measure of matrix completion. Six matrices were constructed to assess these effects by varying orthology inference method and gene occupancy threshold. Orthology methods used are the benchmarking tool BUSCO and the tree-based method UPhO; three gene occupancy thresholds (45%, 65%, 85%) were used to assess the effect of missing data. Gene tree and species tree-based methods (including multi-species coalescent and concatenation approaches, as well as maximum likelihood and Bayesian inference) were used totalling 17 analytical treatments. The monophyly of Araneidae and the placement of core araneid lineages were supported, together with some previously unsound backbone divergences; these include high support for Zygiellinae as the earliest diverging subfamily (followed by Nephilinae), the placement of Gasteracanthinae as sister group to Cyclosa and close relatives, and close relationships between the Araneus + Neoscona clade and Cyrtophorinae + Argiopinae clade. Incongruences were relegated to short branches in the clade comprising Cyclosa and its close relatives. We found congruence between most of the completed analyses, with minimal topological effects from occupancy/missing data and orthology assessment. The resulting number of genes by certain combinations of orthology and occupancy thresholds being analyzed had the greatest effect on the resulting trees, with anomalous outcomes recovered from analysis of lower numbers of genes. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Spider silk as a novel high performance biomimetic muscle driven by humidity.

    PubMed

    Agnarsson, Ingi; Dhinojwala, Ali; Sahni, Vasav; Blackledge, Todd A

    2009-07-01

    The abrupt halt of a bumble bee's flight when it impacts the almost invisible threads of an orb web provides an elegant example of the amazing strength and toughness of spider silk. Spiders depend upon these properties for survival, yet the impressive performance of silk is not limited solely to tensile mechanics. Here, we show that silk also exhibits powerful cyclic contractions, allowing it to act as a high performance mimic of biological muscles. These contractions are actuated by changes in humidity alone and repeatedly generate work 50 times greater than the equivalent mass of human muscle. Although we demonstrate that this response is general and occurs weakly in diverse hydrophilic materials, the high modulus of spider silk is such that it generates exceptional force. Furthermore, because this effect already operates at the level of single silk fibers, only 5 microm in diameter, it can easily be scaled across the entire size range at which biological muscles operate. By contrast, the most successful synthetic muscles developed so far are driven by electric voltage, such that they cannot scale easily across large ranges in cross-sectional areas. The potential applicability of silk muscles is further enhanced by our finding that silkworm fibers also exhibit cyclic contraction because they are already available in commercial quantities. The simplicity of using wet or dry air to drive the biomimetic silk muscle fibers and the incredible power generated by silk offer unique possibilities in designing lightweight and compact actuators for robots and micro-machines, new sensors, and green energy production.

  20. Global Patterns of Guild Composition and Functional Diversity of Spiders

    PubMed Central

    Cardoso, Pedro; Pekár, Stano; Jocqué, Rudy; Coddington, Jonathan A.

    2011-01-01

    The objectives of this work are: (1) to define spider guilds for all extant families worldwide; (2) test if guilds defined at family level are good surrogates of species guilds; (3) compare the taxonomic and guild composition of spider assemblages from different parts of the world; (4) compare the taxonomic and functional diversity of spider assemblages and; (5) relate functional diversity with habitat structure. Data on foraging strategy, prey range, vertical stratification and circadian activity was collected for 108 families. Spider guilds were defined by hierarchical clustering. We searched for inconsistencies between family guild placement and the known guild of each species. Richness and abundance per guild before and after correcting guild placement were compared, as were the proportions of each guild and family between all possible pairs of sites. Functional diversity per site was calculated based on hierarchical clustering. Eight guilds were discriminated: (1) sensing, (2) sheet, (3) space, and (4) orb web weavers; (5) specialists; (6) ambush, (7) ground, and (8) other hunters. Sixteen percent of the species richness corresponding to 11% of all captured individuals was incorrectly attributed to a guild by family surrogacy; however, the correlation of uncorrected vs. corrected guilds was invariably high. The correlation of guild richness or abundances was generally higher than the correlation of family richness or abundances. Functional diversity was not always higher in the tropics than in temperate regions. Families may potentially serve as ecological surrogates for species. Different families may present similar roles in the ecosystems, with replacement of some taxa by other within the same guild. Spiders in tropical regions seem to have higher redundancy of functional roles and/or finer resource partitioning than in temperate regions. Although species and family diversity were higher in the tropics, functional diversity seems to be also influenced by altitude and habitat structure. PMID:21738772

  1. Visualization of the spatial and spectral signals of orb-weaving spiders, Nephila pilipes, through the eyes of a honeybee.

    PubMed

    Chiao, Chuan-Chin; Wu, Wen-Yen; Chen, Sheng-Hui; Yang, En-Cheng

    2009-07-01

    It is well known that the honeybee has good color vision. However, the spectral range in which the bee can see is different from that of the human eye. To study how bees view their world of colors, one has to see through the eyes of the bee, not the eyes of a human. A conventional way to examine the color signals that animals can detect is to measure the surface reflectance spectra and compute the quantum catches of each photoreceptor type based on its known spectral sensitivity. Color signal and color contrast are then determined from the loci of these quantum catches in the color space. While the point-by-point measurements of the reflectance spectra using a standard spectrometer have yielded a significant amount of data for analyzing color signals, the lack of spatial information and low sampling efficiency constrain their applications. Using a special filter coating technique, a set of filters with transmission spectra that were closely matched to the bee's sensitivity spectra of three photoreceptor types (UV, blue, and green) was custom made. By placing these filters in front of a UV/VIS-sensitive CCD camera and acquiring images sequentially, we could collect images of a bee's receptor with only three shots. This allowed a direct visualization of how bees view their world in a pseudo-color RGB display. With this imaging system, spatial and spectral signals of the orb-weaving spider, Nephila pilipes, were recorded, and color contrast images corresponding to the bee's spatial resolution were constructed and analyzed. The result not only confirmed that the color markings of N. pilipes are of high chromatic contrast to the eyes of a bee, but it also indicated that the spatial arrangement of these markings resemble flower patterns which may attract bees to visit them. Thus, it is likely that the orb-weaving spider (N. pilipes) deploys a similar strategy to that of the Australian crab spider (Thomisus spectabilis) to exploit the bee's pre-existing preference for flowers with color patterning.

  2. Temperature mediates the effect of humidity on the viscoelasticity of glycoprotein glue within the droplets of an orb-weaving spider's prey capture threads.

    PubMed

    Stellwagen, Sarah D; Opell, Brent D; Short, Kelly G

    2014-05-01

    Sticky viscous prey capture threads retain insects that strike araneoid orb-webs. The threads' two axial fibers support a series of glue droplets, each featuring a core of adhesive viscoelastic glycoprotein covered by an aqueous solution. After sticking, the glue extends, summing the adhesion of multiple droplets, and dissipates some of the energy of a struggling prey. As a day progresses, threads experience a drop in humidity and an increase in temperature, environmental variables that have the potential to alter thread and web function. We hypothesize that thread droplets respond to these opposing environmental changes in a manner that stabilizes their performance, and test this by examining threads spun by Argiope aurantia, a species that occupies exposed, weedy habitats. We confirmed that decreased humidity increases glycoprotein viscosity and found that increased temperature had the opposite effect. To evaluate the combined effect of temperature and humidity on a droplet's ability to transfer adhesive force and dissipate energy, we extended a droplet and measured both the deflection of the axial line supporting the droplet and the duration of its tensive load. The cumulative product of these two indices, which reflects the energy required to extend a droplet, was greatest under afternoon (hot and dry) conditions, less under morning (cool and humid) conditions, and least under hot and humid afternoon conditions. Although the opposing effects of temperature and humidity tend to stabilize glycoprotein performance, A. aurantia thread droplets appear to function optimally during the afternoon, equipping this species to capture large orthopterans, which are most active at this time.

  3. Funnel-web spider bite

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002844.htm Funnel-web spider bite To use the sharing features on ... the effects of a bite from the funnel-web spider. Male funnel-web spiders are more poisonous ...

  4. Selection on male size, leg length and condition during mate search in a sexually highly dimorphic orb-weaving spider.

    PubMed

    Foellmer, Matthias W; Fairbairn, Daphne J

    2005-02-01

    Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The "gravity hypothesis" states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported.

  5. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations

    PubMed Central

    Herberstein, Marie E.

    2017-01-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired ‘instant’ anchorages of thread- and cable-like structures to a broad bandwidth of substrates. PMID:28228539

  6. Three-dimensional printing spiders: back-and-forth glue application yields silk anchorages with high pull-off resistance under varying loading situations.

    PubMed

    Wolff, Jonas O; Herberstein, Marie E

    2017-02-01

    The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired 'instant' anchorages of thread- and cable-like structures to a broad bandwidth of substrates. © 2017 The Author(s).

  7. A molecular phylogeny of nephilid spiders: evolutionary history of a model lineage.

    PubMed

    Kuntner, Matjaž; Arnedo, Miquel A; Trontelj, Peter; Lokovšek, Tjaša; Agnarsson, Ingi

    2013-12-01

    The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism among terrestrial animals. Numerous studies have made Nephilidae, particularly Nephila, a model lineage in evolutionary research. However, a poorly understood phylogeny of this lineage, relying only on morphology, has prevented thorough evolutionary syntheses of nephilid biology. We here use three nuclear and five mitochondrial genes for 28 out of 40 nephilid species to provide a more robust nephilid phylogeny and infer clade ages in a fossil-calibrated Bayesian framework. We complement the molecular analyses with total evidence analysis including morphology. All analyses find strong support for nephilid monophyly and exclusivity and the monophyly of the genera Herennia and Clitaetra. The inferred phylogenetic structure within Nephilidae is novel and conflicts with morphological phylogeny and traditional taxonomy. Nephilengys species fall into two clades, one with Australasian species (true Nephilengys) as sister to Herennia, and another with Afrotropical species (Nephilingis Kuntner new genus) as sister to a clade containing Clitaetra plus most currently described Nephila. Surprisingly, Nephila is also diphyletic, with true Nephila containing N. pilipes+N. constricta, and the second clade with all other species sister to Clitaetra; this "Nephila" clade is further split into an Australasian clade that also contains the South American N. sexpunctata and the Eurasian N. clavata, and an African clade that also contains the Panamerican N. clavipes. An approximately unbiased test constraining the monophyly of Nephilengys, Nephila, and Nephilinae (Nephila, Nephilengys, Herennia), respectively, rejected Nephilengys monophyly, but not that of Nephila and Nephilinae. Further data are therefore necessary to robustly test these two new, but inconclusive findings, and also to further test the precise placement of Nephilidae within the Araneoidea. For divergence date estimation we set the minimum bound for the stems of Nephilidae at 40 Ma and of Nephila at 16 Ma to accommodate Palaeonephila from Baltic amber and Dominican Nephila species, respectively. We also calibrated and dated the phylogeny under three different interpretations of the enigmatic 165 Ma fossil Nephila jurassica, which we suspected based on morphology to be misplaced. We found that by treating N. jurassica as stem Nephila or nephilid the inferred clade ages were vastly older, and the mitochondrial substitution rates much slower than expected from other empirical spider data. This suggests that N. jurassica is not a Nephila nor a nephilid, but possibly a stem orbicularian. The estimated nephilid ancestral age (40-60 Ma) rejects a Gondwanan origin of the family as most of the southern continents were already split at that time. The origin of the family is equally likely to be African, Asian, or Australasian, with a global biogeographic history dominated by dispersal events. A reinterpretation of web architecture evolution suggests that a partially arboricolous, asymmetric orb web with a retreat, as exemplified by both groups of "Nephilengys", is plesiomorphic in Nephilidae, that this architecture was modified into specialized arboricolous webs in Herennia and independently in Clitaetra, and that the web became aerial, gigantic, and golden independently in both "Nephila" groups. The new topology questions previously hypothesized gradual evolution of female size from small to large, and rather suggests a more mosaic evolutionary pattern with independent female size increases from medium to giant in both "Nephila" clades, and two reversals back to medium and small; combined with male size evolution, this pattern will help detect gross evolutionary events leading to extreme sexual size dimorphism, and its morphological and behavioral correlates. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Behavior of an adaptive bio-inspired spider web

    NASA Astrophysics Data System (ADS)

    Zheng, Lingyue; Behrooz, Majid; Huie, Andrew; Hartman, Alex; Gordaninejad, Faramarz

    2015-03-01

    The goal of this study is to demonstrate the feasibility of an artificial adaptive spider web with comparable behavior to a real spider web. First, the natural frequency and energy absorption ability of a passive web is studied. Next, a control system that consists of stepper motors, load cells and an Arduino, is constructed to mimic a spider's ability to control the tension of radial strings in the web. The energy related characteristics in the artificial spider web is examined while the pre-tension of the radial strings are varied. Various mechanical properties of a damaged spider web are adjusted to study their effect on the behavior of the web. It is demonstrated that the pre-tension and stiffness of the web's radial strings can significantly affect the natural frequency and the total energy of the full and damaged webs.

  9. Survival ability of Mexican fruit fly males from different strains in presence of the predatory orb-weaving spider Argiope argentata (Araneae: Araneidae).

    PubMed

    Dor, A; Liedo, P

    2018-04-18

    The sterile insect technique (SIT) is a key element for the integrated management of pest populations of the Mexican fruit fly, Anastrepha ludens, in Mexico. Its success depends on the survival of mass-reared sterile males and their ability to mate with wild females. However, colonization and mass-rearing conditions can adversely affect their ability to avoid predators. To test if colony management strategies could contribute to improve field survival abilities of mass-reared flies, we compared the survival of males exposed to the orb-weaver spider Argiope argentata. Males compared originated from three strains with different colonization strategies: (a) a colony started from field-collected wild flies (replacement), (b) a colony started by hybridizing wild males with mass-reared adapted females (hybrid) and (c) a colony started with mass-reared males selected on the basis of their survival ability and mating competitiveness in field cages (selected). Mass-reared males and wild males were used as controls. Males were exposed to spiders under laboratory cage conditions. Overall, wild males showed better survival ability than mass-reared males. Regarding the colonization approach, wild males survived better than a hybrid, replaced and selected males. We conclude that mass-rearing conditions have a strong negative effect on the ability of males to escape spiders. The colonization systems evaluated did not counter this effect. The lower survival of males from the selected colony suggests that the selection over one generation did not contribute to improve males' predator avoidance and escape abilities and probably needs to be modified. Possible explanations for this and implications on colonization and colony management for SIT purpose are discussed.

  10. Nature's Miniature Architect

    ERIC Educational Resources Information Center

    Ross, Irwin

    1977-01-01

    Specific characteristics of the different spiders' webs are discussed. Photographs illustrate the various web designs and web-making spiders. Included also are the numerous uses a spider makes from its own web. (MA)

  11. Web building and silk properties functionally covary among species of wolf spider.

    PubMed

    Lacava, Mariángeles; Camargo, Arley; Garcia, Luis F; Benamú, Marco A; Santana, Martin; Fang, Jian; Wang, Xungai; Blamires, Sean J

    2018-04-15

    Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2-like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non-web building, but a select few species build webs. We accordingly collected MA silk from two web-building and six non-web-building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2-like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web-building and non-web-building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web-building and non-web-building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2-like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co-evolution and the ecological implications of spider silk properties. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  12. Deer herbivory reduces web-building spider abundance by simplifying forest vegetation structure

    PubMed Central

    Chips, Michael J.; Carson, Walter P.

    2016-01-01

    Indirect ecological effects are a common feature of ecological systems, arising when one species affects interactions among two or more other species. We examined how browsing by white-tailed deer (Odocoileus virginianus) indirectly affected the abundance and composition of a web-building spider guild through their effects on the structure of the ground and shrub layers of northern hardwood forests. We examined paired plots consisting of deer-free and control plots in the Allegheny Plateau region Pennsylvania and Northern Highlands region of Wisconsin. We recorded the abundance of seven types of webs, each corresponding to a family of web-building spiders. We quantified vegetation structure and habitat suitability for the spiders by computing a web scaffold availability index (WSAI) at 0.5 m and 1.0 m above the ground. At Northern Highlands sites, we recorded prey availability. Spider webs were twice as abundant in deer-free plots compared to control plots, while WSAI was 7–12 times greater in deerfree plots. Prey availability was lower in deer-free plots. With the exception of funnel web-builders, all spider web types were significantly more abundant in deer-free plots. Both deer exclusion and the geographic region of plots were significant predictors of spider community structure. In closed canopy forests with high browsing pressure, the low density of tree saplings and shrubs provides few locations for web-building spiders to anchor webs. Recruitment of these spiders may become coupled with forest disturbance events that increase tree and shrub recruitment. By modifying habitat structure, deer appear to indirectly modify arthropod food web interactions. As deer populations have increased in eastern North America over the past several decades, the effects of deer on web-building spiders may be widespread. PMID:27703868

  13. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors.

    PubMed

    Xiong, Xiao-Feng; Poulsen, Mette H; Hussein, Rama A; Nørager, Niels G; Strømgaard, Kristian

    2014-12-01

    The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only difference, and were recently found to be very potent open-channel blockers of ionotropic glutamate (iGlu) receptors. In this study we designed and synthesized a collection of 24 analogues of these toxins using a recently developed solid-phase synthetic methodology. Systematic variation in two regions of the toxins and subsequent evaluation of biological activity at AMPA and NMDA subtypes of iGlu receptors provided succinct information on structure-activity relationships. In particular, one set of analogues were found to display exquisite selectivity and potency for AMPA receptors relative to the natural products. Thus, this systematic SAR study has provided new pharmacological tools for studies of iGlu receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Using Spider-Web Patterns To Determine Toxicity

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Cronise, Raymond J.; Relwani, Rachna A.

    1995-01-01

    Method of determining toxicities of chemicals involves recording and analysis of spider-web patterns. Based on observation spiders exposed to various chemicals spin webs that differ, in various ways, from normal webs. Potential alternative to toxicity testing on higher animals.

  15. Science 101: Why Don't Spiders Stick to Their Own Webs?

    ERIC Educational Resources Information Center

    Robertson, Bill

    2011-01-01

    This article explains why spiders don't stick to their webs. Spiders don't get stuck in their own webs (and they aren't immune to their own glue) because they use a combination of sticky and nonsticky threads (different glands for producing those), and the glue is in droplets that the spider can avoid but the prey can't. The spider's nervous…

  16. Web orientation and prey resources for web-building spiders in eastern hemlock.

    PubMed

    Mallis, Rachael E; Rieske, Lynne K

    2010-10-01

    We examined the arthropod community on eastern hemlock, Tsuga canadensis (L.) Carr, in the context of its role in providing potential prey items for hemlock-associated web-weaving spiders. Using sticky traps simulating spider webs, we evaluated what prey items are available to web-weaving spiders in eastern hemlock based on web orientation (horizontal versus vertical) and cardinal direction. We found that the overwhelming majority (>70%) of prey items available to spiders in hemlock canopies were Diptera. Psocoptera, Hymenoptera, and Hemiptera comprised most of the remaining potential prey. A significant direction × orientation interaction, and greater trap capture in some direction-orientation combinations, suggests that spiders might locate their webs in eastern hemlock canopies for thermoregulatory purposes, ultimately optimizing prey capture. We also evaluated these findings in the context of hemlock infestation by the invasive hemlock woolly adelgid, Adelges tsugae Annand. The adelgid is a sedentary insect with a mobile crawler stage that provides a readily available, easily obtained food source for predators in hemlock canopies. However, an abundance of alternative prey will affect within canopy spider distribution and the potential intensity with which spiders consume these prey. Understanding the response of spiders to potential prey availability is essential to understanding the trophic interactions involving these predators and their potential for influencing herbivore populations.

  17. Cross-reactivity of Sydney funnel-web spider antivenom: neutralization of the in vitro toxicity of other Australian funnel-web (Atrax and Hadronyche) spider venoms.

    PubMed

    Graudins, A; Wilson, D; Alewood, P F; Broady, K W; Nicholson, G M

    2002-03-01

    Australian funnel-web spiders are recognized as one of the most venomous spiders to humans world-wide. Funnel-web spider antivenom (FWS AV) reverses clinical effects of envenomation from the bite of Atrax robustus and a small number of related Hadronyche species. This study assessed the in vitro efficacy of FWS AV in neutralization of the effects of funnel-web spider venoms, collected from various locations along the eastern seaboard of Australia, in an isolated chick biventer cervicis nerve-muscle preparation. Venoms were separated by SDS-PAGE electrophoresis to compare protein composition and transblotted for Western blotting and incubation with FWS AV.SDS-PAGE of venoms revealed similar low and high molecular weight protein bands. Western blotting with FWS AV showed similar antivenom binding with protein bands in all the venoms tested. Male funnel-web spider venoms (7/7) and female venoms (5/10) produced muscle contracture and fasciculation when applied to the nerve-muscle preparation. Venom effects were reversed by subsequent application of FWS AV or prevented by pretreatment of the preparation with antivenom.FWS AV appears to reverse the in vitro toxicity of a number of funnel-web spider venoms from the eastern seaboard of Australia. FWS AV should be effective in the treatment of envenomation from most, if not all, species of Australian funnel-web spiders.

  18. Automatic building of a web-like structure based on thermoplastic adhesive.

    PubMed

    Leach, Derek; Wang, Liyu; Reusser, Dorothea; Iida, Fumiya

    2014-09-01

    Animals build structures to extend their control over certain aspects of the environment; e.g., orb-weaver spiders build webs to capture prey, etc. Inspired by this behaviour of animals, we attempt to develop robotics technology that allows a robot to automatically builds structures to help it accomplish certain tasks. In this paper we show automatic building of a web-like structure with a robot arm based on thermoplastic adhesive (TPA) material. The material properties of TPA, such as elasticity, adhesiveness, and low melting temperature, make it possible for a robot to form threads across an open space by an extrusion-drawing process and then combine several of these threads into a web-like structure. The problems addressed here are discovering which parameters determine the thickness of a thread and determining how web-like structures may be used for certain tasks. We first present a model for the extrusion and the drawing of TPA threads which also includes the temperature-dependent material properties. The model verification result shows that the increasing relative surface area of the TPA thread as it is drawn thinner increases the heat loss of the thread, and that by controlling how quickly the thread is drawn, a range of diameters can be achieved from 0.2-0.75 mm. We then present a method based on a generalized nonlinear finite element truss model. The model was validated and could predict the deformation of various web-like structures when payloads are added. At the end, we demonstrate automatic building of a web-like structure for payload bearing.

  19. Competitive interactions between a native spider (Frontinella communis, Araneae: Linyphiidae) and an invasive spider (Linyphia triangularis, Araneae: Linyphiidae)

    USGS Publications Warehouse

    Bednarski, Julie V.; Ginsberg, Howard S.; Jakob, Elizabeth M.

    2010-01-01

    There are numerous reports of spiders that have become established outside of their native ranges, but few studies examine their impact on native spiders. We examined the effect of the European hammock spider Linyphia triangularis (Araneae, Linyphiidae) on the native bowl-and-doily spider Frontinella communis (Araneae, Linyphiidae) in Acadia National Park, Maine, USA. First, we added L. triangularis to established plots of F. communis. Significantly more F. communis abandoned their webs when L. triangularis were added compared to control plots. Second, we tested whether F. communis were deterred from building webs in areas where L. triangularis was established. Significantly fewer F. communis built webs on plots with L. triangularis than on control plots. In both experiments, L. triangularis sometimes took over webs of F. communis or incorporated F. communis webs into their own webs, but F. communisnever took over or incorporated L. triangularis webs. Competition between L. triangularis and F. communis for both webs and web sites may contribute to the decline of F. communis.

  20. Spider Webs and Silks.

    ERIC Educational Resources Information Center

    Vollrath, Fritz

    1992-01-01

    Compares the attributes of the silk from spiders with those of the commercially harvested silk from silkworms. Discusses the evolution, design, and effectiveness of spider webs; the functional mechanics of the varieties of silk that can be produced by the same spider; and the composite, as well as molecular, structure of spider silk thread. (JJK)

  1. Science Education Resources on the Web--Spiders.

    ERIC Educational Resources Information Center

    Thirunarayanan, M. O.

    1997-01-01

    Lists Web sites containing information on spiders and offers brief descriptions of the information available at those sites. The 11 sites provide information on taxonomy of spiders, anatomy, different ways spiders use silk, Internet mailing lists, folk literature and art, bibliographies, night collection, and spiders commonly found in the state of…

  2. Contributions of detrital subsidies to aboveground spiders during secondary succession, revealed by radiocarbon and stable isotope signatures.

    PubMed

    Haraguchi, Takashi F; Uchida, Masao; Shibata, Yasuyuki; Tayasu, Ichiro

    2013-04-01

    Prey subsidies originating from detritus add nutrients and energy to arboreal communities. Measurement of this subsidy is required in the understanding of how food web dynamics respond to changes in surrounding environments. Shrub spiders are one of the key predators involved in food web coupling. We evaluate the effects of potential changes in prey availabilities during secondary succession on the contribution of subsidy from detrital food webs to shrub spiders and how different spider feeding guilds used the subsidy of prey from detrital food webs. We measured the relative importance of the subsidy for the spider feeding guilds, using the ratios of stable isotopes of C (δ(13)C), and N (δ(15)N) and C isotope discrimination (Δ(14)C). Diet age was calculated from Δ(14)C values, because old diet ages of spiders indicate that the spiders consume prey from detrital food sources. Dominant aerial prey (Diptera) had a distinctively old diet age compared with arboreal prey, which indicates that aerial prey were subsidized from detrital food webs. Sit-and-wait spiders tended to have an older diet age than active hunting spiders, which indicates that sit-and-wait spiders depended more on subsidies. Diet age varied only slightly for spiders in stands of different ages, indicating that rates at which spiders use grazing and detrital prey are probably determined more by foraging strategies and not by stand age. A dominance of sit-and-wait predators will lead to higher detrital subsidy inputs in shrub habitats. This study highlights the effect of shrub spider community structure (feeding guild composition) on the volume of the subsidy received from the detrital food web.

  3. Variation in Protein Intake Induces Variation in Spider Silk Expression

    PubMed Central

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  4. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  5. Main predators of insect pests: screening and evaluation through comprehensive indices.

    PubMed

    Yang, Tingbang; Liu, Jie; Yuan, Longyu; Zhang, Yang; Peng, Yu; Li, Daiqin; Chen, Jian

    2017-11-01

    Predatory natural enemies play key functional roles in integrated pest management. However, the screening and evaluation of the main predators of insect pests has seldom been reported in the field. Here, we employed comprehensive indices for evaluating the predation of a common pest (Ectropis obliqua) by nine common spider species in Chinese tea plantations. We established the relative dominance of the spider species and their phenological overlap with the pest species, and analyzed DNA from the nine spider species using targeted real-time quantitative polymerase chain reaction to identify the residual DNA of E. obliqua. The predation rates and predation numbers per predator were estimated by the positive rates of target fragments and the residual minimum number of E. obliqua in predators' guts, respectively. The results showed that only four spider species preyed on E. obliqua, and the order of potential of the spiders to control E. obliqua from greatest to smallest was Neoscona mellotteei, Xysticus ephippiatus, Evarcha albaria and Coleosoma octomaculatum by the Z-score method. The orb-weaving spider N. mellotteei has the maximum potential as a biological control agent of E. obliqua in an integrated pest management strategy. An approach of screening and evaluating main predators of insect pests through comprehensive indices was preliminarily established. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Investigating the transverse optical structure of spider silk micro-fibers using quantitative optical microscopy

    NASA Astrophysics Data System (ADS)

    Little, Douglas J.; Kane, Deb M.

    2017-01-01

    The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.

  7. Funnel-web spider bite: a systematic review of recorded clinical cases.

    PubMed

    Isbister, Geoffrey K; Gray, Michael R; Balit, Corrine R; Raven, Robert J; Stokes, Barrie J; Porges, Kate; Tankel, Alan S; Turner, Elizabeth; White, Julian; Fisher, Malcolm McD

    2005-04-18

    To investigate species-specific envenoming rates and spectrum of severity of funnel-web spider bites, and the efficacy and adverse effects of funnel-web spider antivenom. Cases were identified from a prospective study of spider bite presenting to four major hospitals and three state poisons information centres (1999-2003); museum records of spider specimens since 1926; NSW Poisons Information Centre database; MEDLINE and EMBASE search; clinical toxinology textbooks; the media; and the manufacturer's reports of antivenom use. Patient age and sex, geographical location, month, expert identification of the spider, clinical effects and management; envenoming was classified as severe, mild-moderate or minor/local effects. 198 potential funnel-web spider bites were identified: 138 were definite (spider expertly identified to species or genus), and 77 produced severe envenoming. All species-identified severe cases were attributed to one of six species restricted to NSW and southern Queensland. Rates of severe envenoming were: Hadronyche cerberea (75%), H. formidabilis (63%), Atrax robustus (17%), Hadronyche sp. 14 (17%), H. infensa (14%) and H. versuta (11%). Antivenom was used in 75 patients, including 22 children (median dose, 3 ampoules; range, 1-17), with a complete response in 97% of expertly identified cases. Three adverse reactions were reported, all in adults: two early allergic reactions (one mild and one with severe systemic effects requiring adrenaline), and one case of serum sickness. Severe funnel-web spider envenoming is confined to NSW and southern Queensland; tree-dwelling funnel webs (H. cerberea and H. formidabilis) have the highest envenoming rates. Funnel-web spider antivenom appears effective and safe; severe allergic reactions are uncommon.

  8. Can differential nutrient extraction explain property variations in a predatory trap?

    PubMed Central

    Blamires, Sean J.; Piorkowski, Dakota; Chuang, Angela; Tseng, Yi-Hsuan; Toft, Søren; Tso, I-Min

    2015-01-01

    Predators exhibit flexible foraging to facilitate taking prey that offer important nutrients. Because trap-building predators have limited control over the prey they encounter, differential nutrient extraction and trap architectural flexibility may be used as a means of prey selection. Here, we tested whether differential nutrient extraction induces flexibility in architecture and stickiness of a spider's web by feeding Nephila pilipes live crickets (CC), live flies (FF), dead crickets with the web stimulated by flies (CD) or dead flies with the web stimulated by crickets (FD). Spiders in the CD group consumed less protein per mass of lipid or carbohydrate, and spiders in the FF group consumed less carbohydrates per mass of protein. Spiders from the CD group built stickier webs that used less silk, whereas spiders in the FF group built webs with more radii, greater catching areas and more silk, compared with other treatments. Our results suggest that differential nutrient extraction is a likely explanation for prey-induced spider web architecture and stickiness variations. PMID:26064618

  9. Host manipulation by an ichneumonid spider ectoparasitoid that takes advantage of preprogrammed web-building behaviour for its cocoon protection.

    PubMed

    Takasuka, Keizo; Yasui, Tomoki; Ishigami, Toru; Nakata, Kensuke; Matsumoto, Rikio; Ikeda, Kenichi; Maeto, Kaoru

    2015-08-01

    Host manipulation by parasites and parasitoids is a fascinating phenomenon within evolutionary ecology, representing an example of extended phenotypes. To elucidate the mechanism of host manipulation, revealing the origin and function of the invoked actions is essential. Our study focused on the ichneumonid spider ectoparasitoid Reclinervellus nielseni, which turns its host spider (Cyclosa argenteoalba) into a drugged navvy, to modify the web structure into a more persistent cocoon web so that the wasp can pupate safely on this web after the spider's death. We focused on whether the cocoon web originated from the resting web that an unparasitized spider builds before moulting, by comparing web structures, building behaviour and silk spectral/tensile properties. We found that both resting and cocoon webs have reduced numbers of radii decorated by numerous fibrous threads and specific decorating behaviour was identical, suggesting that the cocoon web in this system has roots in the innate resting web and ecdysteroid-related components may be responsible for the manipulation. We also show that these decorations reflect UV light, possibly to prevent damage by flying web-destroyers such as birds or large insects. Furthermore, the tensile test revealed that the spider is induced to repeat certain behavioural steps in addition to resting web construction so that many more threads are laid down for web reinforcement. © 2015. Published by The Company of Biologists Ltd.

  10. Characterization of the complete mitogenomes of two Neoscona spiders (Araneae: Araneidae) and its phylogenetic implications.

    PubMed

    Wang, Zheng-Liang; Li, Chao; Fang, Wen-Yuan; Yu, Xiao-Ping

    2016-09-30

    The complete mitogenomes of two orb-weaving spiders Neoscona doenitzi and Neoscona nautica were determined and a comparative mitogenomic analysis was performed to depict evolutionary trends of spider mitogenomes. The circular mitogenomes are 14,161bp with A+T content of 74.6% in N. doenitzi and 14,049bp with A+T content of 78.8% in N. nautica, respectively. Both mitogenomes contain a standard set of 37 genes typically presented in metazoans. Gene content and orientation are identical to all previously sequenced spider mitogenomes, while gene order is rearranged by tRNAs translocation when compared with the putative ancestral gene arrangement pattern presented by Limulus polyphemus. A comparative mitogenomic analysis reveals that the nucleotide composition bias is obviously divergent between spiders in suborder Opisthothelae and Mesothelae. The loss of D-arm in the trnS(UCN) among all of Opisthothelae spiders highly suggested that this common feature is a synapomorphy for entire suborder Opisthothelae. Moreover, the trnS(AGN) in araneoids preferred to use TCT as an anticodon rather than the typical anticodon GCT. Phylogenetic analysis based on the 13 protein-coding gene sequences consistently yields trees that nest the two Neoscona spiders within Araneidae and recover superfamily Araneoidea as a monophyletic group. The molecular information acquired from the results of this study should be very useful for future research on mitogenomic evolution and genetic diversities in spiders. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Vibration transmission through sheet webs of hobo spiders (Eratigena agrestis) and tangle webs of western black widow spiders (Latrodectus hesperus).

    PubMed

    Vibert, Samantha; Scott, Catherine; Gries, Gerhard

    2016-11-01

    Web-building spiders construct their own vibratory signaling environments. Web architecture should affect signal design, and vice versa, such that vibratory signals are transmitted with a minimum of attenuation and degradation. However, the web is the medium through which a spider senses both vibratory signals from courting males and cues produced by captured prey. Moreover, webs function not only in vibration transmission, but also in defense from predators and the elements. These multiple functions may impose conflicting selection pressures on web design. We investigated vibration transmission efficiency and accuracy through two web types with contrasting architectures: sheet webs of Eratigena agrestis (Agelenidae) and tangle webs of Latrodectus hesperus (Theridiidae). We measured vibration transmission efficiencies by playing frequency sweeps through webs with a piezoelectric vibrator and a loudspeaker, recording the resulting web vibrations at several locations on each web using a laser Doppler vibrometer. Transmission efficiencies through both web types were highly variable, with within-web variation greater than among-web variation. There was little difference in transmission efficiencies of longitudinal and transverse vibrations. The inconsistent transmission of specific frequencies through webs suggests that parameters other than frequency are most important in allowing these spiders to distinguish between vibrations of prey and courting males.

  12. The contribution of developmental experience vs. condition to life history, trait variation, and individual differences

    PubMed Central

    DiRienzo, Nicholas; Montiglio, Pierre-Olivier

    2016-01-01

    SUMMARY Developmental experience, for example food abundance during juvenile stages, is known to affect life history and behaviour. However, the life history and behavioural consequences of developmental experience have rarely been studied in concert. As a result it is still unclear whether developmental experience affects behaviour through changes in life history, or independently of it.The effect of developmental experience on life history and behaviour may also be masked or affected by individual condition during adulthood. Thus, it is critical to tease apart the effects of developmental experience and current individual condition on life history and behaviour.In this study we manipulated food abundance during development in the western black widow spider, Latrodectus hesperus, by rearing spiders on either a restricted or ad lib diet. We separated developmental from condition dependent effects by assaying adult foraging behaviour (tendency to attack prey and to stay on out of the refuge following an attack) and web structure multiple times under different levels of satiation following different developmental treatments.Spiders reared under food restriction matured slower and at a smaller size than spiders reared in ad lib conditions. Spiders reared on a restricted diet were more aggressive towards prey and built webs structured for prey capture while spiders reared on an ad lib diet were less aggressive and build safer webs. Developmental treatment affected which traits were plastic as adults: restricted spiders built safer webs when their adult condition increased, while ad-lib spiders reduced their aggression when their adult condition increased. The amount of individual variation in behaviour and web structure varied with developmental treatment. Spiders reared on a restricted diet exhibited consistent variation in all aspects of foraging behaviour and web structure, while spiders reared on an ad lib diet exhibited consistent individual variation in aggression and web weight only.Developmental experience affected the average life history, behaviour, and web structure of spiders, but also shaped the amount of phenotypic variation observed among individuals. Surprisingly, developmental experience also determined the particular way in which individuals plastically adjusted their behaviour and web structure to changes in adult condition. PMID:26937627

  13. Management intensity and vegetation complexity affect web-building spiders and their prey.

    PubMed

    Diehl, Eva; Mader, Viktoria L; Wolters, Volkmar; Birkhofer, Klaus

    2013-10-01

    Agricultural management and vegetation complexity affect arthropod diversity and may alter trophic interactions between predators and their prey. Web-building spiders are abundant generalist predators and important natural enemies of pests. We analyzed how management intensity (tillage, cutting of the vegetation, grazing by cattle, and synthetic and organic inputs) and vegetation complexity (plant species richness, vegetation height, coverage, and density) affect rarefied richness and composition of web-building spiders and their prey with respect to prey availability and aphid predation in 12 habitats, ranging from an uncut fallow to a conventionally managed maize field. Spiders and prey from webs were collected manually and the potential prey were quantified using sticky traps. The species richness of web-building spiders and the order richness of prey increased with plant diversity and vegetation coverage. Prey order richness was lower at tilled compared to no-till sites. Hemipterans (primarily aphids) were overrepresented, while dipterans, hymenopterans, and thysanopterans were underrepresented in webs compared to sticky traps. The per spider capture efficiency for aphids was higher at tilled than at no-till sites and decreased with vegetation complexity. After accounting for local densities, 1.8 times more aphids were captured at uncut compared to cut sites. Our results emphasize the functional role of web-building spiders in aphid predation, but suggest negative effects of cutting or harvesting. We conclude that reduced management intensity and increased vegetation complexity help to conserve local invertebrate diversity, and that web-building spiders at sites under low management intensity (e.g., semi-natural habitats) contribute to aphid suppression at the landscape scale.

  14. Spider mite web mediates anti-predator behaviour

    PubMed Central

    Lemos, Felipe; Sarmento, Renato Almeida; Pallini, Angelo; Dias, Cleide Rosa; Sabelis, Maurice W.

    2010-01-01

    Herbivores suffer significant mortality from predation and are therefore subject to natural selection on traits promoting predator avoidance and resistance. They can employ an array of strategies to reduce predation, for example through changes in behaviour, morphology and life history. So far, the anti-predator response studied most intensively in spider mites has been the avoidance of patches with high predation risk. Less attention has been given to the dense web produced by spider mites, which is a complex structure of silken threads that is thought to hinder predators. Here, we investigate the effects of the web produced by the red spider mite, Tetranychus evansi Baker & Pritchard, on its interactions with the predatory mite, Phytoseiulus longipes Evans. We tested whether female spider mites recognize predator cues and whether these can induce the spider mites to produce denser web. We found that the prey did not produce denser web in response to such cues, but laid more eggs suspended in the web, away from the leaf surface. These suspended eggs suffered less from predation by P. longipes than eggs that were laid on the leaf surface under the web. Thus, by altering their oviposition behaviour in response to predator cues, females of T. evansi protect their offspring. PMID:20191311

  15. Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation.

    PubMed Central

    Polis, G A; Hurd, S D

    1995-01-01

    Some islands in the Gulf of California support very high densities of spiders. Spider density is negatively correlated with island size; many small islands support 50-200 spiders per m3 of cactus. Energy for these spiders comes primarily from the ocean and not from in situ productivity by land plants. We explicitly connect the marine and terrestrial systems to show that insular food webs represent one endpoint of the marine web. We describe two conduits for marine energy entering these islands: shore drift and seabird colonies. Both conduits are related to island area, having a much stronger effect on smaller islands. This asymmetric effect helps to explain the exceptionally high spider densities on small islands. Although productivity sets the maximal potential densities, predation (by scorpions) limits realized spider abundance. Thus, prey availability and predation act in concert to set insular spider abundance. PMID:7753815

  16. Multiple model mimicry and feeding behavior of the spider web-inhabiting damsel bug, Arachnocoris berytoides Uhler (Hemiptera: Nabidae), from Puerto Rico

    Treesearch

    Javier E. Mercado; Jorge A. Santiago-Blay

    2015-01-01

    The Neotropical genus, Arachnocoris Scott groups thirteen species of specialized spider web-inhabiting damsel bugs (Nabidae) distributed from Panama to Brazil and the West Indies. We present new information on the web behavior of A. berytoides Uhler from Puerto Rico. Three different life stages were observed on the spider webs, suggesting this species likely depends on...

  17. View of Arabella, one of two Skylab spiders and her web

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A close-up view of Arabella, one of the two Skylab 3 common cross spiders 'aranous diadematus,' and the web it had spun in the zero gravity of space aboard the Skylab space station cluster in Earth orbit. During the 59 day Skylab 3 mission the two spiders Arabella and Anita, were housed in an enclosure onto which a motion picture and still camera were attached to record the spiders' attempts to build a web in the weightless environment.

  18. Structure and function of the major ampullate spinning duct of the golden orb weaver, Nephila edulis.

    PubMed

    Davies, G J G; Knight, D P; Vollrath, F

    2013-10-01

    Silks are fibres produced by spiders, some insects and even a crustacean, and are formed from protein solution by a pulltrusion process that is not well understood. Here we describe three aspects of the functional anatomy of the spinning apparatus in a spider: (i) changes in the diameter of the duct of the silk gland along its length for individuals at different stages of development, (ii) the correlation between the morphology of the duct and size and (iii) changes in the thickness of the wall of the duct. We conclude that in the distal part of the duct both the lumen's geometry and change in diameter with distance remains remarkably constant as the duct increases in length from moult to moult as the spider grows. This suggests constancy in the region where the nascent silk filament is drawn down within the lumen of the duct, which is likely to be fundamental for forming strong and tough fibres. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Spider-web amphiphiles as artificial lipid clusters: design, synthesis, and accommodation of lipid components at the air-water interface.

    PubMed

    Ariga, Katsuhiko; Urakawa, Toshihiro; Michiue, Atsuo; Kikuchi, Jun-ichi

    2004-08-03

    As a novel category of two-dimensional lipid clusters, dendrimers having an amphiphilic structure in every unit were synthesized and labeled "spider-web amphiphiles". Amphiphilic units based on a Lys-Lys-Glu tripeptide with hydrophobic tails at the C-terminal and a polar head at the N-terminal are dendrically connected through stepwise peptide coupling. This structural design allowed us to separately introduce the polar head and hydrophobic tails. Accordingly, we demonstrated the synthesis of the spider-web amphiphile series in three combinations: acetyl head/C16 chain, acetyl head/C18 chain, and ammonium head/C16 chain. All the spider-web amphiphiles were synthesized in satisfactory yields, and characterized by 1H NMR, MALDI-TOFMS, GPC, and elemental analyses. Surface pressure (pi)-molecular area (A) isotherms showed the formation of expanded monolayers except for the C18-chain amphiphile at 10 degrees C, for which the molecular area in the condensed phase is consistent with the cross-sectional area assigned for all the alkyl chains. In all the spider-web amphiphiles, the molecular areas at a given pressure in the expanded phase increased in proportion to the number of units, indicating that alkyl chains freely fill the inner space of the dendritic core. The mixing of octadecanoic acid with the spider-web amphiphiles at the air-water interface induced condensation of the molecular area. From the molecular area analysis, the inclusion of the octadecanoic acid bears a stoichiometric characteristic; i.e., the number of captured octadecanoic acids in the spider-web amphiphile roughly agrees with the number of branching points in the spider-web amphiphile.

  20. Determination of PCDDs in spider webs: preliminary studies

    NASA Astrophysics Data System (ADS)

    Rybak, Justyna; Rutkowski, Radosław

    2018-01-01

    The application of spider webs for determination of polichlorinated dibenzo-para-dioxins (PCDDs) has been studied for the first time. The aim of the studies was to find out if spider webs are suitable for such examinations as it was proved in the previous research they are excellent indicators of air pollutants. Spiders are ubiquitous, thus collection of samples is easy and non-invasive. Studies were conducted within the city of Wrocław and surroundings, one of the biggest and at the same time heaviest polluted city in Poland. Five research sites have been chosen, where spider webs were collected after 60 days of continuous exposure time. Webs belonging to two genera Tegenaria sylvestris and Tegenaria ferruginea (family Agelenidae) have been chosen as they are large and very dense, thus they are very suitable for such examinations. Webs were found to retain dioxins probably mainly by external exposure. These promising results should be continued and expanded in the future research.

  1. Nonlinear material behaviour of spider silk yields robust webs.

    PubMed

    Cranford, Steven W; Tarakanova, Anna; Pugno, Nicola M; Buehler, Markus J

    2012-02-01

    Natural materials are renowned for exquisite designs that optimize function, as illustrated by the elasticity of blood vessels, the toughness of bone and the protection offered by nacre. Particularly intriguing are spider silks, with studies having explored properties ranging from their protein sequence to the geometry of a web. This material system, highly adapted to meet a spider's many needs, has superior mechanical properties. In spite of much research into the molecular design underpinning the outstanding performance of silk fibres, and into the mechanical characteristics of web-like structures, it remains unknown how the mechanical characteristics of spider silk contribute to the integrity and performance of a spider web. Here we report web deformation experiments and simulations that identify the nonlinear response of silk threads to stress--involving softening at a yield point and substantial stiffening at large strain until failure--as being crucial to localize load-induced deformation and resulting in mechanically robust spider webs. Control simulations confirmed that a nonlinear stress response results in superior resistance to structural defects in the web compared to linear elastic or elastic-plastic (softening) material behaviour. We also show that under distributed loads, such as those exerted by wind, the stiff behaviour of silk under small deformation, before the yield point, is essential in maintaining the web's structural integrity. The superior performance of silk in webs is therefore not due merely to its exceptional ultimate strength and strain, but arises from the nonlinear response of silk threads to strain and their geometrical arrangement in a web.

  2. Magnetic susceptibility of spider webs as a proxy of airborne metal pollution.

    PubMed

    Rachwał, Marzena; Rybak, Justyna; Rogula-Kozłowska, Wioletta

    2018-03-01

    The purpose of this pilot study was to test spider webs as a fast tool for magnetic biomonitoring of air pollution. The study involved the investigation of webs made by four types of spiders: Pholcus phalangioides (Pholcidae), Eratigena atrica and Agelena labirynthica (Agelenidae) and Linyphia triangularis (Linyphiidae). These webs were obtained from outdoor and indoor study sites. Compared to the clean reference webs, an increase was observed in the values of magnetic susceptibility in the webs sampled from both indoor and outdoor sites, which indicates contamination by anthropogenically produced pollution particles that contain ferrimagnetic iron minerals. This pilot study has demonstrated that spider webs are able to capture particulate matter in a manner that is equivalent to flora-based bioindicators applied to date (such as mosses, lichens, leaves). They also have additional advantages; for example, they can be generated in isolated clean habitats, and exposure can be monitored in indoor and outdoor locations, at any height and for any period of time. Moreover, webs are ubiquitous in an anthropogenic, heavily polluted environment, and they can be exposed throughout the year. As spider webs accumulate pollutants to which humans are exposed, they become a reliable source of information about the quality of the environment. Therefore, spider webs are recommended for magnetic biomonitoring of airborne pollution and for the assessment of the environment because they are non-destructive, low-cost, sensitive and efficient. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. One-shot genitalia are not an evolutionary dead end - Regained male polygamy in a sperm limited spider species

    PubMed Central

    2011-01-01

    Background Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, Nephila senegalensis. Results Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps. Conclusion By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in Nephila although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies. PMID:21740561

  4. One-shot genitalia are not an evolutionary dead end - regained male polygamy in a sperm limited spider species.

    PubMed

    Schneider, Jutta M; Michalik, Peter

    2011-07-08

    Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, Nephila senegalensis. Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps. By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in Nephila although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies.

  5. Structural optimization of 3D-printed synthetic spider webs for high strength

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-05-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  6. Structural optimization of 3D-printed synthetic spider webs for high strength.

    PubMed

    Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J

    2015-05-15

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.

  7. The influence of food supply on foraging behaviour in a desert spider.

    PubMed

    Lubin, Y; Henschel, J

    1996-01-01

    We tested the alternative hypotheses that foraging effort will increase (energy maximizer model) or decrease (due to increased costs or risks) when food supply increased, using a Namib desert burrowing spider, Seothyra henscheli (Eresidae), which feeds mainly on ants. The web of S. henscheli has a simple geometrical configuration, comprising a horizontal mat on the sand surface, with a variable number of lobes lined with sticky silk. The sticky silk is renewed daily after being covered by wind-blown sand. In a field experiment, we supplemented the spiders' natural prey with one ant on each day that spiders had active webs and determined the response to an increase in prey. We compared the foraging activity and web geometry of prey-supplemented spiders to non-supplemented controls. We compared the same parameters in fooddeprived and supplemented spiders in captivity. The results support the "costs of foraging" hypothesis. Supplemented spiders reduced their foraging activity and web dimensions. They moulted at least once and grew rapidly, more than doubling their mass in 6 weeks. By contrast, food-deprived spiders increased foraging effort by enlarging the diameter of the capture web. We suggest that digestive constraints prevented supplemented spiders from fully utilizing the available prey. By reducing foraging activities on the surface, spiders in a prey-rich habitat can reduce the risk of predation. However, early maturation resulting from a higher growth rate provides no advantage to S. henscheli owing to the fact that the timing of mating and dispersal are fixed by climatic factors (wind and temperature). Instead, large female body size will increase fitness by increasing the investiment in young during the period of extended maternal care.

  8. Dense white trichome production by plants as possible mimicry of arthropod silk or fungal hyphae that deter herbivory.

    PubMed

    Yamazaki, Kazuo; Lev-Yadun, Simcha

    2015-01-07

    Some spiders are well-known to mimic flowers or other plant surfaces in order to be cryptic to both their prey and their predators. We propose that dense, thread-like white trichomes of some plants from Estonia, Greece, Israel and Japan visually mimic spider webs, lepidopteran and spider-mite web nests and plant-pathogenic fungi, and that it may result in reduced herbivory, since various herbivores avoid spider- or other arthropod webs to circumvent predation or toxic attacks, or refrain from colonizing plants that have already been occupied by other herbivores and pathogens. Spiders and other web-forming arthropods are also the prey of certain vertebrate predators and wasps, and therefore such predators may be attracted to these web-like plant structures and prey on the invertebrate herbivores occupying them. We do not dismiss the possibility that these web-like structures may also have other defensive or physiological functions or that they are not classic mimics but rather exploit the herbivore׳s perceptual state concerning the avoidance of potentially risky objects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The multiple disguises of spiders: web colour and decorations, body colour and movement

    PubMed Central

    Théry, Marc; Casas, Jérôme

    2008-01-01

    Diverse functions have been assigned to the visual appearance of webs, spiders and web decorations, including prey attraction, predator deterrence and camouflage. Here, we review the pertinent literature, focusing on potential camouflage and mimicry. Webs are often difficult to detect in a heterogeneous visual environment. Static and dynamic web distortions are used to escape visual detection by prey, although particular silk may also attract prey. Recent work using physiological models of vision taking into account visual environments rarely supports the hypothesis of spider camouflage by decorations, but most often the prey attraction and predator confusion hypotheses. Similarly, visual modelling shows that spider coloration is effective in attracting prey but not in conveying camouflage. Camouflage through colour change might be used by particular crab spiders to hide from predator or prey on flowers of different coloration. However, results obtained on a non-cryptic crab spider suggest that an alternative function of pigmentation may be to avoid UV photodamage through the transparent cuticle. Numerous species are clearly efficient locomotory mimics of ants, particularly in the eyes of their predators. We close our paper by highlighting gaps in our knowledge. PMID:18990672

  10. Interactive effects of fire and large herbivores on web-building spiders.

    PubMed

    Foster, C N; Barton, P S; Wood, J T; Lindenmayer, D B

    2015-09-01

    Altered disturbance regimes are a major driver of biodiversity loss worldwide. Maintaining or re-creating natural disturbance regimes is therefore the focus of many conservation programmes. A key challenge, however, is to understand how co-occurring disturbances interact to affect biodiversity. We experimentally tested for the interactive effects of prescribed fire and large macropod herbivores on the web-building spider assemblage of a eucalypt forest understorey and investigated the role of vegetation in mediating these effects using path analysis. Fire had strong negative effects on the density of web-building spiders, which were partly mediated by effects on vegetation structure, while negative effects of large herbivores on web density were not related to changes in vegetation. Fire amplified the effects of large herbivores on spiders, both via vegetation-mediated pathways and by increasing herbivore activity. The importance of vegetation-mediated pathways and fire-herbivore interactions differed for web density and richness and also differed between web types. Our results demonstrate that for some groups of web-building spiders, the effects of co-occurring disturbance drivers may be mostly additive, whereas for other groups, interactions between drivers can amplify disturbance effects. In our study system, the use of prescribed fire in the presence of high densities of herbivores could lead to reduced densities and altered composition of web-building spiders, with potential cascading effects through the arthropod food web. Our study highlights the importance of considering both the independent and interactive effects of disturbances, as well as the mechanisms driving their effects, in the management of disturbance regimes.

  11. Structural optimization of 3D-printed synthetic spider webs for high strength

    PubMed Central

    Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.

    2015-01-01

    Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372

  12. An insect-feeding guild of carnivorous plants and spiders: does optimal foraging lead to competition or facilitation?

    PubMed

    Crowley, Philip H; Hopper, Kevin R; Krupa, James J

    2013-12-01

    Carnivorous plants and spiders, along with their prey, are main players in an insect-feeding guild found on acidic, poorly drained soils in disturbed habitat. Darwin's notion that these plants must actively attract the insects they capture raises the possibility that spiders could benefit from proximity to prey hotspots created by the plants. Alternatively, carnivorous plants and spiders may deplete prey locally or (through insect redistribution) more widely, reducing each other's gain rates from predation. Here, we formulate and analyze a model of this guild, parameterized for carnivorous sundews and lycosid spiders, under assumptions of random movement by insects and optimal foraging by predators. Optimal foraging here involves gain maximization via trap investment (optimal web sizes and sundew trichome densities) and an ideal free distribution of spiders between areas with and without sundews. We find no facilitation: spiders and sundews engage in intense exploitation competition. Insect attraction by plants modestly increases sundew gain rates but slightly decreases spider gain rates. In the absence of population size structure, optimal spider redistribution between areas with and without sundews yields web sizes that are identical for all spiders, regardless of proximity to sundews. Web-building spiders have higher gain rates than wandering spiders in this system at high insect densities, but wandering spiders have the advantage at low insect densities. Results are complex, indicating that predictions to be tested empirically must be based on careful quantitative assessment.

  13. 54. VIEW SHOWING THE PLACEMENT OF SPIDER WEB BRACING, SHOOFLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. VIEW SHOWING THE PLACEMENT OF SPIDER WEB BRACING, SHOOFLY BRIDGE, January 1935 - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  14. Assassin bug uses aggressive mimicry to lure spider prey.

    PubMed

    Wignall, Anne E; Taylor, Phillip W

    2011-05-07

    Assassin bugs (Stenolemus bituberus) hunt web-building spiders by invading the web and plucking the silk to generate vibrations that lure the resident spider into striking range. To test whether vibrations generated by bugs aggressively mimic the vibrations generated by insect prey, we compared the responses of spiders to bugs with how they responded to prey, courting male spiders and leaves falling into the web. We also analysed the associated vibrations. Similar spider orientation and approach behaviours were observed in response to vibrations from bugs and prey, whereas different behaviours were observed in response to vibrations from male spiders and leaves. Peak frequency and duration of vibrations generated by bugs were similar to those generated by prey and courting males. Further, vibrations from bugs had a temporal structure and amplitude that were similar to vibrations generated by leg and body movements of prey and distinctly different to vibrations from courting males or leaves, or prey beating their wings. To be an effective predator, bugs do not need to mimic the full range of prey vibrations. Instead bugs are general mimics of a subset of prey vibrations that fall within the range of vibrations classified by spiders as 'prey'.

  15. Synthesis of a Carbon-activated Microfiber from Spider Webs Silk

    NASA Astrophysics Data System (ADS)

    Taer, E.; Mustika, W. S.; Taslim, R.

    2017-03-01

    Carbon fiber of spider web silk has been produced through the simple carbonization process. Cobwebs are a source of strong natural fiber, flexible and micrometer in size. Preparation of micro carbon fiber from spider webs that consist of carbonization and activation processes. Carbonization was performed in N2 gas environment by multi step heating profile up to temperature of 400 °C, while the activation process was done by using chemical activation with KOH activating agent assistance. Measurement of physical properties was conducted on the surface morphology, element content and the degree of crystallinity. The measurement results found that micro carbon fiber from spider webs has a diameter in the range of 0.5 -25 micrometers. It is found that the carbon-activated microfiber takes the amorphous form with the carbon content of 84 %.

  16. Metacommunity composition of web-spiders in a fragmented neotropical forest: relative importance of environmental and spatial effects.

    PubMed

    Baldissera, Ronei; Rodrigues, Everton N L; Hartz, Sandra M

    2012-01-01

    The distribution of beta diversity is shaped by factors linked to environmental and spatial control. The relative importance of both processes in structuring spider metacommunities has not yet been investigated in the Atlantic Forest. The variance explained by purely environmental, spatially structured environmental, and purely spatial components was compared for a metacommunity of web spiders. The study was carried out in 16 patches of Atlantic Forest in southern Brazil. Field work was done in one landscape mosaic representing a slight gradient of urbanization. Environmental variables encompassed plot- and patch-level measurements and a climatic matrix, while principal coordinates of neighbor matrices (PCNMs) acted as spatial variables. A forward selection procedure was carried out to select environmental and spatial variables influencing web-spider beta diversity. Variation partitioning was used to estimate the contribution of pure environmental and pure spatial effects and their shared influence on beta-diversity patterns, and to estimate the relative importance of selected environmental variables. Three environmental variables (bush density, land use in the surroundings of patches, and shape of patches) and two spatial variables were selected by forward selection procedures. Variation partitioning revealed that 15% of the variation of beta diversity was explained by a combination of environmental and PCNM variables. Most of this variation (12%) corresponded to pure environmental and spatially environmental structure. The data indicated that (1) spatial legacy was not important in explaining the web-spider beta diversity; (2) environmental predictors explained a significant portion of the variation in web-spider composition; (3) one-third of environmental variation was due to a spatial structure that jointly explains variation in species distributions. We were able to detect important factors related to matrix management influencing the web-spider beta-diversity patterns, which are probably linked to historical deforestation events.

  17. The allometry of the arcuate body in the postembryonic development of the giant house spider Eratigena atrica.

    PubMed

    Napiórkowska, Teresa; Kobak, Jarosław

    2018-03-10

    The brain of arachnids contains a special neuropil area called the arcuate body (AB), whose function has been widely discussed. Its growth and proportion in the brain volume during postembryogenesis have been investigated only in several spider species. Our allometric study is aimed at determining to what extent the development of the AB in Eratigena atrica, a spider with unique biology and behaviour, is similar to the development of this body in other species. We put forward a hypothesis of allometric growth of this body in relation to the volume of the central nervous system (CNS) and its neuropil as well as in relation to the volume of the brain and its neuropil. The analysis of paraffin embedded, H + E stained histological preparations confirmed our hypothesis. The AB developed more slowly than the CNS and the neuropil of both the brain and the CNS. In contrast, it exhibited positive allometry in relation to the volume of the brain. This body increased more than nine times within the postembryonic development. Its proportion in the brain volume varied; the lowest was recorded in larvae and nymphs I; then, it increased in nymphs VI and decreased to 2.93% in nymphs X. We conclude that in Eratigena atrica, the AB develops differently that in orb-weaver and wandering spiders. There is no universal model of the AB development, although in adult spiders, regardless of their behaviour, the proportion of this area in the brain volume is similar.

  18. Warring arthropod societies: Social spider colonies can delay annihilation by predatory ants via reduced apparency and increased group size.

    PubMed

    Keiser, Carl N; Wright, Colin M; Pruitt, Jonathan N

    2015-10-01

    Sociality provides individuals with benefits via collective foraging and anti-predator defense. One of the costs of living in large groups, however, is increased apparency to natural enemies. Here, we test how the individual-level and collective traits of spider societies can increase the risk of discovery and death by predatory ants. We transplanted colonies of the social spider Stegodyphus dumicola into a habitat dense with one of their top predators, the pugnacious ant Anoplolepis custodiens. With three different experiments, we test how colony-wide survivorship in a predator-dense habitat can be altered by colony apparency (i.e., the presence of a capture web), group size, and group composition (i.e., the proportion of bold and shy personality types present). We also test how spiders' social context (i.e., living solitarily vs. among conspecifics) modifies their behaviour toward ants in their capture web. Colonies with capture webs intact were discovered by predatory ants on average 25% faster than colonies with the capture web removed, and all discovered colonies eventually collapsed and succumbed to predation. However, the lag time from discovery by ants to colony collapse was greater for colonies containing more individuals. The composition of individual personality types in the group had no influence on survivorship. Spiders in a social group were more likely to approach ants caught in their web than were isolated spiders. Isolated spiders were more likely to attack a safe prey item (a moth) than they were to attack ants and were more likely to retreat from ants after contact than they were after contact with moths. Together, our data suggest that the physical structures produced by large animal societies can increase their apparency to natural enemies, though larger groups can facilitate a longer lag time between discovery and demise. Lastly, the interaction between spiders and predatory ants seems to depend on the social context in which spiders reside. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Web of Learning: Beyond "Itsy Bitsy Spider," Preschool Students Learn Science Content Naturally

    ERIC Educational Resources Information Center

    Evitt, Marie Faust

    2011-01-01

    One of the author's biggest challenges as a preschool teacher is helping children in a group see and touch and do. Hands-on explorations are important for everyone, but essential for young children. How can young children do hands-on explorations of spiders and their webs? Teachers do not want children handling all sorts of spiders. They worry…

  20. Navigating complex patients using an innovative tool: the MTM Spider Web.

    PubMed

    Morello, Candis M; Hirsch, Jan D; Lee, Kelly C

    2013-01-01

    To introduce a teaching tool that can be used to assess the complexity of medication therapy management (MTM) patients, prioritize appropriate interventions, and design patient-centered care plans for each encounter. MTM patients are complex as a result of multiple comorbidities, medications, and socioeconomic and behavioral issues. Pharmacists who provide MTM services are required to synthesize a plethora of information (medical and nonmedical), evaluate and prioritize the clinical problems, and design a comprehensive patient-centered care plan. The MTM Spider Web is a visual tool to facilitate this process. A description is provided regarding how to build the MTM Spider Web using case-based scenarios. This model can be used to teach pharmacists, health professional students, and patients. The MTM Spider Web is an innovative teaching tool that can be used to teach pharmacists and students how to assess complex patients and design a patient-centered care plan to deliver the most appropriate medication therapy.

  1. Spinning Gland Transcriptomics from Two Main Clades of Spiders (Order: Araneae) - Insights on Their Molecular, Anatomical and Behavioral Evolution

    PubMed Central

    Prosdocimi, Francisco; Bittencourt, Daniela; da Silva, Felipe Rodrigues; Kirst, Matias; Motta, Paulo C.; Rech, Elibio L.

    2011-01-01

    Characterized by distinctive evolutionary adaptations, spiders provide a comprehensive system for evolutionary and developmental studies of anatomical organs, including silk and venom production. Here we performed cDNA sequencing using massively parallel sequencers (454 GS-FLX Titanium) to generate ∼80,000 reads from the spinning gland of Actinopus spp. (infraorder: Mygalomorphae) and Gasteracantha cancriformis (infraorder: Araneomorphae, Orbiculariae clade). Actinopus spp. retains primitive characteristics on web usage and presents a single undifferentiated spinning gland while the orbiculariae spiders have seven differentiated spinning glands and complex patterns of web usage. MIRA, Celera Assembler and CAP3 software were used to cluster NGS reads for each spider. CAP3 unigenes passed through a pipeline for automatic annotation, classification by biological function, and comparative transcriptomics. Genes related to spider silks were manually curated and analyzed. Although a single spidroin gene family was found in Actinopus spp., a vast repertoire of specialized spider silk proteins was encountered in orbiculariae. Astacin-like metalloproteases (meprin subfamily) were shown to be some of the most sampled unigenes and duplicated gene families in G. cancriformis since its evolutionary split from mygalomorphs. Our results confirm that the evolution of the molecular repertoire of silk proteins was accompanied by the (i) anatomical differentiation of spinning glands and (ii) behavioral complexification in the web usage. Finally, a phylogenetic tree was constructed to cluster most of the known spidroins in gene clades. This is the first large-scale, multi-organism transcriptome for spider spinning glands and a first step into a broad understanding of spider web systems biology and evolution. PMID:21738742

  2. A golden-silk spider spins its web

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of Kennedy Space Center, a female Golden-Silk Spider repairs its web. During the day spider hands head downward from the underside of the web near the center. Its web may measure two to three feet across and it repairs the webbing each day, replacing half but never the whole web at one time. The center shares a boundary with the Merritt Island National Wildlife Refuge, a 92,000-acre refuge that is a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  3. The Importance of Insects in Energy Transfers Across Riparian Ecotones Along Hong Kong Streams

    NASA Astrophysics Data System (ADS)

    Chan, E. K.; Dudgeon, D.

    2005-05-01

    Energy and materials in the form of insects transfer reciprocally between land and water through stream riparian ecotones, and may provide important energy subsidies to aquatic and terrestrial consumers. Variation in the magnitude and extent of this transfer was investigated in 2004-05 in six Hong Kong streams: four shaded and two unshaded. A combination of pan traps and light traps were used to investigate seasonal activity of aquatic and terrestrial insects. Both were more abundant during the wet season (April to September). Over 80% of emerging aquatic insects stayed within 20 m of the stream bank at all sites, suggesting that the water to land subsidy was spatially restricted. Inputs of terrestrial insects into shaded streams were 30% greater than at open sites, and drift-feeding Parazacco spilurus (Cyprinidae) ate more terrestrial insects in shaded (>40% of prey) than unshaded streams (25% of prey). Stable isotope analysis (SIA; C & N) of potential prey and fish tissues confirmed the dietary importance of terrestrial insects. The spider Leucauge celebesiana (Tetragnathidae) builds orb web parallel to the water surface during the main period of aquatic insect emergence, and SIA indicated that aquatic insects were the primary prey of this terrestrial consumer.

  4. Competition between introduced and native spiders (Araneae: Linyphiidae)

    USGS Publications Warehouse

    Houser, J.D.; Ginsberg, Howard S.; Jakob, Elizabeth M.

    2014-01-01

    The European sheet-web spider Linyphia triangularis (Araneae: Linyphiidae) has become established in Maine, where it often reaches very high densities. Two lines of evidence from previous work suggest that L. triangularis affects populations of the native linyphiid spider Frontinella communis. First, F. communis individuals are relatively scarce in both forest and coastal habitat where L. triangularis is common, but more common where L. triangularis is at low density. Second, in field experiments, F. communis species are less likely to settle in experimental plots when L. triangularis is present, and F. communis disappears from study plots when L. triangularis is introduced. Here we test two mechanisms that may underlie these patterns. First, we tested whether L. triangularis invades and usurps the webs of F. communis. When spiders were released onto webs of heterospecifics, L. triangularis was more likely to take over or share webs of F. communis than the reverse. We also observed natural takeovers of F. communis webs. Second, we explored the hypothesis that L. triangularis reduces prey availability for native species. We sampled flying prey in areas with L. triangularis and those where it had been removed, and found no effect of spider presence on measured prey density. We also found no effect of prey supplementation on web tenacity in F. communis, suggesting that F. communis movements are not highly dependent on prey availability. We conclude that web takeover is likely more important than prey reduction in driving negative effects of L. triangularis on F. communis.

  5. Self-made shelters protect spiders from predation

    PubMed Central

    Manicom, Carryn; Schwarzkopf, Lin; Alford, Ross A.; Schoener, Thomas W.

    2008-01-01

    Many animals modify their environments, apparently to reduce predation risk, but the success of such endeavors, and their impact on the density and distribution of populations, are rarely rigorously demonstrated. We staged a manipulative experiment to assess the effectiveness of self-made shelters by web spiders as protection from natural enemies. Scincid lizards were included or excluded from 21 replicated 200-m2 plots, and spiders therein were classified as exposed or sheltered, depending on whether they were uncovered in their web or hidden in cocoons, leaves/debris, or burrows. We found that exposed spiders were greatly affected by the presence of predatory scincid lizards, whereas sheltered spiders were not. More specifically, lizards, which forage close to the ground, reduced the abundance of exposed spiders by two-thirds but had no effect on the abundance of sheltered spiders. Sheltered spiders were able to avoid predation and share space with lizards, suggesting that shelter construction is a mechanism for reducing predation risk and has important population consequences. PMID:18772383

  6. Spider foraging strategy affects trophic cascades under natural and drought conditions.

    PubMed

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-07-23

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests.

  7. Spider foraging strategy affects trophic cascades under natural and drought conditions

    PubMed Central

    Liu, Shengjie; Chen, Jin; Gan, Wenjin; Schaefer, Douglas; Gan, Jianmin; Yang, Xiaodong

    2015-01-01

    Spiders can cause trophic cascades affecting litter decomposition rates. However, it remains unclear how spiders with different foraging strategies influence faunal communities, or present cascading effects on decomposition. Furthermore, increased dry periods predicted in future climates will likely have important consequences for trophic interactions in detritus-based food webs. We investigated independent and interactive effects of spider predation and drought on litter decomposition in a tropical forest floor. We manipulated densities of dominant spiders with actively hunting or sit-and-wait foraging strategies in microcosms which mimicked the tropical-forest floor. We found a positive trophic cascade on litter decomposition was triggered by actively hunting spiders under ambient rainfall, but sit-and-wait spiders did not cause this. The drought treatment reversed the effect of actively hunting spiders on litter decomposition. Under drought conditions, we observed negative trophic cascade effects on litter decomposition in all three spider treatments. Thus, reduced rainfall can alter predator-induced indirect effects on lower trophic levels and ecosystem processes, and is an example of how such changes may alter trophic cascades in detritus-based webs of tropical forests. PMID:26202370

  8. Evidence for competition between carnivorous plants and spiders.

    PubMed

    Jennings, David E; Krupa, James J; Raffel, Thomas R; Rohr, Jason R

    2010-10-07

    Several studies have demonstrated that competition between disparate taxa can be important in determining community structure, yet surprisingly, to our knowledge, no quantitative studies have been conducted on competition between carnivorous plants and animals. To examine potential competition between these taxa, we studied dietary and microhabitat overlap between pink sundews (Drosera capillaris) and wolf spiders (Lycosidae) in the field, and conducted a laboratory experiment examining the effects of wolf spiders on sundew fitness. In the field, we found that sundews and spiders had a high dietary overlap with each other and with the available arthropod prey. Associations between sundews and spiders depended on spatial scale: both sundews and spiders were found more frequently in quadrats with more abundant prey, but within quadrats, spiders constructed larger webs and located them further away from sundews as the total sundew trapping area increased, presumably to reduce competition. Spiders also constructed larger webs when fewer prey were available. In the laboratory, our experiment revealed that spiders can significantly reduce sundew fitness. Our findings suggest that members of the plant and animal kingdoms can and do compete.

  9. Sexually dimorphic venom proteins in long-jawed orb-weaving spiders (Tetragnatha) comprise novel gene families

    PubMed Central

    Zobel-Thropp, Pamela A.; Bulger, Emily A.; Cordes, Matthew H.J.; Binford, Greta J.; Gillespie, Rosemary G.

    2018-01-01

    Venom has been associated with the ecological success of many groups of organisms, most notably reptiles, gastropods, and arachnids. In some cases, diversification has been directly linked to tailoring of venoms for dietary specialization. Spiders in particular are known for their diverse venoms and wide range of predatory behaviors, although there is much to learn about scales of variation in venom composition and function. The current study focuses on venom characteristics in different sexes within a species of spider. We chose the genus Tetragnatha (Tetragnathidae) because of its unusual courtship behavior involving interlocking of the venom delivering chelicerae (i.e., the jaws), and several species in the genus are already known to have sexually dimorphic venoms. Here, we use transcriptome and proteome analyses to identify venom components that are dimorphic in Tetragnatha versicolor. We present cDNA sequences including unique, male-specific high molecular weight proteins that have remote, if any, detectable similarity to known venom components in spiders or other venomous lineages and have no detectable homologs in existing databases. While the function of these proteins is not known, their presence in association with the cheliceral locking mechanism during mating together with the presence of prolonged male-male mating attempts in a related, cheliceral-locking species (Doryonychus raptor) lacking the dimorphism suggests potential for a role in sexual communication. PMID:29876146

  10. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior.

    PubMed

    Pearson, Dean E

    2009-03-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa), has fundamentally altered the architecture of native grassland vegetation. Here, I use long-term monitoring, observational studies, and field experiments to document how changes in vegetation architecture have affected native web spider populations and predation rates. Native spiders that use vegetation as web substrates were collectively 38 times more abundant in C. maculosa-invaded grasslands than in uninvaded grasslands. This increase in spider abundance was accompanied by a large shift in web spider community structure, driven primarily by the strong response of Dictyna spiders to C. maculosa invasion. Dictyna densities were 46-74 times higher in C. maculosa-invaded than native grasslands, a pattern that persisted over 6 years of monitoring. C. maculosa also altered Dictyna web building behavior and foraging success. Dictyna webs on C. maculosa were 2.9-4.0 times larger and generated 2.0-2.3 times higher total prey captures than webs on Achillea millefolium, their primary native substrate. Dictyna webs on C. maculosa also captured 4.2 times more large prey items, which are crucial for reproduction. As a result, Dictyna were nearly twice as likely to reproduce on C. maculosa substrates compared to native substrates. The overall outcome of C. maculosa invasion and its transformative effects on vegetation architecture on Dictyna density and web building behavior were to increase Dictyna predation on invertebrate prey >/=89 fold. These results indicate that invasive plants that change the architecture of native vegetation can substantially impact native food webs via nontraditional plant --> predator --> consumer linkages.

  11. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers.

    PubMed

    Teulé, Florence; Addison, Bennett; Cooper, Alyssa R; Ayon, Joel; Henning, Robert W; Benmore, Chris J; Holland, Gregory P; Yarger, Jeffery L; Lewis, Randolph V

    2012-06-01

    The two Flag/MaSp 2 silk proteins produced recombinantly were based on the basic consensus repeat of the dragline silk spidroin 2 protein (MaSp 2) from the Nephila clavipes orb weaving spider. However, the proline-containing pentapeptides juxtaposed to the polyalanine segments resembled those found in the flagelliform silk protein (Flag) composing the web spiral: (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = A/A or Y/S. Fibers were formed from protein films in aqueous solutions or extruded from resolubilized protein dopes in organic conditions when the Flag motif was (GPGGX(1) GPGGX(2))(2) with X(1) /X(2) = Y/S or A/A, respectively. Post-fiber processing involved similar drawing ratios (2-2.5×) before or after water-treatment. Structural (ssNMR and XRD) and morphological (SEM) changes in the fibers were compared to the mechanical properties of the fibers at each step. Nuclear magnetic resonance indicated that the fraction of β-sheet nanocrystals in the polyalanine regions formed upon extrusion, increased during stretching, and was maximized after water-treatment. X-ray diffraction showed that nanocrystallite orientation parallel to the fiber axis increased the ultimate strength and initial stiffness of the fibers. Water furthered nanocrystal orientation and three-dimensional growth while plasticizing the amorphous regions, thus producing tougher fibers due to increased extensibility. These fibers were highly hygroscopic and had similar internal network organization, thus similar range of mechanical properties that depended on their diameters. The overall structure of the consensus repeat of the silk-like protein dictated the mechanical properties of the fibers while protein molecular weight limited these same properties. Subtle structural motif re-design impacted protein self-assembly mechanisms and requirements for fiber formation. Copyright © 2011 Wiley Periodicals, Inc.

  12. Combining flagelliform and dragline spider silk motifs to produce tunable synthetic biopolymer fibers

    PubMed Central

    Teulé, Florence; Addison, Bennett; Cooper, Alyssa R.; Ayon, Joel; Henning, Robert W.; Benmore, Chris J.; Holland, Gregory P.; Yarger, Jeffery L.; Lewis, Randolph V.

    2012-01-01

    The two Flag/MaSp 2 silk proteins produced recombinantly were based on the basic consensus repeat of the dragline silk spidroin 2 protein (MaSp 2) from the Nephila clavipes orb weaving spider. However, the proline-containing pentaptides juxtaposed to the polyalanine segments resembled those found in the flagelliform silk protein (Flag) composing the web spiral: (GPGGX1 GPGGX2)2 with X1/X2=A/A or Y/S. Fibers were formed from protein films in aqueous solutions or extruded from resolubilized protein dopes in organic conditions when the Flag motif was (GPGGX1 GPGGX2)2 with X1/X2 = Y/S or A/A, respectively. Post fiber processing involved similar drawing ratios (2–2.5×) before or after water-treatment. Structural (ssNMR and XRD) and morphological (SEM) changes in the fibers were compared to the mechanical properties of the fibers at each step. NMR indicated that the fraction of β-sheet nanocrystals in the polyalanine regions formed upon extrusion, increased during stretching, and was maximized after water-treatment. XRD showed that nanocrystallite orientation parallel to the fiber axis increased the ultimate strength and initial stiffness of the fibers. Water furthered nanocrystal orientation and three-dimensional growth while plasticizing the amorphous regions, thus producing tougher fibers due to increased extensibility. These fibers were highly hygroscopic and had similar internal network organization, thus similar range of mechanical properties that depended on their diameters. The overall structure of the consensus repeat of the silk-like protein dictated the mechanical properties of the fibers while protein molecular weight limited these same properties. Subtle structural motif redesign impacted protein self-assembly mechanisms and requirements for fiber formation. PMID:22012252

  13. Local adaptation to temperature conserves top-down control in a grassland food web.

    PubMed

    Barton, Brandon T

    2011-10-22

    A fundamental limitation in many climate change experiments is that tests represent relatively short-term 'shock' experiments and so do not incorporate the phenotypic plasticity or evolutionary change that may occur during the gradual process of climate change. However, capturing this aspect of climate change effects in an experimental design is a difficult challenge that few studies have accomplished. I examined the effect of temperature and predator climate history in food webs composed of herbaceous plants, generalist grasshopper herbivores and spider predators across a natural 4.8°C temperature gradient spanning 500 km in northeastern USA. In these grasslands, the effects of rising temperatures on the plant community are indirect and arise via altered predator-herbivore interactions. Experimental warming had no direct effect on grasshoppers, but reduced predation risk effects by causing spiders from all study sites to seek thermal refuge lower in the plant canopy. However, spider thermal tolerance corresponded to spider origin such that spiders from warmer study sites tolerated higher temperatures than spiders from cooler study sites. As a consequence, the magnitude of the indirect effect of spiders on plants did not differ along the temperature gradient, although a reciprocal transplant experiment revealed significantly different effects of spider origin on the magnitude of top-down control. These results suggest that variation in predator response to warming may maintain species interactions and associated food web processes when faced with long term, chronic climate warming.

  14. View of Arabella, one of two Skylab spiders and her web

    NASA Image and Video Library

    1973-08-16

    SL3-108-1307 (July-September 1973) --- A close-up view of Arabella, one of the two Skylab 3 common cross spiders "Araneus diadematus," and the web it had spun in the zero-gravity of space aboard the Skylab space station cluster in Earth orbit. This picture was taken with a hand-held 35mm Nikon camera. During the 59-day Skylab 3 mission the two spiders, Arabella and Anita, were housed in an enclosure onto which a motion picture and a still camera were attempts to build a web in the weightless environment. The spider experiment (ED52) was one of 25 experiments selected for Skylab by NASA from more than 3,400 experiment proposals submitted by high school students throughout the nation. ED52 was submitted by 17-year-old Judith S. Miles of Lexington, Massachusetts. Anita died during the last week of the mission. Photo credit: NASA

  15. A golden-silk spider spins its web

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the grounds of Kennedy Space Center, a female Golden-Silk Spider repairs its web. The female can be identified by its brownish-green abdomen with a white spotted irregular pattern. The golden-silk spider repairs the webbing each day, replacing half but never the whole web at one time. Its web may measure two to three feet across. The center shares a boundary with the Merritt Island National Wildlife Refuge, a 92,000-acre refuge that is a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects.

  16. Stable isotopes of Hawaiian spiders reflect substrate properties along a chronosequence

    PubMed Central

    Dawson, Todd E.; Gillespie, Rosemary G.

    2018-01-01

    The Hawaiian Islands offer a unique opportunity to test how changes in the properties of an isolated ecosystem are propagated through the organisms that occur within that ecosystem. The age-structured arrangement of volcanic-derived substrates follows a regular progression over space and, by inference, time. We test how well documented successional changes in soil chemistry and associated vegetation are reflected in organisms at higher trophic levels—specifically, predatory arthropods (spiders)—across a range of functional groups. We focus on three separate spider lineages: one that builds capture webs, one that hunts actively, and one that specializes on eating other spiders. We analyze spiders from three sites across the Hawaiian chronosequence with substrate ages ranging from 200 to 20,000 years. To measure the extent to which chemical signatures of terrestrial substrates are propagated through higher trophic levels, we use standard stable isotope analyses of nitrogen and carbon, with plant leaves included as a baseline. The target taxa show the expected shift in isotope ratios of δ15N with trophic level, from plants to cursorial spiders to web-builders to spider eaters. Remarkably, organisms at all trophic levels also precisely reflect the successional changes in the soil stoichiometry of the island chronosequence, demonstrating how the biogeochemistry of the entire food web is determined by ecosystem succession of the substrates on which the organisms have evolved. PMID:29576984

  17. Unravelling the complex venom landscapes of lethal Australian funnel-web spiders (Hexathelidae: Atracinae) using LC-MALDI-TOF mass spectrometry.

    PubMed

    Palagi, Alexandre; Koh, Jennifer M S; Leblanc, Mathieu; Wilson, David; Dutertre, Sébastien; King, Glenn F; Nicholson, Graham M; Escoubas, Pierre

    2013-03-27

    Spider venoms represent vast sources of bioactive molecules whose diversity remains largely unknown. Indeed, only a small subset of species have been studied out of the ~43,000 extant spider species. The present study investigated inter- and intra-species venom complexity in 18 samples collected from a variety of lethal Australian funnel-web spiders (Mygalomorphae: Hexathelidae: Atracinae) using C4 reversed-phase separation coupled to offline MALDI-TOF mass spectrometry (LC-MALDI-TOF MS). An in-depth investigation focusing on four atracine venoms (male Illawarra wisharti, male and female Hadronyche cerberea, and female Hadronyche infensa Toowoomba) revealed, on average, ~800 peptides in female venoms while male venoms contained ~400 peptides, distributed across most HPLC fractions. This is significantly higher than previous estimates of peptide expression in mygalomorph venoms. These venoms also showed distinct intersexual as well as intra- and inter-species variation in peptide masses. Construction of both 3D and 2D contour plots revealed that peptide mass distributions in all 18 venoms were centered around the 3200-5400m/z range and to a lesser extent the 6600-8200m/z range, consistent with previously described hexatoxins. These findings highlight the extensive diversity of peptide toxins in Australian funnel-web spider venoms that that can be exploited as novel therapeutic and biopesticide lead molecules. In the present study we describe the complexity of 18 venoms from lethal Australian funnel-web spiders using LC-MALDI-TOF MS. The study includes an in-depth investigation, focusing on four venoms, that revealed the presence of ~800 peptides in female venoms and ~400 peptides in male venoms. This is significantly higher than previous estimates of peptide expression in spider venoms. By constructing both 3D and 2D contour plots we were also able to reveal the distinct intersexual as well as intra- and inter-species variation in venom peptide masses. We show that peptide mass distributions in all 18 venoms were centered around the 3200-5400 m/z range and to a lesser extent the 6600-8200 m/z range, consistent with the small number of previously described hexatoxins from these spiders. These findings highlight the extensive diversity of peptide toxins in Australian funnel-web spider venoms that that can be exploited as novel therapeutic and biopesticide lead molecules. The present study has greatly expanded our understanding of peptide variety and complexity in these lethal mygalomorph spiders. Specifically it highlights both the utility of LC-MALDI-TOF in spider taxonomy and the massive combinatorial peptide libraries that spider venoms offer the pharmaceutical and agrochemical industry. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Crafting Moments of Inspiration in the Classroom

    ERIC Educational Resources Information Center

    Hebert, Terri

    2010-01-01

    As an amateur photographer, the author seeks surprises amid the mundane. For example, instead of simply photographing a spider's web, she waits until just after it rains and to find the spider's web filled with glistening droplets of water that serve as tiny prisms of light. The mundane suddenly is transformed into something truly amazing. Moments…

  19. A Smart Itsy Bitsy Spider for the Web.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Chung, Yi-Ming; Ramsey, Marshall; Yang, Christopher C.

    1998-01-01

    This study tested two Web personal spiders (i.e., agents that take users' requests and perform real-time customized searches) based on best first-search and genetic-algorithm techniques. Both results were comparable and complementary, although the genetic algorithm obtained higher recall value. The Java-based interface was found to be necessary…

  20. Spider Web Pattern

    NASA Technical Reports Server (NTRS)

    2006-01-01

    A delicate pattern, like that of a spider web, appears on top of the Mars residual polar cap, after the seasonal carbon-dioxide ice slab has disappeared. Next spring, these will likely mark the sites of vents when the carbon-dioxide ice cap returns. This Mars Global Surveyor, Mars Orbiter Camera image is about 3-kilometers wide (2-miles).

  1. MetaSpider: Meta-Searching and Categorization on the Web.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Fan, Haiyan; Chau, Michael; Zeng, Daniel

    2001-01-01

    Discusses the difficulty of locating relevant information on the Web and studies two approaches to addressing the low precision and poor presentation of search results: meta-search and document categorization. Introduces MetaSpider, a meta-search engine, and presents results of a user evaluation study that compared three search engines.…

  2. View of Arabella, one of the two Skylab 3 spiders used in experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A close-up view of Arabella, one of the two Skylab 3 common cross spiders 'Araneus diadematus,' and the web it had spun in the zero gravity of space aboard the Skylab space station cluster in Earth orbit. This is a photographic reproduction made from a color television transmission aboard Skylab. Arabella and Anita, were housed in an enclosure onto which a motion picture camera and a still camera were attached to record the spiders' attempts to build a web in the weightless environment.

  3. ‘Natural experiment’ Demonstrates Top-Down Control of Spiders by Birds on a Landscape Level

    PubMed Central

    Rogers, Haldre; Hille Ris Lambers, Janneke; Miller, Ross; Tewksbury, Joshua J.

    2012-01-01

    The combination of small-scale manipulative experiments and large-scale natural experiments provides a powerful approach for demonstrating the importance of top-down trophic control on the ecosystem scale. The most compelling natural experiments have come from studies examining the landscape-scale loss of apex predators like sea otters, wolves, fish and land crabs. Birds are dominant apex predators in terrestrial systems around the world, yet all studies on their role as predators have come from small-scale experiments; the top-down impact of bird loss on their arthropod prey has yet to be examined at a landscape scale. Here, we use a unique natural experiment, the extirpation of insectivorous birds from nearly all forests on the island of Guam by the invasive brown tree snake, to produce the first assessment of the impacts of bird loss on their prey. We focused on spiders because experimental studies showed a consistent top-down effect of birds on spiders. We conducted spider web surveys in native forest on Guam and three nearby islands with healthy bird populations. Spider web densities on the island of Guam were 40 times greater than densities on islands with birds during the wet season, and 2.3 times greater during the dry season. These results confirm the general trend from manipulative experiments conducted in other systems however, the effect size was much greater in this natural experiment than in most manipulative experiments. In addition, bird loss appears to have removed the seasonality of spider webs and led to larger webs in at least one spider species in the forests of Guam than on nearby islands with birds. We discuss several possible mechanisms for the observed changes. Overall, our results suggest that effect sizes from smaller-scale experimental studies may significantly underestimate the impact of bird loss on spider density as demonstrated by this large-scale natural experiment. PMID:22970126

  4. Phylogeny suggests nondirectional and isometric evolution of sexual size dimorphism in argiopine spiders.

    PubMed

    Cheng, Ren-Chung; Kuntner, Matjaž

    2014-10-01

    Sexual dimorphism describes substantial differences between male and female phenotypes. In spiders, sexual dimorphism research almost exclusively focuses on size, and recent studies have recovered steady evolutionary size increases in females, and independent evolutionary size changes in males. Their discordance is due to negative allometric size patterns caused by different selection pressures on male and female sizes (converse Rensch's rule). Here, we investigated macroevolutionary patterns of sexual size dimorphism (SSD) in Argiopinae, a global lineage of orb-weaving spiders with varying degrees of SSD. We devised a Bayesian and maximum-likelihood molecular species-level phylogeny, and then used it to reconstruct sex-specific size evolution, to examine general hypotheses and different models of size evolution, to test for sexual size coevolution, and to examine allometric patterns of SSD. Our results, revealing ancestral moderate sizes and SSD, failed to reject the Brownian motion model, which suggests a nondirectional size evolution. Contrary to predictions, male and female sizes were phylogenetically correlated, and SSD evolution was isometric. We interpret these results to question the classical explanations of female-biased SSD via fecundity, gravity, and differential mortality. In argiopines, SSD evolution may be driven by these or additional selection mechanisms, but perhaps at different phylogenetic scales. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  5. Becoming a Spider Scientist

    ERIC Educational Resources Information Center

    Patrick, Patricia; Getz, Angela

    2008-01-01

    In this integrated unit, third grade students become spider scientists as they observe spiders in their classroom to debunk some common misconceptions about these intimidating creatures. "Charlotte's Web" is used to capture students' interest. In addition to addressing philosophical topics such as growing-up, death, and friendship; E.B. White's…

  6. Spiders and Worms and Crawlers, Oh My: Searching on the World Wide Web.

    ERIC Educational Resources Information Center

    Eagan, Ann; Bender, Laura

    Searching on the world wide web can be confusing. A myriad of search engines exist, often with little or no documentation, and many of these search engines work differently from the standard search engines people are accustomed to using. Intended for librarians, this paper defines search engines, directories, spiders, and robots, and covers basics…

  7. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    NASA Astrophysics Data System (ADS)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  8. Microstructural homogeneity of support silk spun by Eriophora fuliginea (C.L. Koch) determined by scanning X-ray microdiffraction

    NASA Astrophysics Data System (ADS)

    Riekel, C.; Craig, C. L.; Burghammer, M.; Müller, M.

    2001-01-01

    Scanning X-ray microdiffraction (SXD) permits the 'imaging' in-situ of crystalline phases, crystallinity and texture in whole biopolymer samples on the micrometre scale. SXD complements transmission electron microscopy (TEM) techniques, which reach sub-nanometre lateral resolution but require thin sections and a vacuum environment. This is demonstrated using a support thread from a web spun by the orb-weaving spider Eriophora fuliginea (C.L. Koch). Scanning electron microscopy (SEM) shows a central thread composed of two fibres to which thinner fibres are loosely attached. SXD of a piece of support thread approximately 60 µm long shows in addition the presence of nanometre-sized crystallites with the β-poly(L-alanine) structure in all fibres. The crystallinity of the thin fibres appears to be higher than that of the central thread, which probably reflects a higher polyalanine content of the fibroins. The molecular axis of the polymer chains in the central thread is orientated parallel to the macroscopic fibre axis, but in the thin fibres the molecular axis is tilted by about 71° to the macroscopic fibre axis. A helical model is tentatively proposed to describe this morphology. The central thread has a homogeneous distribution of crystallinity along the macroscopic fibre axis.

  9. Spatial and temporal demographic variation drives within-season fluctuations in sexual selection.

    PubMed

    Kasumovic, Michael M; Bruce, Matthew J; Andrade, Maydianne C B; Herberstein, Marie E

    2008-09-01

    Our understanding of selection in nature stems mainly from whole-season and cross-sectional estimates of selection gradients. These estimates suggest that selection is relatively constant within, but fluctuates between seasons. However, the strength of selection depends on demographics, and because demographics can vary within seasons, there is a gap in our understanding regarding the extent to which seasonal fluctuations in demographics may cause variation in selection. Here we use two populations of the golden orb-web spider (Nephila plumipes) that differ in density to examine how demographics change within a season and whether there are correlated shifts in selection. We demonstrate that there is within-season variation in sex ratio and density at multiple spatial and temporal scales. This variation led to changes in the competitive challenges that males encountered at different times of the season and was correlated with significant variation in selection gradients on male size and weight between sampling periods. We highlight the importance of understanding the biology of the organism under study to correctly determine the relevant scale in which to examine selection. We also argue that studies may underestimate the true variation in selection by averaging values, leading to misinterpretation of the effect of selection on phenotypic evolution.

  10. Sibling cannibalism in a web-building spider: effects of density and shared environment.

    PubMed

    Modanu, Maria; Li, Lucy Dong Xuan; Said, Hosay; Rathitharan, Nizanthan; Andrade, Maydianne C B

    2014-07-01

    Sibling cannibalism occurs across diverse taxa and can affect population size and structure, as well as the fitness of parents and the cannibal, via density effects and variation in individual propensity to cannibalize. We examined these effects on sibling cannibalism in juveniles of a web-building spider (Latrodectus hasselti, Australian redbacks). Adult redbacks are solitary, but juveniles live in clusters of variable density for a week after hatching. We confined newly hatched siblings from a singly-mated female to a low or high density treatment in a split-clutch design, then left spiderlings unfed for a week. Our results showed no effect of density on overall cannibalism levels, but a strong correlation between cannibalism counts from the same maternal lines across densities. Unlike web-bound sit-and-wait predators, wandering spiders that are active hunters have been shown to experience density-dependent cannibalism. In contrast, we suggest sibling cannibalism in web-building spiders may be density independent because early cohabitation on the web selects for elevated tolerance of conspecifics. We conclude that, rather than being linked to density, cannibalism of siblings in these species may be controlled more strongly by variation in individual propensity to cannibalize. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Skylab

    NASA Image and Video Library

    1972-08-21

    Lexington, Massachusetts high school student, Judith Miles, discusses her proposed Skylab experiment with Keith Demorest (right) and Henry Floyd, both of Marshall Space Flight Center (MSFC). In her experiment, called the “Web Formation in Zero Gravity”, called for spiders to be released into a box and their actions recorded to determine how well they adapt to the absence of gravity. Spiders are known to adapt quickly to other changes in the environment but nothing was known of their ability to adapt to weightlessness. At the same time spiders were weaving webs in Earth orbit, similar spiders were spinning webs in identical boxes on Earth under full gravity conditions. Miles was among the 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab Mission. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of equipment.

  12. Miles Discusses Experiment With NASA Personnel

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Lexington, Massachusetts high school student, Judith Miles, discusses her proposed Skylab experiment with Keith Demorest (right) and Henry Floyd, both of Marshall Space Flight Center (MSFC). In her experiment, called the 'Web Formation in Zero Gravity', called for spiders to be released into a box and their actions recorded to determine how well they adapt to the absence of gravity. Spiders are known to adapt quickly to other changes in the environment but nothing was known of their ability to adapt to weightlessness. At the same time spiders were weaving webs in Earth orbit, similar spiders were spinning webs in identical boxes on Earth under full gravity conditions. Miles was among the 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab Mission. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of equipment.

  13. Two new species of the purse-web spider genus Atypus Latreille, 1804 from Hainan Island, China (Araneae, Atypidae).

    PubMed

    Li, Fan; Xu, Xin; Zhang, Zengtao; Liu, Fengxiang; Zhang, Hongli; Li, Daiqin

    2018-01-01

    Two species of the purse-web spider genus Atypus Latreille, 1804 collected from Hainan Island, China, are diagnosed and described as new to science based on genital morphology, A. baotingensis sp. n. (♂♀) and A. jianfengensis sp. n. (♀). The DNA barcodes of the two species are also provided for future use.

  14. Spiderweb deformation induced by electrostatically charged insects

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-01-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093

  15. Compliance and High Reliability in a Complex Healthcare Organization.

    PubMed

    Simon, Maxine dellaBadia

    2018-01-01

    When considering the impact of regulation on healthcare, visualize a spider's web. The spider weaves sections together to create the whole, with each fiber adding to the structure to support its success or lead to its failure. Each section is dependent on the others, and all must be aligned to maintain the structure. Outside forces can cause a shift in the web's fragile equilibrium.The interdependence of the sections of the spider's web is similar to the way hospital departments and services work together. An organization's structure must be shaped to support its mission and vision. At the same time, the business of healthcare requires the development and achievement of operational objectives and financial performance goals. Establishing a culture that is flexible enough to permit creativity, provide resiliency, and manage complexity as the organization grows is fundamental to success. An organization must address each of these factors while maintaining stability, carrying out its mission, and fostering improvement.Nature's order maintains the spider's web. Likewise, regulation can strengthen healthcare organizations by initiating disruptive changes that can support efforts to achieve and sustain high reliability in the delivery of care. To that end, leadership must be willing to provide the necessary vision and resources.

  16. Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra

    NASA Astrophysics Data System (ADS)

    Grigorchuk, R.; Leemann, P.-H.; Nagnibeda, T.

    2016-05-01

    We study the infinite family of spider-web graphs \\{{{ S }}k,N,M\\}, k≥slant 2, N≥slant 0 and M≥slant 1, initiated in the 50s in the context of network theory. It was later shown in physical literature that these graphs have remarkable percolation and spectral properties. We provide a mathematical explanation of these properties by putting the spider-web graphs in the context of group theory and algebraic graph theory. Namely, we realize them as tensor products of the well-known de Bruijn graphs \\{{{ B }}k,N\\} with cyclic graphs \\{{C}M\\} and show that these graphs are described by the action of the lamplighter group {{ L }}k={Z}/k{Z}\\wr {Z} on the infinite binary tree. Our main result is the identification of the infinite limit of \\{{{ S }}k,N,M\\}, as N,M\\to ∞ , with the Cayley graph of the lamplighter group {{ L }}k which, in turn, is one of the famous Diestel-Leader graphs {{DL}}k,k. As an application we compute the spectra of all spider-web graphs and show their convergence to the discrete spectral distribution associated with the Laplacian on the lamplighter group.

  17. Cooperative capture of large prey solves scaling challenge faced by spider societies

    PubMed Central

    Yip, Eric C.; Powers, Kimberly S.; Avilés, Leticia

    2008-01-01

    A decrease in the surface area per unit volume is a well known constraint setting limits to the size of organisms at both the cellular and whole-organismal levels. Similar constraints may apply to social groups as they grow in size. The communal three-dimensional webs that social spiders build function ecologically as single units that intercept prey through their surface and should thus be subject to this constraint. Accordingly, we show that web prey capture area per spider, and thus number of insects captured per capita, decreases with colony size in a neotropical social spider. Prey biomass intake per capita, however, peaks at intermediate colony sizes because the spiders forage cooperatively and larger colonies capture increasingly large insects. A peaked prey biomass intake function would explain not only why these spiders live in groups and cooperate but also why they disperse only at large colony sizes, thus addressing both sociality and colony size range in this social spider. These findings may also explain the conspicuous absence of social spiders from higher latitudes and higher elevations, areas that we have previously shown to harbor considerably fewer insects of the largest size classes than the lowland tropical rainforests where social spiders thrive. Our findings thus illustrate the relevance of scaling laws to the size and functioning of levels of organization above the individual. PMID:18689677

  18. Longer-term effects of selective thinning on carabid beetles and spiders in the Cascade Mountains of southern Oregon

    USGS Publications Warehouse

    Peck, R.; Niwa, C.G.

    2005-01-01

    Within late-successional forests of the Cascade Mountains of southern Oregon, abundances of carabid beetles (Carabidae) and spiders (Araneae) from pitfall traps were compared between stands thinned 16-41 years prior and nearby unthinned stands. Species richness of both taxa were moderate for coniferous forests of this region, with 12 carabid beetle species and >120 spider species collected. No differences in total abundance or species richness were found between stand types for carabid beetles, although abundances of four of the six most common species differed significantly. Pterostichus setosus, the most abundant species collected, was significantly more abundant in unthinned stands, while Omus cazieri, P. lama, and Carabus taedatus were more numerous in thinned stands. In contrast, both total spider abundance and species richness were significantly higher in thinned stands. Hunting spiders within the families Lycosidae and Gnaphosidae, and the funnel web-building Dictynidae were captured more often in thinned stands while sheet web spiders within Linyphiidae and Hahniidae were more abundant in unthinned stands. The forest floor within unthinned stands was structurally more diverse than in thinned stands, but this did not lead to greater overall abundance or diversity of either carabid beetles or spiders.

  19. Spider-web inspired multi-resolution graphene tactile sensor.

    PubMed

    Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin

    2018-05-08

    Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.

  20. Linking native and invader traits explains native spider population responses to plant invasion

    Treesearch

    Jennifer N. Smith; Douglas J. Emlen; Dean E. Pearson

    2016-01-01

    Theoretically, the functional traits of native species should determine how natives respond to invader-driven changes. To explore this idea, we simulated a large-scale plant invasion using dead spotted knapweed (Centaurea stoebe) stems to determine if native spiders' web-building behaviors could explain differences in spider population responses to...

  1. Right before Your Eyes.

    ERIC Educational Resources Information Center

    Wiessinger, John

    1990-01-01

    Four brief articles highlighting the habits of spiders are provided. Habits discussed include web building, mating and egg sac care, eating and venom delivery, and the production and uses of spider silk. (CW)

  2. Fine-scale analysis of an assassin bug's behaviour: predatory strategies to bypass the sensory systems of prey

    PubMed Central

    2016-01-01

    Some predators sidestep environments that render them conspicuous to the sensory systems of prey. However, these challenging environments are unavoidable for certain predators. Stenolemus giraffa is an assassin bug that feeds on web-building spiders; the web is the environment in which this predator finds its prey, but it also forms part of its preys' sophisticated sensory apparatus, blurring the distinction between environment and sensory systems. Stenolemus giraffa needs to break threads in the web that obstruct its path to the spiders, and such vibrations can alert the spiders. Using laser vibrometry, this study demonstrates how S. giraffa avoids alerting the spiders during its approach. When breaking threads, S. giraffa attenuates the vibrations produced by holding on to the loose ends of the broken thread and causing them to sag prior to release. In addition, S. giraffa releases the loose ends of a broken thread one at a time (after several seconds or minutes) and in this way spaces out the production of vibrations in time. Furthermore, S. giraffa was found to maximally reduce the amplitude of vibrations when breaking threads that are prone to produce louder vibrations. Finally, S. giraffa preferred to break threads in the presence of wind, suggesting that this araneophagic insect exploits environmental noise that temporarily impairs the spiders' ability to detect vibrations. The predatory behaviour of S. giraffa seems to be adaptated in intricate manner for bypassing the sophisticated sensory systems of web-building spiders. These findings illustrate how the physical characteristics of the environment, along with the sensory systems of prey can shape the predatory strategies of animals. PMID:27853576

  3. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  4. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  5. Review structure of silk by raman spectromicroscopy: from the spinning glands to the fibers.

    PubMed

    Lefèvre, Thierry; Paquet-Mercier, François; Rioux-Dubé, Jean-François; Pézolet, Michel

    2012-06-01

    Raman spectroscopy has long been proved to be a useful tool to study the conformation of protein-based materials such as silk. Thanks to recent developments, linearly polarized Raman spectromicroscopy has appeared very efficient to characterize the molecular structure of native single silk fibers and spinning dopes because it can provide information relative to the protein secondary structure, molecular orientation, and amino acid composition. This review will describe recent advances in the study of the structure of silk by Raman spectromicroscopy. A particular emphasis is put on the spider dragline and silkworm cocoon threads, other fibers spun by orb-weaving spiders, the spinning dope contained in their silk glands and the effect of mechanical deformation. Taken together, the results of the literature show that Raman spectromicroscopy is particularly efficient to investigate all aspects of silk structure and production. The data provided can lead to a better understanding of the structure of the silk dope, transformations occurring during the spinning process, and structure and mechanical properties of native fibers. Copyright © 2011 Wiley Periodicals, Inc.

  6. A New Spin on Miscue Analysis: Using Spider Charts to Web Reading Processes

    ERIC Educational Resources Information Center

    Wohlwend, Karen E.

    2012-01-01

    This article introduces a way of seeing miscue analysis data through a "spider chart", a readily available digital graphing tool that provides an effective way to visually represent readers' complex coordination of interrelated cueing systems. A spider chart is a standard feature in recent spreadsheet software that puts a new spin on miscue…

  7. Dispatch from the field: ecology of ground-web-building spiders with description of a new species (Araneae, Symphytognathidae)

    PubMed Central

    2014-01-01

    Abstract Crassignatha danaugirangensis sp. n. (Araneae: Symphytognathidae) was discovered during a tropical ecology field course held at the Danau Girang Field Centre in Sabah, Malaysia. A taxonomic description and accompanying ecological study were completed as course activities. To assess the ecology of this species, which belongs to the ground-web-building spider community, three habitat types were surveyed: riparian forest, recently inundated riverine forest, and oil palm plantation. Crassignatha danaugirangensis sp. n. is the most abundant ground-web-building spider species in riparian forest; it is rare or absent from the recently inundated forest and was not found in a nearby oil palm plantation. The availability of this taxonomic description may help facilitate the accumulation of data about this species and the role of inundated riverine forest in shaping invertebrate communities. PMID:24891829

  8. Male adaptations to minimize sexual cannibalism during reproduction in the funnel-web spider Hololena curta.

    PubMed

    Xiao, Yong-Hong; Zunic-Kosi, Alenka; Zhang, Long-Wa; Prentice, Thomas R; McElfresh, J Steven; Chinta, Satya P; Zou, Yun-Fan; Millar, Jocelyn G

    2015-12-01

    Males of many spider species risk being attacked and cannibalized while searching for, courting, and mating with conspecific females. However, there are exceptions. We show that the funnel-web spider, Hololena curta, has 3 adaptations that minimize risk to males during courtship and mating, and enhance reproductive success. First, males detected chemical or tactile signals associated with webs of virgin females, and differentiated them from webs of mated females, enabling males to increase encounter rates with virgin females and avoid aggressive mated females. Second, males produced stereotyped vibrational signals during courting which induced female quiescence and suppressed female aggression. Third, when touched by males, sexually receptive females entered a cataleptic state, allowing males to safely approach and copulate. Because males can mate multiple times and the sex ratio in natural populations of H. curta is female biased, overall reproductive output is likely increased by males of this species avoiding sexual cannibalism. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  9. Unpicking the signal thread of the sector web spider Zygiella x-notata

    PubMed Central

    Mortimer, Beth; Holland, Chris; Windmill, James F. C.; Vollrath, Fritz

    2015-01-01

    Remote sensing allows an animal to extend its morphology with appropriate conductive materials and sensors providing environmental feedback from spatially removed locations. For example, the sector web spider Zygiella x-notata uses a specialized thread as both a structural bridge and signal transmitter to monitor web vibrations from its retreat at the web perimeter. To unravel this model multifunctional system, we investigated Zygiella's signal thread structure with a range of techniques, including tensile testing, laser vibrometry, electron microscopy and behavioural analysis. We found that signal threads varied significantly in the number of filaments; a result of the spider adding a lifeline each time it runs along the bridge. Our mechanical property analysis suggests that while the structure varies, its normalized load does not. We propose that the signal thread represents a complex and fully integrated multifunctional structure where filaments can be added, thus increasing absolute load-bearing capacity while maintaining signal fidelity. We conclude that such structures may serve as inspiration for remote sensing design strategies. PMID:26674191

  10. Foraging modality and plasticity in foraging traits determine the strength of competitive interactions among carnivorous plants, spiders and toads.

    PubMed

    Jennings, David E; Krupa, James J; Rohr, Jason R

    2016-07-01

    Foraging modalities (e.g. passive, sit-and-wait, active) and traits are plastic in some species, but the extent to which this plasticity affects interspecific competition remains unclear. Using a long-term laboratory mesocosm experiment, we quantified competition strength and the plasticity of foraging traits in a guild of generalist predators of arthropods with a range of foraging modalities. Each mesocosm contained eight passively foraging pink sundews, and we employed an experimental design where treatments were the presence or absence of a sit-and-wait foraging spider and actively foraging toad crossed with five levels of prey abundance. We hypothesized that actively foraging toads would outcompete the other species at low prey abundance, but that spiders and sundews would exhibit plasticity in foraging traits to compensate for strong competition when prey were limited. Results generally supported our hypotheses. Toads had a greater effect on sundews at low prey abundances, and toad presence caused spiders to locate webs higher above the ground. Additionally, the closer large spider webs were to the ground, the greater the trichome densities produced by sundews. Also, spider webs were larger with than without toads and as sundew numbers increased, and these effects were more prominent as resources became limited. Finally, spiders negatively affected toad growth only at low prey abundance. These findings highlight the long-term importance of foraging modality and plasticity of foraging traits in determining the strength of competition within and across taxonomic kingdoms. Future research should assess whether plasticity in foraging traits helps to maintain coexistence within this guild and whether foraging modality can be used as a trait to reliably predict the strength of competitive interactions. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  11. Non-invasive determination of the complete elastic moduli of spider silks

    NASA Astrophysics Data System (ADS)

    Koski, Kristie J.; Akhenblit, Paul; McKiernan, Keri; Yarger, Jeffery L.

    2013-03-01

    Spider silks possess nature’s most exceptional mechanical properties, with unrivalled extensibility and high tensile strength. Unfortunately, our understanding of silks is limited because the complete elastic response has never been measured—leaving a stark lack of essential fundamental information. Using non-invasive, non-destructive Brillouin light scattering, we obtain the entire stiffness tensors (revealing negative Poisson’s ratios), refractive indices, and longitudinal and transverse sound velocities for major and minor ampullate spider silks: Argiope aurantia, Latrodectus hesperus, Nephila clavipes, Peucetia viridans. These results completely quantify the linear elastic response for all possible deformation modes, information unobtainable with traditional stress-strain tests. For completeness, we apply the principles of Brillouin imaging to spatially map the elastic stiffnesses on a spider web without deforming or disrupting the web in a non-invasive, non-contact measurement, finding variation among discrete fibres, junctions and glue spots. Finally, we provide the stiffness changes that occur with supercontraction.

  12. Numerical implementation of multiple peeling theory and its application to spider web anchorages.

    PubMed

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M

    2015-02-06

    Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations.

  13. Numerical implementation of multiple peeling theory and its application to spider web anchorages

    PubMed Central

    Brely, Lucas; Bosia, Federico; Pugno, Nicola M.

    2015-01-01

    Adhesion of spider web anchorages has been studied in recent years, including the specific functionalities achieved through different architectures. To better understand the delamination mechanisms of these and other biological or artificial fibrillar adhesives, and how their adhesion can be optimized, we develop a novel numerical model to simulate the multiple peeling of structures with arbitrary branching and adhesion angles, including complex architectures. The numerical model is based on a recently developed multiple peeling theory, which extends the energy-based single peeling theory of Kendall, and can be applied to arbitrarily complex structures. In particular, we numerically show that a multiple peeling problem can be treated as the superposition of single peeling configurations even for complex structures. Finally, we apply the developed numerical approach to study spider web anchorages, showing how their function is achieved through optimal geometrical configurations. PMID:25657835

  14. The eunuch phenomenon: adaptive evolution of genital emasculation in sexually dimorphic spiders.

    PubMed

    Kuntner, Matjaž; Agnarsson, Ingi; Li, Daiqin

    2015-02-01

    Under natural and sexual selection traits often evolve that secure paternity or maternity through self-sacrifice to predators, rivals, offspring, or partners. Emasculation-males removing their genitals-is an unusual example of such behaviours. Known only in insects and spiders, the phenomenon's adaptiveness is difficult to explain, yet its repeated origins and association with sexual size dimorphism (SSD) and sexual cannibalism suggest an adaptive significance. In spiders, emasculation of paired male sperm-transferring organs - secondary genitals - (hereafter, palps), results in 'eunuchs'. This behaviour has been hypothesized to be adaptive because (i) males plug female genitals with their severed palps (plugging hypothesis), (ii) males remove their palps to become better fighters in male-male contests (better-fighter hypothesis), perhaps reaching higher agility due to reduced total body mass (gloves-off hypothesis), and (iii) males achieve prolonged sperm transfer through severed genitals (remote-copulation hypothesis). Prior research has provided evidence in support of these hypotheses in some orb-weaving spiders but these explanations are far from general. Seeking broad macroevolutionary patterns of spider emasculation, we review the known occurrences, weigh the evidence in support of the hypotheses in each known case, and redefine more precisely the particular cases of emasculation depending on its timing in relation to maturation and mating: 'pre-maturation', 'mating', and 'post-mating'. We use a genus-level spider phylogeny to explore emasculation evolution and to investigate potential evolutionary linkage between emasculation, SSD, lesser genital damage (embolic breakage), and sexual cannibalism (females consuming their mates). We find a complex pattern of spider emasculation evolution, all cases confined to Araneoidea: emasculation evolved at least five and up to 11 times, was lost at least four times, and became further modified at least once. We also find emasculation, as well as lesser genital damage and sexual cannibalism, to be significantly associated with SSD. These behavioural and morphological traits thus likely co-evolve in spiders. Emasculation can be seen as an extreme form of genital mutilation, or even a terminal investment strategy linked to the evolution of monogyny. However, as different emasculation cases in araneoid spiders are neither homologous nor biologically identical, and may or may not serve as paternity protection, the direct link to monogyny is not clear cut. Understanding better the phylogenetic patterns of emasculation and its constituent morphologies and behaviours, a clearer picture of the intricate interplay of natural and sexual selection may arise. With the here improved evolutionary resolution of spider eunuch behaviour, we can more specifically tie the evidence from adaptive hypotheses to independent cases, and propose promising avenues for further research of spider eunuchs, and of the evolution of monogyny. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  15. KSC-08pd3169

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. - On the grounds of Kennedy Space Center, a female Golden-Silk Spider repairs its web. The female can be identified by its brownish-green abdomen with a white spotted irregular pattern. The golden-silk spider repairs the webbing each day, replacing half but never the whole web at one time. Its web may measure two to three feet across. The center shares a boundary with the Merritt Island Wildlife Nature Refuge, consisting of 140,000 acres. The Refuge provides a wide variety of habitats: coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks that provide habitat for more than 1,500 species of plants and animals. Photo credit: NASA/Dimitri Gerondidakis

  16. KSC-08pd3164

    NASA Image and Video Library

    2008-10-14

    CAPE CANAVERAL, Fla. - On the grounds of Kennedy Space Center, a female Golden-Silk Spider repairs its web. The female can be identified by its brownish-green abdomen with a white spotted irregular pattern. The golden-silk spider repairs the webbing each day, replacing half but never the whole web at one time. Its web may measure two to three feet across. The center shares a boundary with the Merritt Island Wildlife Nature Refuge, consisting of 140,000 acres. The Refuge provides a wide variety of habitats: coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks that provide habitat for more than 1,500 species of plants and animals. Photo credit: NASA/Dimitri Gerondidakis

  17. Miles Discusses Skylab Experiment With NASA Personnel

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Lexington, Massachusetts high school student, Judith Miles, discusses her proposed Skylab experiment with engineers and scientists during a design review of the experiment equipment. At left is Ron Pavlue of Kennedy Space Flight Center (KSC), holding a box is Keith Demorest of Marshall Space Flight Center (MSFC). Right of Miles is Dr. Raymond Gause, also of MSFC, who is Miles' scientific advisor. In her experiment, called the 'Web Formation in Zero Gravity', spiders were released into a box and their actions recorded to determine how well they adapt to the absence of gravity. Spiders are known to adapt quickly to other changes in the environment but nothing was known of their ability to adapt to weightlessness. At the same time spiders were weaving webs in Earth orbit, similar spiders were spinning webs in identical boxes on Earth under full gravity conditions. Miles was among the 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year's Skylab mission. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of equipment.

  18. Skylab

    NASA Image and Video Library

    1972-08-21

    Lexington, Massachusetts high school student, Judith Miles, discusses her proposed Skylab experiment with engineers and scientists during a design review of the experiment equipment. At left is Ron Pavlue of Kennedy Space Flight Center (KSC), holding a box is Keith Demorest of Marshall Space Flight Center (MSFC). Right of Miles is Dr. Raymond Gause, also of MSFC, who is Miles’ scientific advisor. In her experiment, called the “Web Formation in Zero Gravity”, spiders were released into a box and their actions recorded to determine how well they adapt to the absence of gravity. Spiders are known to adapt quickly to other changes in the environment but nothing was known of their ability to adapt to weightlessness. At the same time spiders were weaving webs in Earth orbit, similar spiders were spinning webs in identical boxes on Earth under full gravity conditions. Miles was among the 25 winners of a contest in which some 3,500 high school students proposed experiments for the following year’s Skylab mission. Of the 25 students, 6 did not see their experiments conducted on Skylab because the experiments were not compatible with Skylab hardware and timelines. Of the 19 remaining, 11 experiments required the manufacture of equipment.

  19. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems

    USGS Publications Warehouse

    Kraus, Johanna M.; Gibson, Polly P.; Walters, David M.; Mills, Marc A.

    2017-01-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems.However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI,USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r2> 0.78) and had similar mean ΣPCB concentrations when averaged acrossall years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa lesseffective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2016;9999:1–9. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  20. Respiration in spiders (Araneae).

    PubMed

    Schmitz, Anke

    2016-05-01

    Spiders (Araneae) are unique regarding their respiratory system: they are the only animal group that breathe simultaneously with lungs and tracheae. Looking at the physiology of respiration the existence of tracheae plays an important role in spiders with a well-developed tracheal system. Other factors as sex, life time, type of prey capture and the high ability to gain energy anaerobically influence the resting and the active metabolic rate intensely. Most spiders have metabolic rates that are much lower than expected from body mass; but especially those with two pairs of lungs. Males normally have higher resting rates than females; spiders that are less evolved and possess a cribellum have lower metabolic rates than higher evolved species. Freely hunting spiders show a higher energy turnover than spiders hunting with a web. Spiders that live longer than 1 year will have lower metabolic rates than those species that die after 1 year in which development and reproduction must be completed. Lower temperatures and starvation, which most spiders can cope with, will decrease the metabolic rate as well.

  1. Dispersal-mediated effect of microhabitat availability and density dependence determine population dynamics of a forest floor web spider.

    PubMed

    Takada, Mayura B; Miyashita, Tadashi

    2014-09-01

    Landscapes in nature can be viewed as a continuum of small total habitable area with high fragmentation to widely spreading habitats. The dispersal-mediated rescue effect predominates in the former landscapes, while classical density-dependent processes generally prevail in widely spread habitats. A similar principle should be applied to populations of organisms utilizing microhabitats in limited supply. To test this hypothesis, we examined the population dynamics of a web spider, Neriene brongersmai, in 16 populations with varying degrees of microhabitat availability, and we explored whether: (i) high microhabitat availability improves survival rate during density-independent movement, while the resultant high density reduces survival rate in a density-dependent manner; and (ii) temporal population stability increases with microhabitat availability at the population level. Furthermore, we conducted two types of field experiments to verify whether high microhabitat availability actually reduces mortality associated with web-site movement. Field observations revealed that demographic change in N. brongersmai populations was affected by three factors at different stages, namely the microhabitat limitation from the early to late juvenile stages, the density dependence from the late juvenile to adult stages and the food limitation from the adult to the next early juvenile stages. In addition, there was a tendency for a positive association between population stability and microhabitat availability at the population level. A small-scale experiment, where the frequency of spider web relocation was equalized artificially, revealed that high microhabitat availability elevated the survival rate during a movement event between web-sites. The larger spatiotemporal scale experiment also revealed an improved spider survival rate following treatment with high microhabitat availability, even though spider density was kept at a relatively low level. The population dynamics of N. brongersmai can be determined primarily by density-independent processes based on web-site fragmentation and density-dependent processes driven by interference competition. We conclude that depending on the amount of habitat resources, the relative importance of the two contrasting paradigms-equilibrium and non-equilibrium-appears to vary, even within a particular system. © 2014 The Authors. Journal of Animal Ecology © 2014 British Ecological Society.

  2. Fabrication and Test of Large Area Spider-Web Bolometers for CMB Measurements

    NASA Astrophysics Data System (ADS)

    Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Gatti, F.; Orlando, A.; Pizzigoni, G.

    2016-08-01

    Detecting the primordial 'B-mode' polarization of the cosmic microwave background is one of the major challenges of modern observational cosmology. Microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. In this paper, we present the development status of large area (about 1 cm2) spider-web bolometer, which imply additional fabrication challenges. The spider-web is a suspended Si3N4 1 \\upmu m-thick and 8-mm diameter with mesh size of 250 \\upmu m. The thermal sensitive element is a superconducting transition edge sensor (TES) at the center of the bolometer. The first prototype is a Ti-Au TES with transition temperature tuned around 350 mK, new devices will be a Mo-Au bilayer tuned to have a transition temperature of 500 mK. We present the fabrication process with micro-machining techniques from silicon wafer covered with SiO2 - Si3N4 CVD films, 0.3 and 1 \\upmu m- thick, respectively, and preliminary tests.

  3. KSC-99pp1188

    NASA Image and Video Library

    1999-10-05

    On the grounds of Kennedy Space Center, a female Golden-Silk Spider repairs its web. During the day spider hands head downward from the underside of the web near the center. Its web may measure two to three feet across and it repairs the webbing each day, replacing half but never the whole web at one time. The center shares a boundary with the Merritt Island National Wildlife Refuge, a 92,000-acre refuge that is a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  4. Spider Silk Processing for Spidroin Recovery from Crossopriza Lyoni Web

    NASA Astrophysics Data System (ADS)

    Mohtar, J. A.; Ooi, W. L.; Yusuf, F.

    2018-03-01

    Spider silk is a potential biomaterial that can be used in various applications for its outstanding physicomechanical properties attributed by the spidroin composition. Efforts for commercializing spider silks have been mainly focused on the characterization of spidroins from the Entelegyne spiders for exceptional fibre construction. Hence, studies on silk proteins from the Haplogyne species remain neglected. The aim of this study is to isolate spidroin from Crossopriza lyoni web. Silk processing involved the pretreatment of fibres for the shell layer removal from the surface. A screening study was conducted to analyze the effect of temperature, incubation time and agitation speed on spidroin extraction using Ajisawa’s reagent by OFAT analysis followed by statistical optimization of the extraction process via RSM for maximal protein recovery. All parameters exerted significant effect on spidroin recovery (p<0.05) in which the maximum protein concentration (451.78 ± 0.110 µg/ml) was obtained at optimal condition of 70°C, 350 rpm and 1.25 hours. The discovery of spidroin from this study provides a basic platform for engineering spider silk to meet the demand for a variety of silk-based products in the near future.

  5. Adhesion enhancement of cribellate capture threads by epicuticular waxes of the insect prey sheds new light on spider web evolution

    PubMed Central

    Bott, Raya A.; Bräunig, Peter

    2017-01-01

    To survive, web-building spiders rely on their capture threads to restrain prey. Many species use special adhesives for this task, and again the majority of those species cover their threads with viscoelastic glue droplets. Cribellate spiders, by contrast, use a wool of nanofibres as adhesive. Previous studies hypothesized that prey is restrained by van der Waals' forces and entrapment in the nanofibres. A large discrepancy when comparing the adhesive force on artificial surfaces versus prey implied that the real mechanism was still elusive. We observed that insect prey's epicuticular waxes infiltrate the wool of nanofibres, probably induced by capillary forces. The fibre-reinforced composite thus formed led to an adhesion between prey and thread eight times stronger than that between thread and wax-free surfaces. Thus, cribellate spiders employ the originally protective coating of their insect prey as a fatal component of their adhesive and the insect promotes its own capture. We suggest an evolutionary arms race with prey changing the properties of their cuticular waxes to escape the cribellate capture threads that eventually favoured spider threads with viscous glue. PMID:28566485

  6. Animal water balance drives top-down effects in a riparian forest—implications for terrestrial trophic cascades

    PubMed Central

    Sabo, John L.

    2016-01-01

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. PMID:27534953

  7. View of Astronaut Owen Garriott taking video of two Skylab spiders experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    View of Scientist-Astronaut Owen K. Garriott, Skylab 3 science pilot, taking TV footage of Arabella and Anita, the two Skylab 3 common cross spiders 'aranous diadematus,' aboard the Skylab space station cluster in Earth orbit. During the 59 day Skylab 3 mission the two spiders Arabella and Anita, were housed in an enclosure onto which a motion picture and still camera were attached to record the spiders' attempts to build a web in the weightless environment. Note the automatic data acquisition camera (DAC) about 3.5 feet to Garriott's right (about waist level).

  8. Untangling the web...spiders in Arizona fields

    USDA-ARS?s Scientific Manuscript database

    Many kinds of arthropod natural enemies (predators and parasitoids) inhabit crop fields in Arizona and can have a large negative impact on several pest insect species that also infest these crops. Many different species of spiders are common in cotton, alfalfa and other crops in Arizona. Among the ...

  9. Effects of Prey Macronutrient Content on Body Composition and Nutrient Intake in a Web-Building Spider

    PubMed Central

    Hawley, Jesse; Simpson, Stephen J.; Wilder, Shawn M.

    2014-01-01

    The nutritional composition of diets can vary widely in nature and have large effects on the growth, reproduction and survival of animals. Many animals, especially herbivores, will tightly regulate the nutritional composition of their body, which has been referred to as nutritional homeostasis. We tested how experimental manipulation of the lipid and protein content of live prey affected the nutrient reserves and subsequent diet regulation of web-building spiders, Argiope keyserlingi. Live locusts were injected with experimental solutions containing specific amounts of lipid and protein and then fed to spiders. The nutrient composition of the spiders' bodies was directly related to the nutrient composition of the prey on which they fed. We then conducted an experiment where spiders were fed either high lipid or high protein prey and subsequently provided with two large unmanipulated locusts. Prior diet did not affect the amount or ratio of lipid and protein ingested by spiders when feeding on unmanipulated prey. Argiope keyserlingi were flexible in the storage of lipid and protein in their bodies and did not bias their extraction of nutrients from prey to compensate for previously biased diets. Some carnivores, especially those that experience frequent food limitation, may be less likely to strictly regulate their body composition than herbivores because food limitation may encourage opportunistic ingestion and assimilation of nutrients. PMID:24911958

  10. Testing of 100 mK bolometers for space applications

    NASA Technical Reports Server (NTRS)

    Murray, A. G.; Ade, P. A. R.; Bhatia, R. S.; Griffin, M. J.; Maffei, B.; Nartallo, R.; Beeman, J. W.; Bock, J.; Lange, A.; DelCastillo, H.

    1996-01-01

    Electrical and optical performance data are presented for a prototype 100 mK spider-web bolometer operating under very low photon backgrounds. These data are compared with the bolometer theory and are used to estimate the expected sensitivity of such a detector used for low background space astronomy. The results demonstrate that the sensitivity and speed of response requirements of the bolometer instruments proposed for these missions can be met by 100 mK spider-web bolometers using neutron transmutation doped germanium as the temperature sensitive element.

  11. Evolution of external female genital mutilation: why do males harm their mates?

    PubMed

    Mouginot, Pierick; Uhl, Gabriele; Fromhage, Lutz

    2017-11-01

    Sperm competition may select for male reproductive traits that influence female mating or oviposition rate. These traits may induce fitness costs to the female; however, they may be costly for the males as well as any decrease in female fitness also affects male fitness. Male adaptations to sperm competition manipulate females by altering not only female behaviour or physiology, but also female morphology. In orb-weaving spiders, mating may entail mutilation of external structures of the female genitalia, which prevents genital coupling with subsequent males. Here, we present a game theoretical model showing that external female genital mutilation is favoured even under relatively high costs of mutilation, and that it is favoured by a high number of mate encounters per female and last-male sperm precedence.

  12. Evolution of external female genital mutilation: why do males harm their mates?

    PubMed Central

    Uhl, Gabriele

    2017-01-01

    Sperm competition may select for male reproductive traits that influence female mating or oviposition rate. These traits may induce fitness costs to the female; however, they may be costly for the males as well as any decrease in female fitness also affects male fitness. Male adaptations to sperm competition manipulate females by altering not only female behaviour or physiology, but also female morphology. In orb-weaving spiders, mating may entail mutilation of external structures of the female genitalia, which prevents genital coupling with subsequent males. Here, we present a game theoretical model showing that external female genital mutilation is favoured even under relatively high costs of mutilation, and that it is favoured by a high number of mate encounters per female and last-male sperm precedence. PMID:29291104

  13. View of Astronaut Owen Garriott taking video of two Skylab spiders experiment

    NASA Image and Video Library

    1973-08-16

    SL3-109-1345 (August 1973) --- View of scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, taking TV footage of Arabella and Anita, the two Skylab 3 common cross spiders "aranous diadematus," aboard the Skylab space station cluster in Earth orbit. During the 59-day Skylab 3 mission the two spiders Arabella and Anita, were housed in an enclosure onto which a motion picture and still camera were attached to record the spiders' attempts to build a web in the weightless environment. Note the automatic data acquisition camera (DAC) about 3.5 feet to Garriott's right (about waist level). Photo credit: NASA

  14. Towards a new generation of fibre optic chemical sensors based on spider silk threads

    NASA Astrophysics Data System (ADS)

    Hey Tow, Kenny; Chow, Desmond M.; Vollrath, Fritz; Dicaire, Isabelle; Gheysens, Tom; Thévenaz, Luc

    2017-04-01

    A spider uses up to seven different types of silk, all having specific functions, to build its web. For scientists, native silk - directly extracted from spiders - is a tough, biodegradable and biocompatible thread used mainly for tissue engineering and textile applications. Blessed with outstanding optical properties, this protein strand can also be used as an optical fibre and is, moreover, intrinsically sensitive to chemical compounds. In this communication, a pioneering proof-of-concept experiment using spider silk, in its pristine condition, as a new type of fibre-optic relative humidity sensor will be demonstrated and its potential for future applications discussed.

  15. Selected papers from Middleware'98: The IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing

    NASA Astrophysics Data System (ADS)

    Davies, Nigel; Raymond, Kerry; Blair, Gordon

    1999-03-01

    In recent years the distributed systems community has witnessed a growth in the number of conferences, leading to difficulties in tracking the literature and a consequent loss of awareness of work done by others in this important research domain. In an attempt to synthesize many of the smaller workshops and conferences in the field, and to bring together research communities which were becoming fragmented, IFIP staged Middleware'98: The IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing. The conference was widely publicized and attracted over 150 technical submissions including 135 full paper submissions. The final programme consisted of 28 papers, giving an acceptance ratio of a little over one in five. More crucially, the programme accurately reflected the state of the art in middleware research, addressing issues such as ORB architectures, engineering of large-scale systems and multimedia. The traditional role of middleware as a point of integration and service provision was clearly intact, but the programme stressed the importance of emerging `must-have' features such as support for extensibility, mobility and quality of service. The Middleware'98 conference was held in the Lake District, UK in September 1998. Over 160 delegates made the journey to one of the UK's most beautiful regions and contributed to a lively series of presentations and debates. A permanent record of the conference, including transcripts of the panel discussions which took place, is available at: http://www.comp.lancs.ac.uk/computing/middleware98/ Based on their original reviews and the reactions of delegates to the ensuing presentations we have selected six papers from the conference for publication in this special issue of Distributed Systems Engineering. The first paper, entitled `Jonathan: an open distributed processing environment in Java', by Dumant et al describes a minimal, modular ORB framework which can be used for supporting real-time and multimedia applications. The framework provides mechanisms by which services such as CORBA ORBs can be constructed as personalities which exploit the services provided by the underlying minimal kernel. The issue of engineering ORBs is taken further in the second paper, `The implementation of a high-performance ORB over multiple network transports' by Lo and Pope. This paper is of particular interest since it presents the concrete results of running a modern ORB, i.e. omniORB2, over a range of transport mechanisms, including TCP/IP, shared memory and ATM AAL5. However, in order for middleware to progress, future platforms must tackle the issue of scalability as well as that of performance. For this reason we have included two papers, `Systems support for scalable and fault tolerant Internet services' by Chawathe and Brewer and `A scalable middleware solution for advanced wide-area Web services' by van Steen et al, which address the problems inherent in developing scalable middleware. Although the two papers focus on different problems in this area, they are both motivated by the explosion of services and information made available through the World Wide Web. Indeed, the role of the World Wide Web as a component in middleware platforms featured prominently in the conference and this is reflected in our choice of the paper by Cao et al entitled `Active Cache: caching dynamic contents on the Web'. Motivated once again by the problems of scalability, Cao et al propose a system to support the caching of dynamic documents. This is achieved by enabling small applets to be cached along with pages and run by the cache servers. The issues of security, trust and resource utilization raised by such a system are explored in detail by the authors. Finally, `Mobile Java objects' by Hayton et al considers these issues still further as part of the authors' work on adding object mobility to Java. Together, the six papers contained within this issue of Distributed Systems Engineering capture the essence of Middleware'98 and demonstrate the progress that has been made in the field. Of particular note is the systems-oriented focus of these papers: the field has clearly matured beyond modelling and into the domain of advanced systems development. We hope that the papers contained here stimulate and inform you and we look forward to meeting you at a future Middleware conference.

  16. Riparian spiders as sentinels of polychlorinated biphenyl contamination across heterogeneous aquatic ecosystems.

    PubMed

    Kraus, Johanna M; Gibson, Polly P; Walters, David M; Mills, Marc A

    2017-05-01

    Riparian spiders are being used increasingly to track spatial patterns of contaminants in and fluxing from aquatic ecosystems. However, our understanding of the circumstances under which spiders are effective sentinels of aquatic pollution is limited. The present study tests the hypothesis that riparian spiders may be effectively used to track spatial patterns of sediment pollution by polychlorinated biphenyls (PCBs) in aquatic ecosystems with high habitat heterogeneity. The spatial pattern of ΣPCB concentrations in 2 common families of riparian spiders sampled in 2011 to 2013 generally tracked spatial variation in sediment ΣPCBs across all sites within the Manistique River Great Lakes Area of Concern (AOC), a rivermouth ecosystem located on the south shore of the Upper Peninsula, Manistique (MI, USA) that includes harbor, river, backwater, and lake habitats. Sediment ΣPCB concentrations normalized for total organic carbon explained 41% of the variation in lipid-normalized spider ΣPCB concentrations across 11 sites. Furthermore, 2 common riparian spider taxa (Araneidae and Tetragnathidae) were highly correlated (r 2  > 0.78) and had similar mean ΣPCB concentrations when averaged across all years. The results indicate that riparian spiders may be useful sentinels of relative PCB availability to aquatic and riparian food webs in heterogeneous aquatic ecosystems like rivermouths where habitat and contaminant variability may make the use of aquatic taxa less effective. Furthermore, the present approach appears robust to heterogeneity in shoreline development and riparian vegetation that support different families of large web-building spiders. Environ Toxicol Chem 2017;36:1278-1286. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  17. Animal water balance drives top-down effects in a riparian forest-implications for terrestrial trophic cascades.

    PubMed

    McCluney, Kevin E; Sabo, John L

    2016-08-17

    Despite the clear importance of water balance to the evolution of terrestrial life, much remains unknown about the effects of animal water balance on food webs. Based on recent research suggesting animal water imbalance can increase trophic interaction strengths in cages, we hypothesized that water availability could drive top-down effects in open environments, influencing the occurrence of trophic cascades. We manipulated large spider abundance and water availability in 20 × 20 m open-air plots in a streamside forest in Arizona, USA, and measured changes in cricket and small spider abundance and leaf damage. As expected, large spiders reduced both cricket abundance and herbivory under ambient, dry conditions, but not where free water was added. When water was added (free or within moist leaves), cricket abundance was unaffected by large spiders, but spiders still altered herbivory, suggesting behavioural effects. Moreover, we found threshold-type increases in herbivory at moderately low soil moisture (between 5.5% and 7% by volume), suggesting the possibility that water balance may commonly influence top-down effects. Overall, our results point towards animal water balance as an important driver of direct and indirect species interactions and food web dynamics in terrestrial ecosystems. © 2016 The Author(s).

  18. View of Arabella, one of the two Skylab 3 spiders used in experiment

    NASA Image and Video Library

    1973-08-08

    S73-34206 (8 Aug. 1973) --- A closeup view of Arabella, one of two Skylab 3 common cross spiders ?Araneus diadematus,? and the web it had spun in the zero-gravity of space aboard the Skylab space station cluster in Earth orbit. This is a photographic reproduction made a color television transmission aboard Skylab. During the 59-day Skylab 3 mission the two spiders, Arabella and Anita, were housed in an enclosure onto which a motion picture camera and a still camera were attached to record the spiders? attempts to build a web in the weightless environment. The spider experiment (ED52) was one of 25 experiments selected for Skylab by NASA from more than 3,400 experiment proposals submitted by 17-year-old Judith S. Miles of Lexington, Massachusetts. Anita died during the last week of the mission. THIS PHOTOGRAPH IS A GOVERNMENT PUBLICATION ?NOT SUBJECT TO COPYRIGHT. It may not be used to state or imply the endorsement by NASA or by any NASA employee of a commercial product, process or service, or used in any way that might mislead. Accordingly, it is requested that if this photograph is used in advertising and other commercial promotions, layout and copy be submitted to NASA prior to release. Photo credit: NASA

  19. A 4-year study of invasive and native spider populations in Maine

    USGS Publications Warehouse

    Jakob, Elizabeth M.; Porter, Adam H.; Ginsberg, Howard; Bednarski, Julie V.; Houser, Jeremy

    2011-01-01

    Invasive spiders pose potential threats to native spiders. In 2002, the European spider Linyphia triangularis (Clerck, 1757) (Araneae: Linyphiidae) was discovered in all but one county in Maine. At Acadia National Park, we conducted a 4-year study of L. triangularis and three native linyphiid species of a similar size (Frontinella communis (Hentz, 1850), Pityohyphantes subarcticus Chamberlin and Ivie, 1943, and Neriene radiata (Walckenaer, 1842)). Using line-transect surveys, we measured population densities in coastal and forest habitat. The density of L. triangularis varied across years but was always significantly higher on the coast than in the forest. In contrast, only one native species was present on the coast and at very low numbers. Coastal L. triangularis were larger and in better condition than those in the forest, and numbers and biomass of insect prey were also higher on the coast. In 2 years, we also conducted transects at a second coastal location in Maine where the invader was at low density. At that site, native densities were substantially higher than at either Acadia site. Our data are consistent with the hypothesis that L. triangularis is reducing populations of native spiders. Companion studies suggest that L. triangularis negatively impacts natives by usurping both web sites and webs.

  20. Phylogenomic reclassification of the world's most venomous spiders (Mygalomorphae, Atracinae), with implications for venom evolution.

    PubMed

    Hedin, Marshal; Derkarabetian, Shahan; Ramírez, Martín J; Vink, Cor; Bond, Jason E

    2018-01-26

    Here we show that the most venomous spiders in the world are phylogenetically misplaced. Australian atracine spiders (family Hexathelidae), including the notorious Sydney funnel-web spider Atrax robustus, produce venom peptides that can kill people. Intriguingly, eastern Australian mouse spiders (family Actinopodidae) are also medically dangerous, possessing venom peptides strikingly similar to Atrax hexatoxins. Based on the standing morphology-based classification, mouse spiders are hypothesized distant relatives of atracines, having diverged over 200 million years ago. Using sequence-capture phylogenomics, we instead show convincingly that hexathelids are non-monophyletic, and that atracines are sister to actinopodids. Three new mygalomorph lineages are elevated to the family level, and a revised circumscription of Hexathelidae is presented. Re-writing this phylogenetic story has major implications for how we study venom evolution in these spiders, and potentially genuine consequences for antivenom development and bite treatment research. More generally, our research provides a textbook example of the applied importance of modern phylogenomic research.

  1. Securing Paternity by Mutilating Female Genitalia in Spiders.

    PubMed

    Mouginot, Pierick; Prügel, Josepha; Thom, Ulrike; Steinhoff, Philip O M; Kupryjanowicz, Janusz; Uhl, Gabriele

    2015-11-16

    Competition between males and their sperm over access to females and their eggs has resulted in manifold ways by which males try to secure paternity, ranging from physically guarding the female after mating to reducing her receptivity or her attractiveness to subsequent males by transferring manipulative substances or by mechanically sealing the female reproductive tract with a copulatory plug. Copulations may also result in internal damage of the female genitalia; however, this is not considered as a direct adaptation against sperm competition but as a collateral effect. Here, we present a drastic and direct mechanism for securing paternity: the removal of coupling structures on female genitalia by males. In the orb-weaving spider Larinia jeskovi males remove the scapus, a crucial coupling device on the female external genital region. Reconstruction of the coupling mechanism using micro-CT-scanned mating pairs revealed that several sclerites of the male genitalia interact to break off the scapus. Once it is removed, remating cannot occur due to mechanical coupling difficulties. In the field, male-inflicted genital damage is very prevalent since all female L. jeskovi were found to be mutilated at the end of the mating season. External genital mutilation is an overlooked but widely spread phenomenon since 80 additional spider species were found for which male genital manipulation can be suspected. Interlocking genitalia provide an evolutionary platform for the rapid evolution of this highly effective mechanism to secure paternity, and we suspect that other animal groups with interlocking genital structures might reveal similarly drastic male adaptations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. One-step fabrication of multifunctional composite polyurethane spider-web-like nanofibrous membrane for water purification.

    PubMed

    Pant, Hem Raj; Kim, Han Joo; Joshi, Mahesh Kumar; Pant, Bishweshwar; Park, Chan Hee; Kim, Jeong In; Hui, K S; Kim, Cheol Sang

    2014-01-15

    A stable silver-doped fly ash/polyurathene (Ag-FA/PU) nanocomposite multifunctional membrane is prepared by a facile one-step electrospinning process using fly ash particles (FAPs). Colloidal solution of PU with FAPs and Ag metal precursor was subjected to fabricate nanocomposite spider-web-like membrane using electrospinning process. Presence of N,N-dimethylformamide (solvent of PU) led to reduce silver nitrate into Ag NPs. Incorporation of Ag NPs and FAPs through electrospun PU fibers is proven through electron microscopy and spectroscopic techniques. Presence of these NPs on PU nanofibers introduces several potential physicochemical properties such as spider-web-like nano-neeting for NPs separation, enhanced absorption capacity to remove carcinogenic arsenic (As) and toxic organic dyes, and antibacterial properties with reduce bio-fouling for membrane filter application. Preliminary observations used for above-mentioned applications for water treatment showed that it will be an economically and environmentally friendly nonwoven matrix for water purification. This simple approach highlights new avenues about the utilization of one pollutant material to control other pollutants in scalable and inexpensive ways. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Bioadvection of mercury from the Great Salt Lake to surrounding terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Black, F.; Goodman, J.; Collins, J.; Saxton, H.; Mansfield, C.

    2015-12-01

    The Great Salt Lake (GSL), Utah, USA, is a hypersaline terminal lake that is home to some of the highest concentrations of methylmercury (MeHg) ever measured in natural waters. While terrestrial organisms typically have very low concentrations of MeHg because it is produced almost exclusively in sub-oxic aquatic environments, we documented elevated concentrations of MeHg in brine flies (Ephydra spp.) and spiders along the shores of the GSL. We hypothesized that brine flies, with their larval and pupal stages in the GSL, act as vectors that transfer Hg from the lake to surrounding terrestrial ecosystems as flying adults where they are eaten by spiders and other organisms. The GSL is visited annually by millions of migratory birds, and a major food source for both resident and migratory birds at the GSL are brine flies, so brine flies may represent an important source of Hg to birds here. We conducted a spatial and temporal study of HgT and MeHg in surface waters, brine flies, spiders, and Loggerhead Shrikes (Lanius ludovicianus) a predatory terrestrial songbird of conservation concern, and investigated sublethal effects due to Hg exposure on Antelope Island in the GSL. Samples were also analyzed for their stable carbon and nitrogen isotopic ratios. While HgT and MeHg concentrations in surface waters were elevated, they varied relatively little throughout the year and exhibited no clear seasonal trends. However, seasonal maxima in concentrations of HgT and MeHg in brine flies and spiders occurred in spring and fall, periods of peak migratory bird numbers at the GSL. Approximately 20% of adult/juvenile shrikes had blood HgT concentrations above thresholds previously shown to reduce breeding success in other songbirds, with these concentrations increasing after the annual appearance of orb weaving spiders. HgT concentrations of shrikes decreased with increasing distance from the shoreline and decreasing brine fly abundance, again suggesting the GSL is the ultimate source of Hg in these organisms. Preliminary data from a subset of videos do not show a correlation between nestling Hg levels and nestling feeding rates or growth rate.

  4. Size-dependent survivorship in the web-building spiderAgelena limbata.

    PubMed

    Tanaka, Koichi

    1992-07-01

    Stage-specific mortality rates and mortality factors for the web-building spiderAgelena limbata, which is suggested to be food-limited, were studied, and the relationship between body size of spiders and survivorship for instar 3 to adults was examined. The mortality rate of the egg sac stage including eggs, deutova (prenymphal stage), and overwintering instar 1 nymphs was low. The low mortality of this stage was partly due to maternal care that reduced the mortality caused by predation and/or abiotic factors. From emergence of instar 1 nymphs from egg sacs to reproduction, the stagespecific mortality rates were almost constant, 32-47%, and the time-specific mortality rates were also constant. These results suggest a Deevey (1947) type II survivorship curve inA. limbata, in contrast to other reports on the wandering or burrowing spiders which suggested type III curves. Important mortality factors for nymphs and adults were parasitism by an ichneumonid wasp and predation by spiders. There were great variations in body size (carapace width) ofA. limbata in the field. Smaller individuals survived at a lower rate to the next stage than larger individuals. This tendency was clearer for the population living under poorer prey availability.A. limbata was unlikely to starve to death in the field because every stage ofA. limbata could survive starvation for a long time in the laboratory, 22-65 days on average. I suggest that the size-dependent survivorship of this spider is associated with vulnerability of smaller individuals to parasitism and predation.

  5. Specialised use of working memory by Portia africana, a spider-eating salticid.

    PubMed

    Cross, Fiona R; Jackson, Robert R

    2014-03-01

    Using expectancy-violation methods, we investigated the role of working memory in the predatory strategy of Portia africana, a salticid spider from Kenya that preys by preference on other spiders. One of this predator's tactics is to launch opportunistic leaping attacks on to other spiders in their webs. Focussing on this particular tactic, our experiments began with a test spider on a ramp facing a lure (dead prey spider mounted on a cork disc) that could be reached by leaping. After the test spider faced the lure for 30 s, we blocked the test spider's view of the lure by lowering an opaque shutter before the spider leapt. When the shutter was raised 90 s later, either the same lure came into view again (control) or a different lure came into view (experimental: different prey type in same orientation or same prey type in different orientation). We recorded attack frequency (number of test spiders that leapt at the lure) and attack latency (time elapsing between shutter being raised and spiders initiating a leap). Attack latencies in control trials were not significantly different from attack latencies in experimental trials, regardless of whether it was prey type or prey orientation that changed in the experimental trials. However, compared with test spiders in the no-change control trials, significantly fewer test spiders leapt when prey type changed. There was no significant effect on attack frequency when prey orientation changed. These findings suggest that this predator represents prey type independently of prey orientation.

  6. SKYLAB 9SL)-3 - EXPERIMENTS (SPIDER)

    NASA Image and Video Library

    1973-08-15

    S73-32499 (July 1973) --- Dr. Ray Gause of the NASA Marshall Space Flight Center (MSFC) places dinner, in the form of a housefly, in the web of Arabella - the prime spider for the ED-52 Web Formation Experiment. Arabella can be delineated near the end of the black pen in Dr. Gause's hand. The experiment is one of 25 student experiments accepted for the Skylab program and will be performed during the Skylab 3 mission. Judy Miles, a 17-year-old high school student from Lexington, Massachusetts, is the student experimenter and Dr. Gause is the NASA student advisor. Photo credit: NASA

  7. Effect of phenology on agonistic competitive interactions between invasive and native sheet-web spiders

    USGS Publications Warehouse

    Houser, Jeremy D.; Porter, Adam H.; Ginsberg, Howard; Jakob, Elizabeth M.

    2016-01-01

    The phenologies of introduced relative to native species can greatly influence the degree and symmetry of competition between them. The European spider Linyphia triangularis (Clerck, 1757) (Linyphiidae) reaches very high densities in coastal Maine (USA). Previous studies suggest thatL. triangularis negatively affects native linyphiid species, with competition for webs as one mechanism. We documented phenological differences between L. triangularis and three native species that illustrate the potential for the reversal of size-based competitive advantage over the course of the year. To test whether relative size influences interaction outcome, we allowed a resident spider to build a web and then introduced an intruder. We examined whether the outcomes of agonistic interactions over the webs were influenced by the species of the resident (invasive or native), the relative size of the contestants, and the species × size interaction. We found that the importance of relative size differed among species. In interactions between L. triangularis and each of two native species, size played a greater role than resident species on the outcome of interactions, suggesting that competitive advantage reverses over the season based on phenology-related size differences. Linyphia triangularis had a negative impact on the third species regardless of relative size.

  8. BioSpider: a web server for automating metabolome annotations.

    PubMed

    Knox, Craig; Shrivastava, Savita; Stothard, Paul; Eisner, Roman; Wishart, David S

    2007-01-01

    One of the growing challenges in life science research lies in finding useful, descriptive or quantitative data about newly reported biomolecules (genes, proteins, metabolites and drugs). An even greater challenge is finding information that connects these genes, proteins, drugs or metabolites to each other. Much of this information is scattered through hundreds of different databases, abstracts or books and almost none of it is particularly well integrated. While some efforts are being undertaken at the NCBI and EBI to integrate many different databases together, this still falls short of the goal of having some kind of human-readable synopsis that summarizes the state of knowledge about a given biomolecule - especially small molecules. To address this shortfall, we have developed BioSpider. BioSpider is essentially an automated report generator designed specifically to tabulate and summarize data on biomolecules - both large and small. Specifically, BioSpider allows users to type in almost any kind of biological or chemical identifier (protein/gene name, sequence, accession number, chemical name, brand name, SMILES string, InCHI string, CAS number, etc.) and it returns an in-depth synoptic report (approximately 3-30 pages in length) about that biomolecule and any other biomolecule it may target. This summary includes physico-chemical parameters, images, models, data files, descriptions and predictions concerning the query molecule. BioSpider uses a web-crawler to scan through dozens of public databases and employs a variety of specially developed text mining tools and locally developed prediction tools to find, extract and assemble data for its reports. Because of its breadth, depth and comprehensiveness, we believe BioSpider will prove to be a particularly valuable tool for researchers in metabolomics. BioSpider is available at: www.biospider.ca

  9. Cup Blocks the Precocious Activation of the Orb Autoregulatory Loop

    PubMed Central

    Wong, Li Chin; Schedl, Paul

    2011-01-01

    Translational regulation of localized mRNAs is essential for patterning and axes determination in many organisms. In the Drosophila ovary, the germline-specific Orb protein mediates the translational activation of a variety of mRNAs localized in the oocyte. One of the Orb target mRNAs is orb itself, and this autoregulatory activity ensures that Orb proteins specifically accumulate in the developing oocyte. Orb is an RNA-binding protein and is a member of the cytoplasmic polyadenylation element binding (CPEB) protein family. We report here that Cup forms a complex in vivo with Orb. We also show that cup negatively regulates orb and is required to block the precocious activation of the orb positive autoregulatory loop. In cup mutant ovaries, high levels of Orb accumulate in the nurse cells, leading to what appears to be a failure in oocyte specification as a number of oocyte markers inappropriately accumulate in nurse cells. In addition, while orb mRNA is mislocalized and destabilized, a longer poly(A) tail is maintained than in wild type ovaries. Analysis of Orb phosphoisoforms reveals that loss of cup leads to the accumulation of hyperphosphorylated Orb, suggesting that an important function of cup in orb-dependent mRNA localization pathways is to impede Orb activation. PMID:22164257

  10. KSC-99pp1187

    NASA Image and Video Library

    1999-10-05

    KENNEDY SPACE CENTER, FLA. -- On the grounds of Kennedy Space Center, a female Golden-Silk Spider repairs its web. The female can be identified by its brownish-green abdomen with a white spotted irregular pattern. The golden-silk spider repairs the webbing each day, replacing half but never the whole web at one time. Its web may measure two to three feet across. The center shares a boundary with the Merritt Island National Wildlife Refuge, a 92,000-acre refuge that is a habitat for more than 331 species of birds, 31 mammals, 117 fishes, and 65 amphibians and reptiles. The marshes and open water of the refuge provide wintering areas for 23 species of migratory waterfowl, as well as a year-round home for great blue herons, great egrets, wood storks, cormorants, brown pelicans and other species of marsh and shore birds, as well as a variety of insects

  11. Tracking contaminant flux from aquatic to terrestrial food webs

    EPA Science Inventory

    Aquatic insects provide a critical energy subsidy to riparian food webs, yet their role as vectors of contaminants to terrestrial ecosystems is poorly understood. We investigated aquatic resource utilization and contaminant exposure among riparian invertivores (spiders and herpt...

  12. A Twisted Star-Forming Web in the Galaxy IC 342

    NASA Image and Video Library

    2011-07-20

    Looking like a spider web swirled into a spiral, galaxy IC 342 presents its delicate pattern of dust in this infrared light image from NASA Spitzer Space Telescope. The very center glows especially brightly in the infrared.

  13. A COGNITIVE PERSPECTIVE ON AGGRESSIVE MIMICRY

    PubMed Central

    JACKSON, ROBERT R.; CROSS, FIONA R.

    2013-01-01

    We use the term ‘aggressive mimic’ for predators that communicate with their prey by making signals to indirectly manipulate prey behaviour. For understanding why the aggressive mimic’s signals work, it is important to appreciate that these signals interface with the prey’s perceptual system, and that the aggressive mimic can be envisaged as playing mind games with its prey. Examples of aggressive mimicry vary from instances in which specifying a model is straight forward to instances where a concise characterisation of the model is difficult. However, the less straightforward examples of aggressive mimicry may be the more interesting examples in the context of animal cognition. In particular, there are spiders that prey on other spiders by entering their prey’s web and making signals. Web invasion brings about especially intimate contact with their prey’s perceptual system because the prey spider’s web is an important component of the prey spider’s sensory apparatus. For the web-invading spider, often there is also a large element of risk when practising aggressive mimicry because the intended prey is also a potential predator. This element of risk, combined with exceptionally intimate interfacing with prey perceptual systems, may have favoured the web-invading aggressive mimic’s strategy becoming strikingly cognitive in character. Yet a high level of flexibility may be widespread among aggressive mimics in general and, on the whole, we propose that research on aggressive mimicry holds exceptional potential for advancing our understanding of animal cognition. PMID:23976823

  14. Spiders (Arachnida: Araneae) Of Milbridge, Washington County, Maine

    Treesearch

    Daniel T. Jennings; Frank Jr. Graham

    2007-01-01

    An inventory or spiders associated with diverse habitats of Milbridge, a 6,290-ha area of the East Coastal BioPhysical Region, yielded 6,979 individuals of 19 families, 145 genera, and 302 species (4 unknown). Species richness per genus ranged from 1 to 13, with 88 genera represented by a single species. Total species composition favored web spinners over hunters;...

  15. Publicizing Your Web Resources for Maximum Exposure.

    ERIC Educational Resources Information Center

    Smith, Kerry J.

    2001-01-01

    Offers advice to librarians for marketing their Web sites on Internet search engines. Advises against relying solely on spiders and recommends adding metadata to the source code and delivering that information directly to the search engines. Gives an overview of metadata and typical coding for meta tags. Includes Web addresses for a number of…

  16. E.B. White and Charlotte's Web.

    ERIC Educational Resources Information Center

    Elledge, Scott

    2001-01-01

    Discusses the life and work of E.B. White, describing his research on spiders, examining his development of the story, "Charlotte's Web," and explaining how "Charlotte's Web" is a fabric of memories. Notes how this book faces a variety of truths about the human condition and how it celebrates a child's generous view of and love…

  17. Tailored vectorial light fields: flower, spider web and hybrid structures

    NASA Astrophysics Data System (ADS)

    Otte, Eileen; Alpmann, Christina; Denz, Cornelia

    2017-04-01

    We present the realization and analysis of tailored vector fields including polarization singularities. The fields are generated by a holographic method based on an advanced system including a spatial light modulator. We demonstrate our systems capabilities realizing specifically customized vector fields including stationary points of defined polarization in its transverse plane. Subsequently, vectorial flowers and spider webs as well as unique hybrid structures of these are introduced, and embedded singular points are characterized. These sophisticated light fields reveal attractive properties that pave the way to advanced application in e.g. optical micromanipulation. Beyond particle manipulation, they contribute essentially to actual questions in singular optics.

  18. Risk of spider predation alters food web structure and reduces local herbivory in the field.

    PubMed

    Bucher, Roman; Menzel, Florian; Entling, Martin H

    2015-06-01

    Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage by 50 %. In addition, spider cues led to changes in the arthropod community: smaller spiders avoided plants with spider cues. In contrast, the aphid-tending ant Myrmica rubra showed higher recruitment of workers on cue-bearing plants, possibly to protect aphids. Our results show that the risk of spider predation can reduce herbivory on wild plants and also demonstrate that non-consumptive effects can be particularly strong within the predator guild.

  19. Review the role of terminal domains during storage and assembly of spider silk proteins.

    PubMed

    Eisoldt, Lukas; Thamm, Christopher; Scheibel, Thomas

    2012-06-01

    Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process. Copyright © 2011 Wiley Periodicals, Inc.

  20. Tu(r)ning weakness to strength: Mechanomutable bioinspired materials

    DTIC Science & Technology

    2017-04-03

    into Strength,” Bio-inspired Materials, Potsdam, Germany March 2012 - “Nonlinear behaviour of silk minimizes damage and begets spider web robustness...atoms to structures – how spiders turn weakness into strength,” Society of Engineering Science Meeting, Atlanta, GA Keynote Lecture October 2012...Georgia Tech, October 19, 2015, Atlanta, GA October 2015 DISTRIBUTION A: Distribution approved for public release. 8 - "Multiscale materials by

  1. A revised and dated phylogeny of cobweb spiders (Araneae, Araneoidea, Theridiidae): A predatory Cretaceous lineage diversifying in the era of the ants (Hymenoptera, Formicidae).

    PubMed

    Liu, Jie; May-Collado, Laura J; Pekár, Stano; Agnarsson, Ingi

    2016-01-01

    Cobweb spiders (Theridiidae) are highly diverse from the perspective of species richness, morphological diversity, variety of web architecture, and behavioral repertoires. The family includes over 50% of social spiders, a behavioral rarity among the order, and members of the family are furthermore the subject of research on venom, silk biomechanics, kleptoparasitism and web building, among other traits. Theridiidae is one of the most abundant groups of spiders, and thus key insect predators in many different ecosystems and is among relatively few spider families that show high degree of myrmecophagy. Modern comparative studies on all these fronts are best buttressed on a phylogenetic foundation. Our goal here is to offer a revised, dated, phylogenetic hypothesis for the family by summarizing previously published data from multiple molecular and morphological studies through data-mining, and adding novel data from several genera. We also test the hypothesis that the origin and diversification of cobweb spiders coincides with that of ants on which many species specialize as prey. The new phylogeny is largely congruent with prior studies and current taxonomy and should provide a useful tool for theridiid classification and for comparative analyses. Nevertheless, we also highlight the limitations of currently available data-the state of the art in Theridiidae phylogenetics-offering weak support for most of the deeper nodes in the phylogeny. Thus the need is clear for modern phylogenomic approaches to obtain a more solid understanding, especially of relationships among subfamilies. We recover the monophyly of currently recognized theridiid subfamilies with the exception of some enigmatic 'pholcommatines' (Styposis, Phoroncidia) and putative 'hadrotarsines' (Audifia, Tekellina) whose placement is uncertain in our analyses. Theridiidae dates back some 100 mya to the Cretaceous, a period of diversification in flowering plants and many groups of insects, including ants. The origin of cobweb spiders, and hence the cobweb-a speciallized trap for pedestrian prey-coincides with a major diversification shift in ants. The family becomes abundant in fossil record 50-40 mya as ants also diversify and reach dominance and contemporary patterns of abundances of theridiids and ants show the same trends, with increasing relative abundance towards the equator and at lower altitudes. We find that among orbiculariae, lineages that specialize on ant prey are non-randomly clustered within Theridiidae. Given these findings we hypothesize that the origin of the gumfoot web was a stepping stone that facilitated the capture of ants and resulted in specialized myrmecophagy in a number of 'basal' theridiids. We also document a subsequent loss in myrmecophagy, and associated increase in speciation rates, as 'recent' theridiid groups evolve diverse web forms and many return to the capture of aerial prey. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Cuticular bacteria appear detrimental to social spiders in mixed but not monoculture exposure

    PubMed Central

    Keiser, Carl N.; Shearer, Taylor A.; DeMarco, Alexander E.; Brittingham, Hayley A.; Knutson, Karen A.; Kuo, Candice; Zhao, Katherine; Pruitt, Jonathan N.

    2016-01-01

    Abstract Much of an animal’s health status, life history, and behavior are dictated by interactions with its endogenous and exogenous bacterial communities. Unfortunately, interactions between hosts and members of their resident bacterial community are often ignored in animal behavior and behavioral ecology. Here, we aim to identify the nature of host–microbe interactions in a nonmodel organism, the African social spider Stegodyphus dumicola. We collected and identified bacteria from the cuticles of spiders in situ and then exposed spiders to bacterial monocultures cultures via topical application or injection. We also topically inoculated spiders with a concomitant “cocktail” of bacteria and measured the behavior of spiders daily for 24 days after inoculation. Lastly, we collected and identified bacteria from the cuticles of prey items in the capture webs of spiders, and then fed spiders domestic crickets which had been injected with these bacteria. We also injected 1 species of prey-borne bacteria into the hemolymph of spiders. Only Bacillus thuringiensis caused increased mortality when injected into the hemolymph of spiders, whereas no bacterial monocultures caused increased mortality when applied topically, relative to control solutions. However, a bacterial cocktail of cuticular bacteria caused weight loss and mortality when applied topically, yet did not detectibly alter spider behavior. Consuming prey injected with prey-borne bacteria was associated with an elongated lifespan in spiders. Thus, indirect evidence from multiple experiments suggests that the effects of these bacteria on spider survivorship appear contingent on their mode of colonization and whether they are applied in monoculture or within a mixed cocktail. We urge that follow-up studies should test these host–microbe interactions across different social contexts to determine the role that microbes play in colony performance. PMID:29491926

  3. The mechanical design of spider silks: from fibroin sequence to mechanical function.

    PubMed

    Gosline, J M; Guerette, P A; Ortlepp, C S; Savage, K N

    1999-12-01

    Spiders produce a variety of silks, and the cloning of genes for silk fibroins reveals a clear link between protein sequence and structure-property relationships. The fibroins produced in the spider's major ampullate (MA) gland, which forms the dragline and web frame, contain multiple repeats of motifs that include an 8-10 residue long poly-alanine block and a 24-35 residue long glycine-rich block. When fibroins are spun into fibres, the poly-alanine blocks form (&bgr;)-sheet crystals that crosslink the fibroins into a polymer network with great stiffness, strength and toughness. As illustrated by a comparison of MA silks from Araneus diadematus and Nephila clavipes, variation in fibroin sequence and properties between spider species provides the opportunity to investigate the design of these remarkable biomaterials.

  4. Spiders in motion: demonstrating adaptation, structure-function relationships, and trade-offs in invertebrates.

    PubMed

    Bowlin, Melissa S; McLeer, Dorothy F; Danielson-Francois, Anne M

    2014-03-01

    Evolutionary history and structural considerations constrain all aspects of animal physiology. Constraints on invertebrate locomotion are especially straightforward for students to observe and understand. In this exercise, students use spiders to investigate the concepts of adaptation, structure-function relationships, and trade-offs. Students measure burst and endurance performance in several taxonomic families of spiders whose ecological niches have led to different locomotory adaptations. Based on observations of spiders in their natural habitat and prior background information, students make predictions about spider performance. Students then construct their own knowledge by performing a hands-on, inquiry-based scientific experiment where the results are not necessarily known. Depending on the specific families chosen, students can observe that web-dwelling spiders have more difficulty navigating complex terrestrial terrain than ground-dwelling spiders and that there is a trade-off between burst performance and endurance performance in spiders. Our inexpensive runway design allows for countless variations on this basic experiment; for example, we have successfully used runways to show students how the performance of heterothermic ectotherms varies with temperature. High levels of intra- and interindividual variation in performance underscore the importance of using multiple trials and statistical tests. Finally, this laboratory activity can be completely student driven or standardized, depending on the instructor's preference.

  5. Spider Communities and Biological Control in Native Habitats Surrounding Greenhouses.

    PubMed

    Cotes, Belén; González, Mónica; Benítez, Emilio; De Mas, Eva; Clemente-Orta, Gemma; Campos, Mercedes; Rodríguez, Estefanía

    2018-03-14

    The promotion of native vegetation as a habitat for natural enemies, which could increase their abundance and fitness, is especially useful in highly simplified settings such as Mediterranean greenhouse landscapes. Spiders as generalist predators may also be involved in intra-guild predation. However, the niche complementarity provided by spiders as a group means that increased spider diversity may facilitate complementary control actions. In this study, the interactions between spiders, the two major horticultural pests, Bemisia tabaci and Frankliniella occidentalis , and their naturally occurring predators and parasitoids were evaluated in a mix of 21 newly planted shrubs selected for habitat management in a highly disturbed horticultural system. The effects of all factors were evaluated using redundancy analysis (RDA) and the generalized additive model (GAM) to assess the statistical significance of abundance of spiders and pests. The GAM showed that the abundance of both pests had a significant effect on hunter spider's abundance, whereas the abundance of B. tabaci , but not F. occidentalis , affected web-weavers' abundance. Ordination analysis showed that spider abundance closely correlated with that of B. tabaci but not with that of F. occidentalis , suggesting that complementarity occurs, and thereby probability of biocontrol, with respect to the targeted pest B. tabaci , although the temporal patterns of the spiders differed from those of F. occidentalis . Conservation strategies involving the establishment of these native plants around greenhouses could be an effective way to reduce pest populations outdoors.

  6. The Great Silk Alternative: Multiple Co-Evolution of Web Loss and Sticky Hairs in Spiders

    PubMed Central

    Wolff, Jonas O.; Nentwig, Wolfgang; Gorb, Stanislav N.

    2013-01-01

    Spiders are the most important terrestrial predators among arthropods. Their ecological success is reflected by a high biodiversity and the conquest of nearly every terrestrial habitat. Spiders are closely associated with silk, a material, often seen to be responsible for their great ecological success and gaining high attention in life sciences. However, it is often overlooked that more than half of all Recent spider species have abandoned web building or never developed such an adaptation. These species must have found other, more economic solutions for prey capture and retention, compensating the higher energy costs of increased locomotion activity. Here we show that hairy adhesive pads (scopulae) are closely associated with the convergent evolution of a vagrant life style, resulting in highly diversified lineages of at least, equal importance as the derived web building taxa. Previous studies often highlighted the idea that scopulae have the primary function of assisting locomotion, neglecting the fact that only the distal most pads (claw tufts) are suitable for those purposes. The former observations, that scopulae are used in prey capture, are largely overlooked. Our results suggest the scopulae evolved as a substitute for silk in controlling prey and that the claw tufts are, in most cases, a secondary development. Evolutionary trends towards specialized claw tufts and their composition from a low number of enlarged setae to a dense array of slender ones, as well as the secondary loss of those pads are discussed further. Hypotheses about the origin of the adhesive setae and their diversification throughout evolution are provided. PMID:23650526

  7. Shade Tree Diversity, Cocoa Pest Damage, Yield Compensating Inputs and Farmers' Net Returns in West Africa

    PubMed Central

    Daghela Bisseleua, Hervé Bertin; Fotio, Daniel; Yede; Missoup, Alain Didier; Vidal, Stefan

    2013-01-01

    Cocoa agroforests can significantly support biodiversity, yet intensification of farming practices is degrading agroforestry habitats and compromising ecosystem services such as biological pest control. Effective conservation strategies depend on the type of relationship between agricultural matrix, biodiversity and ecosystem services, but to date the shape of this relationship is unknown. We linked shade index calculated from eight vegetation variables, with insect pests and beneficial insects (ants, wasps and spiders) in 20 cocoa agroforests differing in woody and herbaceous vegetation diversity. We measured herbivory and predatory rates, and quantified resulting increases in cocoa yield and net returns. We found that number of spider webs and wasp nests significantly decreased with increasing density of exotic shade tree species. Greater species richness of native shade tree species was associated with a higher number of wasp nests and spider webs while species richness of understory plants did not have a strong impact on these beneficial species. Species richness of ants, wasp nests and spider webs peaked at higher levels of plant species richness. The number of herbivore species (mirid bugs and cocoa pod borers) and the rate of herbivory on cocoa pods decreased with increasing shade index. Shade index was negatively related to yield, with yield significantly higher at shade and herb covers<50%. However, higher inputs in the cocoa farms do not necessarily result in a higher net return. In conclusion, our study shows the importance of a diverse shade canopy in reducing damage caused by cocoa pests. It also highlights the importance of conservation initiatives in tropical agroforestry landscapes. PMID:23520451

  8. Low-Tech, Pilot Scale Purification of a Recombinant Spider Silk Protein Analog from Tobacco Leaves.

    PubMed

    Heppner, René; Weichert, Nicola; Schierhorn, Angelika; Conrad, Udo; Pietzsch, Markus

    2016-10-09

    Spider dragline is used by many members of the Araneae family not only as a proteinogenic safety thread but also for web construction. Spider dragline has been shown to possess high tensile strength in combination with elastic behavior. This high tensile strength can be attributed to the presence of antiparallel β-sheets within the thread; these antiparallel β-sheets are why the protein is classified as a silk. Due to the properties of spider silk and its technical and medical uses, including its use as a suture material and as a scaffold for tissue regeneration, spider dragline is a focus of the biotechnology industry. The production of sufficient amounts of spider silk is challenging, as it is difficult to produce large quantities of fibers because of the cannibalistic behavior of spiders and their large spatial requirements. In recent years, the heterologous expression of genes coding for spider silk analogs in various hosts, including plants such as Nicotiana tabacum , has been established. We developed a simple and scalable method for the purification of a recombinant spider silk protein elastin-like peptide fusion protein (Q-/K-MaSp1-100× ELP) after heterologous production in tobacco leaves involving heat and acetone precipitation. Further purification was performed using centrifugal Inverse Transition Cycling (cITC). Up to 400 mg of highly pure spider silk protein derivatives can be isolated from six kilograms of tobacco leaves, which is the highest amount of silk protein derivatives purified from plants thus far.

  9. Dynamic behaviour of silks: Nature's precision nanocomposites

    NASA Astrophysics Data System (ADS)

    Drodge, D. R.; Mortimer, B.; Siviour, C. R.; Holland, C.

    2012-08-01

    Silk is often cited as a material worth imitating, due to its high strength and toughness. In order to produce a synthetic analogue, or enhanced natural version, the microstructural basis of these properties must be understood. Current understanding is that silk deforms through the detachment of nano-scale crystallites, in the manner of a damaged composite. This picture forms the basis for constitutive models, but validation data is limited to low strain-rates. Here we present a programme of research in which high-rate behaviour is studied through ballistic impact experiments. These have been applied to the silk of the Bombyx mori moth, as harvested from cocoons, and to the major ampullate thread of the golden orb weaver spider Nephila edulis. Longitudinal wave-speeds, and air drag coefficients, have been calculated for selected cases. Differences between the response of various silks and a similar synthetic fibre, nylon, are discussed, and future plans are presented.

  10. Novel Particulate Air-Filtration Media: Market Survey

    DTIC Science & Technology

    2013-02-01

    efficiencies up to 99.999% (0.001% penetration) using two solid-state laser photometers to measure aerosol concentration levels up and downstream of...MN) Tetratex, Ultra-Web, Spider-Web, Dura-Life, Fiber-Web, and Syntek XP DuPont (Wilmington, DE) Spunbond Polypropylene , Nomex KD, and Hybrid...nanofiber technology. The meltblown textiles can be manufactured using polypropylene , polyamides, polylactic acid and biodegradable polymers

  11. Spider Anita - Skylab (SL)

    NASA Image and Video Library

    1973-08-27

    S73-33164 (27 Aug. 1973) --- A close-up view of Anita, one of the two common cross spiders “Araneus diadematus” aboard Skylab, is seen in this photographic reproduction of a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. A finger of one of the Skylab 3 crewmen points to Anita. The two spiders are housed in an enclosure onto which a motion picture and still camera are attached to record the spider’s attempt to build a web in the zero-gravity of space. The spider experiment (ED52) is one of 25 experiments selected by NASA for Skylab from more than 3,400 experiment proposals submitted by high school students throughout the nation. ED52 was submitted by 17-year old Judith S. Miles of Lexington, Mass. Photo credit: NASA

  12. The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells

    PubMed Central

    Wilson, David; McIntyre, Lachlan; Smith, Jennifer J.; Tribolet, Leon; Loukas, Alex; Liddell, Michael J.; Daly, Norelle L.

    2017-01-01

    Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA366, containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments. PMID:29077051

  13. The Aromatic Head Group of Spider Toxin Polyamines Influences Toxicity to Cancer Cells.

    PubMed

    Wilson, David; Boyle, Glen M; McIntyre, Lachlan; Nolan, Matthew J; Parsons, Peter G; Smith, Jennifer J; Tribolet, Leon; Loukas, Alex; Liddell, Michael J; Rash, Lachlan D; Daly, Norelle L

    2017-10-27

    Spider venoms constitute incredibly diverse libraries of compounds, many of which are involved in prey capture and defence. Polyamines are often prevalent in the venom and target ionotropic glutamate receptors. Here we show that a novel spider polyamine, PA 366 , containing a hydroxyphenyl-based structure is present in the venom of several species of tarantula, and has selective toxicity against MCF-7 breast cancer cells. By contrast, a polyamine from an Australian funnel-web spider venom, which contains an identical polyamine tail to PA 366 but an indole-based head-group, is only cytotoxic at high concentrations. Our results suggest that the ring structure plays a role in the cytotoxicity and that modification to the polyamine head group might lead to more potent and selective compounds with potential as novel cancer treatments.

  14. Helping Students Choose Tools To Search the Web.

    ERIC Educational Resources Information Center

    Cohen, Laura B.; Jacobson, Trudi E.

    2000-01-01

    Describes areas where faculty members can aid students in making intelligent use of the Web in their research. Differentiates between subject directories and search engines. Describes an engine's three components: spider, index, and search engine. Outlines two misconceptions: that Yahoo! is a search engine and that search engines contain all the…

  15. A Tank Bromeliad Favors Spider Presence in a Neotropical Inundated Forest

    PubMed Central

    Hénaut, Yann; Corbara, Bruno; Pélozuelo, Laurent; Azémar, Frédéric; Céréghino, Régis; Herault, Bruno; Dejean, Alain

    2014-01-01

    Tank bromeliads are good models for understanding how climate change may affect biotic associations. We studied the relationships between spiders, the epiphytic tank bromeliad, Aechmea bracteata, and its associated ants in an inundated forest in Quintana Roo, Mexico, during a drought period while, exceptionally, this forest was dry and then during the flooding that followed. We compared spider abundance and diversity between ‘Aechmea-areas’ and ‘control-areas’ of the same surface area. We recorded six spider families: the Dipluridae, Ctenidae, Salticidae, Araneidae, Tetragnathidae and Linyphiidae among which the funnel-web tarantula, Ischnothele caudata, the only Dipluridae noted, was the most abundant. During the drought period, the spiders were more numerous in the Aechmea-areas than in the control-areas, but they were not obligatorily associated with the Aechmea. During the subsequent flooding, the spiders were concentrated in the A. bracteata patches, particularly those sheltering an ant colony. Also, a kind of specificity existed between certain spider taxa and ant species, but varied between the drought period and subsequent flooding. We conclude that climatic events modulate the relationship between A. bracteata patches and their associated fauna. Tank bromeliads, previously considered only for their ecological importance in supplying food and water during drought, may also be considered refuges for spiders during flooding. More generally, tank bromeliads have an important role in preserving non-specialized fauna in inundated forests. PMID:25494055

  16. A Tank Bromeliad Favors Spider Presence in a Neotropical Inundated Forest.

    PubMed

    Hénaut, Yann; Corbara, Bruno; Pélozuelo, Laurent; Azémar, Frédéric; Céréghino, Régis; Herault, Bruno; Dejean, Alain

    2014-01-01

    Tank bromeliads are good models for understanding how climate change may affect biotic associations. We studied the relationships between spiders, the epiphytic tank bromeliad, Aechmea bracteata, and its associated ants in an inundated forest in Quintana Roo, Mexico, during a drought period while, exceptionally, this forest was dry and then during the flooding that followed. We compared spider abundance and diversity between 'Aechmea-areas' and 'control-areas' of the same surface area. We recorded six spider families: the Dipluridae, Ctenidae, Salticidae, Araneidae, Tetragnathidae and Linyphiidae among which the funnel-web tarantula, Ischnothele caudata, the only Dipluridae noted, was the most abundant. During the drought period, the spiders were more numerous in the Aechmea-areas than in the control-areas, but they were not obligatorily associated with the Aechmea. During the subsequent flooding, the spiders were concentrated in the A. bracteata patches, particularly those sheltering an ant colony. Also, a kind of specificity existed between certain spider taxa and ant species, but varied between the drought period and subsequent flooding. We conclude that climatic events modulate the relationship between A. bracteata patches and their associated fauna. Tank bromeliads, previously considered only for their ecological importance in supplying food and water during drought, may also be considered refuges for spiders during flooding. More generally, tank bromeliads have an important role in preserving non-specialized fauna in inundated forests.

  17. Changes in species diversity of arboreal spiders in Mexican coffee agroecosystems: untangling the web of local and landscape influences driving diversity

    PubMed Central

    Gonthier, David J.; Marín, Linda; Iverson, Aaron L.; Perfecto, Ivette

    2014-01-01

    Agricultural intensification is implicated as a major driver of global biodiversity loss. Local management and landscape scale factors both influence biodiversity in agricultural systems, but there are relatively few studies to date looking at how local and landscape scales influence biodiversity in tropical agroecosystems. Understanding what drives the diversity of groups of organisms such as spiders is important from a pragmatic point of view because of the important biocontrol services they offer to agriculture. Spiders in coffee are somewhat enigmatic because of their positive or lack of response to agricultural intensification. In this study, we provide the first analysis, to our knowledge, of the arboreal spiders in the shade trees of coffee plantations. In the Soconusco region of Chiapas, Mexico we sampled across 38 sites on 9 coffee plantations. Tree and canopy connectedness were found to positively influence overall arboreal spider richness and abundance. We found that different functional groups of spiders are responding to different local and landscape factors, but overall elevation was most important variable influencing arboreal spider diversity. Our study has practical management applications that suggest having shade grown coffee offers more suitable habitat for arboreal spiders due to a variety of the characteristics of the shade trees. Our results which show consistently more diverse arboreal spider communities in lower elevations are important in light of looming global climate change. As the range of suitable elevations for coffee cultivation shrinks promoting arboreal spider diversity will be important in sustaining the viability of coffee. PMID:25392751

  18. Short-range phenotypic divergence among genetically distinct parapatric populations of an Australian funnel-web spider.

    PubMed

    Wong, Mark K L; Woodman, James D; Rowell, David M

    2017-07-01

    Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel-web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285-392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110-kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders' behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.

  19. Silk gene expression of theridiid spiders: implications for male-specific silk use.

    PubMed

    Correa-Garhwal, Sandra M; Chaw, R Crystal; Clarke, Thomas H; Ayoub, Nadia A; Hayashi, Cheryl Y

    2017-06-01

    Spiders (order Araneae) rely on their silks for essential tasks, such as dispersal, prey capture, and reproduction. Spider silks are largely composed of spidroins, members of a protein family that are synthesized in silk glands. As needed, silk stored in silk glands is extruded through spigots on the spinnerets. Nearly all studies of spider silks have been conducted on females; thus, little is known about male silk biology. To shed light on silk use by males, we compared silk gene expression profiles of mature males to those of females from three cob-web weaving species (Theridiidae). We de novo assembled species-specific male transcriptomes from Latrodectus hesperus, Latrodectus geometricus, and Steatoda grossa followed by differential gene expression analyses. Consistent with their complement of silk spigots, male theridiid spiders express appreciable amounts of aciniform, major ampullate, minor ampullate, and pyriform spidroin genes but not tubuliform spidroin genes. The relative expression levels of particular spidroin genes varied between sexes and species. Because mature males desert their prey-capture webs and become cursorial in their search for mates, we anticipated that major ampullate (dragline) spidroin genes would be the silk genes most highly expressed by males. Indeed, major ampullate spidroin genes had the highest expression in S. grossa males. However, minor ampullate spidroin genes were the most highly expressed spidroin genes in L. geometricus and L. hesperus males. Our expression profiling results suggest species-specific adaptive divergence of silk use by male theridiids. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  20. Structural analysis of N-linked carbohydrate chains of funnel web spider (Agelenopsis aperta) venom peptide isomerase.

    PubMed

    Shikata, Y; Ohe, H; Mano, N; Kuwada, M; Asakawa, N

    1998-06-01

    The structure of the N-linked carbohydrate chains of peptide isomerase from the venom of the funnel web spider (Agelenopsis aperta) has been analyzed. Carbohydrates were released from peptide isomerase by hydrazinolysis and reductively aminated with 2-aminopyridine. The fluorescent derivatives were purified by phenol/chloroform extraction, followed by size-exclusion HPLC. The structure of the purified pyridylamino (PA-) carbohydrate chains were analyzed by a combination of two-dimensional HPLC mapping, sugar composition analysis, sequential exoglycosidase digestions, and mass spectrometry. The peptide isomerase contains six kinds of N-linked carbohydrate chains of truncated high-mannose type, with a fucose alpha 1-6 linked to the reducing N-acetylglucosamine in approximately 80% of them.

  1. Using group-specific PCR to detect predation of mayflies (Ephemeroptera) by wolf spiders (Lycosidae) at a mercury-contaminated site.

    PubMed

    Northam, Weston T; Allison, Lizabeth A; Cristol, Daniel A

    2012-02-01

    Bioaccumulation of contaminants can occur across ecosystem boundaries via transport by emergent aquatic insects. In the South River, Virginia, USA, aquatic mercury has contaminated songbirds nesting in adjacent riparian forests. Spiders contribute the majority of mercury to these songbirds' diets. We tested the hypothesis that massive annual mayfly emergences provide a vector for mercury from river sediments to the Lycosid spiders most frequently eaten by contaminated songbirds. We designed mayfly-specific PCR primers that amplified mtDNA from 76% of adult mayflies collected at this site. By combining this approach with an Agilent 2100 electrophoresis system, we created a highly sensitive test for mayfly predation by Lycosids, commonly known as wolf spiders. In laboratory spider feeding trials, mayfly DNA could be detected up to 192h post-ingestion; however, we detected no mayfly predation in a sample of 110 wolf spiders collected at the site during mayfly emergence. We suggest that mayfly predation is not an important mechanism for dietary transfer of mercury to wolf spiders and their avian predators at the South River. Instead, floodplain soil should be considered as a potential proximate source for mercury in the terrestrial food web. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The Effect of Organic Fertilizers and Flowering Plants on Sheet-Web and Wolf Spider Populations (Araneae: Lycosidae and Linyphiidae) and Its Importance for Pest Control

    PubMed Central

    El-Nabawy, El-Said M.; Tsuda, Katsuo; Sakamaki, Yositaka; Oda, Asahi; Ushijima, Yurie

    2016-01-01

    The main goal of this study was to identify the treatment that increases the populations of spiders, which are effective predators in agroecosystems. In 2013 and 2014 the experimental eggplant (Solanum melongena L.) field was two different treatments, organic fertilizers and chemical fertilizer treatment, and in 2014 we surrounded organic fertilizer plots with the flowering plants mealy cup sage (Salvia farinacea Benth.), spearmint (Mentha spicata L.), and basil (Ocimum basilicum L.). Analysis using repeated measures ANOVA revealed significant influences of fertilizer type on the numbers of linyphiid spiders and Collembola in 2013. In 2014, the numbers of Collembola, thrips, and lycosid and linyphiid spider were higher in organic fertilizer with flowering plants treatment comparing with the chemical fertilizer treatment. Moreover, the numbers of Henosepilachna vigintioctopunctata (F.) were significantly lower in the organic fertilizer with flowering plants treatment than in chemical fertilizers treatment. Finally, we expect that Thysanoptera and Collembola were important alternative prey for linyphiid and lycosid spiders and the use of organic fertilizer and flowering plants enhanced the density of these spiders, and may increase their effectiveness in suppressing the populations of H. vigintioctopunctata (F.). PMID:28076280

  3. Silk-Quality, Spinnability and Low Temperature Behavior

    DTIC Science & Technology

    2015-12-02

    dry  silk  radial  and   web  frame  threads.    In   this  study  we  experimentally  demonstrated...green  dashed  line),   nylon  (orange),  Nephila  major  ampullate  spider  silk  ( dry :  black,  wet:  cyan).  Asterisk...gives  low  tension,   dry   Aciniform  spider  silk.  [  33  ]  For  the  major

  4. Behavioural hypervolumes of spider communities predict community performance and disbandment

    PubMed Central

    Sih, Andrew; DiRienzo, Nicholas; Pinter-Wollman, Noa

    2016-01-01

    Trait-based ecology argues that an understanding of the traits of interactors can enhance the predictability of ecological outcomes. We examine here whether the multidimensional behavioural-trait diversity of communities influences community performance and stability in situ. We created experimental communities of web-building spiders, each with an identical species composition. Communities contained one individual of each of five different species. Prior to establishing these communities in the field, we examined three behavioural traits for each individual spider. These behavioural measures allowed us to estimate community-wide behavioural diversity, as inferred by the multidimensional behavioural volume occupied by the entire community. Communities that occupied a larger region of behavioural-trait space (i.e. where spiders differed more from each other behaviourally) gained more mass and were less likely to disband. Thus, there is a community-wide benefit to multidimensional behavioural diversity in this system that might translate to other multispecies assemblages. PMID:27974515

  5. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs

    USGS Publications Warehouse

    Kraus, Johanna M.; Schmidt, Travis S.; Walters, David; Wanty, Richard B.; Zuellig, Robert E.; Wolf, Ruth E.

    2014-01-01

    The effects of aquatic contaminants are propagated across ecosystem boundaries by aquatic insects that export resources and contaminants to terrestrial food webs; however, the mechanisms driving these effects are poorly understood. We examined how emergence, contaminant concentration, and total contaminant flux by adult aquatic insects changed over a gradient of bioavailable metals in streams and how these changes affected riparian web-building spiders. Insect emergence decreased 97% over the metal gradient, whereas metal concentrations in adult insects changed relatively little. As a result, total metal exported by insects (flux) was lowest at the most contaminated streams, declining 96% among sites. Spiders were affected by the decrease in prey biomass, but not by metal exposure or metal flux to land in aquatic prey. Aquatic insects are increasingly thought to increase exposure of terrestrial consumers to aquatic contaminants, but stream metals reduce contaminant flux to riparian consumers by strongly impacting the resource linkage. Our results demonstrate the importance of understanding the contaminant-specific effects of aquatic pollutants on adult insect emergence and contaminant accumulation in adults to predict impacts on terrestrial food webs.

  6. Innovative encapsulated oxygen-releasing beads for bioremediation of BTEX at high concentration in groundwater.

    PubMed

    Lin, Chi-Wen; Wu, Chih-Hung; Guo, Pei-Yu; Chang, Shih-Hsien

    2017-12-15

    Both a low concentration of dissolved oxygen and the toxicity of a high concentration of BTEX inhibit the bioremediation of BTEX in groundwater. A novel method of preparing encapsulated oxygen-releasing beads (encap-ORBs) for the biodegradation of BTEX in groundwater was developed. Experimental results show that the integrality and oxygen-releasing capacity of encap-ORBs exceeded those of ORBs. The use of polyvinyl alcohol (PVA) with high M.W. to prepare encap-ORBs improved their integrality. The encap-ORBs effectively released oxygen for 128 days. High concentration of BTEX (480 mg L -1 ) inhibited the biodegradation by the free cells. Immobilization of degraders in the encap-ORB alleviated the inhibition. Scanning electron microscope analysis reveals that the BTEX degraders grew on the surface of encap-ORB after bioremediation. The above results indicate that the encap-ORBs were effective in the bioremediation of BTEX at high concentration in groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Insect form vision as one potential shaping force of spider web decoration design.

    PubMed

    Cheng, R-C; Yang, E-C; Lin, C-P; Herberstein, M E; Tso, I-M

    2010-03-01

    Properties of prey sensory systems are important factors shaping the design of signals generated by organisms exploiting them. In this study we assessed how prey sensory preference affected the exploiter signal design by investigating the evolutionary relationship and relative attractiveness of linear and cruciate form web decorations built by Argiope spiders. Because insects have an innate preference for bilaterally symmetrical patterns, we hypothesized that cruciate form decorations were evolved from linear form due to their higher visual attractiveness to insects. We first reconstructed a molecular phylogeny of the Asian members of the genus Argiope using mitochondrial markers to infer the evolutionary relationship of two decoration forms. Results of ancestral character state reconstruction showed that the linear form was ancestral and the cruciate form derived. To evaluate the luring effectiveness of two decoration forms, we performed field experiments in which the number and orientation of decoration bands were manipulated. Decoration bands arranged in a cruciate form were significantly more attractive to insects than those arranged in a linear form, no matter whether they were composed of silks or dummies. Moreover, dummy decoration bands arranged in a cruciate form attracted significantly more insects than those arranged in a vertical/horizontal form. Such results suggest that pollinator insects' innate preference for certain bilateral or radial symmetrical patterns might be one of the driving forces shaping the arrangement pattern of spider web decorations.

  8. Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining.

    PubMed

    Hettne, Kristina M; Williams, Antony J; van Mulligen, Erik M; Kleinjans, Jos; Tkachenko, Valery; Kors, Jan A

    2010-03-23

    Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics.org/chemlist.

  9. Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining

    PubMed Central

    2010-01-01

    Background Previously, we developed a combined dictionary dubbed Chemlist for the identification of small molecules and drugs in text based on a number of publicly available databases and tested it on an annotated corpus. To achieve an acceptable recall and precision we used a number of automatic and semi-automatic processing steps together with disambiguation rules. However, it remained to be investigated which impact an extensive manual curation of a multi-source chemical dictionary would have on chemical term identification in text. ChemSpider is a chemical database that has undergone extensive manual curation aimed at establishing valid chemical name-to-structure relationships. Results We acquired the component of ChemSpider containing only manually curated names and synonyms. Rule-based term filtering, semi-automatic manual curation, and disambiguation rules were applied. We tested the dictionary from ChemSpider on an annotated corpus and compared the results with those for the Chemlist dictionary. The ChemSpider dictionary of ca. 80 k names was only a 1/3 to a 1/4 the size of Chemlist at around 300 k. The ChemSpider dictionary had a precision of 0.43 and a recall of 0.19 before the application of filtering and disambiguation and a precision of 0.87 and a recall of 0.19 after filtering and disambiguation. The Chemlist dictionary had a precision of 0.20 and a recall of 0.47 before the application of filtering and disambiguation and a precision of 0.67 and a recall of 0.40 after filtering and disambiguation. Conclusions We conclude the following: (1) The ChemSpider dictionary achieved the best precision but the Chemlist dictionary had a higher recall and the best F-score; (2) Rule-based filtering and disambiguation is necessary to achieve a high precision for both the automatically generated and the manually curated dictionary. ChemSpider is available as a web service at http://www.chemspider.com/ and the Chemlist dictionary is freely available as an XML file in Simple Knowledge Organization System format on the web at http://www.biosemantics.org/chemlist. PMID:20331846

  10. Automated facial recognition and candidate list rank change of computer generated facial approximations generated with multiple eye orb positions.

    PubMed

    Parks, Connie L; Monson, Keith L

    2016-09-01

    Expanding on research previously reported by the authors, this study further examines the recognizability of ReFace facial approximations generated with the following eye orb positions: (i) centrally within the bony eye socket, (ii) 1.0mm superior and 2.0mm lateral relative to center, and (iii) 1.0mm superior and 2.5mm lateral relative to center. Overall, 81% of the test subjects' approximation ranks improved with the use of either of the two supero-lateral eye orbs. Highly significant performance differences (p<0.01) were observed between the approximations with centrally positioned eye orbs (i) and approximations with the eye orbs placed in the supero-laterally positions (ii and iii). Noteworthy was the observation that in all cases when the best rank for an approximation was obtained with the eye orbs in position (iii), the second best rank was achieved with the eye orbs in position (ii). A similar pattern was also observed when the best rank was obtained with the eye orbs in position (ii), with 60% of the second best ranks observed in position (iii). It is argued, therefore, that an approximation constructed with the eye orbs placed in either of the two supero-lateral positions may be more effective and operationally informative than centrally positioned orbs. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Discovery of Sound in the Sea (DOSITS) Web Site Development

    DTIC Science & Technology

    2016-06-20

    of Sound in the Sea (DOSITS) Web Site Development 5b. GRANT NUMBER NOOO 14- 12- 1-0169 5c. PROGRAM ELEMENT NUMBER 6 . AUTHOR(S) 5d. PROJECT NUMBER...DOSITS) Web Site Development ONR Grant N00014-12-1-0169 Period of Performance: 01 January 2012- 31 December 2014 Principal Investigator Peter F...The web traffic numbers exclude all known search engines and other spiders, as well as traffic from the University of Rhode Island Graduate School

  12. The diving bell and the spider: the physical gill of Argyroneta aquatica.

    PubMed

    Seymour, Roger S; Hetz, Stefan K

    2011-07-01

    Argyroneta aquatica is a unique air-breathing spider that lives virtually its entire life under freshwater. It creates a dome-shaped web between aquatic plants and fills the diving bell with air carried from the surface. The bell can take up dissolved O(2) from the water, acting as a 'physical gill'. By measuring bell volume and O(2) partial pressure (P(O(2))) with tiny O(2)-sensitive optodes, this study showed that the spiders produce physical gills capable of satisfying at least their resting requirements for O(2) under the most extreme conditions of warm stagnant water. Larger spiders produced larger bells of higher O(2) conductance (G(O(2))). G(O(2)) depended on surface area only; effective boundary layer thickness was constant. Bells, with and without spiders, were used as respirometers by measuring G(O(2)) and the rate of change in P(O(2)). Metabolic rates were also measured with flow-through respirometry. The water-air P(O(2)) difference was generally less than 10 kPa, and spiders voluntarily tolerated low internal P(O(2)) approximately 1-4 kPa before renewal with air from the surface. The low P(O(2)) in the bell enhanced N(2) loss from the bell, but spiders could remain inside for more than a day without renewal. Spiders appeared to enlarge the bells in response to higher O(2) demands and lower aquatic P(O(2)).

  13. Solving a novel confinement problem by spartaeine salticids that are predisposed to solve problems in the context of predation.

    PubMed

    Cross, Fiona R; Jackson, Robert R

    2015-03-01

    Intricate predatory strategies are widespread in the salticid subfamily Spartaeinae. The hypothesis we consider here is that the spartaeine species that are proficient at solving prey-capture problems are also proficient at solving novel problems. We used nine species from this subfamily in our experiments. Eight of these species (two Brettus, one Cocalus, three Cyrba, two Portia) are known for specialized invasion of other spiders' webs and for actively choosing other spiders as preferred prey ('araneophagy'). Except for Cocalus, these species also use trial and error to derive web-based signals with which they gain dynamic fine control of the resident spider's behaviour ('aggressive mimicry').The ninth species, Paracyrba wanlessi, is not araneophagic and instead specializes at preying on mosquitoes. We presented these nine species with a novel confinement problem that could be solved by trial and error. The test spider began each trial on an island in a tray of water, with an atoll surrounding the island. From the island, the spider could choose between two potential escape tactics (leap or swim), but we decided at random before the trial which tactic would fail and which tactic would achieve partial success. Our findings show that the seven aggressive-mimic species are proficient at solving the confinement problem by repeating 'correct' choices and by switching to the alternative tactic after making an 'incorrect' choice. However, as predicted, there was no evidence of C. gibbosus or P. wanlessi, the two non-aggressive-mimic species, solving the confinement problem. We discuss these findings in the context of an often-made distinction between domain-specific and domain-general cognition.

  14. Large-scale fabrication of bioinspired fibers for directional water collection.

    PubMed

    Bai, Hao; Sun, Ruize; Ju, Jie; Yao, Xi; Zheng, Yongmei; Jiang, Lei

    2011-12-16

    Spider-silk inspired functional fibers with periodic spindle-knots and the ability to collect water in a directional manner are fabricated on a large scale using a fluid coating method. The fabrication process is investigated in detail, considering factors like the fiber-drawing velocity, solution viscosity, and surface tension. These bioinspired fibers are inexpensive and durable, which makes it possible to collect water from fog in a similar manner to a spider's web. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Contrasting effects of aquatic subsidies on a terrestrial trophic cascade

    PubMed Central

    Bucher, Roman; Schäfer, Ralf B.; Entling, Martin H.

    2017-01-01

    Subsidies from adjacent ecosystems can alter recipient food webs and ecosystem functions, such as herbivory. Emerging aquatic insects from streams can be an important prey in the riparian zone. Such aquatic subsidies can enhance predator abundances or cause predators to switch prey, depending on the herbivores. This can lead to an increase or decrease of in situ herbivores and herbivory. We examined the effects of aquatic subsidies on a simplified terrestrial food web consisting of two types of herbivores, plants and predators (spiders). In our six-week experiment, we focused on the prey choice of the spiders by excluding predator immigration and reproduction. In accordance with predator switching, survival of leafhoppers increased in the presence of aquatic subsidies. By contrast, the presence of aquatic subsidies indirectly reduced weevils and herbivory. Our study shows that effects of aquatic subsidies on terrestrial predators can propagate through the food web in contrasting ways. Thereby, the outcome of the trophic cascade is determined by the prey choice of predators. PMID:28539461

  16. Contrasting effects of aquatic subsidies on a terrestrial trophic cascade.

    PubMed

    Graf, Nadin; Bucher, Roman; Schäfer, Ralf B; Entling, Martin H

    2017-05-01

    Subsidies from adjacent ecosystems can alter recipient food webs and ecosystem functions, such as herbivory. Emerging aquatic insects from streams can be an important prey in the riparian zone. Such aquatic subsidies can enhance predator abundances or cause predators to switch prey, depending on the herbivores. This can lead to an increase or decrease of in situ herbivores and herbivory. We examined the effects of aquatic subsidies on a simplified terrestrial food web consisting of two types of herbivores, plants and predators (spiders). In our six-week experiment, we focused on the prey choice of the spiders by excluding predator immigration and reproduction. In accordance with predator switching, survival of leafhoppers increased in the presence of aquatic subsidies. By contrast, the presence of aquatic subsidies indirectly reduced weevils and herbivory. Our study shows that effects of aquatic subsidies on terrestrial predators can propagate through the food web in contrasting ways. Thereby, the outcome of the trophic cascade is determined by the prey choice of predators. © 2017 The Author(s).

  17. Transmitter release and presynaptic Ca2+ currents blocked by the spider toxin omega-Aga-IVA.

    PubMed

    Protti, D A; Uchitel, O D

    1993-12-13

    Mammalian neuromuscular transmission is resistant to L and N type calcium channel blockers but very sensitive to a low molecular weight funnel web spider venom toxin, FTX, which selectively blocks P type calcium channels. To further characterize the calcium channels involved in neuromuscular transmission we studied the effect of omega Agatoxin (omega-Aga-IVA) a polypeptide P type channel blocker from the same spider venom. We show that omega-Aga-IVA is a potent and irreversible inhibitor of the presynaptic Ca2+ currents and of acetylcholine release induced by electrical stimulation or by K+ depolarization. This provides further evidences that transmitter release at the mammalian neuromuscular junction is mediated by P type Ca2+ channels.

  18. Species delimitation of the North American orchard-spider Leucauge venusta (Walckenaer, 1841) (Araneae, Tetragnathidae).

    PubMed

    Ballesteros, Jesús A; Hormiga, Gustavo

    2018-04-01

    The orchard spider, Leucauge venusta (Walckenaer, 1841) is one of the most common and abundant orb-weavers in North America. This species has a broad geographic distribution extending across tropical and temperate regions of the Americas from Canada to Brazil. Guided by a preliminary observation of the barcode gap between sequences from specimens of L. venusta collected in Florida and other North American localities, we collected across a transect through the southeastern USA to investigate the observed genetic divide. The dataset, complemented with additional samples from Mexico, and Brazil was analyzed for species delimitation using STACEY and bGMYC based on sequences from one nuclear (ITS2) and one mitochondrial marker (COI). The analyses clearly separate USA samples into two deeply divergent and geographically structured groups (north-south) which we interpret as two different species. We generated ecological niche models for these two groups rejecting a niche equivalence hypothesis for these lineages. Taxonomic changes are proposed based on these findings, Leucauge venusta is restricted to denote the northern clade, and its known distribution restricted to the USA. Leucauge argyrobapta (White, 1841) is removed from synonymy to denote the populations in Florida, Mexico and Brazil. Although the delimitation analyses suggest each of these geographic clusters within the L. argyrobapta samples represent different species, more specimens from Central and South America are needed to properly test the cohesion of L. argyrobapta populations. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. The Effect of Organic Fertilizers and Flowering Plants on Sheet-Web and Wolf Spider Populations (Araneae: Lycosidae and Linyphiidae) and Its Importance for Pest Control.

    PubMed

    El-Nabawy, El-Said M; Tsuda, Katsuo; Sakamaki, Yositaka; Oda, Asahi; Ushijima, Yurie

    2016-01-01

    The main goal of this study was to identify the treatment that increases the populations of spiders, which are effective predators in agroecosystems. In 2013 and 2014 the experimental eggplant (Solanum melongena L.) field was two different treatments, organic fertilizers and chemical fertilizer treatment, and in 2014 we surrounded organic fertilizer plots with the flowering plants mealy cup sage (Salvia farinacea Benth.), spearmint (Mentha spicata L.), and basil (Ocimum basilicum L.). Analysis using repeated measures ANOVA revealed significant influences of fertilizer type on the numbers of linyphiid spiders and Collembola in 2013. In 2014, the numbers of Collembola, thrips, and lycosid and linyphiid spider were higher in organic fertilizer with flowering plants treatment comparing with the chemical fertilizer treatment. Moreover, the numbers of Henosepilachna vigintioctopunctata (F.) were significantly lower in the organic fertilizer with flowering plants treatment than in chemical fertilizers treatment. Finally, we expect that Thysanoptera and Collembola were important alternative prey for linyphiid and lycosid spiders and the use of organic fertilizer and flowering plants enhanced the density of these spiders, and may increase their effectiveness in suppressing the populations of H. vigintioctopunctata (F.). © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  20. SVM-Based Prediction of Propeptide Cleavage Sites in Spider Toxins Identifies Toxin Innovation in an Australian Tarantula

    PubMed Central

    Wong, Emily S. W.; Hardy, Margaret C.; Wood, David; Bailey, Timothy; King, Glenn F.

    2013-01-01

    Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree) and developed an algorithm (SpiderP) for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM) framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor) from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP) is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html), a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from the SpiderP website. PMID:23894279

  1. Morphological evolution of spiders predicted by pendulum mechanics.

    PubMed

    Moya-Laraño, Jordi; Vinković, Dejan; De Mas, Eva; Corcobado, Guadalupe; Moreno, Eulalia

    2008-03-26

    Animals have been hypothesized to benefit from pendulum mechanics during suspensory locomotion, in which the potential energy of gravity is converted into kinetic energy according to the energy-conservation principle. However, no convincing evidence has been found so far. Demonstrating that morphological evolution follows pendulum mechanics is important from a biomechanical point of view because during suspensory locomotion some morphological traits could be decoupled from gravity, thus allowing independent adaptive morphological evolution of these two traits when compared to animals that move standing on their legs; i.e., as inverted pendulums. If the evolution of body shape matches simple pendulum mechanics, animals that move suspending their bodies should evolve relatively longer legs which must confer high moving capabilities. We tested this hypothesis in spiders, a group of diverse terrestrial generalist predators in which suspensory locomotion has been lost and gained a few times independently during their evolutionary history. In spiders that hang upside-down from their webs, their legs have evolved disproportionately longer relative to their body sizes when compared to spiders that move standing on their legs. In addition, we show how disproportionately longer legs allow spiders to run faster during suspensory locomotion and how these same spiders run at a slower speed on the ground (i.e., as inverted pendulums). Finally, when suspensory spiders are induced to run on the ground, there is a clear trend in which larger suspensory spiders tend to run much more slowly than similar-size spiders that normally move as inverted pendulums (i.e., wandering spiders). Several lines of evidence support the hypothesis that spiders have evolved according to the predictions of pendulum mechanics. These findings have potentially important ecological and evolutionary implications since they could partially explain the occurrence of foraging plasticity and dispersal constraints as well as the evolution of sexual size dimorphism and sociality.

  2. Effects of extreme climatic events on small-scale spatial patterns: a 20-year study of the distribution of a desert spider.

    PubMed

    Birkhofer, Klaus; Henschel, Joh; Lubin, Yael

    2012-11-01

    Individuals of most animal species are non-randomly distributed in space. Extreme climatic events are often ignored as potential drivers of distribution patterns, and the role of such events is difficult to assess. Seothyra henscheli (Araneae, Eresidae) is a sedentary spider found in the Namib dunes in Namibia. The spider constructs a sticky-edged silk web on the sand surface, connected to a vertical, silk-lined burrow. Above-ground web structures can be damaged by strong winds or heavy rainfall, and during dispersal spiders are susceptible to environmental extremes. Locations of burrows were mapped in three field sites in 16 out of 20 years from 1987 to 2007, and these grid-based data were used to identify the relationship between spatial patterns, climatic extremes and sampling year. According to Morisita's index, individuals had an aggregated distribution in most years and field sites, and Geary's C suggests clustering up to scales of 2 m. Individuals were more aggregated in years with high maximum wind speed and low annual precipitation. Our results suggest that clustering is a temporally stable property of populations that holds even under fluctuating burrow densities. Climatic extremes, however, affect the intensity of clustering behaviour: individuals seem to be better protected in field sites with many conspecific neighbours. We suggest that burrow-site selection is driven at least partly by conspecific cuing, and this behaviour may protect populations from collapse during extreme climatic events.

  3. Extended spider cognition.

    PubMed

    Japyassú, Hilton F; Laland, Kevin N

    2017-05-01

    There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.

  4. Compliant threads maximize spider silk connection strength and toughness

    PubMed Central

    Meyer, Avery; Pugno, Nicola M.; Cranford, Steven W.

    2014-01-01

    Millions of years of evolution have adapted spider webs to achieve a range of functionalities, including the well-known capture of prey, with efficient use of material. One feature that has escaped extensive investigation is the silk-on-silk connection joints within spider webs, particularly from a structural mechanics perspective. We report a joint theoretical and computational analysis of an idealized silk-on-silk fibre junction. By modifying the theory of multiple peeling, we quantitatively compare the performance of the system while systematically increasing the rigidity of the anchor thread, by both scaling the stress–strain response and the introduction of an applied pre-strain. The results of our study indicate that compliance is a virtue—the more extensible the anchorage, the tougher and stronger the connection becomes. In consideration of the theoretical model, in comparison with rigid substrates, a compliant anchorage enormously increases the effective adhesion strength (work required to detach), independent of the adhered thread itself, attributed to a nonlinear alignment between thread and anchor (contact peeling angle). The results can direct novel engineering design principles to achieve possible load transfer from compliant fibre-to-fibre anchorages, be they silk-on-silk or another, as-yet undeveloped, system. PMID:25008083

  5. A Putative Biochemical Engram of Long-term Memory

    PubMed Central

    Li, Liying; Sanchez, Consuelo Perez; Slaughter, Brian D.; Zhao, Yubai; Khan, Mohammed Repon; Unruh, Jay R.; Rubinstein, Boris; Si, Kausik

    2016-01-01

    Summary How a transient experience creates an enduring yet dynamic memory remains an unresolved issue in studies of memory. Experience-dependent aggregation of the RNA-binding protein CPEB/Orb2 is one of the candidate mechanisms of memory maintenance. Here, using tools that allow rapid and reversible inactivation of Orb2 protein in neurons we find that Orb2 activity is required for encoding and recall of memory. From a screen we have identified a DNA-J family chaperone, JJJ2, which facilitates Orb2 aggregation, and ectopic expression of JJJ2 enhances the animal’s capacity to form long-term memory. Finally, we have developed tools to visualize training-dependent aggregation of Orb2. We find that aggregated Orb2 in a subset of mushroom body neurons can serve as a “molecular signature” of memory and predict memory strength. Our data indicates that self-sustaining aggregates of Orb2 may serve as a physical substrate of memory and provide a molecular basis for the perduring yet malleable nature of memory. PMID:27818176

  6. Quantitative immunodetection of metallothioneins in relation to metals concentration in spiders from variously polluted areas.

    PubMed

    Babczyńska, Agnieszka; Wilczek, Grażyna; Szulińska, Elżbieta; Franiel, Izabella

    2011-09-01

    Spiders inhabiting post industrial environments, such as waste heaps or ore-bearing areas, are exposed to high concentrations of metals, accumulated in the body of their prey and transferred along food chains. Therefore spiders are pressed to develop metal-neutralization strategies. Low-molecular, multifunction proteins: metallothioneins (MTs), often postulated as biomarkers of metal exposure, are known to bind metals and thus protect organisms against their toxic effects. Yet the proteins are still not well recognized in spiders. The aim of this study was to assess, by immunodetection method, ELISA, the concentration of metallothioneins in adult females of three web building spider species: Araneus diadematus (Araneidae), Agelena labyrinthica (Agelenidae) and Linyphia triangularis (Linyphiidae) from three variously polluted areas in southern Poland: Olkusz, ore-bearing post industrial site; Katowice-WeŁnowiec: post metallurgic waste heap, Pilica: the reference, rural, area. The concentration of metallothioneins has been analyzed in relation to the metal concentration in spiders body. The study gives the evidence that metallothioneins are reliably detectable by means of ELISA technique. The analysis of results obtained shows a strong species-dependence of the MTs level. Positive correlations between MTs concentration and metal body burden (mainly Zn and Pb) were found. This suggests that the proteins play an important role in the neutralization and regulation of metal ions in spiders. The same correlation indicate the possibility to consider MTs in spiders as biomarkers of metal exposure and effects. However, the species specificity as well as metal characteristics should be taken under account. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Arabella

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Arabella, a common cross spider, spins an earthly web aboard the second Skylab mission in 1973 after initial disoriented attempts. The experiment, Web Formation in Zero Gravity, part of the Skylab Student Project, was submitted by Judith Miles, a junior at Lexington High School in Lexington, Massachusetts. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments, including the Skylab Student Project.

  8. Spider Webs

    NASA Image and Video Library

    2016-10-19

    This image shows a lava channel north of Kuiper Crater in the high southern latitudes just before spring equinox. It was a target suggested by members of the public, using our suggestion tool called HiWish. The channel confluence at the top of the image illustrates interesting volcanic processes that took place long ago. However, it was the mounds on the rim of the channel to the south of the confluence that we initially found alarming. These mounds, up to 400 meters in diameter, are decorated by radial and concentric patterns that resemble spider webs. Radial and concentric fractures are familiar from forces penetrating a brittle layer, such as a rock thrown through a glass window. These particular fractures were evidently produced by something emerging from below the brittle surface of Mars. It seems likely that ice lenses, resulting from the accumulation of ice beneath the surface, created these peculiar mounds. Ice is less dense than rock, so the buried ice rose and pushed upwards on the surface and generated these spider web-like patterns. An analogous process creates similar sized mounds in arctic tundra on Earth that are known as "pingos," an Inuit word. The Martian fractures in this location are nowadays filled with dust instead of ice, so it is unclear how long ago this activity took place. It seems likely that these pingo-forming periglacial processes took place much more recently than the volcanic activity also evident in this region of Mars. http://photojournal.jpl.nasa.gov/catalog/PIA21110

  9. Morphology controlled synthesis of 2-D Ni-Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Oh, Aram; Sa, Young Jin; Jin, Haneul; Baik, Hionsuck; Kim, Sang Gu; Lee, Suk Joong; Joo, Sang Hoon; Lee, Kwangyeol

    2017-03-01

    Catalysts for oxygen evolution reactions (OER) are at the heart of key renewable energy technologies, and development of non-precious metal catalysts with high activity and stability remain a great challenge in this field. Among various material candidates, metal sulfides are receiving increasing attention. While morphology-dependent catalytic performances are well established in noble metal-based catalysts, relatively little is known for the morphology‒catalytic performance relationship in metal sulfide catalysts. In this study, uniform spider web-like Ni nanosheets-Ni3S2 and honeycomb-like Ni3S2 structures are deposited on nickel foam (Ni3S2/NF) by a facile one-step hydrothermal synthetic route. When used as an oxygen evolution electrode, the spider web-like Ni-Ni3S2/NF with the large exposed surface area shown excellent catalytic activity and stability with an overpotential of 310 mV to achieve at 10 mA/cm2 and a Tafel slope of 63 mV/dec in alkaline media, which is superior to the honeycomb-like structure without Ni nanosheet. The low Tafel slope of the spider web-like Ni-Ni3S2/NF represents one of the best OER kinetics among nickel sulfide-based OER catalysts. The results point to the fact that performance of the metal sulfide electrocatalysts might be fine-tuned and optimized with morphological controls.

  10. GeoEye(TradeMark) Corporate Overview

    NASA Technical Reports Server (NTRS)

    Jones, Dennis

    2007-01-01

    This viewgraph presentation gives a corporate overview of GeoEye, the world's largest commercial remote sensing company. The contents include: 1) About GeoEye; 2) GeoEye Mission; 3) The Company; 4) Com,pany Summary; 5) U.S. Government Commitment; 6) GeoEye Constellation; 7) Other Imaging Resources; 8) OrbView-3 & OrbView-2; 9) OrbView-3 System Architecture; 10) OrbView-3; 11) OrbView-2; 12) IKONOS; 13) Largest Image Archive in the World; 14) GeoEye-1; 15) Best-In-Class Development Team; 16) Highest Performance Available in the Commercial Market; and 17) Key Themes

  11. The impact of El Nino on island ecosystems in the gulf of California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polis, G.A.; Hurd, S.D.

    The El Nino event of 1992-1993 had significant effects on all functional levels of the terrestrial food web of islands in the Gulf of California. These islands are normally very dry; however, during this El Nino event, annual precipitation was nearly five times the median annual precipitation. This caused tremendous increases in plant cover and a significant rise in aerial arthropod abundance. At first, spiders benefited from increased productivity: in 1992, spiders increased to their highest densities in the three years of the study. However, in 1993, despite continued high plant cover and insect prey abundance, spider densities dropped precipitously.more » This decrease appears to be due to the emergence of numerous parasitoid wasps that formed a hidden trophic influence. Wasps were ineffective at controlling spider densities during dry years due to the absence of their adult food, nectar and pollen from flowering land plants. Abundant flowers during El Nino allowed the wasp population to increase and reproduce successfully.« less

  12. Trophic Interactions in Louisiana Salt Marshes: Combining Stomach Content, Stable Isotope, and Fatty Acid Approaches

    NASA Astrophysics Data System (ADS)

    Lopez-Duarte, P. C.; Able, K.; Fodrie, J.; McCann, M. J.; Melara, S.; Noji, C.; Olin, J.; Pincin, J.; Plank, K.; Polito, M. J.; Jensen, O.

    2016-02-01

    Multiple studies conducted over five years since the 2010 Macondo oil spill in the Gulf of Mexico indicate that oil impacts vary widely among taxonomic groups. For instance, fishes inhabiting the marsh surface show no clear differences in either community composition or population characteristics between oiled and unoiled sites, despite clear evidence of physiological impacts on individual fish. In contrast, marsh insects and spiders are sensitive to the effects of hydrocarbons. Both insects and spiders are components of the marsh food web and represent an important trophic link between marsh plants and higher trophic levels. Because differences in oil impacts throughout the marsh food web have the potential to significantly alter food webs and energy flow pathways and reduce food web resilience, our goal is to quantify differences in marsh food webs between oiled and unoiled sites to test the hypothesis that oiling has resulted in simpler and less resilient food webs. Diets and food web connections were quantified through a combination of stomach content, stable isotope, and fatty acid analysis. The combination of these three techniques provides a more robust approach to quantifying trophic relationships than any of these methods alone. Stomach content analysis provides a detailed snapshot of diets, while fatty acid and stable isotopes reflect diets averaged over weeks to months. Initial results focus on samples collected in May 2015 from a range of terrestrial and aquatic consumer species, including insects, mollusks, crustaceans, and piscivorous fishes.

  13. The distance that contaminated aquatic subsidies extend into lake riparian zones.

    PubMed

    Raikow, David F; Walters, David M; Fritz, Ken M; Mills, Marc A

    2011-04-01

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by delta13C and delta15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of 5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process.

  14. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay

    PubMed Central

    Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A.; Martínez, Sebastián; Casales, Luis; Caraballo, María P.; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    Abstract The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country. PMID:29755261

  15. The distance that contaminated aquatic subsidies extend into lake riparian zones

    USGS Publications Warehouse

    Raikow, D.F.; Walters, D.M.; Fritz, K.M.; Mills, M.A.

    2011-01-01

    Consumption of emergent aquatic insects by terrestrial invertebrates is a poorly resolved, but potentially important, mechanism of contaminant flux across ecosystem borders leading to contaminant exposure in terrestrial invertivores. We characterized the spatial extent and magnitude of contaminant transfer from aquatic sediments to terrestrial invertebrate predators by examining riparian araneid spiders, terrestrial insects, and emergent aquatic insects for stable isotopes and polychlorinated biphenyls (PCBs, sum of 141 congeners) at Lake Hartwell, (Clemson, South Carolina, USA). PCB concentrations in aquatic insects were orders of magnitude higher than in terrestrial insects. Aquatic insect consumption by spiders (as indicated by ??13C and ??15N), PCB concentrations in spiders, and aquatic prey availability were greatest at the shoreline and declined inland, while terrestrial prey availability was invariant with distance. These patterns indicate PCB transfer to spiders through consumption of emergent aquatic insects extending to a distance of ???5 m inland. Measurable, but much lower, PCBs were present in insect predators dominated by social wasps up to 30 m inland. These results illustrate the importance of emergent insects as vectors of contaminant transfer from lake sediments to riparian food webs, and that spiders are key predators in this process. ?? 2011 by the Ecological Society of America.

  16. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay.

    PubMed

    Bao, Leticia; Ginella, Juaquín; Cadenazzi, Mónica; Castiglioni, Enrique A; Martínez, Sebastián; Casales, Luis; Caraballo, María P; Laborda, Álvaro; Simo, Miguel

    2018-01-01

    The rice crop and associated ecosystems constitute a rich mosaic of habitats that preserve a rich biological diversity. Spiders are an abundant and successful group of natural predators that are considered efficient in the biocontrol of the major insect pests in agroecosystems. Spider diversity in different stages of the rice crop growth from eastern Uruguay was analysed. Field study was developed on six rice farms with rotation system with pasture, installed during intercropping stage as cover crop. Six rice crops distributed in three locations were sampled with pitfall and entomological vaccum suction machine. Sixteen families, representing six guilds, were collected. Lycosidae, Linyphiidae, Anyphaenidae and Tetragnathidae were the most abundant families (26%, 25%, 20% and 12%, respectively) and comprised more than 80% of total abundance. Other hunters (29%), sheet web weavers (25%) and ground hunters (24%) were the most abundant guilds. Species composition along different crop stages was significantly different according to the ANOSIM test. The results showed higher spider abundance and diversity along the crop and intercrop stages. This study represents the first contribution to the knowledge of spider diversity associated with rice agroecosystem in the country.

  17. A Putative Biochemical Engram of Long-Term Memory.

    PubMed

    Li, Liying; Sanchez, Consuelo Perez; Slaughter, Brian D; Zhao, Yubai; Khan, Mohammed Repon; Unruh, Jay R; Rubinstein, Boris; Si, Kausik

    2016-12-05

    How a transient experience creates an enduring yet dynamic memory remains an unresolved issue in studies of memory. Experience-dependent aggregation of the RNA-binding protein CPEB/Orb2 is one of the candidate mechanisms of memory maintenance. Here, using tools that allow rapid and reversible inactivation of Orb2 protein in neurons, we find that Orb2 activity is required for encoding and recall of memory. From a screen, we have identified a DNA-J family chaperone, JJJ2, which facilitates Orb2 aggregation, and ectopic expression of JJJ2 enhances the animal's capacity to form long-term memory. Finally, we have developed tools to visualize training-dependent aggregation of Orb2. We find that aggregated Orb2 in a subset of mushroom body neurons can serve as a "molecular signature" of memory and predict memory strength. Our data indicate that self-sustaining aggregates of Orb2 may serve as a physical substrate of memory and provide a molecular basis for the perduring yet malleable nature of memory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Social spiders of the genus Anelosimus occur in wetter, more productive environments than non-social species.

    PubMed

    Majer, Marija; Agnarsson, Ingi; Svenning, Jens-Christian; Bilde, Trine

    2013-11-01

    Latitude, rainfall, and productivity have been shown to influence social organisation and level of sociality in arthropods on large geographic scales. Social spiders form permanent group-living societies where they cooperate in brood care, web maintenance, and foraging. Sociality has evolved independently in a number of unrelated spider genera and may reflect convergent evolutionary responses to common environmental drivers. The genus Anelosimus contains a third of approximately 25 described permanently social spider species, eight to nine species that all occur in the Americas. To test for environmental correlates of sociality in Anelosimus across the Americas, we used logistic regression to detect effects of annual rainfall, productivity, and precipitation seasonality on the relative likelihood of occurrence of social and non-social Anelosimus spiders. Our analyses show that social species tend to occur at higher annual rainfall and productivity than non-social species, supporting the hypothesised effects of these environmental variables on the geographical distribution of social species. We did not find support for the hypothesis that permanently social species occur in areas with low precipitation seasonality. High annual precipitation and, to less extent, high productivity favour the occurrence of permanently group-living Anelosimus spiders relative to subsocial and solitary species. These results are partially consistent with previous findings for the Old World spider genus Stegodyphus, where a link between high habitat productivity and sociality was also found. Unlike Anelosimus, however, Stegodyphus typically occur in dry habitats negating a general importance of high precipitation for sociality. Sociality in spiders thus seems to be strongly linked to productivity, probably reflecting the need for relatively high availability of large prey to sustain social colonies.

  19. Social spiders of the genus Anelosimus occur in wetter, more productive environments than non-social species

    NASA Astrophysics Data System (ADS)

    Majer, Marija; Agnarsson, Ingi; Svenning, Jens-Christian; Bilde, Trine

    2013-11-01

    Latitude, rainfall, and productivity have been shown to influence social organisation and level of sociality in arthropods on large geographic scales. Social spiders form permanent group-living societies where they cooperate in brood care, web maintenance, and foraging. Sociality has evolved independently in a number of unrelated spider genera and may reflect convergent evolutionary responses to common environmental drivers. The genus Anelosimus contains a third of approximately 25 described permanently social spider species, eight to nine species that all occur in the Americas. To test for environmental correlates of sociality in Anelosimus across the Americas, we used logistic regression to detect effects of annual rainfall, productivity, and precipitation seasonality on the relative likelihood of occurrence of social and non-social Anelosimus spiders. Our analyses show that social species tend to occur at higher annual rainfall and productivity than non-social species, supporting the hypothesised effects of these environmental variables on the geographical distribution of social species. We did not find support for the hypothesis that permanently social species occur in areas with low precipitation seasonality. High annual precipitation and, to less extent, high productivity favour the occurrence of permanently group-living Anelosimus spiders relative to subsocial and solitary species. These results are partially consistent with previous findings for the Old World spider genus Stegodyphus, where a link between high habitat productivity and sociality was also found. Unlike Anelosimus, however, Stegodyphus typically occur in dry habitats negating a general importance of high precipitation for sociality. Sociality in spiders thus seems to be strongly linked to productivity, probably reflecting the need for relatively high availability of large prey to sustain social colonies.

  20. A conserved mechanism for replication origin recognition and binding in archaea.

    PubMed

    Majerník, Alan I; Chong, James P J

    2008-01-15

    To date, methanogens are the only group within the archaea where firing DNA replication origins have not been demonstrated in vivo. In the present study we show that a previously identified cluster of ORB (origin recognition box) sequences do indeed function as an origin of replication in vivo in the archaeon Methanothermobacter thermautotrophicus. Although the consensus sequence of ORBs in M. thermautotrophicus is somewhat conserved when compared with ORB sequences in other archaea, the Cdc6-1 protein from M. thermautotrophicus (termed MthCdc6-1) displays sequence-specific binding that is selective for the MthORB sequence and does not recognize ORBs from other archaeal species. Stabilization of in vitro MthORB DNA binding by MthCdc6-1 requires additional conserved sequences 3' to those originally described for M. thermautotrophicus. By testing synthetic sequences bearing mutations in the MthORB consensus sequence, we show that Cdc6/ORB binding is critically dependent on the presence of an invariant guanine found in all archaeal ORB sequences. Mutation of a universally conserved arginine residue in the recognition helix of the winged helix domain of archaeal Cdc6-1 shows that specific origin sequence recognition is dependent on the interaction of this arginine residue with the invariant guanine. Recognition of a mutated origin sequence can be achieved by mutation of the conserved arginine residue to a lysine or glutamine residue. Thus despite a number of differences in protein and DNA sequences between species, the mechanism of origin recognition and binding appears to be conserved throughout the archaea.

  1. Biomedical journals lack a consistent method to detect outcome reporting bias: a cross-sectional analysis.

    PubMed

    Huan, L N; Tejani, A M; Egan, G

    2014-10-01

    An increasing amount of recently published literature has implicated outcome reporting bias (ORB) as a major contributor to skewing data in both randomized controlled trials and systematic reviews; however, little is known about the current methods in place to detect ORB. This study aims to gain insight into the detection and management of ORB by biomedical journals. This was a cross-sectional analysis involving standardized questions via email or telephone with the top 30 biomedical journals (2012) ranked by impact factor. The Cochrane Database of Systematic Reviews was excluded leaving 29 journals in the sample. Of 29 journals, 24 (83%) responded to our initial inquiry of which 14 (58%) answered our questions and 10 (42%) declined participation. Five (36%) of the responding journals indicated they had a specific method to detect ORB, whereas 9 (64%) did not have a specific method in place. The prevalence of ORB in the review process seemed to differ with 4 (29%) journals indicating ORB was found commonly, whereas 7 (50%) indicated ORB was uncommon or never detected by their journal previously. The majority (n = 10/14, 72%) of journals were unwilling to report or make discrepancies found in manuscripts available to the public. Although the minority, there were some journals (n = 4/14, 29%) which described thorough methods to detect ORB. Many journals seemed to lack a method with which to detect ORB and its estimated prevalence was much lower than that reported in literature suggesting inadequate detection. There exists a potential for overestimation of treatment effects of interventions and unclear risks. Fortunately, there are journals within this sample which appear to utilize comprehensive methods for detection of ORB, but overall, the data suggest improvements at the biomedical journal level for detecting and minimizing the effect of this bias are needed. © 2014 John Wiley & Sons Ltd.

  2. Coy Males and Seductive Females in the Sexually Cannibalistic Colonial Spider, Cyrtophora citricola.

    PubMed

    Yip, Eric C; Berner-Aharon, Na'ama; Smith, Deborah R; Lubin, Yael

    2016-01-01

    The abundance of sperm relative to eggs selects for males that maximize their number of mates and for females that choose high quality males. However, in many species, males exercise mate choice, even when they invest little in their offspring. Sexual cannibalism may promote male choosiness by limiting the number of females a male can inseminate and by biasing the sex ratio toward females because, while females can reenter the mating pool, cannibalized males cannot. These effects may be insufficient for male choosiness to evolve, however, if males face low sequential encounter rates with females. We hypothesized that sexual cannibalism should facilitate the evolution of male choosiness in group living species because a male is likely to encounter multiple receptive females simultaneously. We tested this hypothesis in a colonial orb-weaving spider, Cyrtophora citricola, with a high rate of sexual cannibalism. We tested whether mated females would mate with multiple males, and thereby shift the operational sex ratio toward females. We also investigated whether either sex chooses mates based on nutritional state and age, and whether males choose females based on reproductive state. We found that females are readily polyandrous and exhibit no mate choice related to male feeding or age. Males courted more often when the male was older and the female was younger, and males copulated more often with well-fed females. The data show that males are choosier than females for the traits we measured, supporting our hypothesis that group living and sexual cannibalism may together promote the evolution of male mate choice.

  3. Coy Males and Seductive Females in the Sexually Cannibalistic Colonial Spider, Cyrtophora citricola

    PubMed Central

    Yip, Eric C.; Berner-Aharon, Na’ama; Smith, Deborah R.; Lubin, Yael

    2016-01-01

    The abundance of sperm relative to eggs selects for males that maximize their number of mates and for females that choose high quality males. However, in many species, males exercise mate choice, even when they invest little in their offspring. Sexual cannibalism may promote male choosiness by limiting the number of females a male can inseminate and by biasing the sex ratio toward females because, while females can reenter the mating pool, cannibalized males cannot. These effects may be insufficient for male choosiness to evolve, however, if males face low sequential encounter rates with females. We hypothesized that sexual cannibalism should facilitate the evolution of male choosiness in group living species because a male is likely to encounter multiple receptive females simultaneously. We tested this hypothesis in a colonial orb-weaving spider, Cyrtophora citricola, with a high rate of sexual cannibalism. We tested whether mated females would mate with multiple males, and thereby shift the operational sex ratio toward females. We also investigated whether either sex chooses mates based on nutritional state and age, and whether males choose females based on reproductive state. We found that females are readily polyandrous and exhibit no mate choice related to male feeding or age. Males courted more often when the male was older and the female was younger, and males copulated more often with well-fed females. The data show that males are choosier than females for the traits we measured, supporting our hypothesis that group living and sexual cannibalism may together promote the evolution of male mate choice. PMID:27249787

  4. Descriptions of four kleptoparasitic spiders of the genus Mysmenopsis (Araneae, Mysmenidae) and their potential host spider species in the genus Linothele (Araneae, Dipluridae) from Ecuador.

    PubMed

    Dupérré, Nadine; Tapia, Elicio

    2015-06-12

    Four new species of the genus Mysmenopsis are described: M. onorei n. sp., M. otonga n. sp., M. fernandoi n. sp. and M. chiquita n. sp. All species were collected in diplurid webs and are therefore assumed to be kleptoparasitic. Five potential host species of the genus Linothele (Dipluridae) that were collected with the symbionts are also described: Linothele yanachanka n. sp., L. pukachumpi n. sp., L. zaia n. sp., L. tsachilas n. sp. and L. quori n. sp.

  5. Development and optimization of a fluorescence polarization immunoassay for orbifloxacin in milk

    USDA-ARS?s Scientific Manuscript database

    A homogeneous microplate-based fluorescence polarization immunoassay (FPIA) for determination of orbifloxacin (ORB) in milk was developed and optimized. A monoclonal antibody of ORB was prepared, and six fluorescent tracers were synthesized from ORB and lomefloxacin (LOM) using three derivatives of...

  6. Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets.

    PubMed

    Pekár, Stano; Coddington, Jonathan A; Blackledge, Todd A

    2012-03-01

    Stenophagy (narrow diet breadth) represents an extreme of trophic specialization in carnivores, but little is known about the forces driving its evolution. We used spiders, the most diversified group of terrestrial predators, to investigate whether stenophagy (1) promoted diversification; (2) was phylogenetically conserved and evolutionarily derived state; and (3) was determined either by geographical distribution and foraging guild. We used published data on the prey of almost 600 species. Six categories of stenophagy were found: myrmecophagy, araneophagy, lepidopterophagy, termitophagy, dipterophagy, and crustaceophagy. We found that the species diversity of euryphagous genera and families was similar to stenophagous genera and families. At the family level, stenophagy evolved repeatedly and independently. Within families, the basal condition was oligophagy or euryphagy. Most types of stenophagy were clearly derived: myrmecophagy in Zodariidae; lepidopterophagy in Araneidae; dipterophagy in Theridiidae. In contrast, araneophagy was confined to basal and intermediate lineages, suggesting its ancestral condition. The diet breadth of species from the tropics and subtropics was less diverse than species from the temperate zone. Diet breadth was lower in cursorial spiders compared to web-building species. Thus, the evolution of stenophagy in spiders appears to be complex and governed by phylogeny as well as by ecological determinants. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  7. Astronomers Uncover One of the Youngest and Brightest Galaxies in the Early Universe

    NASA Image and Video Library

    2008-02-12

    A massive cluster of yellowish galaxies is seemingly caught in a spider web of eerily distorted background galaxies in the left-hand image, taken with the Advanced Camera for Surveys ACS aboard NASA Hubble Space Telescope.

  8. THE CORROSION CONTROL-WATER QUALITY SPIDER WEB

    EPA Science Inventory

    This presentation provides an overview of new research results and emerging research needs with respect to both corrosion control issues, (lead, copper, iron) and to issues of inorganic contaminants that can form or accumulate in distribution system, water, pipe scales and distri...

  9. Classroom Writing Activities to Support the Curriculum.

    ERIC Educational Resources Information Center

    Piper, Judy

    1990-01-01

    Offers writing activities related to the reading of E. B. White's "Charlotte's Web," including showing the movie, using HyperCard, showing a video about a webspinning spider as a prewriting activity, and using computer graphics and video cameras to create related visual projects. (SR)

  10. SPIDERS IN DECOMPOSITION FOOD WEBS OF AGROECOSYSTEMS: THEORY AND EVIDENCE. (R826099)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  11. Spatial control of translation repression and polarized growth by conserved NDR kinase Orb6 and RNA-binding protein Sts5.

    PubMed

    Nuñez, Illyce; Rodriguez Pino, Marbelys; Wiley, David J; Das, Maitreyi E; Chen, Chuan; Goshima, Tetsuya; Kume, Kazunori; Hirata, Dai; Toda, Takashi; Verde, Fulvia

    2016-07-30

    RNA-binding proteins contribute to the formation of ribonucleoprotein (RNP) granules by phase transition, but regulatory mechanisms are not fully understood. Conserved fission yeast NDR (Nuclear Dbf2-Related) kinase Orb6 governs cell morphogenesis in part by spatially controlling Cdc42 GTPase. Here we describe a novel, independent function for Orb6 kinase in negatively regulating the recruitment of RNA-binding protein Sts5 into RNPs to promote polarized cell growth. We find that Orb6 kinase inhibits Sts5 recruitment into granules, its association with processing (P) bodies, and degradation of Sts5-bound mRNAs by promoting Sts5 interaction with 14-3-3 protein Rad24. Many Sts5-bound mRNAs encode essential factors for polarized cell growth, and Orb6 kinase spatially and temporally controls the extent of Sts5 granule formation. Disruption of this control system affects cell morphology and alters the pattern of polarized cell growth, revealing a role for Orb6 kinase in the spatial control of translational repression that enables normal cell morphogenesis.

  12. SmartSearch steganalysis

    NASA Astrophysics Data System (ADS)

    Bloom, Jeffrey A.; Alonso, Rafael

    2003-06-01

    There are two primary challenges to monitoring the Web for steganographic media: finding suspect media and examining those found. The challenge that has received a great deal of attention is the second of these, the steganalysis problem. The other challenge, and one that has received much less attention, is the search problem. How does the steganalyzer get the suspect media in the first place? This paper describes an innovative method and architecture to address this search problem. The typical approaches to searching the web for covert communications are often based on the concept of "crawling" the Web via a smart "spider." Such spiders find new pages by following ever-expanding chains of links from one page to many next pages. Rather than seek pages by chasing links from other pages, we find candidate pages by identifying requests to access pages. To do this we monitor traffic on Internet backbones, identify and log HTTP requests, and use this information to guide our process. Our approach has the advantages that we examine pages to which no links exist, we examine pages as soon as they are requested, and we concentrate resources only on active pages, rather than examining pages that are never viewed.

  13. Discrimination and identification of Q-markers based on 'Spider-web' mode for quality control of traditional Chinese medicine.

    PubMed

    Jiang, Zhenzuo; Yang, Jing; Wang, Yuefei

    2017-12-28

    The safety and effectiveness of traditional Chinese medicine (TCM) in clinical practice is directly related to the quality of TCM. And, the quality control of TCM is a pivotal issue to the quality of TCM, but also an obstacle impeding the modernization of TCM. The purpose of this work is to compile and develop a strategy based on discrimination and identification of quality markers (Q-markers) for quality control of TCM. Mainly established by seven variables derived from four dimensions including content, stability, pharmacokinetics and pharmacology, the 'Spider-web' mode was undertaken to assess the Q-marker property of candidate compounds originated from TCM by taking regression area (A) and coefficient variation (CV) of the tested compounds into account. The importance index (ImI), ImI = A × 1/CV, was suggested to focus Q-markers. The compounds with larger regression area (A) and less coefficient variation (CV) are preferentially adopted as Q-markers, which should possess the satisfactory properties of content, stability, pharmacokinetics and pharmacological activity. To the contrary, the compounds are excluded on the grounds of the unsatisfactory Q-markers' property, less regression area (A) and larger coefficient variation (CV), which cannot represent the quality of TCM. The 'Spider-web' mode can filter out the redundant constituents and focus on the key indexes of quality control - Q-markers. The screened Q-markers possess the optimal integrated properties of content, stability, pharmacokinetics and pharmacology among the numerous and complicated ingredients of TCM, which can comprehensively characterize inherent quality of TCM. In summary, the novel strategy established in this work provides a valuable perspective for the quality control of TCM. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. A molecular phylogeny of the Australian huntsman spiders (Sparassidae, Deleninae): implications for taxonomy and social behaviour.

    PubMed

    Agnarsson, Ingi; Rayor, Linda S

    2013-12-01

    Huntsman spiders (Sparassidae) are a diverse group with a worldwide distribution, yet are poorly known both taxonomically and phylogenetically. They are particularly diverse in Australia where an endemic lineage, Deleninae, has diversified to form nearly 100 species. One unusual species, Delena cancerides, has been believed to be the sole group-living sparassid. Unlike all of the other subsocial and social spiders which are capture-web based or live in silken tunnels, D. cancerides are non-web building spiders that live in large matrilineal colonies of a single adult female and her offspring from multiple clutches of under the bark of dead trees. Here we report the discovery of two additional prolonged subsocial sparassid species, currently in Eodelena but here formally proposed as a synonomy of Delena (new synonoymy), Delena (Eodelena) lapidicola and D. (E.) melanochelis. We briefly describe their social demographics, behavior, and habitat use. In order to understand the evolutionary relationships among these species, and thus origin of sociality and other traits in this group, we also offer the first molecular phylogeny of Deleninae and relatives. We employ model based phylogenetic analyses on two mtDNA and three nuDNA loci using maximum likelihood and Bayesian methods, including both 'classical' concatenation approach as well as coalescent-based analysis of species trees from gene trees. Our results support the hypothesis that the delenine huntsman spiders are a monophyletic Australian radiation, approximately 23 million year old, and indicate that the current ten genera should be merged to six genera in four clades. Our findings are inconsistent with some relatively recent changes in the taxonomy of Deleninae. The three known group-living delenine species are related and likely represent a single origin of sociality with a single reversal to solitary life-styles. Our results provide strong support for the classical Isopeda, but not for the recent splitting of that taxon into Isopeda, Isopedella, and Holconia. Another moderately supported clade within Deleninae unites three genera (Pediana, Beregama, Typostola) that, while morphologically diverse, all share extraordinary locomotory speed. A fourth clade is comprised of the speciose Neosparassus, containing Zachria. In sum, our study results in a robust phylogeny of Deleninae, casting light on the origin of sociality in the group, and facilitating future work on these unusual spiders. Copyright © 2013. Published by Elsevier Inc.

  15. A Metaphorical Insight into Educational Planning.

    ERIC Educational Resources Information Center

    Inbar, Dan E.

    1991-01-01

    Considers educational planning as a communication of shared symbols creating intent geared toward change. Elaborates 11 groups of metaphorical images of planning (as circle, recipe, compass, map, puzzle, tree, maze, Ariadne's thread, prediction, art, and spider's web) bridging impression and expression. Relates this metaphorical analysis to…

  16. Lignin-encapsulated nootkatone as a potential biomiticide

    USDA-ARS?s Scientific Manuscript database

    Herbivorous mites are recurrent problems in woody ornamental production and landscape settings. Mites cause damage to leaf tissue through their feeding behavior, salivary excretions and, in the case of spider mites, silk webbing they leave behind. Botanical-based miticides, such as neem oil, are use...

  17. Inventive Thinking in Biology.

    ERIC Educational Resources Information Center

    McCormack, Alan J., Ed.

    1982-01-01

    To encourage students to become involved in the inventive and imaginative dimensions of biology, students are asked to invent: a useful product, way to use old newspapers, insect repellent, organism attracter, organelle separater, way to measure rate of hyphal growth, and method to measure strength of spider web. (DC)

  18. 32 CFR 636.33 - Vehicle safety inspection criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...

  19. 32 CFR 636.33 - Vehicle safety inspection criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...

  20. 32 CFR 636.33 - Vehicle safety inspection criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENFORCEMENT AND CRIMINAL INVESTIGATIONS MOTOR VEHICLE TRAFFIC SUPERVISION (SPECIFIC INSTALLATIONS) Fort... the front and rear. This requirement does not apply to any motorcycle or motor-driven cycle... starburst or spider webbing effect greater than 3 inches by 3 inches. No opaque or solid material including...

  1. Elasto-capillary windlass: from spider web to synthetic actuators

    NASA Astrophysics Data System (ADS)

    Elettro, Hervé; Antkowiak, Arnaud; Neukirch, Sébastien; Vollrath, Fritz; Institut D'Alembert Team; Oxford Silk Group Team

    2015-03-01

    Spiders' threads display a wide range of materials properties. The glue-covered araneid capture silk is unique among all silks because it is self tensing and remains taut even if compressed, allowing both thread and web to be in a constant state of tension. Here we demonstrate how this effect is achieved by unraveling the physics allowing the nanolitre glue droplets straddling the silk thread to induce buckling, coiling and spooling of the core filaments. Our model examines this windlass activation as a structural phase transition, which shows that fibre spooling results from the interplay between elasticity and capillarity. Fibre size is the key as such a capillary windlass requires micrometer-sized fibres in order to function. Our synthetic capillary windlasses point towards design principles for new bioinspired synthetic actuators. The present work was supported by ANR Grant ANR-09-JCJC-0022-01, ``La Ville de Paris - Programme Emergence,'' Royal Society International Exchanges Scheme 2013/R1 Grant IE130506, and the PEPS PTI program from CNRS.

  2. Multiple origins of subsociality in crab spiders (Thomisidae).

    PubMed

    Ruch, Jasmin; Riehl, Torben; May-Collado, Laura J; Agnarsson, Ingi

    2015-01-01

    Determining factors that facilitate the transition from a solitary to a social lifestyle is a major challenge in evolutionary biology, especially in taxa that are usually aggressive towards conspecifics. Most spiders live solitarily and few species are known to be social. Nevertheless, sociality has evolved multiple times across several families and nearly all studied social lineages have originated from a periodically social (subsocial) ancestor. Group-living crab spiders (Thomisidae) are exclusively found in Australia and differ from most other social spiders because they lack a communal capture web. Three of the group-living species were placed in the genus Diaea and another in the genus Xysticus. Most Australian thomisids are, however, difficult to identify as most descriptions are old and of poor quality, and the genera Diaea and Xysticus may not correspond to monophyletic groups. Here, we clarify the phylogenetic relationships of the four group-living Australian thomisids and conclude that amongst these subsociality has evolved two to three times independently. The subsocial Xysticus bimaculatus is not closely related to any of the social Diaea and an independent origin of subsociality is likely in this case. The presented data indicates that within Diaea two origins of subsociality are possible. Our results help to understand the evolution of sociality in thomisids and support the hypothesis that permanent sociality in spiders has evolved multiple times relatively recently from subsocial ancestors. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Dr. Ray Gause examines student Skylab experiment ED-52 Web Formation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Dr. Ray Gause of the NASA-Marshall Space Flight Center (MSFC) places dinner, in the form of a housefly, in the web of Arabella - the prime spider for the ED-52 Web Formation Experiment. Arabella can be delineated near the end of the black pen in Dr. Gause's hand. The experiment is one of 25 student experiments accepted for the Skylab program and will be performed during the Skylab 3 mission. Judy Miles, a 17-year-old high school student from Lexington, Massachusetts, is the student experimenter and Dr. Gause is the NASA student advisor.

  4. A web in the patriarchal clan system: tactics of intimate partners in the Japanese sociocultural context.

    PubMed

    Yoshihama, Mieko

    2005-10-01

    Only recently has Japanese society come to realize the magnitude of domestic violence as a serious social problem. Using focus group methodology, this study investigated the function and the sociocultural reinforcements of male partner violence. The analysis of the participants' accounts of various types of violence their partners perpetrated, which were accompanied by an elaborate collection of tactics to reinforce the effects of the violence, has led to the conceptualization of partners' violence as a spider web. The Japanese patriarchal clan system and underlying ideology of male superiority fosters the maintenance of this web.

  5. Modelling of Tethered Space-Web Structures

    NASA Astrophysics Data System (ADS)

    McKenzie, D. J.; Cartnell, M. P.

    Large structures in space are an essential milestone in the path of many projects, from solar power collectors to space stations. In space, as on Earth, these large projects may be split up into more manageable sections, dividing the task into multiple replicable parts. Specially constructed spider robots could assemble these structures piece by piece over a membrane or space- web, giving a method for building a structure while on orbit. The modelling and applications of these space-webs are discussed, along with the derivation of the equations of motion of the structure. The presentation of some preliminary results from the solution of these equations will show that space-webs can take a variety of different forms, and give some guidelines for configuring the space-web system.

  6. ORBS: A reduction software for SITELLE and SpiOMM data

    NASA Astrophysics Data System (ADS)

    Martin, Thomas

    2014-09-01

    ORBS merges, corrects, transforms and calibrates interferometric data cubes and produces a spectral cube of the observed region for analysis. It is a fully automatic data reduction software for use with SITELLE (installed at the Canada-France-Hawaii Telescope) and SpIOMM (a prototype attached to the Observatoire du Mont Mégantic); these imaging Fourier transform spectrometers obtain a hyperspectral data cube which samples a 12 arc-minutes field of view into 4 millions of visible spectra. ORBS is highly parallelized; its core classes (ORB) have been designed to be used in a suite of softwares for data analysis (ORCS and OACS), data simulation (ORUS) and data acquisition (IRIS).

  7. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore

    PubMed Central

    Cunha, Beatriz P.; Solferini, Vera N.

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense. PMID:26517873

  8. Revision of the orb-weaving spider genus Verrucosa McCook, 1888 (Araneae, Araneidae).

    PubMed

    Lise, Arno A; Kesster, Cynara C; Da Silva, Estevam L Cruz

    2015-02-25

    The araneid spider genus Verrucosa McCook, 1888 is revised. Five of the seven previously known species, V. arenata (Walckenaer, 1841), V. lampra Soares & Camargo, 1948, V. meridionalis (Keyserling, 1892), V. undecimvariolata (O. Pickard-Cambridge, 1889) and V. zebra (Keyserling, 1892), are redescribed and illustrated. In addition, 37 new species of Verrucosa from the Neotropical region are described and illustrated: V. cachimbo n. sp., V. tarapoa n. sp., V. scapofracta n. sp., V. carara n. sp., V. latigastra n. sp., V. guatopo n. sp., V. cuyuni n. sp., V. benavidesae n. sp., V. rancho n. sp., V. excavata n. sp., V. meta n. sp., V. levii n. sp., V. chanchamayo n. sp., V. manauara n. sp., V. brachiscapa n. sp., V. macarena n. sp., V. pedrera n. sp., V. lata n. sp., V. galianoae n. sp., V. suaita n. sp., V. coroico n. sp., V. florezi n. sp., V. hoferi n. sp., V. caninde n. sp., V. opon n. sp., V. silvae n. sp., V. avilesae n. sp., V. tuberculata n. sp., V. alvarengai n. sp., V. apuela n. sp., V. bartica n. sp., V. cajamarca n. sp., V. canje n. sp., V. cuyabenoensis n. sp., V. sergipana n. sp., V. simla n. sp. and V. rhea n. sp. Mahadiva reticulata O. P.-Cambridge, 1889 is removed from the synonymy of Verrucosa arenata (Walckenaer, 1841) and is recognized as a valid species, Verrucosa reticulata. Araneus cylicophorus Badcock, 1932 is transferred to Verrucosa by Mello-Leitão (1946) removed from the synonymy of Verrucosa meridionalis (Keyserling, 1892) and recognized as a valid species. The male of Verrucosa meridionalis (Keyserling, 1892) is described for the first time. Distributional maps are provided for all species.

  9. Feeding on Host Plants with Different Concentrations and Structures of Pyrrolizidine Alkaloids Impacts the Chemical-Defense Effectiveness of a Specialist Herbivore.

    PubMed

    Martins, Carlos H Z; Cunha, Beatriz P; Solferini, Vera N; Trigo, José R

    2015-01-01

    Sequestration of chemical defenses from host plants is a strategy widely used by herbivorous insects to avoid predation. Larvae of the arctiine moth Utetheisa ornatrix feeding on unripe seeds and leaves of many species of Crotalaria (Leguminosae) sequester N-oxides of pyrrolizidine alkaloids (PAs) from these host plants, and transfer them to adults through the pupal stage. PAs confer protection against predation on all life stages of U. ornatrix. As U. ornatrix also uses other Crotalaria species as host plants, we evaluated whether the PA chemical defense against predation is independent of host plant use. We fed larvae from hatching to pupation with either leaves or seeds of one of eight Crotalaria species (C. incana, C. juncea, C. micans, C. ochroleuca, C. pallida, C. paulina, C. spectabilis, and C. vitellina), and tested if adults were preyed upon or released by the orb-weaving spider Nephila clavipes. We found that the protection against the spider was more effective in adults whose larvae fed on seeds, which had a higher PA concentration than leaves. The exceptions were adults from larvae fed on C. paulina, C. spectabilis and C. vitellina leaves, which showed high PA concentrations. With respect to the PA profile, we describe for the first time insect-PAs in U. ornatrix. These PAs, biosynthesized from the necine base retronecine of plant origin, or monocrotaline- and senecionine-type PAs sequestered from host plants, were equally active in moth chemical defense, in a dose-dependent manner. These results are also partially explained by host plant phylogeny, since PAs of the host plants do have a phylogenetic signal (clades with high and low PA concentrations in leaves) which is reflected in the adult defense.

  10. The Pheromone of the Cave Cricket, Hadenoecus cumberlandicus, Causes Cricket Aggregation but Does Not Attract the Co-Distributed Predatory Spider, Meta ovalis

    PubMed Central

    Yoder, Jay A.; Christensen, Brady S.; Croxall, Travis J.; Tank, Justin L.; Hobbs, Horton H.

    2010-01-01

    Food input by the cave cricket, Hadenoecus cumberlandicus Hubble & Norton (Orthoptera: Rhaphidophoridae), is vital to the cave community, making this cricket a true keystone species. Bioassays conducted on cave walls and in the laboratory show that clustering in H. cumberlandicus is guided by a pheromone, presumably excreta. This aggregation pheromone was demonstrated by using filter paper discs that had previous adult H. cumberlandicus exposure, resulting in > 70% response by either nymphs or adults, prompting attraction (thus, active component is a volatile), followed by reduced mobility (arrestment) on treated surfaces. Adults were similarly responsive to pheromone from nymphs, agreeing with mixed stage composition of clusters in the cave. Effects of [0.001M – 0.1M] uric acid (insect excreta's principle component) on H. cumberlandicus behavior were inconsistent. This pheromone is not a host cue (kairomone) and is not used as a repellent (allomone) as noted through lack of responses to natural H. cumberlandicus pheromone and uric acid concentrations by a co-occurring predatory cave orb weaver spider, Meta ovalis Gertsch (Araneae: Tetragnathidae). This pheromone is not serving as a sex pheromone because nymphs were affected by it and because this population of H. cumberlandicus is parthenogenic. The conclusion of this study is that the biological value of the aggregation pheromone is to concentrate H. cumberlandicus in sheltered sites in the cave conducive for minimizing water stress. Rather than signaling H. cumberlandicus presence and quality, the reduced mobility expressed as a result of contacting this pheromone conceivably may act as a defense tactic (antipredator behavior) against M. ovalis, which shares this favored habitat site. PMID:20572786

  11. Proteins--The Basis of Life

    ERIC Educational Resources Information Center

    Wrigley, Colin

    2012-01-01

    Proteins are a diverse class of biochemical macromolecules, including substances as (apparently) unrelated as silk and sinew, hair and horn, feathers and flagella, enzymes and epidermis, gelatine (jelly) and gluten and gore, spider web, meat and fish muscle. Yet they are unified by being polymers of amino acids. Discovery of the nature of proteins…

  12. The Use of Spider Webs as Passive Bioaerosol Collectors

    DTIC Science & Technology

    2009-03-01

    Arachnology , 2001: 82-94. 19. Hindson, Benjamin J., Anthony J. Makarewicz, Ujwal S. Seltur, Bruce D. Henderer, Mary T. McBride, and John M. Dzentis...34 The Journal of Arachnology , 2002: 10- 19. 38. O’Toole, Tara. Hearing on Terrorism Preparedness: Medical First Response. Congressional Hearing

  13. HelpfulMed: Intelligent Searching for Medical Information over the Internet.

    ERIC Educational Resources Information Center

    Chen, Hsinchun; Lally, Ann M.; Zhu, Bin; Chau, Michael

    2003-01-01

    Discussion of the information needs of medical professionals and researchers focuses on the architecture of a Web portal designed to integrate advanced searching and indexing algorithms, an automatic thesaurus, and self-organizing map technologies to provide searchers with fine-grained results. Reports results of evaluation of spider algorithms…

  14. Spinning the Web

    ERIC Educational Resources Information Center

    Wiggins, Alexis

    2014-01-01

    Skills in communication and collaboration can be just as important as content knowledge and technical skills in the workplace. So what are schools doing to foster these skills? English language arts teacher Alexis Wiggins adapted the Socratic seminar model to make it student-led and collaborative. Under her new approach, the Spider Web…

  15. OrbView-3 Initial On-Orbit Characterization

    NASA Technical Reports Server (NTRS)

    Ross, Kent; Blonski, Slawomir; Holekamp, Kara; Pagnutti, Mary; Zanoni, Vicki; Carver, David; Fendley, Debbie; Smith, Charles

    2004-01-01

    NASA at Stennis Space Center (SSC) established a Space Act Agreement with Orbital Sciences Corporation (OSC) and ORBIMAGE Inc. to collaborate on the characterization of the OrbView-3 system and its imagery products and to develop characterization techniques further. In accordance with the agreement, NASA performed an independent radiometric, spatial, and geopositional accuracy assessment of OrbView-3 imagery acquired before completion of the system's initial on-orbit checkout. OSC acquired OrbView-3 imagery over SSC from July 2003 through January 2004, and NASA collected ground reference information coincident with many of these acquisitions. After evaluating all acquisitions, NASA deemed two multispectral images and five panchromatic images useful for characterization. NASA then performed radiometric, spatial, and geopositional characterizations.

  16. A Herbivorous Mite Down-Regulates Plant Defence and Produces Web to Exclude Competitors

    PubMed Central

    Sarmento, Renato A.; Lemos, Felipe; Dias, Cleide R.; Kikuchi, Wagner T.; Rodrigues, Jean C. P.; Pallini, Angelo; Sabelis, Maurice W.; Janssen, Arne

    2011-01-01

    Herbivores may interact with each other through resource competition, but also through their impact on plant defence. We recently found that the spider mite Tetranychus evansi down-regulates plant defences in tomato plants, resulting in higher rates of oviposition and population growth on previously attacked than on unattacked leaves. The danger of such down-regulation is that attacked plants could become a more profitable resource for heterospecific competitors, such as the two-spotted spider mite Tetranychus urticae. Indeed, T. urticae had an almost 2-fold higher rate of oviposition on leaf discs on which T. evansi had fed previously. In contrast, induction of direct plant defences by T. urticae resulted in decreased oviposition by T. evansi. Hence, both herbivores affect each other through induced plant responses. However, when populations of T. evansi and T. urticae competed on the same plants, populations of the latter invariably went extinct, whereas T. evansi was not significantly affected by the presence of its competitor. This suggests that T. evansi can somehow prevent its competitor from benefiting from the down-regulated plant defence, perhaps by covering it with a profuse web. Indeed, we found that T. urticae had difficulties reaching the leaf surface to feed when the leaf was covered with web produced by T. evansi. Furthermore, T. evansi produced more web when exposed to damage or other cues associated with T. urticae. We suggest that the silken web produced by T. evansi serves to prevent competitors from profiting from down-regulated plant defences. PMID:21887311

  17. FUJIFILM X10 white orbs and DeOrbIt

    NASA Astrophysics Data System (ADS)

    Dietz, Henry Gordon

    2013-01-01

    The FUJIFILM X10 is a high-end enthusiast compact digital camera using an unusual sensor design. Unfortunately, upon its Fall 2011 release, the camera quickly became infamous for the uniquely disturbing "white orbs" that often appeared in areas where the sensor was saturated. FUJIFILM's first attempt at a fix was firmware released on February 25, 2012 if it had little effect. In April 2012, a sensor replacement essentially solved the problem. This paper explores the "white orb" phenomenon in detail. After FUJIFILM's attempt at a firmware fix failed, the author decided to create a post-processing tool that automatically could repair existing images. DeOrbIt was released as a free tool on March 7, 2012. To better understand the problem and how to fix it, the WWW form version of the tool logs images, processing parameters, and evaluations by users. The current paper describes the technical problem, the novel computational photography methods used by DeOrbit to repair affected images, and the public perceptions revealed by this experiment.

  18. Impact of the 1985 Space World Administrative Radio Conference on frequency/orbit planning and use

    NASA Technical Reports Server (NTRS)

    Miller, E. F.

    1986-01-01

    The 1985 World Administrative Radio Conference (WARC-ORB-85) was held to determine which space radio services should be planned and which planning methods should be used. The second session of this Conference (WARC-ORB-88) will meet to develop the required plans. This paper presents the results of WARC-ORB-85, assesses the impact of those decisions, and identifies the intersessional work to be conducted by administrations and the CCIR (Consultative Committee on International Radio). The major decisions of WARC-ORB-85 were: (1) the restriction of additional planning to the fixed satellite service at identified frequencies; and (2) the selection of a planning method consisting of two parts (a) an allotment plan, and (b) improved procedures. The paper also discusses WARC-ORB-85 decisions relative to the Region 2 broadcast satellite service plans at 12 GHz, feederlink planning for Regions 1 and 3 broadcast satellites at 12 GHz, and sound broadcast satellite service.

  19. Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders.

    PubMed

    Pineda, Sandy S; Sollod, Brianna L; Wilson, David; Darling, Aaron; Sunagar, Kartik; Undheim, Eivind A B; Kely, Laurence; Antunes, Agostinho; Fry, Bryan G; King, Glenn F

    2014-03-05

    Spiders have evolved pharmacologically complex venoms that serve to rapidly subdue prey and deter predators. The major toxic factors in most spider venoms are small, disulfide-rich peptides. While there is abundant evidence that snake venoms evolved by recruitment of genes encoding normal body proteins followed by extensive gene duplication accompanied by explosive structural and functional diversification, the evolutionary trajectory of spider-venom peptides is less clear. Here we present evidence of a spider-toxin superfamily encoding a high degree of sequence and functional diversity that has evolved via accelerated duplication and diversification of a single ancestral gene. The peptides within this toxin superfamily are translated as prepropeptides that are posttranslationally processed to yield the mature toxin. The N-terminal signal sequence, as well as the protease recognition site at the junction of the propeptide and mature toxin are conserved, whereas the remainder of the propeptide and mature toxin sequences are variable. All toxin transcripts within this superfamily exhibit a striking cysteine codon bias. We show that different pharmacological classes of toxins within this peptide superfamily evolved under different evolutionary selection pressures. Overall, this study reinforces the hypothesis that spiders use a combinatorial peptide library strategy to evolve a complex cocktail of peptide toxins that target neuronal receptors and ion channels in prey and predators. We show that the ω-hexatoxins that target insect voltage-gated calcium channels evolved under the influence of positive Darwinian selection in an episodic fashion, whereas the κ-hexatoxins that target insect calcium-activated potassium channels appear to be under negative selection. A majority of the diversifying sites in the ω-hexatoxins are concentrated on the molecular surface of the toxins, thereby facilitating neofunctionalisation leading to new toxin pharmacology.

  20. DNA damage in haemocytes and midgut gland cells of Steatoda grossa (Theridiidae) spiders exposed to food contaminated with cadmium.

    PubMed

    Stalmach, Monika; Wilczek, Grażyna; Wilczek, Piotr; Skowronek, Magdalena; Mędrzak, Monika

    2015-03-01

    The aim of this study was to assess the genotoxic effects of Cd on haemocytes and midgut gland cells of web-building spiders, Steatoda grossa (Theridiidae), exposed to the metal under laboratory conditions. Analyzes were conducted on adult females and males, fed for four weeks with cadmium-contaminated Drosophila hydei flies, grown on a medium suplemented with 0.25 mM CdCl2. The comet assay, providing a quantitative measure of DNA strand breaks, was used to evaluate the DNA damage caused by the metal. Cadmium content was measured in whole spider bodies by the AAS method. Metal body burden was significantly lower in females (0.25 µgg(-1) dry weight) than in males (3.03 µgg(-1) dry weight), suggesting that females may have more effective mechanisms controlling the uptake of metal, via the digestive tract, or its elimination from the body. Irrespectively of sex, spiders fed prey contaminated with cadmium showed significantly higher values of comet parameters: tail DNA (TDNA), tail length (TL) and olive tail moment (OTM), in comparison with the control. In midgut gland cells, the level of DNA damage was higher for males than females, while in haemocytes the genotoxic effect of cadmium was greater in females. The obtained results indicate that in spiders cadmium displays strong genotoxic effects and may cause DNA damage even at low concentrations, however the severity of damage seems to be sex- and internal organ-dependent. The comet assay can be considered a sensitive tool for measuring the deleterious effect of cadmium on DNA integrity in spiders. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. KSC-2011-5445

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Near Launch Pad 39A at Kennedy Space Center in Florida, a Golden-Silk Spider repairs its web after a capturing a moth. The golden-silk spider repairs the webbing each day, replacing half but never the whole web at one time. Its web may measure two to three feet across. The center shares a boundary with the Merritt Island Wildlife Nature Refuge, consisting of 140,000 acres. The Refuge provides a wide variety of habitats: coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks that provide habitat for more than 1,500 species of plants and animals. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: Ken Thornsley

  2. KSC-2011-5444

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Near Launch Pad 39A at Kennedy Space Center in Florida, a Golden-Silk Spider repairs its web after a capturing a moth. The golden-silk spider repairs the webbing each day, replacing half but never the whole web at one time. Its web may measure two to three feet across. The center shares a boundary with the Merritt Island Wildlife Nature Refuge, consisting of 140,000 acres. The Refuge provides a wide variety of habitats: coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks that provide habitat for more than 1,500 species of plants and animals. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: Ken Thornsley

  3. KSC-2011-5446

    NASA Image and Video Library

    2011-07-06

    CAPE CANAVERAL, Fla. -- Near Launch Pad 39A at Kennedy Space Center in Florida, a Golden-Silk Spider repairs its web after a capturing a moth. The golden-silk spider repairs the webbing each day, replacing half but never the whole web at one time. Its web may measure two to three feet across. The center shares a boundary with the Merritt Island Wildlife Nature Refuge, consisting of 140,000 acres. The Refuge provides a wide variety of habitats: coastal dunes, saltwater estuaries and marshes, freshwater impoundments, scrub, pine flatwoods, and hardwood hammocks that provide habitat for more than 1,500 species of plants and animals. Atlantis and its crew of four; Commander Chris Ferguson, Pilot Doug Hurley, Mission Specialists Sandy Magnus and Rex Walheim are scheduled to lift off at 11:26 a.m. EDT on July 8 to deliver the Raffaello multi-purpose logistics module packed with supplies and spare parts for the International Space Station. Atlantis also will fly the Robotic Refueling Mission experiment that will investigate the potential for robotically refueling existing satellites in orbit. In addition, Atlantis will return with a failed ammonia pump module to help NASA better understand the failure mechanism and improve pump designs for future systems. STS-135 is the 33rd flight of Atlantis, the 37th shuttle mission to the space station, and the 135th and final mission of NASA's Space Shuttle Program. For more information, visit www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts135/index.html. Photo credit: Ken Thornsley

  4. Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context

    PubMed Central

    Feber, Ruth E.; Johnson, Paul J.; Bell, James R.; Chamberlain, Dan E.; Firbank, Leslie G.; Fuller, Robert J.; Manley, Will; Mathews, Fiona; Norton, Lisa R.; Townsend, Martin; Macdonald, David W.

    2015-01-01

    Organic farming, a low intensity system, may offer benefits for a range of taxa, but what affects the extent of those benefits is imperfectly understood. We explored the effects of organic farming and landscape on the activity density and species density of spiders and carabid beetles, using a large sample of paired organic and conventional farms in the UK. Spider activity density and species density were influenced by both farming system and surrounding landscape. Hunting spiders, which tend to have lower dispersal capabilities, had higher activity density, and more species were captured, on organic compared to conventional farms. There was also evidence for an interaction, as the farming system effect was particularly marked in the cropped area before harvest and was more pronounced in complex landscapes (those with little arable land). There was no evidence for any effect of farming system or landscape on web-building spiders (which include the linyphiids, many of which have high dispersal capabilities). For carabid beetles, the farming system effects were inconsistent. Before harvest, higher activity densities were observed in the crops on organic farms compared with conventional farms. After harvest, no difference was detected in the cropped area, but more carabids were captured on conventional compared to organic boundaries. Carabids were more species-dense in complex landscapes, and farming system did not affect this. There was little evidence that non-cropped habitat differences explained the farming system effects for either spiders or carabid beetles. For spiders, the farming system effects in the cropped area were probably largely attributable to differences in crop management; reduced inputs of pesticides (herbicides and insecticides) and fertilisers are possible influences, and there was some evidence for an effect of non-crop plant species richness on hunting spider activity density. The benefits of organic farming may be greatest for taxa with lower dispersal abilities generally. The evidence for interactions among landscape and farming system in their effects on spiders highlights the importance of developing strategies for managing farmland at the landscape-scale for most effective conservation of biodiversity. PMID:26309040

  5. Organic Farming: Biodiversity Impacts Can Depend on Dispersal Characteristics and Landscape Context.

    PubMed

    Feber, Ruth E; Johnson, Paul J; Bell, James R; Chamberlain, Dan E; Firbank, Leslie G; Fuller, Robert J; Manley, Will; Mathews, Fiona; Norton, Lisa R; Townsend, Martin; Macdonald, David W

    2015-01-01

    Organic farming, a low intensity system, may offer benefits for a range of taxa, but what affects the extent of those benefits is imperfectly understood. We explored the effects of organic farming and landscape on the activity density and species density of spiders and carabid beetles, using a large sample of paired organic and conventional farms in the UK. Spider activity density and species density were influenced by both farming system and surrounding landscape. Hunting spiders, which tend to have lower dispersal capabilities, had higher activity density, and more species were captured, on organic compared to conventional farms. There was also evidence for an interaction, as the farming system effect was particularly marked in the cropped area before harvest and was more pronounced in complex landscapes (those with little arable land). There was no evidence for any effect of farming system or landscape on web-building spiders (which include the linyphiids, many of which have high dispersal capabilities). For carabid beetles, the farming system effects were inconsistent. Before harvest, higher activity densities were observed in the crops on organic farms compared with conventional farms. After harvest, no difference was detected in the cropped area, but more carabids were captured on conventional compared to organic boundaries. Carabids were more species-dense in complex landscapes, and farming system did not affect this. There was little evidence that non-cropped habitat differences explained the farming system effects for either spiders or carabid beetles. For spiders, the farming system effects in the cropped area were probably largely attributable to differences in crop management; reduced inputs of pesticides (herbicides and insecticides) and fertilisers are possible influences, and there was some evidence for an effect of non-crop plant species richness on hunting spider activity density. The benefits of organic farming may be greatest for taxa with lower dispersal abilities generally. The evidence for interactions among landscape and farming system in their effects on spiders highlights the importance of developing strategies for managing farmland at the landscape-scale for most effective conservation of biodiversity.

  6. Post-secretion processing influences spider silk performance

    PubMed Central

    Blamires, Sean J.; Wu, Chung-Lin; Blackledge, Todd A.; Tso, I-Min

    2012-01-01

    Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins—MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this ‘ground state’ with wild native silks. Native silk mechanics varied less among species compared with ‘ground state’ silks. Variability in the mechanics of ‘ground state’ silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web. PMID:22628213

  7. Orientation-Induced Effects of Water Harvesting on Humps-on-Strings of Bioinspired Fibers

    PubMed Central

    Chen, Yuan; Li, Dan; Wang, Ting; Zheng, Yongmei

    2016-01-01

    Smart water-collecting functions are naturally endowed on biological surfaces with unique wettable microstructures, e.g., beetle back with “alternate hydrophobic, hydrophilic micro-regions”, and spider silk with wet-rebuilt “spindle-knot, joint” structures. Enlightened by the creature features, design of bio-inspired surfaces becomes the active issue in need of human beings for fresh water resource. Recently, as observed from spider web in nature, the net of spider silk is usually set in different situations and slopes in air, thus spider silks can be placed in all kinds of orientations as capturing water. Here, we show the styles and orientations of hump-on-string to control the ability of water collection as bioinspired silks are fabricated successfully. As different strings, sizes (height, length, pitch) of humps can become the controlling on volumes of extreme water drops. It is related to the different solid/liquid contact regions resulting in the as-modulated wet adhesion due to orientations of humps-on-strings. The conversion of high-low adhesion can be achieved to rely on orientations for the effect of capturing water drops. These studies offer an insight into enhancement of water collection efficiency and are helpful to design smart materials for controlled water drop capture and release via conversions of high-low adhesion. PMID:26812942

  8. Oddball Cases of Fluid Mechanics: Cobwebs and Pharaohs

    ERIC Educational Resources Information Center

    Lafrance, Pierre

    1975-01-01

    Explains macroscopic properties of a number of systems as averaged-out behavior of numbers of particles. The approach is applied to a model of nuclear fission, rotational velocity in a galaxy, the nature of the rings of Saturn, oscillations of the earth, drops on a spider web, and the shape of ruined Meidum pyramid. (GH)

  9. A Game Demonstrating Aspects of Bumblebee Natural History

    ERIC Educational Resources Information Center

    Westgarth-Smith, Angus R.

    2004-01-01

    The Bumblebee Game is an exciting outdoor game, which demonstrates aspects of bumblebee natural history including food chains, food webs and competition for food, predation by crab spiders, parasitism by "Conopidae" ("Diptera") and brood parasitism by cuckoo bees. It has been played successfully with groups of 10-25 people. Although most suitable…

  10. Predation of Halyomorpha halys (Hemiptera: Pentatomidae) from web-building spiders associated with anthropogenic dwellings

    USDA-ARS?s Scientific Manuscript database

    The brown marmorated stink bug or Halyomorpha halys is an invasive pest from Asia that causes severe agricultural damage and nuisance problems for homeowners. While the natural enemy community of H. halys has been evaluated in several agroecosystems, it has not been quantified where H. halys overwi...

  11. Dietary supplementation with non-prey food enhances fitness of a predatory arthropod

    USDA-ARS?s Scientific Manuscript database

    Uncertainties exist about the value of non-prey food for natural enemies that are commonly food limited, and the dietary conditions where non-prey foods are beneficial for carnivorous species. We examined the nutritional role of a non-prey food using a ground dwelling, tangle web-building spider tha...

  12. The Spider Web of Oversight: An Analysis of External Oversight of Higher Education

    ERIC Educational Resources Information Center

    Lane, Jason E.

    2007-01-01

    Over the past several decades, state officials and various interest groups and civic organizations have increased their level of direct involvement in the affairs of public higher education. The increase in external attention toward the academy would likely be accompanied by the development of oversight mechanisms to ensure that societal…

  13. Female feeding regime and polyandry in the nuptially feeding nursery web spider, Pisaura mirabilis

    NASA Astrophysics Data System (ADS)

    Prokop, Pavol; Maxwell, Michael R.

    2009-02-01

    We examined the influence of female feeding regime on polyandry in the nuptially feeding nursery web spider (Pisaura mirabilis). In this species, the nuptial gift, a dead prey item wrapped in the male’s silk, is physically separate from the ejaculate. We manipulated female feeding regime (starved or fed) and the presence or absence of a gift with three successive males to test direct-benefits hypotheses (nuptial gift or sperm supply) for the expression of polyandry. The presence of a gift was necessary for copulation, as no male without a gift successfully copulated. Female mating behavior most strongly supports polyandry due to the accumulation of gifted food items (“nuptial gift” direct-benefits hypothesis). Starved females that were presented with a gift accepted significantly more gifts and inseminations than fed females. Most starved females (74%) copulated two or more times, as opposed to only 3% of the fed females. Nearly all of the females that accepted a gift subsequently copulated. The nuptial gift item seems to function as male mating effort and females appear to receive multiple matings as part of a feeding strategy.

  14. Effects of funnel web spider toxin on Ca2+ currents in neurohypophysial terminals.

    PubMed

    Wang, G; Lemos, J R

    1994-11-14

    Funnel web spider toxin (FTX) is reportedly a specific blocker of P-type Ca2+ channels. The effects of FTX on the Ca2+ currents of isolated neurohypophysial nerve terminals of the rat were investigated using the 'whole-cell' patch-clamp technique. Both the transient and long-lasting Ca2+ current components were maximally elicited by depolarization from a holding potential equal to the normal terminal resting potential (-90 mV). Externally applied FTX inhibited the high-voltage-threshold, transient component of the Ca2+ current in a concentration-dependent manner, with a half-maximal inhibition at a dilution of approximately 1:10000. FTX also shifted the peak current of the I-V relationship by +10 mV. The long-lasting Ca2+ current component, which is sensitive to L-type Ca2+ channel blockers, was insensitive to FTX. The transient current, which is sensitive to omega-conotoxin GVIA, was completely blocked by FTX. These results suggest that there could be a novel, inactivating Ca2+ channel in the rat neurohypophysial terminals which is affected by both N-type and P-type Ca2+ channel blockers.

  15. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    PubMed

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Visualizing desirable patient healthcare experiences.

    PubMed

    Liu, Sandra S; Kim, Hyung T; Chen, Jie; An, Lingling

    2010-01-01

    High healthcare cost has drawn much attention and healthcare service providers (HSPs) are expected to deliver high-quality and consistent care. Therefore, an intimate understanding of the most desirable experience from a patient's and/or family's perspective as well as effective mapping and communication of such findings should facilitate HSPs' efforts in attaining sustainable competitive advantage in an increasingly discerning environment. This study describes (a) the critical quality attributes (CQAs) of the experience desired by patients and (b) the application of two visualization tools that are relatively new to the healthcare sector, namely the "spider-web diagram" and "promotion and detraction matrix." The visualization tools are tested with primary data collected from telephone surveys of 1,800 patients who had received care during calendar year 2005 at 6 of 61 hospitals within St. Louis, Missouri-based, Ascension Health. Five CQAs were found by factor analysis. The spider-web diagram illustrates that communication and empowerment and compassionate and respectful care are the most important CQAs, and accordingly, the promotion and detraction matrix shows those attributes that have the greatest effect for creating promoters, preventing detractors, and improving consumer's likelihood to recommend the healthcare provider.

  17. Searching Cyclical Period Variations in Cataclysmic Variable Stars

    NASA Astrophysics Data System (ADS)

    Borges, B. W.; Baptista, R.

    2006-08-01

    Cataclymic variables (CVs) are semi-detached binary systems in which a main sequence late-type star (the secondary) fills its Roche lobe and transfers matter to a white dwarf (the primary) through the inner Lagragian point L[1]. Evolutive models of CVs predicts that the orbital periods P[orb] of these systems would decrease on time scales of 10^8-10^9 years due to angular momentum losses either by magnetic braking via the secondary star's wind (P [orb] > 3 hr) or by emission of gravitational radiation (P[orb] < 3 hr). These models try to explain the observed gap of systems with P[orb] in the range of ~ 2 to 3 hr as the consequence of a sharp reduction of magnetic field open lines when the secondary star become fully convective (at P[orb] ~ 3 hr). However, up to now no well-studied CVs shows evidence of period decrease. Instead, most well-observed eclipsing CVs show cyclical period changes probably associated to solar-type (quasi-periodic and/or multiperiodic) magnetic activity cycles in the secondary star. The fast spinning secondaries of CVs, covering a range of masses and rotation periods, are an important laboratory to understanding magnetic activities cycles in late type stars. In the present work, we report some results of the search of cyclical period in four Cvs: V4140 Sgr, V2051 Oph, UU Aqr and IP Peg. Both V4140 Sgr and V2051 Oph show modulation periods of 22 yr and 7 yr respectively. A discussion of the distinct magnetic activity properties of short and long orbital period (P[orb] < 3 hr and P[orb] > 3 hr, respectively) systems in the framework of the CV evolution scenarios is presented.

  18. Indirect Interactions in the High Arctic

    PubMed Central

    Roslin, Tomas; Wirta, Helena; Hopkins, Tapani; Hardwick, Bess; Várkonyi, Gergely

    2013-01-01

    Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool for comparing different types of indirect interactions. First, we quantify the scope for top-down-up interactions as the probability that a herbivore attacking plant species i itself fed as a larva on species j. Second, we gauge this herbivore overlap against the potential for bottom-up-down interactions, quantified as the probability that a parasitoid attacking herbivore species i itself developed as a larva on species j. Third, we assess the impact of interactions with other food web modules, by extending the core web around the key herbivore Sympistis nigrita to other predator guilds (birds and spiders). We find the host specificity of both herbivores and parasitoids to be variable, with broad generalists occurring in both trophic layers. Indirect links through shared resources and through shared natural enemies both emerge as forces with a potential for shaping the herbivore community. The structure of the host-parasitoid submodule of the food web suggests scope for classic apparent competition. Yet, based on predation experiments, we estimate that birds kill as many (8%) larvae of S. nigrita as do parasitoids (8%), and that spiders kill many more (38%). Interactions between these predator guilds may result in further complexities. Our results caution against broad generalizations from studies of limited food web modules, and show the potential for interactions within and between guilds of extended webs. They also add a data point from the northernmost insect communities on Earth, and describe the baseline structure of a food web facing imminent climate change. PMID:23826279

  19. Firewall Traversal for CORBA Applications Using an Implementation of Bidirectional IIOP in MICO

    NASA Technical Reports Server (NTRS)

    Griffin, Robert I.; Lopez, Isaac (Technical Monitor)

    2002-01-01

    The Object Management Group (OMG) has added specifications to the General Inter-ORB Protocol (GIOP 1.2), specifically the Internet Inter-ORB Protocol (IIOP 1.2), that allow servers and clients on opposing sides of a firewall to reverse roles and still communicate freely. This addition to the GIOP specifications is referred to as Bidirectional GIOP. The implementation of these specifications as applied to communication over TCP/IP connections is referred to as 'Bidirectional Internet Inter-ORB Protocol' or BiDirIIOP. This paper details the implementation and testing of the BiDirIIOP Specification in an open source ORB, MICO, that did not previously support Bidirectional GIOP. It also provides simple contextual information and a description of the OMG GIOP/IIOP messaging protocols.

  20. Good reasons to leave home: proximate dispersal cues in a social spider.

    PubMed

    Berger-Tal, Reut; Berner-Aharon, Na'ama; Aharon, Shlomi; Tuni, Cristina; Lubin, Yael

    2016-07-01

    Natal dispersal is a successful tactic under a range of conditions in spite of significant costs. Habitat quality is a frequent proximate cause of dispersal, and studies have shown that dispersal increases both when natal habitat quality is good or poor. In social species kin competition, favouring dispersal may be balanced by the benefits of group living, favouring philopatry. We investigated the effect of changes in the local environment on natal dispersal of adult females in a social spider species, Stegodyphus dumicola (Araneae, Eresidae), with a flexible breeding system, where females can breed either within the colony or individually following dispersal. We manipulated foraging opportunities in colonies by either removing the capture webs or by adding prey and recorded the number of dispersing females around each focal colony, and their survival and reproductive success. We predicted that increasing kin competition should increase dispersal of less-competitive individuals, while reducing competition could cause either less dispersal (less competition) or more dispersal (a cue indicating better chances to establish a new colony). Dispersal occurred earlier and at a higher rate in both food-augmented and web-removal colonies than in control colonies. Fewer dispersing females survived and reproduced in the web-removal group than in the control or food-augmented groups. The results support our prediction that worsening conditions in web-removal colonies favour dispersal, whereby increased kin competition and increased energy expenditure on web renewal cause females to leave the natal colony. By contrast, prey augmentation may serve as a habitat-quality cue; when the surrounding habitat is expected to be of high quality, females assess the potential benefit of establishing a new colony to be greater than the costs of dispersal. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  1. Factors influencing aquatic-to-terrestrial contaminant transport to terrestrial arthropod consumers in a multiuse river system.

    PubMed

    Alberts, Jeremy M; Sullivan, S Mažeika P

    2016-06-01

    Emerging aquatic insects are important vectors of contaminant transfer from aquatic to terrestrial food webs. However, the environmental factors that regulate contaminant body burdens in nearshore terrestrial consumers remain largely unexplored. We investigated the relative influences of riparian landscape composition (i.e., land use and nearshore vegetation structure) and contaminant flux via the emergent aquatic insect subsidy on selenium (Se) and mercury (Hg) body burdens of riparian ants (Formica subsericea) and spiders of the family Tetragnathidae along 11 river reaches spanning an urban-rural land-use gradient in Ohio, USA. Model-selection results indicated that fine-scale land cover (e.g., riparian zone width, shrub cover) in the riparian zone was positively associated with reach-wide body burdens of Se and Hg in both riparian F. subsericea and tetragnathid spiders (i.e., total magnitude of Hg and Se concentrations in ant and spider populations, respectively, for each reach). River distance downstream of Columbus, Ohio - where study reaches were impounded and flow through a large urban center - was also implicated as an important factor. Although stable-isotope analysis suggested that emergent aquatic insects were likely vectors of Se and Hg to tetragnathid spiders (but not to F. subsericea), emergent insect contaminant flux did not emerge as a significant predictor for either reach-wide body burdens of spider Hg or Se. Improved understanding of the pathways and influences that control aquatic-to-terrestrial contaminant transport will be critical for effective risk management and remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pale Blue Orb

    NASA Image and Video Library

    2006-09-19

    NASA Cassini casts powerful eyes on our home planet, and captures Earth, a pale blue orb, and a faint suggestion of our moon, among the glories of the Saturn system in this image taken Sept. 15, 2006.

  3. Visual search for tropical web spiders: the influence of plot length, sampling effort, and phase of the day on species richness.

    PubMed

    Pinto-Leite, C M; Rocha, P L B

    2012-12-01

    Empirical studies using visual search methods to investigate spider communities were conducted with different sampling protocols, including a variety of plot sizes, sampling efforts, and diurnal periods for sampling. We sampled 11 plots ranging in size from 5 by 10 m to 5 by 60 m. In each plot, we computed the total number of species detected every 10 min during 1 hr during the daytime and during the nighttime (0630 hours to 1100 hours, both a.m. and p.m.). We measured the influence of time effort on the measurement of species richness by comparing the curves produced by sample-based rarefaction and species richness estimation (first-order jackknife). We used a general linear model with repeated measures to assess whether the phase of the day during which sampling occurred and the differences in the plot lengths influenced the number of species observed and the number of species estimated. To measure the differences in species composition between the phases of the day, we used a multiresponse permutation procedure and a graphical representation based on nonmetric multidimensional scaling. After 50 min of sampling, we noted a decreased rate of species accumulation and a tendency of the estimated richness curves to reach an asymptote. We did not detect an effect of plot size on the number of species sampled. However, differences in observed species richness and species composition were found between phases of the day. Based on these results, we propose guidelines for visual search for tropical web spiders.

  4. Colour polymorphic lures exploit innate preferences for spectral versus luminance cues in dipteran prey.

    PubMed

    White, Thomas E; Kemp, Darrell J

    2017-08-14

    Theory predicts that colour polymorphism may be favored by variation in the visual context under which signals are perceived. The context encompasses all environmental determinants of light availability and propagation, but also the dynamics of perception in receivers. Color vision involves the neural separation of information into spectral versus luminance channels, which often differentially guide specific tasks. Here we explicitly tested whether this discrete perceptual basis contributes to the maintenance of polymorphism in a prey-luring system. The orb-weaving spider Gasteracantha fornicata is known to attract a broad community of primarily dipteran prey due to their conspicuous banded dorsal signal. They occur in two morphs ("white" and "yellow") which should, respectively, generate greater luminance and color contrast in the dipteran eye. Given that arthropods often rely upon luminance-versus-spectral cues for relatively small-versus-large stimulus detection, we predicted a switch in relative attractiveness among morphs according to apparent spider size. Our experimental tests used colour-naïve individuals of two known prey species (Drosophila hydei and Musca domestica) in replicate Y-maze choice trials designed to manipulate the apparent size of spider models via the distance at which they are viewed. Initial trials confirmed that flies were attracted to each G. fornicata morph in single presentations. When given a simultaneous choice between morphs against a viewing background typical of those encountered in nature, flies exhibited no preference regardless of the visual angle subtended by models. However, when backgrounds were adjusted to nearer the extremes of those of each morph in the wild, flies were more attracted by white morphs when presented at longer range (consistent with a reliance on achromatic cues), yet were unbiased in their close-range choice. While not fully consistent with predictions (given the absence of a differential preference for stimuli at close range), our results demonstrate an effect of apparent stimulus size upon relative morph attractiveness in the direction anticipated from present knowledge of fly visual ecology. This implies the potential tuning of G. fornicata morph signal structure according to a perceptual feature that is likely common across their breadth of arthropod prey, and complements recent observational work in suggesting a candidate mechanism for the maintenance of deceptive polymorphism through the exploitation of different visual channels in prey.

  5. Mind Maps: Hot New Tools Proposed for Cyberspace Librarians.

    ERIC Educational Resources Information Center

    Humphreys, Nancy K.

    1999-01-01

    Describes how online searchers can use a software tool based on back-of-the-book indexes to assist in dealing with search engine databases compiled by spiders that crawl across the entire Internet or through large Web sites. Discusses human versus machine knowledge, conversion of indexes to mind maps or mini-thesauri, middleware, eXtensible Markup…

  6. OrbView-3 Technical Performance Evaluation 2005: Modulation Transfer Function

    NASA Technical Reports Server (NTRS)

    Cole, Aaron

    2007-01-01

    The Technical performance evaluation of OrbView-3 using the Modulation Transfer Function (MTF) is presented. The contents include: 1) MTF Results and Methodology; 2) Radiometric Calibration Methodology; and 3) Relative Radiometric Assessment Results

  7. Exciting Orb

    NASA Image and Video Library

    2007-07-10

    Enceladus appears as a rather bland orb in this far-off snapshot, but the dark markings near its south pole belie that assumption. The markings, called sulci, are long, roughly parallel fractures from which a spray of icy particles escapes into the void

  8. Geolocation Accuracy Evaluations of OrbView-3, EROS-A, and SPOT-5 Imagery

    NASA Technical Reports Server (NTRS)

    Bresnahan, Paul

    2007-01-01

    This viewgraph presentation evaluates absolute geolocation accuracy of OrbView-3, EROS-A, and SPOT-5 by comparing test imagery-derived ground coordinates to Ground Control Points using SOCET set photogrammetric software.

  9. Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response.

    PubMed

    Miller, Jennifer R B; Ament, Judith M; Schmitz, Oswald J

    2014-01-01

    Ecologists have long searched for a framework of a priori species traits to help predict predator-prey interactions in food webs. Empirical evidence has shown that predator hunting mode and predator and prey habitat domain are useful traits for explaining predator-prey interactions. Yet, individual experiments have yet to replicate predator hunting mode, calling into question whether predator impacts can be attributed to hunting mode or merely species identity. We tested the effects of spider predators with sit-and-wait, sit-and-pursue and active hunting modes on grasshopper habitat domain, activity and mortality in a grassland system. We replicated hunting mode by testing two spider predator species of each hunting mode on the same grasshopper prey species. We observed grasshoppers with and without each spider species in behavioural cages and measured their mortality rates, movements and habitat domains. We likewise measured the movements and habitat domains of spiders to characterize hunting modes. We found that predator hunting mode explained grasshopper mortality and spider and grasshopper movement activity and habitat domain size. Sit-and-wait spider predators covered small distances over a narrow domain space and killed fewer grasshoppers than sit-and-pursue and active predators, which ranged farther distances across broader domains and killed more grasshoppers, respectively. Prey adjusted their activity levels and horizontal habitat domains in response to predator presence and hunting mode: sedentary sit-and-wait predators with narrow domains caused grasshoppers to reduce activity in the same-sized domain space; more mobile sit-and-pursue predators with broader domains caused prey to reduce their activity within a contracted horizontal (but not vertical) domain space; and highly mobile active spiders led grasshoppers to increase their activity across the same domain area. All predators impacted prey activity, and sit-and-pursue predators generated strong effects on domain size. This study demonstrates the validity of utilizing hunting mode and habitat domain for predicting predator-prey interactions. Results also highlight the importance of accounting for flexibility in prey movement ranges as an anti-predator response rather than treating the domain as a static attribute. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  10. Phylogeography of two Australian species of funnel web spider (Araneae: Mygalomorphae: Hexathelidae) in Tallaganda State Forest, New South Wales

    Treesearch

    Amber S. Beavis; David M. Rowell

    2006-01-01

    Decomposing logs are habitat for invertebrate species occupying a range of ecological niches. A collaborative research project is examining patterns of genetic endemism among saproxylic (dependent on decaying wood) invertebrates across the Tallaganda region of New South Wales, Australia. An earlier study of an unnamed species of 'giant' Collembolon revealed...

  11. An Analysis of Botnet Vulnerabilities

    DTIC Science & Technology

    2007-06-01

    Definition Currently, the primary defense against botnets is prompt patching of vulnerable systems and antivirus software . Network monitoring can identify...IRCd software , none were identified during this effort. AFIT iv For my wife, for her caring and support throughout the course of this...are software agents designed to automatically perform tasks. Examples include web-spiders that catalog the Internet and bots found in popular online

  12. Spontaneous formation of nanostructures inside inkjet-printed colloidal drops

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Thorne, Nathaniel; Sun, Ying

    2013-11-01

    Nanostructures formed in inkjet-printed colloidal drops are systematically examined with different substrates and ink formulations. Various deposition patterns from multi-ring, radial spoke, firework to spider web, foam and island structures are observed. With a high particle loading, deposition transitions from multi-ring near the drop edge to spider web and finally to foam and islands in the center of the drop with 20 nm sulfate-modified polystyrene particles. At the same particle loading, 200 nm particles self-assemble into radial spokes at the drop edge and islands in the center, due to reduced contact line pinning resulted from less particles. In drops with a low particle concentration, due to fingering instability of the contact line, 20 nm particles form radial spokes enclosed by a ring, while 200 nm particles assemble into firework-like structures without a ring. Moreover, at a high particle loading, ruptures are observed on the multi-ring structure formed by 20 nm carboxylic-modified particles, due to stronger capillary forces from the contact line. Furthermore, for a drop printed on a less hydrophilic substrate, the interparticle interactions enable a more uniform deposition rather than complex nanostructures.

  13. The results of bone deformity correction using a spider frame with web-based software for lower extremity long bone deformities.

    PubMed

    Tekin, Ali Çağrı; Çabuk, Haluk; Dedeoğlu, Süleyman Semih; Saygılı, Mehmet Selçuk; Adaş, Müjdat; Esenyel, Cem Zeki; Büyükkurt, Cem Dinçay; Tonbul, Murat

    2016-03-22

    To present the functional and radiological results and evaluate the effectiveness of a computer-assisted external fixator (spider frame) in patients with lower extremity shortness and deformity. The study comprised 17 patients (14 male, 3 female) who were treated for lower extremity long bone deformity and shortness between 2012 and 2015 using a spider frame. The procedure's level of difficulty was determined preoperatively using the Paley Scale. Postoperatively, the results for the patients who underwent tibial operations were evaluated using the Paley criteria modified by ASAMI, and the results for the patients who underwent femoral operations were evaluated according to the Paley scoring system. The evaluations were made by calculating the External Fixator and Distraction indexes. The mean age of the patients was 24.58 years (range, 5-51 years). The spider frame was applied to the femur in 10 patients and to the tibia in seven. The mean follow-up period was 15 months (range, 6-31 months) from the operation day, and the mean amount of lengthening was 3.0 cm (range, 1-6 cm). The mean duration of fixator application was 202.7 days (range, 104-300 days). The mean External Fixator Index was 98 days/cm (range, 42-265 days/cm). The mean Distraction Index was 10.49 days/cm (range, 10-14 days/cm). The computer-assisted external fixator system (spider frame) achieves single-stage correction in cases of both deformity and shortness. The system can be applied easily, and because of its high-tech software, it offers the possibility of postoperative treatment of the deformity.

  14. Robust image matching via ORB feature and VFC for mismatch removal

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Fu, Wenxing; Fang, Bin; Hu, Fangyu; Quan, Siwen; Ma, Jie

    2018-03-01

    Image matching is at the base of many image processing and computer vision problems, such as object recognition or structure from motion. Current methods rely on good feature descriptors and mismatch removal strategies for detection and matching. In this paper, we proposed a robust image match approach based on ORB feature and VFC for mismatch removal. ORB (Oriented FAST and Rotated BRIEF) is an outstanding feature, it has the same performance as SIFT with lower cost. VFC (Vector Field Consensus) is a state-of-the-art mismatch removing method. The experiment results demonstrate that our method is efficient and robust.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pletsch, Holger J.; Clark, Colin J.

    Here, we present the results of precision gamma-ray timing measurements of the binary millisecond pulsar PSR J2339–0533, an irradiating system of the "redback" type, using data from the Fermi Large Area Telescope. We describe an optimized analysis method to determine a long-term phase-coherent timing solution spanning more than six years, including a measured eccentricity of the binary orbit and constraints on the proper motion of the system. A major result of this timing analysis is the discovery of an extreme variation of the nominal 4.6 hr orbital periodmore » $${P}_{\\mathrm{orb}}$$ over time, showing alternating epochs of decrease and increase. We inferred a cyclic modulation of $${P}_{\\mathrm{orb}}$$ with an approximate cycle duration of 4.2 yr and a modulation amplitude of $${\\rm{\\Delta }}{P}_{\\mathrm{orb}}/{P}_{\\mathrm{orb}}=2.3\\times {10}^{-7}$$. Considering different possible physical causes, the observed orbital-period modulation most likely results from a variable gravitational quadrupole moment of the companion star due to cyclic magnetic activity in its convective zone.« less

  16. Electrical generating unit inventory, 1976-1986: Illinois, Indiana, Kentucky, Ohio, Pennsylvania and West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, S.D.

    1981-09-01

    The report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. The ORBES region consists of all of Kentucky, most of West Virginia, substantial parts of Illinois, Indiana, and Ohio, and southwestern Pennsylvania. The inventory lists installed electrical generating capacity in commercial service as of December 1, 1976, and scheduled capacity additions and removals between 1977 and 1986 in the six ORBES states (Illinois, Indiana, Kentucky, Ohio, Pennsylvania, and West Virginia). The following information is included for each electrical generating unit: unit ID code, company index, whether joint or industrial ownership, plantmore » name, whether inside or outside the ORBES region, FIPS county code, type of unit, size in megawatts, type of megawatt rating, status of unit, date of commercial operation (actual or scheduled), scheduled retirement date (if any), primary fuel, alternate fuel, type of cooling, source of cooling water, and source of information.« less

  17. Oxytocin eliminates the own-race bias in face recognition memory☆

    PubMed Central

    Blandón-Gitlin, Iris; Pezdek, Kathy; Saldivar, Sesar; Steelman, Erin

    2015-01-01

    The neuropeptide Oxytocin influences a number of social behaviors, including processing of faces. We examined whether Oxytocin facilitates the processing of out-group faces and reduce the own-race bias (ORB). The ORB is a robust phenomenon characterized by poor recognition memory of other-race faces compared to the same-race faces. In Experiment 1, participants received intranasal solutions of Oxytocin or placebo prior to viewing White and Black faces. On a subsequent recognition test, whereas in the placebo condition the same-race faces were better recognized than other-race faces, in the Oxytocin condition Black and White faces were equally well recognized, effectively eliminating the ORB. In Experiment 2, Oxytocin was administered after the study phase. The ORB resulted, but Oxytocin did not significantly reduce the effect. This study is the first to show that Oxytocin can enhance face memory of out-group members and underscore the importance of social encoding mechanisms underlying the own-race bias. PMID:23872107

  18. Study of the individual cytochrome b5 and cytochrome b5 reductase domains of Ncb5or reveals a unique heme pocket and a possible role of the CS domain.

    PubMed

    Deng, Bin; Parthasarathy, Sudharsan; Wang, WenFang; Gibney, Brian R; Battaile, Kevin P; Lovell, Scott; Benson, David R; Zhu, Hao

    2010-09-24

    NADH cytochrome b(5) oxidoreductase (Ncb5or) is found in animals and contains three domains similar to cytochrome b(5) (b(5)), CHORD-SGT1 (CS), and cytochrome b(5) reductase (b(5)R). Ncb5or has an important function, as suggested by the diabetes and lipoatrophy phenotypes in Ncb5or null mice. To elucidate the structural and functional properties of human Ncb5or, we generated its individual b(5) and b(5)R domains (Ncb5or-b(5) and Ncb5or-b(5)R, respectively) and compared them with human microsomal b(5) (Cyb5A) and b(5)R (Cyb5R3). A 1.25 Å x-ray crystal structure of Ncb5or-b(5) reveals nearly orthogonal planes of the imidazolyl rings of heme-ligating residues His(89) and His(112), consistent with a highly anisotropic low spin EPR spectrum. Ncb5or is the first member of the cytochrome b(5) family shown to have such a heme environment. Like other b(5) family members, Ncb5or-b(5) has two helix-loop-helix motifs surrounding heme. However, Ncb5or-b(5) differs from Cyb5A with respect to location of the second heme ligand (His(112)) and of polypeptide conformation in its vicinity. Electron transfer from Ncb5or-b(5)R to Ncb5or-b(5) is much less efficient than from Cyb5R3 to Cyb5A, possibly as a consequence of weaker electrostatic interactions. The CS linkage probably obviates the need for strong interactions between b(5) and b(5)R domains in Ncb5or. Studies with a construct combining the Ncb5or CS and b(5)R domains suggest that the CS domain facilitates docking of the b(5) and b(5)R domains. Trp(114) is an invariant surface residue in all known Ncb5or orthologs but appears not to contribute to electron transfer from the b(5)R domain to the b(5) domain.

  19. Review of the West Indian Arachnocoris Scott, 1881 (Hemiptera: Nabidae), with descriptions of two new species, and a catalog of the species

    Treesearch

    Javier E. Mercado; Jorge A. Santiago-Blay; Michael D. Webb

    2016-01-01

    We review the West Indian species of Arachnocoris, a genus of spider-web dwelling kleptoparasitic nabids. We recognize five species: A. berytoides Uhler from Grenada, A. darlingtoni n. sp. from Hispaniola, A. karukerae Lopez-Moncet from Guadeloupe, A. portoricensis n. sp. from Puerto Rico, and A. trinitatis Bergroth from Trinidad. West Indian Arachnocoris...

  20. Framing ICT-Enabled Innovation for Learning: The Case of One-to-One Learning Initiatives in Europe

    ERIC Educational Resources Information Center

    Bocconi, Stefania; Kampylis, Panagiotis; Punie, Yves

    2013-01-01

    This article discusses 1:1 learning initiatives in Europe in the context of a mapping framework of ICT-enabled innovation for learning. The aim of the framework, visualised as a spider's web, is two-fold: (i) to provide a further understanding of the nature of ICT-enabled innovation for learning; and (ii) to depict the impact of existing and…

  1. Physical gills in diving insects and spiders: theory and experiment.

    PubMed

    Seymour, Roger S; Matthews, Philip G D

    2013-01-15

    Insects and spiders rely on gas-filled airways for respiration in air. However, some diving species take a tiny air-store bubble from the surface that acts as a primary O(2) source and also as a physical gill to obtain dissolved O(2) from the water. After a long history of modelling, recent work with O(2)-sensitive optodes has tested the models and extended our understanding of physical gill function. Models predict that compressible gas gills can extend dives up to more than eightfold, but this is never reached, because the animals surface long before the bubble is exhausted. Incompressible gas gills are theoretically permanent. However, neither compressible nor incompressible gas gills can support even resting metabolic rate unless the animal is very small, has a low metabolic rate or ventilates the bubble's surface, because the volume of gas required to produce an adequate surface area is too large to permit diving. Diving-bell spiders appear to be the only large aquatic arthropods that can have gas gill surface areas large enough to supply resting metabolic demands in stagnant, oxygenated water, because they suspend a large bubble in a submerged web.

  2. Top down and bottom up selection drives variations in frequency and form of a visual signal.

    PubMed

    Yeh, Chien-Wei; Blamires, Sean J; Liao, Chen-Pan; Tso, I-Min

    2015-03-30

    The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments.

  3. The energetic contributions of aquatic primary producers to terrestrial food webs in a mid-size river system.

    PubMed

    Kautza, Adam; Mazeika, S; Sullivan, P

    2016-03-01

    Rivers are increasingly recognized as providing nutritional subsidies (i.e., energy and nutrients) to adjacent terrestrial food webs via depredation of aquatic organisms (e.g., emergent aquatic insects, crayfish, fish) by terrestrial consumers. However, because these prey organisms assimilate energy from both aquatic (e.g., benthic algae, phytoplankton, aquatic macrophytes) and terrestrial (e.g., riparian leaf detritus) primary producers, river subsidies to terrestrial consumers represent a combination of aquatically and terrestrially derived energy. To date, the explicit contribution of energy derived from aquatic primary producers to terrestrial consumers has not been fully explored yet might be expected to be quantitatively important to terrestrial food webs. At 12 reaches along a 185-km segment of the sixth-order Scioto River system (Ohio, USA), we quantified the relative contribution of energy derived from aquatic primary producers to a suite of terrestrial riparian consumers that integrate the adjacent landscape across multiple spatial scales through their foraging activities (tetragnathid spiders, rove beetles, adult coenagrionid damselflies, riparian swallows, and raccoons). We used naturally abundant stable isotopes (13C and 15N) of periphyton, phytoplankton, macrophytes, and terrestrial vegetation to evaluate the energetic contribution of aquatic primary producers to terrestrial food webs. Shoreline tetragnathid spiders were most reliant on aquatic primary producers (50%), followed by wider-ranging raccoons (48%), damselflies (44%), and riparian swallows (41%). Of the primary producers, phytoplankton (19%) provisioned the greatest nutritional contribution to terrestrial consumers (considered collectively), followed by periphyton (14%) and macrophytes (11%). Our findings provide empirical evidence that aquatic primary producers of large streams and rivers can be a critical nutritional resource for terrestrial food webs. We also show that aquatically derived nutrition contributes to both shoreline and broader-ranging terrestrial consumers and thus may be an important landscape-scale energetic linkage between rivers and upland habitats.

  4. Detergent Induction of HEK 293A Cell Membrane Permeability Measured under Quiescent and Superfusion Conditions Using Whole Cell Patch Clamp

    PubMed Central

    2015-01-01

    Detergents have several biological applications but present cytotoxicity concerns, since they can solubilize cell membranes. Using the IonFlux 16, an ensemble whole cell planar patch clamp, we observed that anionic sodium dodecyl sulfate (SDS), cationic cetyltrimethylammonium bromide (CTAB), and cationic, fluorescent octadecyl rhodamine B (ORB) increased the membrane permeability of cells substantially within a second of exposure, under superfusion conditions. Increased permeability was irreversible for 15 min. At subsolubilizing detergent concentrations, patched cells showed increased membrane currents that reached a steady state and were intact when imaged using fluorescence microscopy. SDS solubilized cells at concentrations of 2 mM (2× CMC), while CTAB did not solubilize cells even at concentrations of 10 mM (1000× CMC). The relative activity for plasma membrane current induction was 1:20:14 for SDS, CTAB, and ORB, respectively. Under quiescent conditions, the relative ratio of lipid to detergent in cell membranes at the onset of membrane permeability was 1:7:5 for SDS, CTAB, and ORB, respectively. The partition constants (K) for SDS, CTAB, and ORB were 23000, 55000, and 39000 M–1, respectively. Combining the whole cell patch clamp data and XTT viability data, SDS ≤ 0.2 mM and CTAB and ORB ≤ 1 mM induced cell membrane permeability without causing acute toxicity. PMID:24548291

  5. [I.P. Pavlov and L.A. Orbeli: new materials in stocks of the military medical museum].

    PubMed

    Budko, A A; Nazartsev, B I

    2013-01-01

    The article presents the previously unpublished letter of I.P. Pavlov to L.A. Orbeli being kept in stocks of the Military medical museum of military medical museum of the S.M. Kirov military medical academy. The needed commentaries are given.

  6. THE OHIO RIVER BASIN ENERGY FACILITY SITING MODEL. VOLUME II: SITES AND ON-LINE DATES

    EPA Science Inventory

    The report was prepared as part of the Ohio River Basin Energy Study (ORBES), a multidisciplinary policy research program. The siting model developed for ORBES is specifically designed for regional policy analysis. The region includes 423 counties in an area that consists of all ...

  7. Puzzling Pieces and Spiders' Webs: A Narrative about My Personal Journey to Teaching

    ERIC Educational Resources Information Center

    Burns, Stephanie

    2017-01-01

    I wrote the following paper upon completing my semester as a Student Teacher at an elementary school in a mid-size Midwestern university town. The goal in writing and presenting this paper was to select a focus area of growth throughout my time in the education program, considering how I've developed, what I've learned and where I hope to go as I…

  8. An inhibitor of TRPV1 channels isolated from funnel Web spider venom.

    PubMed

    Kitaguchi, Tetsuya; Swartz, Kenton J

    2005-11-29

    Capsaicin receptor channels (TRPV1) are nonselective cation channels that integrate multiple noxious stimuli in sensory neurons. In an effort to identify new inhibitors of these channels we screened a venom library for activity against TRPV1 channels and found robust inhibitory activity in venom from Agelenopsis aperta, a north American funnel web spider. Fractionation of the venom using reversed-phase HPLC resulted in the purification of two acylpolyamine toxins, AG489 and AG505, which inhibit TRPV1 channels from the extracellular side of the membrane. The activity of AG489 was characterized further, and the toxin was found to inhibit TRPV1 channels with a K(i) of 0.3 microM at -40 mV. Inhibition of TRPV1 channels by AG489 is strongly voltage-dependent, with relief of inhibition at positive voltages, consistent with the toxin inhibiting the channel through a pore-blocking mechanism. We used scanning mutagenesis throughout the TM5-TM6 linker, a region thought to form the outer pore of TRPV1 channels, to identify pore mutations that alter toxin affinity. Four mutants dramatically decrease toxin affinity and several mutants increase toxin affinity, consistent with the notion that the TM5-TM6 linker forms the outer vestibule of TRPV1 channels and that AG489 is a pore blocker.

  9. Bimodal fibrous structures for tissue engineering: Fabrication, characterization and in vitro biocompatibility.

    PubMed

    Tiwari, Arjun Prasad; Joshi, Mahesh Kumar; Kim, Jeong In; Unnithan, Afeesh Rajan; Lee, Joshua; Park, Chan Hee; Kim, Cheol Sang

    2016-08-15

    We report for the first time a polycaprolactone-human serum albumin (PCL-HSA) membrane with bimodal structures comprised of spider-web-like nano-nets and conventional fibers via facile electro-spinning/netting (ESN) technique. Such unique controllable morphology was developed by electrospinning the blend solution of PCL (8wt% in HFIP 1,1,1,3,3,3,-Hexafluoro-2-propanol) and HSA (10wt% deionized water). The phase separation during electrospinning caused the formation of bimodal structure. Various processing factors such as applied voltage, feeding rate, and distance between nozzle tip and collector were found responsible for the formation and distribution of the nano-nets throughout the nanofibrous mesh. Field emission electron microscopy (FE-SEM) confirmed that the nano-nets were composed of interlinked nanowires with an ultrathin diameter (10-30nm). When compared with a pure PCL membrane, the membrane containing nano-nets was shown to have better support for cellular activities as determined by cell viability and attachment assays. These results revealed that the blending of albumin, a hydrophilic biomolecule, with PCL, a hydrophobic polymer, proves to be an outstanding approach to developing membranes with controlled spider-web-like nano-nets for tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Gamma-ray timing of redback PSR J2339-0533: Hints for gravitational quadrupole moment changes

    DOE PAGES

    Pletsch, Holger J.; Clark, Colin J.

    2015-06-25

    Here, we present the results of precision gamma-ray timing measurements of the binary millisecond pulsar PSR J2339–0533, an irradiating system of the "redback" type, using data from the Fermi Large Area Telescope. We describe an optimized analysis method to determine a long-term phase-coherent timing solution spanning more than six years, including a measured eccentricity of the binary orbit and constraints on the proper motion of the system. A major result of this timing analysis is the discovery of an extreme variation of the nominal 4.6 hr orbital periodmore » $${P}_{\\mathrm{orb}}$$ over time, showing alternating epochs of decrease and increase. We inferred a cyclic modulation of $${P}_{\\mathrm{orb}}$$ with an approximate cycle duration of 4.2 yr and a modulation amplitude of $${\\rm{\\Delta }}{P}_{\\mathrm{orb}}/{P}_{\\mathrm{orb}}=2.3\\times {10}^{-7}$$. Considering different possible physical causes, the observed orbital-period modulation most likely results from a variable gravitational quadrupole moment of the companion star due to cyclic magnetic activity in its convective zone.« less

  11. Oxytocin eliminates the own-race bias in face recognition memory.

    PubMed

    Blandón-Gitlin, Iris; Pezdek, Kathy; Saldivar, Sesar; Steelman, Erin

    2014-09-11

    The neuropeptide Oxytocin influences a number of social behaviors, including processing of faces. We examined whether Oxytocin facilitates the processing of out-group faces and reduce the own-race bias (ORB). The ORB is a robust phenomenon characterized by poor recognition memory of other-race faces compared to the same-race faces. In Experiment 1, participants received intranasal solutions of Oxytocin or placebo prior to viewing White and Black faces. On a subsequent recognition test, whereas in the placebo condition the same-race faces were better recognized than other-race faces, in the Oxytocin condition Black and White faces were equally well recognized, effectively eliminating the ORB. In Experiment 2, Oxytocin was administered after the study phase. The ORB resulted, but Oxytocin did not significantly reduce the effect. This study is the first to show that Oxytocin can enhance face memory of out-group members and underscore the importance of social encoding mechanisms underlying the own-race bias. This article is part of a Special Issue entitled Oxytocin and Social Behav. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The complexity of silk under the spotlight of synthetic biology.

    PubMed

    Vollrath, Fritz

    2016-08-15

    For centuries silkworm filaments have been the focus of R&D innovation centred on textile manufacture with high added value. Most recently, silk research has focused on more fundamental issues concerning bio-polymer structure-property-function relationships. This essay outlines the complexity and fundamentals of silk spinning, and presents arguments for establishing this substance as an interesting and important subject at the interface of systems biology (discovery) and synthetic biology (translation). It is argued that silk is a generic class of materials where each type of silk presents a different embodiment of emergent properties that combine genetically determined (anticipatory) and environmentally responsive components. In spiders' webs the various silks have evolved to form the interactive components of an intricate fabric that provides an extended phenotype to the spider's body morphology. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  13. Hubble Spins a Web Into a Giant Red Spider Nebula

    NASA Image and Video Library

    2017-12-08

    Huge waves are sculpted in this two-lobed nebula called the Red Spider Nebula, located some 3,000 light-years away in the constellation of Sagittarius. This warm planetary nebula harbors one of the hottest stars known and its powerful stellar winds generate waves 100 billion kilometers (62.4 billion miles) high. The waves are caused by supersonic shocks, formed when the local gas is compressed and heated in front of the rapidly expanding lobes. The atoms caught in the shock emit the spectacular radiation seen in this image. Image credit: ESA/Garrelt Mellema (Leiden University, the Netherlands) NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Spiders from Mars?

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-426, 19 July 2003

    No, this is not a picture of a giant, martian spider web. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a plethora of polygonal features on the floor of a northern hemisphere impact crater near 65.6oN, 327.7oW. The picture was acquired during spring, after the seasonal carbon dioxide frost cap had largely migrated through the region. At the time the picture was taken, remnants of seasonal frost remained on the crater rim and on the edges of the troughs that bound each of the polygons. Frost often provides a helpful hint as to where polygons and patterned ground occur. The polygons, if they were on Earth, would indicate the presence of freeze-thaw cycles in ground ice. Although uncertain, the same might be true of Mars. Sunlight illuminates the scene from the lower left.

  15. Non-pest prey do not disrupt aphid predation by a web-building spider.

    PubMed

    Welch, K D; Whitney, T D; Harwood, J D

    2016-02-01

    A generalist predator's ability to contribute to biological control is influenced by the decisions it makes during foraging. Predators often use flexible foraging tactics, which allows them to pursue specific types of prey at the cost of reducing the likelihood of capturing other types of prey. When a pest insect has low nutritional quality or palatability for a predator, the predator is likely to reject that prey in favour of pursuing alternative, non-pest prey. This is often thought to limit the effectiveness of generalist predators in consuming aphids, which are of low nutritional quality for many generalist predators. Here, we report behavioural assays that test the hypothesis that the generalist predator, Grammonota inornata (Araneae: Linyphiidae), preferentially forages for a non-pest prey with high nutritional quality (springtails), and rejects a pest prey with low nutritional quality (aphids). In no-choice assays, molecular gut-content analysis revealed that spiders continued to feed on the low-quality aphids at high rates, even when high-quality springtails were readily available. When provided a choice between aphids and springtails in two-way choice tests, spiders did not show the expected preference for springtails. Decision-making by spiders during foraging therefore appears to be sub-optimal, possibly because of attraction to the less frequently encountered of two preys as part of a dietary diversification strategy. These results indicate that behavioural preferences alone do not necessarily compromise the pest-suppression capacity of natural enemies: even nutritionally sub-optimal pest prey can potentially be subject to predation and suppression by natural enemies.

  16. Species replacement by a nonnative salmonid alters ecosystem function by reducing prey subsidies that support riparian spiders

    USGS Publications Warehouse

    Benjamin, J.R.; Fausch, K.D.; Baxter, C.V.

    2011-01-01

    Replacement of a native species by a nonnative can have strong effects on ecosystem function, such as altering nutrient cycling or disturbance frequency. Replacements may cause shifts in ecosystem function because nonnatives establish at different biomass, or because they differ from native species in traits like foraging behavior. However, no studies have compared effects of wholesale replacement of a native by a nonnative species on subsidies that support consumers in adjacent habitats, nor quantified the magnitude of these effects. We examined whether streams invaded by nonnative brook trout (Salvelinus fontinalis) in two regions of the Rocky Mountains, USA, produced fewer emerging adult aquatic insects compared to paired streams with native cutthroat trout (Oncorhynchus clarkii), and whether riparian spiders that depend on these prey were less abundant along streams with lower total insect emergence. As predicted, emergence density was 36% lower from streams with the nonnative fish. Biomass of brook trout was higher than the cutthroat trout they replaced, but even after accounting for this difference, emergence was 24% lower from brook trout streams. More riparian spiders were counted along streams with greater total emergence across the water surface. Based on these results, we predicted that brook trout replacement would result in 6-20% fewer spiders in the two regions. When brook trout replace cutthroat trout, they reduce cross-habitat resource subsidies and alter ecosystem function in stream-riparian food webs, not only owing to increased biomass but also because traits apparently differ from native cutthroat trout. ?? 2011 Springer-Verlag.

  17. Different hunting strategies of generalist predators result in functional differences.

    PubMed

    Michalko, Radek; Pekár, Stano

    2016-08-01

    The morphological, physiological, and behavioural traits of organisms are often used as surrogates for actual ecological functions. However, differences in these traits do not necessarily lead to functional differences and/or can be context-dependent. Therefore, it is necessary to explicitly test whether the surrogates have general ecological relevance. To investigate the relationship between the hunting strategies of predators (i.e., how, where, and when they hunt) and their function, we used euryphagous spiders as a model group. We used published data on the diet composition of 76 spider species based on natural prey and laboratory prey acceptance experiments. We computed differences in the position and width of trophic niches among pairs of sympatrically occurring species. Pairs were made at different classification levels, ranked according to the dissimilarity in their hunting strategies: congeners, confamiliars (as phylogenetic proxies for similarity in hunting strategy), species from the same main class of hunting strategy, from the same supra-class, and from different supra-classes. As for niche position computed from the natural prey analyses, species from the same class differed less than species from different classes. A similar pattern was obtained from the laboratory studies, but the congeners differed less than the species from the same classes. Niche widths were most similar among congeners and dissimilar among species from different supra-classes. Functional differences among euryphagous spiders increased continuously with increasing difference in their hunting strategy. The relative frequency of hunting strategies within spider assemblages can, therefore, influence the food webs through hunting strategy-specific predator-prey interactions.

  18. Introducing Explorer of Taxon Concepts with a case study on spider measurement matrix building.

    PubMed

    Cui, Hong; Xu, Dongfang; Chong, Steven S; Ramirez, Martin; Rodenhausen, Thomas; Macklin, James A; Ludäscher, Bertram; Morris, Robert A; Soto, Eduardo M; Koch, Nicolás Mongiardino

    2016-11-17

    Taxonomic descriptions are traditionally composed in natural language and published in a format that cannot be directly used by computers. The Exploring Taxon Concepts (ETC) project has been developing a set of web-based software tools that convert morphological descriptions published in telegraphic style to character data that can be reused and repurposed. This paper introduces the first semi-automated pipeline, to our knowledge, that converts morphological descriptions into taxon-character matrices to support systematics and evolutionary biology research. We then demonstrate and evaluate the use of the ETC Input Creation - Text Capture - Matrix Generation pipeline to generate body part measurement matrices from a set of 188 spider morphological descriptions and report the findings. From the given set of spider taxonomic publications, two versions of input (original and normalized) were generated and used by the ETC Text Capture and ETC Matrix Generation tools. The tools produced two corresponding spider body part measurement matrices, and the matrix from the normalized input was found to be much more similar to a gold standard matrix hand-curated by the scientist co-authors. Special conventions utilized in the original descriptions (e.g., the omission of measurement units) were attributed to the lower performance of using the original input. The results show that simple normalization of the description text greatly increased the quality of the machine-generated matrix and reduced edit effort. The machine-generated matrix also helped identify issues in the gold standard matrix. ETC Text Capture and ETC Matrix Generation are low-barrier and effective tools for extracting measurement values from spider taxonomic descriptions and are more effective when the descriptions are self-contained. Special conventions that make the description text less self-contained challenge automated extraction of data from biodiversity descriptions and hinder the automated reuse of the published knowledge. The tools will be updated to support new requirements revealed in this case study.

  19. Top down and bottom up selection drives variations in frequency and form of a visual signal

    PubMed Central

    Yeh, Chien-Wei; Blamires, Sean J.; Liao, Chen-Pan; Tso, I.-Min

    2015-01-01

    The frequency and form of visual signals can be shaped by selection from predators, prey or both. When a signal simultaneously attracts predators and prey, selection may favour a strategy that minimizes risks while attracting prey. Accordingly, varying the frequency and form of the silken decorations added to their web may be a way that Argiope spiders minimize predation while attracting prey. Nonetheless, the role of extraneous factors renders the influences of top down and bottom up selection on decoration frequency and form variation difficult to discern. Here we used dummy spiders and decorations to simulate four possible strategies that the spider Argiope aemula may choose and measured the prey and predator attraction consequences for each in the field. The strategy of decorating at a high frequency with a variable form attracted the most prey, while that of decorating at a high frequency with a fixed form attracted the most predators. These results suggest that mitigating the cost of attracting predators while maintaining prey attraction drives the use of variation in decoration form by many Argiope spp. when decorating frequently. Our study highlights the importance of considering top-down and bottom up selection pressure when devising evolutionary ecology experiments. PMID:25828030

  20. The Royal Society of Chemistry and the delivery of chemistry data repositories for the community.

    PubMed

    Williams, Antony; Tkachenko, Valery

    2014-10-01

    Since 2009 the Royal Society of Chemistry (RSC) has been delivering access to chemistry data and cheminformatics tools via the ChemSpider database and has garnered a significant community following in terms of usage and contribution to the platform. ChemSpider has focused only on those chemical entities that can be represented as molecular connection tables or, to be more specific, the ability to generate an InChI from the input structure. As a structure centric hub ChemSpider is built around the molecular structure with other data and links being associated with this structure. As a result the platform has been limited in terms of the types of data that can be managed, and the flexibility of its searches, and it is constrained by the data model. New technologies and approaches, specifically taking into account a shift from relational to NoSQL databases, and the growing importance of the semantic web, has motivated RSC to rearchitect and create a more generic data repository utilizing these new technologies. This article will provide an overview of our activities in delivering data sharing platforms for the chemistry community including the development of the new data repository expanding into more extensive domains of chemistry data.

  1. The Physics and Materials Science of Superheroes

    NASA Astrophysics Data System (ADS)

    Kakalios, James

    While physicists, engineers and materials scientists don't typically consult comic books when selecting research topics; innovations first introduced in superhero adventures as fiction can sometimes find their way off the comic book page and into reality. As amazing as the Fantastic Four's powers is the fact that their costumes are undamaged when the Human Torch flames on or Mr. Fantastic stretches his elastic body. In shape memory materials, an external force or torque induces a structural change that is reversed upon warming, a feature appreciated by Mr. Fantastic. Spider-Man's wall crawling ability has been ascribed to the same van der Waals attractive force that gecko lizards employ through the millions of microscopic hairs on their toes. Scientists have developed ``gecko tape, consisting of arrays of fibers that provide a strong enough attraction to support a modest weight (if this product ever becomes commercially available, I for one will never wait for the elevator again!). All this, and important topics such as: was it ``the fall or the webbing that killed Gwen Stacy, Spider-Man's girlfriend in the classic Amazing Spider-Man # 121, and the chemical composition of Captain America's shield, will be discussed. Superhero comic books often get their science right more often than one would expect!

  2. The Royal Society of Chemistry and the delivery of chemistry data repositories for the community

    NASA Astrophysics Data System (ADS)

    Williams, Antony; Tkachenko, Valery

    2014-10-01

    Since 2009 the Royal Society of Chemistry (RSC) has been delivering access to chemistry data and cheminformatics tools via the ChemSpider database and has garnered a significant community following in terms of usage and contribution to the platform. ChemSpider has focused only on those chemical entities that can be represented as molecular connection tables or, to be more specific, the ability to generate an InChI from the input structure. As a structure centric hub ChemSpider is built around the molecular structure with other data and links being associated with this structure. As a result the platform has been limited in terms of the types of data that can be managed, and the flexibility of its searches, and it is constrained by the data model. New technologies and approaches, specifically taking into account a shift from relational to NoSQL databases, and the growing importance of the semantic web, has motivated RSC to rearchitect and create a more generic data repository utilizing these new technologies. This article will provide an overview of our activities in delivering data sharing platforms for the chemistry community including the development of the new data repository expanding into more extensive domains of chemistry data.

  3. Two visual systems in one brain: neuropils serving the principal eyes of the spider Cupiennius salei.

    PubMed

    Strausfeld, N J; Weltzien, P; Barth, F G

    1993-02-01

    Principal (anterior median) eyes of the wandering spider Cupiennius are served by three successive neuropils, the organization of which is distinct from those serving secondary eyes. Photoreceptors terminate in the first optic neuropil amongst second order neurons with overlapping dendritic fields. Second order neurons terminate at various depths in anterior median eye medulla where they are visited by bush-like dendritic trees of third order projection neurons. These supply tracts which extend into the "central body." This crescent-shaped neuropil lies midsagittally in the rear of the brain near its dorsal surface. It is organized into columns and it supplies both columnar and tangential efferents to other brain centers. The supply to and organization of the "central body" neuropil is reminiscent of retinotopic neuropils supplying the lobula of insects. Channels to the "central body" comprise one of two concurrent visual pathways, the other provided by the secondary eyes supplying the "mushroom body." We suggest that principal eye pathways may be involved in form and texture perception whereas secondary eyes detect motion, as is known for jumping spiders. Our data do not support Hanström's classical view that the "central body" is specifically associated with web-building, nor that it is homologous to its namesake in insect brains.

  4. Mechanistic insights on spider neurotoxins.

    PubMed

    Luch, Andreas

    2010-01-01

    In physiology research, animal neurotoxins historically have served as valuable tools for identification, purification, and functional characterization of voltage-dependent ion channels. In particular, toxins from scorpions, sea anemones and cone snails were at the forefront of work aimed at illuminating the three-dimensional architecture of sodium channels. To date, at least six different receptor binding sites have been identified and--most of them--structurally assigned in terms of protein sequence and spatial disposition. Recent work on Australian funnel-web spiders identified certain peptidic ingredients as being responsible for the neurotoxicity of the crude venom. These peptides, termed delta-atracotoxins (delta-ACTX), consist of 42 amino acids and bind to voltage-gated sodium channels in the same way as classical scorpion alpha-toxins. According to the 'voltage-sensor trapping model' proposed in the literature, delta-ACTX isoforms interact with the voltage sensor S4 transmembrane segment of alpha-subunit domain IV, thereby preventing its normal outward movement and concurrent conformational changes required for inactivation of the channel. As consequence prolonged action potentials at autonomic or somatic synapses induce massive transmitter release, resulting in clinical correlates of neuroexcitation (e.g., muscle fasciculation, spasms, paresthesia, tachycardia, diaphoresis, etc.). On the other hand, the major neurotoxin isolated from black widow spiders, alpha-latrotoxin (alpha-LTX), represents a 132 kDa protein consisting of a unique N-terminal sequence and a C-terminal part harboring multiple ankyrin-like repeats. Upon binding to one of its specific presynaptic receptors, alpha-LTX has been shown to tetramerize under physiological conditions to form Ca2+-permeable pores in presynaptic membranes. The molecular model worked out during recent years separates two distinguishable receptor-mediated effects. According to current knowledge, binding of the N terminus of alpha-LTX at one of its specific receptors either triggers intracellular signaling cascades, resulting in phospholipase C-mediated mobilization of presynaptic Ca2+ stores, or leads to the formation of tetrameric pore complexes, allowing extracellular Ca2+ to enter the presynaptic terminal. Alpha-LTX-triggered exocytosis and fulminant transmitter release at autonomic synapses may then provoke a clinical syndrome referred to as 'latrodectism', characterized by local and incapacitating pain, diaphoresis, muscle fasciculation, tremor, anxiety, and so forth. The present review aims at providing a short introduction into some of the exciting molecular effects induced by neurotoxins isolated from black widow and funnel-web spiders.

  5. Automating Information Discovery Within the Invisible Web

    NASA Astrophysics Data System (ADS)

    Sweeney, Edwina; Curran, Kevin; Xie, Ermai

    A Web crawler or spider crawls through the Web looking for pages to index, and when it locates a new page it passes the page on to an indexer. The indexer identifies links, keywords, and other content and stores these within its database. This database is searched by entering keywords through an interface and suitable Web pages are returned in a results page in the form of hyperlinks accompanied by short descriptions. The Web, however, is increasingly moving away from being a collection of documents to a multidimensional repository for sounds, images, audio, and other formats. This is leading to a situation where certain parts of the Web are invisible or hidden. The term known as the "Deep Web" has emerged to refer to the mass of information that can be accessed via the Web but cannot be indexed by conventional search engines. The concept of the Deep Web makes searches quite complex for search engines. Google states that the claim that conventional search engines cannot find such documents as PDFs, Word, PowerPoint, Excel, or any non-HTML page is not fully accurate and steps have been taken to address this problem by implementing procedures to search items such as academic publications, news, blogs, videos, books, and real-time information. However, Google still only provides access to a fraction of the Deep Web. This chapter explores the Deep Web and the current tools available in accessing it.

  6. Do Tetranychus urticae males avoid mating with familiar females?

    PubMed

    Yoshioka, T; Yano, S

    2014-07-01

    The two-spotted spider mite, Tetranychus urticae, usually lives in kin groups under common webs. Because only the first mating results in fertilisation in female T. urticae, adult males guard quiescent deutonymph females, those at the stage immediately before maturation, to ensure paternity. Therefore, the cost of precopulatory guarding time seems considerable for males. Moreover, the fitness indices of daughters from intra-population crosses were significantly lower than those of daughters from inter-population crosses, indicating that inbreeding depression exists in T. urticae. Therefore, we hypothesised that T. urticae males should be choosy in guarding familiar females to avoid inbreeding depression. Furthermore, webs should be a key element of the environment shared by familiar individuals. In this study, we demonstrated the inbreeding avoidance mechanism of T. urticae males in relation to webs produced by familiar females (known webs) or unfamiliar females (unknown webs). Regardless of surrounding webs (known or unknown), males preferred unfamiliar to familiar females. We further examined whether males detect unfamiliar females by their webs. When males had experienced a female's web without encountering that female, they subsequently preferred females that did not produce the surrounding webs in which the choice experiment was conducted. Results suggest that putative kin recognition for inbreeding avoidance in T. urticae males is based on the relationship between webs and females, and not on the discrimination of webs in shared environments. © 2014. Published by The Company of Biologists Ltd.

  7. RCrawler: An R package for parallel web crawling and scraping

    NASA Astrophysics Data System (ADS)

    Khalil, Salim; Fakir, Mohamed

    RCrawler is a contributed R package for domain-based web crawling and content scraping. As the first implementation of a parallel web crawler in the R environment, RCrawler can crawl, parse, store pages, extract contents, and produce data that can be directly employed for web content mining applications. However, it is also flexible, and could be adapted to other applications. The main features of RCrawler are multi-threaded crawling, content extraction, and duplicate content detection. In addition, it includes functionalities such as URL and content-type filtering, depth level controlling, and a robot.txt parser. Our crawler has a highly optimized system, and can download a large number of pages per second while being robust against certain crashes and spider traps. In this paper, we describe the design and functionality of RCrawler, and report on our experience of implementing it in an R environment, including different optimizations that handle the limitations of R. Finally, we discuss our experimental results.

  8. Why is there a dearth of close-in planets around fast-rotating stars?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teitler, Seth; Königl, Arieh, E-mail: satelite@gmail.com, E-mail: akonigl@uchicago.edu

    2014-05-10

    We propose that the reported dearth of Kepler objects of interest (KOIs) with orbital periods P {sub orb} ≲ 2-3 days around stars with rotation periods P {sub rot} ≲ 5-10 days can be attributed to tidal ingestion of close-in planets by their host stars. We show that the planet distribution in this region of the log P {sub orb}-log P {sub rot} plane is qualitatively reproduced with a model that incorporates tidal interaction and magnetic braking as well as the dependence on the stellar core-envelope coupling timescale. We demonstrate the consistency of this scenario with the inferred break inmore » the P {sub orb} distribution of close-in KOIs and point out a potentially testable prediction of this interpretation.« less

  9. Electrical generating unit inventory 1976-1986: Illinois, Indiana, Kentucky, Ohio, Pennsylvania and West Virginia

    NASA Astrophysics Data System (ADS)

    Jansen, S. D.

    1981-09-01

    The ORBES region consists of all of Kentucky, most of West Virginia, substantial parts of Illinois, Indiana, and Ohio, and southwestern Pennsylvania. The inventory lists installed electrical generating capacity in commercial service as of December 1, 1976, and scheduled capacity additions and removals between 1977 and 1986 in the six ORBES states (Illinois, Indiana, Kentucky, Ohio, Pennsylvania, and West Virginia). The following information is included for each electrical generating unit: unit ID code, company index, whether point or industrial ownership, plant name, whether inside or outside the ORBES region, FIPS county code, type of unit, size in megawatts, type of megawatt rating, status of unit, data of commercial operation, scheduled retirement date, primary fuel, alternate fuel, type of cooling, source of cooling water, and source of information.

  10. HFI Bolometer Detectors Programmatic CDR

    NASA Technical Reports Server (NTRS)

    Lange, Andrew E.

    2002-01-01

    Programmatic Critical Design Review (CDR) of the High Frequency Instrument (HFI) Bolometer Detector on the Planck Surveyor is presented. The topics include: 1) Scientific Requirements and Goals; 2) Silicon Nitride Micromesh 'Spider-Web' Bolometers; 3) Sub-Orbital Heritage: BOOMERANG; 4) Noise stability demonstrated in BOOMERANG; 5) Instrument Partners; 6) Bolometer Environment on Planck/HFI; 7) Bolometer Modules; and 8) Mechanical Interface. Also included are the status of the receivables and delivery plans with Europe. This paper is presented in viewgraph form.

  11. A toxin fraction (FTX) from the funnel-web spider poison inhibits dihydropyridine-insensitive Ca2+ channels coupled to catecholamine release in bovine adrenal chromaffin cells.

    PubMed

    Duarte, C B; Rosario, L M; Sena, C M; Carvalho, A P

    1993-03-01

    In adrenal chromaffin cells, depolarization-evoked Ca2+ influx and catecholamine release are partially blocked by blockers of L-type voltage-sensitive Ca2+ channels. We have now evaluated the sensitivity of the dihydropyridine-resistant components of Ca2+ influx and catecholamine release to a toxin fraction (FTX) from the funnel-web spider poison, which is known to block P-type channels in mammalian neurons. FTX (1:4,000 dilution, with respect to the original fraction) inhibited K(+)-depolarization-induced Ca2+ influx by 50%, as monitored with fura-2, whereas nitrendipine (0.1-1 microM) and FTX (3:3), a synthetic FTX analogue (1 mM), blocked the [Ca2+]i transients by 35 and 30%, respectively. When tested together, FTX and nitrendipine reduced the [Ca2+]i transients by 70%. FTX or nitrendipine reduced adrenaline and noradrenaline release by approximately 80 and 70%, respectively, but both substances together abolished the K(+)-evoked catecholamine release, as measured by HPLC. The omega-conotoxin GVIA (0.5 microM) was without effect on K(+)-stimulated 45Ca2+ uptake. Our results indicate that FTX blocks dihydropyridine- and omega-conotoxin-insensitive Ca2+ channels that, together with L-type voltage-sensitive Ca2+ channels, are coupled to catecholamine release.

  12. Chick cerebellar Purkinje cells express omega-conotoxin GVIA-sensitive rather than funnel-web spider toxin-sensitive calcium channels.

    PubMed

    Angulo, M C; Parra, P; Dieudonné, S

    1998-03-01

    Voltage-gated calcium channels form a complex family of distinct molecular entities which participate in multiple neuronal functions. In cerebellar Purkinje cells these channels contribute to the characteristic electrophysiological pattern of complex spikes, first described in birds and later in mammals. A specific calcium channel, the P-type channel, has been shown to mediate the majority of the voltage-gated calcium flux in mammalian Purkinje cells. P-type channels play an essential role in synaptic transmission of mammalian cerebellum. It is unclear whether the P-type calcium channel is present in birds. Studies in chick synaptosomal preparations show that the pharmacological profile of calcium channels is complex and suggest a minimal expression of the P-type channel in avian central nervous system. In the present work, we studied voltage-gated calcium channels in dissociated chick cerebellar Purkinje cells to examine the presence of different calcium channel types. Purkinje cells were used because, in mammals, they express predominantly P-type channels and because the morphology of these cells is thought to be phylogenetically conserved. We found that omega-conotoxin GVIA (omega-CgTx GVIA), a specific antagonist of N-type calcium channel, rather than the synthetic funnel-web spider toxin (sFTX), a P-type channel antagonist, blocks the majority of the barium current flowing through calcium channels in chick Purkinje neurons.

  13. The Behavioral Type of a Top Predator Drives the Short-Term Dynamic of Intraguild Predation.

    PubMed

    Michalko, Radek; Pekár, Stano

    2017-03-01

    Variation in behavior among individual top predators (i.e., the behavioral type) can strongly shape pest suppression in intraguild predation (IGP). However, the effect of a top predator's behavioral type-namely, foraging aggressiveness (number of killed divided by prey time) and prey choosiness (preference degree for certain prey type)-on the dynamic of IGP may interact with the relative abundances of top predator, mesopredator, and pest. We investigated the influence of the top predator's behavioral type on the dynamic of IGP in a three-species system with a top predator spider, a mesopredator spider, and a psyllid pest using a simulation model. The model parameters were estimated from laboratory experiments and field observations. The top predator's behavioral type altered the food-web dynamics in a context-dependent manner. The system with an aggressive/nonchoosy top predator, without prey preferences between pest and mesopredator, suppressed the pest more when the top predator to mesopredator abundance ratio was high. In contrast, the system with a timid/choosy top predator that preferred the pest to the mesopredator was more effective when the ratio was low. Our results show that the behavioral types and abundances of interacting species need to be considered together when studying food-web dynamics, because they evidently interact. To improve biocontrol efficiency of predators, research on the alteration of their behavioral types is needed.

  14. The GeoEye Satellite Constellation

    NASA Technical Reports Server (NTRS)

    Dial, Gene; Cole, Aaron; Lutes, James; McKune, John; Martinez, Mike; Rao, R. S.; Taylor, Martin

    2007-01-01

    The GeoEye Constellation consists of: a) IKONOS and OrbView-3 for high resolution; b) GeoEye with higher resolution 1Q2007; c) RESOUCESAT-1 for global crop assessment; d) OrbView-2 for ocean research and fish. IKONOS performance in 2005 included stable image quality, radiometry and geometric accuracy. reliability is 80% to 2008. Demonstrated capacity for high-volume, quick-response collection and production.

  15. Introducing Magneto-Optical Functions into Soft Materials

    DTIC Science & Technology

    2017-05-03

    the electromagnet as illustrated in Figure 1(b). This experimental measurement allowed us to explore magneto- electric coupling in both ground and...short-range spin-spin interaction. As a general conclusion, the -d electron coupling promise the existence of photo-adjustable magneto- electric ...coupling, paving the way for the realization of magneto- electric -optical applications. Intermoleuar SOC SB Orb S B OrbHinter Hinter 1 2 (b

  16. The changing use of the ovipositor in host shifts by ichneumonid ectoparasitoids of spiders (Hymenoptera, Ichneumonidae, Pimplinae)

    PubMed Central

    Takasuka, Keizo; Fritzén, Niclas R.; Tanaka, Yoshihiro; Matsumoto, Rikio; Maeto, Kaoru; Shaw, Mark R.

    2018-01-01

    Accurate egg placement into or onto a living host is an essential ability for many parasitoids, and changes in associated phenotypes, such as ovipositor morphology and behaviour, correlate with significant host shifts. Here, we report that in the ichneumonid group of koinobiont spider-ectoparasitoids (“polysphinctines”), several putatively ancestral taxa (clade I here), parasitic on ground-dwelling RTA-spiders (a group characterised by retrolateral tibial apophysis on male palpal tibiae), lay their eggs in a specific way. They tightly bend their metasoma above the spider’s cephalothorax, touching the carapace with the dorsal side of the ovipositor apically (“dorsal-press”). The egg slips out from the middle part of the ventral side of the ovipositor and moves towards its apex with the parted lower valves acting as rails. Deposition occurs as the parasitoid draws the ovipositor backwards from under the egg. Oviposition upon the tough carapace of the cephalothorax, presumably less palatable than the abdomen, is conserved in these taxa, and presumed adaptive through avoiding physical damage to the developing parasitoid. This specific way of oviposition is reversed in the putatively derived clade of polysphinctines (clade II here) parasitic on Araneoidea spiders with aerial webs, which is already known. They bend their metasoma along the spider’s abdomen, grasping the abdomen with their fore/mid legs, pressing the ventral tip of the metasoma and the lower valves of the ovipositor against the abdomen (“ventral-press”). The egg is expelled through an expansion of the lower valves, which is developed only in this clade and evident in most species, onto the softer and presumably more nutritious abdomen. PMID:29589827

  17. The Reality of Peurbach's Orbs: Cosmological Continuity in Fifteenth and Sixteenth Century Astronomy

    NASA Astrophysics Data System (ADS)

    Barker, Peter

    In this paper I argue for continuity in astronomical models and their cosmological consequences, from the time of Peurbach's Theoricae novae planetarum (c. 1474) throughout the sixteenth century. Contrary to many modern discussions that still follow Duhem, the reality of celestial orbs was generally accepted in astronomy before Copernicus. I will present evidence that authors of commentaries on the two main university texts in astronomy, the theorica and the sphaera, adopted Peurbach's orbs as physically real before the end of the fifteenth century. This provoked a response from Averroists, like Alessandro Achillini (in 1498), who had their own agenda in cosmology. The result was a controversy that formed an important backdrop to Copernicus's work and its reception by Melanchthon and his circle. I will conclude by outlining the development of the same themes by Brahe and Kepler.

  18. Spider movement, UV reflectance and size, but not spider crypsis, affect the response of honeybees to Australian crab spiders.

    PubMed

    Llandres, Ana L; Rodríguez-Gironés, Miguel A

    2011-02-16

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees.

  19. Spider Movement, UV Reflectance and Size, but Not Spider Crypsis, Affect the Response of Honeybees to Australian Crab Spiders

    PubMed Central

    Llandres, Ana L.; Rodríguez-Gironés, Miguel A.

    2011-01-01

    According to the crypsis hypothesis, the ability of female crab spiders to change body colour and match the colour of flowers has been selected because flower visitors are less likely to detect spiders that match the colour of the flowers used as hunting platform. However, recent findings suggest that spider crypsis plays a minor role in predator detection and some studies even showed that pollinators can become attracted to flowers harbouring Australian crab spider when the UV contrast between spider and flower increases. Here we studied the response of Apis mellifera honeybees to the presence of white or yellow Thomisus spectabilis Australian crab spiders sitting on Bidens alba inflorescences and also the response of honeybees to crab spiders that we made easily detectable painting blue their forelimbs or abdomen. To account for the visual systems of crab spider's prey, we measured the reflectance properties of the spiders and inflorescences used for the experiments. We found that honeybees did not respond to the degree of matching between spiders and inflorescences (either chromatic or achromatic contrast): they responded similarly to white and yellow spiders, to control and painted spiders. However spider UV reflection, spider size and spider movement determined honeybee behaviour: the probability that honeybees landed on spider-harbouring inflorescences was greatest when the spiders were large and had high UV reflectance or when spiders were small and reflected little UV, and honeybees were more likely to reject inflorescences if spiders moved as the bee approached the inflorescence. Our study suggests that only the large, but not the small Australian crab spiders deceive their preys by reflecting UV light, and highlights the importance of other cues that elicited an anti-predator response in honeybees. PMID:21359183

  20. Real-Time CORBA

    DTIC Science & Technology

    2000-10-01

    control systems and prototyped the approach by porting the ILU ORB from Xerox to the Lynx real - time operating system . They then provided a distributed...compliant real - time operating system , a real-time ORB, and an ODMG-compliant real-time ODBMS [12]. The MITRE system is an infrastructure for...the server’s local operating system can handle. For instance, on a node controlled by the VXWorks real - time operating system with 256 local

Top