Hyperbolic Orbits and the Planetary Flylby Anomaly
NASA Technical Reports Server (NTRS)
Wilson, T.L.; Blome, H.J.
2009-01-01
Space probes in the Solar System have experienced unexpected changes in velocity known as the flyby anomaly [1], as well as shifts in acceleration referred to as the Pioneer anomaly [2-4]. In the case of Earth flybys, ESA s Rosetta spacecraft experienced the flyby effect and NASA s Galileo and NEAR satellites did the same, although MESSENGER did not possibly due to a latitudinal property of gravity assists. Measurements indicate that both anomalies exist, and explanations have varied from the unconventional to suggestions that new physics in the form of dark matter might be the cause of both [5]. Although dark matter has been studied for over 30 years, there is as yet no strong experimental evidence supporting it [6]. The existence of dark matter will certainly have a significant impact upon ideas regarding the origin of the Solar System. Hence, the subject is very relevant to planetary science. We will point out here that one of the fundamental problems in science, including planetary physics, is consistency. Using the well-known virial theorem in astrophysics, it will be shown that present-day concepts of orbital mechanics and cosmology are not consistent for reasons having to do with the flyby anomaly. Therefore, the basic solution regarding the anomalies should begin with addressing the inconsistencies first before introducing new physics.
Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994
NASA Technical Reports Server (NTRS)
Thomas, Walter B.
1996-01-01
This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).
Analysis of spacecraft on-orbit anomalies and lifetimes
NASA Technical Reports Server (NTRS)
Bloomquist, C.; Graham, W.
1983-01-01
Analyses of the on-orbit performance of forty-four unmanned NASA spacecraft are presented. Included are detailed descriptions and classifications of over 600 anomalies; each anomalous incident represents one reported deviation from expected spacecraft performance. Charts depicting satellite lifetimes and the performance of their major subsystems are included. Engineering analyses to further investigate the kinds and frequencies of various classes of anomalies have been conducted. An improved method for charting spacecraft capability as a function of time on orbit is explored.
Orbital debris hazard insights from spacecraft anomalies studies
NASA Astrophysics Data System (ADS)
McKnight, Darren S.
2016-09-01
Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.
K/S Lambert problem. [energy requirements for transfer orbits
NASA Technical Reports Server (NTRS)
Jezewski, D. J.
1975-01-01
The Lambert problem in orbital mechanics is formulated in Kustaanheimo/Stiefel variables. The problem is to determine the required energy and the value of the generalized eccentric anomaly such that a particle at the initial position vector will transfer to the final position vector in a physical time interval. The fictitious time solution results in two nonlinear equations in the two unknowns, energy and fictitious time. The generalized eccentric anomaly solution, however, results in only one nonlinear equation in the one unknown, the eccentric anomaly. This simplification is possible because the energy equation is separable in the eccentric anomaly formulation.
Risk Mitigation for Managing On-Orbit Anomalies
NASA Technical Reports Server (NTRS)
La, Jim
2010-01-01
This slide presentation reviews strategies for managing risk mitigation that occur with anomalies in on-orbit spacecraft. It reviews the risks associated with mission operations, a diagram of the method used to manage undesirable events that occur which is a closed loop fault analysis and until corrective action is successful. It also reviews the fish bone diagram which is used if greater detail is required and aids in eliminating possible failure factors.
Lunar Orbit Anomaly and GM=tc^3 Cosmology
NASA Astrophysics Data System (ADS)
Riofrio, Louise
2011-03-01
Studies of the Moon at Johnson Space Center have confirmed a large anomaly in lunar orbital distance, with possible applications to Relativity. Our Lunar Laser Ranging Experiment has reported the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. The Mansfield sediment (Bills, Ray 2000) measures lunar recession at 2.9 ± 0.6 cm/yr. Additional observations independently measure a recession rate of 2.82 ± .08 cm/yr. LLRE differs from independent experiments by 10 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter (Riofrio 2004). If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely accounted for, shedding light on puzzles of "dark energy." In Planck units this may be summarised as M=R=t.
Experimental and Computational Analysis of Shuttle Orbiter Hypersonic Trim Anomaly
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.; Paulson, John W., Jr.; Weilmuenster, K. James
1995-01-01
During the high-Mach-number, high-altitude portion of the first entry of the Shuttle Orbiter, the vehicle exhibited a nose-up pitching moment relative to preflight prediction of approximately Delta Cm = 0.03. This trim anomaly has been postulated to be due to compressibility, viscous, and/or real-gas (lowered specific heat ratio gamma) effects on basic body pitching moment, body-flap effectiveness, or both. In order to assess the relative contribution of each of these effects, an experimental study was undertaken to examine the effects of Mach number, Reynolds number, and ratio of specific heats. Complementary computational solutions were obtained for wind-tunnel and flight conditions. The primary cause of the anomaly was determined to be lower pressures on the aft windward surface of the Orbiter than deduced from hypersonic wind-tunnel tests with ideal- or near-ideal-gas test flow. The lower pressure levels are a result of the lowering of the flowfield gamma due to high-temperature effects. This phenomenon was accurately simulated in a hypersonic wind tunnel using a heavy gas, which provided a lower, gamma, and was correctly predicted by Navier-Stokes computations using nonequilibrium chemistry.
Pushker, Neelam; Bajaj, Mandeep S; Mehta, Mridula; Kashyap, Seema; Yadav, Prashant; Meel, Rachna; Sudhan, Madhu
2009-11-01
The authors describe a 5-year-old boy who had three congenital anomalies (clinical anophthalmos, meningocele, and glial heterotopia) in the orbit. These were associated with multiple neurological anomalies.
NASA Astrophysics Data System (ADS)
Iona, Glenn; Butler, James; Guenther, Bruce; Graziani, Larissa; Johnson, Eric; Kennedy, Brian; Kent, Craig; Lambeck, Robert; Waluschka, Eugene; Xiong, Xiaoxiong
2012-09-01
A gradual, but persistent, decrease in the optical throughput was detected during the early commissioning phase for the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) Near Infrared (NIR) bands. Its initial rate and unknown cause were coincidently coupled with a decrease in sensitivity in the same spectral wavelength of the Solar Diffuser Stability Monitor (SDSM) raising concerns about contamination or the possibility of a system-level satellite problem. An anomaly team was formed to investigate and provide recommendations before commissioning could resume. With few hard facts in hand, there was much speculation about possible causes and consequences of the degradation. Two different causes were determined as will be explained in this paper. This paper will describe the build and test history of VIIRS, why there were no indicators, even with hindsight, of an on-orbit problem, the appearance of the on-orbit anomaly, the initial work attempting to understand and determine the cause, the discovery of the root cause and what Test-As-You-Fly (TAYF) activities, can be done in the future to greatly reduce the likelihood of similar optical anomalies. These TAYF activities are captured in the "lessons learned" section of this paper.
NASA Technical Reports Server (NTRS)
Iona, Glenn; Butler, James; Guenther, Bruce; Graziani, Larissa; Johnson, Eric; Kennedy, Brian; Kent, Criag; Lambeck, Robert; Waluschka, Eugne; Xiong, Xiaoxiong
2012-01-01
A gradual, but persistent, decrease in the optical throughput was detected during the early commissioning phase for the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) Near Infrared (NIR) bands. Its initial rate and unknown cause were coincidently coupled with a decrease in sensitivity in the same spectral wavelength of the Solar Diffuser Stability Monitor (SDSM) raising concerns about contamination or the possibility of a system-level satellite problem. An anomaly team was formed to investigate and provide recommendations before commissioning could resume. With few hard facts in hand, there was much speculation about possible causes and consequences of the degradation. Two different causes were determined as will be explained in this paper. This paper will describe the build and test history of VIIRS, why there were no indicators, even with hindsight, of an on-orbit problem, the appearance of the on-orbit anomaly, the initial work attempting to understand and determine the cause, the discovery of the root cause and what Test-As-You-Fly (TAYF) activities, can be done in the future to greatly reduce the likelihood of similar optical anomalies. These TAYF activities are captured in the lessons learned section of this paper.
The problem of transfer orbits from one body back to the same body
NASA Astrophysics Data System (ADS)
Prado, Antonio F. B. A.; Broucke, Roger A.
The problem of trnasfer orbits from one body back to the same body (the Moon or a planet) is formulated as a Lambert's problem and solved by Gooding's Lambert routines. We consider elliptic as well as circular orbits for the Moon or a planet and any kind of orbit (elliptic, parabolic or hyperbolic) for the spacecraft. The solutions are plotted in terms of the true anomaly (instead of the eccentric anomaly) for several cases. We show that the use of the true anomaly simplifies the solutions in several ways. We also solved the problem of transfers from this body to the corresponding L(sub 4) and L(sub 5) points. After that, the same problem is studied in terms of the Delta-V and the time required for the trnsfer. Among all the possible transfer orbits, a small family with almost zero Delta-V was found. The properties of these orbits are shown in details.
The problem of transfer orbits from one body back to the same body
NASA Astrophysics Data System (ADS)
Bertachinidealmeidaprado, Antonio Fernando; Broucke, Roger A.
The problem of transfer orbits from one body back to the same body (the Moon or a planet) is formulated as a Lambert's problem and solved by Gooding's Lambert routines. We consider elliptic as well as circular orbits for the Moon or a planet and any kind of orbit (elliptic, parabolic or hyperbolic) for the spacecraft. The solutions are plotted in terms of the true anomaly (instead of the eccentric anomaly) for several cases. We show that the use of the true anomaly simplifies the solutions in several ways. We also solved the problem of transfers from this body to the corresponding L(sub 4) and L(sub 5) points. After that, the same problem is studied in terms of the delta V and the time required for the transfer. Among all the possible transfer orbits, a small family with almost zero delta V was found. The properties of these orbits are shown in detail.
Vigilance problems in orbiter processing
NASA Technical Reports Server (NTRS)
Swart, William W.; Safford, Robert R.; Kennedy, David B.; Yadi, Bert A.; Barth, Timothy S.
1993-01-01
A pilot experiment was done to determine what factors influence potential performance errors related to vigilance in Orbiter processing activities. The selected activities include post flight inspection for burned gap filler material and pre-rollout inspection for tile processing shim material. It was determined that the primary factors related to performance decrement were the color of the target and the difficulty of the target presentation.
Transfer orbits in the restricted problem
NASA Astrophysics Data System (ADS)
Prado, Antonio F. B. A.; Broucke, Roger A.
1994-11-01
This paper studies transfer orbits in the planar restricted three-body problem. In particular, we are searching for orbits that can be used in two situations: (1) to transfer a spacecraft from one body back to the same body, known in the literature as the Henon's problem; and (2) to transfer a spacecraft from one body to the respective Lagrangian points L(sub 4) and L(sub 5). To avoid numerical problems during close approaches the global Lamaitre regularization is used. Under this model, the Henon's problem became a Lambert's three body problem, as defined and explained in this paper.
NASA Astrophysics Data System (ADS)
Ling, J. F.; Docobo, J. A.; Abad, A. J.
1995-08-01
This article discusses the stellar three-body problem using an approximation in which the outer orbit is assumed to be Keplerian. The equations of motion are integrated by the stroboscopic method, i.e., basically at successive periods of a rapidly changing variable (the eccentric anomaly of the inner orbit). The theory is applied to the triple-star system ξ Ursae Majoris.
Practical method to identify orbital anomaly as spacecraft breakup in the geostationary region
NASA Astrophysics Data System (ADS)
Uetsuhara, Masahiko; Hanada, Toshiya
2013-09-01
Identifying spacecraft breakup events is an essential issue for better understanding of the current orbital debris environment. This paper proposes an observation planning approach to identify an orbital anomaly, which appears as a significant discontinuity in archived orbital history, as a spacecraft breakup. The proposed approach is applicable to orbital anomalies in the geostationary region. The proposed approach selects a spacecraft that experienced an orbital anomaly, and then predicts trajectories of possible fragments of the spacecraft at an observation epoch. This paper theoretically demonstrates that observation planning for the possible fragments can be conducted. To do this, long-term behaviors of the possible fragments are evaluated. It is concluded that intersections of their trajectories will converge into several corresponding regions in the celestial sphere even if the breakup epoch is not specified and it has uncertainty of the order of several weeks.
NASA Technical Reports Server (NTRS)
Sutter, James K.; Leidecker, Henning W.; Panda, Binayak; Piascik, Robert S.; Muirhead, Brian K.; Peeler, Debra
2009-01-01
The NESC eras requested by the NASA Jet Propulsion Laboratory (JPL) to conduct an independent review of the Mars Reconnaissance Orbiter (MRO) Thermal/Vacuum (T/V) Anomaly Assessment. Because the anomaly resulted in the surface contamination of the MRO, selected members of the Materials Super Problem Resolution Team (SPRT) and the NASA technical community having technical expertise relative to contamination issues were chosen for the independent review. The consultation consisted of a review of the MRO Project's reported response to the assessment findings, a detailed review of JPL technical assessment final report, and detailed discussions with the JPL assessment team relative to their findings.
Lageos orbit and the albedo problem
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1984-01-01
The objective was to obtain an analytic expression for the radiation pressure force on a satellite due to sunlight reflected from the Earth. The Lageos satellite undergoes unexplained along-track accelerations. These accelerations are believed to be due mainly to terrestrial radiation pressure. The effect of sunlight reflected off the surface of the Earth must thus be modeled to insure an accurate orbit for Lageos. An accurate orbit is necessary for carrying out Lageos' mission of measuring tectonic plate motion, polar motion, and Earth rotation. The present investigation focuses on a spherical harmonic approach to the problem. An equation for the force was obtained by assuming the Earth's surface reflects sunlight according to Lambert's law. The equation is an integral over the whole Earth's surface. Expressions occurring inside the integral are expressed in terms of spherical harmonics. The problem is thus reduced to integrating products of spherical harmonics.
Relative Density Anomalies Below 200 km as Observed by Aerodynamic Drag on Orbiting Rocket Bodies
NASA Astrophysics Data System (ADS)
Pilinski, M.; Argrow, B.; Palo, S. E.
2011-12-01
We examine the geomagnetic latitude and local solar time dependence of density anomalies as observed by rocket bodies in highly eccentric orbits. Density anomalies are estimated by analyzing the fitted ballistic coefficients produced by the Air Force Space Command's High Accuracy Satellite Drag Model. Particularly, observations of rocket bodies with very low perigee altitudes allow for the examination of density anomalies between 105 km and 200 km altitudes. We evaluate the ability to extract coherent geophysical signals from this data set. Finally, a statistical comparison is made between the low altitude density anomalies and those observed by the CHAMP and GRACE satellites above 300 km. In particular, we search for density enhancements which may be associated with the dayside cusp region.
ERIC Educational Resources Information Center
Online-Offline, 1999
1999-01-01
This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…
Antonov, Nina K; Spence-Shishido, Allyson; Marathe, Kalyani S; Tlougan, Brook; Kazim, Michael; Sultan, Sally; Hess, Christopher P; Morel, Kimberly D; Frieden, Ilona J; Garzon, Maria C
2015-01-01
We present two cases of infants with a similar constellation of clinical findings: retro-orbital infantile hemangioma (IH), internal carotid artery (ICA) arteriopathy, and intracranial IH. In both cases, intracranial vascular anomalies and hemangiomas were found incidentally during evaluation of unilateral proptosis. Neither infant had evidence of cutaneous segmental IH of the face or neck, which might have provided a clue to the diagnosis of PHACE syndrome or of intracranial hemangiomas. In one case, intracranial involvement was particularly extensive and function threatening, with mass effect on the brain parenchyma. These cases serve to highlight the fact that clinical findings of proptosis, globe deviation, and strabismus should prompt immediate imaging to confirm the presence of orbital IHs and to exclude other diagnoses. Moreover, based on our cases and the embryologic origin of the orbit as a unique developmental unit, patients with confirmed retro-orbital IHs should undergo evaluation for anomalies associated with PHACE syndrome. Patients with orbital IHs and an additional major criterion for PHACE syndrome should be considered to have definite, and not just possible, PHACE syndrome.
Structural anomalies and the orbital ground state in FeCr2S4
NASA Astrophysics Data System (ADS)
Tsurkan, V.; Zaharko, O.; Schrettle, F.; Kant, Ch.; Deisenhofer, J.; Krug von Nidda, H.-A.; Felea, V.; Lemmens, P.; Groza, J. R.; Quach, D. V.; Gozzo, F.; Loidl, A.
2010-05-01
We report on high-resolution x-ray synchrotron powder-diffraction, magnetic-susceptibility, sound-velocity, thermal-expansion, and heat-capacity studies of the stoichiometric spinel FeCr2S4 . We provide clear experimental evidence of a structural anomaly which accompanies an orbital-order transition at low temperatures due to a static cooperative Jahn-Teller effect. At 9 K, magnetic susceptibility, ultrasound velocity, and specific heat reveal pronounced anomalies that correlate with a volume contraction as evidenced by thermal-expansion data. The analysis of the low-temperature heat capacity using a mean-field model with a temperature-dependent gap yields a gap value of about 18 K and is interpreted as the splitting of the electronic ground state of Fe2+ by a cooperative Jahn-Teller effect. This value is close to the splitting of the ground state due to spin-orbit coupling for isolated Fe2+ ions in an insulating matrix, indicating that Jahn-Teller and spin-orbit coupling are competing energy scales in this system. We argue that due to this competition, the spin-reorientation transition at around 60 K marks the onset of short-range orbital ordering accompanied by a clear broadening of Bragg reflections, an enhanced volume contraction compared to usual anharmonic behavior, and a softening of the lattice observed in the ultrasound measurements.
NASA Astrophysics Data System (ADS)
Deo, Nivedita
1988-12-01
This thesis studies the structure of local and global anomalies in certain systems and examines the conditions for their cancellation. Gauge anomalies-abelian and non -albelian-antisymmetric tensor, and gravitational anomalies in simple spinor theories with background fields have been analyzed by perturbative methods and local counterterms have been constructed to cancel the anomalies wherever possible. Anomalies occurring in supersymmetric theories in (2 + 1)-dimensions have also been calculated using both perturbative and heat kernel techniques, here again counterterms have been constructed to cancel these parity violating anomalies for certain gauge field configurations. (i) For gauge theories in four dimensions which contain couplings of fermions to a non-abelian antisymmetric tensor field, the contribution of the later to anomalies in the non-abelian chiral Ward identity is computed. It is shown by explicit construction of suitable counterterms that these anomalies can all be cancelled. (ii) The gauge anomalies associated with the gravitational fields in abelian gauge theories can be completely removed provided torsion is nonzero. This is shown by constructing a counterterm associated with the gravitational Goldstone-Wilczek current which cancels the anomalous gravitational contribution to the chiral Ward identity without introducing anomalies in the Lorentz or Einstein Ward identities. (iii) Using perturbative BPHZ renormalization techniques the parity odd part of the effective action has been extracted and explicitly determined for abitrary non-abelian gauge superfields in odd dimensions and shown to be the supersymmetric Chern -Simons secondary topological invariant. (iv) Schwinger's proper time technique is generalized to supersymmetric theories in odd dimensions. The effective action for supersymmetric QED is exactly found for space-time constant superfield. The parity violating anomaly induced in the effective action can be cancelled by adding a local
NASA Astrophysics Data System (ADS)
Pimnoo, Ammarin
2016-07-01
Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.
Three-body problem periodic orbits with vanishing angular momentum
NASA Astrophysics Data System (ADS)
Titov, V.
2015-04-01
Periodic solutions of the general three-body problem are investigated in the shape space. Two different solutions are considered: the first is an extension of the well-known figure-eight orbit, and the second one is from the free-fall problem. Using the shape space, we reduce the dimension of the problem. These orbits are obtained numerically and described on the Euclidean plane and on the shape sphere.
Frozen orbits in the J2 + J3 problem. [orbital mechanics
NASA Technical Reports Server (NTRS)
Kiedron, Krystyna; Cook, Richard
1992-01-01
An analytical derivation of frozen orbit eccentricities and their location over the range of possible orbital inclinations in the J2 + J3 problem is presented. A gravitational field with only J2 and J3 terms is considered, because the equation defining frozen orbits in this field is an algebraic equation of the third order and an analytical formula for roots of this equation exists. An equation for the frozen orbit eccentricity is derived in a convenient form using only two independent parameters: the inclination and a parameter which is the product of the ratio of the radius of the central body to the orbital semimajor axis and the ratio of the J2 and J3 coefficients. The equation is solved, and, on the basis of its roots, frozen orbits in the J2 + J3 problem are classified.
Elastic Anomalies in Orbital-Degenerate Frustrated Spinel CoV2O4
NASA Astrophysics Data System (ADS)
Watanabe, Tadataka; Yamada, Shogo; Koborinai, Rui; Katsufuji, Takuro
Ultrasound velocity measurements were performed on a single crystal of the orbital-degenerate frustrated spinel CoV2O4 in all the symmetrically-independent elastic moduli of the cubic crystal. The measurements of temperature dependence of the elastic moduli observed discontinuous elastic anomalies due to a ferrimagnetic transition at TC = 165 K and another phase transition at T* = 50 K. Additionally, the measurements observed anomalous temperature dependence of the elastic moduli, specifically, non-monotonic temperature dependence in the magnetically-ordered phase below TC, and magnetic-field-sensitive elastic softening with decreasing temperature in the paramagnetic phase above TC. These anomalous temperature variations below and above TC should be driven by the coupling of lattice to magnetic excitations.
NASA Astrophysics Data System (ADS)
Schaefer, R. K.; Paxton, L. J.; Selby, C.; Ogorzalek, B.; Romeo, G.; Wolven, B.; Hsieh, S.-Y.
2016-05-01
We present a new model of the South Atlantic Anomaly (SAA) particle flux intensity for low Earth orbit, based a new data set, i.e., particle noise pulses in an ultraviolet photomultiplier. The data set is unique in that it provides daily monitoring of the strength of the particle radiation at a fixed altitude and local time and provides a consistent set of observations across the deep solar minimum. The observations show the following: (1) a development over the decline of solar cycle 23 into a deep solar minimum and the subsequent rise of cycle 24, (2) the slow motion drift of the SAA centroid with time at the rate—longitude drift =0.36 ± 0.06°W/yr, and latitude drift =0.16 ± 0.09°N/yr, (3) a higher particle flux at solar minimum than at solar maximum, and (4) a yearly cyclical variation. These particle rates are deduced from electric noise pulses generated in the photometers when an energetic charged particle hits the detector and causes an electron to be liberated from the detector material. The model described here can be used to monitor and even spatially predict the changes in particle fluxes seen by instruments in contemporaneous low Earth orbits through the SAA.
New Periodic Orbits for the n-Body Problem
NASA Astrophysics Data System (ADS)
Moore, Cristopher; Nauenberg, Michael
2006-10-01
Since the discovery of the figure-eight orbit for the three-body problem [Moore, C., 1993, Phys. Rev. Lett., 70, pp. 3675-3679] a large number of periodic orbits of the n-body problem with equal masses and beautiful symmetries have been discovered. However, most of those that have appeared in the literature are either planar or are obtained from perturbations of planar orbits. Here we exhibit a number of new three-dimensional periodic n-body orbits with equal masses and cubic symmetry, including some whose moment of inertia tensor is a scalar. We found these orbits numerically, by minimizing the action as a function of the trajectories' Fourier coefficients. We also give numerical evidence that a planar three-body orbit first found in [Hénon, M., 1976, Celest. Mech., 13, pp. 267-285], rediscovered by [Moore, 1993], and found to exist for different masses by [Nauenberg, M., 2001, Phys. Lett., 292, pp. 93-99], is dynamically stable.
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Ghorbannia, Morteza
2014-07-01
The spatial truncation error (STE) is a significant systematic error in the integral inversion of satellite gradiometric and orbital data to gravity anomalies at sea level. In order to reduce the effect of STE, a larger area than the desired one is considered in the inversion process, but the anomalies located in its central part are selected as the final results. The STE influences the variance of the results as well because the residual vector, which is contaminated with STE, is used for its estimation. The situation is even more complicated in variance component estimation because of its iterative nature. In this paper, we present a strategy to reduce the effect of STE on the a posteriori variance factor and the variance components for inversion of satellite orbital and gradiometric data to gravity anomalies at sea level. The idea is to define two windowing matrices for reducing this error from the estimated residuals and anomalies. Our simulation studies over Fennoscandia show that the differences between the 0.5°×0.5° gravity anomalies obtained from orbital data and an existing gravity model have standard deviation (STD) and root mean squared error (RMSE) of 10.9 and 12.1 mGal, respectively, and those obtained from gradiometric data have 7.9 and 10.1 in the same units. In the case that they are combined using windowed variance components the STD and RMSE become 6.1 and 8.4 mGal. Also, the mean value of the estimated RMSE after using the windowed variances is in agreement with the RMSE of the differences between the estimated anomalies and those obtained from the gravity model.
3D periodic orbits in the restricted four body problem
NASA Astrophysics Data System (ADS)
Baltagiannis, A.; Papadakis, K.
2013-09-01
One big body (Sun) of mass m1 and two other small bodies of masses m2 and m3 correspondingly, move in circular orbits keeping an equilateral triangle configuration, about the center of mass of the system fixed at the origin of the coordinate system. A massless particle is moving under the Newtonian gravitational attraction of the primaries and does not affect the motion of the three bodies. Using the vertical-critical orbits of planar families of symmetric periodic orbits as starting points, we determine and present in this paper, families of three-dimensional periodic solutions of the problem. Characteristic curves of the 3D-families which emanate from the plane are presented. The stability of every three-dimensional periodic orbit which numerically calculated is also studied.
Mars Reconnaissance Orbiter In-flight Anomalies and Lessons Learned: An Update
NASA Technical Reports Server (NTRS)
Bayer, Todd J.
2008-01-01
The Mars Reconnaissance Orbiter mission has as its primary objectives: advance our understanding of the current Mars climate, the processes that have formed and modified the surface of the planet and the extent to which water has played a role in surface processes; identify sites of possible aqueous activity indicating environments that may have been or are conducive to biological activity; and thus identify and characterize sites for future landed missions; and provide forward and return relay services for current and future Mars landed assets. MRO's crucial role in the long term strategy for Mars exploration requires a high level of reliability during its 5.4 year mission. This requires an architecture which incorporates extensive redundancy and cross-strapping. Because of the distances and hence light-times involved, the spacecraft itself must be able to utilize this redundancy in responding to time-critical failures. For cases where fault protection is unable to recognize a potentially threatening condition, either due to known limitations or software flaws, intervention by ground operations is required. These aspects of MRO's design were discussed in a previous paper [Ref. 1]. This paper provides an update to the original paper, describing MRO's significant in-flight anomalies over the past year, with lessons learned for redundancy and fault protection architectures and for ground operations.
A note on the relations between true and eccentric anomalies in the two-body problem.
NASA Technical Reports Server (NTRS)
Broucke, R.; Cefola, P.
1973-01-01
Two remarkably simple formulas are proposed for relating the eccentric and true anomalies in the two-body problem at no numerical trouble, no matter what the values of the angles are. The problem of the maximum difference between the two angles is also considered.
Periodic orbits in the restricted four-body problem
NASA Astrophysics Data System (ADS)
Howell, K. C.; Spencer, D. B.
1985-10-01
One solution to the restricted three-body problem is that of three-dimensional, periodic halo orbits. These orbits emanate from the three collinear libration points and exist at all possible mass ratios of the primaries, with infinite possible trajectories. Their existence motivated this study of the effect of an additional gravitational influence on the motion. The approach is to seek a solution in the restricted four-body problem using halo solutions as an initial approximation. The method first solves for periodic, coplanar motion of the three primaries under their mutual gravitational attractions and represents them as trigonometric series. Then, under the modified gravity force model, a three-dimensional solution is obtained in the problem of four bodies, periodic with respect to the synodic system of the three primaries. The additional primary remains relatively far removed and acts as a perturbing influence on the original motion. Some shape and stability characteristics are presented for three such solutions.
Tethered body problems and relative motion orbit determination
NASA Technical Reports Server (NTRS)
Eades, J. B., Jr.; Wolf, H.
1972-01-01
Selected problems dealing with orbiting tethered body systems have been studied. In addition, a relative motion orbit determination program was developed. Results from these tasks are described and discussed. The expected tethered body motions were examined, analytically, to ascertain what influence would be played by the physical parameters of the tether, the gravity gradient and orbit eccentricity. After separating the motion modes these influences were determined; and, subsequently, the effects of oscillations and/or rotations, on tether force, were described. A study was undertaken, by examining tether motions, to see what type of control actions would be needed to accurately place a mass particle at a prescribed position relative to a main vehicle. Other applications for tethers were studied. Principally these were concerned with the producing of low-level gee forces by means of stabilized tether configurations; and, the initiation of free transfer trajectories from tether supported vehicle relative positions.
Baggie: A unique solution to an orbiter icing problem
NASA Technical Reports Server (NTRS)
Walkover, L. J.
1982-01-01
The orbiter icing problem, located in two lower surface mold line cavities, was solved. These two cavities are open during Shuttle ground operations and ascent, and are then closed after orbit insertion. If not protected, these cavities may be coated with ice, which may be detrimental to the adjacent thermal protection system (TPS) tiles if the ice breaks up during ascent, and may hinder the closing of the cavity doors if the ice does not break up. The problem of ice in these cavities was solved by the use of a passive mechanism called baggie, which is purge curtain used to enclose the cavity and is used in conjunction with gaseous nitrogen as the local purge gas. The baggie, the final solution, is unique in its simplicity, but its design and development were not. The final baggie design and its development testing are discussed. Also discussed are the baggie concepts and other solutions not used.
NASA's Technical Handbook for Avoiding On-Orbit ESD Anomalies Due to Internal Charging Effects
NASA Technical Reports Server (NTRS)
Whittlesey, Albert; Garrett, Henry B.
1996-01-01
This paper describes NASA-HDBK-4002, "Avoiding Problems Caused by Spacecraft On-Orbit Internal Charging Effects". The handbook includes a description of internal charging and why it is of concern to spacecraft designers. It also suggests how to determine when a project needs to consider internal spacecraft charging, it contains an electron penetration depth chart, rationale for a critical electron flux criterion, a worst-case geosynchronous electron plasma spectrum, general design guidelines, quantitative design guidelines, and a typical materials characteristics list. Appendices include a listing of some environment codes, electron transport codes, a discussion of geostationary electron plasma environments, a brief description of electron beam and other materials tests, and transient susceptibility tests. The handbook will be in the web page, hftp://standards.nasa.gov. A prior document, NASA TP2361 "Design Guidelines for Assessing and controlling Spacecraft Charging Effects", 1984, is in use to describe mitigation techniques for the effects of surface charging of satellites in space plasma environments. HDBK-4002 is meant to complement 2361 and together, the pair of documents describe both cause and mitigation designs for problems caused by energetic space plasmas.
NASA Astrophysics Data System (ADS)
Wise, Marcie A.; Saleh, Joseph H.; Haga, Rachel A.
2011-01-01
Choosing the "right" satellite platform for a given market and mission requirements is a major investment decision for a satellite operator. With a variety of platforms available on the market from different manufacturers, and multiple offerings from the same manufacturer, the down-selection process can be quite involved. In addition, because data for on-obit failures and anomalies per platform is unavailable, incomplete, or fragmented, it is difficult to compare options and make an informed choice with respect to the critical attribute of field reliability of different platforms. In this work, we first survey a large number of geosynchronous satellite platforms by the major satellite manufacturers, and we provide a brief overview of their technical characteristics, timeline of introduction, and number of units launched. We then analyze an extensive database of satellite failures and anomalies, and develop for each platform a "health scorecard" that includes all the minor and major anomalies, and complete failures—that is failure events of different severities—observed on-orbit for each platform. We identify the subsystems that drive these failure events and how much each subsystem contributes to these events for each platform. In addition, we provide the percentage of units in each platform which have experienced failure events, and, after calculating the total number of years logged on-orbit by each platform, we compute its corresponding average failure and anomaly rate. We conclude this work with a preliminary comparative analysis of the health scorecards of different platforms. The concept of a "health scorecard" here introduced provides a useful snapshot of the failure and anomaly track record of a spacecraft platform on orbit. As such, it constitutes a useful and transparent benchmark that can be used by satellite operators to inform their acquisition choices ("inform" not "base" as other considerations are factored in when comparing different spacecraft
NASA Technical Reports Server (NTRS)
Srivastava, Ashok, N.; Akella, Ram; Diev, Vesselin; Kumaresan, Sakthi Preethi; McIntosh, Dawn M.; Pontikakis, Emmanuel D.; Xu, Zuobing; Zhang, Yi
2006-01-01
This paper describes the results of a significant research and development effort conducted at NASA Ames Research Center to develop new text mining techniques to discover anomalies in free-text reports regarding system health and safety of two aerospace systems. We discuss two problems of significant importance in the aviation industry. The first problem is that of automatic anomaly discovery about an aerospace system through the analysis of tens of thousands of free-text problem reports that are written about the system. The second problem that we address is that of automatic discovery of recurring anomalies, i.e., anomalies that may be described m different ways by different authors, at varying times and under varying conditions, but that are truly about the same part of the system. The intent of recurring anomaly identification is to determine project or system weakness or high-risk issues. The discovery of recurring anomalies is a key goal in building safe, reliable, and cost-effective aerospace systems. We address the anomaly discovery problem on thousands of free-text reports using two strategies: (1) as an unsupervised learning problem where an algorithm takes free-text reports as input and automatically groups them into different bins, where each bin corresponds to a different unknown anomaly category; and (2) as a supervised learning problem where the algorithm classifies the free-text reports into one of a number of known anomaly categories. We then discuss the application of these methods to the problem of discovering recurring anomalies. In fact the special nature of recurring anomalies (very small cluster sizes) requires incorporating new methods and measures to enhance the original approach for anomaly detection. ?& pant 0-
Singular perturbation analysis of the atmospheric orbital plane change problem
NASA Technical Reports Server (NTRS)
Calise, A. J.
1988-01-01
A three-state model is presented for the aeroassisted orbital plane change problem. A further model order reduction to a single state model is examined using singular perturbation theory. The optimal solution for this single state model compares favorably with the exact numerical solution using a four-state model; however, a separate boundary layer solution is required to satisfy the terminal constraint on altitude. This, in general, involves the solution of a two-point boundary value problem, but for a two-state model. An approximation is introduced to obtain an analytical control solution for lift and bank angle. Included are numerical simulation results of a guidance law derived from this analysis, along with comparison to earlier work by other researchers.
Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. II
Kamotskii, I V; Nazarov, S A
1999-02-28
The solution of the problem of diffraction of an acoustic plane wave by a periodic boundary for frequencies close to threshold values is studied. It is shown that if the periodic structure has some special geometry, then the transformations of the diffraction pattern (Wood's anomalies) are accompanied by the occurrence of surface waves. Substantiation of asymptotic formulae is carried out on the basis of the techniques of equivalent weighted norms in Sobolev spaces.
Periodic orbits in the general three-body problem
NASA Astrophysics Data System (ADS)
Martynova, A. I.; Orlov, V. V.
2013-09-01
Stability regions are identified in the neighborhood of periodic orbits. Features of motion in these regions are investigated. The structure of stability regions in the neighborhood of the Schubart, Moore, and Broucke orbits, the S-orbit, and the Ducati orbit is studied. The following features of motion are identified near these periodic orbits: libration, precession, symmetrization, centralization, bounce (a transition between types of trajectories), ejections, etc.
NASA Technical Reports Server (NTRS)
Janin, G.; Bond, V. R.
1980-01-01
An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate anomaly (an anomaly intermediate between the eccentric and the true anomaly) is suggested for optimum performances. A particular case of an intermediate anomaly (the elliptic anomaly) is defined, and its relation with the other anomalies is developed.
Equinoctial orbit elements - Application to optimal transfer problems
NASA Astrophysics Data System (ADS)
Kechichian, Jean Albert
The variation of parameters perturbation equations in terms of the nonsingular equinoctial orbit elements for the third body, oblateness, air drag, and thrust acceleration effects have been developed in the literature, to carry out orbit prediction and orbit determination, as well as optimal orbit transfer analyses for elliptic as well as near-circular orbits around earth. The partials of these elements with respect to the velocity vector and their partials with respect to the elements that define the state and Lagrange differential equations, were developed using the mean and eccentric longitudes as independent orbital elements, respectively. The full set of governing equations for optimal orbit transfer and rendezvous applications are presented in this paper in a consistent manner, for the case where mean longitude is the sixth element.
NASA Technical Reports Server (NTRS)
Toft, Mark R.
1993-01-01
Two lots of NASA standard 50 A.H. Ni-Cd battery cells, manufactured by Gates Aerospace Batteries and built into batteries by McDonnell Douglas, have experienced significant performance problems. The two lots were used on the Compton Gamma Ray Observatory and the Upper Atmosphere Research Satellite. Both of these satellites are Low Earth Orbital (LEO) satellites containing batteries on a parallel bus charged to NASA standard V/T curves using a NASA standard power regulator. The following preliminary conclusions were reached: (1) several plate and cell parameters have migrated within their spec limits over the years (in some cases, from one extreme to the other); (2) several parametric relationships, not generally monitored and therefore not under specification control, have also migrated over the years; (3) many of these changes appear to have taken place as a natural consequence of changes in GE/GAB materials and processes; (4) several of these factors may be 'conspiring' to aggravate known cell failure mechanisms (factors such as heavier plate, less teflon and/or less-uniform teflon, and less electrolyte) but all are still in spec (where specs exist); (5) the weight of the evidence collected to characterize the anomalies and to characterize the negative electrode itself, strongly suggests that alterations to the structure, composition, uniformity, and efficiency of the negative electrode are at the heart of the battery performance problems currently being experienced; and (6) further investigation at all levels (plate, cell, battery, and system) continues to be warranted.
Orbits of Two-Body Problem From the Lenz Vector
ERIC Educational Resources Information Center
Caplan, S.; And Others
1978-01-01
Obtains the orbits with reference to the center of mass of two bodies under mutual universe square law interaction by use of the eccentricity vector which is equivalent to the Lenz vector within a numerical factor. (Author/SL)
The critical periodic orbits in the Stoermer problem
NASA Astrophysics Data System (ADS)
Broucke, R. A.
Some of the periodic orbits among the families f0, f1, f2, f3, f4, and f5, previously found by Goudas and Markellos (1976), are studied, with emphasis on periodic orbits with a special value (+2, -2, -1, or 0) of the stability index. These orbits are selected because the period of the periodic solutions to the variational equations is an integer multiple (1, 2, 3, or 4) of the original period. The stability of the orbits is determined using two difference methods: standard variational equations in rectangular coordinates leading to a 4 x 4 monodromy matrix and the Hill method with two normal variations leading to a 2 x 2 Hill matrix. Several complex bifurcation phenomena are computed, and it is shown that the phase space is characterized by extreme complexity even in the quasi-periodic regions.
Orbiting Debris: a Space Environmental Problem. Background Paper
NASA Technical Reports Server (NTRS)
1990-01-01
Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.
The Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2013-01-01
Orbital debris scientists from major international space agencies, including JAXA and NASA, have worked together to predict the trend of the future environment. A summary presentation was given to the United Nations in February 2013. The orbital debris population in LEO will continue to increase. Catastrophic collisions will continue to occur every 5 to 9 years center dot To limit the growth of the future debris population and to better protect future spacecraft, active debris removal, should be considered.
Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu
2011-01-01
The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually
Search for periodic orbits in the general three-body problem
NASA Astrophysics Data System (ADS)
Iasko, P. P.; Orlov, V. V.
2014-11-01
An original method for searching for regions of initial conditions giving rise to close to periodic orbits is proposed in the framework of the general three-body problem with equal masses and zero angular momentum. Until recently, three stable periodic orbits were known: the Schubart orbit for the rectilinear problem, the Broucke orbit for the isosceles problem, and the Moore eight-figure orbit. Recent studies have also found new periodic orbits for this problem. The proposed method minimizes a functional that calculates the sum of squared differences between the initial and current coordinates and the velocities of the bodies. The search is applied to short-period orbits with periods T < 10 τ, where τ is the mean crossing time for the components of the triple system. Twenty one regions of initial conditions, each corresponding to a particular periodic orbit, have been found in the current study. A criterion for the reliability of the results is that the initial conditions for the previously known stable periodic orbits are located inside the regions found. The trajectories of the bodies with the corresponding initial conditions are presented. The dynamics and geometry of the orbits constructed are described.
Study of lunar gravity assist orbits in the restricted four-body problem
NASA Astrophysics Data System (ADS)
Qi, Yi; Xu, Shijie
2016-07-01
In this paper, the lunar gravity assist (LGA) orbits starting from the Earth are investigated in the Sun-Earth-Moon-spacecraft restricted four-body problem (RFBP). First of all, the sphere of influence of the Earth-Moon system (SOIEM) is derived. Numerical calculation displays that inside the SOIEM, the effect of the Sun on the LGA orbits is quite small, but outside the SOIEM, the Sun perturbation can remarkably influence the trend of the LGA orbit. To analyze the effect of the Sun, the RFBP outside the SOIEM is approximately replaced by a planar circular restricted three-body problem, where, in the latter case, the Sun and the Earth-Moon barycenter act as primaries. The stable manifolds associated with the libration point orbit and their Poincaré sections on the SOIEM are applied to investigating the LGA orbit. According to our research, the patched LGA orbits on the Poincaré sections can efficiently distinguish the transit LGA orbits from the non-transit LGA orbits under the RFBP. The former orbits can pass through the region around libration point away from the SOIEM, but the latter orbits will bounce back to the SOIEM. Besides, the stable transit probability is defined and analyzed. According to the variant requirement of the space mission, the results obtained can help us select the LGA orbit and the launch window.
NASA Technical Reports Server (NTRS)
1993-01-01
This report explains the procedural anomaly that occurred during the launch sequence of an Orbital Sciences Corporation Pegasus expendable launch vehicle, which was subsequently deployed successfully from an NB-52B airplane, on 9 Feb. 1993. The safety issues discussed in the report include command, control and communications responsibility, launch crew fatigue, launch interphone procedures, efficiency of launch constraints, and the lack of common launch documents. Safety recommendations concerning these issues were made to the Department of Transportation, the National Aeronautics and Space Administration, and the Orbital Sciences Corporation.
H→γγ as a Triangle Anomaly: Possible Implications for the Hierarchy Problem
de Gouvea, Andre; Kile, Jennifer; Vega-Morales, Roberto
2013-06-24
The Standard Model calculation of H→γγ has the curious feature of being finite but regulator-dependent. While dimensional regularization yields a result which respects the electromagnetic Ward identities, additional terms which violate gauge invariance arise if the calculation is done setting d = 4. This discrepancy between the d=4 – ϵ and d = 4 results is recognized as a true ambiguity which must be resolved using physics input; as dimensional regularization respects gauge invariance, the d = 4 – ϵ calculation is accepted as the correct SM result. However, here we point out another possibility; working in analogy with the gauge chiral anomaly, we note that it is possible that the individual diagrams do violate the electromagnetic Ward identities, but that the gauge-invariance-violating terms cancel when all contributions to H→γγ, both from the SM and from new physics, are included. We thus examine the consequences of the hypothesis that the d = 4 calculation is valid, but that such a cancellation occurs. We work in general renormalizable gauge, thus avoiding issues with momentum routing ambiguities. We point out that the gauge-invariance-violating terms in d = 4 arise not just for the diagram containing a SM $W^{\\pm}$ boson, but also for general fermion and scalar loops, and relate these terms to a lack of shift invariance in Higgs tadpole diagrams. We then derive the analogue of "anomaly cancellation conditions", and find consequences for solutions to the hierarchy problem. In particular, we find that supersymmetry obeys these conditions, even if it is softly broken at an arbitrarily high scale.
Pan-STARRS NEO surveying: The preliminary orbit problem
NASA Astrophysics Data System (ADS)
Spahr, T.; Chesley, S.; Heasley, J.; Jedicke, R.
2004-11-01
The University of Hawaii's Pan-STARRS project will be a deep (R ˜ 24) wide field ( ˜ 7 deg2) survey, with the goal of cataloging 90% of Potentially Hazardous Objects that are larger than about 300m diameter. It will be capable of surveying 6000 deg2/night enabling discovery rates almost two orders of magnitude greater than all existing surveys combined. No existing PHO follow-up facility can match the expected depth and discovery rate. With this in mind, it is important to select an intelligent discovery and follow-up cadence, not only for easy night-to-night linking, but also for high-quality orbit determination and efficient use of telescope time. With these concerns, we simulated a typical set of Pan-STARRS NEO observations using the Bottke et al. [1] NEO model, 0".1 RMS astrometry, and standard horizon and magnitude limits for Mauna Kea. Various cadences were investigated, including 2, 3, and 4-night data sets, with each observation night separated by four days. In addition, we varied the number of observations each night between 2 and 3 visits, with visits separated by 30 minutes. The impact of these choices on preliminary orbit determination, post-fit element uncertainties, and sky-plane uncertainties was studied. These simulations indicate that 3 observations per night is largely unnecessary, and that orbit determination using only two nights of data is not acceptable for our needs. Pairs of observations spaced by 30 minutes, and 3 or 4 separate nights of data over the corresponding 8 or 12-night interval provide well-determined orbital elements and small sky-plane uncertainties. [1] W.F. Bottke, R. Jedicke, A. Morbidelli, J.-M. Petit, B. Gladman, Science, 288, 2190-2194 (2000).
Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory
2013-01-01
Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.
2004-01-01
Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.
Mirage in the sky: Nonthermal dark matter, gravitino problem, and cosmic ray anomalies
Dutta, Bhaskar; Sinha, Kuver; Leblond, Louis
2009-08-01
Recent anomalies in cosmic rays could be due to dark matter annihilation in our galaxy. In order to get the required large cross section to explain the data while still obtaining the right relic density, we rely on a nonstandard thermal history between dark matter freeze out and big-bang nucleosynthesis. We show that through a reheating phase from the decay of a heavy moduli or even the gravitino, we can produce the right relic density of dark matter if its self-annihilation cross section is large enough. In addition to fitting the recent data, this scenario solves the cosmological moduli and gravitino problems. We illustrate this mechanism with a specific example in the context of U(1){sub B-L} extended minimal supersymmetric standard model where supersymmetry is broken via mirage mediation. These string motivated models naturally contain heavy moduli decaying to the gravitino, whose subsequent decay to the LSP can reheat the Universe at a low temperature. The right-handed sneutrino and the B-L gaugino can both be viable dark matter candidates with a large cross section. They are leptophilic because of B-L charges. We also show that it is possible to distinguish the nonthermal from the thermal scenario (using Sommerfeld enhancement) in direct detection experiments for certain regions of parameter space.
A manifold of periodic orbits in the planar general three-body problem with equal masses
NASA Astrophysics Data System (ADS)
Davoust, E.; Broucke, R.
1982-08-01
The article describes about two dozen families of periodic orbits in the planar general problem of three bodies with three equal masses. These orbits have been obtained with a numerical integration of the regularized equations of motion. The regularization is of the Levi-Civita type and it handles only the three binary collisions. The stability of the periodic solutions is determined on the basis of the two coefficients (a1, a2) of the characteristic equation of the monodromy matrix. A detailed study of the stability coefficients reveals the existence of a large number of critical periodic orbits and bifurcations between different familities. Our study shows several general symmetry properties of the periodic solutions, reminiscent of the restricted problem. It shows seveal important connections of the general problem with some of its special cases: the rectilinear, collinear and isosceles configurations. It finally reveals that several families of periodic solutions terminate with a triple collision orbit.
Engineering calculations for solving the orbital allotment problem
NASA Technical Reports Server (NTRS)
Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.
1988-01-01
Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.
The Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2014-01-01
LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures. The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft). The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (5-mm to 1-cm). A solution-driven approach is to seek: Concepts for removal of massive intacts with high P(collision); Concepts capable of preventing collisions involving intacts; Concepts for removal of 5-mm to 1-cm debris; Enhanced impact protection shields for valuable space assets. Key questions for remediation consideration of orbital debris: What is the acceptable threat level? What are the mission objectives? What is the appropriate roadmap/timeframe for remediation? Support advanced technology development when an economically viable approach is identified. Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels.
Medical problems of manned space flights onboard orbital stations
NASA Astrophysics Data System (ADS)
Gazenko, O. G.; Egorov, A. D.; Ioseliani, K. K.; Makarov, V. I.; Popov, I. G.; Shulzhenko, E. B.
Medical aspects of crew safety and life support as well as biomedical investigations form part and parcel of the preparation and conduct of manned space programs. The list of biomedical problems related to these programs is very long. The present paper concentrates on some of them.
Medical problems of manned space flights onboard orbital stations.
Gazenko, O G; Egorov, A D; Ioseliani, K K; Makarov, V I; Popov, I G; Shulzhenko, E B
1987-09-01
Medical aspects of crew safety and life support as well as biomedical investigations form part and parcel of the preparation and conduct of manned space programs. The list of biomedical problems related to these programs is very long. The present paper concentrates on some of them.
Periodic, escape and chaotic orbits in the Copenhagen and the (n + 1)-body ring problems
NASA Astrophysics Data System (ADS)
Barrio, Roberto; Blesa, Fernando; Serrano, Sergio
2009-05-01
This paper studies the use of recent computational techniques in the numerical study of qualitative properties of two degrees of freedom Hamiltonian systems. Two particular problems, the Copenhagen and the (n + 1)-body ring problems, are studied by using Chaos Indicators, the Crash Test and by computing the skeleton of symmetric periodic orbits.
A multi-satellite orbit determination problem in a parallel processing environment
NASA Technical Reports Server (NTRS)
Deakyne, M. S.; Anderle, R. J.
1988-01-01
The Engineering Orbit Analysis Unit at GE Valley Forge used an Intel Hypercube Parallel Processor to investigate the performance and gain experience of parallel processors with a multi-satellite orbit determination problem. A general study was selected in which major blocks of computation for the multi-satellite orbit computations were used as units to be assigned to the various processors on the Hypercube. Problems encountered or successes achieved in addressing the orbit determination problem would be more likely to be transferable to other parallel processors. The prime objective was to study the algorithm to allow processing of observations later in time than those employed in the state update. Expertise in ephemeris determination was exploited in addressing these problems and the facility used to bring a realism to the study which would highlight the problems which may not otherwise be anticipated. Secondary objectives were to gain experience of a non-trivial problem in a parallel processor environment, to explore the necessary interplay of serial and parallel sections of the algorithm in terms of timing studies, to explore the granularity (coarse vs. fine grain) to discover the granularity limit above which there would be a risk of starvation where the majority of nodes would be idle or under the limit where the overhead associated with splitting the problem may require more work and communication time than is useful.
Minesaki, Yukitaka
2015-01-01
We propose the discrete-time restricted four-body problem (d-R4BP), which approximates the orbits of the restricted four-body problem (R4BP). The d-R4BP is given as a special case of the discrete-time chain regularization of the general N-body problem published in Minesaki. Moreover, we analytically prove that the d-R4BP yields the correct orbits corresponding to the elliptic relative equilibrium solutions of the R4BP when the three primaries form an equilateral triangle at any time. Such orbits include the orbit of a relative equilibrium solution already discovered by Baltagiannis and Papadakis. Until the proof in this work, there has been no discrete analog that preserves the orbits of elliptic relative equilibrium solutions in the R4BP. For a long time interval, the d-R4BP can precisely compute some stable periodic orbits in the Sun–Jupiter–Trojan asteroid–spacecraft system that cannot necessarily be reproduced by other generic integrators.
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Friedman, Mark J.; Monteiro, Anand C.
1993-01-01
In earlier papers, Doedel and the authors have developed a numerical method and derived error estimates for the computation of branches of heteroclinic orbits for a system of autonomous ordinary differential equations in R(exp n). The idea of the method is to reduce a boundary value problem on the real line to a boundary value problem on a finite interval by using a local (linear or higher order) approximation of the stable and unstable manifolds. A practical limitation for the computation of homoclinic and heteroclinic orbits has been the difficulty in obtaining starting orbits. Typically these were obtained from a closed form solution or via a homotopy from a known solution. Here we consider extensions of our algorithm which allow us to obtain starting orbits on the continuation branch in a more systematic way as well as make the continuation algorithm more flexible. In applications, we use the continuation software package AUTO in combination with some initial value software. The examples considered include computation of homoclinic orbits in a singular perturbation problem and in a turbulent fluid boundary layer in the wall region problem.
Solution of the flyby problem for large space debris at sun-synchronous orbits
NASA Astrophysics Data System (ADS)
Baranov, A. A.; Grishko, D. A.; Medvedevskikh, V. V.; Lapshin, V. V.
2016-05-01
the paper considers the flyby problem related to large space debris (LSD) objects at low earth orbits. The data on the overall dimensions of known last and upper stages of launch vehicles makes it possible to single out five compact groups of such objects from the NORAD catalog in the 500-2000 km altitude interval. The orbits of objects of each group have approximately the same inclinations. The features of the mutual distribution of the orbital planes of LSD objects in the group are shown in a portrait of the evolution of deviations of the right ascension of ascending nodes (RAAN). In the case of the first three groups (inclinations of 71°, 74°, and 81°), the straight lines of relative RAAN deviations of object orbits barely intersect each other. The fourth (83°) and fifth (97°-100°) LSD groups include a considerable number of objects whose orbits are described by straight lines (diagonals), which intersect other lines many times. The use of diagonals makes it possible to significantly reduce the temporal and total characteristic velocity expenditures required for object flybys, but it complicates determination of the flyby sequence. Diagonal solutions can be obtained using elements of graph theory. A solution to the flyby problem is presented for the case of group 5, formed of LSD objects at sun-synchronous orbits.
Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.
2005-01-01
In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.
Computation of homoclinic solutions to periodic orbits in a reduced water-wave problem
NASA Astrophysics Data System (ADS)
Champneys, A. R.; Lord, G. J.
1997-02-01
This paper concerns homoclinic solutions to periodic orbits in a fourth-order Hamiltonian system arising from a reduction of the classical water-wave problem in the presence of surface tension. These solutions correspond to travelling solitary waves which converge to non-decaying ripples at infinity. An analytical result of Amick and Toland (1992), showing the existence of such homoclinic orbits to small-amplitude periodic orbits in a singular limit, is extended numerically. Also, a related result by Amick and McLeod (1991), showing the non-existence of homoclinic solutions to zero, is motivated geometrically. A general boundary-value method is constructed for continuation of homoclinic orbits to periodic orbits in Hamiltonian and reversible systems. Numerical results are presented using the path-following software AUTO, showing that the Amick-Toland solutions persist well away from the singular limit and for large-amplitude periodic orbits. Special account is taken of the phase shift between the two periodic solutions in the asymptotic limits. Furthermore, new multi-modal homoclinic solutions to periodic orbits are shown to exist under a transversality hypothesis, which is verified a posteriori by explicit computation. Continuation of these new solutions reveals limit points with respect to the singular parameter.
Solar sail periodic orbits in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Gong, Shengping; Li, Junfeng
2015-02-01
The periodic orbits of a solar sail in the elliptic restricted three-body problem are designed in this paper. The dynamical equation of a solar sail is derived in a non-uniformly rotating and pulsating coordinate frame, where out-of-plane artificial equilibria do not exist. Two families of displaced periodic orbits in the vicinity of the out-of-plane fixed points are generated by adjusting the solar sail parameters and the motion in the out-of-plane direction to satisfy the equilibrium equations. The analytical solutions to the linearized equations are obtained with average method. The stability of these orbits is studied, and the results indicate that they are always unstable. Finally, the controllability of these orbits is discussed and a typical time-varying linear quadratic regulator is used to stabilize the system.
Symbol sequences and orbits of the free-fall three-body problem
NASA Astrophysics Data System (ADS)
Tanikawa, Kiyotaka; Mikkola, Seppo
2015-12-01
Using the symbols and symbol sequences along the orbits introduced in our preceding work, we numerically study the orbital structure of the free-fall three-body problem. We confirm and re-interpret the results obtained by us before. We describe the overall structure of the plane. It turns out that the structures of the initial condition plane can be systematically obtained with symbol sequences. Then, we obtain the structure of two interesting local regions: the isosceles and collinear boundaries of the plane. We present sequences of triple collision orbits and periodic orbits on these boundaries. We additionally argue that stable and/or unstable manifolds of the two-body collision manifolds connect different triple collision manifolds.
Algebraic Approach to the Minimum-Cost Multi-Impulse Orbit-Transfer Problem
NASA Astrophysics Data System (ADS)
Avendaño, M.; Martín-Molina, V.; Martín-Morales, J.; Ortigas-Galindo, J.
2016-08-01
We present a purely algebraic formulation (i.e. polynomial equations only) of the minimum-cost multi-impulse orbit transfer problem without time constraints, while keeping all the variables with a precise physical meaning. We apply general algebraic techniques to solve these equations (resultants, Gr\\"obner bases, etc.) in several situations of practical interest of different degrees of generality. For instance, we provide a proof of the optimality of the Hohmann transfer for the minimum fuel 2-impulse circular to circular orbit transfer problem, and we provide a general formula for the optimal 2-impulse in-plane transfer between two rotated elliptical orbits under a mild symmetry assumption on the two points where the impulses are applied (which we conjecture that can be removed).
Stable Orbits of Planets of a Binary Star System in the Three-Dimensional Restricted Problem
NASA Astrophysics Data System (ADS)
Broucke, Roger A.
2001-12-01
The present research was motivated by the recent discovery of planets around binary stars. Our initial intention was thus to investigate the 3-dimensional nearly circular periodic orbits of the circular restricted problem of three bodies; more precisely Stromgren's class L, (direct) and class m, (retrograde). We started by extending several of Hénon's vertical critical orbits of these 2 classes to three dimensions, looking especially for orbits which are near circular and have stable characteristic exponents. We discovered early on that the periodic orbits with the above two qualifications are fairly rare and we decided thus to undertake a systematic exploration, limiting ourselves to symmetric periodic orbits. However, we examined all 16 possible symmetry cases, trying 10000 sets of initial values for periodicity in each case, thus 160000 integrations, all with z_o or ż_o equal to 0.1 This gave us a preliminary collection of 171 periodic orbits, all fairly near the xy-plane, thus with rather low inclinations. Next, we integrated a second similar set of 160000 cases with z_o or ż_o equal to 0.5, in order to get a better representation of the large inclinations. This time, we found 167 periodic orbits, but it was later discovered that at least 152 of them belong to the same families as the first set with 0.1 Our paper quickly describes the definition of the problem, with special emphasis on the symmetry properties, especially for the case of masses with equal primaries. We also allow a section to describe our approach to stability and characteristic exponents, following our paper on this subject, (Broucke, 1969). Then we describe our numerical results, as much as space permits in the present paper. We found basically only about a dozen families with sizeable segments of simple stable periodic orbits. Some of them are around one of the two stars only but we do not describe them here because of a lack of space. We extended about 170 periodic orbits to families of
Periodic orbits in the restricted four-body problem with two equal masses
NASA Astrophysics Data System (ADS)
Burgos-García, Jaime; Delgado, Joaquín
2013-06-01
The restricted (equilateral) four-body problem consists of three bodies of masses m 1, m 2 and m 3 (called primaries) lying in a Lagrangian configuration of the three-body problem i.e., they remain fixed at the apices of an equilateral triangle in a rotating coordinate system. A massless fourth body moves under the Newtonian gravitation law due to the three primaries; as in the restricted three-body problem (R3BP), the fourth mass does not affect the motion of the three primaries. In this paper we explore symmetric periodic orbits of the restricted four-body problem (R4BP) for the case of two equal masses where they satisfy approximately the Routh's critical value. We will classify them in nine families of periodic orbits. We offer an exhaustive study of each family and the stability of each of them.
NASA Astrophysics Data System (ADS)
Hanson, Robert M.
2003-06-01
ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).
NASA Astrophysics Data System (ADS)
Kishor, Ram
2016-07-01
We consider a generalized photogravitational Chermnykh-like problem and determine orbits in the basin of collinear equilibrium points. We suppose that bigger primary is radiating body; smaller primary is an oblate spheroid and a disk with power law density profile is rotating around the common center of mass of the system. We compute three types of orbits namely, periodic, hyperbolic and asymptotic orbit, of the infinitesimal body. Also, we analyse, effect of radiation pressure and oblateness and it is noticed that time period of the periodic orbits depends on these parameters. KEYWORDS: Chermnykh-like problem; Orbits; Radiation pressure; Oblateness; Disk; Collinear equilibrium points.
The post-Keplerian orbital representations of the relativistic two-body problem
NASA Astrophysics Data System (ADS)
Klioner, S. A.; Kopeikin, S. M.
1994-06-01
Orbital parameterizations of the relativstic two-body problem due to Brumberg, Damour-Deruelle, Epstein-Haugan, and Blandford-Teukolsky as well as osculating elements are compared. Exact relations between constants describing the orbit in the parameterizations are derived. It is shown that all the parameterizations in question are valid not only in general relativity, but in a generic class of relatvistic theories of gravity. The obtained results provide us with an additional check of consistency of different models used in timing of binary pulsars.
Families of periodic orbits in the planar Hill's four-body problem
NASA Astrophysics Data System (ADS)
Burgos-García, Jaime
2016-11-01
In this work we perform numerical explorations of some families of planar periodic orbits in the Hill approximation of the restricted four-body problem. This approximation is obtained by performing a symplectic scaling which sends the two massive bodies to infinity, by the means of expanding the potential as a power series depending on the mass of the smallest primary, and taking the limit as this mass tends to zero. The limiting Hamiltonian depends only on the relative mass of the second smallest primary. The resulting dynamics shares similarities with both the restricted three-body problem and the restricted four-body problem. We focus on certain families of symmetric periodic orbits of the infinitesimal particle, for some values of the mass parameter. We explore the evolution of these families as the Jacobi constant, or, equivalently, the energy, is varied continuously, and provide details on the horizontal and vertical stability of each family.
The Hubble Space Telescope attitude observer anomaly
NASA Astrophysics Data System (ADS)
Van Arsdall, Morgan M.; Ramsey, Patrick R.; Swain, Scott R.
2006-06-01
In mid-2004, the Hubble Space Telescope (HST) began experiencing occasional losses of lock during Fine Guidance Sensor (FGS) guide star acquisitions, threatening a potential loss of science. These failures were associated with an increasing disparity between the FGS-derived estimates of gyro bias calculated in orbit day and those calculated in orbit night. Early efforts to mitigate the operational effects of this Attitude Observer Anomaly (AOA) succeeded; however, the magnitude of the anomaly continued to increase at a linear rate and operational problems resumed in mid-2005. Continued analysis led to an additional on-orbit mitigation strategy that succeeded in reducing the AOA signature. Before the investigation could be completed, HST began operations under the life-extending Two Gyro Science mode. This eliminated both the operational effects of and the visibility into the AOA phenomenon. Possible causes of the anomaly at the vehicle system level included component hardware failures, flight software errors in control law processing, distortion of the telescope optical path, and deformation of vehicle structure. Although the mechanism of the AOA was not definitively identified, the Anomaly Review Board (ARB) chartered to investigate the anomaly concluded that the most likely root cause lies within one of HST's 6 rate-integrating gyroscopes. This paper provides a summary of the initial paths of investigation, the analysis and testing performed to attempt to isolate the source, and a review of the findings of the ARB. The possibility of future operational impacts and available methods of on-orbit mitigation are also addressed.
Lissajous and Halo Orbits in the Restricted Three-Body Problem
NASA Astrophysics Data System (ADS)
Celletti, Alessandra; Pucacco, Giuseppe; Stella, Danilo
2015-04-01
We study the dynamics near the collinear Lagrangian points of the spatial, circular, restricted three-body problem. Following a standard procedure, we reduce the system to the center manifold and we analyze the Lissajous orbits as well as the halo orbits, the latter ones arising from bifurcations of the planar Lyapunov family of periodic orbits. To obtain the Lissajous orbits, we perform a classical perturbation theory and we provide a formal approximate solution under suitable non-degeneracy and non-resonance conditions. As for the halo orbits, we construct a normal form adapted to the synchronous resonance: introducing a detuning, measuring the displacement from the resonance, and expanding the energy in series of the detuning, we are able to evaluate the energy level at which the bifurcation takes place. Except for a particular case, the analytical values obtained after a second order resonant perturbation theory are in very good agreement (in some cases up to the fourth decimal digit) with the numerical values found in the literature.
Classification of periodic orbits in the four- and five-body problems.
Broucke, Roger A
2004-05-01
The research described in this paper was motivated by the new types of periodic solutions that were recently discovered by Moore, Chenciner, Montgomery, and Simo in the three-body and the N-body problem (with large N). We attempt to classify the various types of periodic orbits, in the inertial frame, on the basis of an extensive numerical exploration. We have started an exploration of the four-body problem, where the classification of types of periodic orbits is more involved. We immediately found those orbits with symmetry with respect to the x-axis, the y-axis, or both. Complete quadruple interplay, or a triple system around a single mass is possible. Finally, what seems to be the most frequent, two binary systems in orbit around the general center of mass. However, the last group can be separated into several subgroups. We have, for instance, the case of two masses on one orbit and the two other masses on another orbit. This is again a partial choreography. We then have the case of double binary choreographies: two binary systems in which all four masses travel on one single curve. To realize this situation, a certain commensurability is needed between the overall period and the period of each binary system. The binary system makes an odd integer number, q, of revolutions during a general period. We computed many cases from q = 5 to 97. This indicates that we have a discrete infinity of choreographies. The choreography q = 5 is an especially remarkable star-shaped curve. Actually, we have two such infinite families, one with corotational and the other with contrarotational motions. We show that they can be justified by simple Keplerian approximations. Finally, we mention that our work depends heavily on the existence of symmetries. They simplify the algorithms for finding periodic orbits and they play an important role in the classification. In the four-body problem with equal masses, we have five different types of symmetries. In addition to the well
On the periodic orbits and the integrability of the regularized Hill lunar problem
NASA Astrophysics Data System (ADS)
Llibre, Jaume; Roberto, Luci Any
2011-08-01
The classical Hill's problem is a simplified version of the restricted three-body problem where the distance of the two massive bodies (say, primary for the largest one and secondary for the smallest one) is made infinity through the use of Hill's variables. The Levi-Civita regularization takes the Hamiltonian of the Hill lunar problem into the form of two uncoupled harmonic oscillators perturbed by the Coriolis force and the Sun action, polynomials of degree 4 and 6, respectively. In this paper, we study periodic orbits of the planar Hill problem using the averaging theory. Moreover, we provide information about the C1 integrability or non-integrability of the regularized Hill lunar problem.
NASA Technical Reports Server (NTRS)
Broucke, R.
1974-01-01
The present note describes a few important series expansions in the two-body problem. They are related to the magnitude v of the velocity vector and are important for the treatment of atmospheric drag by the method of general perturbations. These series have been obtained with computerized Poisson series manipulations. The results are given to order seven in the eccentricity, for both the mean anomaly and the true anomaly.
Families of Asymmetric Periodic Orbits in the Restricted Three-body Problem
NASA Astrophysics Data System (ADS)
Papadakis, K. E.
2008-10-01
This paper studies the asymmetric solutions of the restricted planar problem of three bodies, two of which are finite, moving in circular orbits around their center of masses, while the third is infinitesimal. We explore, numerically, the families of asymmetric simple-periodic orbits which bifurcate from the basic families of symmetric periodic solutions f, g, h, i, l and m, as well as the asymmetric ones associated with the families c, a and b which emanate from the collinear equilibrium points L 1, L 2 and L 3 correspondingly. The evolution of these asymmetric families covering the entire range of the mass parameter of the problem is presented. We found that some symmetric families have only one bifurcating asymmetric family, others have infinity number of asymmetric families associated with them and others have not branching asymmetric families at all, as the mass parameter varies. The network of the symmetric families and the branching asymmetric families from them when the primaries are equal, when the left primary body is three times bigger than the right one and for the Earth Moon case, is presented. Minimum and maximum values of the mass parameter of the series of critical symmetric periodic orbits are given. In order to avoid the singularity due to binary collisions between the third body and one of the primaries, we regularize the equations of motion of the problem using the Levi-Civita transformations.
Minesaki, Yukitaka
2013-08-01
For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators.
NASA Technical Reports Server (NTRS)
Lara, Martin; Palacian, Jesus F.
2007-01-01
Frozen orbits of the Hill problem are determined in the double averaged problem, where short and long period terms are removed by means of Lie transforms. The computation of initial conditions of corresponding quasi periodic solutions in the non-averaged problem is straightforward for the perturbation method used provides the explicit equations of the transformation that connects the averaged and non-averaged models. A fourth order analytical theory reveals necessary for the accurate computation of quasi periodic, frozen orbits.
Symmetric periodic orbits of the many-body problem. Resonance and parade of planets.
NASA Astrophysics Data System (ADS)
Tkhai, V. N.
The motion of a mechanical system consisting of n+1 material points attracting one another according to Newton`s law is investigated. A reversible system of differential equations is derived for the motion of n points relative to the "main body". A small parameter is introduced. When this parameter is equated to zero, each of the n points is attracted by the "main body" only, and the generating system splits into n two-body problems. Two types of generating periodic orbits, symmetric about the fixed set M of an automorphism, are considered: (1) with both eccentricities and inclinations equal to zero; (2) with inclinations equal to zero. It is shown that such orbits can be continued to non-zero values of the small parameter, as a result of which the system has periodic solutions of the first and second kinds. All these orbits are resonant: the mean motions of the bodies relate to one another as integers. In addition, at times that are multiples of the half-period the bodies are situated along a straight line, thus forming a "parade of planets". The results also apply to a "Sun-planet-satellite" type system. In the general theoretical part of the paper two methods are proposed for solving the problem of extending symmetric periodic motions to non-zero parameter values, and an upper bound is estimated for the domain of continuability.
Numerical integration of periodic orbits in the main problem of artificial satellite theory
NASA Astrophysics Data System (ADS)
Broucke, R. A.
1994-02-01
We describe a collection of results obtained by numerical integration of orbits in the main problem of artificial satellite theory (the J2 problem). The periodic orbits have been classified according to their stability and the Poincare surfaces of section computed for different values of J2 and H (where H is the z-component of angular momentum). The problem was scaled down to a fixed value (-1/2) of the energy constant. It is found that the pseudo-circular periodic solution plays a fundamental role. They are the equivalent of the Poincare first-kind solutions in the three-body problem. The integration of the variational equations shows that these pseudo-circular solutions are stable, except in a very narrow band near the critical inclination. This results in a sequence of bifurcations near the critical inclination, refining therefore some known results on the critical inclination, for instance by Izsak (1963), Jupp (1975, 1980) and Cushman (1983). We also verify that the double pitchfork bifurcation around the critical inclination exists for large values of J2, as large as absolute value of J2 = 0.2. Other secondary (higher-order) bifurcations are also described. The equations of motion were integrated in rotating meridian coordinates.
Parallel satellite orbital situational problems solver for space missions design and control
NASA Astrophysics Data System (ADS)
Atanassov, Atanas Marinov
2016-11-01
Solving different scientific problems for space applications demands implementation of observations, measurements or realization of active experiments during time intervals in which specific geometric and physical conditions are fulfilled. The solving of situational problems for determination of these time intervals when the satellite instruments work optimally is a very important part of all activities on every stage of preparation and realization of space missions. The elaboration of universal, flexible and robust approach for situation analysis, which is easily portable toward new satellite missions, is significant for reduction of missions' preparation times and costs. Every situation problem could be based on one or more situation conditions. Simultaneously solving different kinds of situation problems based on different number and types of situational conditions, each one of them satisfied on different segments of satellite orbit requires irregular calculations. Three formal approaches are presented. First one is related to situation problems description that allows achieving flexibility in situation problem assembling and presentation in computer memory. The second formal approach is connected with developing of situation problem solver organized as processor that executes specific code for every particular situational condition. The third formal approach is related to solver parallelization utilizing threads and dynamic scheduling based on "pool of threads" abstraction and ensures a good load balance. The developed situation problems solver is intended for incorporation in the frames of multi-physics multi-satellite space mission's design and simulation tools.
Trade space visualization applied to Lambert's Problem for elliptical insertion orbits
NASA Astrophysics Data System (ADS)
Spencer, David B.; Shank, Brian S.
2016-05-01
This paper investigates the solution of Lambert's Problem for targets in elliptical orbits. A mission design software framework to determine the optimal interplanetary trajectory and final capture orbit based on mission constraints and requirements between a departure and arrival body has been developed. Integration of a trade space visualization tool, such as the Applied Research Laboratory Trade Space Visualizer software permits a mission designer to visually inspect the multi-dimensional trade space and investigate regions of feasible trajectories. This analysis process can provide a mission designer with the capability to reduce the amount of time needed to design interplanetary trajectories by reducing the number of feasible solutions that would need to be investigated.
The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi
2012-01-01
The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.
Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. I
Kamotskii, I V; Nazarov, S A
1999-02-28
The solution of the problem of diffraction of an acoustic plane wave by a periodic boundary for frequencies close to threshold values is studied. Wood's well-known experiments show that deviations from the threshold frequency values by a small quantity bring about drastic changes in the diffraction pattern. The asymptotic formula with respect to the small parameter {epsilon} is obtained for the corresponding scattering matrix.
NASA Astrophysics Data System (ADS)
Giancotti, Marco; Campagnola, Stefano; Tsuda, Yuichi; Kawaguchi, Jun'ichiro
2014-11-01
This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill's problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.
On the Optimization of the Inverse Problem for Bouguer Gravity Anomalies
NASA Astrophysics Data System (ADS)
Zamora, A.; Velasco, A. A.; Gutierrez, A. E.
2013-12-01
Inverse modeling of gravity data presents a very ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting Earth's model. Although implementing 2- and 3-Dimensional gravitational inverse problems can determine the structural composition of the Earth, traditional inverse modeling approaches can be very unstable. A model of the shallow substructure is based on the density contrasts of anomalous bodies -with different densities with respect to a uniform region- or the boundaries between layers in a layered environment. We implement an interior-point method constrained optimization technique to improve the 2-D model of the Earth's structure through the use of known density constraints for transitional areas obtained from previous geological observations (e.g. core samples, seismic surveys, etc.). The proposed technique is applied to both synthetic data and gravitational data previously obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. We find improvements on the models obtained from this optimization scheme given that getting rid of geologically unacceptable models that would otherwise meet the required geophysical properties reduces the solution space.
NASA Technical Reports Server (NTRS)
Dean, Timothy C.; Ventrice, Carl A.
1995-01-01
As a final report for phase 1 of the project, the researchers are submitting to the Tennessee Tech Office of Research the following two papers (reprinted in this report): 'Collision Line Broadening Effects on Spectrometric Data from the Optical Plume Anomaly System (OPAD),' presented at the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27-29 June 1994, and 'Calculation of Collision Cross Sections for Atomic Line Broadening in the Plume of the Space Shuttle Main Engine (SSME),' presented at the IEEE Southeastcon '95, 26-29 March 1995. These papers fully state the problem and the progress made up to the end of NASA Fiscal Year 1994. The NASA OPAD system was devised to predict concentrations of anomalous species in the plume of the Space Shuttle Main Engine (SSME) through analysis of spectrometric data. The self absorption of the radiation of these plume anomalies is highly dependent on the line shape of the atomic transition of interest. The Collision Line Broadening paper discusses the methods used to predict line shapes of atomic transitions in the environment of a rocket plume. The Voigt profile is used as the line shape factor since both Doppler and collisional line broadening are significant. Methods used to determine the collisional cross sections are discussed and the results are given and compared with experimental data. These collisional cross sections are then incorporated into the current self absorbing radiative model and the predicted spectrum is compared to actual spectral data collected from the Stennis Space Center Diagnostic Test Facility rocket engine. The second paper included in this report investigates an analytical method for determining the cross sections for collision line broadening by molecular perturbers, using effective central force interaction potentials. These cross sections are determined for several atomic species with H2, one of the principal constituents of the SSME plume environment, and compared with experimental data.
ACCURATE ORBITAL INTEGRATION OF THE GENERAL THREE-BODY PROBLEM BASED ON THE D'ALEMBERT-TYPE SCHEME
Minesaki, Yukitaka
2013-03-15
We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.
Accurate Orbital Integration of the General Three-body Problem Based on the d'Alembert-type Scheme
NASA Astrophysics Data System (ADS)
Minesaki, Yukitaka
2013-03-01
We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.
NASA Astrophysics Data System (ADS)
Ren, Yuan; Shan, Jinjun
2012-12-01
Transit orbits are defined as the trajectories that can pass through the neck region of the zero velocity surface in the circular restricted three-body problem (CR3BP). The low-energy transfers in the CR3BP or between two CR3BPs are always through the instrumentality of the transit orbits. In this paper, the distribution of the transit orbits in the six-dimensional phase space is explored by using numerical methods. The necessary and sufficient condition of transition is introduced, which defines the distribution of the transit orbits by using the manifolds of the vertical and horizontal Lyapunov orbits and the transit cones. The relationship between the manifolds of the libration point orbits and the boundary of the transit orbits is discovered. By using this relationship, a fast algorithm for detecting the boundary of the transit orbits is developed. Moreover, this boundary is parametrized by using Fourier series, which makes easy to use the conclusions of this paper in future trajectory optimization and mission design. All the analyses in this paper are based on the Sun-Earth CR3BP, but the methods introduced here can be extended to any CR3BPs.
The theory of secondary resonances in the spin-orbit problem
NASA Astrophysics Data System (ADS)
Gkolias, Ioannis; Celletti, Alessandra; Efthymiopoulos, Christos; Pucacco, Giuseppe
2016-06-01
We study the resonant dynamics in a simple one degree of freedom, time dependent Hamiltonian model describing spin-orbit interactions. The equations of motion admit periodic solutions associated with resonant motions, the most important being the synchronous one in which most evolved satellites of the Solar system, including the Moon, are observed. Such primary resonances can be surrounded by a chain of smaller islands which one refers to as secondary resonances. Here, we propose a novel canonical normalization procedure allowing to obtain a higher order normal form, by which we obtain analytical results on the stability of the primary resonances as well as on the bifurcation thresholds of the secondary resonances. The procedure makes use of the expansion in a parameter, called the detuning, measuring the shift from the exact secondary resonance. Also, we implement the so-called `book-keeping' method, i.e. the introduction of a suitable separation of the terms in orders of smallness in the normal form construction, which deals simultaneously with all the small parameters of the problem. Our analytical computation of the bifurcation curves is in excellent agreement with the results obtained by a numerical integration of the equations of motion, thus providing relevant information on the parameter regions where satellites can be found in a stable configuration.
Astrometric solar system anomalies
Nieto, Michael Martin; Anderson, John D
2009-01-01
There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.
NASA Astrophysics Data System (ADS)
Elshaboury, S. M.; Abouelmagd, Elbaz I.; Kalantonis, V. S.; Perdios, E. A.
2016-09-01
The restricted three-body problem when the primaries are triaxial rigid bodies is considered and its basic dynamical features are studied. In particular, the equilibrium points are identified as well as their stability is determined in the special case when the Euler angles of rotational motion are accordingly θi = ψi = π/2 and φi = π/2, i = 1, 2. It is found that three unstable collinear equilibrium points exist and two triangular such points which may be stable. Special attention has also been paid to the study of simple symmetric periodic orbits and 31 families consisting of such orbits have been determined. It has been found that only one of these families consists entirely of unstable members while the remaining families contain stable parts indicating that other families bifurcate from them. Finally, using the grid-search technique a global solution in the space of initial conditions is obtained which comprises simple and of higher multiplicities symmetric periodic orbits as well as escape and collision orbits.
The Region of Stable Motions around a Periodic Eight-Like Orbit in the General Three-Body Problem
NASA Astrophysics Data System (ADS)
Orlov, V. V.; Rubinov, A. V.; Chernin, A. D.
2003-02-01
We investigate the neighborhood of the periodic eight-like orbit found by Moore (1993) and Chenciner and Montgomery (2000). One-, two-, and three-dimensional scans in body coordinates, velocities, and masses were constructed. We found the regions of initial conditions in which the maximum mutual separation did not exceed 5 distance units during 2000 time units (about 300 periods of the initial solution). Larger deviations from the periodic solution lead to distant body ejections and escapes. The identified regions of finite motions are complex in structure. In some sections, these are simple-connected manifolds, while in other sections, stability zones alternate with escape zones. We estimated the fractal dimensions of the stability regions in three-dimensional scans: it typically ranges from 2 to 3. In some cases, we found transitions between motions along the figure of eight in its neighborhood and motions in the vicinity of a periodic Broucke orbit in the isosceles three-body problem.
NASA Technical Reports Server (NTRS)
Ryan, R.; Gross, L. A.
1995-01-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
NASA Astrophysics Data System (ADS)
Ryan, R.; Gross, L. A.
1995-05-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
Periodic orbits in the Planar General Three-Body Problem. [with applications to solar system
NASA Technical Reports Server (NTRS)
Broucke, R.; Boggs, D.
1975-01-01
The article contains a numerical study of periodic solutions of the Planar General Three-Body Problem. Several new periodic solutions have been discovered and are described. In particular, there is a continuous family with variable masses, extending all the way from the elliptic restricted problem to the general problem with three equal masses. All our examples have special symmetry properties which are described in detail. Finally we also suggest some important applications to the natural satellites of the solar system.
NASA Astrophysics Data System (ADS)
Barutello, Vivina; Jadanza, Riccardo D.; Portaluri, Alessandro
2016-01-01
It is well known that the linear stability of the Lagrangian elliptic solutions in the classical planar three-body problem depends on a mass parameter β and on the eccentricity e of the orbit. We consider only the circular case ( e = 0) but under the action of a broader family of singular potentials: α-homogeneous potentials, for α in (0, 2), and the logarithmic one. It turns out indeed that the Lagrangian circular orbit persists also in this more general setting. We discover a region of linear stability expressed in terms of the homogeneity parameter α and the mass parameter β, then we compute the Morse index of this orbit and of its iterates and we find that the boundary of the stability region is the envelope of a family of curves on which the Morse indices of the iterates jump. In order to conduct our analysis we rely on a Maslov-type index theory devised and developed by Y. Long, X. Hu and S. Sun; a key role is played by an appropriate index theorem and by some precise computations of suitable Maslov-type indices.
Shuttle Orbiter Active Thermal Control Subsystem design and flight experience
NASA Technical Reports Server (NTRS)
Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo
1991-01-01
The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.
Satellite GN and C Anomaly Trends
NASA Technical Reports Server (NTRS)
Robertson, Brent; Stoneking, Eric
2003-01-01
On-orbit anomaly records for satellites launched from 1990 through 2001 are reviewed to determine recent trends of un-manned space mission critical failures. Anomalies categorized by subsystems show that Guidance, Navigation and Control (GN&C) subsystems have a high number of anomalies that result in a mission critical failure when compared to other subsystems. A mission critical failure is defined as a premature loss of a satellite or loss of its ability to perform its primary mission during its design life. The majority of anomalies are shown to occur early in the mission, usually within one year from launch. GN&C anomalies are categorized by cause and equipment type involved. A statistical analysis of the data is presented for all anomalies compared with the GN&C anomalies for various mission types, orbits and time periods. Conclusions and recommendations are presented for improving mission success and reliability.
Transversal Homoclinic Orbits in the Collinear Restricted Three-Body Problem
NASA Astrophysics Data System (ADS)
Llibre, J.; Perez-Chavela, E.
2005-02-01
Using the perturbation method of Melnikov, we prove in a simple way the existence of transversal homoclinic points in the collinear restricted three-body problem. As a consequence we can embed a Bernoulli shift on a suitable cross section of the flow, showing easily that this problem possesses chaotic dynamics.
Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Park, C.
1984-01-01
The dissociating and ionizing nonequilibrium flows behind a normal shock wave are calculated for the density and vehicle regimes appropriate for aeroassisted orbital transfer vehicles; the departure of vibrational and electron temperatures from the gas temperature as well as viscous transport phenomena are accounted for. From the thermodynamic properties so determined, radiative power emission is calculated using an existing code. The resulting radiation characteristics are compared with the available experimental data. Chemical parameters are varied to investigate their effect on the radiation characteristics. It is concluded that the current knowledge of rate chemistry leads to a factor-of-4 uncertainty in nonequilibrium radiation intensities. The chemical parameters that must be studied to improve the accuracy are identified.
Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles
NASA Technical Reports Server (NTRS)
Park, Chul
1985-01-01
The dissociating and ionizing nonequilibrium flows behind a normal shock wave are calculated for the density and vehicle regimes appropriate for aeroassisted orbital transfer vehicles; the departure of vibrational and electron temperatures from the gas temperature as well as viscous transport phenomena are accounted for. From the thermodynamic properties so determined, radiative power emission is calculated using an existing code. The resulting radiation characteristics are compared with the available experimental data. Chemical parameters are varied to Investigate their effect on the radiation characteristics. It is concluded that the current knowledge of rate chemistry leads to a factor-of-4 uncertainty In nonequilibrium radiation intensities. The chemical parameters that must be studied to Improve the accuracy are identified.
NASA Astrophysics Data System (ADS)
Song, Ming; He, Xingsuo; He, Dongsheng
2016-10-01
We investigate solar sail displaced orbits in the Hill's restricted three-body problem, where the larger primary is an oblate spheroid in the system. Firstly, the model of solar sail equipped with a new version of reflectance control device is introduced. Next, dynamical model of the system with the larger primary an oblate spheroid is established and the Hill's restricted three-body problem with oblateness is built through appropriate simplifications. The collinear equilibrium points of the Hill's system varying with the variations of areas of absorption and thermal radiation of reflectance control devices in the solar sail, or the dimensionless characteristic acceleration of solar sail, or the oblateness of the larger primary are also investigated. Then, Linearization near the collinear equilibria of the system is applied. A linear quadratic regulator is used to stabilize the nonlinear system. The simulation reveals that solar sail displaced orbits in this system are doable and asymptotically stable by means of adjusting the pitch angle of solar sail and the area of absorption in reflectance control devices.
NASA Astrophysics Data System (ADS)
Geisel, Christopher D.
Strategies for designing three-dimensional spacecraft trajectories in a multi-body dynamical environment are investigated using four-dimensional Poincare maps. Unlike the planar circular restricted three-body problem, where a two-dimensional map provides a simplified view of a portion of the vast and often chaotic design space, the spatial problem requires a four-dimensional map to achieve an equivalent perspective. Such higher-dimensional maps present a visualization challenge. Furthermore, a spacecraft in the spatial problem can exhibit fundamentally more diverse and complex behavior than in the planar problem. A novel approach to four-dimensional-map-based design in the spatial circular restricted three-body problem is developed and applied to practical examples with real-world spaceflight applications involving three-dimensional trajectories in the Earth-Moon, Sun-Earth, and Uranus-Titania systems. Included in the approach is a method for representing, interpreting, and manipulating four-dimensional Poincare maps in an interactive, three-dimensional visual environment in which the fourth dimension is displayed using color. This "space-plus-color" method expands on the "color and rotation" method of Patsis and Zachilas (used for the study of motion in a galaxy) by applying additional tools and techniques enabling design in the circular restricted three-body problem. Design is often based on maps generated by many trajectories. Image manipulation in both spatial and color dimensions is accomplished iteratively using MATLABRTM and AvizoRTM. Four-dimensional-map-based design in the spatial circular restricted three-body problem is practical, and success is enabled by interactive tools and techniques in a visual environment. The design strategy is methodical and not restricted to any particular map formulation. Human insight is leveraged to determine reference solutions in a problem without a closed-form analytical solution. Estimates obtained through visual
Ethical problems of interaction between ground-based personnel and orbital station crewmembers.
Grigoriev, A I; Kozerenko, O P; Myasnikov, V I; Egorov, A D
1988-02-01
Manned missions onboard orbital stations Salyut-6 and Salyut-7 have led us to the conclusion that a long-term space mission can be viewed as a complex socio-man-machine system whose effectiveness largely depends on the quality of interaction between its subsystems. When analyzing and assessing the reliability of this system, it is important to consider ethical aspects, because they concern human relations, permeating its very component and in the long run determining its efficiency. Psychological and medical examinations before, during and after manned missions have helped us to identify the major points of interaction of the subsystems which require adequate monitoring and optimization using socio-psychological and organization-technical approaches: arrangement and evaluation of the quality of work, arrangement of proper leisure, psychological comfort in the interpersonality and intergroup relations during prolonged space missions. This paper also discusses adaptive changes in the mental and physical state due to prolonged exposure to space flight factors such as microgravity and confinement.
NASA Technical Reports Server (NTRS)
Matney, Mark
2006-01-01
One of the goals for NASA s Orbital Debris Program Office has been to accurately characterize the population of debris in the geosynchronous Earth orbit (GEO) environment. Most objects larger than about 1 meter in size are regularly tracked and catalogued by the US Space Surveillance System in the GEO regime. The consequence has been that most large intact GEO objects are tracked, but the vast majority of GEO debris fragments are not. Only in recent years have observations been dedicated to characterize the GEO debris population. NASA s efforts have concentrated on using wide field-of-view telescopes to make complete surveys of the GEO regime to better our statistical understanding of the GEO debris population. These telescopes operate in a staring mode, and only make limited short-arc measurements of the orbits. This information, while limited, allows the possibility of debiasing the observations and constructing statistical distributions of orbits in inclination and ascending node. Recent work suggests that we may be able to use statistical methods to estimate better orbit parameters despite the limited data. Both of these types of studies estimating statistical orbit distributions, and estimating accurate orbits using limited short-arc data have direct analogues in ongoing studies of near-Earth objects (NEO) such as asteroids and comets. This talk will describe the GEO study methods in use and being developed at NASA, and will discuss how such methods may or may not be applicable for NEO studies as well.
Orbiter global positioning system design and Ku-band problems investigation, exhibit B, revision 1
NASA Technical Reports Server (NTRS)
Chie, C. M.; Braun, W. R.
1981-01-01
The LinCom effort in supporting the JSC study of the use of the Global Positioning System (GPS) on the space shuttle and in Ku-band problem investigation is documented. LinCom was tasked to evaluate system implementation, performance, and integration aspects of the shuttle GPS and to provide independent technical assessment of reports submitted to JSC regarding integration studies, system studies and navigation analyses.
NASA Technical Reports Server (NTRS)
Schubert, G.; Anderson, J. D.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Palguta, J.
2004-01-01
Radio Doppler data from two Ganymede encounters (G1 and G2) on the first two orbits in the Galileo mission have been analyzed previously for gravity information . For a satellite in hydrostatic equilibrium, its gravitational field can be modeled adequately by a truncated spherical harmonic series of degree two. However, a fourth degree field is required in order to fit the second Galileo flyby (G2). This need for a higher degree field strongly suggests that Ganymede s gravitational field is perturbed by a gravity anomaly near the G2 closest approach point (79.29 latitude, 123.68 west longitude). In fact, a plot of the Doppler residuals , after removal of the best-fit model for the zero degree term (GM) and the second degree moments (J2 and C22), suggests that if an anomaly exists, it is located downtrack of the closest approach point, closer to the equator.
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1984-01-01
An algorithm is presented for efficient p-iterative solution of the Lambert/Gauss orbit-determination problem using second-order Newton iteration. The algorithm is based on a universal transformation of Kepler's time-of-flight equation and approximate inverse solutions of this equation for short-way and long-way flight paths. The approximate solutions provide both good starting values for iteration and simplified computation of the second-order term in the iteration formula. Numerical results are presented which indicate that in many cases of practical significance (except those having collinear position vectors) the algorithm produces at least eight significant digits of accuracy with just two or three steps of iteration.
Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems.
Postlethwaite, C M; Brown, G; Silber, M
2013-09-28
Symmetry-breaking Hopf bifurcation problems arise naturally in studies of pattern formation. These equivariant Hopf bifurcations may generically result in multiple solution branches bifurcating simultaneously from a fully symmetric equilibrium state. The equivariant Hopf bifurcation theorem classifies these solution branches in terms of their symmetries, which may involve a combination of spatial transformations and temporal shifts. In this paper, we exploit these spatio-temporal symmetries to design non-invasive feedback controls to select and stabilize a targeted solution branch, in the event that it bifurcates unstably. The approach is an extension of the Pyragas delayed feedback method, as it was developed for the generic subcritical Hopf bifurcation problem. Restrictions on the types of groups where the proposed method works are given. After addition of the appropriately optimized feedback term, we are able to compute the stability of the targeted solution using standard bifurcation theory, and give an account of the parameter regimes in which stabilization is possible. We conclude by demonstrating our results with a numerical example involving symmetrically coupled identical nonlinear oscillators.
Pioneer Venus Orbiter Ultraviolet Spectrometer: Operations and Data Analysis
NASA Technical Reports Server (NTRS)
Stewart, A. I. F.
1997-01-01
The Pioneer Venus spacecraft orbited Venus 5,055 times between 4th December 1978 and 6th October 1992, before entering Venus' atmosphere and burning up on the latter date. On 255 of these orbits, science operations were suspended because of superior conjunction (Venus' proximity to the Sun as seen from Earth). Of the remaining 4800 orbits, about 85% yielded good-quality OUVS science data; 15% were lost to various problems, including loss of uplink (commands) to and downlink (data) from the spacecraft, errors in commanding OUVS, and one or other of the two instrument anomalies mentioned below.
ERIC Educational Resources Information Center
PENROSE, L.S.; SMITH, G.F.
BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…
Vecht, R J; Carmichael, D J; Gopal, R; Philip, G
1979-01-01
Uhl's anomaly of the heart is a rare condition. Another well-documented case is presented with a review of the published reports outlining the main clinical features and the bad overall prognosis. Right atriotomy should be avoided if closure of the atrial septal defect is attempted. Images PMID:465242
NASA Astrophysics Data System (ADS)
Fahr, Hans-Jörg; Siewert, Mark
2007-04-01
The question concerning the extent of the local spacetime has often been raised. At what circumsolar distance the well known Robertson-Walker spacetime of our expanding universe may become a valid approximation? Inside of that distance a local Schwarzschild metric, which permits to explain the Keplerian motions of planets within the frame of general relativity, must be applicable.We briefly analyze the historical answer to that question given by Einstein, Straus and their followers and show that till now this answer is unsatisfactory in many respects. We revisit the problem of local spacetime geometries in the light of their effects on local photon propagation in view of the radiopropagation phenomena detected with the NASA spaceprobes PIONEER-10/11, waiting for a satisfying answer for several decades now. Comparing radiosignals outgoing from the earth to the probe and ingoing again from the probe to the receiver on earth do show anomalous frequency shifts which presently find no explanation by anomalous non-Newtonian decelerations of these probes. Therefore we study cosmological conditions for the transfer of radiosignals between the earth and these distant probes based on time dependent local spacetime geometries. First we study the cosmological redshift of radiophotons during their propagation to the spaceprobe and show that this shift in fact explains the registered PIONEER phenomenon under the assumption that the full cosmological expansion of the universe also takes place locally. Though yielding the right magnitude, one finds that this assumption leads to a redshift instead of the observed blueshift. We then, however, show that theoretically motivated forms of time dependent local spacetime metrices in fact lead to a blueshift of the needed magnitude. The appropriate local space vacuole is characterized by a Schwarzschild metric of a central mass increasing with cosmic time. Though it is clear that further studies of this effect have to be carried out to
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.
2011-01-01
The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing
NASA Astrophysics Data System (ADS)
Lightman, Alan; Gingerich, Owen
1992-02-01
The present historical and methodological consideration of scientific anomalies notes that some of these are recognized as such, after long neglect, only after the emergence of compelling explanations for their presence in the given theory in view of an alternative conceptual framework. These cases of 'retrorecognition' are indicative not merely of a significant characteristic of the process of conceptual development and scientific discovery, but of the bases for such process in human psychology. Attention is given to the illustrative cases of the 'flatness problem' in big bang theory, the perigee-opposition problem in Ptolemaic astronomy, the continental-fit problem in geology, and the equality of inertial and gravitational mass.
Astrometric solar-system anomalies
NASA Astrophysics Data System (ADS)
Anderson, John D.; Nieto, Michael Martin
2010-01-01
There are at least four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. Next, a secular change in the astronomical unit AU is definitely a concern. It is reportedly increasing by about 15 cm yr-1. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists, including us, are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is prudent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.
NASA Astrophysics Data System (ADS)
Chulin, A. N.
2014-12-01
The problem of how to determine parameters of motion for an automated interplanetary probe (AIP) on a quasi-satellite orbit during flight to the small natural satellite of a planet is examined. The problem is solved by searching for an optimal state-space trajectory of automated interplanetary probe according to the least-squares criterion. The results of longitude and latitude measurements at several points are used as boundary conditions.
Elliptic Anomaly in Constructing Long-Term and Short-Term Dynamical Theories
NASA Astrophysics Data System (ADS)
Brumberg, V. A.; Brumberg, E. V.
2001-07-01
The techniques of Brumberg and Brumberg (1999) based on the use of elliptic anomaly are specified in this paper in two aspects. The iteration technique (Broucke, 1969) to construct short-term semi-analytical theories of motion in rectangular coordinates in lines of Encke and Hill is reelaborated in terms of elliptic anomaly resulting in extending this technique for high-eccentricity orbits. In constructing long-term semi-analytical theories the key point is to integrate trigonometric functions of several angular arguments related to time by different differential expressions. This problem is reduced in the paper to linear algebraic recurrence relations admitting efficient solution by iterations.
Submillimeter Wave Astronomy Satellite (SWAS) Launch and Early Orbit Support Experiences
NASA Technical Reports Server (NTRS)
Kirschner, S.; Sedlak, J.; Challa, M.; Nicholson, A.; Sande, C.; Rohrbaugh, D.
1999-01-01
The Submillimeter Wave Astronomy Satellite (SWAS) was successfully launched on December 6, 1998 at 00:58 UTC. The two year mission is the fourth in the series of Small Explorer (SMEX) missions. SWAS is dedicated to the study of star formation and interstellar chemistry. SWAS was injected into a 635 km by 650 km orbit with an inclination of nearly 70 deg by an Orbital Sciences Corporation Pegasus XL launch vehicle. The Flight Dynamics attitude and navigation teams supported all phases of the early mission. This support included orbit determination, attitude determination, real-time monitoring, and sensor calibration. This paper reports the main results and lessons learned concerning navigation, support software, star tracker performance, magnetometer and gyroscope calibrations, and anomaly resolution. This includes information on spacecraft tip-off rates, first-day navigation problems, target acquisition anomalies, star tracker anomalies, and significant sensor improvements due to calibration efforts.
NASA Astrophysics Data System (ADS)
Gafarov, Albert A.
1993-01-01
Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry.
Anomalies of a topologically ordered surface
Biswas, Deepnarayan; Thakur, Sangeeta; Ali, Khadiza; Balakrishnan, Geetha; Maiti, Kalobaran
2015-01-01
Bulk insulators with strong spin orbit coupling exhibit metallic surface states possessing topological order protected by the time reversal symmetry. However, experiments show vulnerability of topological states to aging and impurities. Different studies show contrasting behavior of the Dirac states along with plethora of anomalies, which has become an outstanding problem in material science. Here, we probe the electronic structure of Bi2Se3 employing high resolution photoemission spectroscopy and discover the dependence of the behavior of Dirac particles on surface terminations. The Dirac cone apex appears at different binding energies and exhibits contrasting shift on Bi and Se terminated surfaces with complex time dependence emerging from subtle adsorbed oxygen-surface atom interactions. These results uncover the surface states behavior of real systems and the dichotomy of topological and normal surface states important for device fabrication as well as realization of novel physics such as Majorana Fermions, magnetic monopole, etc. PMID:26041405
NASA Astrophysics Data System (ADS)
Zamaro, M.; Biggs, J. D.
2015-07-01
The Martian moon Phobos is becoming an appealing destination for future scientific missions. The orbital dynamics around this planetary satellite is particularly complex due to the unique combination of both small mass-ratio and length-scale of the Mars-Phobos couple: the resulting sphere of influence of the moon is very close to its surface, therefore both the classical two-body problem and circular restricted three-body problem (CR3BP) do not provide an accurate approximation to describe the spacecraft's dynamics in the vicinity of Phobos. The aim of this paper is to extend the model of the CR3BP to consider the orbital eccentricity and the highly-inhomogeneous gravity field of Phobos, by incorporating the gravity harmonics series expansion into an elliptic R3BP, named ER3BP-GH. Following this, the dynamical substitutes of the Libration Point Orbits (LPOs) are computed in this more realistic model of the relative dynamics around Phobos, combining methodologies from dynamical systems theory and numerical continuation techniques. Results obtained show that the structure of the periodic and quasi-periodic LPOs differs substantially from the classical case without harmonics. Several potential applications of these natural orbits are presented to enable unique low-cost operations in the proximity of Phobos, such as close-range observation, communication, and passive radiation shielding for human spaceflight. Furthermore, their invariant manifolds are demonstrated to provide high-performance natural landing and take-off pathways to and from Phobos' surface, and transfers from and to Martian orbits. These orbits could be exploited in upcoming and future space missions targeting the exploration of this Martian moon.
Gauge anomalies, gravitational anomalies, and superstrings
Bardeen, W.A.
1985-08-01
The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.
ANOMALY STRUCTURE OF SUPERGRAVITY AND ANOMALY CANCELLATION
Butter, Daniel; Gaillard, Mary K.
2009-06-10
We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.
NASA Technical Reports Server (NTRS)
Kessler, D. J. (Compiler); Su, S. Y. (Compiler)
1985-01-01
Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.
The resolution of a magnetic anomaly map expected from GRM data
NASA Technical Reports Server (NTRS)
Strangway, D. W.; Arkani-Hamed, J.; Teskey, D. J.; Hood, P. J.
1985-01-01
Data from the MAGSAT mission were used to derive a global scalar magnetic anomaly map at an average altitude of about 400 km. It was possible to work with 2 data sets corresponding to dawn and dusk. The anomalies which were repeatable at dawn and at dusk was identified and the error limits of these anomalies were estimated. The repeatable anomalies were downward continued to about 10 km altitude. The anomalies over Canada were correlated quantitatively with bandpass filtered magnetic anomalies derived from aeromagnetic surveys. The close correlation indicates that the repeatable anomalies detected from orbit are due to geological causes. This correlation supports the geological significance of the global anomaly map.
Columbus Payloads Flow Rate Anomalies
NASA Technical Reports Server (NTRS)
Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.
2011-01-01
The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.
Chiral anomalies and differential geometry
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
NASA Technical Reports Server (NTRS)
Murad, P. A.
1993-01-01
Tsien's method is extended to treat the orbital motion of a body undergoing accelerations and decelerations. A generalized solution is discussed for the generalized case where a body undergoes azimuthal and radial thrust and the problem is further simplified for azimuthal thrust alone. Judicious selection of thrust could generate either an elliptic or hyperbolic trajectory. This is unexpected especially when the body has only enough energy for a lower state trajectory. The methodology is extended treating the problem of vehicle thrust for orbiting a sphere and vehicle thrust within the classical restricted three-body problem. Results for the latter situation can produce hyperbolic trajectories through eigen value decomposition. Since eigen values for no-thrust can be imaginary, thrust can generate real eigen values to describe hyperbolic trajectories. Keplerian dynamics appears to represent but a small subset of a much larger non-Keplerian domain especially when thrust effects are considered. The need for high thrust long duration space-based propulsion systems for changing a trajectory's canonical form is clearly demonstrated.
NASA Astrophysics Data System (ADS)
Biretta, John
2005-07-01
A serious anomaly has been found in images from the WF4 CCD in WFPC2. The WF4 CCD bias level appears to have become unstable, resulting in sporadic images with either low or zero bias level. The severity and frequency of the problem is rapidly increasing, and it is possible that WF4 will soon become unusable if no work-around is found. The other three CCDs {PC1, WF2, and WF3} appear to be unaffected and continue to operate properly. The impacts from "low" and "zero" bias are somewhat different, but in both cases the effects are immediately obvious. Images with low bias will tend to have horizontal {x-direction} streaks and stripes with an amplitude of ? about 0.5 DN in WF4. We believe these data should be mostly recoverable with some effort, though at a loss in the detectability of faint targets. "Zero bias" is a much more serious problem and is evidenced by images which are blank in WF4, except for showing occasional cosmic rays, bright targets, and negative pixels from dark subtraction. These images with zero bias are probably unusable for most purposes. Both the CCD gain settings of 7 and 14 are affected. The frequency of the anomaly is rapidly increasing. The first significant instances of low bias appear to have been in late 2004 when a few images were impacted. However, within the last few weeks over half the images are beginning to show the low bias problem. The more serious "zero bias" problem appears to have first occurred in Feb. 2005, but it is also increasing and now impacts 10% to 20% of WFPC2 images. At present there are still many images which appear fine and unaffected, but the situation is quickly evolving. We believe the science impact for most observers will be minimal. Targets are by default placed on either PC1 or WF3 which continue to operate properly. However, observers requiring the full field of view {survey projects, large targets, etc.} will potentially lose one-third of their imaging area. Our understanding of this anomaly is still
Astrometric Solar-System Anomalies
NASA Astrophysics Data System (ADS)
Anderson, John D.
2009-05-01
There are four unexplained anomalies connected with astrometric data. Perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it experiences a gain in total orbital energy per unit mass (Anderson et al., Phys. Rev. Lett. 100, 091102). This amounts to a net velocity increase of 13.5 mm/s for the NEAR spacecraft at a closest approach of 539 km, 3.9 mm/s for the Galileo spacecraft at 960 km, and 1.8 mm/s for the Rosetta spacecraft at 1956 km. Next, I suggest the change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm/yr (Krasinsky and Brumberg, Celes. Mech. & Dynam. Astron. 90, 267). The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions (Anderson et al., Phys. Rev. D 65, 082004). Some, including me, are convinced this effect is of concern, but many are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported increase that is about three times larger than expected (J. G. Williams, DDA/AAS Brouwer Award Lecture, Halifax, Nova Scotia 2006). We suspect that all four anomalies have mundane explanations. However, the possibility that they will be explained by a new theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation of the excess precession of Mercury's perihelion.
ISHM Anomaly Lexicon for Rocket Test
NASA Technical Reports Server (NTRS)
Schmalzel, John L.; Buchanan, Aubri; Hensarling, Paula L.; Morris, Jonathan; Turowski, Mark; Figueroa, Jorge F.
2007-01-01
Integrated Systems Health Management (ISHM) is a comprehensive capability. An ISHM system must detect anomalies, identify causes of such anomalies, predict future anomalies, help identify consequences of anomalies for example, suggested mitigation steps. The system should also provide users with appropriate navigation tools to facilitate the flow of information into and out of the ISHM system. Central to the ability of the ISHM to detect anomalies is a clearly defined catalog of anomalies. Further, this lexicon of anomalies must be organized in ways that make it accessible to a suite of tools used to manage the data, information and knowledge (DIaK) associated with a system. In particular, it is critical to ensure that there is optimal mapping between target anomalies and the algorithms associated with their detection. During the early development of our ISHM architecture and approach, it became clear that a lexicon of anomalies would be important to the development of critical anomaly detection algorithms. In our work in the rocket engine test environment at John C. Stennis Space Center, we have access to a repository of discrepancy reports (DRs) that are generated in response to squawks identified during post-test data analysis. The DR is the tool used to document anomalies and the methods used to resolve the issue. These DRs have been generated for many different tests and for all test stands. The result is that they represent a comprehensive summary of the anomalies associated with rocket engine testing. Fig. 1 illustrates some of the data that can be extracted from a DR. Such information includes affected transducer channels, narrative description of the observed anomaly, and the steps used to correct the problem. The primary goal of the anomaly lexicon development efforts we have undertaken is to create a lexicon that could be used in support of an associated health assessment database system (HADS) co-development effort. There are a number of significant
Magnetosheath Flow Anomalies in 3-D
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.
2016-07-26
Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis
Magnetic Anomalies over Iceland.
Serson, P H; Hannaford, W; Haines, G V
1968-10-18
An aeromagnetic survey of Iceland reveals broad anomalies of large amplitude over zones of recent volcanic activity. The source of the anomalies is ascribed to large masses of basalt that have been coherently remagnetized by intrusive heating. A simple correlation of the Icelandic anomalies with those of the ocean floor therefore appears unjustified.
Analysis of spacecraft anomalies
NASA Technical Reports Server (NTRS)
Bloomquist, C. E.; Graham, W. C.
1976-01-01
The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.
NASA Astrophysics Data System (ADS)
Arav, Igal; Chapman, Shira; Oz, Yaron
2015-02-01
We analyse scale anomalies in Lifshitz field theories, formulated as the relative cohomology of the scaling operator with respect to foliation preserving diffeomorphisms. We construct a detailed framework that enables us to calculate the anomalies for any number of spatial dimensions, and for any value of the dynamical exponent. We derive selection rules, and establish the anomaly structure in diverse universal sectors. We present the complete cohomologies for various examples in one, two and three space dimensions for several values of the dynamical exponent. Our calculations indicate that all the Lifshitz scale anomalies are trivial descents, called B-type in the terminology of conformal anomalies. However, not all the trivial descents are cohomologically non-trivial. We compare the conformal anomalies to Lifshitz scale anomalies with a dynamical exponent equal to one.
NASA Technical Reports Server (NTRS)
Senent, Juan
2011-01-01
The first part of the paper presents some closed-form solutions to the optimal two-impulse transfer between fixed position and velocity vectors on Keplerian orbits when some constraints are imposed on the magnitude of the initial and final impulses. Additionally, a numerically-stable gradient-free algorithm with guaranteed convergence is presented for the minimum delta-v two-impulse transfer. In the second part of the paper, cooperative bargaining theory is used to solve some two-impulse transfer problems when the initial and final impulses are carried by different vehicles or when the goal is to minimize the delta-v and the time-of-flight at the same time.
Earls, James P
2006-12-01
Coronary artery anomalies are uncommon findings but can be of significant clinical importance in a small number of individuals. Clinical presentation depends on the specific anomaly. Most coronary artery anomalies are benign and clinically insignificant, however, some anomalies are potentially significant and can lead to heart failure and even death. Noninvasive imaging has emerged as the preferred way to image coronary anomalies. Both electron beam computed tomography (EBCT) and magnetic resonance angiography (MRA) are useful for the diagnosis of anomalous coronary arteries. Recently, MDCT has also proven to be very useful in the detection and characterization of anomalous coronary arteries. This chapter will review the appearance of the most commonly encountered coronary anomalies on MDCT. PMID:17709086
Rosenmann, A; Arad, I; Simcha, A; Schaap, T
1976-01-01
A family is described in which both a father and son are affected with Ebstein's anomaly, while several other family members manifest different cardiac malformations. Five additional instances of familial Ebstein's anomaly were found in the literature and compared with our family. Inspection of possible modes of inheritance in this group of families suggests that Ebstein's anomaly is probably inherited as a polygenic character with a threshold phenomenon. PMID:1018315
Generating unaveraged equations of motion in common orbital elements
NASA Astrophysics Data System (ADS)
Veras, Dimitri
2014-05-01
Cartesian equations of motion must be converted or integrated in order to impart information about the evolution of orbital elements such as the semimajor axis, eccentricity, inclination, longitude of ascending node, argument of pericentre and true anomaly. Alternatively, equations of motion in terms of only these orbital elements can reveal aspects of the motion simply by inspection. I advertise a quick method to generate such equations for perturbed two-body problems, where the perturbation may be arbitrarily large, and where no averaging is involved. I use the method to generate complete unaveraged equations from perturbations due to Poynting-Robertson drag, general relativity, mass loss, Galactic tides, and additional massive bodies under the guise of the general restricted few-body problem.
Konstantinov, Igor E.
2009-01-01
Taussig-Bing anomaly is a rare congenital heart malformation that was first described in 1949 by Helen B. Taussig (1898–1986) and Richard J. Bing (1909–). Although substantial improvement has since been achieved in surgical results of the repair of the anomaly, management of the Taussig-Bing anomaly remains challenging. A history of the original description of the anomaly, the life stories of the individuals who first described it, and the current outcomes of its surgical management are reviewed herein. PMID:20069085
Continental and oceanic magnetic anomalies: Enhancement through GRM
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.
1985-01-01
In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.
Recent Advances in Ionospheric Anomalies detection
NASA Astrophysics Data System (ADS)
Titov, Anton; Vyacheslav, Khattatov
2016-07-01
The variability of the parameters of the ionosphere and ionospheric anomalies are the subject of intensive research. It is widely known and studied in the literature ionospheric disturbances caused by solar activity, the passage of the terminator, artificial heating of high-latitude ionosphere, as well as seismic events. Each of the above types of anomalies is the subject of study and analysis. Analysis of these anomalies will provide an opportunity to improve our understanding of the mechanisms of ionospheric disturbances. To solve this problem are encouraged to develop a method of modeling the ionosphere, based on the assimilation of large amounts of observational data.
Competing Orders and Anomalies
NASA Astrophysics Data System (ADS)
Moon, Eun-Gook
2016-08-01
A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.
Competing Orders and Anomalies.
Moon, Eun-Gook
2016-08-08
A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.
Competing Orders and Anomalies.
Moon, Eun-Gook
2016-01-01
A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184
Competing Orders and Anomalies
Moon, Eun-Gook
2016-01-01
A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184
Survey of Anomaly Detection Methods
Ng, B
2006-10-12
This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview of popular techniques and provide references to state-of-the-art applications.
Anomaly Detection for Discrete Sequences: A Survey
Chandola, Varun; Banerjee, Arindam; Kumar, Vipin
2012-01-01
This survey attempts to provide a comprehensive and structured overview of the existing research for the problem of detecting anomalies in discrete/symbolic sequences. The objective is to provide a global understanding of the sequence anomaly detection problem and how existing techniques relate to each other. The key contribution of this survey is the classification of the existing research into three distinct categories, based on the problem formulation that they are trying to solve. These problem formulations are: 1) identifying anomalous sequences with respect to a database of normal sequences; 2) identifying an anomalous subsequence within a long sequence; and 3) identifying a pattern in a sequence whose frequency of occurrence is anomalous. We show how each of these problem formulations is characteristically distinct from each other and discuss their relevance in various application domains. We review techniques from many disparate and disconnected application domains that address each of these formulations. Within each problem formulation, we group techniques into categories based on the nature of the underlying algorithm. For each category, we provide a basic anomaly detection technique, and show how the existing techniques are variants of the basic technique. This approach shows how different techniques within a category are related or different from each other. Our categorization reveals new variants and combinations that have not been investigated before for anomaly detection. We also provide a discussion of relative strengths and weaknesses of different techniques. We show how techniques developed for one problem formulation can be adapted to solve a different formulation, thereby providing several novel adaptations to solve the different problem formulations. We also highlight the applicability of the techniques that handle discrete sequences to other related areas such as online anomaly detection and time series anomaly detection.
The dynamic Allan Variance IV: characterization of atomic clock anomalies.
Galleani, Lorenzo; Tavella, Patrizia
2015-05-01
The number of applications where precise clocks play a key role is steadily increasing, satellite navigation being the main example. Precise clock anomalies are hence critical events, and their characterization is a fundamental problem. When an anomaly occurs, the clock stability changes with time, and this variation can be characterized with the dynamic Allan variance (DAVAR). We obtain the DAVAR for a series of common clock anomalies, namely, a sinusoidal term, a phase jump, a frequency jump, and a sudden change in the clock noise variance. These anomalies are particularly common in space clocks. Our analytic results clarify how the clock stability changes during these anomalies.
The dynamic Allan Variance IV: characterization of atomic clock anomalies.
Galleani, Lorenzo; Tavella, Patrizia
2015-05-01
The number of applications where precise clocks play a key role is steadily increasing, satellite navigation being the main example. Precise clock anomalies are hence critical events, and their characterization is a fundamental problem. When an anomaly occurs, the clock stability changes with time, and this variation can be characterized with the dynamic Allan variance (DAVAR). We obtain the DAVAR for a series of common clock anomalies, namely, a sinusoidal term, a phase jump, a frequency jump, and a sudden change in the clock noise variance. These anomalies are particularly common in space clocks. Our analytic results clarify how the clock stability changes during these anomalies. PMID:25965674
The mineralogy of global magnetic anomalies
NASA Technical Reports Server (NTRS)
Haggerty, S. E. (Principal Investigator)
1982-01-01
The Curie Balance was brought to operational stage and is producing data of a preliminary nature. Substantial problems experienced in the assembly and initial operation of the instrument were, for the most part, rectified, but certain problems still exist. Relationships between the geology and the gravity and MAGSAT anomalies of West Africa are reexamined in the context of a partial reconstruction of Gondwanaland.
NASA Astrophysics Data System (ADS)
Bergeron, R. P.
1980-07-01
Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.
Behavioral economics without anomalies.
Rachlin, H
1995-01-01
Behavioral economics is often conceived as the study of anomalies superimposed on a rational system. As research has progressed, anomalies have multiplied until little is left of rationality. Another conception of behavioral economics is based on the axiom that value is always maximized. It incorporates so-called anomalies either as conflicts between temporal patterns of behavior and the individual acts comprising those patterns or as outcomes of nonexponential time discounting. This second conception of behavioral economics is both empirically based and internally consistent. PMID:8551195
Design and Implementation of an Anomaly Detector
Bagherjeiran, A; Cantu-Paz, E; Kamath, C
2005-07-11
This paper describes the design and implementation of a general-purpose anomaly detector for streaming data. Based on a survey of similar work from the literature, a basic anomaly detector builds a model on normal data, compares this model to incoming data, and uses a threshold to determine when the incoming data represent an anomaly. Models compactly represent the data but still allow for effective comparison. Comparison methods determine the distance between two models of data or the distance between a model and a point. Threshold selection is a largely neglected problem in the literature, but the current implementation includes two methods to estimate thresholds from normal data. With these components, a user can construct a variety of anomaly detection schemes. The implementation contains several methods from the literature. Three separate experiments tested the performance of the components on two well-known and one completely artificial dataset. The results indicate that the implementation works and can reproduce results from previous experiments.
Castillo, M; Mukherji, S K
1995-01-01
Anomalies of the face may occur in its lower or middle segments. Anomalies of the lower face generally involve the derivatives of the branchial apparatus and therefore manifest as defects in the mandible, pinnae, external auditory canals, and portions of the middle ears. These anomalies are occasionally isolated, but most of them occur in combination with systemic syndromes. These anomalies generally do not occur with respiratory compromise. Anomalies of the midface may extend from the upper lip to the forehead, reflecting the complex embryology of this region. Most of these deformities are isolated, but some patients with facial clefts, notably the midline cleft syndrome and holoprosencephaly, have anomalies in other sites. This is important because these patients will require detailed imaging of the face and brain. Anomalies of the midface tend to involve the nose and its air-conducting passages. We prefer to divide these anomalies into those with and without respiratory obstruction. The most common anomalies that result in airway compromise include posterior choanal stenoses and atresias, bilateral cysts (mucoceles) of the distal lacrimal ducts, and stenosis of the pyriform (anterior) nasal aperture. These may be optimally evaluated with computed tomography (CT) and generally require immediate treatment to ensure adequate ventilation. Rare nasal anomalies that also result in airway obstruction are agenesis of the pharynx, agenesis of the nose, and hypoplasia of the nasal alae. Agenesis of the nasopharynx and nose are complex anomalies that require both CT and magnetic resonance imaging (MRI). The diagnosis of hypoplasia of the nasal alae is a clinical one; these anomalies do not require imaging studies. Besides facial clefts, anomalies of the nose without respiratory obstruction tend to be centered around the nasofrontal region. This is the site of the most common sincipital encephaloceles. Patients with frontonasal and nasoethmoidal encephaloceles require both
Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...
Detection of Low Temperature Volcanogenic Thermal Anomalies with ASTER
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Baxter, S.
2009-12-01
Predicting volcanic eruptions is a thorny problem, as volcanoes typically exhibit idiosyncratic waxing and/or waning pre-eruption emission, geodetic, and seismic behavior. It is no surprise that increasing our accuracy and precision in eruption prediction depends on assessing the time-progressions of all relevant precursor geophysical, geochemical, and geological phenomena, and on more frequently observing volcanoes when they become restless. The ASTER instrument on the NASA Terra Earth Observing System satellite in low earth orbit provides important capabilities in the area of detection of volcanogenic anomalies such as thermal precursors and increased passive gas emissions. Its unique high spatial resolution multi-spectral thermal IR imaging data (90m/pixel; 5 bands in the 8-12um region), bore-sighted with visible and near-IR imaging data, and combined with off-nadir pointing and stereo-photogrammetric capabilities make ASTER a potentially important volcanic precursor detection tool. We are utilizing the JPL ASTER Volcano Archive (http://ava.jpl.nasa.gov) to systematically examine 80,000+ ASTER volcano images to analyze (a) thermal emission baseline behavior for over 1500 volcanoes worldwide, (b) the form and magnitude of time-dependent thermal emission variability for these volcanoes, and (c) the spatio-temporal limits of detection of pre-eruption temporal changes in thermal emission in the context of eruption precursor behavior. We are creating and analyzing a catalog of the magnitude, frequency, and distribution of volcano thermal signatures worldwide as observed from ASTER since 2000 at 90m/pixel. Of particular interest as eruption precursors are small low contrast thermal anomalies of low apparent absolute temperature (e.g., melt-water lakes, fumaroles, geysers, grossly sub-pixel hotspots), for which the signal-to-noise ratio may be marginal (e.g., scene confusion due to clouds, water and water vapor, fumarolic emissions, variegated ground emissivity, and
Isotopic anomalies from neutron reactions during explosive carbon burning
NASA Technical Reports Server (NTRS)
Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.
1979-01-01
The heavy isotopic anomalies observed recently in the fractionation and unknown nuclear inclusions from the Allende meteorite are explained by neutron reactions during the explosive carbon burning (ECB). This model produces heavy anomalies in the same zone where Al-26 and O-16 are produced, thus reducing the number of source zones required for the isotopic anomalies. Unlike the classical r-process, the ECB n-process avoids the problem with the Sr anomaly and may resolve the problem of conflicting time scales between Al-26 and the r-process isotopes I-129 and Pu-244. Experimental studies of Zr and Ce isotopic composition are proposed to test this model.
GEOS 3 data processing for the recovery of geoid undulations and gravity anomalies
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1979-01-01
The paper discusses the analysis of GEOS 3 altimeter data for the determination of geoid heights and point and mean gravity anomalies. Methods are presented for determining the mean anomalies and mean undulations from the GEOS 3 altimeter data available by the end of September 1977 without having a complete set of precise orbits. The editing of the data is extensive to remove questionable data, although no filtering of the data is carried out. An adjustment process is carried out to eliminate orbit error and altimeter bias. Representative point anomaly values are computed to investigate anomaly behavior across the Bonin Trench and over the Patton seamounts.
Padmanabhan, Arjun; Thomas, Abin Varghese
2016-01-01
Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well. PMID:27625457
Padmanabhan, Arjun; Thomas, Abin Varghese
2016-01-01
Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well.
Padmanabhan, Arjun; Thomas, Abin Varghese
2016-01-01
Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well. PMID:27625457
Drift rate of the South Atlantic Anomaly.
Badhwar, G D
1997-02-01
A portion of the secular change of the geomagnetic field leads to a drift of the trapped belt South Atlantic Anomaly (SAA). If this drift is not taken into account, models of the trapped particle population give erroneous predictions of particle fluxes. The dose rates measured on two manned spacecrafts, Skylab (50 degrees inclination x 438 km orbit) and Mir orbital station (51.65 degrees inclination x 400 km orbit), were used to determine the drift rate of the SAA. The longitude and latitude drift rates of the SAA as a whole, between 1973 and 1995, were estimated to be 0.28 +/- 0.03 degrees W per year, and 0.08 +/- 0.03 degrees N per year, respectively. These measurements are consistent with determinations made using the AP8 models for radiation trapped belts and are in excellent agreement with drift rates observed for the geomagnetic field.
SADM potentiometer anomaly investigations
NASA Astrophysics Data System (ADS)
Wood, Brian; Mussett, David; Cattaldo, Olivier; Rohr, Thomas
2005-07-01
During the last 3 years Contraves Space have been developing a Low Power (1-2kW) Solar Array Drive Mechanism (SADM) aimed at small series production. The mechanism was subjected to two test programmes in order to qualify the SADM to acceptable levels. During the two test programmes, anomalies were experienced with the Potentiometers provided by Eurofarad SA and joint investigations were undertaken to resolve why these anomalies had occurred. This paper deals with the lessons learnt from the failure investigation on the two Eurofarad (rotary) Potentiometer anomaly. The Rotary Potentiometers that were used were fully redundant; using two back to back mounted "plastic tracks". It is a pancake configuration mounted directly to the shaft of the Slip Ring Assembly at the extreme in-board end of the SADM. It has no internal bearings. The anomaly initially manifested itself as a loss of performance in terms of linearity, which was first detected during Thermal Vacuum testing. A subsequent anomaly manifested itself by the complete failure of the redundant potentiometer again during thermal vacuum testing. This paper will follow and detail the chain of events following this anomaly and identifies corrective measures to be applied to the potentiometer design and assembly process.
Musculotendinous anomalies in musician and nonmusician hands.
Miller, Gavin; Peck, Fiona; Brain, Anne; Watson, Stewart
2003-12-01
Musculoskeletal abnormalities of musicians' hands and upper extremities are well-recognized and potentially career-threatening problems. Of the many types of potentiality problematic musculoskeletal disorders that could be assessed, this study focused on joint instability and musculotendinous anomalies. For this study, the hands of 92 music students were compared with the hands of 64 nonmusician control subjects. Flexor anomalies were observed much more frequently than extensor musculotendinous anomalies; clinical evidence of the Linburg-Comstock anomaly was noted for 60 to 70 percent of subjects in both groups. Further analysis of the Linburg-Comstock anomaly demonstrated that the sites of pain among test-positive subjects were variable, test positivity was more frequent in the left hand and among string players, and test positivity tended to decrease from the radial side to the ulnar side of the hand. There were only two definite extensor musculotendinous anomalies (1.3 percent), and both involved a subluxating extensor mechanism affecting the little fingers. Forty-three percent of all subjects exhibited a degree of instability affecting the joints of their hands.
Congenital Vascular Anomalies.
Gravereaux, Edwin C.; Nguyen, Louis L.; Cunningham, Leslie D.
2004-04-01
Congenital vascular anomalies are rare. The cardiovascular specialist should nevertheless be aware of the more common types of vascular anomalies and understand the implications for patient treatment and the likelihood of associated morbidity. The presentation of congenital arteriovenous malformations can range from asymptomatic or cosmetic lesions, to those causing ischemia, ulceration, hemorrhage, or high-output congestive heart failure. Treatment of large, symptomatic arteriovenous malformations often requires catheter-directed embolization prior to the attempt at complete surgical excision. Later recurrence, due to collateral recruitment, is frequent. Graded compression stockings and leg elevation are the mainstays of treatment for the predominantly venous congenital vascular anomalies. Most congenital central venous disorders are clinically silent. An exception is the retrocaval ureter. Retroaortic left renal vein, circumaortic venous ring, and absent, left-sided or duplicated inferior vena cava are relevant when aortic or inferior vena cava procedures are planned. The treatment of the venous disorders is directed at prevention or management of symptoms. Persistent sciatic artery, popliteal entrapment syndrome, and aberrant right subclavian artery origin are congenital anomalies that are typically symptomatic at presentation. Because they mimic more common diseases, diagnosis is frequently delayed. Delay can result in significant morbidity for the patient. Failure to make the diagnosis of persistent sciatic artery and popliteal entrapment can result in critical limb ischemia and subsequent amputation. Unrecognized aberrant right subclavian artery origin associated with aneurysmal degeneration can rupture and result in death. The treatment options for large-vessel arterial anomalies are surgical, sometimes in combination with endovascular techniques.
Magnetic anomalies. [Magsat studies
NASA Technical Reports Server (NTRS)
Harrison, C. G. A.
1983-01-01
The implications and accuracy of anomaly maps produced using Magsat data on the scalar and vector magnetic field of the earth are discussed. Comparisons have been made between the satellite maps and aeromagnetic survey maps, showing smoother data from the satellite maps and larger anomalies in the aircraft data. The maps are being applied to characterize the structure and tectonics of the underlying regions. Investigations are still needed regarding the directions of magnetization within the crust and to generate further correlations between anomaly features and large scale geological structures. Furthermore, an increased data base is recommended for the Pacific Ocean basin in order to develop a better starting model for Pacific tectonic movements. The Pacific basin was large farther backwards in time and subduction zones surround the basin, thereby causing difficulties for describing the complex break-up scenario for Gondwanaland.
On-orbit coldwelding: Fact or friction?
NASA Technical Reports Server (NTRS)
Dursch, Harry; Spear, Steve
1992-01-01
A study into the potential of on-orbit coldwelding occurring was completed. No instances of cold welding were found during deintegration and subsequent testing and analysis of LDEF hardware. This finding generated wide interest and indicated the need to review previous on-orbit coldwelding experiments and on-orbit spacecraft anomalies to determine whether the absence of coldwelding on LDEF was to be expected. Results show that even though there have been no documented cases of significant on-orbit coldwelding events occurring, precautions should be taken to ensure that neither coldwelding nor galling occurs in the space or prelaunch environment.
Automated Network Anomaly Detection with Learning, Control and Mitigation
ERIC Educational Resources Information Center
Ippoliti, Dennis
2014-01-01
Anomaly detection is a challenging problem that has been researched within a variety of application domains. In network intrusion detection, anomaly based techniques are particularly attractive because of their ability to identify previously unknown attacks without the need to be programmed with the specific signatures of every possible attack.…
Symon, K.
1987-11-01
There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.
Orbitals and orbital energies in DFT and TDDFT
NASA Astrophysics Data System (ADS)
Baerends, Evert Jan
The status and meaning of orbitals and orbital energies in the Kohn-Sham one-electron model of DFT has been controversial, in contrast to Hartree-Fock orbitals and orbital energies. We will argue the opposite: the exact Kohn-Sham orbitals of DFT are ''better'' than HF orbitals and their orbital energies are much closer to ionization energies than HF orbital energies are. This follows from the relation between the KS potential and the wavefunction, which can be cast in the form vs =vc , kin +vH +vxchole +vresp, where each term depends on the KS orbitals and the wavefunction (the one- or two-particle density matrices). The response potential vresp (r) = ∑ j ∞|/dj(r) | 2 ρ (r) Ij - ∑ i H|/ψs , i(r) | 2 ρ (r) (-ɛi) (dj is the Dyson orbital corresponding to ion state ΨjN - 1 , ψs , i is a Kohn-Sham orbital) enables the connection between ionization energies Ii and orbital energies ɛi to be made. For virtual orbitals and orbital energies similar statements can be made: the shapes and energies of the (exact) KS orbitals are much more realistic than those of the Hartree-Fock model or hybrid functionals. The HOMO-LUMO gap in molecules is very close to the optical gap, and very different from the fundamental gap. In solids the situation is very different, which is the well-known ''KS gap problem''. Again the response potential vresp (a good approximation to it) helps to solve this problem, affording a straigtforward correction method of the KS gap to the fundamental gap.
Low-rank decomposition-based anomaly detection
NASA Astrophysics Data System (ADS)
Chen, Shih-Yu; Yang, Shiming; Kalpakis, Konstantinos; Chang, Chein-I.
2013-05-01
With high spectral resolution hyperspectral imaging is capable of uncovering many subtle signal sources which cannot be known a priori or visually inspected. Such signal sources generally appear as anomalies in the data. Due to high correlation among spectral bands and sparsity of anomalies, a hyperspectral image can be e decomposed into two subspaces: a background subspace specified by a matrix with low rank dimensionality and an anomaly subspace specified by a sparse matrix with high rank dimensionality. This paper develops an approach to finding such low-high rank decomposition to identify anomaly subspace. Its idea is to formulate a convex constrained optimization problem that minimizes the nuclear norm of the background subspace and little ι1 norm of the anomaly subspace subject to a decomposition of data space into background and anomaly subspaces. By virtue of such a background-anomaly decomposition the commonly used RX detector can be implemented in the sense that anomalies can be separated in the anomaly subspace specified by a sparse matrix. Experimental results demonstrate that the background-anomaly subspace decomposition can actually improve and enhance RXD performance.
Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan
2011-10-15
In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.
NASA Technical Reports Server (NTRS)
Colombo, O. L.
1984-01-01
The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.
NASA Technical Reports Server (NTRS)
Lee, Shihyan; McIntire, Jeff; Oudari, Hassan
2012-01-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.
Statistical Anomaly Detection for Monitoring of Human Dynamics
NASA Astrophysics Data System (ADS)
Kamiya, K.; Fuse, T.
2015-05-01
Understanding of human dynamics has drawn attention to various areas. Due to the wide spread of positioning technologies that use GPS or public Wi-Fi, location information can be obtained with high spatial-temporal resolution as well as at low cost. By collecting set of individual location information in real time, monitoring of human dynamics is recently considered possible and is expected to lead to dynamic traffic control in the future. Although this monitoring focuses on detecting anomalous states of human dynamics, anomaly detection methods are developed ad hoc and not fully systematized. This research aims to define an anomaly detection problem of the human dynamics monitoring with gridded population data and develop an anomaly detection method based on the definition. According to the result of a review we have comprehensively conducted, we discussed the characteristics of the anomaly detection of human dynamics monitoring and categorized our problem to a semi-supervised anomaly detection problem that detects contextual anomalies behind time-series data. We developed an anomaly detection method based on a sticky HDP-HMM, which is able to estimate the number of hidden states according to input data. Results of the experiment with synthetic data showed that our proposed method has good fundamental performance with respect to the detection rate. Through the experiment with real gridded population data, an anomaly was detected when and where an actual social event had occurred.
Martian magnetic anomalies and ionosphere escape rate.
NASA Astrophysics Data System (ADS)
Fedorov, A.; Barabash, S.; Sauvaud, J.-A.
2012-04-01
Looking forward to the MAVEN mission, it seems very useful to return to Mars Express data to refresh an important problem of Martian atmosphere escape: what role the crustal magnetic field may play in this process? There are several publications on this topic with completely opposite conclusions. The last hybrid simulations show that the magnetic anomalies significantly reduce the ion loss rate during solar minimum. We are trying to use a new approach to Mars Express IMA data analysis to check how it is possible.On the base of a statistical study of the ion distributions in the Martian magnetotail we show that the characteristic accelerated ions are not associated with the magnetic anomalies but only with interplanetary magnetic field clock angle. Moreover the magnetic anomalies screen and deviate the escaping flow leading to reducing of the total loss rate. Finally the observed heavy ions escaping rate is in a fantastic agreement with simulation results.
Detecting data anomalies methods in distributed systems
NASA Astrophysics Data System (ADS)
Mosiej, Lukasz
2009-06-01
Distributed systems became most popular systems in big companies. Nowadays many telecommunications companies want to hold large volumes of data about all customers. Obviously, those data cannot be stored in single database because of many technical difficulties, such as data access efficiency, security reasons, etc. On the other hand there is no need to hold all data in one place, because companies already have dedicated systems to perform specific tasks. In the distributed systems there is a redundancy of data and each system holds only interesting data in appropriate form. Data updated in one system should be also updated in the rest of systems, which hold that data. There are technical problems to update those data in all systems in transactional way. This article is about data anomalies in distributed systems. Avail data anomalies detection methods are shown. Furthermore, a new initial concept of new data anomalies detection methods is described on the last section.
Lessons Learned from the Space Shuttle Engine Cutoff System (ECO) Anomalies
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Welzyn, Ken
2011-01-01
The Space Shuttle Orbiter's main engine cutoff (ECO) system first failed ground checkout in April, 2005 during a first tanking test prior to Return-to-Flight. Despite significant troubleshooting and investigative efforts that followed, the root cause could not be found and intermittent anomalies continued to plague the Program. By implementing hardware upgrades, enhancing monitoring capability, and relaxing the launch rules, the Shuttle fleet was allowed to continue flying in spite of these unexplained failures. Root cause was finally determined following the launch attempts of STS-122 in December, 2007 when the anomalies repeated, which allowed drag-on instrumentation to pinpoint the fault (the ET feedthrough connector). The suspect hardware was removed and provided additional evidence towards root cause determination. Corrective action was implemented and the system has performed successfully since then. This white paper presents the lessons learned from the entire experience, beginning with the anomalies since Return-to-Flight through discovery and correction of the problem. To put these lessons in better perspective for the reader, an overview of the ECO system is presented first. Next, a chronological account of the failures and associated investigation activities is discussed. Root cause and corrective action are summarized, followed by the lessons learned.
Vascular Anomalies and Airway Concerns
Clarke, Caroline; Lee, Edward I.; Edmonds, Joseph
2014-01-01
Vascular anomalies, both tumors and malformations, can occur anywhere in the body, including the airway, often without any external manifestations. However, vascular anomalies involving the airway deserve special consideration as proper recognition and management can be lifesaving. In this article, the authors discuss vascular anomalies as they pertains to the airway, focusing on proper diagnosis, diagnostic modalities, and therapeutic options. PMID:25045336
NASA Technical Reports Server (NTRS)
2005-01-01
The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.
Total electron content anomalies associated with global VEI4 + volcanic eruptions during 2002-2015
NASA Astrophysics Data System (ADS)
Li, Wang; Guo, Jinyun; Yue, Jianping; Shen, Yi; Yang, Yang
2016-10-01
In previous studies, little attention has been paid to the total electron content (TEC) anomalies preceding the volcanic eruption. We analyze the coupling relationship between volcanic eruption and TEC anomalies, and discuss the spatial distribution of TEC anomalies associated with volcanic geographical location. We utilize the global ionosphere map (GIM) data from the Center for Orbit Determination in Europe (CODE) to analyze TEC variations before the global volcanic eruptions indicated by VEI (Volcanic Explosivity Index) 4 + from 2002 to 2015 with the sliding interquartile range method. The results indicate the occurrence rate of TEC anomalies before great volcanic eruptions is related with the volcanic type and geographical position. The occurrence rate of TEC anomalies before stratovolcano and caldera eruptions is higher than that before shield and pyroclastic shield eruptions, and the occurrence rate of TEC anomalies has a descending trend from low latitudes to high latitudes. The TEC anomalies before the volcanic eruptions in low-mid latitudes are within the volcanic affected areas, but do not coincide with the volcanic foci. The corresponding TEC anomalies could be observed in the conjugated region, and all the TEC anomalies in the volcanic affected areas are usually close to bounds of equatorial anomaly zones. However, the TEC anomalies preceding these eruptions in high latitudes usually surround the volcano, and no TEC anomalies appear in the conjugated region. These conclusions have potential applications to the prediction of great volcanic eruptions in the future.
Advanced algorithm for orbit computation
NASA Technical Reports Server (NTRS)
Szenbehely, V.
1983-01-01
Computational and analytical techniques which simplify the solution of complex problems in orbit mechanics, Astrodynamics and Celestial Mechanics were developed. The major tool of the simplification is the substitution of transformations in place of numerical or analytical integrations. In this way the rather complicated equations of orbit mechanics might sometimes be reduced to linear equations representing harmonic oscillators with constant coefficients.
Apollo 15 orbital science summary.
NASA Technical Reports Server (NTRS)
Esenwein, G. F.; Roberson, F. I.
1972-01-01
In this paper, summary results of the Apollo 15 orbital science payload are given, and some quick-look results of Apollo 16 are discussed. Geochemical instruments, consisting of gamma-ray, X-ray, and alpha particle spectrometers, have provided a chemical map of the lunar surface flown over by Apollo 15. The Laser Altimeter and frontside gravity data have shown some unexpected results with regard to the lunar shape, and provided new basis for understanding lunar mascons. A magnetometer, aboard the small subsatellite, has located magnetic anomalies principally on the lunar farside, and has shown that the small lunar magnetic field is smoother on the frontside than on the back. The mass spectrometer, in orbit aboard the Command and Service Modules, has measured unexpectedly large populations of molecules at orbital altitude (110 km), mostly due to spacecraft contamination. Two major camera systems have provided the first systematic metric quality photography and concurrent high resolution stereo coverage of the lunar surface.
Orbit determination in satellite geodesy
NASA Astrophysics Data System (ADS)
Beutler, G.; Schildknecht, T.; Hugentobler, U.; Gurtner, W.
2003-04-01
For centuries orbit determination in Celestial Mechanics was a synonym for the determination of six so-called Keplerian elements of the orbit of a minor planet or a comet based on a short series of (three or more) astrometric places observed from one or more observatories on the Earth's surface. With the advent of the space age the problem changed considerably in several respects: (1) orbits have to be determined for a new class of celestial objects, namely for artificial Earth satellites; (2) new observation types, in particular topocentric distances and radial velocities, are available for the establishment of highly accurate satellite orbits; (3) even for comparatively short arcs (up to a few revolutions) the orbit model that has to be used is much more complicated than for comparable problems in the planetary system: in addition to the gravitational perturbations due to Moon and planets higher-order terms in the Earth's gravity field have to be taken into account as well as non-gravitational effects like atmospheric drag and/or radiation pressure; (4) the parameter space is often of higher than the sixth dimension, because not only the six osculating elements referring to the initial epoch of an arc, but dynamical parameters defining the (a priori imperfectly known) force field have to be determined, as well. It may even be necessary to account for stochastic velocity changes. Orbit determination is not a well-known task in satellit geodesy. This is mainly due to the fact that orbit determination is often imbedded in a much more general parameter estimation problem, where other parameter types (referred to station positions, Earth rotation, atmosphere, etc.) have to be determined, as well. Three examples of "pure" orbit determination problems will be discussed subsequently: ⊎ The first problem intends to optimize the observation process of one Satellite Laser Ranging (SLR) observatory. It is a filter problem, where the orbit is improved in real time with the
Orbital science's 'Bermuda Triangle'
NASA Astrophysics Data System (ADS)
Sherrill, Thomas J.
1991-02-01
The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.
OSO-6 Orbiting Solar Observatory
NASA Technical Reports Server (NTRS)
1972-01-01
The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.
ERIC Educational Resources Information Center
Quimby, Donald J.
1984-01-01
Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)
Visual analytics of anomaly detection in large data streams
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Sharma, Ratnesh K.; Mehta, Abhay
2009-01-01
Most data streams usually are multi-dimensional, high-speed, and contain massive volumes of continuous information. They are seen in daily applications, such as telephone calls, retail sales, data center performance, and oil production operations. Many analysts want insight into the behavior of this data. They want to catch the exceptions in flight to reveal the causes of the anomalies and to take immediate action. To guide the user in finding the anomalies in the large data stream quickly, we derive a new automated neighborhood threshold marking technique, called AnomalyMarker. This technique is built on cell-based data streams and user-defined thresholds. We extend the scope of the data points around the threshold to include the surrounding areas. The idea is to define a focus area (marked area) which enables users to (1) visually group the interesting data points related to the anomalies (i.e., problems that occur persistently or occasionally) for observing their behavior; (2) discover the factors related to the anomaly by visualizing the correlations between the problem attribute with the attributes of the nearby data items from the entire multi-dimensional data stream. Mining results are quickly presented in graphical representations (i.e., tooltip) for the user to zoom into the problem regions. Different algorithms are introduced which try to optimize the size and extent of the anomaly markers. We have successfully applied this technique to detect data stream anomalies in large real-world enterprise server performance and data center energy management.
NASA Astrophysics Data System (ADS)
Gousheva, M. N.; Glavcheva, R. P.; Danov, D. L.; Hristov, P. L.; Kirov, B. B.; Georgieva, K. Y.
2008-07-01
The problem of earthquake prediction has stimulated the search for a correlation between seismic activity and ionospherical anomalies. We found observational evidence of possible earthquake effects in the near-equatorial and low latitude ionosphere; these ionospheric anomalies have been proposed by Gousheva et al. [Gousheva, M., Glavcheva, R., Danov, D., Angelov P., Hristov, P., Influence of earthquakes on the electric field disturbances in the ionosphere on board of the Intercosmos-Bulgaria-1300 satellite. Compt. Rend. Acad. Bulg. Sci. 58 (8) 911-916, 2005a; Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B., Georgieva, K., Observation from the Intercosmos-Bulgaria-1300 satellite of anomalies associated with seismic activity. In: Poster Proceeding of 2nd International Conference on Recent Advances in Space Technologies: Space in the Service of Society, RAST '2005, June 9-11, Istanbul, Turkey, pp. 119-123, 2005b; Gousheva, M., Glavcheva, R., Danov, D., Angelov, P., Hristov, P., Kirov, B., Georgieva, K., Satellite monitoring of anomalous effects in the ionosphere probably related to strong earthquakes. Adv. Space Res. 37 (4), 660-665, 2006]. This paper presents new results from observations of the quasi-static electric field and ion density on board INTERCOSMOS-BULGARIA-1300 satellite in the mid latitude ionosphere above sources of moderate earthquakes. Data from INTERCOSMOS-BULGARIA-1300 satellite and seismic data (World Data Center, Denver, Colorado, USA) for magnetically quiet and medium quiet days are juxtaposed in time-space domain. For satellite's orbits in the time period 15.09-01.10.1981 an increase in the horizontal and vertical components of the quasi-static electric field and fluctuations of the ion density are observed over zones of forthcoming seismic events. Some similar post effects are observed too. The emphasis of this paper is put on the anomalies which specify the mid latitude ionosphere. The obtained results contain
Physicochemical isotope anomalies
Esat, T.M.
1988-06-01
Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.
[First branchial cleft anomalies].
Nikoghosyan, Gohar; Krogdahl, Annelise; Godballe, Christian
2008-05-12
First branchial cleft anomalies are congenital rare lesions that can sometimes be difficult to diagnose. During the normal embryonic development the outer ear canal derives from the first branchial cleft. Abnormal development can result in production of a cyst, sinus or fistula with recurring infections. Early and correct diagnosis is necessary for the correct choice of surgical set-up in which identification and preservation of the facial nerve is an important step. A case of first branchial cleft sinus is presented with further discussion of classification, diagnostics and treatment. PMID:18489895
Modeling of self-potential anomalies near vertical dikes.
Fitterman, D.V.
1983-01-01
The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author
Discovering Recurring Anomalies in Text Reports Regarding Complex Space Systems
NASA Technical Reports Server (NTRS)
Zane-Ulman, Brett; Srivastava, Ashok N.
2005-01-01
Many existing complex space systems have a significant amount of historical maintenance and problem data bases that are stored in unstructured text forms. For some platforms, these reports may be encoded as scanned images rather than even searchable text. The problem that we address in this paper is the discovery of recurring anomalies and relationships between different problem reports that may indicate larger systemic problems. We will illustrate our techniques on data from discrepancy reports regarding software anomalies in the Space Shuttle. These free text reports are written by a number of different penp!e, thus the emphasis and wording varies considerably.
On-Orbit Performance and Calibration of the Soft X-Ray Telescope on Yohkoh
NASA Astrophysics Data System (ADS)
Acton, Loren W.
2016-02-01
This paper documents details of the on-orbit performance, data problem solving, and calibration of the Soft X-ray Telescope (SXT) experiment on Yohkoh. This information is important to a full understanding of the strengths and weaknesses of the SXT data set. The paper begins with summaries of SXT calibration issues and how they have been addressed, operational anomalies experienced during the mission, and a brief discussion of the SXT optical train. The following section on the accuracy of Yohkoh pointing determination provides information important for alignment of SXT images with each other and with other solar data. The remainder of the paper gives details of work by the experiment team to understand and ameliorate the many instrument anomalies and changes which impacted the scientific data.
Chiral anomaly, bosonization, and fractional charge
Mignaco, J.A.; Monteiro, M.A.R.
1985-06-15
We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ..nu.. = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators.
Panopoulos, G. A.; Simos, T. E.; Anastassi, Z. A.
2013-03-15
A new multistep predictor-corrector (PC) pair form is introduced for the numerical integration of second-order initial-value problems. Using this form, a new eight-step symmetric embedded predictor-corrector method is constructed. The new PC method is based on the multistep symmetric method of Quinlan and Tremaine, with eight steps and eighth algebraic order, and is constructed to solve numerically the N-body problem. The new integrator has algebraic order 10 and it can be used to solve problems, for which the frequency is not known. We investigate the behavior of the new algorithm by integrating the five outer-planet problem and the two-body problem with various eccentricities. Regarding the five outer-planet problem, we calculate the error of the integrator in the solution, the Hamiltonian, and the phase after forward and backward integration over various intervals that are multiples of the period of Jupiter.
The development of the Poincare-similar elements with true anomaly as the independent variable
NASA Technical Reports Server (NTRS)
Mueller, A.
1976-01-01
In reference 1, the Hamiltonian of the unperturbed two-body problem in extended phase space is established. Depending on the type of time transformation, eight canonical elements were developed with the true anomaly or the eccentric anomaly as the independent variable. These two new sets, DS(phi) and DS(u), however contain singularities for small eccentricities and inclinations. In reference 2, these singularities are removed by a transformation from DS(u) to eight canonical PS(u) elements. In reference 3, the DS(phi) variables are transformed to the PS(phi) elements to remove the singularities. However, no direct relation was established between the eight canonical PS(phi) elements and the Cartesian coordinates. It is the purpose of this report to establish those relations and to develop the perturbed equations of motion in the PS(phi) space. This report also demonstrates the accuracy of this new set when it is applied to numerical orbit prediction problems.
Ten year lifetime orbits about the planet Mars
NASA Astrophysics Data System (ADS)
Bain, Rodney Donald
1988-06-01
A spacecraft designed for a mapping or photographic planetary mission will need to penetrate the atmosphere of Mars at its upper levels to gather the required data. The problem investigated is the determination of an envelope (called the Critical Envelope) about the planet Mars with the criteria of non-impact with the Martian surface for at least ten earth-years. The major constituent of the envelope involves the determination of the minimum value of the Periapsis Altitude of such an envelope. The purpose of this non-impact (quarantine) condition is to insure non-introduction of foreign materials into the Martian environment. This quarantine condition requires the determination of long-term perturbative effects upon the envelope. The problem was modeled as an astrodynamic perturbation problem affected by atmospheric drag (modeled as an exponential atmosphere) and aspherical gravitational effects, along with the geometric oblateness of the planet. In order to determine the gravity effects three different models were employed (2 x 0, 4 x 4, and 8 x 8). To reduce the configuration space, the Mean Anomaly and the Argument of Periapsis are set to zero. The number of orbits (2,263) investigated indicated that the Periapsis Altitude should be set at 441 km or above. Orbital data included the ranges of eccentricities from .01 to .1, variations of the inclination from 0.5 degrees to 85.5 degrees, and the Longitude of the Ascending Node varying from 0 to 360 degrees.
Einstein, Entropy and Anomalies
NASA Astrophysics Data System (ADS)
Sirtes, Daniel; Oberheim, Eric
2006-11-01
This paper strengthens and defends the pluralistic implications of Einstein's successful, quantitative predictions of Brownian motion for a philosophical dispute about the nature of scientific advance that began between two prominent philosophers of science in the second half of the twentieth century (Thomas Kuhn and Paul Feyerabend). Kuhn promoted a monistic phase-model of scientific advance, according to which a paradigm driven `normal science' gives rise to its own anomalies, which then lead to a crisis and eventually a scientific revolution. Feyerabend stressed the importance of pluralism for scientific progress. He rejected Kuhn's model arguing that it fails to recognize the role that alternative theories can play in identifying exactly which phenomena are anomalous in the first place. On Feyerabend's account, Einstein's predictions allow for a crucial experiment between two incommensurable theories, and are an example of an anomaly that could refute the reigning paradigm only after the development of a competitor. Using Kuhn's specification of a disciplinary matrix to illustrate the incommensurability between the two paradigms, we examine the different research strategies available in this peculiar case. On the basis of our reconstruction, we conclude by rebutting some critics of Feyerabend's argument.
Cassini Camera Contamination Anomaly: Experiences and Lessons Learned
NASA Technical Reports Server (NTRS)
Haemmerle, Vance R.; Gerhard, James H.
2006-01-01
We discuss the contamination 'Haze' anomaly for the Cassini Narrow Angle Camera (NAC), one of two optical telescopes that comprise the Imaging Science Subsystem (ISS). Cassini is a Saturn Orbiter with a 4-year nominal mission. The incident occurred in 2001, five months after Jupiter encounter during the Cruise phase and ironically at the resumption of planned maintenance decontamination cycles. The degraded optical performance was first identified by the Instrument Operations Team with the first ISS Saturn imaging six weeks later. A distinct haze of varying size from image to image marred the images of Saturn. A photometric star calibration of the Pleiades, 4 days after the incident, showed stars with halos. Analysis showed that while the halo's intensity was only 1 - 2% of the intensity of the central peak of a star, the halo contained 30 - 70% of its integrated flux. This condition would impact science return. In a review of our experiences, we examine the contamination control plan, discuss the analysis of the limited data available and describe the one-year campaign to remove the haze from the camera. After several long conservative heating activities and interim analysis of their results, the contamination problem as measured by the camera's point spread function was essentially back to preanomaly size and at a point where there would be more risk to continue. We stress the importance of the flexibility of operations and instrument design, the need to do early infight instrument calibration and continual monitoring of instrument performance.
A natural origin for the LHCb anomalies
NASA Astrophysics Data System (ADS)
Megías, Eugenio; Panico, Giuliano; Pujolàs, Oriol; Quirós, Mariano
2016-09-01
The anomalies recently found by the LHCb collaboration in B-meson decays seem to point towards the existence of new physics coupled non-universally to muons and electrons. We show that a beyond-the-Standard-Model dynamics with these features naturally arises in models with a warped extra-dimension that aim to solve the electroweak Hierarchy Problem. The attractiveness of our set-up is the fact that the dynamics responsible for generating the flavor anomalies is automatically present, being provided by the massive Kaluza-Klein excitations of the electroweak gauge bosons. The flavor anomalies can be easily reproduced by assuming that the bottom and muon fields have a sizable amount of compositeness, while the electron is almost elementary. Interestingly enough, this framework correlates the flavor anomalies to a pattern of corrections in the electroweak observables and in flavor-changing processes. In particular the deviations in the bottom and muon couplings to the Z-boson and in Δ F = 2 flavor-changing observables are predicted to be close to the present experimental bounds, and thus potentially testable in near-future experiments.
Multicriteria Similarity-Based Anomaly Detection Using Pareto Depth Analysis.
Hsiao, Ko-Jen; Xu, Kevin S; Calder, Jeff; Hero, Alfred O
2016-06-01
We consider the problem of identifying patterns in a data set that exhibits anomalous behavior, often referred to as anomaly detection. Similarity-based anomaly detection algorithms detect abnormally large amounts of similarity or dissimilarity, e.g., as measured by the nearest neighbor Euclidean distances between a test sample and the training samples. In many application domains, there may not exist a single dissimilarity measure that captures all possible anomalous patterns. In such cases, multiple dissimilarity measures can be defined, including nonmetric measures, and one can test for anomalies by scalarizing using a nonnegative linear combination of them. If the relative importance of the different dissimilarity measures are not known in advance, as in many anomaly detection applications, the anomaly detection algorithm may need to be executed multiple times with different choices of weights in the linear combination. In this paper, we propose a method for similarity-based anomaly detection using a novel multicriteria dissimilarity measure, the Pareto depth. The proposed Pareto depth analysis (PDA) anomaly detection algorithm uses the concept of Pareto optimality to detect anomalies under multiple criteria without having to run an algorithm multiple times with different choices of weights. The proposed PDA approach is provably better than using linear combinations of the criteria, and shows superior performance on experiments with synthetic and real data sets.
Discovering System Health Anomalies Using Data Mining Techniques
NASA Technical Reports Server (NTRS)
Sriastava, Ashok, N.
2005-01-01
We present a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an Integrated System Health Monitoring system. We specifically treat the problem of discovering anomalous features in the time series that may be indicative of a system anomaly, or in the case of a manned system, an anomaly due to the human. Identification of these anomalies is crucial to building stable, reusable, and cost-efficient systems. The framework consists of an analysis platform and new algorithms that can scale to thousands of sensor streams to discovers temporal anomalies. We discuss the mathematical framework that underlies the system and also describe in detail how this framework is general enough to encompass both discrete and continuous sensor measurements. We also describe a new set of data mining algorithms based on kernel methods and hidden Markov models that allow for the rapid assimilation, analysis, and discovery of system anomalies. We then describe the performance of the system on a real-world problem in the aircraft domain where we analyze the cockpit data from aircraft as well as data from the aircraft propulsion, control, and guidance systems. These data are discrete and continuous sensor measurements and are dealt with seamlessly in order to discover anomalous flights. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.
Mars Geoscience Orbiter and Lunar Geoscience Orbiter
NASA Technical Reports Server (NTRS)
Fuldner, W. V.; Kaskiewicz, P. F.
1983-01-01
The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.
Counter-Orbitals: Another Class of Co-Orbitals
NASA Astrophysics Data System (ADS)
Dobrovolskis, Anthony R.
2012-10-01
Co-orbital companions share the same orbital period and semi-major axis about a primary (star or planet). Heretofore there have been three recognized classes of co-orbitals: (1) Trojans librate in tadpole-shaped orbits about the equilateral Lagrange points L4 and L5, 60 degrees ahead of or behind the secondary (planet or satellite). (2) Horse-shoe companions librate about both L4 and L5, as well as the L3 Lagrange point diametrically opposite the secondary. (3) ``Quasi-satellites'' appear to be in distant retrograde orbits about the secondary, but actually are in prograde orbits about the primary with the same period as the secondary. Quasi-satellite orbits lie outside the secondary's Hill sphere, and enclose both L1 and L2, and sometimes L4 and L5 as well. In addition, some asteroids and comets are found in hybrid orbits which alternate among the above three classes, or combine some of their features. New research now reveals a fourth class of co-orbitals, which does not appear to be known before, and may be called ``counter-orbitals''. Imagine reversing the inertial velocity of a distant quasi-satellite. Then it remains in orbit about the primary, with the same period, semi-major axis, eccentricity, and orbital plane, although retrograde. But instead of remaining relatively close to the secondary, now it passes the secondary twice per orbit, near periapsis and apoapsis. The attractive impulses at these conjunctions tend to stabilize this arrangement. Numerical simulations of the general three-body problem verify that counter-orbitals can persist for over 10,000 orbits, with small vertical excursions, but a wide range of eccentricities and mass ratios. For example, Charon can maintain counter-orbital companions at least up to 3 percent of its own mass, in eccentric orbits extending from about 7050 km out to 41700 km from the center of Pluto. This may present a collision hazard to the New Horizons spacecraft.
Anomaly Detection in Dynamic Networks
Turcotte, Melissa
2014-10-14
Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the
Pieper, S.C.; Wiringa, R.B.
1995-08-01
The Argonne v{sub 18} potential contains a detailed treatment of the pp, pn and nn electromagnetic potential, including Coulomb, vacuum polarization, Darwin Foldy and magnetic moment terms, all with suitable form factors and was fit to pp and pn data using the appropriate nuclear masses. In addition, it contains a nuclear charge-symmetry breaking (CSB) term adjusted to reproduce the difference in the experimental pp and nn scattering lengths. We have used these potential terms to compute differences in the binding energies of mirror isospin-1/2 nuclei (Nolen-Schiffer [NS] anomaly). Variational Monte Carlo calculations for the {sup 3}He-{sup 3}H system and cluster variational Monte Carlo for the {sup 15}O-{sup 15}N and {sup 17}F-{sup 17}O systems were made. In the first case, the best variational wave function for the A = 3 nuclei was used. However, because our {sup 16}O wave function does not reproduce accurately the {sup 16}O rms radius, to which the NS anomaly is very sensitive, we adjusted the A = 15 and A = 17 wave functions to reproduce the experimental density profiles. Our computed energy differences for these three systems are 0.757 {plus_minus} .001, 3.544 {plus_minus} .018 and 3.458 {plus_minus} .040 MeV respectively, which are to be compared with the experimental differences of 0.764, 3.537, and 3.544 MeV. Most of the theoretical uncertainties are due to uncertainties in the experimental rms radii. The nuclear CSB potential contributes 0.066, 0.188, and 0.090 MeV to these totals. We also attempted calculations for A = 39 and A = 41. However, in these cases, the experimental uncertainties in the rms radius make it impossible to extract useful information about the contribution of the nuclear CSB potential.
Ebstein's anomaly in neonates.
Moura, C; Guimarães, H; Areias, J C; Moreira, J
2001-09-01
Ebstein's anomaly is a rare congenital heart disease abnormality in which the tricuspid valve leaflets do not attach normally to the tricuspid valve annulus. The effective tricuspid valve orifice is displaced apically into the right ventricle (RV), near the junction of the inlet and the trabecular parts of the RV. The authors present a retrospective study of the patients with Ebstein's anomaly admitted to a neonatal intensive care unit, in the period between January 1993 and March 2000. There were ten patients, representing 0.24% of total neonates and 1.99% of total congenital heart disease admitted to the institution in the same period. Fifty per cent were male and only one case had prenatal diagnosis. Holosystolic murmur (100%) from tricuspid regurgitation and cyanosis (80%) were the most frequent clinical findings. Chest X-ray was abnormal in 90% of the neonates, with a "balloon-shaped" enlarged heart. The main electrocardiographic findings were right atrial enlargement (70%) and arrhythmias (40%). Apical displacement of the septal leaflet of the tricuspid valve, to a maximum of 20 mm, and leaflets tethering to underlying RV myocardium were found in all patients. Tricuspid valve regurgitation was found in 90% (severe form in four cases). An atrial intracardiac shunt, mostly right-to-left, was also found in 50%. Digoxin was used (40%) to restore sinus rhythm. Fifty per cent of the neonates received intravenous prostaglandins. Two patients required a surgical procedure. Two patients died in the neonatal period. During the follow-up period (range 0.3-74.6 months), only one episode of supraventricular tachycardia was recorded. At present seven patients are clinically stable, three of them on medication.
Relic vector field and CMB large scale anomalies
Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk
2014-10-01
We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.
Seceleanu, Andreea; Szabo, I; Călugăru, M; Dudea, S M; Preda, D
2004-01-01
The purpose of this study was to point out a case with orbital venous abnormalities at the left eye, associated with varices of the legs. The clinical picture of this case was: intermittent exophthalmos, venous malformations at the level of the lids and episclera, elevated ocular pressure. All this signs reveal an abnormality at the level of venous wall, indicating a constitutional weakness of the venous system. The case was investigated by imagistic methods: ultrasound examination, Doppler -ultrasound and magnetic resonance imaging. According to the facts offered by clinical and imagistic investigation this case can be included into the first type of orbital varices, associated with secondary glaucoma provoked by an elevated episcleral venous pressure. PMID:15598045
Spatial orbital tether constructions
NASA Astrophysics Data System (ADS)
Kogan, A. Yu.
2016-09-01
This paper is concerned with the problem of shape-retaining spatial tether configurations in a circular Keplerian orbit. Sufficient conditions of shape retention are described, which are imposed on the geometry of the structure, distribution of mass in the nodes, and parameters of rotation. The paper also mentions classes of structures with different properties of symmetry and motion, as well as specific examples of shaperetaining structures.
Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...
Seismic data fusion anomaly detection
NASA Astrophysics Data System (ADS)
Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David
2014-06-01
Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.
Medical management of vascular anomalies.
Trenor, Cameron C
2016-03-01
We have entered an exciting era in the care of patients with vascular anomalies. These disorders require multidisciplinary care and coordination and dedicated centers have emerged to address this need. Vascular tumors have been treated with medical therapies for many years, while malformations have been historically treated with endovascular and operative procedures. The recent serendipitous discoveries of propranolol and sirolimus for vascular anomalies have revolutionized this field. In particular, sirolimus responses are challenging the dogma that vascular malformations are not biologically active. While initially explored for lymphatic anomalies, sirolimus is now being used broadly throughout the spectrum of vascular anomalies. Whether medical therapies are reserved for refractory patients or used first line is currently dependent on the experience and availability of alternative therapies at each institution. On the horizon, we anticipate new drugs targeting genes and pathways involved in vascular anomalies to be developed. Also, combinations of medications and protocols combining medical and procedural approaches are in development for refractory patients. PMID:27607327
System for closure of a physical anomaly
Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S
2014-11-11
Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.
Abundance anomalies in tidal disruption events
NASA Astrophysics Data System (ADS)
Kochanek, C. S.
2016-05-01
The ˜10 per cent of tidal disruption events (TDEs) due to stars more massive than M* ≳ M⊙ should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ˜25 per cent on average because it becomes inaccessible once it is sequestered in the high-density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main-sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle - stars with M* ≳ M⊙ quickly show an increase in their average N/C ratio by factors of 3-10. Because low-mass stars evolve slowly and high-mass stars are rare, TDEs showing high N/C will almost all be due to ˜1-2 M⊙ stars disrupted on the main sequence. Like helium, portions of the debris will show still larger changes in C and N, and the anomalies decline as the star leaves the main sequence. The enhanced [N/C] abundance ratio of these TDEs provides the first natural explanation for the rare, nitrogen-rich quasars and may also explain the strong nitrogen emission seen in ultraviolet spectra of ASASSN-14li.
Michelotti, L.
1995-01-01
The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.
A feedback linearization approach to orbital maneuvers
NASA Astrophysics Data System (ADS)
Lee, Sanguk
New methods for obtaining optimal orbital maneuvers of a space vehicle in total velocity change are described and applied. The elegance of Lambert's Theorem is combined with feedback linearization and linear optimal control to obtain solutions to nonlinear orbital maneuver problems. In particular, geocentric orbital maneuvers with finite-thrust acceleration are studied. The full nonlinear equations of motion are transformed exactly into a controllable linear set in Brunovsky canonical form by using feedback linearization and choosing the position vector as the fully observable output vector. These equations are used to pose a linear optimal tracking problem with a solution to the Lambert's impulsive-thrust two-point boundary-value problem as the reference orbit. The same procedure is used to force the space vehicle to follow a linear analytical solution to the continuous low-thrust orbital maneuver problem between neighboring orbits. Limits on thrust magnitudes are enforced by adjusting the weights on the states in the performance index, which is chosen to be the sum of integrals of the square sum of new control variables and the square sum of state variable errors from the reference trajectory. For comparison purpose, the feedback linearized equations are used to obtain a simple closed-form solution to an orbital maneuver problem without the use of a reference trajectory. In this case, the performance index was chosen as the integral of the square sum of new control variables only. Three different examples, coplanar rendezvous between neighboring orbits, large coplanar orbit transfer, and non-coplanar orbit transfer, are used to show the advantages of using the new methods introduced in this dissertation. The minimum-eccentricity orbit, Hohmann transfer orbit, and minimum energy orbit were used in turn as the reference trajectories. The principal problems encountered in using the new methods are the choices of the proper reference trajectory, a suitable time
On the equinoctial orbit elements.
NASA Technical Reports Server (NTRS)
Broucke, R. A.; Cefola, P. J.
1972-01-01
This paper investigates the equinoctial orbit elements for the two-body problem, showing that the associated matrices are free from singularities for zero eccentricities and zero and ninety degree inclinations. The matrix of the partial derivatives of the position and velocity vectors with respect to the orbit elements is given explicitly, together with the matrix of inverse partial derivatives, in order to facilitate construction of the matrizant (state transition matrix) corresponding to these elements. The Lagrange and Poisson bracket matrices are also given. The application of the equinoctial orbit elements to general and special perturbations is discussed.
NASA Astrophysics Data System (ADS)
Zamaro, Mattia; Biggs, James D.
2014-12-01
The orbital dynamics around the Libration points of the classical circular restricted three-body problem (CR3BP) have been investigated in detail: in the last few decades, dynamical systems theory has provided invaluable analytical and numerical tools for understanding the dynamics of Libration Point Orbits (LPOs). The aim of this paper is to extend the model of the CR3BP to derive the LPOs in the vicinity of the Martian moon Phobos, which is becoming an appealing destination for scientific missions. The case of Phobos is particularly extreme, since the combination of both small mass-ratio and length-scale moves the collinear Libration manifold close to the moon's surface. Thus, a model of this system must consider additional dynamical perturbations, in particular the complete gravity field of Phobos, which is highly-inhomogeneous. This is accomplished using a spherical harmonics series expansion, deriving an enhanced elliptic three-body model. In this paper, we show how methodologies from dynamical systems theory are applied in differential correction continuation schemes to this proposed nonlinear model of the dynamics near Phobos, to derive the structure of the dynamical substitutes of the LPOs in this new system. Results obtained show that the structure of the LPOs differs substantially from the classical case without harmonics. The proposed methodology allows us to identify natural periodic and quasi-periodic orbits that would provide unique low-cost opportunities for close-range observations around Phobos and high-performance landing/take-off pathways to and from Phobos' surface, which could be exploited in upcoming missions targeting the exploration of this Martian moon.
Domain Anomaly Detection in Machine Perception: A System Architecture and Taxonomy.
Kittler, Josef; Christmas, William; de Campos, Teófilo; Windridge, David; Yan, Fei; Illingworth, John; Osman, Magda
2014-05-01
We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifaceted nature of anomalies and suggest effective mechanisms for identifying and distinguishing each facet as instruments for domain anomaly detection. The framework draws on the Bayesian probabilistic reasoning apparatus which clearly defines concepts such as outlier, noise, distribution drift, novelty detection (object, object primitive), rare events, and unexpected events. Based on these concepts we provide a taxonomy of domain anomaly events. One of the mechanisms helping to pinpoint the nature of anomaly is based on detecting incongruence between contextual and noncontextual sensor(y) data interpretation. The proposed methodology has wide applicability. It underpins in a unified way the anomaly detection applications found in the literature. To illustrate some of its distinguishing features, in here the domain anomaly detection methodology is applied to the problem of anomaly detection for a video annotation system.
Reliability of CHAMP Anomaly Continuations
NASA Technical Reports Server (NTRS)
vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.
2003-01-01
CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.
Orbit propagation in Minkowskian geometry
NASA Astrophysics Data System (ADS)
Roa, Javier; Peláez, Jesús
2015-09-01
The geometry of hyperbolic orbits suggests that Minkowskian geometry, and not Euclidean, may provide the most adequate description of the motion. This idea is explored in order to derive a new regularized formulation for propagating arbitrarily perturbed hyperbolic orbits. The mathematical foundations underlying Minkowski space-time are exploited to describe hyperbolic orbits. Hypercomplex numbers are introduced to define the rotations, vectors, and metrics in the problem: the evolution of the eccentricity vector is described on the Minkowski plane in terms of hyperbolic numbers, and the orbital plane is described on the inertial reference using quaternions. A set of eight orbital elements is introduced, namely a time-element, the components of the eccentricity vector in , the semimajor axis, and the components of the quaternion defining the orbital plane. The resulting formulation provides a deep insight into the geometry of hyperbolic orbits. The performance of the formulation in long-term propagations is studied. The orbits of four hyperbolic comets are integrated and the accuracy of the solution is compared to other regularized formulations. The resulting formulation improves the stability of the integration process and it is not affected by the perihelion passage. It provides a level of accuracy that may not be reached by the compared formulations, at the cost of increasing the computational time.
NASA Technical Reports Server (NTRS)
Welsh, David; Denham, Samuel; Allen, Christopher
2011-01-01
In many cases, an initial symptom of hardware malfunction is unusual or unexpected acoustic noise. Many industries such as automotive, heating and air conditioning, and petro-chemical processing use noise and vibration data along with rotating machinery analysis techniques to identify noise sources and correct hardware defects. The NASA/Johnson Space Center Acoustics Office monitors the acoustic environment of the International Space Station (ISS) through periodic sound level measurement surveys. Trending of the sound level measurement survey results can identify in-flight hardware anomalies. The crew of the ISS also serves as a "detection tool" in identifying unusual hardware noises; in these cases the spectral analysis of audio recordings made on orbit can be used to identify hardware defects that are related to rotating components such as fans, pumps, and compressors. In this paper, three examples of the use of sound level measurements and audio recordings for the diagnosis of in-flight hardware anomalies are discussed: identification of blocked inter-module ventilation (IMV) ducts, diagnosis of abnormal ISS Crew Quarters rack exhaust fan noise, and the identification and replacement of a defective flywheel assembly in the Treadmill with Vibration Isolation (TVIS) hardware. In each of these examples, crew time was saved by identifying the off nominal component or condition that existed and in directing in-flight maintenance activities to address and correct each of these problems.
Congenital uterine anomalies affecting reproduction.
Reichman, David E; Laufer, Marc R
2010-04-01
The following review seeks to summarise the current data regarding reproductive outcomes associated with congenital uterine anomalies. Such malformations originate from adverse embryologic events ranging from agenesis to lateral and vertical fusion defects. Associated renal anomalies are common both for the symmetric and asymmetric malformations. While fertility is minimally impacted upon by müllerian anomalies in most cases, such malformations have historically been associated with poor obstetric outcomes such as recurrent miscarriage, second trimester loss, preterm delivery, malpresentation and intrauterine foetal demise (IUFD). The following review delineates the existing literature regarding such outcomes and indicates therapies, where applicable, to optimise the care of such patients.
The Future of the South Atlantic Anomaly and Implications for Radiation Damage in Space
NASA Technical Reports Server (NTRS)
Heirtzler, J. R.; Smith, David E. (Technical Monitor)
2000-01-01
South Atlantic Anomaly of the geomagnetic field plays a dominant role in where radiation damage occurs in near Earth orbits. The historic and recent variations of the geomagnetic field in the South Atlantic are used to estimate the extent of the South Atlantic Anomaly until the year 2000. This projection indicates that radiation damage to spacecraft and humans in space will greatly increase and cover a much larger geographic area than present.
Detailed gravity anomalies from GEOS-3 satellite altimetry data
NASA Technical Reports Server (NTRS)
Gopalapillai, G. S.; Mourad, A. G.
1978-01-01
A technique for deriving mean gravity anomalies from dense altimetry data was developed. A combination of both deterministic and statistical techniques was used. The basic mathematical model was based on the Stokes' equation which describes the analytical relationship between mean gravity anomalies and geoid undulations at a point; this undulation is a linear function of the altimetry data at that point. The overdetermined problem resulting from the excessive altimetry data available was solved using Least-Squares principles. These principles enable the simultaneous estimation of the associated standard deviations reflecting the internal consistency based on the accuracy estimates provided for the altimetry data as well as for the terrestrial anomaly data. Several test computations were made of the anomalies and their accuracy estimates using GOES-3 data.
Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris
NASA Technical Reports Server (NTRS)
Wiegman, Bruce M.
2009-01-01
This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.
Genetics Home Reference: Peters anomaly
... the anterior segment is abnormal, leading to incomplete separation of the cornea from the iris or the ... anomaly type I is characterized by an incomplete separation of the cornea and iris and mild to ...
Classifying sex biased congenital anomalies
Lubinsky, M.S.
1997-03-31
The reasons for sex biases in congenital anomalies that arise before structural or hormonal dimorphisms are established has long been unclear. A review of such disorders shows that patterning and tissue anomalies are female biased, and structural findings are more common in males. This suggests different gender dependent susceptibilities to developmental disturbances, with female vulnerabilities focused on early blastogenesis/determination, while males are more likely to involve later organogenesis/morphogenesis. A dual origin for some anomalies explains paradoxical reductions of sex biases with greater severity (i.e., multiple rather than single malformations), presumably as more severe events increase the involvement of an otherwise minor process with opposite biases to those of the primary mechanism. The cause for these sex differences is unknown, but early dimorphisms, such as differences in growth or presence of H-Y antigen, may be responsible. This model provides a useful rationale for understanding and classifying sex-biased congenital anomalies. 42 refs., 7 tabs.
Congenital Anomalies of the Limbs
Gingras, G.; Mongeau, M.; Moreault, P.; Dupuis, M.; Hebert, B.; Corriveau, C.
1964-01-01
As a preparatory step towards the development of a complete habilitation program for children with congenital limb anomalies associated with maternal ingestion of thalidomide, the medical records of all patients with congenital limb anomalies referred to the Rehabilitation Institute of Montreal in the past decade were studied, and an examination and a thorough reassessment were made of 41 patients (21 males and 20 females). In this paper, Part I, the medical and prosthetic aspects are dealt with and a form of management is described for each type of anomaly. The conclusions are reached that prosthetic fitting and training should be initiated very early in life and that co-operation of the parent is essential to successful habilitation of a child with congenital limb anomalies. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7 PMID:14154297
NASA Technical Reports Server (NTRS)
Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)
2016-01-01
Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.
Lenz micropthalmia syndrome with associated orbital cysts.
Rafailov, Leon; Dattilo, Michael; Shinder, Roman
2014-01-01
An 8-year-old boy presented for oculoplastic evaluation of bilateral microphthalmia. He had multiple other congenital anomalies, including microcephaly, wide-spaced teeth, sloping shoulders, protruding ears, syndactyly, a posterior urethral valve, cystic dysplasia of the kidneys, and a bicuspid aortic valve. Taken together, these findings supported the diagnosis of Lenz microphthalmia syndrome. CT of the orbits revealed bilateral microphthalmic globes with associated colobomatous cysts. To the authors' knowledge, this is the first reported case of Lenz microphthalmia syndrome with associated orbital cysts.
CloudSat Anomaly Recovery and Operational Lessons Learned
NASA Technical Reports Server (NTRS)
Witkowski, Mona; Vane, Deborah; Livermore, Thomas; Rokey, Mark; Barthuli, Marda; Gravseth, Ian J.; Pieper, Brian; Rodzinak, Aaron; Silva, Steve; Woznick, Paul; Nayak, Michael
2012-01-01
In April 2011, NASA's pioneering cloud profiling radar satellite, CloudSat, experienced a battery anomaly that placed it into emergency mode and rendered it operations incapable. All initial attempts to recover the spacecraft failed as the resultant power limitations could not support even the lowest power mode. Originally part of a six-satellite constellation known as the "A-Train", CloudSat was unable to stay within its assigned control box, posing a threat to other A-Train satellites. CloudSat needed to exit the constellation, but with the tenuous power profile, conducting maneuvers was very risky. The team was able to execute a complex sequence of operations which recovered control, conducted an orbit lower maneuver, and returned the satellite to safe mode, within one 65 minute sunlit period. During the course of the anomaly recovery, the team developed several bold, innovative operational strategies. Details of the investigation into the root-cause and the multiple approaches to revive CloudSat are examined. Satellite communication and commanding during the anomaly are presented. A radical new system of "Daylight Only Operations" (DO-OP) was developed, which cycles the payload and subsystem components off in tune with earth eclipse entry and exit in order to maintain positive power and thermal profiles. The scientific methodology and operational results behind the graduated testing and ramp-up to DO-OP are analyzed. In November 2011, the CloudSat team successfully restored the vehicle to consistent operational collection of cloud radar data during sunlit portions of the orbit. Lessons learned throughout the six-month return-to-operations recovery effort are discussed and offered for application to other R&D satellites, in the context of on-orbit anomaly resolution efforts.
Overgrowth syndromes with vascular anomalies.
Blei, Francine
2015-04-01
Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. PMID:25937473
Aeromagnetic anomalies over faulted strata
Grauch, V.J.S.; Hudson, Mark R.
2011-01-01
High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).
Overgrowth syndromes with vascular anomalies.
Blei, Francine
2015-04-01
Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations.
NASA Astrophysics Data System (ADS)
Ma, Hongliang; Xu, Shijie
2016-11-01
By defining two open-time impulse points, the optimization of a two-impulse, open-time terminal rendezvous and docking with target spacecraft on large-eccentricity elliptical orbit is proposed in this paper. The purpose of optimization is to minimize the velocity increment for a terminal elliptic-reference-orbit rendezvous and docking. Current methods for solving this type of optimization problem include for example genetic algorithms and gradient based optimization. Unlike these methods, interval methods can guarantee that the globally best solution is found for a given parameterization of the input. The non-linear Tschauner- Hempel(TH) equations of the state transitions for a terminal elliptic target orbit are transformed form time domain to target orbital true anomaly domain. Their homogenous solutions and approximate state transition matrix for the control with a short true anomaly interval can be used to avoid interval integration. The interval branch and bound optimization algorithm is introduced for solving the presented rendezvous and docking optimization problem and optimizing two open-time impulse points and thruster pulse amplitudes, which systematically eliminates parts of the control and open-time input spaces that do not satisfy the path and final time state constraints. Several numerical examples are undertaken to validate the interval optimization algorithm. The results indicate that the sufficiently narrow spaces containing the global optimization solution for the open-time two-impulse terminal rendezvous and docking with target spacecraft on large-eccentricity elliptical orbit can be obtained by the interval algorithm (IA). Combining the gradient-based method, the global optimization solution for the discontinuous nonconvex optimization problem in the specifically remained search space can be found. Interval analysis is shown to be a useful tool and preponderant in the discontinuous nonconvex optimization problem of the terminal rendezvous and
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1974-01-01
The equations needed for the incorporation of gravity anomalies as unknown parameters in an orbit determination program are described. These equations were implemented in the Geodyn computer program which was used to process optical satellite observations. The arc dependent parameter unknowns, 184 unknown 15 deg and coordinates of 7 tracking stations were considered. Up to 39 arcs (5 to 7 days) involving 10 different satellites, were processed. An anomaly solution from the satellite data and a combination solution with 15 deg terrestrial anomalies were made. The limited data samples indicate that the method works. The 15 deg anomalies from various solutions and the potential coefficients implied by the different solutions are reported.
The Nimbus 6 data catalog. Volume 7: 1 July - 31 August 1976. Data orbits 5156 - 5985
NASA Technical Reports Server (NTRS)
1977-01-01
Operations of various experiments during the reporting period are summarized. Orbital elements, data availability times, anomalies in the data, geographic location, and time of data are tabulated. Montages obtained by infrared and microwave radiometers are included.
Techniques for Deploying Elliptically Orbiting Constellations in Along-Track Formation
NASA Astrophysics Data System (ADS)
Bainum, P. M.; Strong, A.; Tan, Z.
NASA has suggested several missions in low Earth orbit (LBO) for scientific data collection. One of these is the Auroral Cluster Observation System whose main objectives would be to measure the curl of the Earth's magnetic field vector as well as detect auroral phenomenon. Of several designs proposed for this mission is an along- track formation in an elliptical orbit of up to four spacecraft with constant separation distances between adjacent satellites. A novel idea for initiating such a station keeping strategy was proposed in previous papers by the authors and would involve impulsive maneuvers at (1) perigee that would cause a small shift in the direction of the semi- major axis of the daughter satellite with respect to the original orbit (of the mother satellite) followed by (2) an out-of-plane slewing around the major axis at an eccentric anomaly (for the daughter) of 90°. Without perturbations and subsequent control, the separation distance could be maintained with the drift from nominal value of the order of +/-0.45%. In this paper two techniques to deploy up to four spacecraft in an along track formation with 500 km separation distance in an elliptical orbit are developed and evaluated: (1) The deployment from the original (parking) circular orbit into the final elliptical orbit is based on the solution of the associated non-linear two point boundary value problem (TPBVP) following Pontryagin's principle for each spacecraft in the constellation. The control energy is minimized subject to a terminal time which is sequentially shortened until at least one component of the control thrust vector exhibits bang-bang characteristics; (2) deployment is also based on the sequential deployment of alI the spacecraft from the original circular orbit to the final elliptical orbit based on the concept of the Hohmann transfer and incorporating the logic for the two impulsive slewing maneuvers. The mother satellite would be placed into a regular Hohmann transfer orbit
Itin, P H
1997-06-01
Hair shaft disorders lead to brittle and uncombable hair. As a rule the hair feels dry and lusterless. Hair shaft abnormalities may present as localized of generalized alterations. Genetic predisposition and exogenous factors are able to produce hair shaft abnormalities. The most important examination to analyze a hair shaft problem is light microscopy. Treatment of hair shaft disorders should focus on the cause. In addition, minimizing traumatic influences to hair shafts, such as electric dryer, permanent waves and dyes is important.
Sparsity-driven anomaly detection for ship detection and tracking in maritime video
NASA Astrophysics Data System (ADS)
Shafer, Scott; Harguess, Josh; Forero, Pedro A.
2015-05-01
This work examines joint anomaly detection and dictionary learning approaches for identifying anomalies in persistent surveillance applications that require data compression. We have developed a sparsity-driven anomaly detector that can be used for learning dictionaries to address these challenges. In our approach, each training datum is modeled as a sparse linear combination of dictionary atoms in the presence of noise. The noise term is modeled as additive Gaussian noise and a deterministic term models the anomalies. However, no model for the statistical distribution of the anomalies is made. An estimator is postulated for a dictionary that exploits the fact that since anomalies by definition are rare, only a few anomalies will be present when considering the entire dataset. From this vantage point, we endow the deterministic noise term (anomaly-related) with a group-sparsity property. A robust dictionary learning problem is postulated where a group-lasso penalty is used to encourage most anomaly-related noise components to be zero. The proposed estimator achieves robustness by both identifying the anomalies and removing their effect from the dictionary estimate. Our approach is applied to the problem of ship detection and tracking from full-motion video with promising results.
Reduced domestic satellite orbit spacing
NASA Astrophysics Data System (ADS)
Sharp, G. L.
The demand for services provided by communications satellites in geostationary orbit is growing, and problems arise with respect to the required increase in capacity. One approach for providing such an increase involves the employment of more satellites operating at smaller orbital spacings. The present investigation is concerned with the results of technical studies conducted by the Federal Communications Commission (FCC) to determine the feasibility of reducing orbital spacings between U.S. 'domestic fixed satellites' (domsats). Attention is given to details regarding the usable orbital arc, an adjacent satellite interference model, antenna sidelobe patterns, a single entry analysis, a 4/6 GHz aggregate analysis, results for the 4/6 GHz bands, results for the 12/14 GHz bands, data services, voice services, video reception, and high power spot beams.
Detecting anomalies in CMB maps: a new method
Neelakanta, Jayanth T.
2015-10-01
Ever since WMAP announced its first results, different analyses have shown that there is weak evidence for several large-scale anomalies in the CMB data. While the evidence for each anomaly appears to be weak, the fact that there are multiple seemingly unrelated anomalies makes it difficult to account for them via a single statistical fluke. So, one is led to considering a combination of these anomalies. But, if we ''hand-pick'' the anomalies (test statistics) to consider, we are making an a posteriori choice. In this article, we propose two statistics that do not suffer from this problem. The statistics are linear and quadratic combinations of the a{sub ℓ m}'s with random co-efficients, and they test the null hypothesis that the a{sub ℓ m}'s are independent, normally-distributed, zero-mean random variables with an m-independent variance. The motivation for considering multiple modes is this: because most physical models that lead to large-scale anomalies result in coupling multiple ℓ and m modes, the ''coherence'' of this coupling should get enhanced if a combination of different modes is considered. In this sense, the statistics are thus much more generic than those that have been hitherto considered in literature. Using fiducial data, we demonstrate that the method works and discuss how it can be used with actual CMB data to make quite general statements about the incompatibility of the data with the null hypothesis.
MAGSAT anomaly map and continental drift
NASA Technical Reports Server (NTRS)
Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.
1981-01-01
Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.
Improving the geological interpretation of magnetic and gravity satellite anomalies
NASA Technical Reports Server (NTRS)
Hinze, William J.; Braile, Lawrence W.; Vonfrese, Ralph R. B.
1987-01-01
Quantitative analysis of the geologic component of observed satellite magnetic and gravity fields requires accurate isolation of the geologic component of the observations, theoretically sound and viable inversion techniques, and integration of collateral, constraining geologic and geophysical data. A number of significant contributions were made which make quantitative analysis more accurate. These include procedures for: screening and processing orbital data for lithospheric signals based on signal repeatability and wavelength analysis; producing accurate gridded anomaly values at constant elevations from the orbital data by three-dimensional least squares collocation; increasing the stability of equivalent point source inversion and criteria for the selection of the optimum damping parameter; enhancing inversion techniques through an iterative procedure based on the superposition theorem of potential fields; and modeling efficiently regional-scale lithospheric sources of satellite magnetic anomalies. In addition, these techniques were utilized to investigate regional anomaly sources of North and South America and India and to provide constraints to continental reconstruction. Since the inception of this research study, eleven papers were presented with associated published abstracts, three theses were completed, four papers were published or accepted for publication, and an additional manuscript was submitted for publication.
Space weather conditions during the Galaxy 15 spacecraft anomaly
NASA Astrophysics Data System (ADS)
Loto'aniu, T. M.; Singer, H. J.; Rodriguez, J. V.; Green, J.; Denig, W.; Biesecker, D.; Angelopoulos, V.
2015-08-01
On 5 April 2010, the Galaxy 15 spacecraft, orbiting at geosynchronous altitudes, experienced an anomaly near local midnight when it stopped responding to any ground commands. The anomaly has been reported as due to a lockup of the field-programmable gate array within the spacecraft baseband communications unit during an onboard electrostatic discharge (ESD). This study evaluates the space weather conditions at the time of the Galaxy 15 anomaly. The study also compares the plasma and geomagnetic environments around the anomaly to space weather observations over the operational lifetime of Galaxy 15 up to the anomaly time. On 5 April, the Galaxy 15 spacecraft encountered severe plasma conditions while it was in eclipse and during the subsequent anomaly interval. These conditions included a massive magnetic field dipolarization that injected energetic particles from the magnetotail during a substorm observed by GOES and Time History of Events and Macroscale Interactions during Substorms satellites. Galaxy 15 was located at a near-optimum position and local time to experience the full impact of the injected energetic particles. During the largest previous storm experienced by Galaxy 15 in December 2006, evidence suggests that it would not have been exposed to the same level of space weather as on 5 April 2010. Hence, while Galaxy 15 was traversing the nightside on 5 April, it likely experienced, for a short period, the most severe local plasma conditions it had encountered since launch. The most likely contributions to the ESD were interactions of the spacecraft with substorm-injected energetic particles facilitating spacecraft surface charging and deep dielectric charging.
NASA Technical Reports Server (NTRS)
1991-01-01
The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the
NASA Astrophysics Data System (ADS)
The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the
Experimental Anomalies in Neutrino Physics
NASA Astrophysics Data System (ADS)
Palamara, Ornella
2014-03-01
In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.
Alberta Congenital Anomalies Surveillance System.
Lowry, R B; Thunem, N Y; Anderson-Redick, S
1989-01-01
The Alberta Congenital Anomalies Surveillance System was started in 1966 in response to the thalidomide tragedy earlier in the decade. It was one of four provincial surveillance systems on which the federal government relied for baseline statistics of congenital anomalies. The government now collects data from six provinces and one territory. The Alberta Congenital Anomaly Surveillance System originally depended on three types of notification to the Division of Vital Statistics, Department of Health, Government of Alberta: birth notice and certificates of death and stillbirth; increased sources of ascertainment have greatly improved data quality. We present the data for 1980-86 and compare the prevalence rates of selected anomalies with the rates from three other surveillance systems. Surveillance systems do not guarantee that a new teratogen will be detected, but they are extremely valuable for testing hypotheses regarding causation. At the very least they provide baseline data with which to compare any deviation or trend. For many, if not most, congenital anomalies total prevention is not possible; however, surveillance systems can be used to measure progress in prevention. PMID:2819634
Non-relativistic scale anomalies
NASA Astrophysics Data System (ADS)
Arav, Igal; Chapman, Shira; Oz, Yaron
2016-06-01
We extend the cohomological analysis in arXiv:1410.5831 of anisotropic Lifshitz scale anomalies. We consider non-relativistic theories with a dynamical critical exponent z = 2 with or without non-relativistic boosts and a particle number symmetry. We distinguish between cases depending on whether the time direction does or does not induce a foliation structure. We analyse both 1 + 1 and 2 + 1 spacetime dimensions. In 1 + 1 dimensions we find no scale anomalies with Galilean boost symmetries. The anomalies in 2 + 1 dimensions with Galilean boosts and a foliation structure are all B-type and are identical to the Lifshitz case in the purely spatial sector. With Galilean boosts and without a foliation structure we find also an A-type scale anomaly. There is an infinite ladder of B-type anomalies in the absence of a foliation structure with or without Galilean boosts. We discuss the relation between the existence of a foliation structure and the causality of the field theory.
Small Mercury Relativity Orbiter
NASA Technical Reports Server (NTRS)
Bender, Peter L.; Vincent, Mark A.
1989-01-01
The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.
[Magnetic resonance in the evaluation of Mullerian duct anomalies].
Fischetti, S G; Politi, G; Lomeo, E; Garozzo, G
1995-01-01
Müllerian duct alterations in development or fusion in the embryo cause congenital uterine anomalies which may be responsible for decreased fertility or problems in carrying out a normal pregnancy. In this study, the MR findings in uterine agenesis (1 case), unicornuate (2 cases), didelphys (3 cases), bicornuate (3 cases), arcuate (6 cases) and septate uterus (8 cases) are described, together with the optimal section planes for their demonstration. The examinations were performed with an 0.5-T superconductive magnet, the spin-echo technique and mostly T2-weighted sequences. The anomalies were grouped according to Buttram and Gibbons classification, which is the most used in clinics. In particular, the bicornuate uterus was distinguished from the septate uterus, the latter associated with the highest spontaneous abortion rates, on the basis of external fundal outline appearance. In such anomalies, the muscular or fibrotic nature of any intracavitary septum was assessed based on septal thickness more than on signal intensity at this level. MR diagnostic accuracy in 23 patients with Müllerian anomalies, compared with surgical, hysteroscopic, laparotomic and laparoscopic findings, was 100%. Nevertheless, if Müllerian duct anomalies responsible for gynecologic-obstetric problems are known or suspected, MRI should always be used, on the basis of a close gynecologist-radiologist collaboration, for classification agreement and the evaluation of any intracavitary septum morpho-biometric appearance and possibly nature, to discuss treatment options.
An unusual congenital facial anomaly: erectile proboscis-like structure.
Mutaf, Mehmet; Isik, Dağhan; Büyükgüral, Berker
2006-07-01
We report a 3-week-old male infant with an unusual congenital facial anomaly, which is characterized by a proboscis-like erectile structure arising from the right malar region. Although it is a tubular structure resembling the proboscis lateralis, this case was more likely to be a new congenital anomaly because of the following reasons: (1) in contrast with the proboscis lateralis, which originates from the medial portion of the orbital roof, the structure was located at the right malar region in our case; (2) although it was soft and freely dangling on the face, this proboscis-like structure was strongly erectile, with contraction of the orbicularis oculi muscle when the infant cried; (3) histopathological examination revealed that the structure was composed by normal fibroadipose tissue and striated muscle covered with a healthy skin and subcutaneous tissue. In contrast with histopathological characteristics of a proboscis lateralis, there was neither osteocartilaginous tissue nor mucosa in the structure. Although it is a typical finding for a proboscis lateralis, no lumen was found in the presented anomaly. Because of these unique characteristics, which remarkably differ from previously reported facial anomalies, we thought this case worth reporting. A literature review revealed that no similar case has been reported in the literature. PMID:16799319
Anomaly Monitoring Method for Key Components of Satellite
Fan, Linjun; Xiao, Weidong; Tang, Jun
2014-01-01
This paper presented a fault diagnosis method for key components of satellite, called Anomaly Monitoring Method (AMM), which is made up of state estimation based on Multivariate State Estimation Techniques (MSET) and anomaly detection based on Sequential Probability Ratio Test (SPRT). On the basis of analysis failure of lithium-ion batteries (LIBs), we divided the failure of LIBs into internal failure, external failure, and thermal runaway and selected electrolyte resistance (R e) and the charge transfer resistance (R ct) as the key parameters of state estimation. Then, through the actual in-orbit telemetry data of the key parameters of LIBs, we obtained the actual residual value (R X) and healthy residual value (R L) of LIBs based on the state estimation of MSET, and then, through the residual values (R X and R L) of LIBs, we detected the anomaly states based on the anomaly detection of SPRT. Lastly, we conducted an example of AMM for LIBs, and, according to the results of AMM, we validated the feasibility and effectiveness of AMM by comparing it with the results of threshold detective method (TDM). PMID:24587703
Graph anomalies in cyber communications
Vander Wiel, Scott A; Storlie, Curtis B; Sandine, Gary; Hagberg, Aric A; Fisk, Michael
2011-01-11
Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.
Branchial Anomalies: Diagnosis and Management
Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Prasad, Kishore Chandra
2014-01-01
Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence. PMID:24772172
Boundary anomalies and correlation functions
NASA Astrophysics Data System (ADS)
Huang, Kuo-Wei
2016-08-01
It was shown recently that boundary terms of conformal anomalies recover the universal contribution to the entanglement entropy and also play an important role in the boundary monotonicity theorem of odd-dimensional quantum field theories. Motivated by these results, we investigate relationships between boundary anomalies and the stress tensor correlation functions in conformal field theories. In particular, we focus on how the conformal Ward identity and the renormalization group equation are modified by boundary central charges. Renormalized stress tensors induced by boundary Weyl invariants are also discussed, with examples in spherical and cylindrical geometries.
Genetic basis for vascular anomalies.
Kirkorian, A Yasmine; Grossberg, Anna L; Püttgen, Katherine B
2016-03-01
The fundamental genetics of many isolated vascular anomalies and syndromes associated with vascular anomalies have been elucidated. The rate of discovery continues to increase, expanding our understanding of the underlying interconnected molecular pathways. This review summarizes genetic and clinical information on the following diagnoses: capillary malformation, venous malformation, lymphatic malformation, arteriovenous malformation, PIK3CA-related overgrowth spectrum (PROS), Proteus syndrome, SOLAMEN syndrome, Sturge-Weber syndrome, phakomatosis pigmentovascularis, congenital hemangioma, verrucous venous malformation, cutaneomucosal venous malformation, blue rubber bleb nevus syndrome, capillary malformation-arteriovenous malformation syndrome, Parkes-Weber syndrome, and Maffucci syndrome. PMID:27607321
Analysis of DSN software anomalies
NASA Technical Reports Server (NTRS)
Galorath, D. D.; Hecht, H.; Hecht, M.; Reifer, D. J.
1981-01-01
A categorized data base of software errors which were discovered during the various stages of development and operational use of the Deep Space Network DSN/Mark 3 System was developed. A study team identified several existing error classification schemes (taxonomies), prepared a detailed annotated bibliography of the error taxonomy literature, and produced a new classification scheme which was tuned to the DSN anomaly reporting system and encapsulated the work of others. Based upon the DSN/RCI error taxonomy, error data on approximately 1000 reported DSN/Mark 3 anomalies were analyzed, interpreted and classified. Next, error data are summarized and histograms were produced highlighting key tendencies.
Review on possible gravitational anomalies
NASA Astrophysics Data System (ADS)
Amador, Xavier E.
2005-01-01
This is an updated introductory review of 2 possible gravitational anomalies that has attracted part of the Scientific community: the Allais effect that occur during solar eclipses, and the Pioneer 10 spacecraft anomaly, experimented also by Pioneer 11 and Ulysses spacecrafts. It seems that, to date, no satisfactory conventional explanation exist to these phenomena, and this suggests that possible new physics will be needed to account for them. The main purpose of this review is to announce 3 other new measurements that will be carried on during the 2005 solar eclipses in Panama and Colombia (Apr. 8) and in Portugal (Oct.15).
Minimum-fuel multiple-impulse apsidal orbital transfers
NASA Astrophysics Data System (ADS)
Kirpichnikov, S. N.
1990-01-01
The paper is concerned with the problem of minimum-fuel impulse transfers between specified nonintersecting Keplerian boundary orbits. The qualitative criteria of optimal single-impulse transfer orbits are defined, and multiple-impulse minimum-fuel apsidal transfers are investigated for the case of orbits with a common line of apsides. For circular (coplanar and noncoplanar) boundary orbits, the global optimality of the single-impulse Hohmann transfer in the plane of the initial orbit is demonstrated in the case where the ratio of the initial orbit radius to the final orbit radius does not exceed 4.828.
Polar Wander on the Moon Inferred from its Shape and Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Garrick-Bethell, I.
2015-12-01
The lunar shape can inform us about the Moon's early spin pole location, or history of true polar wander. This history is important for understanding the stability of polar ice deposits [1], and possible relationships between large-scale lunar features and the lunar orbit. Recently, Garrick-Bethell et al. [2] showed that when the effects of large basins are ignored, the Moon's early spin pole could be inferred from a tidal-rotational deformation that froze-in when the Moon was closer to the Earth. They also showed that the lunar shape is consistent with early tidal heating in the crust during the magma ocean epoch [3]. Here we will present some updates to this work, and discuss how the lunar spin pole may have evolved in time, as inferred from the progressive formation of large basins and components of the degree-2 gravity field that are not associated with basins. Separately, magnetic anomalies can address the problem of lunar polar wander, assuming the ancient dynamo that magnetized them was dominantly dipolar and aligned with the spin axis. However, recent surveys of magnetic anomalies reveal paleopole distributions that are quite complicated and inconsistent across different studies [4, 5]. Some reported paleopoles are consistent with the early spin pole inferred from the lunar shape [2], while others are not. These paleopoles imply either very large amounts of polar wander, or that the dynamo evolved with a complex field geometry. Some possible resolutions to these problems will be discussed, including secular variation of the magnetic field and difficulties with inversions for magnetic sources. References 1. Siegler, M. A. et al., 46th Lunar and Planetary Science Conference, LPI Contribution No. 1832, p. 2675 (2015). 2. Garrick-Bethell, I., et al., Nature 512, 181 (2014). 3. Garrick-Bethell, I., et al., Science 330, 949 (2010). 4. Arkani-Hamed, J. and Boutin, D., Icarus 237, 262 (2014). 5. Takahashi, F., et al., Nature Geoscience 7, 409 (2014).
Utility of Satellite Magnetic Observations for Estimating Near-Surface Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Kim, Hyung Rae; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo; Park, Chan Hong
2003-01-01
Regional to continental scale magnetic anomaly maps are becoming increasingly available from airborne, shipborne, and terrestrial surveys. Satellite data are commonly considered to fill the coverage gaps in regional compilations of these near-surface surveys. For the near-surface Antarctic magnetic anomaly map being produced by the Antarctic Digital Magnetic Anomaly Project (ADMAP), we show that near-surface magnetic anomaly estimation is greatly enhanced by the joint inversion of the near-surface data with the satellite observations relative to the conventional technique such as minimum curvature. Orsted observations are especially advantageous relative to the Magsat data that have order-of-magnitude greater measurement errors, albeit at much lower orbital altitudes. CHAMP is observing the geomagnetic field with the same measurement accuracy as the Orsted mission, but at the lower orbital altitudes covered by Magsat. Hence, additional significant improvement in predicting near-surface magnetic anomalies can result as these CHAMP data are available. Our analysis also suggests that considerable new insights on the magnetic properties of the lithosphere may be revealed by a further order-of-magnitude improvement in the accuracy of the magnetometer measurements at minimum orbital altitude.
NASA Astrophysics Data System (ADS)
Watanabe, Tadataka; Hara, Shigeo; Ikeda, Shin-Ichi; Tomiyasu, Keisuke
2011-07-01
Ultrasound velocity measurements of the orbitally frustrated spinel GeCo2O4 reveal unique elastic anomalies within the antiferromagnetic phase. Temperature dependence of shear moduli exhibits a minimum within the antiferromagnetic phase, suggesting the coupling of shear acoustic phonons to molecular spin-orbit excitations. Magnetic-field dependence of elastic moduli exhibits diplike anomalies, being interpreted as magnetic-field-induced metamagnetic and structural transitions. These elastic anomalies suggest that the survival of geometrical frustration, and the interplay of spin, orbital, and lattice degrees of freedom evoke a set of phenomena in the antiferromagnetic phase.
Analysis Methods of Environmental Induced Anomalies of Spacecraft
NASA Astrophysics Data System (ADS)
Catani, Jean-Pierre
2002-01-01
Thirty years after the first evidence of in-flight electrostatic discharges on synchronous spacecraft, they are still a threat. Analysis of anomalies will be always necessary for improving design guidelines and standards. A Ground Control Center dedicated to a Space System is monitoring for the nominal configuration of the spacecraft. An alarm or warning is triggered when the spacecraft gets out of its nominal working state. How to know what happens in flight? An electrostatic discharge is never observed itself but only its permanent consequences. Telemetry data is never designed for detecting unforeseen events, it is only defined for command purpose and good-health diagnosis. Probes are exceptionally implemented on commercial spacecraft to determine the state of environment at the location of the spacecraft at the time of the anomaly. The first step is the elimination of non-environmental causes: electromagnetic interference problem, equipment failure, corona discharge inside a high-voltage powered box, or man-made spurious command. Heavy ions or micrometeoroids are environmental causes with consequences that look like electrostatic discharges, so involving charging needs detailed and exhaustive analysis. The spacecraft-charging anomaly is at the end of a long chain of causes and consequences. Some regions of space have a radiation and particle content able to build up absolute and differential potentials at the surface or inside the spacecraft up to exceeding the breakdown voltage. Charges are released that induce electromagnetic fields in coupling current and voltage transients to cables. The pulses penetrate boxes and propagate along printed circuit board tracks, reaching active devices, upsetting logical devices, saturating amplifiers, or fusing lanes inside integrated circuits. Spacecraft event understanding is the conclusion of three convergent ways of analysis: environmental data, vacuum charging tests, electromagnetic immunity tests. When there is no borne
Gravitational waves from binaries on unbound orbits
NASA Astrophysics Data System (ADS)
Majár, János; Forgács, Péter; Vasúth, Mátyás
2010-09-01
A generalized true anomaly-type parametrization, convenient to describe both bound and open orbits of a two-body system in general relativity is introduced. A complete description of the time evolution of both the radial and angular equations of a binary system taking into account the first order post-Newtonian (1PN) corrections is given. The gravitational radiation field emitted by the system is computed in the 1PN approximation including higher multipole moments beyond the standard quadrupole term. The gravitational waveforms in the time domain are explicitly given up to the 1PN order for unbound orbits, but the results are also illustrated on binaries on elliptic orbits with special attention given to the effects of eccentricity.
Equinoctial orbit elements - Application to artificial satellite orbits.
NASA Technical Reports Server (NTRS)
Cefola, P. J.
1972-01-01
The matrizant of the two-body problem is developed in terms of elements that are free from singularities for zero eccentricities and zero- and ninety-degree inclinations. Retrograde equinoctial elements eliminate the singularity for inclinations near 180 degrees, with only minor changes in the expressions for the matrizant. The 'single-averaged' variation-of-parameters equations for these elements are developed for third-body, oblateness, and drag effects. Higher order terms are included in the expansions for the third-body and oblateness potential. A computer program that uses these equations to predict orbital evolution is described. Numerical results are given for a near-circular orbit.
NASA Astrophysics Data System (ADS)
Roy, Archie E.
This is a comprehensive mathematically detailed textbook on classical celestial mechanics, including numerical methods, astrodynamics of artificial satellites and interplanetary probes. This revised edition involves updates to all chapters and the addition of a new chapter on The Caledonian Symmetrical N-Body Problem, explaining the principles and applications from first principles. This will be the first time this new method has appeared in a text book. The contents have been reorganised and extended to encompass new methods and teaching demands and to cover more modern applied areas such as satellite dynamics. A long established course text for advanced undergraduates and graduate students in a range of disciplines from physics to astronomy this new edition extends the use to cover the needs of the growing number of students in aerospace and satellite engineering and the growing number of planetary scientists who now need to cover this material in more detail.
Thermal anomalies in stressed Teflon.
NASA Technical Reports Server (NTRS)
Lee, S. H.; Wulff, C. A.
1972-01-01
In the course of testing polytetrafluoroethylene (Teflon) as a calorimetric gasketing material, serendipity revealed a thermal anomaly in stressed film that occurs concomitantly with the well-documented 25 C transition. The magnitude of the excess energy absorption - about 35 cal/g - is suggested to be related to the restricted thermal expansion of the film.
Coral can have growth anomalies
Coral growth anomalies (GAs) are changes in the coral cells that deposit the calcium carbonate skeleton. They usually appear as raised areas of the skeleton and tissue that are different from the surrounding normal areas on the same colony. The features include abnormal shape a...
Shadowing Lemma and chaotic orbit determination
NASA Astrophysics Data System (ADS)
Spoto, Federica; Milani, Andrea
2016-03-01
Orbit determination is possible for a chaotic orbit of a dynamical system, given a finite set of observations, provided the initial conditions are at the central time. The Shadowing Lemma (Anosov 1967; Bowen in J Differ Equ 18:333-356, 1975) can be seen as a way to connect the orbit obtained using the observations with a real trajectory. An orbit is a shadowing of the trajectory if it stays close to the real trajectory for some amount of time. In a simple discrete model, the standard map, we tackle the problem of chaotic orbit determination when observations extend beyond the predictability horizon. If the orbit is hyperbolic, a shadowing orbit is computed by the least squares orbit determination. We test both the convergence of the orbit determination iterative procedure and the behaviour of the uncertainties as a function of the maximum number of map iterations observed. When the initial conditions belong to a chaotic orbit, the orbit determination is made impossible by numerical instability beyond a computability horizon, which can be approximately predicted by a simple formula. Moreover, the uncertainty of the results is sharply increased if a dynamical parameter is added to the initial conditions as parameter to be estimated. The Shadowing Lemma does not dictate what the asymptotic behaviour of the uncertainties should be. These phenomena have significant implications, which remain to be studied, in practical problems of orbit determination involving chaos, such as the chaotic rotation state of a celestial body and a chaotic orbit of a planet-crossing asteroid undergoing many close approaches.
Minimum-fuel aerodynamic orbital plane change maneuvers. [for Space Shuttle Orbiters
NASA Technical Reports Server (NTRS)
Joosten, B. K.; Pierson, B. L.
1981-01-01
Several minimum-fuel, aerodynamically controlled, orbital plane change problems are formulated and solved as optimal control problems. A gradient projection algorithm is used to iteratively modify both the control functions, angle of attack and bank angle, and two control parameters to obtain the optimal trajectory. The atmospheric flight profile is combined with two Keplerian (two-body vacuum flight) arcs so that a complete orbit-to-orbit analysis results. The vehicle used in this investigation is the Space Transportation System Shuttle Orbiter. The effects of heat load constraint level and plane change angle are analysed.
Orbital Operations for Phobos and Deimos Exploration
NASA Technical Reports Server (NTRS)
Wallace, Mark S.; Parker, Jeffrey S.; Strange, Nathan J.; Grebow, Daniel
2012-01-01
One of the deep-space human exploration activities proposed for the post-Shuttle era is a mission to one of the moons of Mars, Phobos or Deimos. There are several options available to the mission architect for operations around these bodies. These options include distant retrograde orbits (DROs), Lagrange-point orbits such as halos and Lyapunov orbits, and fixed-point stationkeeping or "hovering." These three orbit options are discussed in the context of the idealized circular restricted three body problem, full-dynamics propagations, and a concept of operations. The discussion is focused on Phobos, but all results hold for Deimos
Improved orbiter waste collection system study
NASA Technical Reports Server (NTRS)
Bastin, P. H.
1984-01-01
Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.
Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation
Kitano, Ryuichiro; Kribs, Graham D.; Murayama, Hitoshi
2004-02-19
Anomaly mediation solves the supersymmetric flavor and CP problems. This is because the superconformal anomaly dictates that supersymmetry breaking is transmitted through nearly flavor-blind infrared physics that is highly predictive and UV insensitive. Slepton mass squareds, however, are predicted to be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L} while retaining the UV insensitivity. In this paper we consider electroweak symmetry breaking via UV insensitive anomaly mediation in several models. For the MSSM we find a stable vacuum when tanbeta< 1, but in this region the top Yukawa coupling blows up only slightly above the supersymmetry breaking scale. For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino that is too light. Replacing the cubic singlet term in the NMSSM superpotential with a term linear in the singlet wefind a stable vacuum and viable spectrum. Most of the parameter region with correct vacua requires a large superpotential coupling, precisely what is expected in the"Fat Higgs'" model in which the superpotential is generated dynamically. We have therefore found the first viable UV complete, UV insensitive supersymmetry breaking model that solves the flavor and CP problems automatically: the Fat Higgs model with UV insensitive anomaly mediation. Moreover, the cosmological gravitino problem is naturally solved, opening up the possibility of realistic thermal leptogenesis.
Thermal recoil force, telemetry, and the Pioneer anomaly
Toth, Viktor T.; Turyshev, Slava G.
2009-02-15
Precision navigation of spacecraft requires accurate knowledge of small forces, including the recoil force due to anisotropies of thermal radiation emitted by spacecraft systems. We develop a formalism to derive the thermal recoil force from the basic principles of radiative heat exchange and energy-momentum conservation. The thermal power emitted by the spacecraft can be computed from engineering data obtained from flight telemetry, which yields a practical approach to incorporate the thermal recoil force into precision spacecraft navigation. Alternatively, orbit determination can be used to estimate the contribution of the thermal recoil force. We apply this approach to the Pioneer anomaly using a simulated Pioneer 10 Doppler data set.
Removing orbital debris with lasers
NASA Astrophysics Data System (ADS)
Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Trebes, James E.; Victor George, E.; Marcovici, Bogdan; Reilly, James P.; Valley, Michael T.
2012-05-01
Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoules lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.
An enhanced stream mining approach for network anomaly detection
NASA Astrophysics Data System (ADS)
Bellaachia, Abdelghani; Bhatt, Rajat
2005-03-01
Network anomaly detection is one of the hot topics in the market today. Currently, researchers are trying to find a way in which machines could automatically learn both normal and anomalous behavior and thus detect anomalies if and when they occur. Most important applications which could spring out of these systems is intrusion detection and spam mail detection. In this paper, the primary focus on the problem and solution of "real time" network intrusion detection although the underlying theory discussed may be used for other applications of anomaly detection (like spam detection or spy-ware detection) too. Since a machine needs a learning process on its own, data mining has been chosen as a preferred technique. The object of this paper is to present a real time clustering system; we call Enhanced Stream Mining (ESM) which could analyze packet information (headers, and data) to determine intrusions.
Global Specification of the Post-Sunset Equatorial Ionization Anomaly
NASA Astrophysics Data System (ADS)
Coker, C.; Dandenault, P. B.; Dymond, K.; Budzien, S. A.; Nicholas, A. C.; Chua, D. H.; McDonald, S. E.; Metzler, C. A.; Walker, P. W.; Scherliess, L.; Schunk, R. W.; Gardner, L. C.; Zhu, L.
2012-12-01
The Special Sensor Ultraviolet Limb Imager (SSULI) on the Defense Meteorological Satellite Program (DMSP) is used to specify the post-sunset Equatorial Ionization Anomaly. Ultraviolet emission profiles of 135.6 nm and 91.1 nm emissions from O++ e recombination are measured in successive altitude scans along the orbit of the satellite. The overlapping sample geometry provides for a high resolution reconstruction of the ionosphere in altitude and latitude for each pass of the satellite. Emission profiles are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and is run operationally at the Air Force Weather Agency (AFWA). The resulting specification of the equatorial ionosphere reveals significant variability in the postsunset anomaly, which is reflective of the driving space weather processes, namely, electric fields and neutral winds. Significant longitudinal and day-to-day variability in the magnitude (or even existence) of the post-sunset anomaly reveal the influence of atmospheric tides and waves as well as geomagnetic disturbances on the pre-reversal enhancement of the electric field. Significant asymmetry between anomaly crests reveals the influence of atmospheric tides and waves on meridional neutral winds. A neutral wind parallel to the magnetic field line pushes plasma up (or down) the field lines, which raises (or lowers) the altitude of the crests and modifies the horizontal location and magnitude of the crests. The variability in the post-sunset anomaly is one of the largest sources of error in ionospheric specification models. The SSULI instrument provides critical data towards the reduction of this specification error and the determination of key driver parameters used in ionospheric forecasting. Acknowledgements: This research was supported by the USAF Space and Missile Systems Center (SMC), the Naval Research Laboratory (NRL) Base Program, and the Office of Naval
TERRA Battery Thermal Control Anomaly - Simulation and Corrective Actions
NASA Technical Reports Server (NTRS)
Grob, Eric W.
2010-01-01
The TERRA spacecraft was launched in December 1999 from Vandenberg Air Force Base, becoming the flagship of NASA's Earth Observing System program to gather data on how the planet's processes create climate. Originally planned as a 5 year mission, it still provides valuable science data after nearly 10 years on orbit. On October 13th, 2009 at 16:23z following a routine inclination maneuver, TERRA experienced a battery cell failure and a simultaneous failure of several battery heater control circuits used to maintain cell temperatures and gradients within the battery. With several cells nearing the minimum survival temperature, preventing the electrolyte from freezing was the first priority. After several reset attempts and power cycling of the control electronics failed to reestablish control authority on the primary side of the controller, it was switched to the redundant side, but anomalous performance again prevented full heater control of the battery cells. As the investigation into the cause of the anomaly and corrective action continued, a battery thermal model was developed to be used in determining the control ability remaining and to simulate and assess corrective actions. Although no thermal model or detailed reference data of the battery was available, sufficient information was found to allow a simplified model to be constructed, correlated against pre-anomaly telemetry, and used to simulate the thermal behavior at several points after the anomaly. It was then used to simulate subsequent corrective actions to assess their impact on cell temperatures. This paper describes the rapid development of this thermal model, including correlation to flight data before and after the anomaly., along with a comparative assessment of the analysis results used to interpret the telemetry to determine the extent of damage to the thermal control hardware, with near-term corrective actions and long-term operations plan to overcome the anomaly.
Could the Pioneer anomaly have a gravitational origin?
Tangen, Kjell
2007-08-15
If the Pioneer anomaly has a gravitational origin, it would, according to the equivalence principle, distort the motions of the planets in the Solar System. Since no anomalous motion of the planets has been detected, it is generally believed that the Pioneer anomaly can not originate from a gravitational source in the Solar System. However, this conclusion becomes less obvious when considering models that either imply modifications to gravity over long distances or gravitational sources localized to the outer Solar System, given the uncertainty in the orbital parameters of the outer planets. Following the general assumption that the Pioneer spacecraft move geodesically in a spherically symmetric space-time metric, we derive the metric disturbance that is needed in order to account for the Pioneer anomaly. We then analyze the residual effects on the astronomical observables of the three outer planets that would arise from this metric disturbance, given an arbitrary metric theory of gravity. Providing a method for comparing the computed residuals with actual residuals, our results imply that the presence of a perturbation to the gravitational field necessary to induce the Pioneer anomaly is in conflict with available data for the planets Uranus and Pluto, but not for Neptune. We therefore conclude that the motion of the Pioneer spacecraft must be nongeodesic. Since our results are model-independent within the class of metric theories of gravity, they can be applied to rule out any model of the Pioneer anomaly that implies that the Pioneer spacecraft move geodesically in a perturbed space-time metric, regardless of the origin of this metric disturbance.
Anomaly Detection Based on Sensor Data in Petroleum Industry Applications
Martí, Luis; Sanchez-Pi, Nayat; Molina, José Manuel; Garcia, Ana Cristina Bicharra
2015-01-01
Anomaly detection is the problem of finding patterns in data that do not conform to an a priori expected behavior. This is related to the problem in which some samples are distant, in terms of a given metric, from the rest of the dataset, where these anomalous samples are indicated as outliers. Anomaly detection has recently attracted the attention of the research community, because of its relevance in real-world applications, like intrusion detection, fraud detection, fault detection and system health monitoring, among many others. Anomalies themselves can have a positive or negative nature, depending on their context and interpretation. However, in either case, it is important for decision makers to be able to detect them in order to take appropriate actions. The petroleum industry is one of the application contexts where these problems are present. The correct detection of such types of unusual information empowers the decision maker with the capacity to act on the system in order to correctly avoid, correct or react to the situations associated with them. In that application context, heavy extraction machines for pumping and generation operations, like turbomachines, are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. In this paper, we propose a combination of yet another segmentation algorithm (YASA), a novel fast and high quality segmentation algorithm, with a one-class support vector machine approach for efficient anomaly detection in turbomachines. The proposal is meant for dealing with the aforementioned task and to cope with the lack of labeled training data. As a result, we perform a series of empirical studies comparing our approach to other methods applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection. PMID:25633599
Anomaly detection based on sensor data in petroleum industry applications.
Martí, Luis; Sanchez-Pi, Nayat; Molina, José Manuel; Garcia, Ana Cristina Bicharra
2015-01-27
Anomaly detection is the problem of finding patterns in data that do not conform to an a priori expected behavior. This is related to the problem in which some samples are distant, in terms of a given metric, from the rest of the dataset, where these anomalous samples are indicated as outliers. Anomaly detection has recently attracted the attention of the research community, because of its relevance in real-world applications, like intrusion detection, fraud detection, fault detection and system health monitoring, among many others. Anomalies themselves can have a positive or negative nature, depending on their context and interpretation. However, in either case, it is important for decision makers to be able to detect them in order to take appropriate actions. The petroleum industry is one of the application contexts where these problems are present. The correct detection of such types of unusual information empowers the decision maker with the capacity to act on the system in order to correctly avoid, correct or react to the situations associated with them. In that application context, heavy extraction machines for pumping and generation operations, like turbomachines, are intensively monitored by hundreds of sensors each that send measurements with a high frequency for damage prevention. In this paper, we propose a combination of yet another segmentation algorithm (YASA), a novel fast and high quality segmentation algorithm, with a one-class support vector machine approach for efficient anomaly detection in turbomachines. The proposal is meant for dealing with the aforementioned task and to cope with the lack of labeled training data. As a result, we perform a series of empirical studies comparing our approach to other methods applied to benchmark problems and a real-life application related to oil platform turbomachinery anomaly detection.
Scalar magnetic anomaly maps of Earth derived from POGO and Magsat data
NASA Technical Reports Server (NTRS)
Arkani-Hamed, Jafar; Langel, Robert A.; Purucker, Mike
1994-01-01
A new Polar Orbit Geophysical Observatory (POGO) scalar magnetic anomaly map at 400 km altitude is presented which consists of spherical harmonics of degree 15-60. On the basis of the common features of this map with two new Magsat anomaly maps, dawn and dusk, two scalar magnetic anomaly maps of the Earth are presented using two selection criteria with different levels of stringency. These selection criteria suppress the noncrustal components of the original maps by different amounts. The more stringent selection criteria seek to eliminate as much contamination as possible, at the expense of suppressing some anomaly signal. This map is represented by spherical harmonics of degree 15-60. The less stringent selection criteria seek to retain as much crustal signal as possible, at the expense of also retaining some contaminating fields. This map is represented by spherical harmonics of degree 15-65. The resulting two maps are highly correlated with degree correlation coefficients greater than 0.8.
Theory of satellite orbit-orbit resonance
NASA Technical Reports Server (NTRS)
Blitzer, L.; Anderson, J. D.
1981-01-01
On the basis of the strong mathematical and physical parallels between orbit-orbit and spin-orbit resonances, the dynamics of mutual orbit perturbations between two satellites about a massive planet are examined, exploiting an approach previously adopted in the study of spin-orbit coupling. Resonances are found to exist when the mean orbital periods are commensurable with respect to some rotating axis, which condition also involves the apsidal and nodal motions of both satellites. In any resonant state the satellites are effectively trapped in separate potential wells, and a single variable is found to describe the simultaneous librations of both satellites. The librations in longitude are 180 deg out-of-phase, with fixed amplitude ratio that depends only on their relative masses and semimajor axes. The theory is applicable to Saturn's resonant pairs Titan-Hyperion and Mimas-Tethys, and in these cases the calculated libration periods are in reasonably good agreement with the observed periods.
Unerupted incisors--characteristic features and associated anomalies.
Bartolo, Adriana; Camilleri, Audrey; Camilleri, Simon
2010-06-01
The aims of this study were to investigate the association of unerupted incisors with other dental anomalies and to indicate the aetiological and clinical relevance of such associations. Forty-one patients with unerupted incisors were examined. The group comprised 30 males and 11 females, ranging in age from 7 to 39 years. The patients were assessed for nine dental anomalies: hyperdontia, hypodontia, microdontia, enamel hypoplasia, infraocclusion of the primary molars and ectopia of the canines, premolars, first permanent molars, and second permanent molars. The patients were matched with respect to age and gender to 41 consecutively selected control subjects with similar selection criteria but no history of problems with incisor eruption. The prevalence rates of the dental anomalies in association with failure of eruption of incisors were compared to the reference rates in the control group by means of Pearson chi-square tests. The results of this study revealed that unerupted incisors were more frequent in males than in females. A statistically significant association (P = 0.006) was found between unerupted incisors and other inherited dental anomalies, namely ectopic teeth, hyperdontia, and enamel hypoplasia. Unerupted incisors may be considered part of a spectrum of inheritable dental anomalies. PMID:19745002
Space Telescope Fine Guidance Sensor Bearing Anomaly
NASA Technical Reports Server (NTRS)
Loewenthal, S.; Esper, J.; Pan, J.; Decker, J.
1996-01-01
Early in 1993, a servo motor within one of three Fine Guidance Sensors (FGS) aboard the Hubble Space Telescope (HST) reached stall torque levels on several occasions. Little time was left to plan replacement during the first servicing mission, scheduled at the end of '93. Accelerated bearing life tests confirmed that a small angle rocking motion, known as Coarse Track (CT), accelerated bearing degradation. Saturation torque levels were reached after approximately 20 million test cycles, similar to the flight bearings. Reduction in CT operation, implemented in flight software, extended FGS life well beyond the first servicing mission. However in recent years, bearing torques have resumed upward trends and together with a second, recent bearing torque anomaly has necessitated a scheduled FGS replacement during the upcoming second servicing mission in '97. The results from two series of life tests to quantify FGS bearing remaining life, discussion of bearing on-orbit performance, and future plans to service the FGS servos are presented in this paper.
An uncommon congenital anomaly of the ribs
Padmanabhan, Arjun; Zunimol, Mohamed Puthiyaveettil
2016-01-01
Intrathoracic rib is an extremely rare congenital anomaly of the ribs. Here, we present the case of a 10-year-old boy with asthma who, on routine evaluation, was found to have this anomaly. PMID:27051123
MAGSAT scalar and vector anomaly data analysis
NASA Technical Reports Server (NTRS)
1982-01-01
Efforts on the analysis of MAGSAT scalar anomaly data, the application of the scalar analysis results to three component vector data, and the comparison of MAGSAT data with corresponding MAGNET aeromagnetic and free air gravity anomaly data are briefly described.
Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis
NASA Technical Reports Server (NTRS)
Slojkowski, Steven E.
2014-01-01
Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.
Prevalence of dental anomalies in orthodontic patients.
Thongudomporn, U; Freer, T J
1998-12-01
The prevalence of dental anomalies including agenesis, crown shape, tooth position, root shape, and invagination were examined in 111 orthodontic patients; 74.77 per cent of the patients exhibited at least one dental anomaly. Invagination was found to be the most prevalent anomaly, whereas supernumerary teeth and root dilaceration were the least frequent anomalies. Dental invagination and short or blunt roots were significantly more prevalent in females than in males. Implications for orthodontic treatment planning are discussed. PMID:9973708
Loop anomalies in the causal approach
NASA Astrophysics Data System (ADS)
Grigore, Dan-Radu
2015-01-01
We consider gauge models in the causal approach and study one-loop contributions to the chronological products and the anomalies they produce. We prove that in order greater than 4 there are no one-loop anomalies. Next we analyze one-loop anomalies in the second- and third-order of the perturbation theory. We prove that the even parity contributions (with respect to parity) do not produce anomalies; for the odd parity contributions we reobtain the well-known result.
Management of the orbital environment
NASA Technical Reports Server (NTRS)
Loftus, Joseph P., Jr.; Kessler, Donald J.; Anz-Meador, Phillip D.
1991-01-01
Data regarding orbital debris are presented to shed light on the requirements of environmental management in space, and strategies are given for active intervention and operational strategies. Debris are generated by inadvertent explosions of upper stages, intentional military explosions, and collisional breakups. Design and operation practices are set forth for minimizing debris generation and removing useless debris from orbit in the low-earth and geosynchronous orbits. Self-disposal options include propulsive maneuvers, drag-augmentation devices, and tether systems, and the drag devices are described as simple and passive. Active retrieval and disposition are considered, and the difficulty is examined of removing small debris. Active intervention techniques are required since pollution prevention is more effective than remediation for the problems of both earth and space.
NASA Technical Reports Server (NTRS)
Everhart, E.
1976-01-01
The origin of comets and the evolution of their orbits are discussed. Factors considered include: the law of survival of comets against ejection on hyperbolic orbits; short-period comets are not created by single close encounters of near-parabolic comets with Jupiter; observable long-period comets do not evolve into observable short-period comets; unobservable long-period comets with perihelia near Jupiter can evolve into observable short-period comets; long-period comets cannot have been formed or created within the planetary region of the solar system (excluding the effects of stellar perturbations); it is possible that some of the short-period comets could have been formed inside the orbit of Neptune; circularly-restricted three-body problem, and its associated Jacobi integral, are not valid approximations to use in studying origin and evolution of comets.
Effects of a child with a craniofacial anomaly on stability of the parental relationship.
St John, Dane; Pai, Lori; Belfer, Myron L; Mulliken, John B
2003-09-01
The purpose of this study was to determine rates of divorce in parents of children with various types of craniofacial anomalies and to analyze possible confounding factors. A 29-question survey was sent to parents of all children evaluated in the Craniofacial Centre between 1992 and 1997. Parents were questioned regarding pre- and postnatal marital stability, whether the child's facial anomaly contributed to divorce, and involvement in the child's welfare. Using deformational posterior plagiocephaly as a control group, rates of divorce vs. non-divorce were compared for craniofacial anomalies, categorized as asymmetric (hemifacial microsomia, unilateral coronal synostosis, cleft lip, cleft lip/palate) or symmetric (syndromic-craniosynostosis, orbital hypertelorism, Treacher Collins syndrome). Major anomalies (hemifacial microsomia, craniosynostosis, orbital hypertelorism, Treacher Collins syndrome) were also compared to minor anomalies (cleft lip, cleft lip/palate). Surveys were sent to both parents in 412 families; 403 surveys were returned; and the results were evaluated in 275 families (67%). Frequency analysis demonstrated an overall divorce rate of 6.8% and 4.9% separation. Anomalies associated with the highest rate of divorce were hemifacial microsomia (24.0%), syndromic craniosynostosis (12.2%), and cleft lip/palate (6.8%). 79% of non-divorced couples reported a strong prenatal relationship, whereas 59% of divorced couples reported a problematic relationship. Following birth of the affected child, 47% of non-divorced couples responded that the bonds became stronger and 41% of divorced couples thought the relationship worsened. Two-sided Fisher exact test comparing control vs. all other anomalies showed significance (p=.030) for rates of divorce. Separation of anomalies into asymmetric vs. symmetric and major vs. minor categories demonstrated no significant difference in divorce rate (p>.05). The mother was more likely to become a child's primary caregiver
Using Mean Orbit Period in Mars Reconnaissance Orbiter Maneuver Design
NASA Technical Reports Server (NTRS)
Chung, Min-Kun J.; Menon, Premkumar R.; Wagner, Sean V.; Williams, Jessica L.
2014-01-01
Mars Reconnaissance Orbiter (MRO) has provided communication relays for a number of Mars spacecraft. In 2016 MRO is expected to support a relay for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) spacecraft. In addition, support may be needed by another mission, ESA's ExoMars EDL Demonstrator Module's (EDM), only 21 days after the InSight coverage. The close proximity of these two events presents a unique challenge to a conventional orbit synchronization maneuver where one deterministic maneuver is executed prior to each relay. Since the two events are close together and the difference in required phasing between InSight and EDM may be up to half an orbit (yielding a large execution error), the downtrack timing error can increase rapidly at the EDM encounter. Thus, a new maneuver strategy that does not require a deterministic maneuver in-between the two events (with only a small statistical cleanup) is proposed in the paper. This proposed strategy rests heavily on the stability of the mean orbital period. The ability to search and set the specified mean period is fundamental in the proposed maneuver design as well as in understanding the scope of the problem. The proposed strategy is explained and its result is used to understand and solve the problem in the flight operations environment.
NASA Technical Reports Server (NTRS)
Adler, Robert; Curtis, Scott; Huffman, George; Bolvin, Dave; Einaudi, Franco (Technical Monitor)
2000-01-01
The new 20-year, monthly, globally complete precipitation analysis of the Global Precipitation Climatology Project (GPCP) is used to analyze ENSO-related precipitation anomalies over the globe. This Version 2 of the community generated data set is global, monthly, at 2.5 deg x 2.5 deg latitude-longitude resolution and utilizes precipitation estimates from low-orbit microwave sensors (SSM/I) and geosynchronous IR sensors and raingauge information over land. In the 1987-present period the low-orbit microwave (SSM/I) estimates are used to adjust or correct the geosynchronous IR estimates, thereby maximizing the utility of the more physically-based microwave estimates and the finer time sampling of the geosynchronous observations. Information from raingauges is blended into the analyses over land. The extension back to 1979 utilizes the OLR Precipitation Index (OPI) for the satellite component. An ENSO Precipitation Index (ESPI) using gradients of precipitation anomalies in the Maritime-Continent/Pacific Ocean region is used to define El Nino/La Nina months during the 20-year record. Mean anomalies for El Nino and La Nina are examined along with variations with respect to season and for individual events. The El Nino and La Nina mean anomalies are near mirror images of each other and when combined produce an ENSO signal with significant spatial continuity over large distances. This El Nino minus La Nina standardized precipitation anomaly map shows the usual positive anomaly over the central and eastern Pacific Ocean with the negative anomaly over the maritime continent along with an additional negative anomaly over Brazil and the Atlantic Ocean extending into Africa and a positive anomaly over the Horn of Africa and the western Indian Ocean. From these features along the Equator narrow positive and negative anomalies extend into middle latitudes in a V-shaped pattern open to the East as described by previous investigators. A number of the features are shown to continue
Improved definition of crustal magnetic anomalies for MAGSAT data
NASA Technical Reports Server (NTRS)
Brown, R. D.; Frawley, J. F.; Davis, W. M.; Ray, R. D.; Didwall, E.; Regan, R. D. (Principal Investigator)
1982-01-01
The routine correction of MAGSAT vector magnetometer data for external field effects such as the ring current and the daily variation by filtering long wavelength harmonics from the data is described. Separation of fields due to low altitude sources from those caused by high altitude sources is affected by means of dual harmonic expansions in the solution of Dirichlet's problem. This regression/harmonic filter procedure is applied on an orbit by orbit basis, and initial tests on MAGSAT data from orbit 1176 show reduction in external field residuals by 24.33 nT RMS in the horizontal component, and 10.95 nT RMS in the radial component.
Isotopic anomalies in extraterrestrial grains.
Ireland, T R
1996-03-01
Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars. PMID
Isotopic anomalies in extraterrestrial grains.
Ireland, T R
1996-03-01
Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars.
Axial anomaly at arbitrary virtualities
Veretin, O.L.; Teryaev, O.V.
1995-12-01
The one-loop analytic expression for the axial-vector triangle diagram involving an anomaly is obtained for arbitrary virtualities of external momenta. The `t Hooft consistency principle is applied to the QCD sum rules for the first moment of the photon spin structure function g{sub l}{sup {gamma}}. It is shown that the contribution of the singlet axial current to the sum rules for g{sub l}{sup {gamma}} vanishes. 19 refs., 1 fig.
Anomalies and Discrete Chiral Symmetries
Creutz, M.
2009-09-07
The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.
Anomalies, conformal manifolds, and spheres
NASA Astrophysics Data System (ADS)
Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan
2016-03-01
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space {M} is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail {N}=(2,2) and {N}=(0,2) supersymmetric theories in d = 2 and {N}=2 supersymmetric theories in d = 4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For {N}=(2,2) theories in d = 2 and {N}=2 theories in d = 4 we also show that the relation between the sphere partition function and the Kähler potential of {M} follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
Anomalies, conformal manifolds, and spheres
Gomis, Jaume; Hsin, Po-Shen; Komargodski, Zohar; Schwimmer, Adam; Seiberg, Nathan; Theisen, Stefan
2016-03-04
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space $M$ is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail $N$ = (2; 2) and $N$ = (0; 2) supersymmetric theories in d = 2 and $N$ = 2 supersymmetric theories in d = 4. This reasoning leads tomore » new information about the conformal manifolds of these theories, for example, we show that the manifold is K ahler-Hodge and we further argue that it has vanishing K ahler class. For $N$ = (2; 2) theories in d = 2 and N = 2 theories in d = 4 we also show that the relation between the sphere partition function and the K ahler potential of $M$ follows immediately from the appropriate sigma models that we construct. Ultimately, along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.« less
Entanglement entropy and anomaly inflow
NASA Astrophysics Data System (ADS)
Hughes, Taylor L.; Leigh, Robert G.; Parrikar, Onkar; Ramamurthy, Srinidhi T.
2016-03-01
We study entanglement entropy for parity-violating (time-reversal breaking) quantum field theories on R1 ,2 in the presence of a domain wall between two distinct parity-odd phases. The domain wall hosts a 1 +1 -dimensional conformal field theory (CFT) with nontrivial chiral central charge. Such a CFT possesses gravitational anomalies. It has been shown recently that, as a consequence, its intrinsic entanglement entropy is sensitive to Lorentz boosts around the entangling surface. Here, we show using various methods that the entanglement entropy of the three-dimensional bulk theory is also sensitive to such boosts owing to parity-violating effects, and that the bulk response to a Lorentz boost precisely cancels the contribution coming from the domain wall CFT. We argue that this can naturally be interpreted as entanglement inflow (i.e., inflow of entanglement entropy analogous to the familiar Callan-Harvey effect) between the bulk and the domain-wall, mediated by the low-lying states in the entanglement spectrum. These results can be generally applied to 2 +1 -d topological phases of matter that have edge theories with gravitational anomalies, and provide a precise connection between the gravitational anomaly of the physical edge theory and the low-lying spectrum of the entanglement Hamiltonian.
Sampling characteristics of satellite orbits
NASA Technical Reports Server (NTRS)
Wunsch, Carl
1989-01-01
The irregular space-time sampling of any finite region by an orbiting satellite raises difficult questions as to which frequencies and wavenumbers can be determined and which will alias into others. Conventional sampling theorems must be extended to account for both irregular data distributions and observational noise - the sampling irregularity making the system much more susceptible to noise than in regularly sampled cases. The problem is formulated here in terms of least-squares and applied to spacecraft in 10-day and 17-day repeating orbits. The 'diamond-pattern' laid down spatially in such repeating orbits means that either repeat period adequately samples the spatial variables, but the slow overall temporal coverage in the 17-day pattern leads to much greater uncertainty than in the shorter repeat cycle. The result is not definitive and it is not concluded that a 10-day orbit repeat is the most appropriate one. A major conclusion, however, is that different orbital choices have potentially quite different sampling characteristics which need to be analyzed in terms of the spectral characteristics of the moving sea surface.
The Nimbus 6 data catalog. Volume 11: 1 March - 30 April 1977, data orbits 8410 through 9226
NASA Technical Reports Server (NTRS)
1977-01-01
Operations of various experiments during the reporting period are summarized. Orbital elements, data availability times, anomalies in the data, geographic location, and time of data are tabulated. Montages obtained by infrared and microwave radiometers are included.
The Nimbus 6 data catalog. Volume 9: Data orbits 6803 through 7619, 1 November - 31 December 1976
NASA Technical Reports Server (NTRS)
1977-01-01
Operations of various experiments during the reporting period are summarized. Orbital elements, data availability times, anomalies in the data, geographic location, and time of data are tabulated. Montages obtained by infrared and microwave radiometers are included.
The Nimbus 6 data catalog. Volume 10: 1 January - 28 February 1977, data orbits 7620-8409
NASA Technical Reports Server (NTRS)
1977-01-01
Operations of various experiments during the reporting period are summarized. Orbital elements, data availability times, anomalies in the data, geographic location, and time of data are tabulated. Montages obtained by infrared and microwave radiometers are included.
Spin-Orbit Coupling and the Conservation of Angular Momentum
ERIC Educational Resources Information Center
Hnizdo, V.
2012-01-01
In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…
An expert system for diagnosing anomalies of spacecraft
NASA Technical Reports Server (NTRS)
Lauriente, Michael; Durand, Rick; Vampola, AL; Koons, Harry C.; Gorney, David
1994-01-01
Although the analysis of anomalous behavior of satellites is difficult because it is a very complex process, it is important to be able to make an accurate assessment in a timely manner when the anomaly is observed. Spacecraft operators may have to take corrective action or to 'safe' the spacecraft; space-environment forecasters may have to assess the environmental situation and issue warnings and alerts regarding hazardous conditions, and scientists and engineers may want to gain knowledge for future designs to mitigate the problems. Anomalies can be hardware problems, software errors, environmentally induced, or even the cause of workmanship. Spacecraft anomalies attributable to electrostatic discharges have been known to cause command errors. A goal is to develop an automated system based on this concept to reduce the number of personnel required to operate large programs or missions such as Hubble Space Telescope (HST) and Mission to Planet Earth (MTPE). Although expert systems to detect anomalous behavior of satellites during operations are established, diagnosis of the anomaly is a complex procedure and is a new development.
Profile-based adaptive anomaly detection for network security.
Zhang, Pengchu C. (Sandia National Laboratories, Albuquerque, NM); Durgin, Nancy Ann
2005-11-01
As information systems become increasingly complex and pervasive, they become inextricably intertwined with the critical infrastructure of national, public, and private organizations. The problem of recognizing and evaluating threats against these complex, heterogeneous networks of cyber and physical components is a difficult one, yet a solution is vital to ensuring security. In this paper we investigate profile-based anomaly detection techniques that can be used to address this problem. We focus primarily on the area of network anomaly detection, but the approach could be extended to other problem domains. We investigate using several data analysis techniques to create profiles of network hosts and perform anomaly detection using those profiles. The ''profiles'' reduce multi-dimensional vectors representing ''normal behavior'' into fewer dimensions, thus allowing pattern and cluster discovery. New events are compared against the profiles, producing a quantitative measure of how ''anomalous'' the event is. Most network intrusion detection systems (IDSs) detect malicious behavior by searching for known patterns in the network traffic. This approach suffers from several weaknesses, including a lack of generalizability, an inability to detect stealthy or novel attacks, and lack of flexibility regarding alarm thresholds. Our research focuses on enhancing current IDS capabilities by addressing some of these shortcomings. We identify and evaluate promising techniques for data mining and machine-learning. The algorithms are ''trained'' by providing them with a series of data-points from ''normal'' network traffic. A successful algorithm can be trained automatically and efficiently, will have a low error rate (low false alarm and miss rates), and will be able to identify anomalies in ''pseudo real-time'' (i.e., while the intrusion is still in progress, rather than after the fact). We also build a prototype anomaly detection tool that demonstrates how the techniques might
Efficient orbit integration by orbital longitude methods
NASA Astrophysics Data System (ADS)
Fukushima, Toshio
Recently we developed a new formulation of numerical integration of orbital motion named manifold correction methods. The main trick is to keep rigorously the consistency of some physical relations such as that of the orbital energy, of the orbital angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is done by applying a sort of correction to the integrated variables at every integration step. Typical methods of correction are certain geometric transformation such as the spatial scaling and the spatial rotation, which are commonly used in the comparison of reference frames, or mathematically-reasonable operations such as the modularization of angle variables into the standard domain [-π, π). The finally-evolved form of the manifold correction methods is the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In the unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset time of which depends on the type and the magnitude of perturbations. This feature is also realized for highly eccentric orbits by applying the same idea to the KS-regularization. Expecially the introduction of time element greatly enhances the performance of numerical integration of KS-regularized orbits whether the scaling is applied or not.
Regularization schemes and the multiplicative anomaly
NASA Astrophysics Data System (ADS)
Evans, T. S.
1999-06-01
Elizalde, Vanzo, and Zerbini have shown that the effective action of two free Euclidean scalar fields in flat space contains a `multiplicative anomaly' when ζ-function regularization is used. This is related to the Wodzicki residue. I show that there is no anomaly when using a wide range of other regularization schemes and that the anomaly can be removed by an unusual choice of renormalization scales. I define new types of anomalies and show that they have similar properties. Thus multiplicative anomalies encode no novel physics. They merely illustrate some dangerous aspects of ζ-function and Schwinger proper time regularization schemes.
Orbit sequential estimation using the unified state model
NASA Astrophysics Data System (ADS)
Neto, Ernesto Vieira
1994-02-01
The hodographic theory, developed first by Hamilton/Mobius in the middle of the nineteenth century and reintroduced by Altman in the 1960's, is presented in this work as the basis for the orbital unified state model in the orbit determination of artificial satellites. The full model defines the trajectory and attitude dynamics of an orbital spacecraft and enables efficient and rapid machine computation for mission analysis, orbit determination, and prediction. In this work, the orbital part of the model, together with the Kalman filter, is implemented for the orbit determination problem and the results are compared with conventional formulations.
Identification of a magnetic anomaly at Jupiter from satellite footprints
NASA Astrophysics Data System (ADS)
Grodent, Denis
2004-07-01
Repeated imaging of Jupiter's aurora has shown that the northern main oval has a distorted 'kidney bean' shape in the general range of 90-140? System III longitude, which appears unchanged since 1994. While it is more difficult to observe the conjugate regions in the southern aurora, no corresponding distortion appears in the south. Recent improved accuracy in locating the satellite footprint auroral emissions has provided new information about the geometry of Jupiter's magnetic field in this and other areas. The study of the magnetic field provides us with insight into the state of matter and the dynamics deep down Jupiter. There is currently no other way to do this from orbit. The persistent pattern of the main oval implies a disturbance of the local magnetic field, and the increased latitudinal separation of the locus of satellite footprints from each other and from the main oval implies a locally weaker field strength. It is possible that these phenomena result from a magnetic anomaly in Jupiter's intrinsic magnetic field, as was proposed by A. Dessler in the 1970's. There is presently only limited evidence from the scarcity of auroral footprints observed in this longitude range. We propose to obtain HST UV images with specific observing geometries of Jupiter to determine the locations of the auroral footprints of Io, Europa, and Ganymede in cycle 13 to accurately determine the magnetic field geometry in the suggested anomaly region, and to either confirm or refute the suggestion of a local magnetic anomaly.
Congenital anomalies in the baboon (Papio spp.)
Fox, Benjamin; Owston, Michael A.; Kumar, Shyamesh; Dick, Edward J.
2011-01-01
Background A comprehensive survey of the prevalence of congenital anomalies in baboons has not been previously reported. We report the congenital anomalies observed over a 26-year period in a large captive baboon colony. Methods A computer search was performed for all baboon congenital anomalies identified at necropsy and recorded on necropsy submissions. Results We identified 198 congenital anomalies in 166 baboons from 9,972 necropsies (1.66% of total necropsies). The nervous, urogenital, musculoskeletal, and cardiovascular systems were most commonly affected. The most common organs affected were the brain, bone, heart, testicle, kidney, penis, aorta, and skeletal muscle. The most frequent congenital anomalies were blindness, seizures, and hydrocephalus. Conclusions The baboon has an overall frequency of congenital anomalies similar to humans and other nonhuman primates. Although the most frequently affected systems are similar, congenital anomalies involving the digestive system appear to be less common in the baboon. PMID:21332757
NASA Technical Reports Server (NTRS)
1988-01-01
One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.
A periodic table for black hole orbits
Levin, Janna; Perez-Giz, Gabe
2008-05-15
Understanding the dynamics around rotating black holes is imperative to the success of future gravitational wave observatories. Although integrable in principle, test-particle orbits in the Kerr spacetime can also be elaborate, and while they have been studied extensively, classifying their general properties has been a challenge. This is the first in a series of papers that adopts a dynamical systems approach to the study of Kerr orbits, beginning with equatorial orbits. We define a taxonomy of orbits that hinges on a correspondence between periodic orbits and rational numbers. The taxonomy defines the entire dynamics, including aperiodic motion, since every orbit is in or near the periodic set. A remarkable implication of this periodic orbit taxonomy is that the simple precessing ellipse familiar from planetary orbits is not allowed in the strong-field regime. Instead, eccentric orbits trace out precessions of multileaf clovers in the final stages of inspiral. Furthermore, for any black hole, there is some point in the strong-field regime past which zoom-whirl behavior becomes unavoidable. Finally, we sketch the potential application of the taxonomy to problems of astrophysical interest, in particular its utility for computationally intensive gravitational wave calculations.
Introducing Earth's Orbital Eccentricity
ERIC Educational Resources Information Center
Oostra, Benjamin
2015-01-01
Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…
ERIC Educational Resources Information Center
Pauling, Linus; McClure, Vance
1970-01-01
Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)
NASA Technical Reports Server (NTRS)
Rea, F. G.; Warmke, J. M.
1976-01-01
Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.
Anomaly and the self-energy of electric charges
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Zelnikov, Andrei
2012-11-01
We study the self-energy of a charged particle located in a static D-dimensional gravitational field. We show that the energy functional for this problem is invariant under an infinite dimensional (gauge) group of transformations parametrized by one scalar function of (D-1)—variables. We demonstrate that the problem of the calculation of the self-energy for a pointlike charge is equivalent to the calculation of the fluctuations ⟨ψ2⟩ for an effective (D-1)—dimensional Euclidean quantum field theory. Using point-splitting regularization we obtain an expression for the self-energy and show that it possesses anomalies. Explicit calculation of the self-energy and its anomaly is done for the higher dimensional Majumdar-Papapetrou spacetimes.
Developmental anomalies of the skin.
Bellet, Jane Sanders
2013-02-01
This paper focuses on the diagnosis and management of developmental anomalies of the skin that may be seen early in life. Common locations include the head, nose, preauricular area of the face, neck, and spine. Those that occur in or near the midline can be more serious because of possible intracranial connections. Radiologic imaging of the areas of involvement is often important; computed tomography (CT) scans can delineate bony defects; whereas, magnetic resonance imaging (MRI) more clearly defines intracranial connections. Occult spinal dysraphism can be suspected when certain cutaneous signs are present.
Anomaly detection for internet surveillance
NASA Astrophysics Data System (ADS)
Bouma, Henri; Raaijmakers, Stephan; Halma, Arvid; Wedemeijer, Harry
2012-06-01
Many threats in the real world can be related to activity of persons on the internet. Internet surveillance aims to predict and prevent attacks and to assist in finding suspects based on information from the web. However, the amount of data on the internet rapidly increases and it is time consuming to monitor many websites. In this paper, we present a novel method to automatically monitor trends and find anomalies on the internet. The system was tested on Twitter data. The results showed that it can successfully recognize abnormal changes in activity or emotion.
NASA Technical Reports Server (NTRS)
Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.; Sarantos, M.
2012-01-01
We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.
Proboscis lateralis-like appendage: description of a new facial anomaly.
Arora, Garima; Arora, Vipin; Chawla, Deepak
2011-04-01
Proboscis lateralis is a rare craniofacial anomaly characterized by a trunk-like process attached to the medial portion of the orbital roof on the affected side. We report a case, which, though resembling proboscis lateralis in some ways, has certain unique features. This case had an appendage arising from the right malar region with a central tract lined by stratified squamous epithelium. It had erectile properties and was communicating with an enlarged ipsilateral maxillary sinus. Because of these characteristic features it appears to be a new, as yet unreported, facial anomaly. PMID:21200312
Spherical earth gravity and magnetic anomaly analysis by equivalent point source inversion
NASA Technical Reports Server (NTRS)
Von Frese, R. R. B.; Hinze, W. J.; Braile, L. W.
1981-01-01
To facilitate geologic interpretation of satellite elevation potential field data, analysis techniques are developed and verified in the spherical domain that are commensurate with conventional flat earth methods of potential field interpretation. A powerful approach to the spherical earth problem relates potential field anomalies to a distribution of equivalent point sources by least squares matrix inversion. Linear transformations of the equivalent source field lead to corresponding geoidal anomalies, pseudo-anomalies, vector anomaly components, spatial derivatives, continuations, and differential magnetic pole reductions. A number of examples using 1 deg-averaged surface free-air gravity anomalies of POGO satellite magnetometer data for the United States, Mexico, and Central America illustrate the capabilities of the method.
Autonomous Orbit Determination between a Lunar Satellite and a Distant Retrograde Orbit Probe
NASA Astrophysics Data System (ADS)
Hou, Xiyun; Tang, Jingshi; Liu, Lin; Liu, Peng
Currently, orbit determination of lunar satellites heavily rely on ground stations on the Earth. The observation data suffers from problems such as low accuracy and bad visibility. An efficient way to release the burden of the ground stations and to enhance the observation accuracy is to use the inter-satellite range data between two lunar satellites. However, a well-known problem of only using this type of data is the overall rotation of the orbital plane (undetermined orbit inclination, ascending nod and perigee). Some external reference sources should be introduced into the system to avoid the overall rotation. Recently, an interesting idea is to use a probe around the Earth-Moon CLP (collinear libration point) as the reference source. The orbit of the CLP probe is unknown a priori. It is determined simultaneously with the lunar satellite’s orbit by using the inter-satellite range data between them. There are many advantages of this idea, but also some problems. One main problem is caused by the strong instability of the motions around the CLPs. Probes usually need a frequent orbit control, but the accuracy of the orbit determination of the CLP probes from a short arc between two maneuvers is usually unsatisfied. In this contribution, another kind of special probe other than the CLP probe is considered. It lies on a DRO (distant retrograde orbit) around the Moon. The DROs usually have much better stability property than the CLP orbits, so DRO probes don’t need a frequent orbit control. At the same time, our studies show that the OD accuracy is comparable to that of the CLP probe. The work is firstly done in the CRTBP (circular restricted three-body problem) model, by studying the OD results of different amplitude (both in plane and out of plane) for the DROs. Then, the study is generated to the real force model of the Earth-Moon system.
Astrodynamics. Volume 1 - Orbit determination, space navigation, celestial mechanics.
NASA Technical Reports Server (NTRS)
Herrick, S.
1971-01-01
Essential navigational, physical, and mathematical problems of space exploration are covered. The introductory chapters dealing with conic sections, orientation, and the integration of the two-body problem are followed by an introduction to orbit determination and design. Systems of units and constants, as well as ephemerides, representations, reference systems, and data are then dealt with. A detailed attention is given to rendezvous problems and to differential processes in observational orbit correction, and in rendezvous or guidance correction. Finally, the Laplacian methods for determining preliminary orbits, and the orbit methods of Lagrange, Gauss, and Gibbs are reviewed.
Orbital debris: A technical assessment
NASA Technical Reports Server (NTRS)
Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav
1995-01-01
To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.
NASA Technical Reports Server (NTRS)
Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim
2012-01-01
Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.
Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis
NASA Technical Reports Server (NTRS)
Slojkowski, Steven E.
2014-01-01
LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.
Efficient orbit integration by orbital longitude methods
NASA Astrophysics Data System (ADS)
Fukushima, T.
2005-09-01
Triggered by the desire to investigate numerically the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correction methods. The main trick is to keep rigorously the consistency of some physical relations such as that of the orbital energy, of the orbital angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is done by applying a sort of correction to the integrated variables at every integration step. Typical methods of correction are certain geometric transformation such as the spatial scaling and the spatial rotation, which are commonly used in the comparison of reference frames, or mathematically-reasonable operations such as the modularization of angle variables into the standard domain [-π,π). The finally-evolved form of the manifold correction methods is the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In the unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset time of which depends on the type and the magnitude of perturbations. This feature is also realized for highly eccentric orbits by applying the same idea to the KS-regularization. Especially the introduction of time element greatly enhances the performance of numerical integration of KS-regularized orbits whether the scaling is applied or not.
Conductivity Anomalies in Central Europe
NASA Astrophysics Data System (ADS)
Neska, Anne
2016-01-01
This paper is a review of studies which, by applying the magnetotelluric, geomagnetic deep sounding, and magnetovariational sounding methods (the latter refers to usage of the horizontal magnetic tensor), investigate Central Europe for zones of enhanced electrical conductivity. The study areas comprise the region of the Trans-European Suture Zone (i.e. the south Baltic region and Poland), the North German Basin, the German and Czech Variscides, the Pannonian Basin (Hungary), and the Polish, Slovakian, Ukrainian, and Romanian Carpathians. This part of the world is well investigated in terms of data coverage and of the density of published studies, whereas the certainty that the results lead to comprehensive interpretations varies within the reviewed literature. A comparison of spatially coincident or adjacent studies reveals the important role that the data coverage of a distinct conductivity anomaly plays for the consistency of results. The encountered conductivity anomalies are understood as linked to basin sediments, asthenospheric upwelling, large differences in lithospheric age, and—this concerns most of them, which all concentrate in the middle crust—tectonic boundaries that developed during all mountain building phases that have taken place on the continent.
Multimodality imaging of vascular anomalies.
Restrepo, Ricardo
2013-03-01
Vascular malformations and hemangiomas are common in children but remain a source of confusion during diagnosis, in part because of the lack of a uniform terminology. With the existing treatments for hemangiomas and vascular malformations, it is important to make the correct diagnosis initially to prevent adverse physical and emotional sequelae in not only the child but also the family. The diagnosis of vascular malformations is made primarily by the clinician and based on the physical exam. Imaging is carried out using predominantly ultrasound (US) and magnetic resonance imaging (MRI), which are complementary modalities. In most cases of vascular anomalies, US is the first line of imaging as it is readily available, less expensive, lacks ionizing radiation and does not require sedation. MRI is also of great help for further characterizing the lesions. Conventional arteriography is reserved for cases that require therapeutic intervention, more commonly for arteriovenous malformations. Radiographs usually play no role in diagnosing vascular anomalies in children. In this article, the author describes the terminology and types of hemangiomas and vascular malformations and their clinical, histological features, as well as the imaging approach and appearance.
Lukasik, S; Betkowski, A; Cyran-Rymarz, A; Szuber, D
1995-01-01
Diseases of the orbital cavity require more attention because of its specific anatomic structure and placement. Their curing requires cooperation of many medical specialties. Analysis consider orbital fractures, mainly caused by car accidents (69.2%). The next half of them consider inflammatory processes and tumor in equal numbers. Malignant tumors of orbital cavity occur most frequently (48.0%), less frequent are pseudotumors--pseudotumor orbitae (36.0%) and rare--malignant ones (16.0%). Malignant tumors more frequently infiltrate the orbit in neighborhood (63.3%), less frequently they come out from orbit tissue (16.7%). It should be emphasized that the number of orbit inflammations decreases in subsequent years, whereas occurrence of orbit tumors increases. PMID:9454170
A case of odontogenic orbital cellulitis causing blindness by severe tension orbit.
Park, Chang Hyun; Jee, Dong Hyun; La, Tae Yoon
2013-02-01
We report a very rare case of odontogenic orbital cellulitis causing blindness by severe tension orbit. A 41-yr old male patient had visited the hospital due to severe periorbital swelling and nasal stuffiness while he was treated for a periodontal abscess. He was diagnosed with odontogenic sinusitis and orbital cellulitis, and treated with antibiotics. The symptoms were aggravated and emergency sinus drainage was performed. On the next day, a sudden decrease in vision occurred with findings of ischemic optic neuropathy and central retinal artery occlusion. Deformation of the eyeball posterior pole into a cone shape was found from the orbital CT. A high-dose steroid was administered immediately resulting in improvements of periorbital swelling, but the patient's vision had not recovered. Odontogenic orbital cellulitis is relatively rare, but can cause blindness via rapidly progressing tension orbit. Therefore even the simplest of dental problems requires careful attention.
de Lara-Castells, M P; Villarreal, P; Delgado-Barrio, G; Mitrushchenkov, A O
2009-11-21
An efficient full-configuration-interaction nuclear orbital treatment has been recently developed as a benchmark quantum-chemistry-like method to calculate ground and excited "solvent" energies and wave functions in small doped DeltaE(est) clusters (N < or = 4) [M. P. de Lara-Castells, G. Delgado-Barrio, P. Villarreal, and A. O. Mitrushchenkov, J. Chem. Phys. 125, 221101 (2006)]. Additional methodological and computational details of the implementation, which uses an iterative Jacobi-Davidson diagonalization algorithm to properly address the inherent "hard-core" He-He interaction problem, are described here. The convergence of total energies, average pair He-He interaction energies, and relevant one- and two-body properties upon increasing the angular part of the one-particle basis set (expanded in spherical harmonics) has been analyzed, considering Cl(2) as the dopant and a semiempirical model (T-shaped) He-Cl(2)(B) potential. Converged results are used to analyze global energetic and structural aspects as well as the configuration makeup of the wave functions, associated with the ground and low-lying "solvent" excited states. Our study reveals that besides the fermionic nature of (3)He atoms, key roles in determining total binding energies and wave-function structures are played by the strong repulsive core of the He-He potential as well as its very weak attractive region, the most stable arrangement somehow departing from the one of N He atoms equally spaced on equatorial "ring" around the dopant. The present results for N = 4 fermions indicates the structural "pairing" of two (3)He atoms at opposite sides on a broad "belt" around the dopant, executing a sort of asymmetric umbrella motion. This pairing is a compromise between maximizing the (3)He-(3)He and the He-dopant attractions, and suppressing at the same time the "hard-core" repulsion. Although the He-He attractive interaction is rather weak, its contribution to the total energy is found to scale as a
The magnetic anomalies significantrly reduce the Martian ionospheric escape rate
NASA Astrophysics Data System (ADS)
Fedorov, A.; Barabash, S.; Sauvaud, J.-A.
2012-09-01
Looking forward to the MAVEN mission, it seems very useful to return to Mars Express data to refresh an important problem of Martian atmosphere escape: what role the crustal magnetic field may play in this process? There are several publications on this topic with completely opposite conclusions. The last hybrid simulations show that the magnetic anomalies significantly reduce the ion loss rate during solar minimum. We are trying to use a new approach to Mars Express IMA data analysis to check how it is possible. On the base of a statistical study of the ion distributions in the Martian magnetotail we show that the characteristic accelerated ions are not associated with the magnetic anomalies but only with interplanetary magnetic field clock angle. Moreover the magnetic anomalies screen and deviate the escaping flow leading to reducing of the total loss rate. We have calculated a "quasiexperimental" escaping rate in an assumption of the total absence of the magnetic anomalies. We are comparing this value with a real measured escape rate.
Gaussian Process for Activity Modeling and Anomaly Detection
NASA Astrophysics Data System (ADS)
Liao, W.; Rosenhahn, B.; Yang, M. Ying
2015-08-01
Complex activity modeling and identification of anomaly is one of the most interesting and desired capabilities for automated video behavior analysis. A number of different approaches have been proposed in the past to tackle this problem. There are two main challenges for activity modeling and anomaly detection: 1) most existing approaches require sufficient data and supervision for learning; 2) the most interesting abnormal activities arise rarely and are ambiguous among typical activities, i.e. hard to be precisely defined. In this paper, we propose a novel approach to model complex activities and detect anomalies by using non-parametric Gaussian Process (GP) models in a crowded and complicated traffic scene. In comparison with parametric models such as HMM, GP models are nonparametric and have their advantages. Our GP models exploit implicit spatial-temporal dependence among local activity patterns. The learned GP regression models give a probabilistic prediction of regional activities at next time interval based on observations at present. An anomaly will be detected by comparing the actual observations with the prediction at real time. We verify the effectiveness and robustness of the proposed model on the QMUL Junction Dataset. Furthermore, we provide a publicly available manually labeled ground truth of this data set.
Implementation of a General Real-Time Visual Anomaly Detection System Via Soft Computing
NASA Technical Reports Server (NTRS)
Dominguez, Jesus A.; Klinko, Steve; Ferrell, Bob; Steinrock, Todd (Technical Monitor)
2001-01-01
The intelligent visual system detects anomalies or defects in real time under normal lighting operating conditions. The application is basically a learning machine that integrates fuzzy logic (FL), artificial neural network (ANN), and generic algorithm (GA) schemes to process the image, run the learning process, and finally detect the anomalies or defects. The system acquires the image, performs segmentation to separate the object being tested from the background, preprocesses the image using fuzzy reasoning, performs the final segmentation using fuzzy reasoning techniques to retrieve regions with potential anomalies or defects, and finally retrieves them using a learning model built via ANN and GA techniques. FL provides a powerful framework for knowledge representation and overcomes uncertainty and vagueness typically found in image analysis. ANN provides learning capabilities, and GA leads to robust learning results. An application prototype currently runs on a regular PC under Windows NT, and preliminary work has been performed to build an embedded version with multiple image processors. The application prototype is being tested at the Kennedy Space Center (KSC), Florida, to visually detect anomalies along slide basket cables utilized by the astronauts to evacuate the NASA Shuttle launch pad in an emergency. The potential applications of this anomaly detection system in an open environment are quite wide. Another current, potentially viable application at NASA is in detecting anomalies of the NASA Space Shuttle Orbiter's radiator panels.
Sea level anomalies exacerbate beach erosion
NASA Astrophysics Data System (ADS)
Theuerkauf, Ethan J.; Rodriguez, Antonio B.; Fegley, Stephen R.; Luettich, Richard A.
2014-07-01
Sea level anomalies are intra-seasonal increases in water level forced by meteorological and oceanographic processes unrelated to storms. The effects of sea level anomalies on beach morphology are unknown but important to constrain because these events have been recognized over large stretches of continental margins. Here, we present beach erosion measurements along Onslow Beach, a barrier island on the U.S. East Coast, in response to a year with frequent sea level anomalies and no major storms. The anomalies enabled extensive erosion, which was similar and in most places greater than the erosion that occurred during a year with a hurricane. These results highlight the importance of sea level anomalies in facilitating coastal erosion and advocate for their inclusion in beach-erosion models and management plans. Sea level anomalies amplify the erosive effects of accelerated sea level rise and changes in storminess associated with global climate change.
Orbital-spin-coupled fluctuations in spinel vanadate MnV2O4
NASA Astrophysics Data System (ADS)
Nii, Yoichi; Abe, Nobuyuki; Arima, Taka-hisa
2013-02-01
The elastic properties of a spinel vanadate MnV2O4 that has an orbital degree of freedom in the triply degenerate t2g orbital at V3+(d2) sites are investigated by ultrasonic pulse-echo measurement. Considerable softening of the shear elastic constant (C11-C12)/2 is observed as the temperature approaches the first-order transition from the high-temperature orbital-disordered cubic phase to the low-temperature orbital-ordered tetragonal phase. The softening is attributed to fluctuations between dyz and dzx. Moreover, the elastic anomaly is found to be sensitive to the external magnetic field, revealing a coupling between spin and orbital fluctuations. The elastic anomaly is well reproduced theoretically based on Landau theory and elucidates a characteristic precursor phenomenon in MnV2O4.
Cheng, Kai-Wen; Chen, Yie-Tarng; Fang, Wen-Hsien
2015-12-01
This paper presents a hierarchical framework for detecting local and global anomalies via hierarchical feature representation and Gaussian process regression (GPR) which is fully non-parametric and robust to the noisy training data, and supports sparse features. While most research on anomaly detection has focused more on detecting local anomalies, we are more interested in global anomalies that involve multiple normal events interacting in an unusual manner, such as car accidents. To simultaneously detect local and global anomalies, we cast the extraction of normal interactions from the training videos as a problem of finding the frequent geometric relations of the nearby sparse spatio-temporal interest points (STIPs). A codebook of interaction templates is then constructed and modeled using the GPR, based on which a novel inference method for computing the likelihood of an observed interaction is also developed. Thereafter, these local likelihood scores are integrated into globally consistent anomaly masks, from which anomalies can be succinctly identified. To the best of our knowledge, it is the first time GPR is employed to model the relationship of the nearby STIPs for anomaly detection. Simulations based on four widespread datasets show that the new method outperforms the main state-of-the-art methods with lower computational burden. PMID:26394423
Debendox does not cause the Poland anomaly.
David, T J
1982-06-01
The suggestion that Debendox may cause the Poland anomaly is refuted by a study of the antenatal drug exposure in 46 cases of the Poland anomaly and 32 cases of isolated absence of the pectoralis major. Debendox had been prescribed in one case of the Poland anomaly and in one case of isolated pectoralis absence, but in neither was the compound given during organogenesis. In none of the 78 cases could Debendox be causally implicated.
Debendox does not cause the Poland anomaly.
David, T J
1982-01-01
The suggestion that Debendox may cause the Poland anomaly is refuted by a study of the antenatal drug exposure in 46 cases of the Poland anomaly and 32 cases of isolated absence of the pectoralis major. Debendox had been prescribed in one case of the Poland anomaly and in one case of isolated pectoralis absence, but in neither was the compound given during organogenesis. In none of the 78 cases could Debendox be causally implicated. PMID:7092316
SPICE Module for the Satellite Orbit Analysis Program (SOAP)
NASA Technical Reports Server (NTRS)
Coggi, John; Carnright, Robert; Hildebrand, Claude
2008-01-01
A SPICE module for the Satellite Orbit Analysis Program (SOAP) precisely represents complex motion and maneuvers in an interactive, 3D animated environment with support for user-defined quantitative outputs. (SPICE stands for Spacecraft, Planet, Instrument, Camera-matrix, and Events). This module enables the SOAP software to exploit NASA mission ephemeris represented in the JPL Ancillary Information Facility (NAIF) SPICE formats. Ephemeris types supported include position, velocity, and orientation for spacecraft and planetary bodies including the Sun, planets, natural satellites, comets, and asteroids. Entire missions can now be imported into SOAP for 3D visualization, playback, and analysis. The SOAP analysis and display features can now leverage detailed mission files to offer the analyst both a numerically correct and aesthetically pleasing combination of results that can be varied to study many hypothetical scenarios. The software provides a modeling and simulation environment that can encompass a broad variety of problems using orbital prediction. For example, ground coverage analysis, communications analysis, power and thermal analysis, and 3D visualization that provide the user with insight into complex geometric relations are included. The SOAP SPICE module allows distributed science and engineering teams to share common mission models of known pedigree, which greatly reduces duplication of effort and the potential for error. The use of the software spans all phases of the space system lifecycle, from the study of future concepts to operations and anomaly analysis. It allows SOAP software to correctly position and orient all of the principal bodies of the Solar System within a single simulation session along with multiple spacecraft trajectories and the orientation of mission payloads. In addition to the 3D visualization, the user can define numeric variables and x-y plots to quantitatively assess metrics of interest.
PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS
Brown, Robert A.
2009-09-10
We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevant 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in
The orbiter mate/demate device
NASA Technical Reports Server (NTRS)
Miller, A. J.; Binkley, W. H.
1985-01-01
The numerous components and systems of the space shuttle orbiter mate/demate device (MDD) are discussed. Special emphasis is given, mechanisms and mechanical systems to discuss in general their requirements, functions, and design; and, where applicable, to relate any unusual problems encountered during the initial concept studies, final design, and construction are discussed. The MDD and its electrical, machinery, and mechanical systems, including the main hoisting system, power operated access service platform, wind restrain and adjustment mechanism, etc., were successfully designed and constructed. The MDD was used routinely during the initial orbiter-747 approach and landing test and the more recent orbiter flight tests recovery and mate operations.
Vascular anomalies: differential diagnosis and mimickers.
Garzon, Maria C; Weitz, Nicole; Powell, Julie
2016-03-01
Vascular anomalies are very common in children and encompass a wide spectrum of diseases. Many vascular anomalies can be mistaken for infantile hemangioma (IH). In addition, there is a variety of rare disorders including benign and malignant tumors that may mimic IH and other types of vascular anomalies. Understanding the clinical features, natural history, and typical clinical course of different types of vascular anomalies is essential in order to make the correct diagnosis and guide management. Radiologic imaging plays an important role in establishing the diagnosis; and when the diagnosis remains in doubt, a biopsy performed by a surgical specialist with expertise may prove to be lifesaving. PMID:27607326
The magnetic anomaly of the Ivreazone
NASA Technical Reports Server (NTRS)
Albert, G.
1979-01-01
A magnetic field survey was made in the Ivreazone in 1969/70. The results were: significant anomaly of the vertical intensity is found. It follows the basic main part of the Ivrea-Verbano zone and continues to the south. The width of the anomaly is about 10 km, the maximum measures about +800 gamma. The model interpretation shows that possibly the anomaly belongs to an amphibolitic body, which in connection with the Ivrea-body was found by deep seismic sounding. Therefore, the magnetic anomaly provides further evidence for the conception that the Ivrea-body has to be regarded as a chip of earthmantle material pushed upward by tectonic processes.
Satellite Magnetic Anomalies of Africa and Europe
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.
1984-01-01
Preliminary MAGSAT scalar magnetic anomaly data of Africa, Europe, and adjacent marine areas were reduced to the pole assuming a constant inducing Earth's magnetic field of 60,000 nT. This process leads to a consistent anomaly data set free from marked variations in directional and intensity effects of the Earth's magnetic field over this extensive region. The resulting data are correlated with long wave length-pass filtered free-air gravity anomalies; regional heat flow, and tectonic data to investigate magatectonic elements and the region's geologic history. Magnetic anomalies are related to both ancient as well as more recent Cenozoic structural features.
Consistent anomalies of the induced W gravities
NASA Astrophysics Data System (ADS)
Abud, Mario; Ader, Jean-Pierre; Cappiello, Luigi
1996-02-01
The BRST anomaly which may be present in the induced Wn gravity quantized on the light-cone is evaluated in the geometrical framework of Zucchini. The cocycles linked by the cohomology of the BRST operator to the anomaly are straightforwardly calculated thanks to the analogy between this formulation and the Yang-Mills theory. We give also a conformally covariant formulation of these quantities including the anomaly, which is valid on arbitrary Riemann surfaces. The example of the W3 theory is discussed and a comparison with other candidates for the anomaly available in the literature is presented.
Galilean anomalies and their effect on hydrodynamics
NASA Astrophysics Data System (ADS)
Jain, Akash
2016-03-01
We study flavor and gravitational anomalies in Galilean theories coupled to torsional Newton-Cartan backgrounds. We establish that the relativistic anomaly inflow mechanism with an appropriately modified anomaly polynomial can be used to generate these anomalies. Similar to the relativistic case, we find that Galilean anomalies also survive only in even dimensions. Further, these anomalies only effect the flavor and rotational symmetries of a Galilean theory; in particular, the Milne boost symmetry remains nonanomalous. We also extend the transgression machinery used in relativistic fluids to Galilean fluids, and use it to determine how these anomalies affect the constitutive relations of a Galilean fluid. Unrelated to the Galilean fluids, we propose an analogue of the off-shell second law of thermodynamics for relativistic fluids, to include torsion and a conserved spin current in the vielbein formalism. Interestingly, we find that even in the absence of spin current and torsion the entropy currents in the two formalisms are different: while the usual entropy current gets a contribution from the gravitational anomaly, the entropy current in the vielbein formalism does not have any anomaly-induced part.
Spectral Methods for Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Parker, R. L.; Gee, J. S.
2013-12-01
Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic anomalies. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic anomalies can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when energy leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic anomaly and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this
Targeting chaotic orbits to the Moon through recurrence
NASA Astrophysics Data System (ADS)
Bollt, Erik M.; Meiss, James D.
1995-02-01
Transport times for a chaotic system are highly sensitive to initial conditions and parameter values. In a previous paper, we presented a technique to find rough orbits (epsilon chains) that achieve a desired transport rapidly. The strategy is to build the epsilon chain from segments of a long orbit - the point is that long orbits have recurrences in neighborhoods where faster orbits must also pass. If a local hyperbolicity condition is satisfied, then a nearby shadow orbit may be constructed with significantly smaller errors. In this paper, we modify the technique to find real orbits, in configuration space, of the restricted three body problem. We find a chaotic Earth-Moon transfer orbit that achieves ballistic capture and that requires 38% less total velocity boost than a comparable Hohmann transfer orbit.
NASA Astrophysics Data System (ADS)
Wu, Zhigang; Jiang, Fanghua; Li, Junfeng
2015-11-01
terrestrial planets are always similar to those around the Earth. Finally, one constellation of the artificial frozen orbit and the artificial Sun-synchronous orbit is designed by using the multiobjective evolutionary algorithm based on decomposition (MOEA/D), in which a Gaussian process is used to build a surrogate model in lieu of the expensive problem. Simulation shows that the control scheme effectively extends the orbital parameters' selection ranges of the two types of artificial orbits around terrestrial planets, compared with the natural frozen orbit and Sun-synchronous orbit. The optimization result of the constellation orbits around Mars shows that the optimization framework is effective.
Classical anomalies for spinning particles
NASA Astrophysics Data System (ADS)
Gamboa, Jorge; Plyushchay, Mikhail
1998-02-01
We discuss the phenomenon of classical anomaly. It is observed for 3D Berezin-Marinov (BM), Barducci-Casalbuoni-Lusanna (BCL) and Cortés-Plyushchay-Velázquez (CPV) pseudoclassical spin particle models. We show that quantum mechanically these different models correspond to the same P, T-invariant system of planar fermions, but the quantum system has global symmetries being not reproducible classically in full in any of the models. We demonstrate that the specific U(1) gauge symmetry characterized by the opposite coupling constants of spin s = + {1}/{2} and s = - {1}/{2} states has a natural classical analog in the CPV model but can be reproduced in the BM and BCL models in an obscure and rather artificial form. We also show that the BM and BCL models quantum mechanically are equivalent in any odd-dimensional space-time, but describe different quantum systems in even space-time dimensions.
Orbit Determination of the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.
2011-01-01
We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.
Mean gravity anomalies and sea surface heights derived from GEOS-3 altimeter data
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1978-01-01
Approximately 2000 GEOS-3 altimeter arcs were analyzed to improve knowledge of the geoid and gravity field. An adjustment procedure was used to fit the sea surface heights (geoid undulations) in an adjustment process that incorporated cross-over constraints. The error model used for the fit was a one or two parameter model which was designed to remove altimeter bias and orbit error. The undulations on the adjusted arcs were used to produce geoid maps in 20 regions. The adjusted data was used to derive 301 5 degree equal area anomalies and 9995 1 x 1 degree anomalies in areas where the altimeter data was most dense, using least squares collocation techniques. Also emphasized was the ability of the altimeter data to imply rapid anomaly changes of up to 240 mgals in adjacent 1 x 1 degree blocks.
Orbital inflammation: Corticosteroids first.
Dagi Glass, Lora R; Freitag, Suzanne K
2016-01-01
Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.
Comparison between the recent U.S. composite magnetic anomaly map and Magsat anomaly data
NASA Technical Reports Server (NTRS)
Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.; Hinze, W. J.; Phillips, J. D.
1985-01-01
The present investigation is concerned with a comparison of Magsat data with a Composite Magnetic Anomaly Map (CMAM) of the conterminous U.S. reported by Zietz (1982). The investigation was initiated to test the validity of the satellite measurements, and to provide insights into error or problems in either data set. It is found that upward continuation of the digital CMAM data is not in qualitative agreement with the Magsat map. However, if a least squares fit polynomial surface is taken out prior to upward continuation, there is improved quantitative agreement between a residual CMAM and Magsat. Causes for the remaining differences between the residual, upward continued CMAM and the Magsat map are also considered.
Comparison between the recent U.S. composite magnetic anomaly map and Magsat anomaly data
NASA Astrophysics Data System (ADS)
Schnetzler, C. C.; Taylor, P. T.; Langel, R. A.; Hinze, W. J.; Phillips, J. D.
1985-02-01
The present investigation is concerned with a comparison of Magsat data with a Composite Magnetic Anomaly Map (CMAM) of the conterminous U.S. reported by Zietz (1982). The investigation was initiated to test the validity of the satellite measurements, and to provide insights into error or problems in either data set. It is found that upward continuation of the digital CMAM data is not in qualitative agreement with the Magsat map. However, if a least squares fit polynomial surface is taken out prior to upward continuation, there is improved quantitative agreement between a residual CMAM and Magsat. Causes for the remaining differences between the residual, upward continued CMAM and the Magsat map are also considered.
Magnetospheric Multiscale (MMS) Orbit
This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...
NASA Technical Reports Server (NTRS)
Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)
1999-01-01
This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.
Introducing Earth's Orbital Eccentricity
NASA Astrophysics Data System (ADS)
Oostra, Benjamin
2015-12-01
Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.
NASA Technical Reports Server (NTRS)
2008-01-01
This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.
All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.
Phoenix will land just south of Mars's north polar ice cap.
Elastic anomaly around a ferromagnetic transition in Y1-xCaxTiO3 ( x=0-0.2)
NASA Astrophysics Data System (ADS)
Morita, Shinya; Higaki, Haruhiro; Ishii, Isao; Takemura, Masaki; Iga, Fumitoshi; Takabatake, Toshiro; Tsubota, Masami; Suzuki, Takashi
2006-08-01
We measured temperature dependence of elastic modulus for the high-quality single crystals of Y1-xCaxTiO3 ( x=0,0.1 and 0.2) using an ultrasonic technique. A step like elastic anomaly due to the volume magnetostriction induced by a ferromagnetic transition was observed in longitudinal C11 and C33 for x=0 and 0.1, although no anomaly was observed for x=0.2. With increasing x, the magnitude of anomaly decreases, reflecting that the amplitude of the antiferromagnetic orbital order parameter, where the orbital ordering is the origin of the ferromagnetism of YTiO 3, is reduced with increasing Ca concentration.
NASA Technical Reports Server (NTRS)
1977-01-01
Captive-active tests consisted of three mated carrier aircraft/Orbiter flights with an active manned Orbiter. The objectives of this series of flights were to (1) verify the separation profile, (2) verify the integrated structure, aerodynamics, and flight control system, (3) verify Orbiter integrated system operations, and (4) refine and finalize carrier aircraft, Orbiter crew, and ground procedures in preparation for free flight tests. A summary description of the flights is presented with assessments of flight test requirements, and of the performance operations, and of significant flight anomalies is included.
A controlled study of associated dental anomalies.
Baccetti, T
1998-06-01
The purpose of this study was to reveal patterns of association among seven types of dental anomalies (aplasia of second premolars, small size of maxillary lateral incisors, infraocclusion of primary molars, enamel hypoplasia, ectopic eruption of first molars, supernumerary teeth, and palatal displacement of maxillary canines) in an untreated orthodontic population, ages 7 to 14. The prevalence of associated tooth anomalies in seven groups of 100 subjects selected according to one primarily diagnosed dental anomaly was compared with the prevalence of the examined dental anomalies in a control group of 1,000 subjects. Significant reciprocal associations (p < 0.005) were found among five of the anomalies (aplasia of second premolars, small size of maxillary lateral incisors, infraocclusion of primary molars, enamel hypoplasia, and palatal displacement of maxillary canines), suggesting a common genetic origin for these conditions. Supernumerary teeth appeared to be a separate etiological entity with respect to all other examined tooth anomalies. The existence of associations between different tooth anomalies is clinically relevant, as the early diagnosis of one anomaly may indicate an increased risk for others. PMID:9622764
Photodiode and photomultiplier areal sensitivity anomalies
NASA Technical Reports Server (NTRS)
Youngbluth, O., Jr.
1977-01-01
Several silicon photodiodes and photomultipliers were tested to determine signal variations as a light spot was scanned over the photosensitive surface of these detectors. Qualitative and quantitative data is presented to demonstrate the areal sensitivity anomalies. These anomalies are related back to the fabrication techniques of the manufacturers.
Sources of Near Side Lunar Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Richmond, Nicola C.; Hood, Lon L.; Halekas, J. S.; Mitchell, D. L.; Lin, R. P.; Acuna, M. H.; Binder, A.B.
2002-01-01
Lunar Prospector magnetometer data has been used to identify a number of nearside magnetic anomalies. Some of the features identified appear to correlate with impact ejecta, supporting a basin ejecta origin to the nearside anomalies. Additional information is contained in the original extended abstract.
Anomalies of Nuclear Criticality, Revision 6
Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.
2010-02-19
This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.
Fetal cardiac anomalies and genetic syndromes.
Pajkrt, Eva; Weisz, Boaz; Firth, Helen V; Chitty, Lyn S
2004-12-30
Cardiac anomalies may occur in isolation or can be part of a genetic syndrome. In this article, we describe some of the genetic syndromes commonly associated with cardiac anomalies where there are other sonographic features that may aid accurate prenatal diagnosis.
Indicated preterm birth for fetal anomalies.
Craigo, Sabrina D
2011-10-01
Between 2% and 3% of pregnancies are complicated by fetal anomalies. For most anomalies, there is no advantage to late preterm or early-term delivery. The risks of maternal or fetal complication are specific for each anomaly. Very few anomalies pose potential maternal risk. Some anomalies carry ongoing risks to the fetus, such as an increased risk of fetal death, hemorrhage, or organ damage. In a limited number of select cases, the advantages of late preterm or early-term birth may include avoiding an ongoing risk of fetal death related to the anomaly, allowing delivery in a controlled setting with availability of subspecialists and allowing direct care for the neonate with organ injury. The optimal gestational age for delivery cannot be determined for all pregnancies complicated by fetal anomalies. For most pregnancies complicated by anomalies, there is no change to obstetrical management regarding timing of delivery. For those that may benefit from late preterm or early-term delivery, variability exists such that each management plan should be individualized. PMID:21962626
Scintigraphic demonstration of a gallbladder anomaly
Singh, A.; Holmes, R.A.; Witten, D.M.
1985-01-01
Congenital anomalies of the gallbladder are uncommon. In this paper the authors report a case of double gallbladder in which intravenous cholecystokinin analog (CCK) was used to confirm the presence of two ectopic gallbladders rather than other biliary tract anomalies or dilated hepatic ducts.
Problems and Inconsistencies with Kolb's Learning Styles.
ERIC Educational Resources Information Center
Garner, Iain
2000-01-01
Argues that there are substantial problems with the theoretical foundations of David Kolb's Learning Style Inventory (LSI). Notes anomalies with the relationship between Carl Jung's style and Kolb's use of possibility processing. Argues that these anomalies make it impossible for defining firm conclusions about the nature of Kolb's learning style.…
Epidemiology of satellite anomalies and failures: A subsystem-centric approach
NASA Astrophysics Data System (ADS)
Haga, Rachel A.; Saleh, Joseph H.
2011-09-01
Epidemiology is the basic science of public health and it investigates the distribution, frequency, rates, and drivers of health-related states and illnesses in specific populations. We adopt in this article some of Epidemiology's concepts and approaches, and instead of human population and diseases, we focus on a satellite population and its on-orbit anomalies and failures. We analyze an extensive database of geosynchronous satellite anomalies and failures (retrospective cohort study) and develop for each spacecraft subsystem a health scorecard synthesizing its track record of on-orbit failure events. We include results on the severity of the failure events in each subsystem's health scorecard (distribution and rates). We also provide for each subsystem its failure concentration ratio or the extent to which a single satellite in our population has experienced multiple failure events from the same subsystem. Next, having derived health scorecards for ten satellite subsystems identified in the database, we conduct a comparative analysis of the propensity and severity of failures between these subsystems. We identify for example several major subsystems driving on-orbit failure events, such as the Thruster/Fuel, the Solar Array, the Payload, and the Telemetry Tracking and Command (TTC) subsystems. In addition, we find that the Control Processor, the Mechanisms, and the Solar Array Deployment subsystems are sufficiently robust and contribute a minor share to the overall failure events on orbit. Furthermore, we find for example that while the attitude control subsystem and the batteries exhibit roughly similar average failure rates, they have very different behaviors in terms of the severity of anomalies they experience: the former primarily failing "soft" (minor anomaly), whereas the latter, the batteries most often fail "hard" with major non-repairable degradations that affect operation of a satellite on a permanent basis. The results here provided should prove
A general time element using Cartesian coordinates: Eccentric orbit integration
NASA Technical Reports Server (NTRS)
Janin, G.
1980-01-01
A general time element, valid with any arbitrary independent variables, and used with Cartesian coordinates for the integration of the elliptic motion in orbits, is examined. The derivation of the time element from a set of canonical elements of the Delaunay type, developed in the extended phase space, is presented. The application of the method using an example of a transfer orbit for a geosynchronous mission is presented. The eccentric and elliptic anomaly are utilized as the independent variable. The reduction of the in track error resulting from using Cartesian coordinates with the time element is reported.
Design of an unmanned, reusable vehicle to de-orbit debris in Earth orbit
NASA Technical Reports Server (NTRS)
Aziz, Shahed; Cunningham, Timothy W.; Moore-Mccassey, Michelle
1990-01-01
The space debris problem is becoming more important because as orbital missions increase, the amount of debris increases. It was the design team's objective to present alternative designs and a problem solution for a deorbiting vehicle that will alleviate the problem by reducing the amount of large debris in earth orbit. The design team was asked to design a reusable, unmanned vehicle to de-orbit debris in earth orbit. The design team will also construct a model to demonstrate the system configuration and key operating features. The alternative designs for the unmanned, reusable vehicle were developed in three stages: selection of project requirements and success criteria, formulation of a specification list, and the creation of alternatives that would satisfy the standards set forth by the design team and their sponsor. The design team selected a Chain and Bar Shot method for deorbiting debris in earth orbit. The De-orbiting Vehicle (DOV) uses the NASA Orbital Maneuvering Vehicle (OMV) as the propulsion and command modules with the deorbiting module attached to the front.
Anomaly detection using classified eigenblocks in GPR image
NASA Astrophysics Data System (ADS)
Kim, Min Ju; Kim, Seong Dae; Lee, Seung-eui
2016-05-01
Automatic landmine detection system using ground penetrating radar has been widely researched. For the automatic mine detection system, system speed is an important factor. Many techniques for mine detection have been developed based on statistical background. Among them, a detection technique employing the Principal Component Analysis(PCA) has been used for clutter reduction and anomaly detection. However, the PCA technique can retard the entire process, because of large basis dimension and a numerous number of inner product operations. In order to overcome this problem, we propose a fast anomaly detection system using 2D DCT and PCA. Our experiments use a set of data obtained from a test site where the anti-tank and anti- personnel mines are buried. We evaluate the proposed system in terms of the ROC curve. The result shows that the proposed system performs much better than the conventional PCA systems from the viewpoint of speed and false alarm rate.
Isotopic anomalies from neutron reactions during explosive carbon burning
NASA Technical Reports Server (NTRS)
Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.
1978-01-01
The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.
Global magnetic anomaly and aurora of Neptune
Cheng, A.F. )
1990-09-01
The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than Earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates atmospheric drift shadows within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an Earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora.
An impactor origin for lunar magnetic anomalies.
Wieczorek, Mark A; Weiss, Benjamin P; Stewart, Sarah T
2012-03-01
The Moon possesses strong magnetic anomalies that are enigmatic given the weak magnetism of lunar rocks. We show that the most prominent grouping of anomalies can be explained by highly magnetic extralunar materials from the projectile that formed the largest and oldest impact crater on the Moon: the South Pole-Aitken basin. The distribution of projectile materials from a model oblique impact coincides with the distribution of magnetic anomalies surrounding this basin, and the magnetic properties of these materials can account for the intensity of the observed anomalies if they were magnetized in a core dynamo field. Distal ejecta from this event can explain the origin of isolated magnetic anomalies far from this basin.
A New, Principled Approach to Anomaly Detection
Ferragut, Erik M; Laska, Jason A; Bridges, Robert A
2012-01-01
Intrusion detection is often described as having two main approaches: signature-based and anomaly-based. We argue that only unsupervised methods are suitable for detecting anomalies. However, there has been a tendency in the literature to conflate the notion of an anomaly with the notion of a malicious event. As a result, the methods used to discover anomalies have typically been ad hoc, making it nearly impossible to systematically compare between models or regulate the number of alerts. We propose a new, principled approach to anomaly detection that addresses the main shortcomings of ad hoc approaches. We provide both theoretical and cyber-specific examples to demonstrate the benefits of our more principled approach.
Regional magnetic anomaly constraints on continental rifting
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.
1985-01-01
Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.
Orbits and Interiors of Planets
NASA Astrophysics Data System (ADS)
Batygin, Konstantin
2012-05-01
The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing
NASA Astrophysics Data System (ADS)
Shestakov, A.; Vaisberg, O. L.
2012-12-01
Hot Flow Anomalies (HFAs) were first discovered in 1980s. These are active processes of hot plasma bulks formation that usually occur at planetary bow shocks. Though HFA were studied for long time it is still not clear if they are reforming structures and what defines particular internal structure of HFA. Our study is based on the Interball Tail Probe data. We used 10-sec measurements of complex plasma analyzer SCA-1 and 1-second magnetic field measurements, and ELECTRON spectrometer 2-dimensional measurements with 3,75-sec temporal resolution. Five anomalies that were observed on the basis of well resolved structure for which we obtained displacement velocity along bow shock, flow velocities within HFA, and estimated the size. We checked if main criteria of HFA formation were fulfilled for each case. The following criteria were satisfied: motional electric field direction was directed toward current sheet at least at one side of it, bow shock was quasi-perpendicular at least at one side of HFA, and angle between current sheet normal and solar wind velocity was large. Convection velocities of plasma within HFA were calculated by subtracting average velocity from measured ion convection velocities along spacecraft trajectory through anomaly. These convection velocities viewed in coordinate system of shock normal and calculated IMF current sheet normal clearly show separation of HFA region in 3 parts: leading part, narrow central part, and trailing part. Ion velocity distributions confirm this triple structure of HFA. Thomsen et al. [1986] identified the region within HFA that they called "internal recovery". It looks like central region that we call narrow central part. Vaisberg et al. [1999] discussed separation of HFA into 2 distinct parts that correspond to leading and trailing parts. Judging from plasma convection pattern within HFAs we assumed that "internal recovery" region is the source of energy and momentum around interplanetary current sheet crossing. HFA
Initial Mapping of Mercury's Crustal Magnetic Anomalies: Relationship to the Caloris Impact Basin
NASA Astrophysics Data System (ADS)
Hood, L. L.
2015-12-01
78 low-altitude orbit passes of MESSENGER calibrated magnetometer data from August and September of 2014 have been applied to produce approximate maps of the crustal magnetic field covering latitudes of 50-80N and longitudes of 160-320E. Only anomalies with wavelengths < 215 km were mapped and amplitudes were adjusted for differences in spacecraft altitude using an equivalent source dipole technique. Maps of the radial field component show that the strongest large-scale anomalies are located in the western part of the mapped region just north and northeast of the 1550-km diameter Caloris impact basin centered at 164E, 30N. When adjusted to a common altitude of ~ 40 km, the strongest single anomaly (~170E, 60N; > 6 nT) lies over a smooth plains unit that extends north-northeastward from Caloris. A second anomaly (185E, 53N, > 5 nT) lies on the Odin Formation, interpreted as Caloris ejecta (e.g., Guest and Greeley, USGS, 1983). As previously reported by Johnson et al. (Science, 2015), a third anomaly (~ 212E, 61N, > 5 nT) also lies over a smooth plains unit, Suisse Planitia. Most smooth plains units on Mercury may have a volcanic origin (Denevi et al., JGR, 2013). However, as discussed by the latter authors, a subset of the smooth plains occur in an annulus around Caloris and could have an impact-related origin, involving fluidized basin ejecta deposition (Wilhelms, Icarus, 1976). A similar origin is widely accepted for the lunar Cayley smooth plains, which dominate the geology near the Apollo 16 landing site where the strongest surface magnetic fields were measured and which correlate best with orbital anomalies on the lunar near side (Halekas et al., JGR, 2001). Two of the remaining three anomalies (220E, 68N, > 4 nT; 234E, 77N, > 5 nT) lie over an older intermediate plains unit with an uncertain interpretation, possibly consisting of impact basin and crater ejecta as well as volcanic materials (Grolier and Boyce, USGS, 1984). In view of the proximity of the
World Digital Magnetic Anomaly Map, development towards the Second Edition. (Invited)
NASA Astrophysics Data System (ADS)
Korhonen, J. V.
2009-12-01
Magnetic anomalies are small deviations in the Earth’s main magnetic field, caused by variation of magnetization in the uppermost lithosphere. Magnetic anomalies provide spatial key information for understanding the structure and evolution of the Earths crust. In practice these anomalies are used e.g. for assessment and prospecting of geological natural resources and planning of land use. A common way to calculate a magnetic anomaly value has been to subtract International Geomagnetic Reference Field (IGRF) from a total field measurement that is cleaned from short term variation of the Earth's magnetic field. World Digital Magnetic Anomaly Map (WDMAM) is a collaborative project between member organizations of International Association of Geomagnetism and Aeronomy (IAGA) and the Commission for Geological Map of the World (CGMW). The First Edition of the map was published in 2007. It consisted of a paper map 1:50 Million and a 3 minutes global grid of total field anomalies at an altitude of 5 km above the geoid. The First Edition was aimed to compile as much as possible available land and sea magnetic data, and homogenize it by comparing anomalies with a satellite magnetic lithospheric field model. This first version was prepared in a tight schedule, to show the usefulness of the map to the community and to form a basis for later development and future editions of the map. Hence, much was left to be improved for the second edition, including sparse coverage in two continents and all southern seas. The satellite models were understood to gain more detail in near future when the CHAMP-satellite would reach lower orbits, and hence higher resolution. The SWARM-satellite constellation was seen to produce even more suitable data in a few years thereafter. Ocean magnetic data sets required careful processing and leveling. The method of homogenization of anomalies included replacing long wavelength information by satellite model spectral data, and hence rejecting
NASA Astrophysics Data System (ADS)
Svoren, J.; Neslusan, L.; Porubcan, V.
1994-08-01
All known parent bodies of meteor showers belong to bodies moving in high-eccentricity orbits (e => 0.5). Recently, asteroids in low-eccentricity orbits (e < 0.5) approaching the Earth's orbit, were suggested as another population of possible parent bodies of meteor streams. This paper deals with the problem of calculation of meteor radiants connected with the bodies in low-eccentricity orbits from the point of view of optimal results depending on the method applied. The paper is a continuation of our previous analysis of high-eccentricity orbits (Svoren, J., Neslusan, L., Porubcan, V.: 1993, Contrib. Astron. Obs. Skalnate Pleso 23, 23). Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys. 7, 261) was applied. D <= 0.1 indicates a very good fit of orbits, 0.1 < D <= 0.2 is considered for a good fit and D > 0.2 means that the fit is rather poor and the change of orbit unrealistic. The optimal method, i.e. the one which results in the smallest D values for the population of low-eccentricity orbits, is that of adjusting the orbit by varying both the eccentricity and perihelion distance. A comparison of theoretical radiants obtained by various methods was made for typical representatives from each group of the NEA (near-Earth asteroids) objects.
Bayesian Statistical Approach To Binary Asteroid Orbit Determination
NASA Astrophysics Data System (ADS)
Dmitrievna Kovalenko, Irina; Stoica, Radu S.
2015-08-01
Orbit determination from observations is one of the classical problems in celestial mechanics. Deriving the trajectory of binary asteroid with high precision is much more complicate than the trajectory of simple asteroid. Here we present a method of orbit determination based on the algorithm of Monte Carlo Markov Chain (MCMC). This method can be used for the preliminary orbit determination with relatively small number of observations, or for adjustment of orbit previously determined.The problem consists on determination of a conditional a posteriori probability density with given observations. Applying the Bayesian statistics, the a posteriori probability density of the binary asteroid orbital parameters is proportional to the a priori and likelihood probability densities. The likelihood function is related to the noise probability density and can be calculated from O-C deviations (Observed minus Calculated positions). The optionally used a priori probability density takes into account information about the population of discovered asteroids. The a priori probability density is used to constrain the phase space of possible orbits.As a MCMC method the Metropolis-Hastings algorithm has been applied, adding a globally convergent coefficient. The sequence of possible orbits derives through the sampling of each orbital parameter and acceptance criteria.The method allows to determine the phase space of every possible orbit considering each parameter. It also can be used to derive one orbit with the biggest probability density of orbital elements.
Analyzing Shuttle Orbiter Trajectories
NASA Technical Reports Server (NTRS)
Lear, W. M.
1986-01-01
LRBET4 program best-estimated-of-trajectory (BET) calculation for post-flight trajectory analysis of Shuttle orbiter. Produces estimated measurements for comparing predicted and actual trajectory of Earth-orbiting spacecraft. Kalman filter and smoothing filter applied to input data to estimate state vector, reduce noise, and produce BET. LRBET4 written in FORTRAN IV for batch execution.
Titan Orbiter Aerorover Mission
NASA Technical Reports Server (NTRS)
Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.
2001-01-01
We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.
Orbital Shape Representations.
ERIC Educational Resources Information Center
Kikuchi, Osamu; Suzuki, Keizo
1985-01-01
Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)
NASA Technical Reports Server (NTRS)
Rochelle, W. C.; Battley, H. H.; Grimaud, J. E.; Tillian, D. J.; Murray, L. P.; Lueke, W. J.; Heaton, T. M.
1983-01-01
Thermal performance of the Space Shuttle Orbiter Thermal Protection System (TPS) has been verified by extensive ground testing at the NASA/JSC 10 MW Atmospheric Reentry Materials and Structures Evaluation Facility (ARMSEF). Major test programs have included current TPS materials (RSI, RCC and ablators) and advanced TPS materials (AFRSI and FRCI-12). Testing by electrically heating a gas mixture simulating air and expanding it (supersonically or hypersonically) through channel or conical nozzles has produced simulated thermal and pressure environments on models representative of the Orbiter TPS acreage and penetration regions. Tests have established Orbiter TPS thermal design requirements, verified Orbiter TPS thermal performance, and supported Orbiter TPS flight anomaly investigations and resolutions.
Orbital perturbations of low orbiters in a dusty Martian atmosphere
NASA Astrophysics Data System (ADS)
Haranas, Ioannis Iraklis
2010-12-01
A study of a low-orbit polar satellite around Mars is carried out using Lagrangian mechanics principles and Lagrange's planetary equations in which both conservative and non-conservative forces are modelled. Our work differs from state-of-the-art Newtonian and Gaussian methods and enhances the modelling of the perturbing potentials arising from areopotential anomalies: atmospheric drag, dust drag, solar radiation pressure, relativistic effects, third-body, and solid-body tides on Mars. Because we are interested in analytical/numerical expressions and results, the Lagrangian method constitutes a more suitable analytical approach than does the traditional Gaussian. The resulting system of equations of motion for the satellite provides the time derivatives of the orbital elements as functions of the gravitational harmonic coefficients and all the perturbing effects we considered. When the time derivatives of the orbital elements are available from satellite tracking observations, the equations can be used in a least-squares estimation process to provide, the gravitational field in terms of harmonic coefficients. To understand the utility of the derived equations of motion, we obtain analytical expressions for the gravitational harmonics of degree and order six. These expressions involve, among other variables, the inclination and eccentricity functions and their time derivatives. In particular, the numerical calculation of high-degree/order eccentricity and inclination functions are known to be numerically unstable. To remove such instabilities, we use an effective and efficient transformation that relates the eccentricity functions to Hansen coefficients, using Bessel functions of the first kind. Similarly, the inclination functions are transformed into hypergeometric series. Analytical and numerical tests show that the transformed inclination and eccentricity functions are remarkably stable up to degree/order eighty. This is very important when the Lagrangian method
NASA Technical Reports Server (NTRS)
1998-01-01
The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.
Remote Controlled Orbiter Capability
NASA Technical Reports Server (NTRS)
Garske, Michael; delaTorre, Rafael
2007-01-01
The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.
Specific Heat Anomalies in Solids Described by a Multilevel Model
NASA Astrophysics Data System (ADS)
Souza, Mariano de; Paupitz, Ricardo; Seridonio, Antonio; Lagos, Roberto E.
2016-04-01
In the field of condensed matter physics, specific heat measurements can be considered as a pivotal experimental technique for characterizing the fundamental excitations involved in a certain phase transition. Indeed, phase transitions involving spin (de Souza et al. Phys. B Condens. Matter 404, 494 (2009) and Manna et al. Phys. Rev. Lett. 104, 016403 (2010)), charge (Pregelj et al. Phys. Rev. B 82, 144438 (2010)), lattice (Jesche et al. Phys. Rev. B 81, 134525 (2010)) (phonons) and orbital degrees of freedom, the interplay between ferromagnetism and superconductivity (Jesche et al. Phys. Rev. B 86, 020501 (2012)), Schottky-like anomalies in doped compounds (Lagos et al. Phys. C Supercond. 309, 170 (1998)), electronic levels in finite correlated systems (Macedo and Lagos J. Magn. Magn. Mater. 226, 105 (2001)), among other features, can be captured by means of high-resolution calorimetry. Furthermore, the entropy change associated with a first-order phase transition, no matter its nature, can be directly obtained upon integrating the specific heat over T, i.e., C( T)/ T, in the temperature range of interest. Here, we report on a detailed analysis of the two-peak specific heat anomalies observed in several materials. Employing a simple multilevel model, varying the spacing between the energy levels Δ i = ( E i - E 0) and the degeneracy of each energy level g i , we derive the required conditions for the appearance of such anomalies. Our findings indicate that a ratio of {Δ }2/{Δ }1thickapprox 10 between the energy levels and a high degeneracy of one of the energy levels define the two-peaks regime in the specific heat. Our approach accurately matches recent experimental results. Furthermore, using a mean-field approach, we calculate the specific heat of a degenerate Schottky-like system undergoing a ferromagnetic (FM) phase transition. Our results reveal that as the degeneracy is increased the Schottky maximum in the specific heat becomes narrow while the peak
Vitellointestinal Duct Anomalies in Infancy
Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep
2016-01-01
Background: Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5–9 of intrauterine life. Methods: This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Results: Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: patent VID in 9 (56.25%) patients, umbilical cyst in 2(12.25%), umbilical granuloma in 2 (12.25%), and Meckel diverticulum as content of hernia sac in obstructed umbilical hernia in 1 (6.25%) patient. Two patients with umbilical fistula had severe electrolyte disturbance and died without surgical intervention. Conclusion: Persistent VID may have varied presentations in infancy. High output umbilical fistula and excessive bowel prolapse demand urgent surgical intervention to avoid morbidity and mortality. PMID:27433448
Data Mining for Anomaly Detection
NASA Technical Reports Server (NTRS)
Biswas, Gautam; Mack, Daniel; Mylaraswamy, Dinkar; Bharadwaj, Raj
2013-01-01
The Vehicle Integrated Prognostics Reasoner (VIPR) program describes methods for enhanced diagnostics as well as a prognostic extension to current state of art Aircraft Diagnostic and Maintenance System (ADMS). VIPR introduced a new anomaly detection function for discovering previously undetected and undocumented situations, where there are clear deviations from nominal behavior. Once a baseline (nominal model of operations) is established, the detection and analysis is split between on-aircraft outlier generation and off-aircraft expert analysis to characterize and classify events that may not have been anticipated by individual system providers. Offline expert analysis is supported by data curation and data mining algorithms that can be applied in the contexts of supervised learning methods and unsupervised learning. In this report, we discuss efficient methods to implement the Kolmogorov complexity measure using compression algorithms, and run a systematic empirical analysis to determine the best compression measure. Our experiments established that the combination of the DZIP compression algorithm and CiDM distance measure provides the best results for capturing relevant properties of time series data encountered in aircraft operations. This combination was used as the basis for developing an unsupervised learning algorithm to define "nominal" flight segments using historical flight segments.
Band gap anomaly and topological properties in lead chalcogenides
NASA Astrophysics Data System (ADS)
Simin, Nie; Xiao, Yan Xu; Gang, Xu; Zhong, Fang
2016-03-01
Band gap anomaly is a well-known issue in lead chalcogenides PbX (X = S, Se, Te, Po). Combining ab initio calculations and tight-binding (TB) method, we have studied the band evolution in PbX, and found that the band gap anomaly in PbTe is mainly related to the high on-site energy of Te 5s orbital and the large s-p hopping originated from the irregular extended distribution of Te 5s electrons. Furthermore, our calculations show that PbPo is an indirect band gap (6.5 meV) semiconductor with band inversion at L point, which clearly indicates that PbPo is a topological crystalline insulator (TCI). The calculated mirror Chern number and surface states double confirm this conclusion. Project supported by the National Natural Science Foundation of China (Grant No. 11204359), the National Basic Research Program of China (Grant No. 2013CB921700), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).
The International Space Station Solar Alpha Rotary Joint Anomaly Investigation
NASA Technical Reports Server (NTRS)
Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.
2010-01-01
The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.
The International Space Station Solar Alpha Rotary Joint Anomaly Investigation
NASA Technical Reports Server (NTRS)
Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.
2010-01-01
The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A farreaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that the anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.
Dealing with Uncertainties in Initial Orbit Determination
NASA Technical Reports Server (NTRS)
Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato
2015-01-01
A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.
Distant retrograde orbits for the Moon's exploration
NASA Astrophysics Data System (ADS)
Sidorenko, Vladislav
We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large
NASA Astrophysics Data System (ADS)
Hood, Lon L.
2011-02-01
A re-examination of all available low-altitude LP magnetometer data confirms that magnetic anomalies are present in at least four Nectarian-aged lunar basins: Moscoviense, Mendel-Rydberg, Humboldtianum, and Crisium. In three of the four cases, a single main anomaly is present near the basin center while, in the case of Crisium, anomalies are distributed in a semi-circular arc about the basin center. These distributions, together with a lack of other anomalies near the basins, indicate that the sources of the anomalies are genetically associated with the respective basin-forming events. These central basin anomalies are difficult to attribute to shock remanent magnetization of a shocked central uplift and most probably imply thermoremanent magnetization of impact melt rocks in a steady magnetizing field. Iterative forward modeling of the single strongest and most isolated anomaly, the northern Crisium anomaly, yields a paleomagnetic pole position at 81° ± 19°N, 143° ± 31°E, not far from the present rotational pole. Assuming no significant true polar wander since the Crisium impact, this position is consistent with that expected for a core dynamo magnetizing field. Further iterative forward modeling demonstrates that the remaining Crisium anomalies can be approximately simulated assuming a multiple source model with a single magnetization direction equal to that inferred for the northernmost anomaly. This result is most consistent with a steady, large-scale magnetizing field. The inferred mean magnetization intensity within the strongest basin sources is ˜1 A/m assuming a 1-km thickness for the source layer. Future low-altitude orbital and surface magnetometer measurements will more strongly constrain the depth and/or thicknesses of the sources.
Drought, Alexandra; Wimalasundera, Ruwan; Holder, Susan
2015-08-01
The finding of bilateral congenital cataracts in the fetus is rare. We report bilateral congenital cataracts detected during the routine second trimester anomaly scan, which subsequently were found to be associated with other congenital anomalies and the parents opted for a termination of pregnancy. At post-mortem, Muscle-Eye Brain disease or Walker-Warburg Syndrome was considered likely, which are autosomal recessive congenital muscular dystrophy disorders associated with cerebral, cerebellar, muscle and eye anomalies. On ultrasound, bilateral cataracts appear as echogenic, solid areas within the fetal orbits. The examination of the fetal face and orbits plays an important role in confirming fetal well-being antenatally. We propose that it should become a routine part of the structural survey of fetal anatomy during the obstetric anomaly scan. This is especially important in pregnancies previously affected by fetal cataracts or pregnancies at risk of rare genetic syndromes. PMID:27433255
Drought, Alexandra; Wimalasundera, Ruwan; Holder, Susan
2015-08-01
The finding of bilateral congenital cataracts in the fetus is rare. We report bilateral congenital cataracts detected during the routine second trimester anomaly scan, which subsequently were found to be associated with other congenital anomalies and the parents opted for a termination of pregnancy. At post-mortem, Muscle-Eye Brain disease or Walker-Warburg Syndrome was considered likely, which are autosomal recessive congenital muscular dystrophy disorders associated with cerebral, cerebellar, muscle and eye anomalies. On ultrasound, bilateral cataracts appear as echogenic, solid areas within the fetal orbits. The examination of the fetal face and orbits plays an important role in confirming fetal well-being antenatally. We propose that it should become a routine part of the structural survey of fetal anatomy during the obstetric anomaly scan. This is especially important in pregnancies previously affected by fetal cataracts or pregnancies at risk of rare genetic syndromes.
Space Shuttle orbiter separation bolts
NASA Technical Reports Server (NTRS)
Ritchie, R. S.
1979-01-01
Evolution of the space shuttle from previous spacecraft systems dictated growth and innovative design of previously standard ordnance devices. Initially, one bolt design was programmed for both 747 and external tank application. However, during development and subsequent analyses, two distinct designs evolved. The unique requirements of both bolts include: high combined loading, redundant initiation, flush separation plane, self-righting and shank attenuation. Of particular interest are the test methods, problem areas, and use of subscale models which demonstrated feasibility at an early phase in the program. The techniques incorporated in the shuttle orbiter bolts are applicable to other mechanisms.
Orbital Causes of Incomitant Strabismus
Lueder, Gregg T.
2015-01-01
Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465
Thermal infrared anomalies of several strong earthquakes.
Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying
2013-01-01
In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728
Thermal infrared anomalies of several strong earthquakes.
Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying
2013-01-01
In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting.
NASA Technical Reports Server (NTRS)
Potter, Don; Serian, Charles; Sweet, Robert; Sapir, Babak; Gamez, Enrique; Mays, David
2008-01-01
The Problem Reporting System (PRS) is a Web application, running on two Web servers (load-balanced) and two database servers (RAID-5), which establishes a system for submission, editing, and sharing of reports to manage risk assessment of anomalies identified in NASA's flight projects. PRS consolidates diverse anomaly-reporting systems, maintains a rich database set, and incorporates a robust engine, which allows tracking of any hardware, software, or paper process by configuring an appropriate life cycle. Global and specific project administration and setup tools allow lifecycle tailoring, along with customizable controls for user, e-mail, notifications, and more. PRS is accessible via the World Wide Web for authorized user at most any location. Upon successful log-in, the user receives a customizable window, which displays time-critical 'To Do' items (anomalies requiring the user s input before the system moves the anomaly to the next phase of the lifecycle), anomalies originated by the user, anomalies the user has addressed, and custom queries that can be saved for future use. Access controls exist depending on a user's role as system administrator, project administrator, user, or developer, and then, further by association with user, project, subsystem, company, or item with provisions for business-to-business exclusions, limitations on access according to the covert or overt nature of a given project, all with multiple layers of filtration, as needed. Reporting of metrics is built in. There is a provision for proxy access (in which the user may choose to grant one or more other users to view screens and perform actions as though they were the user, during any part of a tracking life cycle - especially useful during tight build schedules and vacations to keep things moving). The system also provides users the ability to have an anomaly link to or notify other systems, including QA Inspection Reports, Safety, GIDEP (Government-Industry Data Exchange Program
Periodic orbits around areostationary points in the Martian gravity field
NASA Astrophysics Data System (ADS)
Liu, Xiao-Dong; Baoyin, Hexi; Ma, Xing-Rui
2012-05-01
This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.
Extended Duration Orbiter Medical Project
NASA Technical Reports Server (NTRS)
Leach, C. S.; Pool, S. L.; Sawin, C. F.; Nicogossian, A. E.
1990-01-01
The Extended Duration Orbiter (EDO) program addresses a need for more time to perform experiments and other tasks during Space Shuttle missions. As a part of this program, the Extended Duration Orbiter Medical Project (EDOMP) has been instituted to obtain information about physiologic effects of extending mission duration and the effectiveness of countermeasures against factors that might compromise crew health, safety, or performance on extended-duration missions. Only those investigations that address and characterize operational problems, develop countermeasures, or evaluate the effectiveness of countermeasures will be pursued. The EDOMP investigations will include flight-associated Detailed Supplementary Objectives as well as ground-based studies simulating the influence of microgravity. Investigator teams have been formed in the following areas: biomedical physiology, cardiovascular and fluid/electrolyte physiology, environmental health, muscle and exercise physiology, and neurophysiology. Major operational questions must be answered in each of these areas, and investigations have been designed to answer them. The EDO program will proceed only after countermeasures have been shown to be effective in preventing or mitigating the adverse changes they have been designed to attenuate. The program is underway and will continue on each Shuttle flight as the manifest builds toward a 16-day orbital flight.
Density-orbital embedding theory
Gritsenko, O. V.; Visscher, L.
2010-09-15
In the article density-orbital embedding (DOE) theory is proposed. DOE is based on the concept of density orbital (DO), which is a generalization of the square root of the density for real functions and fractional electron numbers. The basic feature of DOE is the representation of the total supermolecular density {rho}{sub s} as the square of the sum of the DO {phi}{sub a}, which represents the active subsystem A and the square root of the frozen density {rho}{sub f} of the environment F. The correct {rho}{sub s} is obtained with {phi}{sub a} being negative in the regions in which {rho}{sub f} might exceed {rho}{sub s}. This makes it possible to obtain the correct {rho}{sub s} with a broad range of the input frozen densities {rho}{sub f} so that DOE resolves the problem of the frozen-density admissibility of the current frozen-density embedding theory. The DOE Euler equation for the DO {phi}{sub a} is derived with the characteristic embedding potential representing the effect of the environment. The DO square {phi}{sub a}{sup 2} is determined from the orbitals of the effective Kohn-Sham (KS) system. Self-consistent solution of the corresponding one-electron KS equations yields not only {phi}{sub a}{sup 2}, but also the DO {phi}{sub a} itself.
Toward Continuous GPS Carrier-Phase Time Transfer: Eliminating the Time Discontinuity at an Anomaly.
Yao, Jian; Levine, Judah; Weiss, Marc
2015-01-01
The wide application of Global Positioning System (GPS) carrier-phase (CP) time transfer is limited by the problem of boundary discontinuity (BD). The discontinuity has two categories. One is "day boundary discontinuity," which has been studied extensively and can be solved by multiple methods [1-8]. The other category of discontinuity, called "anomaly boundary discontinuity (anomaly-BD)," comes from a GPS data anomaly. The anomaly can be a data gap (i.e., missing data), a GPS measurement error (i.e., bad data), or a cycle slip. Initial study of the anomaly-BD shows that we can fix the discontinuity if the anomaly lasts no more than 20 min, using the polynomial curve-fitting strategy to repair the anomaly [9]. However, sometimes, the data anomaly lasts longer than 20 min. Thus, a better curve-fitting strategy is in need. Besides, a cycle slip, as another type of data anomaly, can occur and lead to an anomaly-BD. To solve these problems, this paper proposes a new strategy, i.e., the satellite-clock-aided curve fitting strategy with the function of cycle slip detection. Basically, this new strategy applies the satellite clock correction to the GPS data. After that, we do the polynomial curve fitting for the code and phase data, as before. Our study shows that the phase-data residual is only ~3 mm for all GPS satellites. The new strategy also detects and finds the number of cycle slips by searching the minimum curve-fitting residual. Extensive examples show that this new strategy enables us to repair up to a 40-min GPS data anomaly, regardless of whether the anomaly is due to a data gap, a cycle slip, or a combination of the two. We also find that interference of the GPS signal, known as "jamming", can possibly lead to a time-transfer error, and that this new strategy can compensate for jamming outages. Thus, the new strategy can eliminate the impact of jamming on time transfer. As a whole, we greatly improve the robustness of the GPS CP time transfer.
Toward Continuous GPS Carrier-Phase Time Transfer: Eliminating the Time Discontinuity at an Anomaly.
Yao, Jian; Levine, Judah; Weiss, Marc
2015-01-01
The wide application of Global Positioning System (GPS) carrier-phase (CP) time transfer is limited by the problem of boundary discontinuity (BD). The discontinuity has two categories. One is "day boundary discontinuity," which has been studied extensively and can be solved by multiple methods [1-8]. The other category of discontinuity, called "anomaly boundary discontinuity (anomaly-BD)," comes from a GPS data anomaly. The anomaly can be a data gap (i.e., missing data), a GPS measurement error (i.e., bad data), or a cycle slip. Initial study of the anomaly-BD shows that we can fix the discontinuity if the anomaly lasts no more than 20 min, using the polynomial curve-fitting strategy to repair the anomaly [9]. However, sometimes, the data anomaly lasts longer than 20 min. Thus, a better curve-fitting strategy is in need. Besides, a cycle slip, as another type of data anomaly, can occur and lead to an anomaly-BD. To solve these problems, this paper proposes a new strategy, i.e., the satellite-clock-aided curve fitting strategy with the function of cycle slip detection. Basically, this new strategy applies the satellite clock correction to the GPS data. After that, we do the polynomial curve fitting for the code and phase data, as before. Our study shows that the phase-data residual is only ~3 mm for all GPS satellites. The new strategy also detects and finds the number of cycle slips by searching the minimum curve-fitting residual. Extensive examples show that this new strategy enables us to repair up to a 40-min GPS data anomaly, regardless of whether the anomaly is due to a data gap, a cycle slip, or a combination of the two. We also find that interference of the GPS signal, known as "jamming", can possibly lead to a time-transfer error, and that this new strategy can compensate for jamming outages. Thus, the new strategy can eliminate the impact of jamming on time transfer. As a whole, we greatly improve the robustness of the GPS CP time transfer. PMID:26958451
Toward Continuous GPS Carrier-Phase Time Transfer: Eliminating the Time Discontinuity at an Anomaly
Yao, Jian; Levine, Judah; Weiss, Marc
2015-01-01
The wide application of Global Positioning System (GPS) carrier-phase (CP) time transfer is limited by the problem of boundary discontinuity (BD). The discontinuity has two categories. One is “day boundary discontinuity,” which has been studied extensively and can be solved by multiple methods [1–8]. The other category of discontinuity, called “anomaly boundary discontinuity (anomaly-BD),” comes from a GPS data anomaly. The anomaly can be a data gap (i.e., missing data), a GPS measurement error (i.e., bad data), or a cycle slip. Initial study of the anomaly-BD shows that we can fix the discontinuity if the anomaly lasts no more than 20 min, using the polynomial curve-fitting strategy to repair the anomaly [9]. However, sometimes, the data anomaly lasts longer than 20 min. Thus, a better curve-fitting strategy is in need. Besides, a cycle slip, as another type of data anomaly, can occur and lead to an anomaly-BD. To solve these problems, this paper proposes a new strategy, i.e., the satellite-clock-aided curve fitting strategy with the function of cycle slip detection. Basically, this new strategy applies the satellite clock correction to the GPS data. After that, we do the polynomial curve fitting for the code and phase data, as before. Our study shows that the phase-data residual is only ~3 mm for all GPS satellites. The new strategy also detects and finds the number of cycle slips by searching the minimum curve-fitting residual. Extensive examples show that this new strategy enables us to repair up to a 40-min GPS data anomaly, regardless of whether the anomaly is due to a data gap, a cycle slip, or a combination of the two. We also find that interference of the GPS signal, known as “jamming”, can possibly lead to a time-transfer error, and that this new strategy can compensate for jamming outages. Thus, the new strategy can eliminate the impact of jamming on time transfer. As a whole, we greatly improve the robustness of the GPS CP time transfer
Shadowing Lemma and Chaotic Orbit Determination
NASA Astrophysics Data System (ADS)
Milani Comparetti, Andrea; Spoto, Federica
2015-08-01
Orbit determination is possible for a chaotic orbit of a dynamical system, given a finite set of observations, provided the initial conditions are at the central time. We test both the convergence of the orbit determination procedure and the behavior of the uncertainties as a function of the maximum number n of map iterations observed; this by using a simple discrete model, namely the standard map. Two problems appear: first, the orbit determination is made impossible by numerical instability beyond a computability horizon, which can be approximately predicted by a simple formula containing the Lyapounov time and the relative roundoff error. Second, the uncertainty of the results is sharply increased if a dynamical parameter (contained in the standard map formula) is added to the initial conditions as parameter to be estimated. In particular the uncertainty of the dynamical parameter, and of at least one of the initial conditions, decreases like n^a with a<0 but not large (of the order of unity). If only the initial conditions are estimated, their uncertainty decreases exponentially with n, thus it becomes very small. All these phenomena occur when the chosen initial conditions belong to a chaotic orbit (as shown by one of the well known Lyapounov indicators). If they belong to a non-chaotic orbit the computational horizon is much larger, if it exists at all, and the decrease of the uncertainty appears to be polynomial in all parameters, like n^a with a approximately 1/2; the difference between the case with and without dynamical parameter estimated disappears. These phenomena, which we can investigate in a simple model, have significant implications in practical problems of orbit determination involving chatic phenomena, such as the chaotic rotation state of a celestial body and a chaotic orbit of a planet-crossing asteroid undergoing many close approaches.
Analysis of Renal Anomalies in VACTERL Association
Cunningham, Bridget K.; Khromykh, Alina; Martinez, Ariel F.; Carney, Tyler; Hadley, Donald W.; Solomon, Benjamin D.
2014-01-01
VACTERL association refers to a combination of congenital anomalies that can include: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula with esophageal atresia, Renal anomalies (typically structural renal anomalies), and Limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least 3 component features of VACTERL and who had abdominal ultrasound performed) met criteria for analysis. Four other patients were additionally analyzed separately, with the hypothesis that subtle renal system anomalies may occur in patients who would not otherwise meet criteria for VACTERL association. Thirty-three (69%) of the 48 patients had a clinical manifestation affecting the renal system. The most common renal manifestation (RM) was vesicoureteral reflux (VUR) in addition to a structural defect (present in 27%), followed by unilateral renal agenesis (24%), and then dysplastic/multicystic kidneys or duplicated collected system (18% for each). Twenty-two (88%) of the 25 patients with a structural RM had an associated anorectal malformation. Individuals with either isolated lower anatomic anomalies, or both upper and lower anatomic anomalies were not statistically more likely to have a structural renal defect than those with isolated upper anatomic anomalies (p=0.22, p=0.284 respectively). Given the high prevalence of isolated VUR in our cohort, we recommend a screening VCUG or other imaging modality be obtained to evaluate for VUR if initial renal US shows evidence of obstruction or renal scarring, as well as ongoing evaluation of renal health. PMID:25196458
Simple control laws for low-thrust orbit transfers
NASA Technical Reports Server (NTRS)
Petropoulos, Anastassios E.
2003-01-01
Two methods are presented by which to determine both a thrust direction and when to apply thrust to effect specified changes in any of the orbit elements except for true anomaly, which is assumed free. The central body is assumed to be a point mass, and the initial and final orbits are assumed closed. Thrust, when on, is of a constant value, and specific impulse is constant. The thrust profiles derived from the two methods are not propellant-optimal, but are based firstly on the optimal thrust directions and location on the osculating orbit for changing each of the orbit elements and secondly on the desired changes in the orbit elements. Two examples of transfers are presented, one in semimajor axis and inclination, and one in semimajor axis and eccentricity. The latter compares favourably with a propellant-optimized transfer between the same orbits. The control laws have few input parameters, but can still capture the complexity of a wide variety of orbit transfers.
Orbital Evolution of Mass-transferring Eccentric Binary Systems. II. Secular Evolution
NASA Astrophysics Data System (ADS)
Dosopoulou, Fani; Kalogera, Vicky
2016-07-01
Finite eccentricities in mass-transferring eccentric binary systems can be explained by taking into account the mass loss and mass transfer processes that often occur in these systems. These processes can be treated as perturbations of the general two-body problem. The time-evolution equations for the semimajor axis and the eccentricity derived from perturbative methods are generally phase-dependent. The osculating semimajor axis and eccentricity change over the orbital timescale and are not easy to implement in binary evolution codes like MESA. However, the secular orbital element evolution equations can be simplified by averaging over the rapidly varying true anomalies. In this paper, we derive the secular time-evolution equations for the semimajor axis and the eccentricity for various mass loss/transfer processes using either the adiabatic approximation or the assumption of delta-function mass loss/transfer at periastron. We begin with the cases of isotropic and anisotropic wind mass loss. We continue with conservative and non-conservative non-isotropic mass ejection/accretion (including Roche-Lobe-Overflow) for both point-masses and extended bodies. We conclude with the case of phase-dependent mass accretion. Comparison of the derived equations with similar work in the literature is included and an explanation of the existing discrepancies is provided.
Sultan, Nishat
2015-01-01
A number of developmental anomalies of morphology are there. However, as compared to the more common oral diseases like caries or periodontal problems, they account for a relatively lower number. When present, they may pose various problems of esthetic, function, malocclusion, or possible disposition to other oral problems. Hence, though rare, their timely diagnosis is very vital in proper treatment planning to avoid unseen complications during extractions, endodontic or orthodontic treatment. The present case is of a patient reporting with two very rare developmental anomalies, that is, fusion and root dilaceration, in contralateral sides of the same patient. To the knowledge of the author, reportedly it is the first such case. The terminologies, etiology, and epidemiology of both these anomalies are also discussed. PMID:26604610
Non-standard symmetries and quantum anomalies
Visinescu, Anca; Visinescu, Mihai
2008-08-31
Quantum anomalies are investigated on curved spacetimes. The intimate relation between Killing-Yano tensors and non-standard symmetries is pointed out. The gravitational anomalies are absent if the hidden symmetry is associated to a Killing-Yano tensor. The axial anomaly in a background gravitational field is directly related with the index of the Dirac operator. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures. The general results are applied to the 4-dimensional Euclidean Taub-NUT space.
Chromium isotopic anomalies in the Allende meteorite
NASA Technical Reports Server (NTRS)
Papanastassiou, D. A.
1986-01-01
Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.
Crustal structure interpreted from magnetic anomalies
NASA Technical Reports Server (NTRS)
Phillips, Jeffrey D.; Reynolds, Richard L.; Frey, Herbert
1991-01-01
This review, discusses publications during the last quadrennium (1987-1990) that used aeromagnetic data, marine magnetic data, satellite magnetic data, and rock magnetic and petrologic data to provide information on the sources of magnetic anomalies. The publications reviewed reflect increased integration of rock magnetic property and petrologic studies with magnetic anomaly interpretation studies, particularly in deep crustal magnetization, exploration for hydrocarbons, and inversion of marine magnetic anomalies. Interpretations of aeromagnetic data featuring image display techniques and using the horizontal gradient method for locating magnetization boundaries became standard.
Regional magnetic anomaly constraints on continental breakup
von Frese, R.R.B.; Hinze, W.J.; Olivier, R.; Bentley, C.R.
1986-01-01
Continental lithosphere magnetic anomalies mapped by the Magsat satellite are related to tectonic features associated with regional compositional variations of the crust and upper mantle and crustal thickness and thermal perturbations. These continental-scale anomaly patterns when corrected for varying observation elevation and the global change in the direction and intensity of the geomagnetic field show remarkable correlation of regional lithospheric magnetic sources across rifted continental margins when plotted on a reconstruction of Pangea. Accordingly, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans.
Visualization of atom's orbits.
Kim, Byungwhan
2014-02-01
High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions.
Harmonically excited orbital variations
Morgan, T.
1985-08-06
Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.
Cunnane, Mary Beth; Curtin, Hugh David
2016-01-01
Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687
Orbit Stabilization of Nanosat
JOHNSON,DAVID J.
1999-12-01
An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.
NASA Astrophysics Data System (ADS)
Wang, Yue; Xu, Shijie
2016-07-01
The strongly perturbed dynamical environment near asteroids has been a great challenge for the mission design. Besides the non-spherical gravity, solar radiation pressure, and solar tide, the orbital motion actually suffers from another perturbation caused by the gravitational orbit-attitude coupling of the spacecraft. This gravitational orbit-attitude coupling perturbation (GOACP) has its origin in the fact that the gravity acting on a non-spherical extended body, the real case of the spacecraft, is actually different from that acting on a point mass, the approximation of the spacecraft in the orbital dynamics. We intend to take into account GOACP besides the non-spherical gravity to improve the previous close-proximity orbital dynamics. GOACP depends on the spacecraft attitude, which is assumed to be controlled ideally with respect to the asteroid in this study. Then, we focus on the orbital motion perturbed by the non-spherical gravity and GOACP with the given attitude. This new orbital model can be called the attitude-restricted orbital dynamics, where restricted means that the orbital motion is studied as a restricted problem at a given attitude. In the present paper, equilibrium points of the attitude-restricted orbital dynamics in the second degree and order gravity field of a uniformly rotating asteroid are investigated. Two kinds of equilibria are obtained: on and off the asteroid equatorial principal axis. These equilibria are different from and more diverse than those in the classical orbital dynamics without GOACP. In the case of a large spacecraft, the off-axis equilibrium points can exist at an arbitrary longitude in the equatorial plane. These results are useful for close-proximity operations, such as the asteroid body-fixed hovering.
A Comparison of Molecular Vibrational Theory to Huckel Molecular Orbital Theory.
ERIC Educational Resources Information Center
Keeports, David
1986-01-01
Compares the similar mathematical problems of molecular vibrational calculations (at any intermediate level of sophistication) and molecular orbital calculations (at the Huckel level). Discusses how the generalizations of Huckel treatment of molecular orbitals apply to vibrational theory. (TW)
Chemical Compositions and Abundance Anomalies in Stellar Coronae ADP 99
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Drake, Jeremy
2004-01-01
New atomic data for tackling some of our spectra have been investigated by co-I Laming (NRL), including the effects of recombination on spectral line fluxes that are not included in, for example, the CHIANTI database models. Promising new progress has been made with modelling some of the recent abundance anomaly results in terms of Alven wave-driven separation of neutrals and ions in the upper chromosphere. The problems that existing models have is that they cannot simultaneously explain the low-FIP enhanced solar-like coronae and the high-FIP rich active coronae of RS CVn-like stars. The Alven wave model shows promise with both of these scenarios, with the fractionation or suppression of low-FIP ions depending on the characteristics of the chromosphere. This work is currently in the writing up stage. In summary, the work to-date is making good progress in mapping abundance anomalies as a function of spectral type and activity level. We are also making good progress with modelling that we will be able to test with our observational results. With one more year of effort, we'anticipate that the bulk of the work described above can be published, together with outstanding key studies on anomalies among the different active binaries.
BEARS: a multi-mission anomaly response system
NASA Astrophysics Data System (ADS)
Roberts, Bryce A.
2009-05-01
The Mission Operations Group at UC Berkeley's Space Sciences Laboratory operates a highly automated ground station and presently a fleet of seven satellites, each with its own associated command and control console. However, the requirement for prompt anomaly detection and resolution is shared commonly between the ground segment and all spacecraft. The efficient, low-cost operation and "lights-out" staffing of the Mission Operations Group requires that controllers and engineers be notified of spacecraft and ground system problems around the clock. The Berkeley Emergency Anomaly and Response System (BEARS) is an in-house developed web- and paging-based software system that meets this need. BEARS was developed as a replacement for an existing emergency reporting software system that was too closedsource, platform-specific, expensive, and antiquated to expand or maintain. To avoid these limitations, the new system design leverages cross-platform, open-source software products such as MySQL, PHP, and Qt. Anomaly notifications and responses make use of the two-way paging capabilities of modern smart phones.
Orbit Determination Issues for Libration Point Orbits
NASA Technical Reports Server (NTRS)
Beckman, Mark; Bauer, Frank (Technical Monitor)
2002-01-01
Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.
ATS-6 engineering performance report. Volume 2: Orbit and attitude controls
NASA Technical Reports Server (NTRS)
Wales, R. O. (Editor)
1981-01-01
Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.
Nitrogen isotope anomalies in primitive ordinary chondrites
NASA Astrophysics Data System (ADS)
Sugiura, Naoji; Hashizume, Ko
1992-07-01
Large anomalies in nitrogen isotopic composition were found in two type-L3 ordinary chondrites. One of them is isotopically heavy, and the other is isotopically light. The carriers of anomalous nitrogen are partly soluble in HCl. Thus, the anomalies are probably due to new types of presolar grains, although they have not been identified yet. Trapped Ar-36 in these chondrites seems to be associated with this anomalous nitrogen, and may be presolar in origin. The presence of two different nitrogen isotopic anomalies suggests that the parent body of L chondrites, and also the primitive solar nebula, were not homogeneous. Nitrogen isotope anomalies seem to be useful in detecting subdivisions of chemical groups of chondrites.
Negative gravity anomalies on the moon
NASA Technical Reports Server (NTRS)
Bowin, C.
1975-01-01
Two kinds of negative gravity anomalies on the moon are distinguished - those which show a correspondence to lunar topography and those which appear to be unrelated to surface topography. The former appear to be due to mass deficiencies caused by the cratering process, in large part probably by ejection of material from the crater. Anomalies on the far side which do not correspond to topography are thought to have resulted from irregularities in the thickness of the lunar crust. Localized large negative anomalies adjacent to mascons are considered. Although structures on the moon having a half-wavelength of 800 km or less and large negative or positive gravity anomalies are not in isostatic equilibrium, many of these features have mass loadings of about 1000 kg/sq cm which can be statically sustained on the moon.
Chemical Compositions and Anomalies in Stellar Coronae
NASA Technical Reports Server (NTRS)
Drake, Jeremy; Oliversen, Ronald J. (Technical Monitor)
2005-01-01
In summary, as the papers cited here and in earlier reports demonstrate, this award has enabled us to obtain a fairly good picture of the abundance anomalies in stellar coronae. The "inverse FIP" effect in very active stars has now been fleshed out as a more complex anomaly depending on FIP, whereas before it appeared only in terms of a general metal paucity, the recent solar abundance assessment of Asplund et a1 will, if correct, challenge some of the older interpretations of coronal abundance anomalies since they imply quite different relative abundances of CNO compared with Fe, Mg and Si. Further investigations have been in into the possibility of modeling some of the recent coronal abundance anomaly results in terms of Alfven wave-driven separation of neutrals and ions in the upper chromosphere. This work still remains in the seed stage, and future funding from a different program will be requested to pursue it further.
Understanding Magnetic Anomalies and Their Significance.
ERIC Educational Resources Information Center
Shea, James H.
1988-01-01
Describes a laboratory exercise testing the Vine-Matthews-Morley hypothesis of plate tectonics. Includes 14 questions with explanations using graphs and charts. Provides a historical account of the current plate tectonic and magnetic anomaly theory. (MVL)
Method of Mapping Anomalies in Homogenous Material
NASA Technical Reports Server (NTRS)
Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)
2016-01-01
An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.
Flyby Anomaly Test Integrating Multiple Approaches (FATIMA)
NASA Technical Reports Server (NTRS)
Levit, Creon; Jaroux, Belgacem Amar
2014-01-01
FATIMA is a mission concept for a small satellite to investigate the flyby anomaly - a possible velocity increase that has been observed in some earlier satellites when they have performed gravitational swingy maneuvers of the earth.
Quantum anomalies in superconducting Weyl metals
NASA Astrophysics Data System (ADS)
Wang, Rui; Hao, Lei; Wang, Baigeng; Ting, C. S.
2016-05-01
We theoretically study the quantum anomalies in the superconducting Weyl metals based on the topological field theory. It is demonstrated that the Fermi arc and the surface Andreev bound state, characteristic of the superconducting Weyl metals, are the manifestations of two underlying phenomena, namely, the chiral anomaly and the paritylike anomaly, respectively. The first anomaly is inherited from the Berry curvature around the original Weyl points, while the second is the result of the superconductivity. We show that all the fascinating topological behavior of the superconducting Weyl metals, either the intranode Fulde-Ferrell-Larkin-Ovchinnikov or the internode Bardeen-Cooper-Schrieffer pairing state, can be satisfactorily described and predicted by our topological field theory.
Relaxing Lorentz invariance in general perturbative anomalies
Salvio, A.
2008-10-15
We analyze the role of Lorentz symmetry in the perturbative nongravitational anomalies for a single family of fermions. The theory is assumed to be translational-invariant, power-counting renormalizable and based on a local action, but is allowed to have general Lorentz violating operators. We study the conservation of global and gauge currents associated with general internal symmetry groups and find, by using a perturbative approach, that Lorentz symmetry does not participate in the clash of symmetries that leads to the anomalies. We first analyze the triangle graphs and prove that there are regulators for which the anomalous part of the Ward identities exactly reproduces the Lorentz-invariant case. Then we show, by means of a regulator independent argument, that the anomaly cancellation conditions derived in Lorentz-invariant theories remain necessary ingredients for anomaly freedom.
Zinc Isotope Anomalies in bulk Chondrites
NASA Astrophysics Data System (ADS)
Savage, P. S.; Boyet, M.; Moynier, F.
2014-09-01
This study is the first to demonstrate that Zn isotope anomalies are present in bulk primitive meteorites, consistent with the injection of material derived from a neutron-rich supernova source into the solar nebula.
US Aeromagnetic and Satellite Magnetic Anomaly Comparisons
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W. (Principal Investigator); Sexton, J. L.
1984-01-01
Scalar aeromagnetic data obtained by the U.S. Naval Oceanographic Office (NOO) Vector Magnetic Survey of the conterminous U.S. were screened for periods of intense diurnal magnetic activity and reduced to anomaly form, filtered, and continued upward. A number of correlations between the NOO, POGO and preliminary MAGSAT data are evident at satellite elevations, including a prominent transcontinental magnetic high which extends from the Anadarko Basin to the Cincinnati Arch. The transcontinental magnetic high is breached by negative anomalies located over the Rio Grande Rift and Mississippi River Aulacogen. Differentially reduced-to-pole NOO and POGO magnetic anomaly data show that the transcontinental magnetic high corresponds to a well-defined regional trend of negative free-air gravity and enhanced crustal thickness anomalies.
Future Radiation Damage in Space due to South Atlantic Anomaly
NASA Technical Reports Server (NTRS)
Heirtzler, J. R.
1999-01-01
Predictions of radiation damage for Low Earth Orbit (LEO) satellites now use semi-empirical models developed from prior satellite data. From these models it is clear that the low field strength of the South Atlantic Anomaly (SAA) controls where the maximum radiation damage occurs. One may make an estimate of future radiation damage to LEO spacecraft if one can predict the future of the SAA. Although reliable maps of the geomagnetic field strength and its secular change have only been made in the last few decades, certain geomagnetic observatories in South America and Africa have recorded the geomagnetic field for a much longer time. These observatories show that the present geomagnetic field change has persisted for more than 100 years. In spite of the fact that a few observatories have shown sudden changes in secular variation, those around the SAA have shown a stable secular variation. Assuming that this will continue for the next 50 to 100 years one can show that the SAA will expand to cover most of the South Atlantic Ocean and will become much weaker. This will greatly intensify the radiation hazard in LEO, put significant new limitations on radiation-hardened hardware, severely restrict the length of time that humans can remain in orbit, and materially change the configuration of the radiation belts.
Global anomaly and undulation recovery using GEOS-3 altimeter data
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1979-01-01
The data were adjusted to remove orbit error and altimeter bias in a primary adjustment and four regional adjustments. The root mean square crossover discrepancy was about + or - 55 cm after the adjustment. The adjusted altimeter data, now considered to give geoid undulations, was used to predict values at 1 deg intersections from which an oceanic geoid map, with predicted accuracies, was prepared at a two meter contour interval. This geoid was compared to the Gemini 9 geoid over very long profiles to examine the long wavelength error in the altimeter geoid. At a wavelength of 13,010 km the root mean squares difference was 57 cm. The altimeter geoid was also compared to altimeter geoids fixed by precise orbits. A root mean square difference was found of about 1 m with a systematic difference that implied the equatorial radius of the earth was 6,378,137 meters. The adjusted altimeter data was also used to determine a total of 29,479 1 deg x 1 deg anomalies (and undulations).
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.
Filtering theory applied to orbit determination
NASA Technical Reports Server (NTRS)
Torroglosa, V.
1973-01-01
Modifications to the extended Kalman filter and the Jazwinski filter are made and compared with the classical extended Kalman filter in applications to orbit determination using real data. The results show that with the kind of data available today, the application of filtering theories in this field presents many problems.
Pentaquarks and possible anomalies at LHCb
NASA Astrophysics Data System (ADS)
Lafferty, G.
2016-07-01
With the LHC Run 1 data, the LHCb experiment discovered two pentaquark states and has evidence for a number of possible anomalies in the flavour sector. The possible anomalies include indications of violations of lepton flavour universality, deviations from Standard Model predictions in several B-meson decay modes that are mediated by flavour-changing neutral currents, and further evidence for a discrepancy between inclusive and exclusive measurements of the CKM matrix element |Vub|.
Interpretations of the ATLAS diboson anomaly
NASA Astrophysics Data System (ADS)
Cheung, Kingman; Keung, Wai-Yee; Tseng, Po-Yan; Yuan, Tzu-Chiang
2015-12-01
Recently, the ATLAS Collaboration recorded an interesting anomaly in diboson production with excesses at the diboson invariant mass around 2 TeV in boosted jets of all the WZ, W+W-, and ZZ channels. We offer a theoretical interpretation of the anomaly using a phenomenological right-handed model with extra W‧ and Z‧ bosons. Constraints from narrow total decay widths, dijet cross sections, and W / Z + H production are taken into account. We also comment on a few other possibilities.
NASA Technical Reports Server (NTRS)
1989-01-01
The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.
Orbiter thermal protection system
NASA Technical Reports Server (NTRS)
Dotts, R. L.; Curry, D. M.; Tillian, D. J.
1985-01-01
The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.
Habitability study shuttle orbiter
NASA Technical Reports Server (NTRS)
1972-01-01
Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.
NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...
This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earthâsm...
Efficient Computer Network Anomaly Detection by Changepoint Detection Methods
NASA Astrophysics Data System (ADS)
Tartakovsky, Alexander G.; Polunchenko, Aleksey S.; Sokolov, Grigory
2013-02-01
We consider the problem of efficient on-line anomaly detection in computer network traffic. The problem is approached statistically, as that of sequential (quickest) changepoint detection. A multi-cyclic setting of quickest change detection is a natural fit for this problem. We propose a novel score-based multi-cyclic detection algorithm. The algorithm is based on the so-called Shiryaev-Roberts procedure. This procedure is as easy to employ in practice and as computationally inexpensive as the popular Cumulative Sum chart and the Exponentially Weighted Moving Average scheme. The likelihood ratio based Shiryaev-Roberts procedure has appealing optimality properties, particularly it is exactly optimal in a multi-cyclic setting geared to detect a change occurring at a far time horizon. It is therefore expected that an intrusion detection algorithm based on the Shiryaev-Roberts procedure will perform better than other detection schemes. This is confirmed experimentally for real traces. We also discuss the possibility of complementing our anomaly detection algorithm with a spectral-signature intrusion detection system with false alarm filtering and true attack confirmation capability, so as to obtain a synergistic system.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
2013-08-01
In this paper, we systematically study gauge anomalies in bosonic and fermionic weak-coupling gauge theories with gauge group G (which can be continuous or discrete) in d space-time dimensions. We show a very close relation between gauge anomalies for gauge group G and symmetry-protected trivial (SPT) orders (also known as symmetry-protected topological (SPT) orders) with symmetry group G in one-higher dimension. The SPT phases are classified by group cohomology class Hd+1(G,R/Z). Through a more careful consideration, we argue that the gauge anomalies are described by the elements in Free[Hd+1(G,R/Z)]⊕Hπ˙d+1(BG,R/Z). The well known Adler-Bell-Jackiw anomalies are classified by the free part of Hd+1(G,R/Z) (denoted as Free[Hd+1(G,R/Z)]). We refer to other kinds of gauge anomalies beyond Adler-Bell-Jackiw anomalies as non-ABJ gauge anomalies, which include Witten SU(2) global gauge anomalies. We introduce a notion of π-cohomology group, Hπ˙d+1(BG,R/Z), for the classifying space BG, which is an Abelian group and include Tor[Hd+1(G,R/Z)] and topological cohomology group Hd+1(BG,R/Z) as subgroups. We argue that Hπ˙d+1(BG,R/Z) classifies the bosonic non-ABJ gauge anomalies and partially classifies fermionic non-ABJ anomalies. Using the same approach that shows gauge anomalies to be connected to SPT phases, we can also show that gravitational anomalies are connected to topological orders (i.e., patterns of long-range entanglement) in one-higher dimension.
King-Hele, D.
1992-01-01
In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.
NASA Astrophysics Data System (ADS)
Olevic, D.; Cvetkovic, Z.
In this paper the orbits of binaries WDS 10093+2020 = A 2145, WDS 21074-0814 = BU 368 AB and WDS 22288-0001 = STF 2909 AB are recalculated because of significant deviations of more recent observations from the ephemerides. For binaries WDS 22384-0754 = A 2695, WDS 23474-7118 = FIN 375 Aa and WDS 23578+2508 = McA 76 the orbital elements are calculated for the first time.
Esthetic management of anterior dental anomalies: A clinical case.
Chafaie, Amir
2016-09-01
Many types of dental abnormality can be observed in the anterior sectors, where they can cause genuine esthetic problems for our patients. While conventional prosthetic treatments offer the best solutions in terms of esthetic result and durability, they involve the sacrifice of significant quantities of mineralized dental material and cannot be undertaken before the periodontal tissues are mature. Other less invasive alternatives should be envisaged as transitional, or sometimes even permanent, solutions for the management of these anomalies in children and adolescents. This article discusses these options and presents a clinical case where composite resin veneers and microabrasion of the enamel were used to treat dental agenesis and enamel dysplasia.
Esthetic management of anterior dental anomalies: A clinical case.
Chafaie, Amir
2016-09-01
Many types of dental abnormality can be observed in the anterior sectors, where they can cause genuine esthetic problems for our patients. While conventional prosthetic treatments offer the best solutions in terms of esthetic result and durability, they involve the sacrifice of significant quantities of mineralized dental material and cannot be undertaken before the periodontal tissues are mature. Other less invasive alternatives should be envisaged as transitional, or sometimes even permanent, solutions for the management of these anomalies in children and adolescents. This article discusses these options and presents a clinical case where composite resin veneers and microabrasion of the enamel were used to treat dental agenesis and enamel dysplasia. PMID:27498052
NASA Technical Reports Server (NTRS)
Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg
1992-01-01
The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.
NASA Astrophysics Data System (ADS)
Redd, Frank J.; Cantrell, James N.; McCurdy, Greg
1992-09-01
The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.
Adaptive control and orbit determination for elliptical rendezvous
NASA Astrophysics Data System (ADS)
Xu, Lijia; Hu, Yong; Jiang, Tiantian
2016-10-01
In this paper, we study the control and orbit determination problems for elliptical rendezvous. Autonomous rendezvous is achieved by the proposed adaptive control based on the measurements of relative position and velocity between the chaser and target spacecraft. Moreover, the target orbital elements can be estimated during the rendezvous process. Finally, the effectiveness of the method is illustrated by simulations.
Detecting low Velocity Anomalies Combining Seismic Reflection With First Arrival Seismic Tomography
NASA Astrophysics Data System (ADS)
Flecha, I.; Marti, D.; Carbonell, R.
2002-12-01
In the present study seismic reflection techniques and high resolution seismic tomography are combined to determine location and geometry of shallow low velocity anomalies. Underground cavities (mines), water flows (formation with loose sand), etc. are geologic features characterized by slow seismic velocities and are targets of considerable social interest. Theoretical considerations (Snell's law) suggest that low velocity anomalies are undersampled and therefore badly resolved by ray tracing methods. A series of synthetics simulations have been carried out to asses the resolving power of the different methodologies. A 400mx50m two dimensional velocity model consisting of a background velocity gradient in depth from 3000 to 4000 m/s which included a rectangular low velocity anomaly (300 m/s). This anomaly was placed between 10m and 30m in depth and between 180m and 220m in length. The synthetic data calculation and the tomographic inversion have been done with absolutely independent programs. The data has been created using a 2D finite differences wave propagation acoustic algorithm. The tomographic inversion has been performed using two different software packages. The first one uses a combination of ray tracing a finite differences schemes to estimate the forward problem and an iterative conjugate gradient matrix solver to calculate the inverse. The second software package uses a modified Vidale scheme (Eikonal equation) to solve the forward problem and a LSQR to solve the inverse problem. The synthetic data were used for the inversions and for the generation of a conventional stacked section simulating a high resolution seismic reflection transect along the velocity model. The conventional stack images the diffractions caused by the velocity anomaly, which provided the location and extent of the low velocity anomaly. The inversions schemes provided estimates of the velocities, however, the tomograms and the ray tracing diagrams indicated a low resolution for
On-Orbit Maintenance of a Short Duration Mission: Space Technology 5
NASA Technical Reports Server (NTRS)
Calder, Alexander C.
2008-01-01
This viewgraph presentation contains an overview of the the Space Technology 5 (ST5) mission, a review of the Post-separation anomaly that occurred, and the patches and work-arounds that were implemented to correct the problems caused by the anomaly. The events that involved multi-bit errors and the actions that occurred to correct these are also reviewed.
Overall view of the Orbiter Servicing Structure within the Orbiter ...
Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Uncertainties in MARS Meteor Orbit Radar Data
NASA Astrophysics Data System (ADS)
Kolomiyets, S. V.
2015-03-01
The uncertainties in meteor radar data and the problem of hyperbolic meteors are interconnected. Meteor orbital data, obtained by the Meteor Automatic Radar System (MARS) at the Kharkiv Institute of Radio Electronics, Ukraine, was used to develop the algorithm to determine the uncertainties of the orbital elements obtained by radar systems such as MARS. We have constructed the empirical model of the distribution of uncertainties in the orbital elements of meteor radar data. MARS had a high effective sensitivity (the limiting magnitude of observed meteors was close to 12 ^ M) and was capable to carry out comprehensive geophysical and astronomical studies of meteors. When we register meteor numbers, radiants, meteoroid velocities, we can talk about astronomical observations. The main objective of meteor astronomy research is to determine the orbit of the meteoroid, in other words, to study a meteoroid as an astronomical object of the Solar System. Sometimes meteoroids may have an interstellar origin. Such meteoroids usually have hyperbolic orbits (i.e. with eccentricities e>1). However, hyperbolic orbits of meteoroids may have another origin, e.g. arise due to errors of observations (primarily due to the errors of eccentricities - σe). To correctly interpret the astronomical data, it is necessary to know how the errors are calculated. In this paper, we estimated the uncertainties in the Kharkiv meteor radar data (the average σe ~0.2) and discussed their connection to the problem of hyperbolic meteors. We obtained ~0.8% of total number of meteoroid orbits in 1975, which we named "real" hyperboles, i.e. with eccentricities more or equal 1+2σe.
[Orbital complications of sinusitis].
Šuchaň, M; Horňák, M; Kaliarik, L; Krempaská, S; Koštialová, T; Kovaľ, J
2014-12-01
Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal
The orbital record in stratigraphy
NASA Technical Reports Server (NTRS)
Fischer, Alfred G.
1992-01-01
Orbital signals are being discovered in pre-Pleistocene sediments. Due to their hierarchical nature these cycle patterns are complex, and the imprecision of geochronology generally makes the assignment of stratigraphic cycles to specific orbital cycles uncertain, but in sequences such as the limnic Newark Group under study by Olsen and pelagic Cretaceous sequence worked on by our Italo-American group the relative frequencies yield a definitive match to the Milankovitch hierarchy. Due to the multiple ways in which climate impinges on depositional systems, the orbital signals are recorded in a multiplicity of parameters, and affect different sedimentary facies in different ways. In platform carbonates, for example, the chief effect is via sea-level variations (possibly tied to fluctuating ice volume), resulting in cycles of emergence and submergence. In limnic systems it finds its most dramatic expression in alternations of lake and playa conditions. Biogenic pelagic oozes such as chalks and the limestones derived from them display variations in the carbonate supplied by planktonic organisms such as coccolithophores and foraminifera, and also record variations in the aeration of bottom waters. Whereas early studies of stratigraphic cyclicity relied mainly on bedding variations visible in the field, present studies are supplementing these with instrumental scans of geochemical, paleontological, and geophysical parameters which yield quantitative curves amenable to time-series analysis; such analysis is, however, limited by problems of distorted time-scales. My own work has been largely concentrated on pelagic systems. In these, the sensitivity of pelagic organisms to climatic-oceanic changes, combined with the sensitivity of botton life to changes in oxygen availability (commonly much more restricted in the Past than now) has left cyclic patterns related to orbital forcing. These systems are further attractive because (1) they tend to offer depositional continuity
The Early Lunar Orbit and Principal Moments of Inertia
NASA Astrophysics Data System (ADS)
Garrick-Bethell, I.; Zuber, M. T.
2007-12-01
If taken at face value, the principal lunar moments of inertia suggest that the Moon froze in a past tidal and rotational state during a high eccentricity orbit [1]. At this time the Moon may have been in either synchronous rotation or in a 3:2 resonance of spin and mean motion. We have performed further investigations of the plausibility of past high eccentricity lunar orbits on the basis of orbital evolution, the dynamics of entry into any past 3:2 resonance, and tidal dissipation. We have found that the requisite permanent (B-A)/C (where A, B, and C are the principal moments of inertia) for a 3:2 resonance can be achieved in a magma ocean if a density anomaly is present shortly after lunar accretion. In a high eccentricity orbit, tidal dissipation will affect the Moon's ability to develop lithospheric strength. The Moon is presently able to support degree-two loads, while Io, which is approximately the same size as the Moon and strongly heated by tidal dissipation, probably cannot [2]. Therefore, somewhere between the present lunar radioactive heating rate (~1012 W), and Io's observed dissipation (~1014 W), the Moon may develop lithospheric strength. We use 1014 W as a loose upper bound on where freeze-in may begin and find that in a 3:2 resonance tidal dissipation [3] can drop below 1014 W at a = 25 RE and e = 0.17, and the present moments of inertia can be approximately reproduced for lunar values of QM = 475 (where a is the lunar semimajor axis, RE is the Earth radius, and Q is the specific dissipation function). This value of QM is somewhat large, but the biggest problem with a 3:2 resonance that lasts until 25 RE is how to achieve the current low eccentricity synchronous orbit. The required damping cannot be easily achieved unless the Moon is knocked out of a 3:2 resonance by an impactor that would produce a crater approximately 800 km in diameter. In sum, there is no single strong constraint that completely rules out a 3:2 resonance, but it would require a
The Behavior of Orbital Element of 1566 Icarus Asteroids
NASA Astrophysics Data System (ADS)
Soegiartini, Endang; Radiman, Iratius; Fauzi, Umar; Siregar, Suryadi
1566 Icarus is an asteroid with special orbital elements; high eccentricity (e = 0.8269), high incli-nation (i = 22o .8368), small semimajor-axis (a = 1.0778 AU), argument of perihelion (31o .3393), longitude of ascending node (88o .0474), and mean anomaly (M = 85o .8306) at epoch 2455200.5 JD or January 4, 2010. In this paper, we would like to trace the orbital evolution of 1566 Icarus for 200,000 years, from 100,000 BC until 100,000 AD. The gravitational influence of the eight planets was included in the integrations, which were all carried out using the hybrid inte-grator within the Mercury 6 (Chambers, 1999) software package. From this, we try to predict the behavior of its orbital element by making 243 (35 ) clones of 1566 Icarus. The clones are made by repeated permutation of nominal, nominal+1σ, nominal-1σ with the orbital elements: semi-major axis, eccentricity, orbital inclination, longitude of ascending node, and argument of perihelion. From this cloning, we see that the orbital evolution of 1566 Icarus will be stable for 200,000 years, but with small variation in semi-major axis (a).
Whole exome sequence analysis of Peters anomaly
Weh, Eric; Reis, Linda M.; Happ, Hannah C.; Levin, Alex V.; Wheeler, Patricia G.; David, Karen L.; Carney, Erin; Angle, Brad; Hauser, Natalie
2015-01-01
Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the frst study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly. PMID:25182519
Preliminary aeromagnetic anomaly map of California
Roberts, Carter W.; Jachens, Rober C.
1999-01-01
The magnetization in crustal rocks is the vector sum of induced in minerals by the Earth’s present main field and the remanent magnetization of minerals susceptible to magnetization (chiefly magnetite) (Blakely, 1995). The direction of remanent magnetization acquired during the rock’s history can be highly variable. Crystalline rocks generally contain sufficient magnetic minerals to cause variations in the Earth’s magnetic field that can be mapped by aeromagnetic surveys. Sedimentary rocks are generally weakly magnetized and consequently have a small effect on the magnetic field: thus a magnetic anomaly map can be used to “see through” the sedimentary rock cover and can convey information on lithologic contrasts and structural trends related to the underlying crystalline basement (see Nettleton,1971; Blakely, 1995). The magnetic anomaly map (fig. 2) provides a synoptic view of major anomalies and contributes to our understanding of the tectonic development of California. Reference fields, that approximate the Earth’s main (core) field, have been subtracted from the recorded magnetic data. The resulting map of the total magnetic anomalies exhibits anomaly patterns related to the distribution of magnetized crustal rocks at depths shallower than the Curie point isotherm (the surface within the Earth beneath which temperatures are so high that rocks lose their magnetic properties). The magnetic anomaly map has been compiled from existing digital data. Data obtained from aeromagnetic surveys that were made at different times, spacings and elevations, were merged by analytical continuation of each set onto a common surface 305 m (1000 ft) above terrain. Digital data in this compatible form allows application of analytical techniques (Blakley, 1995) that can be used to enhance anomaly characteristics (e.g., wavelength and trends) and provide new interpretive information.
OEX - Use of the Shuttle Orbiter as a research vehicle
NASA Technical Reports Server (NTRS)
Jones, J. J.
1981-01-01
The Orbiter Experiments Program to provide research instrumentation on the Shuttle Orbiter is discussed. Flight aerodynamic problems such as ground-based data limitations, rarefied flow effects, body flap and control surface effectiveness, and windward surface heat transfer are reviewed. Experiments currently under development are described, including experiments on tile gaps and wall catalytic effects which provide the opportunity to obtain data not available in ground facilities and apply the results to improvements in the Orbiter's thermal protection system. Such experiments combined with other instrumentation on the Orbiter should provide benchmark flight data which can make a significant impact on the design of future space transportation systems.