Sample records for orbit correction scheme

  1. An Orbit And Dispersion Correction Scheme for the PEP II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Y.; Donald, M.; Shoaee, H.

    2011-09-01

    To achieve optimum luminosity in a storage ring it is vital to control the residual vertical dispersion. In the original PEP storage ring, a scheme to control the residual dispersion function was implemented using the ring orbit as the controlling element. The 'best' orbit not necessarily giving the lowest vertical dispersion. A similar scheme has been implemented in both the on-line control code and in the simulation code LEGO. The method involves finding the response matrices (sensitivity of orbit/dispersion at each Beam-Position-Monitor (BPM) to each orbit corrector) and solving in a least squares sense for minimum orbit, dispersion function ormore » both. The optimum solution is usually a subset of the full least squares solution. A scheme of simultaneously correcting the orbits and dispersion has been implemented in the simulation code and on-line control system for PEP-II. The scheme is based on the eigenvector decomposition method. An important ingredient of the scheme is to choose the optimum eigenvectors that minimize the orbit, dispersion and corrector strength. Simulations indicate this to be a very effective way to control the vertical residual dispersion.« less

  2. Implementation of an approximate self-energy correction scheme in the orthogonalized linear combination of atomic orbitals method of band-structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Z.; Ching, W.Y.

    Based on the Sterne-Inkson model for the self-energy correction to the single-particle energy in the local-density approximation (LDA), we have implemented an approximate energy-dependent and [bold k]-dependent [ital GW] correction scheme to the orthogonalized linear combination of atomic orbital-based local-density calculation for insulators. In contrast to the approach of Jenkins, Srivastava, and Inkson, we evaluate the on-site exchange integrals using the LDA Bloch functions throughout the Brillouin zone. By using a [bold k]-weighted band gap [ital E][sub [ital g

  3. Both channel coding and wavefront correction on the turbulence mitigation of optical communications using orbital angular momentum multiplexing

    NASA Astrophysics Data System (ADS)

    Zhao, Shengmei; Wang, Le; Zou, Li; Gong, Longyan; Cheng, Weiwen; Zheng, Baoyu; Chen, Hanwu

    2016-10-01

    A free-space optical (FSO) communication link with multiplexed orbital angular momentum (OAM) modes has been demonstrated to largely enhance the system capacity without a corresponding increase in spectral bandwidth, but the performance of the link is unavoidably degraded by atmospheric turbulence (AT). In this paper, we propose a turbulence mitigation scheme to improve AT tolerance of the OAM-multiplexed FSO communication link using both channel coding and wavefront correction. In the scheme, we utilize a wavefront correction method to mitigate the phase distortion first, and then we use a channel code to further correct the errors in each OAM mode. The improvement of AT tolerance is discussed over the performance of the link with or without channel coding/wavefront correction. The results show that the bit error rate performance has been improved greatly. The detrimental effect of AT on the OAM-multiplexed FSO communication link could be removed by the proposed scheme even in the relatively strong turbulence regime, such as Cn2 = 3.6 ×10-14m - 2 / 3.

  4. Applications of Fermi-Lowdin-Orbital Self-Interaction Correction Scheme to Organic Systems

    NASA Astrophysics Data System (ADS)

    Baruah, Tunna; Kao, Der-You; Yamamoto, Yoh

    Recent progress in treating the self-interaction errors by means of local, Lowdin-orthogonalized Fermi Orbitals offers a promising route to study the effect of self-interaction errors in the electronic structure of molecules. The Fermi orbitals depend on the location of the electronic positions, called as Fermi orbital descriptors. One advantage of using the Fermi orbitals is that the corrected Hamiltonian is unitarily invariant. Minimization of the corrected energies leads to an optimized set of centroid positions. Here we discuss the applications of this method to various systems from constituent atoms to several medium size molecules such as Mg-porphyrin, C60, pentacene etc. The applications to the ionic systems will also be discussed. De-SC0002168, NSF-DMR 125302.

  5. Simplification of the time-dependent generalized self-interaction correction method using two sets of orbitals: Application of the optimized effective potential formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messud, J.; Dinh, P. M.; Suraud, Eric

    2009-10-15

    We propose a simplification of the time-dependent self-interaction correction (TD-SIC) method using two sets of orbitals, applying the optimized effective potential (OEP) method. The resulting scheme is called time-dependent 'generalized SIC-OEP'. A straightforward approximation, using the spatial localization of one set of orbitals, leads to the 'generalized SIC-Slater' formalism. We show that it represents a great improvement compared to the traditional SIC-Slater and Krieger-Li-Iafrate formalisms.

  6. Simplification of the time-dependent generalized self-interaction correction method using two sets of orbitals: Application of the optimized effective potential formalism

    NASA Astrophysics Data System (ADS)

    Messud, J.; Dinh, P. M.; Reinhard, P.-G.; Suraud, Eric

    2009-10-01

    We propose a simplification of the time-dependent self-interaction correction (TD-SIC) method using two sets of orbitals, applying the optimized effective potential (OEP) method. The resulting scheme is called time-dependent “generalized SIC-OEP.” A straightforward approximation, using the spatial localization of one set of orbitals, leads to the “generalized SIC-Slater” formalism. We show that it represents a great improvement compared to the traditional SIC-Slater and Krieger-Li-Iafrate formalisms.

  7. CEPC booster design study

    DOE PAGES

    Bian, Tianjian; Gao, Jie; Zhang, Chuang; ...

    2017-12-10

    In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less

  8. CEPC booster design study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bian, Tianjian; Gao, Jie; Zhang, Chuang

    In September 2012, Chinese scientists proposed a Circular Electron Positron Collider (CEPC) in China at 240 GeV center-of-mass energy for Higgs studies. The booster provides 120 GeV electron and positron beams to the CEPC collider for top-up injection at 0.1 Hz. The design of the full energy booster ring of the CEPC is a challenge. The ejected beam energy is 120 GeV and the injected beam energy is 6 GeV. Here in this paper we describe two alternative schemes, the wiggler bend scheme and the normal bend scheme. For the wiggler bend scheme, we propose to operate the booster ringmore » as a large wiggler at low energy and as a normal ring at high energy to avoid the problem of very low dipole magnet fields. Finally, for the normal bend scheme, we implement the orbit correction to correct the earth field.« less

  9. Trajectory Design Strategies for the NGST L2 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Folta, David; Cooley, Steven; Howell, Kathleen; Bauer, Frank H.

    2001-01-01

    The Origins' Next Generation Space Telescope (NGST) trajectory design is addressed in light of improved methods for attaining constrained orbit parameters and their control at the exterior collinear libration point, L2. The use of a dynamical systems approach, state-space equations for initial libration orbit control, and optimization to achieve constrained orbit parameters are emphasized. The NGST trajectory design encompasses a direct transfer and orbit maintenance under a constant acceleration. A dynamical systems approach can be used to provide a biased orbit and stationkeeping maintenance method that incorporates the constraint of a single axis correction scheme.

  10. Simultaneous Mean and Covariance Correction Filter for Orbit Estimation.

    PubMed

    Wang, Xiaoxu; Pan, Quan; Ding, Zhengtao; Ma, Zhengya

    2018-05-05

    This paper proposes a novel filtering design, from a viewpoint of identification instead of the conventional nonlinear estimation schemes (NESs), to improve the performance of orbit state estimation for a space target. First, a nonlinear perturbation is viewed or modeled as an unknown input (UI) coupled with the orbit state, to avoid the intractable nonlinear perturbation integral (INPI) required by NESs. Then, a simultaneous mean and covariance correction filter (SMCCF), based on a two-stage expectation maximization (EM) framework, is proposed to simply and analytically fit or identify the first two moments (FTM) of the perturbation (viewed as UI), instead of directly computing such the INPI in NESs. Orbit estimation performance is greatly improved by utilizing the fit UI-FTM to simultaneously correct the state estimation and its covariance. Third, depending on whether enough information is mined, SMCCF should outperform existing NESs or the standard identification algorithms (which view the UI as a constant independent of the state and only utilize the identified UI-mean to correct the state estimation, regardless of its covariance), since it further incorporates the useful covariance information in addition to the mean of the UI. Finally, our simulations demonstrate the superior performance of SMCCF via an orbit estimation example.

  11. Impacts of Earth rotation parameters on GNSS ultra-rapid orbit prediction: Derivation and real-time correction

    NASA Astrophysics Data System (ADS)

    Wang, Qianxin; Hu, Chao; Xu, Tianhe; Chang, Guobin; Hernández Moraleda, Alberto

    2017-12-01

    Analysis centers (ACs) for global navigation satellite systems (GNSSs) cannot accurately obtain real-time Earth rotation parameters (ERPs). Thus, the prediction of ultra-rapid orbits in the international terrestrial reference system (ITRS) has to utilize the predicted ERPs issued by the International Earth Rotation and Reference Systems Service (IERS) or the International GNSS Service (IGS). In this study, the accuracy of ERPs predicted by IERS and IGS is analyzed. The error of the ERPs predicted for one day can reach 0.15 mas and 0.053 ms in polar motion and UT1-UTC direction, respectively. Then, the impact of ERP errors on ultra-rapid orbit prediction by GNSS is studied. The methods for orbit integration and frame transformation in orbit prediction with introduced ERP errors dominate the accuracy of the predicted orbit. Experimental results show that the transformation from the geocentric celestial references system (GCRS) to ITRS exerts the strongest effect on the accuracy of the predicted ultra-rapid orbit. To obtain the most accurate predicted ultra-rapid orbit, a corresponding real-time orbit correction method is developed. First, orbits without ERP-related errors are predicted on the basis of ITRS observed part of ultra-rapid orbit for use as reference. Then, the corresponding predicted orbit is transformed from GCRS to ITRS to adjust for the predicted ERPs. Finally, the corrected ERPs with error slopes are re-introduced to correct the predicted orbit in ITRS. To validate the proposed method, three experimental schemes are designed: function extrapolation, simulation experiments, and experiments with predicted ultra-rapid orbits and international GNSS Monitoring and Assessment System (iGMAS) products. Experimental results show that using the proposed correction method with IERS products considerably improved the accuracy of ultra-rapid orbit prediction (except the geosynchronous BeiDou orbits). The accuracy of orbit prediction is enhanced by at least 50% (error related to ERP) when a highly accurate observed orbit is used with the correction method. For iGMAS-predicted orbits, the accuracy improvement ranges from 8.5% for the inclined BeiDou orbits to 17.99% for the GPS orbits. This demonstrates that the correction method proposed by this study can optimize the ultra-rapid orbit prediction.

  12. Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li-Kr

    NASA Astrophysics Data System (ADS)

    Kao, Der-you; Withanage, Kushantha; Hahn, Torsten; Batool, Javaria; Kortus, Jens; Jackson, Koblar

    2017-10-01

    In the Fermi-Löwdin orbital method for implementing self-interaction corrections (FLO-SIC) in density functional theory (DFT), the local orbitals used to make the corrections are generated in a unitary-invariant scheme via the choice of the Fermi orbital descriptors (FODs). These are M positions in 3-d space (for an M-electron system) that can be loosely thought of as classical electron positions. The orbitals that minimize the DFT energy including the SIC are obtained by finding optimal positions for the FODs. In this paper, we present optimized FODs for the atoms from Li-Kr obtained using an unbiased search method and self-consistent FLO-SIC calculations. The FOD arrangements display a clear shell structure that reflects the principal quantum numbers of the orbitals. We describe trends in the FOD arrangements as a function of atomic number. FLO-SIC total energies for the atoms are presented and are shown to be in close agreement with the results of previous SIC calculations that imposed explicit constraints to determine the optimal local orbitals, suggesting that FLO-SIC yields the same solutions for atoms as these computationally demanding earlier methods, without invoking the constraints.

  13. DFT-GGA errors in NO chemisorption energies on (111) transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mason, Sara E.

    2014-03-01

    We investigate whether well-known DFT-GGA errors in predicting the chemisorption energy (Echem) of CO on transition metal surfaces manifest in analogous NO chemisorption systems. While widely investigated in the case of CO/metal, analogous DFT-GGA errors have long been claimed to be absent in NO/metal chemisorption. Here, we provide theoretical evidence of systematic enhanced back-donation in NO/metal chemisorption at the DFT-GGA level. We use electronic structure analysis to show that the partially filled molecular NO 2π* orbital rehybridizes with the transition metal d-band to form new bonding and anti-bonding states. We relate the back-donation charge transfer associated with chemisorption to the promotion of an electron from the 5σ orbital to the 2π* orbital in the gas-phase NO G2Σ- ← X2Π excitation. We establish linear relationships between Echem and ΔEG ← X and formulate an Echem correction scheme in the style of Mason et al. [Physical Review B 69, 161401(R)]. We apply the NO Echem correction method to the (111) surfaces of Pt, Pd, Rh, and Ir, with NO chemisorption modeled at a coverage of 0.25 ML. We note that the slope of Echemvs. ΔEG ← X and the dipole moment depend strongly on adsorption site for each metal, and we construct an approximate correction scheme which we test using NO/Pt(100) chemisorption.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Lan, E-mail: chenglanster@gmail.com; Stopkowicz, Stella, E-mail: stella.stopkowicz@kjemi.uio.no; Gauss, Jürgen, E-mail: gauss@uni-mainz.de

    A perturbative approach to compute second-order spin-orbit (SO) corrections to a spin-free Dirac-Coulomb Hartree-Fock (SFDC-HF) calculation is suggested. The proposed scheme treats the difference between the DC and SFDC Hamiltonian as perturbation and exploits analytic second-derivative techniques. In addition, a cost-effective scheme for incorporating relativistic effects in high-accuracy calculations is suggested consisting of a SFDC coupled-cluster treatment augmented by perturbative SO corrections obtained at the HF level. Benchmark calculations for the hydrogen halides HX, X = F-At as well as the coinage-metal fluorides CuF, AgF, and AuF demonstrate the accuracy of the proposed perturbative treatment of SO effects on energiesmore » and electrical properties in comparison with the more rigorous full DC treatment. Furthermore, we present, as an application of our scheme, results for the electrical properties of AuF and XeAuF.« less

  15. Introducing a new methodology for the calculation of local philicity and multiphilic descriptor: an alternative to the finite difference approximation

    NASA Astrophysics Data System (ADS)

    Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel

    2018-07-01

    This work presents a new development based on the condensation scheme proposed by Chamorro and Pérez, in which new terms to correct the frozen molecular orbital approximation have been introduced (improved frontier molecular orbital approximation). The changes performed on the original development allow taking into account the orbital relaxation effects, providing equivalent results to those achieved by the finite difference approximation and leading also to a methodology with great advantages. Local reactivity indices based on this new development have been obtained for a sample set of molecules and they have been compared with those indices based on the frontier molecular orbital and finite difference approximations. A new definition based on the improved frontier molecular orbital methodology for the dual descriptor index is also shown. In addition, taking advantage of the characteristics of the definitions obtained with the new condensation scheme, the descriptor local philicity is analysed by separating the components corresponding to the frontier molecular orbital approximation and orbital relaxation effects, analysing also the local parameter multiphilic descriptor in the same way. Finally, the effect of using the basis set is studied and calculations using DFT, CI and Möller-Plesset methodologies are performed to analyse the consequence of different electronic-correlation levels.

  16. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications.

    PubMed

    Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin

    2012-08-01

    Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.

  17. Off the beaten path: a new approach to realistically model the orbital decay of supermassive black holes in galaxy formation simulations

    NASA Astrophysics Data System (ADS)

    Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T. R.

    2015-08-01

    We introduce a sub-grid force correction term to better model the dynamical friction experienced by a supermassive black hole (SMBH) as it orbits within its host galaxy. This new approach accurately follows an SMBH's orbital decay and drastically improves over commonly used `advection' methods. The force correction introduced here naturally scales with the force resolution of the simulation and converges as resolution is increased. In controlled experiments, we show how the orbital decay of the SMBH closely follows analytical predictions when particle masses are significantly smaller than that of the SMBH. In a cosmological simulation of the assembly of a small galaxy, we show how our method allows for realistic black hole orbits. This approach overcomes the limitations of the advection scheme, where black holes are rapidly and artificially pushed towards the halo centre and then forced to merge, regardless of their orbits. We find that SMBHs from merging dwarf galaxies can spend significant time away from the centre of the remnant galaxy. Improving the modelling of SMBH orbital decay will help in making robust predictions of the growth, detectability and merger rates of SMBHs, especially at low galaxy masses or at high redshift.

  18. Orbit Correction for the Newly Developed Polarization-Switching Undulator

    NASA Astrophysics Data System (ADS)

    Obina, Takashi; Honda, Tohru; Shioya, Tatsuro; Kobayashi, Yukinori; Tsuchiya, Kimichika; Yamamoto, Shigeru

    2007-01-01

    A new scheme of undulator magnet arrangements has been proposed and developed as a polarization-switching radiation source, and its test-stand was installed in the 2.5-GeV Photon Factory storage ring (PF ring) in order to investigate the effects on the beam orbit. The closed orbit distortion (COD) over 200 μm was produced in a vertical direction when we switched the polarization of the radiation from the test-stand. In a horizontal direction, the COD was less than 50μm. The results agreed well with the predictions from the magnetic-field measurement on the bench. In order to suppress the CODs and realize a stable operation of the ring with the polarization-switching, we developed an orbit correction system which consists of an encoder to detect motion of magnets, a pair of beam position monitors (BPMs), signal processing parts, and a pair of steering magnets. We succeeded in suppressing the CODs to the level below 3μm using the system even when we switch the polarization at a maximum frequency of 0.8 Hz.

  19. Coded throughput performance simulations for the time-varying satellite channel. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Han, LI

    1995-01-01

    The design of a reliable satellite communication link involving the data transfer from a small, low-orbit satellite to a ground station, but through a geostationary satellite, was examined. In such a scenario, the received signal power to noise density ratio increases as the transmitting low-orbit satellite comes into view, and then decreases as it then departs, resulting in a short-duration, time-varying communication link. The optimal values of the small satellite antenna beamwidth, signaling rate, modulation scheme and the theoretical link throughput (in bits per day) have been determined. The goal of this thesis is to choose a practical coding scheme which maximizes the daily link throughput while satisfying a prescribed probability of error requirement. We examine the throughput of both fixed rate and variable rate concatenated forward error correction (FEC) coding schemes for the additive white Gaussian noise (AWGN) channel, and then examine the effect of radio frequency interference (RFI) on the best coding scheme among them. Interleaving is used to mitigate degradation due to RFI. It was found that the variable rate concatenated coding scheme could achieve 74 percent of the theoretical throughput, equivalent to 1.11 Gbits/day based on the cutoff rate R(sub 0). For comparison, 87 percent is achievable for AWGN-only case.

  20. Simulations of Dissipative Circular Restricted Three-body Problems Using the Velocity-scaling Correction Method

    NASA Astrophysics Data System (ADS)

    Wang, Shoucheng; Huang, Guoqing; Wu, Xin

    2018-02-01

    In this paper, we survey the effect of dissipative forces including radiation pressure, Poynting–Robertson drag, and solar wind drag on the motion of dust grains with negligible mass, which are subjected to the gravities of the Sun and Jupiter moving in circular orbits. The effect of the dissipative parameter on the locations of five Lagrangian equilibrium points is estimated analytically. The instability of the triangular equilibrium point L4 caused by the drag forces is also shown analytically. In this case, the Jacobi constant varies with time, whereas its integral invariant relation still provides a probability for the applicability of the conventional fourth-order Runge–Kutta algorithm combined with the velocity scaling manifold correction scheme. Consequently, the velocity-only correction method significantly suppresses the effects of artificial dissipation and a rapid increase in trajectory errors caused by the uncorrected one. The stability time of an orbit, regardless of whether it is chaotic or not in the conservative problem, is apparently longer in the corrected case than in the uncorrected case when the dissipative forces are included. Although the artificial dissipation is ruled out, the drag dissipation leads to an escape of grains. Numerical evidence also demonstrates that more orbits near the triangular equilibrium point L4 escape as the integration time increases.

  1. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform.

    PubMed

    Nagy, Péter R; Kállay, Mihály

    2017-06-07

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.

  2. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform

    PubMed Central

    2017-01-01

    An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor. PMID:28576082

  3. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.

    PubMed

    Ren, Xinguo; Tkatchenko, Alexandre; Rinke, Patrick; Scheffler, Matthias

    2011-04-15

    The random-phase approximation (RPA) for the electron correlation energy, combined with the exact-exchange (EX) energy, represents the state-of-the-art exchange-correlation functional within density-functional theory. However, the standard RPA practice--evaluating both the EX and the RPA correlation energies using Kohn-Sham (KS) orbitals from local or semilocal exchange-correlation functionals--leads to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior can be corrected by adding a "single excitation" contribution, so far not included in the standard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent EX total energy by the corresponding self-consistent Hartree-Fock total energy, while retaining the RPA correlation energy evaluated using KS orbitals. Both schemes achieve chemical accuracy for a standard benchmark set of noncovalent intermolecular interactions.

  4. On regularizing the MCTDH equations of motion

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Dieter; Wang, Haobin

    2018-03-01

    The Multiconfiguration Time-Dependent Hartree (MCTDH) approach leads to equations of motion (EOM) which become singular when there are unoccupied so-called single-particle functions (SPFs). Starting from a Hartree product, all SPFs, except the first one, are unoccupied initially. To solve the MCTDH-EOMs numerically, one therefore has to remove the singularity by a regularization procedure. Usually the inverse of a density matrix is regularized. Here we argue and show that regularizing the coefficient tensor, which in turn regularizes the density matrix as well, leads to an improved performance of the EOMs. The initially unoccupied SPFs are rotated faster into their "correct direction" in Hilbert space and the final results are less sensitive to the choice of the value of the regularization parameter. For a particular example (a spin-boson system studied with a transformed Hamiltonian), we could even show that only with the new regularization scheme could one obtain correct results. Finally, in Appendix A, a new integration scheme for the MCTDH-EOMs developed by Lubich and co-workers is discussed. It is argued that this scheme does not solve the problem of the unoccupied natural orbitals because this scheme ignores the latter and does not propagate them at all.

  5. Curvature and frontier orbital energies in density functional theory

    NASA Astrophysics Data System (ADS)

    Kronik, Leeor; Stein, Tamar; Autschbach, Jochen; Govind, Niranjan; Baer, Roi

    2013-03-01

    Perdew et al. [Phys. Rev. Lett 49, 1691 (1982)] discovered and proved two different properties of exact Kohn-Sham density functional theory (DFT): (i) The exact total energy versus particle number is a series of linear segments between integer electron points; (ii) Across an integer number of electrons, the exchange-correlation potential may ``jump'' by a constant, known as the derivative discontinuity (DD). Here, we show analytically that in both the original and the generalized Kohn-Sham formulation of DFT, the two are in fact two sides of the same coin. Absence of a derivative discontinuity necessitates deviation from piecewise linearity, and the latter can be used to correct for the former, thereby restoring the physical meaning of the orbital energies. Using selected small molecules, we show that this results in a simple correction scheme for any underlying functional, including semi-local and hybrid functionals as well as Hartree-Fock theory, suggesting a practical correction for the infamous gap problem of DFT. Moreover, we show that optimally-tuned range-separated hybrid functionals can inherently minimize both DD and curvature, thus requiring no correction, and show that this can be used as a sound theoretical basis for novel tuning strategies.

  6. An analysis of USSPACECOM's space surveillance network sensor tasking methodology

    NASA Astrophysics Data System (ADS)

    Berger, Jeff M.; Moles, Joseph B.; Wilsey, David G.

    1992-12-01

    This study provides the basis for the development of a cost/benefit assessment model to determine the effects of alterations to the Space Surveillance Network (SSN) on orbital element (OE) set accuracy. It provides a review of current methods used by NORAD and the SSN to gather and process observations, an alternative to the current Gabbard classification method, and the development of a model to determine the effects of observation rate and correction interval on OE set accuracy. The proposed classification scheme is based on satellite J2 perturbations. Specifically, classes were established based on mean motion, eccentricity, and inclination since J2 perturbation effects are functions of only these elements. Model development began by creating representative sensor observations using a highly accurate orbital propagation model. These observations were compared to predicted observations generated using the NORAD Simplified General Perturbation (SGP4) model and differentially corrected using a Bayes, sequential estimation, algorithm. A 10-run Monte Carlo analysis was performed using this model on 12 satellites using 16 different observation rate/correction interval combinations. An ANOVA and confidence interval analysis of the results show that this model does demonstrate the differences in steady state position error based on varying observation rate and correction interval.

  7. Further developments in orbit ephemeris derived neutral density

    NASA Astrophysics Data System (ADS)

    Locke, Travis

    There are a number of non-conservative forces acting on a satellite in low Earth orbit. The one which is the most dominant and also contains the most uncertainty is atmospheric drag. Atmospheric drag is directly proportional to atmospheric density, and the existing atmospheric density models do not accurately model the variations in atmospheric density. In this research, precision orbit ephemerides (POE) are used as input measurements in an optimal orbit determination scheme in order to estimate corrections to existing atmospheric density models. These estimated corrections improve the estimates of the drag experienced by a satellite and therefore provide an improvement in orbit determination and prediction as well as a better overall understanding of the Earth's upper atmosphere. The optimal orbit determination scheme used in this work includes using POE data as measurements in a sequential filter/smoother process using the Orbit Determination Tool Kit (ODTK) software. The POE derived density estimates are validated by comparing them with the densities derived from accelerometers on board the Challenging Minisatellite Payload (CHAMP) and the Gravity Recovery and Climate Experiment (GRACE). These accelerometer derived density data sets for both CHAMP and GRACE are available from Sean Bruinsma of the Centre National d'Etudes Spatiales (CNES). The trend in the variation of atmospheric density is compared quantitatively by calculating the cross correlation (CC) between the POE derived density values and the accelerometer derived density values while the magnitudes of the two data sets are compared by calculating the root mean square (RMS) values between the two. There are certain high frequency density variations that are observed in the accelerometer derived density data but not in the POE derived density data or any of the baseline density models. These high frequency density variations are typically small in magnitude compared to the overall day-night variation. However during certain time periods, such as when the satellite is near the terminator, the variations are on the same order of magnitude as the diurnal variations. These variations can also be especially prevalent during geomagnetic storms and near the polar cusps. One of the goals of this work is to see what affect these unmodeled high frequency variations have on orbit propagation. In order to see this effect, the orbits of CHAMP and GRACE are propagated during certain time periods using different sources of density data as input measurements (accelerometer, POE, HASDM, and Jacchia 1971). The resulting orbit propagations are all compared to the propagation using the accelerometer derived density data which is used as truth. The RMS and the maximum difference between the different propagations are analyzed in order to see what effect the unmodeled density variations have on orbit propagation. These results are also binned by solar and geomagnetic activity level. The primary input into the orbit determination scheme used to produce the POE derived density estimates is a precision orbit ephemeris file. This file contains position and velocity in-formation for the satellite based on GPS and SLR measurements. The values contained in these files are estimated values and therefore contain some level of error, typically thought to be around the 5-10 cm level. The other primary focus of this work is to evaluate the effect of adding different levels of noise (0.1 m, 0.5 m, 1 m, 10 m, and 100 m) to this raw ephemeris data file before it is input into the orbit determination scheme. The resulting POE derived density estimates for each level of noise are then compared with the accelerometer derived densities by computing the CC and RMS values between the data sets. These results are also binned by solar and geomagnetic activity level.

  8. ACCURATE ORBITAL INTEGRATION OF THE GENERAL THREE-BODY PROBLEM BASED ON THE D'ALEMBERT-TYPE SCHEME

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minesaki, Yukitaka

    2013-03-15

    We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.

  9. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis.

    PubMed

    Olejniczak, Małgorzata; Bast, Radovan; Saue, Trond; Pecul, Magdalena

    2012-01-07

    We report the implementation of nuclear magnetic resonance (NMR) shielding tensors within the four-component relativistic Kohn-Sham density functional theory including non-collinear spin magnetization and employing London atomic orbitals to ensure gauge origin independent results, together with a new and efficient scheme for assuring correct balance between the large and small components of a molecular four-component spinor in the presence of an external magnetic field (simple magnetic balance). To test our formalism we have carried out calculations of NMR shielding tensors for the HX series (X = F, Cl, Br, I, At), the Xe atom, and the Xe dimer. The advantage of simple magnetic balance scheme combined with the use of London atomic orbitals is the fast convergence of results (when compared with restricted kinetic balance) and elimination of linear dependencies in the basis set (when compared to unrestricted kinetic balance). The effect of including spin magnetization in the description of NMR shielding tensor has been found important for hydrogen atoms in heavy HX molecules, causing an increase of isotropic values of 10%, but negligible for heavy atoms.

  10. Monte Carlo analysis of the Titan III/Transfer Orbit Stage guidance system for the Mars Observer mission

    NASA Astrophysics Data System (ADS)

    Bell, Stephen C.; Ginsburg, Marc A.; Rao, Prabhakara P.

    An important part of space launch vehicle mission planning for a planetary mission is the integrated analysis of guidance and performance dispersions for both booster and upper stage vehicles. For the Mars Observer mission, an integrated trajectory analysis was used to maximize the scientific payload and to minimize injection errors by optimizing the energy management of both vehicles. This was accomplished by designing the Titan III booster vehicle to inject into a hyperbolic departure plane, and the Transfer Orbit Stage (TOS) to correct any booster dispersions. An integrated Monte Carlo analysis of the performance and guidance dispersions of both vehicles provided sensitivities, an evaluation of their guidance schemes and an injection error covariance matrix. The polynomial guidance schemes used for the Titan III variable flight azimuth computations and the TOS solid rocket motor ignition time and burn direction derivations accounted for a wide variation of launch times, performance dispersions, and target conditions. The Mars Observer spacecraft was launched on 25 September 1992 on the Titan III/TOS vehicle. The post flight analysis indicated that a near perfect park orbit injection was achieved, followed by a trans-Mars injection with less than 2sigma errors.

  11. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An introduction to the MAPSEP organization and a detailed analytical description of all models and algorithms are given. These include trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes. Earth orbital MAPSEP contains the capability of analyzing almost any currently projected low thrust mission from low earth orbit to super synchronous altitudes. Furthermore, MAPSEP is sufficiently flexible to incorporate extended dynamic models, alternate mission strategies, and almost any other system requirement imposed by the user. As in the interplanetary version, earth orbital MAPSEP represents a trade-off between precision modeling and computational speed consistent with defining necessary system requirements. It can be used in feasibility studies as well as in flight operational support. Pertinent operational constraints are available both implicitly and explicitly. However, the reader should be warned that because of program complexity, MAPSEP is only as good as the user and will quickly succumb to faulty user inputs.

  12. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals

    NASA Astrophysics Data System (ADS)

    Ge, Qinghui; Mao, Yuezhi; Head-Gordon, Martin

    2018-02-01

    An energy decomposition analysis (EDA) scheme is developed for understanding the intermolecular interaction involving molecules in their excited states. The EDA utilizes absolutely localized molecular orbitals to define intermediate states and is compatible with excited state methods based on linear response theory such as configuration interaction singles and time-dependent density functional theory. The shift in excitation energy when an excited molecule interacts with the environment is decomposed into frozen, polarization, and charge transfer contributions, and the frozen term can be further separated into Pauli repulsion and electrostatics. These terms can be added to their counterparts obtained from the ground state EDA to form a decomposition of the total interaction energy. The EDA scheme is applied to study a variety of systems, including some model systems to demonstrate the correct behavior of all the proposed energy components as well as more realistic systems such as hydrogen-bonding complexes (e.g., formamide-water, pyridine/pyrimidine-water) and halide (F-, Cl-)-water clusters that involve charge-transfer-to-solvent excitations.

  13. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    NASA Astrophysics Data System (ADS)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.

  14. Destructive quantum interference in electron transport: A reconciliation of the molecular orbital and the atomic orbital perspective

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Geskin, Victor; Stadler, Robert

    2017-03-01

    Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.

  15. Localized orbital corrections applied to thermochemical errors in density functional theory: The role of basis set and application to molecular reactions

    NASA Astrophysics Data System (ADS)

    Goldfeld, Dahlia A.; Bochevarov, Arteum D.; Friesner, Richard A.

    2008-12-01

    This paper is a logical continuation of the 22 parameter, localized orbital correction (LOC) methodology that we developed in previous papers [R. A. Friesner et al., J. Chem. Phys. 125, 124107 (2006); E. H. Knoll and R. A. Friesner, J. Phys. Chem. B 110, 18787 (2006).] This methodology allows one to redress systematic density functional theory (DFT) errors, rooted in DFT's inherent inability to accurately describe nondynamical correlation. Variants of the LOC scheme, in conjunction with B3LYP (denoted as B3LYP-LOC), were previously applied to enthalpies of formation, ionization potentials, and electron affinities and showed impressive reduction in the errors. In this paper, we demonstrate for the first time that the B3LYP-LOC scheme is robust across different basis sets [6-31G∗, 6-311++G(3df,3pd), cc-pVTZ, and aug-cc-pVTZ] and reaction types (atomization reactions and molecular reactions). For example, for a test set of 70 molecular reactions, the LOC scheme reduces their mean unsigned error from 4.7 kcal/mol [obtained with B3LYP/6-311++G(3df,3pd)] to 0.8 kcal/mol. We also verified whether the LOC methodology would be equally successful if applied to the promising M05-2X functional. We conclude that although M05-2X produces better reaction enthalpies than B3LYP, the LOC scheme does not combine nearly as successfully with M05-2X than with B3LYP. A brief analysis of another functional, M06-2X, reveals that it is more accurate than M05-2X but its combination with LOC still cannot compete in accuracy with B3LYP-LOC. Indeed, B3LYP-LOC remains the best method of computing reaction enthalpies.

  16. Long-range corrected density functional theory with accelerated Hartree-Fock exchange integration using a two-Gaussian operator [LC-ωPBE(2Gau)].

    PubMed

    Song, Jong-Won; Hirao, Kimihiko

    2015-10-14

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.

  17. Study on High Resolution Membrane-Based Diffractive Optical Imaging on Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Jiao, J.; Wang, B.; Wang, C.; Zhang, Y.; Jin, J.; Liu, Z.; Su, Y.; Ruan, N.

    2017-05-01

    Diffractive optical imaging technology provides a new way to realize high resolution earth observation on geostationary orbit. There are a lot of benefits to use the membrane-based diffractive optical element in ultra-large aperture optical imaging system, including loose tolerance, light weight, easy folding and unfolding, which make it easy to realize high resolution earth observation on geostationary orbit. The implementation of this technology also faces some challenges, including the configuration of the diffractive primary lens, the development of high diffraction efficiency membrane-based diffractive optical elements, and the correction of the chromatic aberration of the diffractive optical elements. Aiming at the configuration of the diffractive primary lens, the "6+1" petal-type unfold scheme is proposed, which consider the compression ratio, the blocking rate and the development complexity. For high diffraction efficiency membrane-based diffractive optical element, a self-collimating method is proposed. The diffraction efficiency is more than 90 % of the theoretical value. For the chromatic aberration correction problem, an optimization method based on schupmann is proposed to make the imaging spectral bandwidth in visible light band reach 100 nm. The above conclusions have reference significance for the development of ultra-large aperture diffractive optical imaging system.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Kizashi; Nishihara, Satomichi; Saito, Toru

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level.more » In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.« less

  19. Small Atomic Orbital Basis Set First‐Principles Quantum Chemical Methods for Large Molecular and Periodic Systems: A Critical Analysis of Error Sources

    PubMed Central

    Sure, Rebecca; Brandenburg, Jan Gerit

    2015-01-01

    Abstract In quantum chemical computations the combination of Hartree–Fock or a density functional theory (DFT) approximation with relatively small atomic orbital basis sets of double‐zeta quality is still widely used, for example, in the popular B3LYP/6‐31G* approach. In this Review, we critically analyze the two main sources of error in such computations, that is, the basis set superposition error on the one hand and the missing London dispersion interactions on the other. We review various strategies to correct those errors and present exemplary calculations on mainly noncovalently bound systems of widely varying size. Energies and geometries of small dimers, large supramolecular complexes, and molecular crystals are covered. We conclude that it is not justified to rely on fortunate error compensation, as the main inconsistencies can be cured by modern correction schemes which clearly outperform the plain mean‐field methods. PMID:27308221

  20. Next-to-next-to-leading order gravitational spin-orbit coupling via the effective field theory for spinning objects in the post-Newtonian scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levi, Michele; Steinhoff, Jan, E-mail: michele.levi@upmc.fr, E-mail: jan.steinhoff@aei.mpg.de

    2016-01-01

    We implement the effective field theory for gravitating spinning objects in the post-Newtonian scheme at the next-to-next-to-leading order level to derive the gravitational spin-orbit interaction potential at the third and a half post-Newtonian order for rapidly rotating compact objects. From the next-to-next-to-leading order interaction potential, which we obtain here in a Lagrangian form for the first time, we derive straightforwardly the corresponding Hamiltonian. The spin-orbit sector constitutes the most elaborate spin dependent sector at each order, and accordingly we encounter a proliferation of the relevant Feynman diagrams, and a significant increase of the computational complexity. We present in detail themore » evaluation of the interaction potential, going over all contributing Feynman diagrams. The computation is carried out in terms of the ''nonrelativistic gravitational'' fields, which are advantageous also in spin dependent sectors, together with the various gauge choices included in the effective field theory for gravitating spinning objects, which also optimize the calculation. In addition, we automatize the effective field theory computations, and carry out the automated computations in parallel. Such automated effective field theory computations would be most useful to obtain higher order post-Newtonian corrections. We compare our Hamiltonian to the ADM Hamiltonian, and arrive at a complete agreement between the ADM and effective field theory results. Finally, we provide Hamiltonians in the center of mass frame, and complete gauge invariant relations among the binding energy, angular momentum, and orbital frequency of an inspiralling binary with generic compact spinning components to third and a half post-Newtonian order. The derivation presented here is essential to obtain further higher order post-Newtonian corrections, and to reach the accuracy level required for the successful detection of gravitational radiation.« less

  1. Can the second order multireference perturbation theory be considered a reliable tool to study mixed-valence compounds?

    PubMed

    Pastore, Mariachiara; Helal, Wissam; Evangelisti, Stefano; Leininger, Thierry; Malrieu, Jean-Paul; Maynau, Daniel; Angeli, Celestino; Cimiraglia, Renzo

    2008-05-07

    In this paper, the problem of the calculation of the electronic structure of mixed-valence compounds is addressed in the frame of multireference perturbation theory (MRPT). Using a simple mixed-valence compound (the 5,5(') (4H,4H('))-spirobi[ciclopenta[c]pyrrole] 2,2('),6,6(') tetrahydro cation), and the n-electron valence state perturbation theory (NEVPT2) and CASPT2 approaches, it is shown that the ground state (GS) energy curve presents an unphysical "well" for nuclear coordinates close to the symmetric case, where a maximum is expected. For NEVPT, the correct shape of the energy curve is retrieved by applying the MPRT at the (computationally expensive) third order. This behavior is rationalized using a simple model (the ionized GS of two weakly interacting identical systems, each neutral system being described by two electrons in two orbitals), showing that the unphysical well is due to the canonical orbital energies which at the symmetric (delocalized) conformation lead to a sudden modification of the denominators in the perturbation expansion. In this model, the bias introduced in the second order correction to the energy is almost entirely removed going to the third order. With the results of the model in mind, one can predict that all MRPT methods in which the zero order Hamiltonian is based on canonical orbital energies are prone to present unreasonable energy profiles close to the symmetric situation. However, the model allows a strategy to be devised which can give a correct behavior even at the second order, by simply averaging the orbital energies of the two charge-localized electronic states. Such a strategy is adopted in a NEVPT2 scheme obtaining a good agreement with the third order results based on the canonical orbital energies. The answer to the question reported in the title (is this theoretical approach a reliable tool for a correct description of these systems?) is therefore positive, but care must be exercised, either in defining the orbital energies or by resorting to the third order using for them the standard definition.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jong-Won; Hirao, Kimihiko, E-mail: hirao@riken.jp

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular andmore » periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.« less

  3. Primeval substance delivery from Phobos to the Earth—the Phobos-Soil project: Ballistics, navigation, and flight control

    NASA Astrophysics Data System (ADS)

    Akim, E. L.; Zaslavsky, G. S.; Morskoy, I. M.; Ruzsky, E. G.; Stepaniants, V. A.; Tuchin, A. G.

    2010-02-01

    This paper is concerned with the problems of ballistics, navigation, and flight control of the space craft (SC) in the Phobos-Grunt mission. We consider an insertion into the Earth-Mars transfer trajectory, the Earth-Mars transfer, the strategy of corrections, and the accuracy of the insertion of the SC into Martian orbit. During the orbital maneuvering stage in the sphere of influence of Mars, we set up a scheme that allows for the insertion of the SC, with the prescribed accuracy, into a point 80-km above the Phobos surface over the theoretical landing area. We specify the sequence for a controlled landing and provide methods for solving the problems of navigation and control during a self-c ontained landing. We also consider the liftoff from Phobos, insertion into the parking orbit, and the Mars-Earth transfer.

  4. Projector Augmented Wave formulation of orbital-dependent exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Holzwarth, N. A. W.

    2012-02-01

    The use of orbital-dependent exchange-correlation functionals within electronic structure calculations has recently received renewed attention for improving the accuracy of the calculations, especially correcting self-interaction errors. Since the Projector Augmented Wave (PAW) methodootnotetext P. Bl"ochl, Phys. Rev. B 50, 17953 (1994). is an efficient pseudopotential-like scheme which ensures accurate evaluation of all multipole moments of direct and exchange Coulomb integrals, it is a natural choice for implementing orbital-dependent formalisms. Using Fock exchange as an example of an orbital-dependent functional, we developed the formulation and numerical implementation of the approximate optimized effective potential formalism of Kreiger, Li, and Iafrate (KLI)ootnotetext J. B. Krieger, Y. Li, and G. J. Iafrate Phys. Rev. A 45, 101 (1992). within the PAW method, comparing results with the analogous Hartree-Fock treatment.ootnotetext Xiao Xu and N. A. W. Holzwarth, Phys. Rev. B 81, 245105 (2010); 84, 155113 (2011). Test results are presented for ground state properties of two well-known materials -- diamond and LiF. This formalism can be extended to treat orbital-dependent functionals more generally.

  5. Benchmark coupled-cluster g-tensor calculations with full inclusion of the two-particle spin-orbit contributions.

    PubMed

    Perera, Ajith; Gauss, Jürgen; Verma, Prakash; Morales, Jorge A

    2017-04-28

    We present a parallel implementation to compute electron spin resonance g-tensors at the coupled-cluster singles and doubles (CCSD) level which employs the ACES III domain-specific software tools for scalable parallel programming, i.e., the super instruction architecture language and processor (SIAL and SIP), respectively. A unique feature of the present implementation is the exact (not approximated) inclusion of the five one- and two-particle contributions to the g-tensor [i.e., the mass correction, one- and two-particle paramagnetic spin-orbit, and one- and two-particle diamagnetic spin-orbit terms]. Like in a previous implementation with effective one-electron operators [J. Gauss et al., J. Phys. Chem. A 113, 11541-11549 (2009)], our implementation utilizes analytic CC second derivatives and, therefore, classifies as a true CC linear-response treatment. Therefore, our implementation can unambiguously appraise the accuracy of less costly effective one-particle schemes and provide a rationale for their widespread use. We have considered a large selection of radicals used previously for benchmarking purposes including those studied in earlier work and conclude that at the CCSD level, the effective one-particle scheme satisfactorily captures the two-particle effects less costly than the rigorous two-particle scheme. With respect to the performance of density functional theory (DFT), we note that results obtained with the B3LYP functional exhibit the best agreement with our CCSD results. However, in general, the CCSD results agree better with the experimental data than the best DFT/B3LYP results, although in most cases within the rather large experimental error bars.

  6. A Method of Implementing Cutoff Conditions for Saturn V Lunar Missions Out of Earth Parking Orbit Assuming a Continuous Ground Launch Window

    NASA Technical Reports Server (NTRS)

    Cooper, F. D.

    1965-01-01

    A method of implementing Saturn V lunar missions from an earth parking orbit is presented. The ground launch window is assumed continuous over a four and one-half hour period. The iterative guidance scheme combined with a set of auxiliary equations that define suitable S-IVB cutoff conditions, is the approach taken. The four inputs to the equations that define cutoff conditions are represented as simple third-degree polynomials as a function of ignition time. Errors at lunar arrival caused by the separate and combined effects of the guidance equations, cutoff conditions, hypersurface errors, and input representations are shown. Vehicle performance variations and parking orbit injection errors are included as perturbations. Appendix I explains how aim vectors were computed for the cutoff equations. Appendix II presents all guidance equations and related implementation procedures. Appendix III gives the derivation of the auxiliary cutoff equations. No error at lunar arrival was large enough to require a midcourse correction greater than one meter per second assuming a transfer time of three days and the midcourse correction occurs five hours after injection. Since this result is insignificant when compared to expected hardware errors, the implementation procedures presented are adequate to define cutoff conditions for Saturn V lunar missions.

  7. Plasma equilibrium with fast ion orbit width, pressure anisotropy, and toroidal flow effects

    DOE PAGES

    Gorelenkov, Nikolai N.; Zakharov, Leonid E.

    2018-04-27

    Here, we formulate the problem of tokamak plasma equilibrium including the toroidal flow and fast ion (or energetic particle, EP) pressure anisotropy and the finite drift orbit width (FOW) effects. The problem is formulated via the standard Grad-Shafranov equation (GShE) amended by the solvability condition which imposes physical constraints on allowed spacial dependencies of the anisotropic pressure. The GShE problem employs the pressure coupling scheme and includes the dominant diagonal terms and non-diagonal corrections to the standard pressure tensor. The anisotropic tensor elements are obtained via the distribution function represented in the factorized form via the constants of motion. Consideredmore » effects on the plasma equilibrium are estimated analytically, if possible, to understand their importance for GShE tokamak plasma problem.« less

  8. Plasma equilibrium with fast ion orbit width, pressure anisotropy, and toroidal flow effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorelenkov, Nikolai N.; Zakharov, Leonid E.

    Here, we formulate the problem of tokamak plasma equilibrium including the toroidal flow and fast ion (or energetic particle, EP) pressure anisotropy and the finite drift orbit width (FOW) effects. The problem is formulated via the standard Grad-Shafranov equation (GShE) amended by the solvability condition which imposes physical constraints on allowed spacial dependencies of the anisotropic pressure. The GShE problem employs the pressure coupling scheme and includes the dominant diagonal terms and non-diagonal corrections to the standard pressure tensor. The anisotropic tensor elements are obtained via the distribution function represented in the factorized form via the constants of motion. Consideredmore » effects on the plasma equilibrium are estimated analytically, if possible, to understand their importance for GShE tokamak plasma problem.« less

  9. Thermospheric density variations: Observability using precision satellite orbits and effects on orbit propagation

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Travis; McLaughlin, Craig A.; Locke, Travis; Krishna, Dhaval Mysore

    2013-01-01

    paper examines atmospheric density estimated using precision orbit ephemerides (POE) from the CHAMP and GRACE satellites during short periods of greater atmospheric density variability. The results of the calibration of CHAMP densities derived using POEs with those derived using accelerometers are examined for three different types of density perturbations, [traveling atmospheric disturbances (TADs), geomagnetic cusp phenomena, and midnight density maxima] in order to determine the temporal resolution of POE solutions. In addition, the densities are compared to High-Accuracy Satellite Drag Model (HASDM) densities to compare temporal resolution for both types of corrections. The resolution for these models of thermospheric density was found to be inadequate to sufficiently characterize the short-term density variations examined here. Also examined in this paper is the effect of differing density estimation schemes by propagating an initial orbit state forward in time and examining induced errors. The propagated POE-derived densities incurred errors of a smaller magnitude than the empirical models and errors on the same scale or better than those incurred using the HASDM model.

  10. Guidance trajectories for aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.

    1990-01-01

    Research on aerobraking guidance schemes is presented. The intent is to produce aerobraking guidance trajectories exhibiting many of the desirable characteristics of optimal aerobraking trajectories. Both one-control schemes and two-control schemes are studied. The research is in the interest of aeroassisted flight experiment vehicles (AFE) and aeroassisted orbital transfer (AOT) vehicles.

  11. A NEW GUI FOR GLOBAL ORBIT CORRECTION AT THE ALS USING MATLAB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pachikara, J.; Portmann, G.

    2007-01-01

    Orbit correction is a vital procedure at particle accelerators around the world. The orbit correction routine currently used at the Advanced Light Source (ALS) is a bit cumbersome and a new Graphical User Interface (GUI) has been developed using MATLAB. The correction algorithm uses a singular value decomposition method for calculating the required corrector magnet changes for correcting the orbit. The application has been successfully tested at the ALS. The GUI display provided important information regarding the orbit including the orbit errors before and after correction, the amount of corrector magnet strength change, and the standard deviation of the orbitmore » error with respect to the number of singular values used. The use of more singular values resulted in better correction of the orbit error but at the expense of enormous corrector magnet strength changes. The results showed an inverse relationship between the peak-to-peak values of the orbit error and the number of singular values used. The GUI interface helps the ALS physicists and operators understand the specifi c behavior of the orbit. The application is convenient to use and is a substantial improvement over the previous orbit correction routine in terms of user friendliness and compactness.« less

  12. First principle calculations of effective exchange integrals: Comparison between SR (BS) and MR computational results

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Kizashi; Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Yamada, Satoru; Isobe, Hiroshi; Okumura, Mitsutaka

    2015-01-01

    First principle calculations of effective exchange integrals (J) in the Heisenberg model for diradical species were performed by both symmetry-adapted (SA) multi-reference (MR) and broken-symmetry (BS) single reference (SR) methods. Mukherjee-type (Mk) state specific (SS) MR coupled-cluster (CC) calculations by the use of natural orbital (NO) references of ROHF, UHF, UDFT and CASSCF solutions were carried out to elucidate J values for di- and poly-radical species. Spin-unrestricted Hartree Fock (UHF) based coupled-cluster (CC) computations were also performed to these species. Comparison between UHF-NO(UNO)-MkMRCC and BS UHF-CC computational results indicated that spin-contamination of UHF-CC solutions still remains at the SD level. In order to eliminate the spin contamination, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed corrected the error to yield good agreement with MkMRCC in energy. The CC double with spin-unrestricted Brueckner's orbital (UBD) was furthermore employed for these species, showing that spin-contamination involved in UHF solutions is largely suppressed, and therefore AP scheme for UBCCD removed easily the rest of spin-contamination. We also performed spin-unrestricted pure- and hybrid-density functional theory (UDFT) calculations of diradical and polyradical species. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid (H) UDFT. HUDFT calculations followed by AP, HUDFT(AP), yielded the S-T gaps that were qualitatively in good agreement with those of MkMRCCSD, UHF-CC(AP) and UB-CC(AP). Thus a systematic comparison among MkMRCCSD, UCC(AP) UBD(AP) and UDFT(AP) was performed concerning with the first principle calculations of J values in di- and poly-radical species. It was found that BS (AP) methods reproduce MkMRCCSD results, indicating their applicability to large exchange coupled systems.

  13. Optimized effective potential in real time: Problems and prospects in time-dependent density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundt, Michael; Kuemmel, Stephan

    2006-08-15

    The integral equation for the time-dependent optimized effective potential (TDOEP) in time-dependent density-functional theory is transformed into a set of partial-differential equations. These equations only involve occupied Kohn-Sham orbitals and orbital shifts resulting from the difference between the exchange-correlation potential and the orbital-dependent potential. Due to the success of an analog scheme in the static case, a scheme that propagates orbitals and orbital shifts in real time is a natural candidate for an exact solution of the TDOEP equation. We investigate the numerical stability of such a scheme. An approximation beyond the Krieger-Li-Iafrate approximation for the time-dependent exchange-correlation potential ismore » analyzed.« less

  14. Aquarius L-Band Microwave Radiometer: Three Years of Radiometric Performance and Systematic Effects

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hong, Liang; Pellerano, Fernando A.

    2015-01-01

    The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT 0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model.

  15. Charge and spin diffusion on the metallic side of the metal-insulator transition: A self-consistent approach

    NASA Astrophysics Data System (ADS)

    Wellens, Thomas; Jalabert, Rodolfo A.

    2016-10-01

    We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.

  16. Crustal interpretation of the MAGSAT data in the continental United States

    NASA Technical Reports Server (NTRS)

    Won, I. J.; Son, K. H.

    1982-01-01

    The processing of MAGSAT scalar data to construct a crustal magnetic anomaly map over the continental U.S. involves removal of the reference field model, a path-by-path subtraction of a low order polynomial through a least-squares fit to reduce orbital offset errors, and a two dimensional spectral filtering to mitigate the spectral bias induced by the path-by-path orbital correction scheme. The resultant anomaly map shows reasonably good correlations with an aeromagnetic map derived from the project MAGNET. Prominent satellite magnetic anomalies are identified in terms of geological provinces and age boundaries. An inversion method was applied to MAGSAT data which produces both the Curie depth topography and laterally varying magnetic susceptibility of the crust. A contoured Curie depth map thus derived shows general agreements with a crustal thickness map based on seismic data.

  17. Orbiter/Space lab momentum management for POP orientations

    NASA Technical Reports Server (NTRS)

    Cox, J. W.

    1974-01-01

    An angular momentum management scheme applicable to the orbiter/spacelab is described. The basis of the scheme is to periodically maneuver the vehicle through a small angle thereby using the gravity gradient torque to dump momentum from the control moment gyro (CMG) control system. The orbiter is operated with its principal vehicle axis perpendicular to the orbital plane. Numerous case runs were conducted on the hybrid simulation and representative cases are included.

  18. Surface passivation for tight-binding calculations of covalent solids.

    PubMed

    Bernstein, N

    2007-07-04

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp(3) hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  19. Surface passivation for tight-binding calculations of covalent solids

    NASA Astrophysics Data System (ADS)

    Bernstein, N.

    2007-07-01

    Simulation of a cluster representing a finite portion of a larger covalently bonded system requires the passivation of the cluster surface. We compute the effects of an explicit hybrid orbital passivation (EHOP) on the atomic structure in a model bulk, three-dimensional, narrow gap semiconductor, which is very different from the wide gap, quasi-one-dimensional organic molecules where most passivation schemes have been studied in detail. The EHOP approach is directly applicable to minimal atomic orbital basis methods such as tight-binding. Each broken bond is passivated by a hybrid created from an explicitly expressed linear combination of basis orbitals, chosen to represent the contribution of the missing neighbour, e.g. a sp3 hybrid for a single bond. The method is tested by computing the forces on atoms near a point defect as a function of cluster geometry. We show that, compared to alternatives such as pseudo-hydrogen passivation, the force on an atom converges to the correct bulk limit more quickly as a function of cluster radius, and that the force is more stable with respect to perturbations in the position of the cluster centre. The EHOP method also obviates the need for parameterizing the interactions between the system atoms and the passivating atoms. The method is useful for cluster calculations of non-periodic defects in large systems and for hybrid schemes that simulate large systems by treating finite regions with a quantum-mechanical model, coupled to an interatomic potential description of the rest of the system.

  20. Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-adapted perturbation theory

    NASA Astrophysics Data System (ADS)

    Gonthier, Jérôme F.; Corminboeuf, Clémence

    2014-04-01

    Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitive terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non-bonded intramolecular interactions.

  1. Exploration of zeroth-order wavefunctions and energies as a first step toward intramolecular symmetry-adapted perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonthier, Jérôme F.; Corminboeuf, Clémence, E-mail: clemence.corminboeuf@epfl.ch

    2014-04-21

    Non-covalent interactions occur between and within all molecules and have a profound impact on structural and electronic phenomena in chemistry, biology, and material science. Understanding the nature of inter- and intramolecular interactions is essential not only for establishing the relation between structure and properties, but also for facilitating the rational design of molecules with targeted properties. These objectives have motivated the development of theoretical schemes decomposing intermolecular interactions into physically meaningful terms. Among the various existing energy decomposition schemes, Symmetry-Adapted Perturbation Theory (SAPT) is one of the most successful as it naturally decomposes the interaction energy into physical and intuitivemore » terms. Unfortunately, analogous approaches for intramolecular energies are theoretically highly challenging and virtually nonexistent. Here, we introduce a zeroth-order wavefunction and energy, which represent the first step toward the development of an intramolecular variant of the SAPT formalism. The proposed energy expression is based on the Chemical Hamiltonian Approach (CHA), which relies upon an asymmetric interpretation of the electronic integrals. The orbitals are optimized with a non-hermitian Fock matrix based on two variants: one using orbitals strictly localized on individual fragments and the other using canonical (delocalized) orbitals. The zeroth-order wavefunction and energy expression are validated on a series of prototypical systems. The computed intramolecular interaction energies demonstrate that our approach combining the CHA with strictly localized orbitals achieves reasonable interaction energies and basis set dependence in addition to producing intuitive energy trends. Our zeroth-order wavefunction is the primary step fundamental to the derivation of any perturbation theory correction, which has the potential to truly transform our understanding and quantification of non-bonded intramolecular interactions.« less

  2. Orbit correction in a linear nonscaling fixed field alternating gradient accelerator

    DOE PAGES

    Kelliher, D. J.; Machida, S.; Edmonds, C. S.; ...

    2014-11-20

    In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.

  3. An Inherent-Optical-Property-Centered Approach to Correct the Angular Effects in Water-Leaving Radiance

    DTIC Science & Technology

    2011-07-01

    10%. These results demonstrate that the IOP-based BRDF correction scheme (which is composed of the R„ model along with the IOP retrieval...distribution was averaged over 10 min 5. Validation of the lOP-Based BRDF Correction Scheme The IOP-based BRDF correction scheme is applied to both...oceanic and coastal waters were very consistent qualitatively and quantitatively and thus validate the IOP- based BRDF correction system, at least

  4. Optimised effective potential for ground states, excited states, and time-dependent phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gross, E.K.U.

    1996-12-31

    (1) The optimized effective potential method is a variant of the traditional Kohn-Sham scheme. In this variant, the exchange-correlation energy E{sub xc} is an explicit functional of single-particle orbitals. The exchange-correlation potential, given as usual by the functional derivative v{sub xc} = {delta}E{sub xc}/{delta}{rho}, then satisfies as integral equation involving the single-particle orbitals. This integral equation in solved semi-analytically using a scheme recently proposed by Krieger, Li and Iafrate. If the exact (Fock) exchange-energy functional is employed together with the Colle-Salvetti orbital functional for the correlation energy, the mean absolute deviation of the resulting ground-state energies from the exact nonrelativisticmore » values is CT mH for the first-row atoms, as compared to 4.5 mH in a state-of-the-art CI calculation. The proposed scheme is thus significantly more accurate than the conventional Kohn-Sham method while the numerical effort involved is about the same as for an ordinary Hanree-Fock calculation. (2) A time-dependent generalization of the optimized-potential method is presented and applied to the linear-response regime. Since time-dependent density functional theory leads to a formally exact representation of the frequency-dependent linear density response and since the latter, as a function of frequency, has poles at the excitation energies of the fully interacting system, the formalism is suitable for the calculation of excitation energies. A simple additive correction to the Kohn-Sham single-particle excitation energies will be deduced and first results for atomic and molecular singlet and triplet excitation energies will be presented. (3) Beyond the regime of linear response, the time-dependent optimized-potential method is employed to describe atoms in strong emtosecond laser pulses. Ionization yields and harmonic spectra will be presented and compared with experimental data.« less

  5. Orbital-Dependent-Functionals within Density Functional Theory: Methodology and Applications

    NASA Astrophysics Data System (ADS)

    Makmal, Adi

    I have designed and implemented a new numerical scheme for solving Kohn-Sham (KS) equations for diatomic systems, together with a full solution of the OEP equation. The equations are solved on a real-space prolate spheroidal coordinate grid, such that all the system's electrons are taken into account. The OEP equation is solved via the S-iteration scheme. This newly developed software package is called DARSEC (DiAtomic Real-Space Electronic structure Calculations). It involves no approximation except for the one inherent in the XC functional. Thus it is especially suitable for examining new functionals of any kind, and ODFs in particular. It is also an ideal tool for assessing the validity of commonly used approximations, for the same reasons. One case for which this uniqueness of DARSEC was exploited in this thesis is the examination of the validity of the pseudopotential approximation for KS gaps that are calculated with EXX OEP (xOEP). Before this study, use of the pseudopotential approximation in such calculations was called into question. I have shown that KS gaps obtained with pseudopotentials that have been constructed in a manner consistent with the exact-exchange functional agree with the all-electron results (i.e. without the pseudopotential approximation), for the cases studied. This confirmed the reliability of the pseudopotential approximation for ODFs such as EXX. Explicit density-dependent XC functionals traditionally fail to obtain atomization-energy as well as charge-dissociation curves that are, at least qualitatively, correct for diatomic systems. On the other hand, Hartree-Fock (HF) theory encounters no such problem. Hence, an additional goal of this research was to study the performances of the EXX functional (being the DFT counterpart of HF) in describing binding energies and charge dissociations for stretched diatomic molecules. Moreover, I wanted to investigate the special features of the resulting single and local EXX KS potential, as opposed to the non-local orbital specific HF potentials. I asked the following questions: Is it at all possible to obtain correct binding energy curves and charge dissociation curves with the local exact-exchange KS potential? What are the main features of such a local KS potential? And how are they related to the spatial shapes of the KS orbitals? To answer these questions, I calculated the electronic structures of highly stretched H2, HF and LiF molecules with EXX, using the Krieger, Li, and Iafrate (KLI) scheme. All calculations were done with DARSEC, whose coordinate system is highly suitable for calculating such stretched diatomic molecules. By examining several electronic configurations in a systematic manner, low energy ones were identified, and qualitatively correct binding-energy curves were obtained. For the LiF molecule a qualitatively correct charge separation curve was also achieved. Once the local EXX KLI potential was obtained for highly stretched diatomic systems, I could study its properties. Specifically, I have identified and demonstrated the following features: (a) The location and size of a constant shift in the potential and its relation to orbital spatial shapes; (b) The dependence of the shift's position on the inter-atomic separation length; (c) The existence of multiple constant shifts of the same kind; (d) The relation between the eigenvalues of the highly stretched diatomic system and the corresponding eigenvalues of the separated atoms - and how this relation is correlated with the asymptotic shift of the local potential. Understanding this unique combination of features sheds light on the mechanism with which the EXX potential enforces the correct charge dissociation. Last, a study on a novel ODF was initiated. The new ODF, suggested by Stephan Kummel, has a local function that mixes a fraction of EXX with a complementary fraction of exchange of the homogenous electronic gas (LDA), where a different fraction is assigned for each point in space. To derive the corresponding potential, the functional derivative of the new energy expression with respect to the KS orbitals was analytically derived. The new energy and potential expressions were implemented into DARSEC, and preliminary examinations were carried out. (Abstract shortened by UMI.)

  6. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Read, Peter; Lewis, Stephen; Steele, Liam; Holmes, James; Valeanu, Alexandru

    2016-07-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office. The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") at the following URL: http://macdap.physics.ox.ac.uk/ MACDA is an ongoing collaborative project, and work is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust and water ice.

  7. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling

    PubMed Central

    Hou, Yan-Hua; Yu, Zhenhua

    2015-01-01

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations. PMID:26483090

  8. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    PubMed

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  9. Space Shuttle guidance for multiple main engine failures during first stage

    NASA Technical Reports Server (NTRS)

    Sponaugle, Steven J.; Fernandes, Stanley T.

    1987-01-01

    This paper presents contingency abort guidance schemes recently developed for multiple Space Shuttle main engine failures during the first two minutes of flight (first stage). The ascent and entry guidance schemes greatly improve the possibility of the crew and/or the Orbiter surviving a first stage contingency abort. Both guidance schemes were required to meet certain structural and controllability constraints. In addition, the systems were designed with the flexibility to allow for seasonal variations in the atmosphere and wind. The ascent scheme guides the vehicle to a desirable, lofted state at solid rocket booster burnout while reducing the structural loads on the vehicle. After Orbiter separation from the solid rockets and the external tank, the entry scheme guides the Orbiter through one of two possible entries. If the proper altitude/range/velocity conditions have been met, a return-to-launch-site 'Split-S' maneuver may be attempted. Otherwise, a down-range abort to an equilibrium glide and subsequent crew bailout is performed.

  10. Subdecoherence time generation and detection of orbital entanglement in quantum dots.

    PubMed

    Brange, F; Malkoc, O; Samuelsson, P

    2015-05-01

    Recent experiments have demonstrated subdecoherence time control of individual single-electron orbital qubits. Here we propose a quantum-dot-based scheme for generation and detection of pairs of orbitally entangled electrons on a time scale much shorter than the decoherence time. The electrons are entangled, via two-particle interference, and transferred to the detectors during a single cotunneling event, making the scheme insensitive to charge noise. For sufficiently long detector dot lifetimes, cross-correlation detection of the dot charges can be performed with real-time counting techniques, providing for an unambiguous short-time Bell inequality test of orbital entanglement.

  11. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  12. Combining GRACE and Altimetry to solve for present day mass changes and GIA

    NASA Astrophysics Data System (ADS)

    Rietbroek, R.; Lück, C.; Uebbing, B.; Kusche, J.; King, M. A.

    2017-12-01

    Past and present day sea level rise is closely linked to geoid and surface deformation changes from the ongoing glacial isostatic adjustment (GIA). Sea level, as detected by radar altimetry, senses the radial deformation of the ocean floor as mantle material slowly flows back to the locations of the former glacial domes. This manifests itself as a net subsidence when averaged over the entire ocean, but can regionally be seen as an uplift for locations close to the former ice sheets. Furthermore, mass driven sea level as derived from GRACE, is even more sensitive to GIA induced mass redistribution in the solid Earth. Consequently, errors in GIA corrections, most notably errors in mantle viscosity and ice histories, have a different leverage on regional sea level estimates from GRACE and altimetry. In this study, we discuss the abilities of a GRACE-altimetry combination to co-estimate GIA corrections together with present day contributors to sea level, rather than simply prescribing a GIA correction from a model. The data is combined in a joint inversion scheme which makes use of spatial patterns to parameterize present day loading effects and GIA. We show that the GRACE-altimetry combination requires constraints, but generally steers the Antarctic GIA signal towards a weaker present day signal in Antarctica compared to a ICE5-G(VM2) derived model. Furthermore, in light of the aging GRACE mission, we show sensitivity studies of how well one could estimate GIA corrections when using other low earth orbiters such as SWARM or CHAMP. Finally, we show whether the Antarctic GNSS station network may be useful in separating GIA from present day mass signals in this type of inversion schemes.

  13. Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.

    2017-01-01

    Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.

  14. Orbit-product representation and correction of Gaussian belief propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K; Chertkov, Michael; Chernyak, Vladimir

    We present a new interpretation of Gaussian belief propagation (GaBP) based on the 'zeta function' representation of the determinant as a product over orbits of a graph. We show that GaBP captures back-tracking orbits of the graph and consider how to correct this estimate by accounting for non-backtracking orbits. We show that the product over non-backtracking orbits may be interpreted as the determinant of the non-backtracking adjacency matrix of the graph with edge weights based on the solution of GaBP. An efficient method is proposed to compute a truncated correction factor including all non-backtracking orbits up to a specified length.

  15. Power corrections in the N -jettiness subtraction scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for bothmore » $$q\\bar{q}$$ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. Finally, we discuss what features of our techniques extend to processes containing final-state jets.« less

  16. Power corrections in the N -jettiness subtraction scheme

    DOE PAGES

    Boughezal, Radja; Liu, Xiaohui; Petriello, Frank

    2017-03-30

    We discuss the leading-logarithmic power corrections in the N-jettiness subtraction scheme for higher-order perturbative QCD calculations. We compute the next-to-leading order power corrections for an arbitrary N-jet process, and we explicitly calculate the power correction through next-to-next-to-leading order for color-singlet production for bothmore » $$q\\bar{q}$$ and gg initiated processes. Our results are compact and simple to implement numerically. Including the leading power correction in the N-jettiness subtraction scheme substantially improves its numerical efficiency. Finally, we discuss what features of our techniques extend to processes containing final-state jets.« less

  17. Image reconstruction from cone-beam projections with attenuation correction

    NASA Astrophysics Data System (ADS)

    Weng, Yi

    1997-07-01

    In single photon emission computered tomography (SPECT) imaging, photon attenuation within the body is a major factor contributing to the quantitative inaccuracy in measuring the distribution of radioactivity. Cone-beam SPECT provides improved sensitivity for imaging small organs. This thesis extends the results for 2D parallel- beam and fan-beam geometry to 3D parallel-beam and cone- beam geometries in order to derive filtered backprojection reconstruction algorithms for the 3D exponential parallel-beam transform and for the exponential cone-beam transform with sampling on a sphere. An exact inversion formula for the 3D exponential parallel-beam transform is obtained and is extended to the 3D exponential cone-beam transform. Sampling on a sphere is not useful clinically and current cone-beam tomography, with the focal point traversing a planar orbit, does not acquire sufficient data to give an accurate reconstruction. Thus a data acquisition method that obtains complete data for cone-beam SPECT by simultaneously rotating the gamma camera and translating the patient bed, so that cone-beam projections can be obtained with the focal point traversing a helix that surrounds the patient was developed. First, an implementation of Grangeat's algorithm for helical cone- beam projections was developed without attenuation correction. A fast new rebinning scheme was developed that uses all of the detected data to reconstruct the image and properly normalizes any multiply scanned data. In the case of attenuation no theorem analogous to Tuy's has been proven. We hypothesized that an artifact-free reconstruction could be obtained even if the cone-beam data are attenuated, provided the imaging orbit satisfies Tuy's condition and the exact attenuation map is known. Cone-beam emission data were acquired by using a circle- and-line and a helix orbit on a clinical SPECT system. An iterative conjugate gradient reconstruction algorithm was used to reconstruct projection data with a known attenuation map. The quantitative accuracy of the attenuation-corrected emission reconstruction was significantly improved.

  18. Practical scheme for error control using feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarovar, Mohan; Milburn, Gerard J.; Ahn, Charlene

    2004-05-01

    We describe a scheme for quantum-error correction that employs feedback and weak measurement rather than the standard tools of projective measurement and fast controlled unitary gates. The advantage of this scheme over previous protocols [for example, Ahn et al. Phys. Rev. A 65, 042301 (2001)], is that it requires little side processing while remaining robust to measurement inefficiency, and is therefore considerably more practical. We evaluate the performance of our scheme by simulating the correction of bit flips. We also consider implementation in a solid-state quantum-computation architecture and estimate the maximal error rate that could be corrected with current technology.

  19. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication.

    PubMed

    Djordjevic, Ivan B; Arabaci, Murat

    2010-11-22

    An orbital angular momentum (OAM) based LDPC-coded modulation scheme suitable for use in FSO communication is proposed. We demonstrate that the proposed scheme can operate under strong atmospheric turbulence regime and enable 100 Gb/s optical transmission while employing 10 Gb/s components. Both binary and nonbinary LDPC-coded OAM modulations are studied. In addition to providing better BER performance, the nonbinary LDPC-coded modulation reduces overall decoder complexity and latency. The nonbinary LDPC-coded OAM modulation provides a net coding gain of 9.3 dB at the BER of 10(-8). The maximum-ratio combining scheme outperforms the corresponding equal-gain combining scheme by almost 2.5 dB.

  20. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

    NASA Astrophysics Data System (ADS)

    Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao

    2018-03-01

    Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

  1. Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark R.; Baruah, Tunna; Kao, Der-you; Basurto, Luis

    2016-04-01

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C60, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  2. Adaptive Packet Combining Scheme in Three State Channel Model

    NASA Astrophysics Data System (ADS)

    Saring, Yang; Bulo, Yaka; Bhunia, Chandan Tilak

    2018-01-01

    The two popular techniques of packet combining based error correction schemes are: Packet Combining (PC) scheme and Aggressive Packet Combining (APC) scheme. PC scheme and APC scheme have their own merits and demerits; PC scheme has better throughput than APC scheme, but suffers from higher packet error rate than APC scheme. The wireless channel state changes all the time. Because of this random and time varying nature of wireless channel, individual application of SR ARQ scheme, PC scheme and APC scheme can't give desired levels of throughput. Better throughput can be achieved if appropriate transmission scheme is used based on the condition of channel. Based on this approach, adaptive packet combining scheme has been proposed to achieve better throughput. The proposed scheme adapts to the channel condition to carry out transmission using PC scheme, APC scheme and SR ARQ scheme to achieve better throughput. Experimentally, it was observed that the error correction capability and throughput of the proposed scheme was significantly better than that of SR ARQ scheme, PC scheme and APC scheme.

  3. Bonding in tris(. eta. sup 5 -cyclopentadienyl) actinide complexes. 3. Interaction of. pi. -neutral,. pi. -acidic, and. pi. -basic ligands with (. eta. sup 5 -C sub 5 H sub 5 ) sub 3 U sup 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bursten, B.E.; Rhodes, L.F.; Strittmater

    1989-04-12

    A qualitative treatment of the bonding in Cp{sub 3}M (Cp = {eta}{sup 5}-C{sub 5}H{sub 5}) compounds under C{sub 3{upsilon}} symmetry reveals that the Cp{sub 3}{sup 3{minus}} ligand field contains a high-lying a{sub 2} orbital which is restricted by symmetry to interact only with metals that contain f orbitals. Quantitative investigation of the electronic structure of 5f{sup 3} Cp{sub 3}U via X{alpha}-SW molecular orbital calculations with quasi-relativistic corrections reveals that the Cp ligands donate electron density primarily into the U 6d orbitals while the three principally metal-based valence electrons are housed in the 5f orbitals. Electronic structure calculations of Cl{sub 3}Umore » show that although Cl can be considered isolobal with Cp, it is a poorer donor ligand. Calculations of Cp{sub 3}U bonded to a fourth ligand L (L = H, CO, NO, OH) indicate that the {sigma}-bonding framework is essentially the same for {pi}-neutral (H), {pi}-acidic (CO, NO), or {pi}-basic (OH) ligands: Electron density is donated from the {sigma} orbital of the fourth ligand into a uranium orbital that is primarily 6d{sub z{sup 2}} in character with minor contributions from the 5f{sub z{sup 3}} orbital, the 7p{sub z} orbital, and the 7s orbital. In the {pi}-bonding framework, the U 5f orbitals are responsible for back-donation into the {pi}* orbitals of CO an NO, while acceptance of electron density from the {pi} orbitals of OH involves the U 6d orbitals and, to a lesser extent, the U 5f orbitals. The bonding scheme of Cp{sub 3}UNO suggests that this molecule may prove to be a rather unusual example of a linear NO{sup {minus}} ligand.« less

  4. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian

    In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less

  5. Parametrization and Benchmark of Long-Range Corrected DFTB2 for Organic Molecules

    DOE PAGES

    Vuong, Van Quan; Akkarapattiakal Kuriappan, Jissy; Kubillus, Maximilian; ...

    2017-12-12

    In this paper, we present the parametrization and benchmark of long-range corrected second-order density functional tight binding (DFTB), LC-DFTB2, for organic and biological molecules. The LC-DFTB2 model not only improves fundamental orbital energy gaps but also ameliorates the DFT self-interaction error and overpolarization problem, and further improves charge-transfer excited states significantly. Electronic parameters for the construction of the DFTB2 Hamiltonian as well as repulsive potentials were optimized for molecules containing C, H, N, and O chemical elements. We use a semiautomatic parametrization scheme based on a genetic algorithm. With the new parameters, LC-DFTB2 describes geometries and vibrational frequencies of organicmore » molecules similarly well as third-order DFTB3/3OB, the de facto standard parametrization based on a GGA functional. Finally, LC-DFTB2 performs well also for atomization and reaction energies, however, slightly less satisfactorily than DFTB3/3OB.« less

  6. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  7. Spin-orbit torques and anisotropic magnetization damping in skyrmion crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil M. D.; Brataas, Arne

    2014-02-01

    The length scale of the magnetization gradients in chiral magnets is determined by the relativistic Dzyaloshinskii-Moriya interaction. Thus, even conventional spin-transfer torques are controlled by the relativistic spin-orbit coupling in these systems, and additional relativistic corrections to the current-induced torques and magnetization damping become important for a complete understanding of the current-driven magnetization dynamics. We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the nonrelativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  8. Unified powered flight guidance

    NASA Technical Reports Server (NTRS)

    Brand, T. J.; Brown, D. W.; Higgins, J. P.

    1973-01-01

    A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.

  9. Mission Design, Guidance, and Navigation of a Callisto-Io-Ganymede Triple Flyby Jovian Capture

    NASA Astrophysics Data System (ADS)

    Didion, Alan M.

    Use of a triple-satellite-aided capture maneuver to enter Jovian orbit reduces insertion DeltaV and provides close flyby science opportunities at three of Jupiter's four large Galilean moons. This capture can be performed while maintaining appropriate Jupiter standoff distance and setting up a suitable apojove for plotting an extended tour. This paper has three main chapters, the first of which discusses the design and optimization of a triple-flyby capture trajectory. A novel triple-satellite-aided capture uses sequential flybys of Callisto, Io, and Ganymede to reduce the DeltaV required to capture into orbit about Jupiter. An optimal broken-plane maneuver is added between Earth and Jupiter to form a complete chemical/impulsive interplanetary trajectory from Earth to Jupiter. Such a trajectory can yield significant fuel savings over single and double-flyby capture schemes while maintaining a brief and simple interplanetary transfer phase. The second chapter focuses on the guidance and navigation of such trajectories in the presence of spacecraft navigation errors, ephemeris errors, and maneuver execution errors. A powered-flyby trajectory correction maneuver (TCM) is added to the nominal trajectory at Callisto and the nominal Jupiter orbit insertion (JOI) maneuver is modified to both complete the capture and target the Ganymede flyby. A third TCM is employed after all the flybys to act as a JOI cleanup maneuver. A Monte Carlo simulation shows that the statistical DeltaV required to correct the trajectory is quite manageable and the flyby characteristics are very consistent. The developed methods maintain flexibility for adaptation to similar launch, cruise, and capture conditions. The third chapter details the methodology and results behind a completely separate project to design and optimize an Earth-orbiting three satellite constellation to perform very long baseline interferometry (VLBI) as part of the 8th annual Global Trajectory Optimisation Competition (GTOC8). A script is designed to simulate the prescribed constellation and record its observations; the observations made are scored according to a provided performance index.

  10. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2017-11-01

    The NMR chemical shifts and indirect spin-spin coupling constants of 12 molecules containing 29Si, 73Ge, 119Sn, and 207Pb [X(CCMe)4, Me2X(CCMe)2, and Me3XCCH] are presented. The results are obtained from non-relativistic as well as two- and four-component relativistic density functional theory (DFT) calculations. The scalar and spin-orbit relativistic contributions as well as the total relativistic corrections are determined. The main relativistic effect in these molecules is not due to spin-orbit coupling but rather to the scalar relativistic contraction of the s-shells. The correlation between the calculated and experimental indirect spin-spin coupling constants showed that the four-component relativistic density functional theory (DFT) approach using the Perdew's hybrid scheme exchange-correlation functional (PBE0; using the Perdew-Burke-Ernzerhof exchange and correlation functionals) gives results in good agreement with experimental values. The indirect spin-spin coupling constants calculated using the spin-orbit zeroth order regular approximation together with the hybrid PBE0 functional and the specially designed J-coupling (JCPL) basis sets are in good agreement with the results obtained from the four-component relativistic calculations. For the coupling constants involving the heavy atoms, the relativistic corrections are of the same order of magnitude compared to the non-relativistically calculated results. Based on the comparisons of the calculated results with available experimental values, the best results for all the chemical shifts and non-existing indirect spin-spin coupling constants for all the molecules are reported, hoping that these accurate results will be used to benchmark future DFT calculations. The present study also demonstrates that the four-component relativistic DFT method has reached a level of maturity that makes it a convenient and accurate tool to calculate indirect spin-spin coupling constants of "large" molecular systems involving heavy atoms.

  11. NASA remote sensing programs: Overview

    NASA Technical Reports Server (NTRS)

    Raney, W. P.

    1981-01-01

    In the Earth remote sensing area, NASA's three functions are to understand the basic mechanics and behavior of the Earth, evaluate what resources are available (in the way of minerals, and hydrocarbons on a general scale), and to arrange a scheme for managing our national assets. The capabilities offered by LANDSAT D and technology improvements needed are discussed. The French SPOT system, its orbits, possibilities for stereo imagery, and levels of preprocessing and processing with several degrees of radiometric and geometric corrections are examined. Progress in the AgRISTARS project is mentioned as well as future R & D programs in the use of fluorescence, microwave measurements, and synthetic aperture radar. Other areas of endeaver include studying man environment interactions and Earth radiation budgets, and the establishment of data systems programs.

  12. Joint Schemes for Physical Layer Security and Error Correction

    ERIC Educational Resources Information Center

    Adamo, Oluwayomi

    2011-01-01

    The major challenges facing resource constraint wireless devices are error resilience, security and speed. Three joint schemes are presented in this research which could be broadly divided into error correction based and cipher based. The error correction based ciphers take advantage of the properties of LDPC codes and Nordstrom Robinson code. A…

  13. Smoothing and the second law

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1987-01-01

    The technique of obtaining second-order oscillation-free total -variation-diminishing (TVD), scalar difference schemes by adding a limited diffusive flux ('smoothing') to a second-order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell-by-cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second-order spatial accuracy was found to have extremely restrictive time-step limitation. Switching to an implicit scheme removed the time-step limitation.

  14. Spin-Orbit Torques and Anisotropic Magnetization Damping in Skyrmion Crystals

    NASA Astrophysics Data System (ADS)

    Hals, Kjetil; Brataas, Arne

    2014-03-01

    We theoretically study the effects of reactive and dissipative homogeneous spin-orbit torques and anisotropic damping on the current-driven skyrmion dynamics in cubic chiral magnets. Our results demonstrate that spin-orbit torques play a significant role in the current-induced skyrmion velocity. The dissipative spin-orbit torque generates a relativistic Magnus force on the skyrmions, whereas the reactive spin-orbit torque yields a correction to both the drift velocity along the current direction and the transverse velocity associated with the Magnus force. The spin-orbit torque corrections to the velocity scale linearly with the skyrmion size, which is inversely proportional to the spin-orbit coupling. Consequently, the reactive spin-orbit torque correction can be the same order of magnitude as the non-relativistic contribution. More importantly, the dissipative spin-orbit torque can be the dominant force that causes a deflected motion of the skyrmions if the torque exhibits a linear or quadratic relationship with the spin-orbit coupling. In addition, we demonstrate that the skyrmion velocity is determined by anisotropic magnetization damping parameters governed by the skyrmion size.

  15. High-order flux correction/finite difference schemes for strand grids

    NASA Astrophysics Data System (ADS)

    Katz, Aaron; Work, Dalon

    2015-02-01

    A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.

  16. Finite element analyses of thin film active grazing incidence x-ray optics

    NASA Astrophysics Data System (ADS)

    Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.

    2010-09-01

    The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.

  17. New schemes for internally contracted multi-reference configuration interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yubin; Han, Huixian; Lei, Yibo; Suo, Bingbing; Zhu, Haiyan; Song, Qi; Wen, Zhenyi

    2014-10-01

    In this work we present a new internally contracted multi-reference configuration interaction (MRCI) scheme by applying the graphical unitary group approach and the hole-particle symmetry. The latter allows a Distinct Row Table (DRT) to split into a number of sub-DRTs in the active space. In the new scheme a contraction is defined as a linear combination of arcs within a sub-DRT, and connected to the head and tail of the DRT through up-steps and down-steps to generate internally contracted configuration functions. The new scheme deals with the closed-shell (hole) orbitals and external orbitals in the same manner and thus greatly simplifies calculations of coupling coefficients and CI matrix elements. As a result, the number of internal orbitals is no longer a bottleneck of MRCI calculations. The validity and efficiency of the new ic-MRCI code are tested by comparing with the corresponding WK code of the MOLPRO package. The energies obtained from the two codes are essentially identical, and the computational efficiencies of the two codes have their own advantages.

  18. Evaluation of Data Used for Modelling the Stratosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Armstrong, Eleanor Sophie; Irwin, Patrick G. J.; Moses, Julianne I.

    2015-11-01

    Planetary atmospheres are modeled through the use of a photochemical and kinetic reaction scheme constructed from experimentally and theoretically determined rate coefficients, photoabsorption cross sections and branching ratios for the molecules described within them. The KINETICS architecture has previously been developed to model planetary atmospheres and is applied here to Saturn’s stratosphere. We consider the pathways that comprise the reaction scheme of a current model, and update the reaction scheme according the to findings in a literature investigation. We evaluate contemporary photochemical literature, studying recent data sets of cross-sections and branching ratios for a number of hydrocarbons used in the photochemical scheme of Model C of KINETICS. In particular evaluation of new photodissociation branching ratios for CH4, C2H2, C2H4, C3H3, C3H5 and C4H2, and new cross-sectional data for C2H2, C2H4, C2H6, C3H3, C4H2, C6H2 and C8H2 are considered. By evaluating the techniques used and data sets obtained, a new reaction scheme selection was drawn up. These data are then used within the preferred reaction scheme of the thesis and applied to the KINETICS atmospheric model to produce a model of the stratosphere of Saturn in a steady state. A total output of the preferred reaction scheme is presented, and the data is compared both with the previous reaction scheme and with data from the Cassini spacecraft in orbit around Saturn.One of the key findings of this work is that there is significant change in the model’s output as a result of temperature dependent data determination. Although only shown within the changes to the photochemical portion of the preferred reaction scheme, it is suggested that an equally important temperature dependence will be exhibited in the kinetic section of the reaction scheme. The photochemical model output is shown to be highly dependent on the preferred reaction scheme used within it by this thesis. The importance of correct and temperature-appropriate photochemical and kinetic data for the atmosphere under examination is emphasised as a consequence.

  19. B97-3c: A revised low-cost variant of the B97-D density functional method

    NASA Astrophysics Data System (ADS)

    Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas; Grimme, Stefan

    2018-02-01

    A revised version of the well-established B97-D density functional approximation with general applicability for chemical properties of large systems is proposed. Like B97-D, it is based on Becke's power-series ansatz from 1997 and is explicitly parametrized by including the standard D3 semi-classical dispersion correction. The orbitals are expanded in a modified valence triple-zeta Gaussian basis set, which is available for all elements up to Rn. Remaining basis set errors are mostly absorbed in the modified B97 parametrization, while an established atom-pairwise short-range potential is applied to correct for the systematically too long bonds of main group elements which are typical for most semi-local density functionals. The new composite scheme (termed B97-3c) completes the hierarchy of "low-cost" electronic structure methods, which are all mainly free of basis set superposition error and account for most interactions in a physically sound and asymptotically correct manner. B97-3c yields excellent molecular and condensed phase geometries, similar to most hybrid functionals evaluated in a larger basis set expansion. Results on the comprehensive GMTKN55 energy database demonstrate its good performance for main group thermochemistry, kinetics, and non-covalent interactions, when compared to functionals of the same class. This also transfers to metal-organic reactions, which is a major area of applicability for semi-local functionals. B97-3c can be routinely applied to hundreds of atoms on a single processor and we suggest it as a robust computational tool, in particular, for more strongly correlated systems where our previously published "3c" schemes might be problematic.

  20. Search For a Consistent Mean-Field Treatment of Magnetic Properties of Yittrium-Cobalt-5 Under Moderate Hydrostatic Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, Lorin X.; Aberg, Daniel; Soderlind, Per

    2015-10-26

    We explore the use of particular variants of DFT + U and DFT + orbital polarization (OP) to calculate the electronic structure and magnetic properties of YCo5 under hydrostatic pressures up to 600 kbar. While the speci c DFT + U (with U= 0.75 eV) and DFT + OP schemes we employ produce magneto-crystalline anisotropy energies for YCo5 in good agreement with experiments performed in ambient conditions, our DFT + U results are shown to greatly overestimate the pressure at which a high-spin to low-spin (HS-LS) transition is known to occur. In contrast, our DFT + OP results predict themore » HS-LS transition to occur at the same stress as DFT, and in better agreement with experiment. This sensitivity suggests that care should be taken when attempting to model magnetic properties with self-interaction and/or correlation corrections to DFT for this and related materials, and highlights the usefulness of moderate pressure as an additional parameter to vary when discriminating between candidate theoretical schemes.« less

  1. Detecting unstable periodic orbits in chaotic time series using synchronization

    NASA Astrophysics Data System (ADS)

    Olyaei, Ali Azimi; Wu, Christine; Kinsner, Witold

    2017-07-01

    An alternative approach of detecting unstable periodic orbits in chaotic time series is proposed using synchronization techniques. A master-slave synchronization scheme is developed, in which the chaotic system drives a system of harmonic oscillators through a proper coupling condition. The proposed scheme is designed so that the power of the coupling signal exhibits notches that drop to zero once the system approaches an unstable orbit yielding an explicit indication of the presence of a periodic motion. The results shows that the proposed approach is particularly suitable in practical situations, where the time series is short and noisy, or it is obtained from high-dimensional chaotic systems.

  2. Closed almost-periodic orbits in semiclassical quantization of generic polygons

    PubMed

    Biswas

    2000-05-01

    Periodic orbits are the central ingredients of modern semiclassical theories and corrections to these are generally nonclassical in origin. We show here that, for the class of generic polygonal billiards, the corrections are predominantly classical in origin owing to the contributions from closed almost-periodic (CAP) orbit families. Furthermore, CAP orbit families outnumber periodic families but have comparable weights. They are hence indispensable for semiclassical quantization.

  3. The Gravity Probe B `Niobium bird' experiment: Verifying the data reduction scheme for estimating the relativistic precession of Earth-orbiting gyroscopes

    NASA Technical Reports Server (NTRS)

    Uemaatsu, Hirohiko; Parkinson, Bradford W.; Lockhart, James M.; Muhlfelder, Barry

    1993-01-01

    Gravity Probe B (GP-B) is a relatively gyroscope experiment begun at Stanford University in 1960 and supported by NASA since 1963. This experiment will check, for the first time, the relativistic precession of an Earth-orbiting gyroscope that was predicted by Einstein's General Theory of Relativity, to an accuracy of 1 milliarcsecond per year or better. A drag-free satellite will carry four gyroscopes in a polar orbit to observe their relativistic precession. The primary sensor for measuring the direction of gyroscope spin axis is the SQUID (superconducting quantum interference device) magnetometer. The data reduction scheme designed for the GP-B program processes the signal from the SQUID magnetometer and estimates the relativistic precession rates. We formulated the data reduction scheme and designed the Niobium bird experiment to verify the performance of the data reduction scheme experimentally with an actual SQUID magnetometer within the test loop. This paper reports the results from the first phase of the Niobium bird experiment, which used a commercially available SQUID magnetometer as its primary sensor, and adresses the issues they raised. The first phase resulted in a large, temperature-dependent bias drift in the insensitive design and a temperature regulation scheme.

  4. Smoothing and the second law

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1986-01-01

    The technique of obtaining second order, oscillation free, total variation diminishing (TVD), scalar difference schemes by adding a limited diffusion flux (smoothing) to a second order centered scheme is explored. It is shown that such schemes do not always converge to the correct physical answer. The approach presented here is to construct schemes that numerically satisfy the second law of thermodynamics on a cell by cell basis. Such schemes can only converge to the correct physical solution and in some cases can be shown to be TVD. An explicit scheme with this property and second order spatial accuracy was found to have an extremely restrictive time step limitation (Delta t less than Delta x squared). Switching to an implicit scheme removed the time step limitation.

  5. Phase Error Correction in Time-Averaged 3D Phase Contrast Magnetic Resonance Imaging of the Cerebral Vasculature

    PubMed Central

    MacDonald, M. Ethan; Forkert, Nils D.; Pike, G. Bruce; Frayne, Richard

    2016-01-01

    Purpose Volume flow rate (VFR) measurements based on phase contrast (PC)-magnetic resonance (MR) imaging datasets have spatially varying bias due to eddy current induced phase errors. The purpose of this study was to assess the impact of phase errors in time averaged PC-MR imaging of the cerebral vasculature and explore the effects of three common correction schemes (local bias correction (LBC), local polynomial correction (LPC), and whole brain polynomial correction (WBPC)). Methods Measurements of the eddy current induced phase error from a static phantom were first obtained. In thirty healthy human subjects, the methods were then assessed in background tissue to determine if local phase offsets could be removed. Finally, the techniques were used to correct VFR measurements in cerebral vessels and compared statistically. Results In the phantom, phase error was measured to be <2.1 ml/s per pixel and the bias was reduced with the correction schemes. In background tissue, the bias was significantly reduced, by 65.6% (LBC), 58.4% (LPC) and 47.7% (WBPC) (p < 0.001 across all schemes). Correction did not lead to significantly different VFR measurements in the vessels (p = 0.997). In the vessel measurements, the three correction schemes led to flow measurement differences of -0.04 ± 0.05 ml/s, 0.09 ± 0.16 ml/s, and -0.02 ± 0.06 ml/s. Although there was an improvement in background measurements with correction, there was no statistical difference between the three correction schemes (p = 0.242 in background and p = 0.738 in vessels). Conclusions While eddy current induced phase errors can vary between hardware and sequence configurations, our results showed that the impact is small in a typical brain PC-MR protocol and does not have a significant effect on VFR measurements in cerebral vessels. PMID:26910600

  6. Performance analysis of a cascaded coding scheme with interleaved outer code

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A cascaded coding scheme for a random error channel with a bit-error rate is analyzed. In this scheme, the inner code C sub 1 is an (n sub 1, m sub 1l) binary linear block code which is designed for simultaneous error correction and detection. The outer code C sub 2 is a linear block code with symbols from the Galois field GF (2 sup l) which is designed for correcting both symbol errors and erasures, and is interleaved with a degree m sub 1. A procedure for computing the probability of a correct decoding is presented and an upper bound on the probability of a decoding error is derived. The bound provides much better results than the previous bound for a cascaded coding scheme with an interleaved outer code. Example schemes with inner codes ranging from high rates to very low rates are evaluated. Several schemes provide extremely high reliability even for very high bit-error rates say 10 to the -1 to 10 to the -2 power.

  7. An analog gamma correction scheme for high dynamic range CMOS logarithmic image sensors.

    PubMed

    Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi

    2014-12-15

    In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process.

  8. Autonomous Quantum Error Correction with Application to Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.

    2017-04-01

    We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  9. An Analog Gamma Correction Scheme for High Dynamic Range CMOS Logarithmic Image Sensors

    PubMed Central

    Cao, Yuan; Pan, Xiaofang; Zhao, Xiaojin; Wu, Huisi

    2014-01-01

    In this paper, a novel analog gamma correction scheme with a logarithmic image sensor dedicated to minimize the quantization noise of the high dynamic applications is presented. The proposed implementation exploits a non-linear voltage-controlled-oscillator (VCO) based analog-to-digital converter (ADC) to perform the gamma correction during the analog-to-digital conversion. As a result, the quantization noise does not increase while the same high dynamic range of logarithmic image sensor is preserved. Moreover, by combining the gamma correction with the analog-to-digital conversion, the silicon area and overall power consumption can be greatly reduced. The proposed gamma correction scheme is validated by the reported simulation results and the experimental results measured for our designed test structure, which is fabricated with 0.35 μm standard complementary-metal-oxide-semiconductor (CMOS) process. PMID:25517692

  10. Rashba spin-orbit coupling for neutral atoms

    NASA Astrophysics Data System (ADS)

    Campbell, Daniel; Juzeliūnas, Gediminas; Spielman, Ian

    2011-05-01

    We theoretically describe a new class of atom-laser coupling schemes which lead to effective spin-orbit coupled Hamiltonians for ultra-cold neutral atoms. By properly setting the optical phases, a pair of degenerate spin states emerge as the lowest energy states in the spectrum, and are thus immune to collisionally induced decay. These schemes use N cyclically coupled ground or metastable internal states but we will specialize to the four-level case for this talk. Time permitting, we will describe a possible implementation of this scheme for 87Rb that adds a controllable Dresselhaus component to the effective Hamiltonian in a natural way. NSF through PFC at JQI, ARO with funds from Atomtronics MURI and DARPA OLE, STREP NAMEQUAM.

  11. Ultra-fast computation of electronic spectra for large systems by tight-binding based simplified Tamm-Dancoff approximation (sTDA-xTB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph

    2016-08-07

    The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the wellmore » established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first benchmarked for vertical excitation energies of open- and closed-shell systems in comparison to other semi-empirical methods and applied to exemplary problems in electronic spectroscopy. As side products of the development, a robust and efficient valence electron TB method for the accurate determination of atomic charges as well as a more accurate calculation scheme of dipole rotatory strengths within the Tamm-Dancoff approximation is proposed.« less

  12. Efficacy of distortion correction on diffusion imaging: comparison of FSL eddy and eddy_correct using 30 and 60 directions diffusion encoding.

    PubMed

    Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki

    2014-01-01

    Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, "eddy_correct" and the combination of "eddy" and "topup" in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non-diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non-diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme.

  13. Fast implementation of the 1\\rightarrow3 orbital state quantum cloning machine

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Zhong

    2018-05-01

    We present a scheme to implement a 1→3 orbital state quantum cloning machine assisted by quantum Zeno dynamics. By constructing shortcuts to adiabatic passage with transitionless quantum driving, we can complete this scheme effectively and quickly in one step. The effects of decoherence, including spontaneous emission and the decay of the cavity, are also discussed. The numerical simulation results show that high fidelity can be obtained and the feasibility analysis indicates that this can also be realized in experiments.

  14. Asymmetric molecular-orbital tomography by manipulating electron trajectories

    NASA Astrophysics Data System (ADS)

    Wang, Bincheng; Zhang, Qingbin; Zhu, Xiaosong; Lan, Pengfei; Rezvani, Seyed Ali; Lu, Peixiang

    2017-11-01

    We present a scheme for tomographic imaging of asymmetric molecular orbital based on high-order harmonic generation with a two-color orthogonally polarized multicycle laser field. With the two-dimensional manipulation of the electron trajectories, the electrons can recollide with the target molecule from two noncollinear directions, and then the dipole moment generated from the single direction can be obtained to reconstructed the asymmetric molecular orbital. The recollision is independent from the molecular structure and the angular dependence of the ionization rate in the external field. For this reason, this scheme can avoid the negative effects arising from the modification of the angle-dependent ionization rate induced by Stark shift and be applied to various molecules.

  15. On the physical interpretation of the nuclear molecular orbital energy.

    PubMed

    Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés

    2017-06-07

    Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.

  16. An Engineering Trade Space Analysis for a Space-Based Hyperspectral Chromotomographic Scanner

    DTIC Science & Technology

    2009-03-26

    The Hyperion’s EO-1 host satellite is in a polar, circular, sun -synchronous or- bit at 98.7 inclination . The orbit follows that of Landsat-7 by one...science orbit around Mars 13 months after launch. The orbit is a near circular (apogee of 320 km, perigee of 255 km), near polar, sun -synchronous orbit ...payload design, operating scheme and orbit to demonstrate this technology in low- earth orbit . This instrument promises the capability of adding a time

  17. Comparing multilayer brain networks between groups: Introducing graph metrics and recommendations.

    PubMed

    Mandke, Kanad; Meier, Jil; Brookes, Matthew J; O'Dea, Reuben D; Van Mieghem, Piet; Stam, Cornelis J; Hillebrand, Arjan; Tewarie, Prejaas

    2018-02-01

    There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks obtained from different modalities are usually treated in isolation, which is however contradictory to accumulating evidence that these networks show non-trivial interdependencies. Even networks obtained from a single modality, such as frequency-band specific functional networks measured from magnetoencephalography (MEG) are often treated independently. Here, we discuss how a multilayer network framework allows for integration of multiple networks into a single network description and how graph metrics can be applied to quantify multilayer network organisation for group comparison. We analyse how well-known biases for single layer networks, such as effects of group differences in link density and/or average connectivity, influence multilayer networks, and we compare four schemes that aim to correct for such biases: the minimum spanning tree (MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a normalisation scheme based on singular value decomposition (SVD). These schemes can be applied to the layers independently or to the multilayer network as a whole. For correction applied to whole multilayer networks, only the SVD showed sufficient bias correction. For correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for biases. By using generative models as well as empirical MEG and functional magnetic resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to identify network topology when the original networks were perturbed. In conclusion, uncorrected multilayer network analysis leads to biases. These biases may differ between centres and studies and could consequently lead to unreproducible results in a similar manner as for single layer networks. We therefore recommend using correction schemes prior to multilayer network analysis for group comparisons. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Impacts of Satellite Orbit and Clock on Real-Time GPS Point and Relative Positioning.

    PubMed

    Shi, Junbo; Wang, Gaojing; Han, Xianquan; Guo, Jiming

    2017-06-12

    Satellite orbit and clock corrections are always treated as known quantities in GPS positioning models. Therefore, any error in the satellite orbit and clock products will probably cause significant consequences for GPS positioning, especially for real-time applications. Currently three types of satellite products have been made available for real-time positioning, including the broadcast ephemeris, the International GNSS Service (IGS) predicted ultra-rapid product, and the real-time product. In this study, these three predicted/real-time satellite orbit and clock products are first evaluated with respect to the post-mission IGS final product, which demonstrates cm to m level orbit accuracies and sub-ns to ns level clock accuracies. Impacts of real-time satellite orbit and clock products on GPS point and relative positioning are then investigated using the P3 and GAMIT software packages, respectively. Numerical results show that the real-time satellite clock corrections affect the point positioning more significantly than the orbit corrections. On the contrary, only the real-time orbit corrections impact the relative positioning. Compared with the positioning solution using the IGS final product with the nominal orbit accuracy of ~2.5 cm, the real-time broadcast ephemeris with ~2 m orbit accuracy provided <2 cm relative positioning error for baselines no longer than 216 km. As for the baselines ranging from 574 to 2982 km, the cm-dm level positioning error was identified for the relative positioning solution using the broadcast ephemeris. The real-time product could result in <5 mm relative positioning accuracy for baselines within 2982 km, slightly better than the predicted ultra-rapid product.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, Mark R.; Baruah, Tunna; Basurto, Luis

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C{sub 60}, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexitymore » of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C{sub 60} molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.« less

  20. On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo

    2010-08-21

    It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.

  1. Asynchronous error-correcting secure communication scheme based on fractional-order shifting chaotic system

    NASA Astrophysics Data System (ADS)

    Chao, Luo

    2015-11-01

    In this paper, a novel digital secure communication scheme is firstly proposed. Different from the usual secure communication schemes based on chaotic synchronization, the proposed scheme employs asynchronous communication which avoids the weakness of synchronous systems and is susceptible to environmental interference. Moreover, as to the transmission errors and data loss in the process of communication, the proposed scheme has the ability to be error-checking and error-correcting in real time. In order to guarantee security, the fractional-order complex chaotic system with the shifting of order is utilized to modulate the transmitted signal, which has high nonlinearity and complexity in both frequency and time domains. The corresponding numerical simulations demonstrate the effectiveness and feasibility of the scheme.

  2. Multiple burn fuel-optimal orbit transfers: Numerical trajectory computation and neighboring optimal feedback guidance

    NASA Technical Reports Server (NTRS)

    Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.

    1995-01-01

    This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.

  3. Exact density functional and wave function embedding schemes based on orbital localization

    NASA Astrophysics Data System (ADS)

    Hégely, Bence; Nagy, Péter R.; Ferenczy, György G.; Kállay, Mihály

    2016-08-01

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up the system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.

  4. The optimized effective potential and the self-interaction correction in density functional theory: Application to molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-05-08

    The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less

  5. Astrodynamics. Volume 1 - Orbit determination, space navigation, celestial mechanics.

    NASA Technical Reports Server (NTRS)

    Herrick, S.

    1971-01-01

    Essential navigational, physical, and mathematical problems of space exploration are covered. The introductory chapters dealing with conic sections, orientation, and the integration of the two-body problem are followed by an introduction to orbit determination and design. Systems of units and constants, as well as ephemerides, representations, reference systems, and data are then dealt with. A detailed attention is given to rendezvous problems and to differential processes in observational orbit correction, and in rendezvous or guidance correction. Finally, the Laplacian methods for determining preliminary orbits, and the orbit methods of Lagrange, Gauss, and Gibbs are reviewed.

  6. APC-PC Combined Scheme in Gilbert Two State Model: Proposal and Study

    NASA Astrophysics Data System (ADS)

    Bulo, Yaka; Saring, Yang; Bhunia, Chandan Tilak

    2017-04-01

    In an automatic repeat request (ARQ) scheme, a packet is retransmitted if it gets corrupted due to transmission errors caused by the channel. However, an erroneous packet may contain both erroneous bits and correct bits and hence it may still contain useful information. The receiver may be able to combine this information from multiple erroneous copies to recover the correct packet. Packet combining (PC) is a simple and elegant scheme of error correction in transmitted packet, in which two received copies are XORed to obtain the bit location of erroneous bits. Thereafter, the packet is corrected by bit inversion of bit located as erroneous. Aggressive packet combining (APC) is a logic extension of PC primarily designed for wireless communication with objective of correcting error with low latency. PC offers higher throughput than APC, but PC does not correct double bit errors if occur in same bit location of erroneous copies of the packet. A hybrid technique is proposed to utilize the advantages of both APC and PC while attempting to remove the limitation of both. In the proposed technique, applications of APC-PC on Gilbert two state model has been studied. The simulation results show that the proposed technique offers better throughput than the conventional APC and lesser packet error rate than PC scheme.

  7. Self-force on a scalar charge in Kerr spacetime: Circular equatorial orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warburton, Niels; Barack, Leor

    2010-04-15

    We present a calculation of the scalar-field self-force (SSF) acting on a scalar-charge particle in a strong-field orbit around a Kerr black hole. Our calculation specializes to circular and equatorial geodesic orbits. The analysis is an implementation of the standard mode-sum regularization scheme: We first calculate the multipole modes of the scalar-field perturbation using numerical integration in the frequency domain, and then apply a certain regularization procedure to each of the modes. The dissipative piece of the SSF is found to be consistent with the flux of energy and angular-momentum carried by the scalar waves through the event horizon andmore » out to infinity. The conservative (radial) component of the SSF is calculated here for the first time. When the motion is retrograde this component is found to be repulsive (outward pointing, as in the Schwarzschild case) for any spin parameter a and (Boyer-Lindquist) orbital radius r{sub 0}. However, for prograde orbits we find that the radial SSF becomes attractive (inward pointing) for r{sub 0}>r{sub c}(a), where r{sub c} is a critical a-dependent radius at which the radial SSF vanishes. The dominant conservative effect of the SSF in Schwarzschild spacetime is known to be of third post-Newtonian (3PN) order (with a logarithmic running). Our numerical results suggest that the leading-order PN correction due to the black hole's spin arises from spin-orbit coupling at 3PN order, which dominates the overall SSF effect at large r{sub 0}. In PN language, the change of sign of the radial SSF is attributed to an interplay between the spin-orbit term ({proportional_to}-ar{sub 0}{sup -4.5}) and the Schwarzschild term ({proportional_to}r{sub 0}{sup -5}logr{sub 0}).« less

  8. Efficacy of Distortion Correction on Diffusion Imaging: Comparison of FSL Eddy and Eddy_Correct Using 30 and 60 Directions Diffusion Encoding

    PubMed Central

    Yamada, Haruyasu; Abe, Osamu; Shizukuishi, Takashi; Kikuta, Junko; Shinozaki, Takahiro; Dezawa, Ko; Nagano, Akira; Matsuda, Masayuki; Haradome, Hiroki; Imamura, Yoshiki

    2014-01-01

    Diffusion imaging is a unique noninvasive tool to detect brain white matter trajectory and integrity in vivo. However, this technique suffers from spatial distortion and signal pileup or dropout originating from local susceptibility gradients and eddy currents. Although there are several methods to mitigate these problems, most techniques can be applicable either to susceptibility or eddy-current induced distortion alone with a few exceptions. The present study compared the correction efficiency of FSL tools, “eddy_correct” and the combination of “eddy” and “topup” in terms of diffusion-derived fractional anisotropy (FA). The brain diffusion images were acquired from 10 healthy subjects using 30 and 60 directions encoding schemes based on the electrostatic repulsive forces. For the 30 directions encoding, 2 sets of diffusion images were acquired with the same parameters, except for the phase-encode blips which had opposing polarities along the anteroposterior direction. For the 60 directions encoding, non–diffusion-weighted and diffusion-weighted images were obtained with forward phase-encoding blips and non–diffusion-weighted images with the same parameter, except for the phase-encode blips, which had opposing polarities. FA images without and with distortion correction were compared in a voxel-wise manner with tract-based spatial statistics. We showed that images corrected with eddy and topup possessed higher FA values than images uncorrected and corrected with eddy_correct with trilinear (FSL default setting) or spline interpolation in most white matter skeletons, using both encoding schemes. Furthermore, the 60 directions encoding scheme was superior as measured by increased FA values to the 30 directions encoding scheme, despite comparable acquisition time. This study supports the combination of eddy and topup as a superior correction tool in diffusion imaging rather than the eddy_correct tool, especially with trilinear interpolation, using 60 directions encoding scheme. PMID:25405472

  9. Simulation of ITG instabilities with fully kinetic ions and drift-kinetic electrons in tokamaks

    NASA Astrophysics Data System (ADS)

    Hu, Youjun; Chen, Yang; Parker, Scott

    2017-10-01

    A turbulence simulation model with fully kinetic ions and drift-kinetic electrons is being developed in the toroidal electromagnetic turbulence code GEM. This is motivated by the observation that gyrokinetic ions are not well justified in simulating turbulence in tokamak edges with steep density profile, where ρi / L is not small enough to be used a small parameter needed by the gyrokinetic ordering (here ρi is the gyro-radius of ions and L is the scale length of density profile). In this case, the fully kinetic ion model may be useful. Our model uses an implicit scheme to suppress high-frequency compressional Alfven waves and waves associated with the gyro-motion of ions. The ion orbits are advanced by using the well-known Boris scheme, which reproduces correct drift-motion even with large time-step comparable to the ion gyro-period. The field equation in this model is Ampere's law with the magnetic field eliminated by using an implicit scheme of Faraday's law. The current contributed by ions are computed by using an implicit δf method. A flux tube approximation is adopted, which makes the field equation much easier to solve. Numerical results of electromagnetic ITG obtained from this model will be presented and compared with the gyrokinetic results. This work is supported by U.S. Department of Energy, Office of Fusion Energy Sciences under Award No. DE-SC0008801.

  10. Equivalence between the Energy Stable Flux Reconstruction and Filtered Discontinuous Galerkin Schemes

    NASA Astrophysics Data System (ADS)

    Zwanenburg, Philip; Nadarajah, Siva

    2016-02-01

    The aim of this paper is to demonstrate the equivalence between filtered Discontinuous Galerkin (DG) schemes and the Energy Stable Flux Reconstruction (ESFR) schemes, expanding on previous demonstrations in 1D [1] and for straight-sided elements in 3D [2]. We first derive the DG and ESFR schemes in strong form and compare the respective flux penalization terms while highlighting the implications of the fundamental assumptions for stability in the ESFR formulations, notably that all ESFR scheme correction fields can be interpreted as modally filtered DG correction fields. We present the result in the general context of all higher dimensional curvilinear element formulations. Through a demonstration that there exists a weak form of the ESFR schemes which is both discretely and analytically equivalent to the strong form, we then extend the results obtained for the strong formulations to demonstrate that ESFR schemes can be interpreted as a DG scheme in weak form where discontinuous edge flux is substituted for numerical edge flux correction. Theoretical derivations are then verified with numerical results obtained from a 2D Euler testcase with curved boundaries. Given the current choice of high-order DG-type schemes and the question as to which might be best to use for a specific application, the main significance of this work is the bridge that it provides between them. Clearly outlining the similarities between the schemes results in the important conclusion that it is always less efficient to use ESFR schemes, as opposed to the weak DG scheme, when solving problems implicitly.

  11. Methods for extracting aerodynamic accelerations from Orbiter High Resolution Accelerometer Package flight data

    NASA Technical Reports Server (NTRS)

    Thompson, J. M.; Russell, J. W.; Blanchard, R. C.

    1987-01-01

    This report presents a process for extracting the aerodynamic accelerations of the Shuttle Orbiter Vehicle from the High Resolution Accelerometer Package (HiRAP) flight data during reentry. The methods for obtaining low-level aerodynamic accelerations, principally in the rarefied flow regime, are applied to 10 Orbiter flights. The extraction process is presented using data obtained from Space Transportation System Flight 32 (Mission 61-C) as a typical example. This process involves correcting the HiRAP measurements for the effects of temperature bias and instrument offset from the Orbiter center of gravity, and removing acceleration data during times they are affected by thruster firings. The corrected data are then made continuous and smooth and are further enhanced by refining the temperature bias correction and removing effects of the auxiliary power unit actuation. The resulting data are the current best estimate of the Orbiter aerodynamic accelerations during reentry and will be used for further analyses of the Orbiter aerodynamics and the upper atmosphere characteristics.

  12. A state interaction spin-orbit coupling density matrix renormalization group method

    NASA Astrophysics Data System (ADS)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    2016-06-01

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe2S2(SCH3)4]3-, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.

  13. Controlling chaos faster.

    PubMed

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  14. Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: the case of LiH.

    PubMed

    Usvyat, Denis; Civalleri, Bartolomeo; Maschio, Lorenzo; Dovesi, Roberto; Pisani, Cesare; Schütz, Martin

    2011-06-07

    The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order Møller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids. © 2011 American Institute of Physics

  15. Proposed CMG momentum management scheme for space station

    NASA Technical Reports Server (NTRS)

    Bishop, L. R.; Bishop, R. H.; Lindsay, K. L.

    1987-01-01

    A discrete control moment gyro (CMG) momentum management scheme (MMS) applicable to spacecraft with principal axes misalignments, such as the proposed NASA dual keel space station, is presented in this paper. The objective of the MMS is to minmize CMG angular momentum storage requirements for maintaining the space station near local vertical in the presence of environmental disturbances. It utilizes available environmental disturbances, namely gravity gradient torques, to minimize CMG momentum storage. The MMS is executed once per orbit and generates a commanded torque equilibrium attitude (TEA) time history which consists of a yaw, pitch and roll angle command profile. Although the algorithm is called only once per orbit to compute the TEA profile, the space station will maneuver several discrete times each orbit.

  16. Tables Of Gaussian-Type Orbital Basis Functions

    NASA Technical Reports Server (NTRS)

    Partridge, Harry

    1992-01-01

    NASA technical memorandum contains tables of estimated Hartree-Fock wave functions for atoms lithium through neon and potassium through krypton. Sets contain optimized Gaussian-type orbital exponents and coefficients, and near Hartree-Fock quality. Orbital exponents optimized by minimizing restricted Hartree-Fock energy via scaled Newton-Raphson scheme in which Hessian evaluated numerically by use of analytically determined gradients.

  17. Simple wavefront correction framework for two-photon microscopy of in-vivo brain

    PubMed Central

    Galwaduge, P. T.; Kim, S. H.; Grosberg, L. E.; Hillman, E. M. C.

    2015-01-01

    We present an easily implemented wavefront correction scheme that has been specifically designed for in-vivo brain imaging. The system can be implemented with a single liquid crystal spatial light modulator (LCSLM), which makes it compatible with existing patterned illumination setups, and provides measurable signal improvements even after a few seconds of optimization. The optimization scheme is signal-based and does not require exogenous guide-stars, repeated image acquisition or beam constraint. The unconstrained beam approach allows the use of Zernike functions for aberration correction and Hadamard functions for scattering correction. Low order corrections performed in mouse brain were found to be valid up to hundreds of microns away from the correction location. PMID:26309763

  18. On the asteroid hazard

    NASA Astrophysics Data System (ADS)

    Eneev, T. M.; Akhmetshin, R. Z.; Efimov, G. B.

    2012-04-01

    The concept of "space patrol" is considered, aimed at discovering and cataloging the majority of celestial bodies that constitute a menace for the Earth [1, 2]. The scheme of "optical barrier" formed by telescopes of the space patrol is analyzed, requirements to the observation system are formulated, and some schemes of sighting the optical barrier region are suggested (for reliable detection of the celestial bodies approaching the Earth and for determination of their orbits). A comparison is made of capabilities of electro-jet engines and traditional chemical engines for arrangement of patrol spacecraft constellation in the Earth's orbit.

  19. ASAP- ARTIFICIAL SATELLITE ANALYSIS PROGRAM

    NASA Technical Reports Server (NTRS)

    Kwok, J.

    1994-01-01

    The Artificial Satellite Analysis Program (ASAP) is a general orbit prediction program which incorporates sufficient orbit modeling accuracy for mission design, maneuver analysis, and mission planning. ASAP is suitable for studying planetary orbit missions with spacecraft trajectories of reconnaissance (flyby) and exploratory (mapping) nature. Sample data is included for a geosynchronous station drift cycle study, a Venus radar mapping strategy, a frozen orbit about Mars, and a repeat ground trace orbit. ASAP uses Cowell's method in the numerical integration of the equations of motion. The orbital mechanics calculation contains perturbations due to non-sphericity (up to a 40 X 40 field) of the planet, lunar and solar effects, and drag and solar radiation pressure. An 8th order Runge-Kutta integration scheme with variable step size control is used for efficient propagation. The input includes the classical osculating elements, orbital elements of the sun relative to the planet, reference time and dates, drag coefficient, gravitational constants, and planet radius, rotation rate, etc. The printed output contains Cartesian coordinates, velocity, equinoctial elements, and classical elements for each time step or event step. At each step, selected output is added to a plot file. The ASAP package includes a program for sorting this plot file. LOTUS 1-2-3 is used in the supplied examples to graph the results, but any graphics software package could be used to process the plot file. ASAP is not written to be mission-specific. Instead, it is intended to be used for most planetary orbiting missions. As a consequence, the user has to have some basic understanding of orbital mechanics to provide the correct input and interpret the subsequent output. ASAP is written in FORTRAN 77 for batch execution and has been implemented on an IBM PC compatible computer operating under MS-DOS. The ASAP package requires a math coprocessor and a minimum of 256K RAM. This program was last updated in 1988 with version 2.03. IBM PC is a registered trademark of International Business Machines. MS-DOS is a registered trademark of Microsoft Corporation. Lotus and 1-2-3 are registered trademarks of Lotus Development Corporation.

  20. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  1. Orbit-orbit relativistic correction calculated with all-electron molecular explicitly correlated Gaussians.

    PubMed

    Stanke, Monika; Palikot, Ewa; Kȩdziera, Dariusz; Adamowicz, Ludwik

    2016-12-14

    An algorithm for calculating the first-order electronic orbit-orbit magnetic interaction correction for an electronic wave function expanded in terms of all-electron explicitly correlated molecular Gaussian (ECG) functions with shifted centers is derived and implemented. The algorithm is tested in calculations concerning the H 2 molecule. It is also applied in calculations for LiH and H 3 + molecular systems. The implementation completes our work on the leading relativistic correction for ECGs and paves the way for very accurate ECG calculations of ground and excited potential energy surfaces (PESs) of small molecules with two and more nuclei and two and more electrons, such as HeH - , H 3 + , HeH 2 + , and LiH 2 + . The PESs will be used to determine rovibrational spectra of the systems.

  2. [Treatment of enophthalmos after severe malar-maxillary complex fracture with titanium mesh and high density polyethylene (Medpor)].

    PubMed

    Zhao, Yan-feng; Lu, Ping; Zhou, Xiao-nan; Qu, Chang-feng

    2010-03-01

    To study the surgical management of enophthalmos after severe malar maxillary complex fracture. The X-ray and CT examination were performed before operation to diagnose the orbital fracture and intraorbital tissue displacement. The fractured orbital rim was repositioned intraoperatively, followed by implantation of shaped titanium mesh to rebuild the orbital floor. The Medpor was inserted above the titanium mesh to correct the enophthalmos. From Sept. 2007 to Jan. 2009, 6 cases of enophthalmos after severe malar-maxillary complex fracture were treated. The enophthalmos was corrected or improved obviously in all the patients. The enophthalmos after severe malar-maxillary complex fracture can be corrected or obviously improved. Shaped titanium mesh can be used to rebuild the orbital floor with the Medpor to reconstruct the intraorbital tissue volume.

  3. An atomic mean-field spin-orbit approach within exact two-component theory for a non-perturbative treatment of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Junzi; Cheng, Lan

    2018-04-01

    An atomic mean-field (AMF) spin-orbit (SO) approach within exact two-component theory (X2C) is reported, thereby exploiting the exact decoupling scheme of X2C, the one-electron approximation for the scalar-relativistic contributions, the mean-field approximation for the treatment of the two-electron SO contribution, and the local nature of the SO interactions. The Hamiltonian of the proposed SOX2CAMF scheme comprises the one-electron X2C Hamiltonian, the instantaneous two-electron Coulomb interaction, and an AMF SO term derived from spherically averaged Dirac-Coulomb Hartree-Fock calculations of atoms; no molecular relativistic two-electron integrals are required. Benchmark calculations for bond lengths, harmonic frequencies, dipole moments, and electric-field gradients for a set of diatomic molecules containing elements across the periodic table show that the SOX2CAMF scheme offers a balanced treatment for SO and scalar-relativistic effects and appears to be a promising candidate for applications to heavy-element containing systems. SOX2CAMF coupled-cluster calculations of molecular properties for bismuth compounds (BiN, BiP, BiF, BiCl, and BiI) are also presented and compared with experimental results to further demonstrate the accuracy and applicability of the SOX2CAMF scheme.

  4. Full self-consistency in the Fermi-orbital self-interaction correction

    NASA Astrophysics Data System (ADS)

    Yang, Zeng-hui; Pederson, Mark R.; Perdew, John P.

    2017-05-01

    The Perdew-Zunger self-interaction correction cures many common problems associated with semilocal density functionals, but suffers from a size-extensivity problem when Kohn-Sham orbitals are used in the correction. Fermi-Löwdin-orbital self-interaction correction (FLOSIC) solves the size-extensivity problem, allowing its use in periodic systems and resulting in better accuracy in finite systems. Although the previously published FLOSIC algorithm Pederson et al., J. Chem. Phys. 140, 121103 (2014)., 10.1063/1.4869581 appears to work well in many cases, it is not fully self-consistent. This would be particularly problematic for systems where the occupied manifold is strongly changed by the correction. In this paper, we demonstrate a different algorithm for FLOSIC to achieve full self-consistency with only marginal increase of computational cost. The resulting total energies are found to be lower than previously reported non-self-consistent results.

  5. Heuristic pattern correction scheme using adaptively trained generalized regression neural networks.

    PubMed

    Hoya, T; Chambers, J A

    2001-01-01

    In many pattern classification problems, an intelligent neural system is required which can learn the newly encountered but misclassified patterns incrementally, while keeping a good classification performance over the past patterns stored in the network. In the paper, an heuristic pattern correction scheme is proposed using adaptively trained generalized regression neural networks (GRNNs). The scheme is based upon both network growing and dual-stage shrinking mechanisms. In the network growing phase, a subset of the misclassified patterns in each incoming data set is iteratively added into the network until all the patterns in the incoming data set are classified correctly. Then, the redundancy in the growing phase is removed in the dual-stage network shrinking. Both long- and short-term memory models are considered in the network shrinking, which are motivated from biological study of the brain. The learning capability of the proposed scheme is investigated through extensive simulation studies.

  6. Corrections to the General (2,4) and (4,4) FDTD Schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meierbachtol, Collin S.; Smith, William S.; Shao, Xuan-Min

    The sampling weights associated with two general higher order FDTD schemes were derived by Smith, et al. and published in a IEEE Transactions on Antennas and Propagation article in 2012. Inconsistencies between governing equations and their resulting solutions were discovered within the article. In an effort to track down the root cause of these inconsistencies, the full three-dimensional, higher order FDTD dispersion relation was re-derived using Mathematica TM. During this process, two errors were identi ed in the article. Both errors are highlighted in this document. The corrected sampling weights are also provided. Finally, the original stability limits provided formore » both schemes are corrected, and presented in a more precise form. It is recommended any future implementations of the two general higher order schemes provided in the Smith, et al. 2012 article should instead use the sampling weights and stability conditions listed in this document.« less

  7. Teaching Science.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1996-01-01

    Describes use of a sundial to study Earth's orbit and time. Covers construction of sundial, exploration phase, introduction of concept of time as determined by the position of the sun in relation to the observer's meridian, comparison of sundial time and wristwatch time, longitudinal corrections, introduction of orbital corrections, and further…

  8. Loss Tolerance in One-Way Quantum Computation via Counterfactual Error Correction

    NASA Astrophysics Data System (ADS)

    Varnava, Michael; Browne, Daniel E.; Rudolph, Terry

    2006-09-01

    We introduce a scheme for fault tolerantly dealing with losses (or other “leakage” errors) in cluster state computation that can tolerate up to 50% qubit loss. This is achieved passively using an adaptive strategy of measurement—no coherent measurements or coherent correction is required. Since the scheme relies on inferring information about what would have been the outcome of a measurement had one been able to carry it out, we call this counterfactual error correction.

  9. Turbulence mitigation scheme based on spatial diversity in orbital-angular-momentum multiplexed system

    NASA Astrophysics Data System (ADS)

    Zou, Li; Wang, Le; Zhao, Shengmei

    2017-10-01

    Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a spatial diversity (SD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a SD mitigation model for the OAM-multiplexed FSO communication link under AT. Then we present a SD combining technique based on equal gain to enhance AT tolerance of the OAM-multiplexed FSO communication link. The numerical results show that performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength Cn2 is 5 × 10-15m - 2 / 3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 20 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = + 1 , + 2 , + 3 , + 4 are 3 fold increase in comparison with those results without the proposed scheme. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link.

  10. Error determination of a successive correction type objective analysis scheme. [for surface meteorological data

    NASA Technical Reports Server (NTRS)

    Smith, D. R.; Leslie, F. W.

    1984-01-01

    The Purdue Regional Objective Analysis of the Mesoscale (PROAM) is a successive correction type scheme for the analysis of surface meteorological data. The scheme is subjected to a series of experiments to evaluate its performance under a variety of analysis conditions. The tests include use of a known analytic temperature distribution to quantify error bounds for the scheme. Similar experiments were conducted using actual atmospheric data. Results indicate that the multiple pass technique increases the accuracy of the analysis. Furthermore, the tests suggest appropriate values for the analysis parameters in resolving disturbances for the data set used in this investigation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele

    A number of 2D layered perovskites A{sub 2}PbI{sub 4} and BPbI{sub 4}, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps havemore » been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another’s place.« less

  12. Optimal three-dimensional reusable tug trajectories for planetary missions including correction for nodal precession

    NASA Technical Reports Server (NTRS)

    Borsody, J.

    1976-01-01

    Equations are derived by using the maximum principle to maximize the payload of a reusable tug for planetary missions. The analysis includes a correction for precession of the space shuttle orbit. The tug returns to this precessed orbit (within a specified time) and makes the required nodal correction. A sample case is analyzed that represents an inner planet mission as specified by a fixed declination and right ascension of the outgoing asymptote and the mission energy. The reusable stage performance corresponds to that of a typical cryogenic tug. Effects of space shuttle orbital inclination, several trajectory parameters, and tug thrust on payload are also investigated.

  13. GMI High Frequency Antenna Pattern Correction Update Based on GPM Inertial Hold and Comparison with ATMS

    NASA Technical Reports Server (NTRS)

    Draper, David W.

    2015-01-01

    In an inertial hold, the spacecraft does not attempt to maintain geodetic pointing, but rather maintains the same inertial position throughout the orbit. The result is that the spacecraft appears to pitch from 0 to 360 degrees around the orbit. Two inertial holds were performed with the GPM spacecraft: 1) May 20, 2014 16:48:31 UTC-18:21:04 UTC, spacecraft flying forward +X (0yaw), pitch from 55 degrees (FCS) to 415 degrees (FCS) over the orbit2) Dec 9, 2014 01:30:00 UTC-03:02:32 UTC, spacecraft flying backward X (180yaw), pitch from 0 degrees (FCS) to 360 degrees (FCS) over the orbitThe inertial hold affords a view of the earth through the antenna backlobe. The antenna spillover correction may be evaluated based on the inertial hold data.The current antenna pattern correction does not correct for spillover in the 166 and 183 GHz channels. The two inertial holds both demonstrate that there is significant spillover from the 166 and 183 GHz channels. By not correcting the spillover, the 166 and 183 GHz channels are biased low by about 1.8 to 3K. We propose to update the GMI calibration algorithm with the spill-over correction presented in this document for 166 GHz and 183 GHz.

  14. Orbital relaxation effects on Kohn–Sham frontier orbital energies in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, DaDi; Zheng, Xiao, E-mail: xz58@ustc.edu.cn; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2015-04-21

    We explore effects of orbital relaxation on Kohn–Sham frontier orbital energies in density functional theory by using a nonempirical scaling correction approach developed in Zheng et al. [J. Chem. Phys. 138, 174105 (2013)]. Relaxation of Kohn–Sham orbitals upon addition/removal of a fractional number of electrons to/from a finite system is determined by a systematic perturbative treatment. The information of orbital relaxation is then used to improve the accuracy of predicted Kohn–Sham frontier orbital energies by Hartree–Fock, local density approximation, and generalized gradient approximation methods. The results clearly highlight the significance of capturing the orbital relaxation effects. Moreover, the proposed scalingmore » correction approach provides a useful way of computing derivative gaps and Fukui quantities of N-electron finite systems (N is an integer), without the need to perform self-consistent-field calculations for (N ± 1)-electron systems.« less

  15. Angular spectral framework to test full corrections of paraxial solutions.

    PubMed

    Mahillo-Isla, R; González-Morales, M J

    2015-07-01

    Different correction methods for paraxial solutions have been used when such solutions extend out of the paraxial regime. The authors have used correction methods guided by either their experience or some educated hypothesis pertinent to the particular problem that they were tackling. This article provides a framework so as to classify full wave correction schemes. Thus, for a given solution of the paraxial wave equation, we can select the best correction scheme of those available. Some common correction methods are considered and evaluated under the proposed scope. Another remarkable contribution is obtained by giving the necessary conditions that two solutions of the Helmholtz equation must accomplish to accept a common solution of the parabolic wave equation as a paraxial approximation of both solutions.

  16. Shape Transitional Nuclei: What can we learn from the Yrare States? or Hello the Double Vacuum; Goodbye β-vibrations!

    NASA Astrophysics Data System (ADS)

    Sharpey-Schafer, J. F.; Mullins, S. M.; Bark, R. A.; Gueorguieva, E.; Kau, J.; Komati, F.; Lawrie, J. J.; Maine, P.; Minkova, A.; Murray, S. H. T.; Ncapayi, N. J.; Vymers, P.

    2008-05-01

    The results of our measurements on the yrare states up to spin 20ℏ in 152,154,155Gd, using (α,xn) reactions and the AFRODITE γ-ray spectrometer, are presented. We find that in 155Gd the decay scheme is divided into levels feeding the [505]11/2- band, that is extruded by the prolate deformation from the h11/2 orbital, and levels feeding the i13/2[651]3/2+ intruder orbital and the h9/2[521]3/2- orbital. The decay scheme of 154Gd is very complex. We find no evidence for the existence of β-vibrational levels below 1.5 MeV. We discover that the level scheme can be best understood as a set of collective states built on the ground state configuration |01+> plus a ``congruent'' set of collective states based on the |02+> state at 681 keV. The data suggest that this second vacuum has reduced pairing. Our data do not support IBA and phonon interpretations of these transitional nuclei.

  17. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram

    2016-12-26

    An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the GOCI data. From simulations, the mean errors for bands from 412 to 555 nm were 5.2% for the SRAMS scheme and 11.5% for SSE scheme in case-I waters. From in situ match-ups, 16.5% for the SRAMS scheme and 17.6% scheme for the SSE scheme in both case-I and case-II waters. Although we applied the SRAMS algorithm to the GOCI, it can be applied to other ocean color sensors which have two NIR wavelengths.

  18. Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay

    NASA Technical Reports Server (NTRS)

    Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan

    2011-01-01

    To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for

  19. Novel ray tracing method for stray light suppression from ocean remote sensing measurements.

    PubMed

    Oh, Eunsong; Hong, Jinsuk; Kim, Sug-Whan; Park, Young-Je; Cho, Seong-Ick

    2016-05-16

    We developed a new integrated ray tracing (IRT) technique to analyze the stray light effect in remotely sensed images. Images acquired with the Geostationary Ocean Color Imager show a radiance level discrepancy at the slot boundary, which is suspected to be a stray light effect. To determine its cause, we developed and adjusted a novel in-orbit stray light analysis method, which consists of three simulated phases (source, target, and instrument). Each phase simulation was performed in a way that used ray information generated from the Sun and reaching the instrument detector plane efficiently. This simulation scheme enabled the construction of the real environment from the remote sensing data, with a focus on realistic phenomena. In the results, even in a cloud-free environment, a background stray light pattern was identified at the bottom of each slot. Variations in the stray light effect and its pattern according to bright target movement were simulated, with a maximum stray light ratio of 8.5841% in band 2 images. To verify the proposed method and simulation results, we compared the results with the real acquired remotely sensed image. In addition, after correcting for abnormal phenomena in specific cases, we confirmed that the stray light ratio decreased from 2.38% to 1.02% in a band 6 case, and from 1.09% to 0.35% in a band 8 case. IRT-based stray light analysis enabled clear determination of the stray light path and candidates in in-orbit circumstances, and the correction process aided recovery of the radiometric discrepancy.

  20. Tracking and data system support for the Mariner Mars 1971 mission. Volume 2: First trajectory correction maneuver through orbit insertion

    NASA Technical Reports Server (NTRS)

    Textor, G. P.; Kelly, L. B.; Kelly, M.

    1972-01-01

    The Deep Space Tracking and Data System activities in support of the Mariner Mars 1971 project from the first trajectory correction maneuver on 4 June 1971 through cruise and orbit insertion on 14 November 1971 are presented. Changes and updates to the TDS requirements and to the plan and configuration plus detailed information on the TDS flight support performance evaluation and the preorbital testing and training are included. With the loss of Mariner 8 at launch, a few changes to the Mariner Mars 1971 requirements, plan, and configuration were necessitated. Mariner 9 is now assuming the former mission plan of Mariner 8, including the TV mapping cycles and a 12-hr orbital period. A second trajectory correction maneuver was not required because of the accuracy of the first maneuver. All testing and training for orbital operations were completed satisfactorily and on schedule. The orbit insertion was accomplished with excellent results.

  1. High-dimensional free-space optical communications based on orbital angular momentum coding

    NASA Astrophysics Data System (ADS)

    Zou, Li; Gu, Xiaofan; Wang, Le

    2018-03-01

    In this paper, we propose a high-dimensional free-space optical communication scheme using orbital angular momentum (OAM) coding. In the scheme, the transmitter encodes N-bits information by using a spatial light modulator to convert a Gaussian beam to a superposition mode of N OAM modes and a Gaussian mode; The receiver decodes the information through an OAM mode analyser which consists of a MZ interferometer with a rotating Dove prism, a photoelectric detector and a computer carrying out the fast Fourier transform. The scheme could realize a high-dimensional free-space optical communication, and decodes the information much fast and accurately. We have verified the feasibility of the scheme by exploiting 8 (4) OAM modes and a Gaussian mode to implement a 256-ary (16-ary) coding free-space optical communication to transmit a 256-gray-scale (16-gray-scale) picture. The results show that a zero bit error rate performance has been achieved.

  2. Using concatenated quantum codes for universal fault-tolerant quantum gates.

    PubMed

    Jochym-O'Connor, Tomas; Laflamme, Raymond

    2014-01-10

    We propose a method for universal fault-tolerant quantum computation using concatenated quantum error correcting codes. The concatenation scheme exploits the transversal properties of two different codes, combining them to provide a means to protect against low-weight arbitrary errors. We give the required properties of the error correcting codes to ensure universal fault tolerance and discuss a particular example using the 7-qubit Steane and 15-qubit Reed-Muller codes. Namely, other than computational basis state preparation as required by the DiVincenzo criteria, our scheme requires no special ancillary state preparation to achieve universality, as opposed to schemes such as magic state distillation. We believe that optimizing the codes used in such a scheme could provide a useful alternative to state distillation schemes that exhibit high overhead costs.

  3. Accompanying coordinate expansion and recurrence relation method using a transfer relation scheme for electron repulsion integrals with high angular momenta and long contractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Masao; Seino, Junji; Nakai, Hiromi, E-mail: nakai@waseda.jp

    An efficient algorithm for the rapid evaluation of electron repulsion integrals is proposed. The present method, denoted by accompanying coordinate expansion and transferred recurrence relation (ACE-TRR), is constructed using a transfer relation scheme based on the accompanying coordinate expansion and recurrence relation method. Furthermore, the ACE-TRR algorithm is extended for the general-contraction basis sets. Numerical assessments clarify the efficiency of the ACE-TRR method for the systems including heavy elements, whose orbitals have long contractions and high angular momenta, such as f- and g-orbitals.

  4. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity

    NASA Astrophysics Data System (ADS)

    Cinal, M.

    2010-01-01

    It is found that for closed-l-shell atoms, the exact local exchange potential vx(r) calculated in the exchange-only Kohn-Sham (KS) scheme of the density functional theory (DFT) is very well represented within the region of every atomic shell by each of the suitably shifted potentials obtained with the nonlocal Fock exchange operator for the individual Hartree-Fock (HF) orbitals belonging to this shell. This newly revealed property is not related to the well-known steplike shell structure in the response part of vx(r), but it results from specific relations satisfied by the HF orbital exchange potentials. These relations explain the outstanding proximity of the occupied HF and exchange-only KS orbitals as well as the high quality of the Krieger-Li-Iafrate and localized HF (or, equivalently, common-energy-denominator) approximations to the DFT exchange potential vx(r). Another highly accurate representation of vx(r) is given by the continuous piecewise function built of shell-specific exchange potentials, each defined as the weighted average of the shifted orbital exchange potentials corresponding to a given shell. The constant shifts added to the HF orbital exchange potentials, to map them onto vx(r), are nearly equal to the differences between the energies of the corresponding KS and HF orbitals. It is discussed why these differences are positive and grow when the respective orbital energies become lower for inner orbitals.

  5. Exact exchange plane-wave-pseudopotential calculations for slabs: Extending the width of the vacuum

    NASA Astrophysics Data System (ADS)

    Engel, Eberhard

    2018-04-01

    Standard plane-wave pseudopotential (PWPP) calculations for slabs such as graphene become extremely demanding, as soon as the exact exchange (EXX) of density functional theory is applied. Even if the Krieger-Li-Iafrate (KLI) approximation for the EXX potential is utilized, such EXX-PWPP calculations suffer from the fact that an accurate representation of the occupied states throughout the complete vacuum between the replicas of the slab is required. In this contribution, a robust and efficient extension scheme for the PWPP states is introduced, which ensures the correct exponential decay of the slab states in the vacuum for standard cutoff energies and therefore facilitates EXX-PWPP calculations for very wide vacua and rather thick slabs. Using this scheme, it is explicitly verified that the Slater component of the EXX/KLI potential decays as -1 /z over an extended region sufficiently far from the surface (assumed to be perpendicular to the z direction) and from the middle of the vacuum, thus reproducing the asymptotic behavior of the exact EXX potential of a single slab. The calculations also reveal that the orbital-shift component of the EXX/KLI potential is quite sizable in the asymptotic region. In spite of the long-range exchange potential, the replicas of the slab decouple rather quickly with increasing width of the vacuum. Relying on the identity of the work function with the Fermi energy obtained with a suitably normalized total potential, the present EXX/KLI calculations predict work functions for both graphene and the Si(111) surface which are substantially larger than the corresponding experimental data. Together with the size of the orbital-shift potential in the asymptotic region, the very large EXX/KLI work functions indicate a failure of the KLI approximation for nonmetallic slabs.

  6. Compression of digital images over local area networks. Appendix 1: Item 3. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gorjala, Bhargavi

    1991-01-01

    Differential Pulse Code Modulation (DPCM) has been used with speech for many years. It has not been as successful for images because of poor edge performance. The only corruption in DPC is quantizer error but this corruption becomes quite large in the region of an edge because of the abrupt changes in the statistics of the signal. We introduce two improved DPCM schemes; Edge correcting DPCM and Edge Preservation Differential Coding. These two coding schemes will detect the edges and take action to correct them. In an Edge Correcting scheme, the quantizer error for an edge is encoded using a recursive quantizer with entropy coding and sent to the receiver as side information. In an Edge Preserving scheme, when the quantizer input falls in the overload region, the quantizer error is encoded and sent to the receiver repeatedly until the quantizer input falls in the inner levels. Therefore these coding schemes increase the bit rate in the region of an edge and require variable rate channels. We implement these two variable rate coding schemes on a token wing network. Timed token protocol supports two classes of messages; asynchronous and synchronous. The synchronous class provides a pre-allocated bandwidth and guaranteed response time. The remaining bandwidth is dynamically allocated to the asynchronous class. The Edge Correcting DPCM is simulated by considering the edge information under the asynchronous class. For the simulation of the Edge Preserving scheme, the amount of information sent each time is fixed, but the length of the packet or the bit rate for that packet is chosen depending on the availability capacity. The performance of the network, and the performance of the image coding algorithms, is studied.

  7. Analytic energy gradient of projected Hartree-Fock within projection after variation

    NASA Astrophysics Data System (ADS)

    Uejima, Motoyuki; Ten-no, Seiichiro

    2017-03-01

    We develop a geometrical optimization technique for the projection-after-variation (PAV) scheme of the recently refined projected Hartree-Fock (PHF) as a fast alternative to the variation-after-projection (VAP) approach for optimizing the structures of molecules/clusters in symmetry-adapted electronic states at the mean-field computational cost. PHF handles the nondynamic correlation effects by restoring the symmetry of a broken-symmetry single reference wavefunction and moreover enables a black-box treatment of orbital selections. Using HF orbitals instead of PHF orbitals, our approach saves the computational cost for the orbital optimization, avoiding the convergence problem that sometimes emerges in the VAP scheme. We show that PAV-PHF provides geometries comparable to those of the complete active space self-consistent field and VAP-PHF for the tested systems, namely, CH2, O3, and the [Cu2O2 ] 2 + core, where nondynamic correlation is abundant. The proposed approach is useful for large systems mainly dominated by nondynamic correlation to find stable structures in many symmetry-adapted states.

  8. Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Wang, Fan; Stanton, John F.; Gauss, Jürgen

    2018-01-01

    A scheme is reported for the perturbative calculation of spin-orbit coupling (SOC) within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e) in combination with the equation-of-motion coupled-cluster singles and doubles method. Benchmark calculations of the spin-orbit splittings in 2Π and 2P radicals show that the accurate inclusion of scalar-relativistic effects using the SFX2C-1e scheme extends the applicability of the perturbative treatment of SOC to molecules that contain heavy elements. The contributions from relaxation of the coupled-cluster amplitudes are shown to be relatively small; significant contributions from correlating the inner-core orbitals are observed in calculations involving third-row and heavier elements. The calculation of term energies for the low-lying electronic states of the PtH radical, which serves to exemplify heavy transition-metal containing systems, further demonstrates the quality that can be achieved with the pragmatic approach presented here.

  9. Seven-panel solar wing deployment and on-orbit maneuvering analyses

    NASA Astrophysics Data System (ADS)

    Hwang, Earl

    2005-05-01

    BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.

  10. A state interaction spin-orbit coupling density matrix renormalization group method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayfutyarova, Elvira R.; Chan, Garnet Kin-Lic

    We describe a state interaction spin-orbit (SISO) coupling method using density matrix renormalization group (DMRG) wavefunctions and the spin-orbit mean-field (SOMF) operator. We implement our DMRG-SISO scheme using a spin-adapted algorithm that computes transition density matrices between arbitrary matrix product states. To demonstrate the potential of the DMRG-SISO scheme we present accurate benchmark calculations for the zero-field splitting of the copper and gold atoms, comparing to earlier complete active space self-consistent-field and second-order complete active space perturbation theory results in the same basis. We also compute the effects of spin-orbit coupling on the spin-ladder of the iron-sulfur dimer complex [Fe{submore » 2}S{sub 2}(SCH{sub 3}){sub 4}]{sup 3−}, determining the splitting of the lowest quartet and sextet states. We find that the magnitude of the zero-field splitting for the higher quartet and sextet states approaches a significant fraction of the Heisenberg exchange parameter.« less

  11. Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium

    NASA Astrophysics Data System (ADS)

    Zhu, Ruilin

    2018-06-01

    We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.

  12. The Effect of Geocenter Motion on Jason-2 and Jason-1 Orbits and the Mean Sea Level

    NASA Technical Reports Server (NTRS)

    Melachroinos, Stavros A.; Beckley, Brian D.; Lemoine, Frank G.; Zelensky, Nikita P.; Rowlands, David D.; Luthcke, Scott B.

    2012-01-01

    We have investigated the impact of geocenter motion on Jason-2 orbits. This was accomplished by computing a series of Jason-1, Jason-2 GPS-based and SLR/DORIS-based orbits using ITRF2008 and the IGS repro1 framework based on the most recent GSFC standards. From these orbits, we extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. The fitted annual and seasonal terms of these time-series are compared to two different geocenter motion models. Subsequently, we included the geocenter motion corrections in the POD process as a degree-1 loading displacement correction to the tracking network. The analysis suggested that the GSFC's Jason-2 std0905 GPS-based orbits are closely tied to the center of mass (CM) of the Earth whereas the SLR/DORIS std0905 orbits are tied to the center of figure (CF) of the ITRF2005 (Melachroinos et al., 2012). In this study we extend the investigation to the centering of the GPS constellation and the way those are tied in the Jason-1 and Jason-2 POD process. With a new set of standards, we quantify the GPS and SLR/DORIS-based orbit centering during the Jason-1 and Jason-2 inter-calibration period and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the full term of the geocenter motion correction.

  13. Performance of a recoverable tug for planetary missions including use of perigee propulsion and corrections for nodal regression

    NASA Technical Reports Server (NTRS)

    Borsody, J.

    1976-01-01

    Mathematical equations are derived by using the Maximum Principle to obtain the maximum payload capability of a reusable tug for planetary missions. The mathematical formulation includes correction for nodal precession of the space shuttle orbit. The tug performs this nodal correction in returning to this precessed orbit. The sample case analyzed represents an inner planet mission as defined by the declination (fixed) and right ascension of the outgoing asymptote and the mission energy. Payload capability is derived for a typical cryogenic tug and the sample case with and without perigee propulsion. Optimal trajectory profiles and some important orbital elements are also discussed.

  14. Technical-economic feasibility of orbiting sunlight reflectors

    NASA Astrophysics Data System (ADS)

    Alferov, Z.; Minin, V.

    1986-02-01

    The use of deflectors in orbit as a means of providing artificial illumination is examined. Considerations of technical and economic feasibility are addressed. Three main areas of application are distinguished: reflecting sunlight onto the surface of the Earth; concentration of the flow of solar energy on an orbiting receiver; and retransmission of optical radiation. The advantages of the artificial Earth illumination application of the orbiting reflector scheme in terms of energy savings in lighting cities, and additional daylight time for critical periods of farming operations are discussed.

  15. Correction of phase errors in quantitative water-fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence.

    PubMed

    Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C

    2017-09-01

    To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  16. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    NASA Astrophysics Data System (ADS)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  17. The effect of geocenter motion on Jason-2 orbits and the mean sea level

    NASA Astrophysics Data System (ADS)

    Melachroinos, S. A.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Bordyugov, O.

    2013-04-01

    We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards (Lemoine et al., 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC's SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a - 4.67 ± 3.40 mm error in the Z-component of the orbit frame which creates 1.06 ± 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.

  18. The Effect of Geocenter Motion on Jason-2 Orbits and the Mean Sea Level

    NASA Technical Reports Server (NTRS)

    Melachroinos, S. A.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Bordyugov, O.

    2012-01-01

    We compute a series of Jason-2 GPS and SLR/DORIS-based orbits using ITRF2005 and the std0905 standards (Lemoine et al. 2010). Our GPS and SLR/DORIS orbit data sets span a period of 2 years from cycle 3 (July 2008) to cycle 74 (July 2010). We extract the Jason-2 orbit frame translational parameters per cycle by the means of a Helmert transformation between a set of reference orbits and a set of test orbits. We compare the annual terms of these time-series to the annual terms of two different geocenter motion models where biases and trends have been removed. Subsequently, we include the annual terms of the modeled geocenter motion as a degree-1 loading displacement correction to the GPS and SLR/DORIS tracking network of the POD process. Although the annual geocenter motion correction would reflect a stationary signal in time, under ideal conditions, the whole geocenter motion is a non-stationary process that includes secular trends. Our results suggest that our GSFC Jason-2 GPS-based orbits are closely tied to the center of mass (CM) of the Earth consistent with our current force modeling, whereas GSFC's SLR/DORIS-based orbits are tied to the origin of ITRF2005, which is the center of figure (CF) for sub-secular scales. We quantify the GPS and SLR/DORIS orbit centering and how this impacts the orbit radial error over the globe, which is assimilated into mean sea level (MSL) error, from the omission of the annual term of the geocenter correction. We find that for the SLR/DORIS std0905 orbits, currently used by the oceanographic community, only the negligence of the annual term of the geocenter motion correction results in a 4.67 plus or minus 3.40 mm error in the Z-component of the orbit frame which creates 1.06 plus or minus 2.66 mm of systematic error in the MSL estimates, mainly due to the uneven distribution of the oceans between the North and South hemisphere.

  19. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  20. LightForce Photon-Pressure Collision Avoidance: Efficiency Assessment on an Entire Catalogue of Space Debris

    NASA Technical Reports Server (NTRS)

    Stupl, Jan Michael; Faber, Nicolas; Foster, Cyrus; Yang Yang, Fan; Levit, Creon

    2013-01-01

    The potential to perturb debris orbits using photon pressure from ground-based lasers has been confirmed by independent research teams. Two useful applications of this scheme are protecting space assets from impacts with debris and stabilizing the orbital debris environment, both relying on collision avoidance rather than de-orbiting debris. This paper presents the results of a new assessment method to analyze the efficiency of the concept for collision avoidance. Earlier research concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, can prevent a significant fraction of debris-debris collisions in low Earth orbit. That research used in-track displacement to measure efficiency and restricted itself to an analysis of a limited number of objects. As orbit prediction error is dependent on debris object properties, a static displacement threshold should be complemented with another measure to assess the efficiency of the scheme. In this paper we present the results of an approach using probability of collision. Using a least-squares fitting method, we improve the quality of the original TLE catalogue in terms of state and co-state accuracy. We then calculate collision probabilities for all the objects in the catalogue. The conjunctions with the highest risk of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the collision probability in a 20 minute window around the original conjunction. We then use different criteria to evaluate the utility of the laser-based collision avoidance scheme and assess the number of base-line ground stations needed to mitigate a significant number of high probability conjunctions. Finally, we also give an account how a laser ground station can be used for both orbit deflection and debris tracking.

  1. MkMRCC, APUCC and APUBD approaches to 1,n-didehydropolyene diradicals: the nature of through-bond exchange interactions

    NASA Astrophysics Data System (ADS)

    Nishihara, Satomichi; Saito, Toru; Yamanaka, Shusuke; Kitagawa, Yasutaka; Kawakami, Takashi; Okumura, Mitsutaka; Yamaguchi, Kizashi

    2010-10-01

    Mukherjee-type (Mk) state specific (SS) multi-reference (MR) coupled-cluster (CC) calculations of 1,n-didehydropolyene diradicals were carried out to elucidate singlet-triplet energy gaps via through-bond coupling between terminal radicals. Spin-unrestricted Hartree-Fock (UHF) based coupled-cluster (CC) computations of these diradicals were also performed. Comparison between symmetry-adapted MkMRCC and broken-symmetry (BS) UHF-CC computational results indicated that spin-contamination error of UHF-CC solutions was left at the SD level, although it had been thought that this error was negligible for the CC scheme in general. In order to eliminate the spin contamination error, approximate spin-projection (AP) scheme was applied for UCC, and the AP procedure indeed eliminated the error to yield good agreement with MRCC in energy. The CCD with spin-unrestricted Brueckner's orbital (UB) was also employed for these polyene diradicals, showing that large spin-contamination errors at UHF solutions are dramatically improved, and therefore AP scheme for UBD removed easily the rest of spin-contaminations. Pure- and hybrid-density functional theory (DFT) calculations of the species were also performed. Three different computational schemes for total spin angular momentums were examined for the AP correction of the hybrid DFT. The AP DFT calculations yielded the singlet-triplet energy gaps that were in good agreement with those of MRCC, AP UHF-CC and AP UB-CC. Chemical indices such as the diradical character were calculated with all these methods. Implications of the present computational results are discussed in relation to previous RMRCC calculations of diradical species and BS calculations of large exchange coupled systems.

  2. Reliability model of a monopropellant auxiliary propulsion system

    NASA Technical Reports Server (NTRS)

    Greenberg, J. S.

    1971-01-01

    A mathematical model and associated computer code has been developed which computes the reliability of a monopropellant blowdown hydrazine spacecraft auxiliary propulsion system as a function of time. The propulsion system is used to adjust or modify the spacecraft orbit over an extended period of time. The multiple orbit corrections are the multiple objectives which the auxiliary propulsion system is designed to achieve. Thus the reliability model computes the probability of successfully accomplishing each of the desired orbit corrections. To accomplish this, the reliability model interfaces with a computer code that models the performance of a blowdown (unregulated) monopropellant auxiliary propulsion system. The computer code acts as a performance model and as such gives an accurate time history of the system operating parameters. The basic timing and status information is passed on to and utilized by the reliability model which establishes the probability of successfully accomplishing the orbit corrections.

  3. BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements.

    PubMed

    Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang

    2017-10-27

    This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm.

  4. BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements

    PubMed Central

    Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang

    2017-01-01

    This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm. PMID:29076998

  5. Computational technique for stepwise quantitative assessment of equation correctness

    NASA Astrophysics Data System (ADS)

    Othman, Nuru'l Izzah; Bakar, Zainab Abu

    2017-04-01

    Many of the computer-aided mathematics assessment systems that are available today possess the capability to implement stepwise correctness checking of a working scheme for solving equations. The computational technique for assessing the correctness of each response in the scheme mainly involves checking the mathematical equivalence and providing qualitative feedback. This paper presents a technique, known as the Stepwise Correctness Checking and Scoring (SCCS) technique that checks the correctness of each equation in terms of structural equivalence and provides quantitative feedback. The technique, which is based on the Multiset framework, adapts certain techniques from textual information retrieval involving tokenization, document modelling and similarity evaluation. The performance of the SCCS technique was tested using worked solutions on solving linear algebraic equations in one variable. 350 working schemes comprising of 1385 responses were collected using a marking engine prototype, which has been developed based on the technique. The results show that both the automated analytical scores and the automated overall scores generated by the marking engine exhibit high percent agreement, high correlation and high degree of agreement with manual scores with small average absolute and mixed errors.

  6. Resonance transition periodic orbits in the circular restricted three-body problem

    NASA Astrophysics Data System (ADS)

    Lei, Hanlun; Xu, Bo

    2018-04-01

    This work studies a special type of cislunar periodic orbits in the circular restricted three-body problem called resonance transition periodic orbits, which switch between different resonances and revolve about the secondary with multiple loops during one period. In the practical computation, families of multiple periodic orbits are identified first, and then the invariant manifolds emanating from the unstable multiple periodic orbits are taken to generate resonant homoclinic connections, which are used to determine the initial guesses for computing the desired periodic orbits by means of multiple-shooting scheme. The obtained periodic orbits have potential applications for the missions requiring long-term continuous observation of the secondary and tour missions in a multi-body environment.

  7. Consensus-based distributed cooperative learning from closed-loop neural control systems.

    PubMed

    Chen, Weisheng; Hua, Shaoyong; Zhang, Huaguang

    2015-02-01

    In this paper, the neural tracking problem is addressed for a group of uncertain nonlinear systems where the system structures are identical but the reference signals are different. This paper focuses on studying the learning capability of neural networks (NNs) during the control process. First, we propose a novel control scheme called distributed cooperative learning (DCL) control scheme, by establishing the communication topology among adaptive laws of NN weights to share their learned knowledge online. It is further proved that if the communication topology is undirected and connected, all estimated weights of NNs can converge to small neighborhoods around their optimal values over a domain consisting of the union of all state orbits. Second, as a corollary it is shown that the conclusion on the deterministic learning still holds in the decentralized adaptive neural control scheme where, however, the estimated weights of NNs just converge to small neighborhoods of the optimal values along their own state orbits. Thus, the learned controllers obtained by DCL scheme have the better generalization capability than ones obtained by decentralized learning method. A simulation example is provided to verify the effectiveness and advantages of the control schemes proposed in this paper.

  8. Long-range-corrected Rung 3.5 density functional approximations

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.; Proynov, Emil; Scalmani, Giovanni; Frisch, Michael J.

    2018-03-01

    Rung 3.5 functionals are a new class of approximations for density functional theory. They provide a flexible intermediate between exact (Hartree-Fock, HF) exchange and semilocal approximations for exchange. Existing Rung 3.5 functionals inherit semilocal functionals' limitations in atomic cores and density tails. Here we address those limitations using range-separated admixture of HF exchange. We present three new functionals. LRC-ωΠLDA combines long-range HF exchange with short-range Rung 3.5 ΠLDA exchange. SLC-ΠLDA combines short- and long-range HF exchange with middle-range ΠLDA exchange. LRC-ωΠLDA-AC incorporates a combination of HF, semilocal, and Rung 3.5 exchange in the short range, based on an adiabatic connection. We test these in a new Rung 3.5 implementation including up to analytic fourth derivatives. LRC-ωΠLDA and SLC-ΠLDA improve atomization energies and reaction barriers by a factor of 8 compared to the full-range ΠLDA. LRC-ωΠLDA-AC brings further improvement approaching the accuracy of standard long-range corrected schemes LC-ωPBE and SLC-PBE. The new functionals yield highest occupied orbital energies closer to experimental ionization potentials and describe correctly the weak charge-transfer complex of ethylene and dichlorine and the hole-spin distribution created by an Al defect in quartz. This study provides a framework for more flexible range-separated Rung 3.5 approximations.

  9. On the Difference Between Additive and Subtractive QM/MM Calculations

    PubMed Central

    Cao, Lili; Ryde, Ulf

    2018-01-01

    The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e., the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic, and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended. PMID:29666794

  10. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data

    NASA Astrophysics Data System (ADS)

    Saturno, Jorge; Pöhlker, Christopher; Massabò, Dario; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditas, Florian; Hrabě de Angelis, Isabella; Morán-Zuloaga, Daniel; Pöhlker, Mira L.; Rizzo, Luciana V.; Walter, David; Wang, Qiaoqiao; Artaxo, Paulo; Prati, Paolo; Andreae, Meinrat O.

    2017-08-01

    Deriving absorption coefficients from Aethalometer attenuation data requires different corrections to compensate for artifacts related to filter-loading effects, scattering by filter fibers, and scattering by aerosol particles. In this study, two different correction schemes were applied to seven-wavelength Aethalometer data, using multi-angle absorption photometer (MAAP) data as a reference absorption measurement at 637 nm. The compensation algorithms were compared to five-wavelength offline absorption measurements obtained with a multi-wavelength absorbance analyzer (MWAA), which serves as a multiple-wavelength reference measurement. The online measurements took place in the Amazon rainforest, from the wet-to-dry transition season to the dry season (June-September 2014). The mean absorption coefficient (at 637 nm) during this period was 1.8 ± 2.1 Mm-1, with a maximum of 15.9 Mm-1. Under these conditions, the filter-loading compensation was negligible. One of the correction schemes was found to artificially increase the short-wavelength absorption coefficients. It was found that accounting for the aerosol optical properties in the scattering compensation significantly affects the absorption Ångström exponent (åABS) retrievals. Proper Aethalometer data compensation schemes are crucial to retrieve the correct åABS, which is commonly implemented in brown carbon contribution calculations. Additionally, we found that the wavelength dependence of uncompensated Aethalometer attenuation data significantly correlates with the åABS retrieved from offline MWAA measurements.

  11. On the difference between additive and subtractive QM/MM calculations

    NASA Astrophysics Data System (ADS)

    Cao, Lili; Ryde, Ulf

    2018-04-01

    The combined quantum mechanical (QM) and molecular mechanical (MM) approach (QM/MM) is a popular method to study reactions in biochemical macromolecules. Even if the general procedure of using QM for a small, but interesting part of the system and MM for the rest is common to all approaches, the details of the implementations vary extensively, especially the treatment of the interface between the two systems. For example, QM/MM can use either additive or subtractive schemes, of which the former is often said to be preferable, although the two schemes are often mixed up with mechanical and electrostatic embedding. In this article, we clarify the similarities and differences of the two approaches. We show that inherently, the two approaches should be identical and in practice require the same sets of parameters. However, the subtractive scheme provides an opportunity to correct errors introduced by the truncation of the QM system, i.e. the link atoms, but such corrections require additional MM parameters for the QM system. We describe and test three types of link-atom correction, viz. for van der Waals, electrostatic and bonded interactions. The calculations show that electrostatic and bonded link-atom corrections often give rise to problems in the geometries and energies. The van der Waals link-atom corrections are quite small and give results similar to a pure additive QM/MM scheme. Therefore, both approaches can be recommended.

  12. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.

    PubMed

    Grimme, Stefan; Brandenburg, Jan Gerit; Bannwarth, Christoph; Hansen, Andreas

    2015-08-07

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design of the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of "low-cost" electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust "high-speed" computational tool in theoretical chemistry and physics.

  13. MRCI study on transition dipole moments and transition probabilities of 18 low-lying states of CP+ cation

    NASA Astrophysics Data System (ADS)

    Zhou, Dan; Wang, Kedong; Li, Xue

    2018-07-01

    This study calculates the potential energy curves of 18 Λ-S and 50 Ω states, which arise from the C(3Pg) + P+(3Pg) dissociation channel of the CP+ cation. The calculations are made using the CASSCF method, followed by the icMRCI approach with the Davidson correction. Core-valence correlation and scalar relativistic corrections, as well as extrapolation to the complete basis set limit are included. The transition dipole moments are computed for 25 pairs of Λ-S states. The spin-orbit coupling effect on the spectroscopic and vibrational properties is evaluated. The Franck-Condon factors and Einstein coefficients of emissions are calculated. Radiative lifetimes are obtained for several vibrational levels of some states. The transitions are evaluated and spectroscopic measurement schemes for observing these Λ-S states are proposed. The potential energy curves, spectroscopic constants, vibrational levels, transition dipole moments, and transition probabilities reported in this paper can be considered to be very accurate and reliable. Because no experimental observations are currently available, the results obtained here can be used as guidelines for the detection of these states in appropriate spectroscopy experiments, in particular for observations in stellar atmospheres and in interstellar space.

  14. Convergence of generalized MUSCL schemes

    NASA Technical Reports Server (NTRS)

    Osher, S.

    1984-01-01

    Semi-discrete generalizations of the second order extension of Godunov's scheme, known as the MUSCL scheme, are constructed, starting with any three point E scheme. They are used to approximate scalar conservation laws in one space dimension. For convex conservation laws, each member of a wide class is proven to be a convergent approximation to the correct physical solution. Comparison with another class of high resolution convergent schemes is made.

  15. On the Post-Keplerian Corrections to the Orbital Periods of a Two-body System and Their Application to the Galactic Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iorio, Lorenzo; Zhang, Fupeng, E-mail: lorenzo.iorio@libero.it, E-mail: zhangfp7@mail.sysu.edu.cn

    We perform detailed numerical analyses of the orbital motion of a test particle around a spinning primary, with the aim of investigating the possibility of using the post-Keplerian (pK) corrections to the orbiter’s periods (draconitic, anomalistic, and sidereal) as a further opportunity to perform new tests of post-Newtonian gravity. As a specific scenario, the S-stars orbiting the massive black hole (MBH) supposedly lurking in Sgr A* at the center of the Galaxy are adopted. We first study the effects of the pK Schwarzchild, Lense–Thirring, and quadrupole moment accelerations experienced by a target star for various possible initial orbital configurations. Itmore » turns out that the results of the numerical simulations are consistent with the analytical ones in the small eccentricity approximation for which almost all the latter ones were derived. For highly elliptical orbits, the sizes of the three pK corrections considered turn out to increase remarkably. The periods of the observed S2 and S0-102 stars as functions of the MBH’s spin axis orientation are considered as well. The pK accelerations lead to corrections of the orbital periods of the order of 1–100 days (Schwarzschild), 0.1–10 hr (Lense–Thirring), and 1–10{sup 3} s (quadrupole) for a target star with a = 300–800 au and e ≈ 0.8, which could be measurable with future facilities.« less

  16. A numerical study of the steady scalar convective diffusion equation for small viscosity

    NASA Technical Reports Server (NTRS)

    Giles, M. B.; Rose, M. E.

    1983-01-01

    A time-independent convection diffusion equation is studied by means of a compact finite difference scheme and numerical solutions are compared to the analytic inviscid solutions. The correct internal and external boundary layer behavior is observed, due to an inherent feature of the scheme which automatically produces upwind differencing in inviscid regions and the correct viscous behavior in viscous regions.

  17. Correction: All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel.

    PubMed

    Li, Ping; Zhou, Yong; Li, Haijin; Xu, Qinfeng; Meng, Xianguang; Wang, Xiaoyong; Xiao, Min; Zou, Zhigang

    2015-01-31

    Correction for 'All-solid-state Z-scheme system arrays of Fe2V4O13/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel' by Ping Li et al., Chem. Commun., 2015, 51, 800-803.

  18. Robot-Arm Dynamic Control by Computer

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.

    1987-01-01

    Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.

  19. Improvement of time-delayed feedback control by periodic modulation: analytical theory of Floquet mode control scheme.

    PubMed

    Just, Wolfram; Popovich, Svitlana; Amann, Andreas; Baba, Nilüfer; Schöll, Eckehard

    2003-02-01

    We investigate time-delayed feedback control schemes which are based on the unstable modes of the target state, to stabilize unstable periodic orbits. The periodic time dependence of these modes introduces an external time scale in the control process. Phase shifts that develop between these modes and the controlled periodic orbit may lead to a huge increase of the control performance. We illustrate such a feature on a nonlinear reaction diffusion system with global coupling and give a detailed investigation for the Rössler model. In addition we provide the analytical explanation for the observed control features.

  20. Teleportation of a controllable orbital angular momentum generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Lixiang; She Weilong

    2009-12-15

    We report on a teleportation scheme, in which a controllable orbital angular momentum (OAM) generator is teleported. Via our scheme, Alice is able to--according to another independent photon's spin state (polarization) sent by Carol--electrically control the remote OAM generation on Bob's photon. To this end, we introduce a local electrically tunable and spin-dependent OAM generator to transfer a preliminary OAM-OAM entanglement to a spin-OAM hybrid entanglement, which then makes a joint Bell-state measurement on Alice and Carol's photons play its role. We show that the quantum state tomography can be introduced to evaluate the performance of the teleportation.

  1. Shape Transitional Nuclei: What can we learn from the Yrare States? or Hello the Double Vacuum; Goodbye {beta}-vibrations{exclamation_point}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpey-Schafer, J. F.; University of Zululand, Department of Physics and Engineering, P/B X1001, Kwa Dlangezwa, ZA-3886; iThemba Laboratory for Accelerator Based Sciences, PO Box 722, Somerset-West, ZA-7129

    The results of our measurements on the yrare states up to spin 20({Dirac_h}/2{pi}) in {sup 152,154,155}Gd, using ({alpha},xn) reactions and the AFRODITE {gamma}-ray spectrometer, are presented. We find that in {sup 155}Gd the decay scheme is divided into levels feeding the [505]11/2{sup -} band, that is extruded by the prolate deformation from the h{sub 11/2} orbital, and levels feeding the i{sub 13/2}[651]3/2{sup +} intruder orbital and the h{sub 9/2}[521]3/2{sup -} orbital. The decay scheme of {sup 154}Gd is very complex. We find no evidence for the existence of {beta}-vibrational levels below 1.5 MeV. We discover that the level scheme canmore » be best understood as a set of collective states built on the ground state configuration |0{sub 1}{sup +}> plus a 'congruent' set of collective states based on the |0{sub 2}{sup +}> state at 681 keV. The data suggest that this second vacuum has reduced pairing. Our data do not support IBA and phonon interpretations of these transitional nuclei.« less

  2. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, T., E-mail: torsten.hahn@physik.tu-freiberg.de; Liebing, S.; Kortus, J.

    2015-12-14

    The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbitalmore » positions in structurally similar molecules appear to be transferable.« less

  3. Measurement-free implementations of small-scale surface codes for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Ercan, H. Ekmel; Ghosh, Joydip; Crow, Daniel; Premakumar, Vickram N.; Joynt, Robert; Friesen, Mark; Coppersmith, S. N.

    2018-01-01

    The performance of quantum-error-correction schemes depends sensitively on the physical realizations of the qubits and the implementations of various operations. For example, in quantum-dot spin qubits, readout is typically much slower than gate operations, and conventional surface-code implementations that rely heavily on syndrome measurements could therefore be challenging. However, fast and accurate reset of quantum-dot qubits, without readout, can be achieved via tunneling to a reservoir. Here we propose small-scale surface-code implementations for which syndrome measurements are replaced by a combination of Toffoli gates and qubit reset. For quantum-dot qubits, this enables much faster error correction than measurement-based schemes, but requires additional ancilla qubits and non-nearest-neighbor interactions. We have performed numerical simulations of two different coding schemes, obtaining error thresholds on the orders of 10-2 for a one-dimensional architecture that only corrects bit-flip errors and 10-4 for a two-dimensional architecture that corrects bit- and phase-flip errors.

  4. Application Of Multi-grid Method On China Seas' Temperature Forecast

    NASA Astrophysics Data System (ADS)

    Li, W.; Xie, Y.; He, Z.; Liu, K.; Han, G.; Ma, J.; Li, D.

    2006-12-01

    Correlation scales have been used in traditional scheme of 3-dimensional variational (3D-Var) data assimilation to estimate the background error covariance for the numerical forecast and reanalysis of atmosphere and ocean for decades. However there are still some drawbacks of this scheme. First, the correlation scales are difficult to be determined accurately. Second, the positive definition of the first-guess error covariance matrix cannot be guaranteed unless the correlation scales are sufficiently small. Xie et al. (2005) indicated that a traditional 3D-Var only corrects some certain wavelength errors and its accuracy depends on the accuracy of the first-guess covariance. And in general, short wavelength error can not be well corrected until long one is corrected and then inaccurate first-guess covariance may mistakenly take long wave error as short wave ones and result in erroneous analysis. For the purpose of quickly minimizing the errors of long and short waves successively, a new 3D-Var data assimilation scheme, called multi-grid data assimilation scheme, is proposed in this paper. By assimilating the shipboard SST and temperature profiles data into a numerical model of China Seas, we applied this scheme in two-month data assimilation and forecast experiment which ended in a favorable result. Comparing with the traditional scheme of 3D-Var, the new scheme has higher forecast accuracy and a lower forecast Root-Mean-Square (RMS) error. Furthermore, this scheme was applied to assimilate the SST of shipboard, AVHRR Pathfinder Version 5.0 SST and temperature profiles at the same time, and a ten-month forecast experiment on sea temperature of China Seas was carried out, in which a successful forecast result was obtained. Particularly, the new scheme is demonstrated a great numerical efficiency in these analyses.

  5. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states.

    PubMed

    Zhao, S M; Leach, J; Gong, L Y; Ding, J; Zheng, B Y

    2012-01-02

    The effect of atmosphere turbulence on light's spatial structure compromises the information capacity of photons carrying the Orbital Angular Momentum (OAM) in free-space optical (FSO) communications. In this paper, we study two aberration correction methods to mitigate this effect. The first one is the Shack-Hartmann wavefront correction method, which is based on the Zernike polynomials, and the second is a phase correction method specific to OAM states. Our numerical results show that the phase correction method for OAM states outperforms the Shark-Hartmann wavefront correction method, although both methods improve significantly purity of a single OAM state and the channel capacities of FSO communication link. At the same time, our experimental results show that the values of participation functions go down at the phase correction method for OAM states, i.e., the correction method ameliorates effectively the bad effect of atmosphere turbulence.

  6. Open-ended recursive calculation of single residues of response functions for perturbation-dependent basis sets.

    PubMed

    Friese, Daniel H; Ringholm, Magnus; Gao, Bin; Ruud, Kenneth

    2015-10-13

    We present theory, implementation, and applications of a recursive scheme for the calculation of single residues of response functions that can treat perturbations that affect the basis set. This scheme enables the calculation of nonlinear light absorption properties to arbitrary order for other perturbations than an electric field. We apply this scheme for the first treatment of two-photon circular dichroism (TPCD) using London orbitals at the Hartree-Fock level of theory. In general, TPCD calculations suffer from the problem of origin dependence, which has so far been solved by using the velocity gauge for the electric dipole operator. This work now enables comparison of results from London orbital and velocity gauge based TPCD calculations. We find that the results from the two approaches both exhibit strong basis set dependence but that they are very similar with respect to their basis set convergence.

  7. Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Inviscid Fluxes

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2010-01-01

    Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.

  8. PET/CT detectability and classification of simulated pulmonary lesions using an SUV correction scheme

    NASA Astrophysics Data System (ADS)

    Morrow, Andrew N.; Matthews, Kenneth L., II; Bujenovic, Steven

    2008-03-01

    Positron emission tomography (PET) and computed tomography (CT) together are a powerful diagnostic tool, but imperfect image quality allows false positive and false negative diagnoses to be made by any observer despite experience and training. This work investigates PET acquisition mode, reconstruction method and a standard uptake value (SUV) correction scheme on the classification of lesions as benign or malignant in PET/CT images, in an anthropomorphic phantom. The scheme accounts for partial volume effect (PVE) and PET resolution. The observer draws a region of interest (ROI) around the lesion using the CT dataset. A simulated homogenous PET lesion of the same shape as the drawn ROI is blurred with the point spread function (PSF) of the PET scanner to estimate the PVE, providing a scaling factor to produce a corrected SUV. Computer simulations showed that the accuracy of the corrected PET values depends on variations in the CT-drawn boundary and the position of the lesion with respect to the PET image matrix, especially for smaller lesions. Correction accuracy was affected slightly by mismatch of the simulation PSF and the actual scanner PSF. The receiver operating characteristic (ROC) study resulted in several observations. Using observer drawn ROIs, scaled tumor-background ratios (TBRs) more accurately represented actual TBRs than unscaled TBRs. For the PET images, 3D OSEM outperformed 2D OSEM, 3D OSEM outperformed 3D FBP, and 2D OSEM outperformed 2D FBP. The correction scheme significantly increased sensitivity and slightly increased accuracy for all acquisition and reconstruction modes at the cost of a small decrease in specificity.

  9. Orbit Estimation of Non-Cooperative Maneuvering Spacecraft

    DTIC Science & Technology

    2015-06-01

    only take on values that generate real sigma points; therefore, λ > −n. The additional weighting scheme is outlined in the following equations κ = α2...orbit shapes resulted in a similar model weighting. Additional cases of this orbit type also resulted in heavily weighting smaller η value models. It is...determined using both the symmetric and additional parameters UTs. The best values for the weighting parameters are then compared for each test case

  10. An Empirical Method for Determining the Lunar Gravity Field. Ph.D. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Ferrari, A. J.

    1971-01-01

    A method has been devised to determine the spherical harmonic coefficients of the lunar gravity field. This method consists of a two-step data reduction and estimation process. In the first step, a weighted least-squares empirical orbit determination scheme is applied to Doppler tracking data from lunar orbits to estimate long-period Kepler elements and rates. Each of the Kepler elements is represented by an independent function of time. The long-period perturbing effects of the earth, sun, and solar radiation are explicitly modeled in this scheme. Kepler element variations estimated by this empirical processor are ascribed to the non-central lunar gravitation features. Doppler data are reduced in this manner for as many orbits as are available. In the second step, the Kepler element rates are used as input to a second least-squares processor that estimates lunar gravity coefficients using the long-period Lagrange perturbation equations.

  11. On basis set superposition error corrected stabilization energies for large n-body clusters.

    PubMed

    Walczak, Katarzyna; Friedrich, Joachim; Dolg, Michael

    2011-10-07

    In this contribution, we propose an approximate basis set superposition error (BSSE) correction scheme for the site-site function counterpoise and for the Valiron-Mayer function counterpoise correction of second order to account for the basis set superposition error in clusters with a large number of subunits. The accuracy of the proposed scheme has been investigated for a water cluster series at the CCSD(T), CCSD, MP2, and self-consistent field levels of theory using Dunning's correlation consistent basis sets. The BSSE corrected stabilization energies for a series of water clusters are presented. A study regarding the possible savings with respect to computational resources has been carried out as well as a monitoring of the basis set dependence of the approximate BSSE corrections. © 2011 American Institute of Physics

  12. Fast BPM data distribution for global orbit feedback using commercial gigabit ethernet technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulsart, R.; Cerniglia, P.; Michnoff, R.

    2011-03-28

    In order to correct beam perturbations in RHIC around 10Hz, a new fast data distribution network was required to deliver BPM position data at rates several orders of magnitude above the capability of the existing system. The urgency of the project limited the amount of custom hardware that could be developed, which dictated the use of as much commercially available equipment as possible. The selected architecture uses a custom hardware interface to the existing RHIC BPM electronics together with commercially available Gigabit Ethernet switches to distribute position data to devices located around the collider ring. Using the minimum Ethernet packetmore » size and a field programmable gate array (FPGA) based state machine logic instead of a software based driver, real-time and deterministic data delivery is possible using Ethernet. The method of adapting this protocol for low latency data delivery, bench testing of Ethernet hardware, and the logic to construct Ethernet packets using FPGA hardware will be discussed. A robust communications system using almost all commercial off-the-shelf equipment was developed in under a year which enabled retrofitting of the existing RHIC BPM system to provide 10 KHz data delivery for a global orbit feedback scheme using 72 BPMs. Total latencies from data acquisition at the BPMs to delivery at the controller modules, including very long transmission distances, were kept under 100 {micro}s, which provide very little phase error in correcting the 10 Hz oscillations. Leveraging off of the speed of Gigabit Ethernet and wide availability of Ethernet products enabled this solution to be fully implemented in a much shorter time and at lower cost than if a similar network was developed using a proprietary method.« less

  13. Fine-structure calculations of energy levels, oscillator strengths, and transition probabilities for sulfur-like iron, Fe XI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abou El-Maaref, A., E-mail: aahmh@hotmail.com; Ahmad, Mahmoud; Allam, S.H.

    Energy levels, oscillator strengths, and transition probabilities for transitions among the 14 LS states belonging to configurations of sulfur-like iron, Fe XI, have been calculated. These states are represented by configuration interaction wavefunctions and have configurations 3s{sup 2}3p{sup 4}, 3s3p{sup 5}, 3s{sup 2}3p{sup 3}3d, 3s{sup 2}3p{sup 3}4s, 3s{sup 2}3p{sup 3}4p, and 3s{sup 2}3p{sup 3}4d, which give rise to 123 fine-structure energy levels. Extensive configuration interaction calculations using the CIV3 code have been performed. To assess the importance of relativistic effects, the intermediate coupling scheme by means of the Breit–Pauli Hamiltonian terms, such as the one-body mass correction and Darwin term,more » and spin–orbit, spin–other-orbit, and spin–spin corrections, are incorporated within the code. These incorporations adjusted the energy levels, therefore the calculated values are close to the available experimental data. Comparisons between the present calculated energy levels as well as oscillator strengths and both experimental and theoretical data have been performed. Our results show good agreement with earlier works, and they might be useful in thermonuclear fusion research and astrophysical applications. -- Highlights: •Accurate atomic data of iron ions are needed for identification of solar corona. •Extensive configuration interaction wavefunctions including 123 fine-structure levels have been calculated. •The relativistic effects by means of the Breit–Pauli Hamiltonian terms are incorporated. •This incorporation adjusts the energy levels, therefore the calculated values are close to experimental values.« less

  14. Comments on baseline correction of digital strong-motion data: Examples from the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Boore, D.M.; Stephens, C.D.; Joyner, W.B.

    2002-01-01

    Residual displacements for large earthquakes can sometimes be determined from recordings on modern digital instruments, but baseline offsets of unknown origin make it difficult in many cases to do so. To recover the residual displacement, we suggest tailoring a correction scheme by studying the character of the velocity obtained by integration of zeroth-order-corrected acceleration and then seeing if the residual displacements are stable when the various parameters in the particular correction scheme are varied. For many seismological and engineering purposes, however, the residual displacement are of lesser importance than ground motions at periods less than about 20 sec. These ground motions are often recoverable with simple baseline correction and low-cut filtering. In this largely empirical study, we illustrate the consequences of various correction schemes, drawing primarily from digital recordings of the 1999 Hector Mine, California, earthquake. We show that with simple processing the displacement waveforms for this event are very similar for stations separated by as much as 20 km. We also show that a strong pulse on the transverse component was radiated from the Hector Mine earthquake and propagated with little distortion to distances exceeding 170 km; this pulse leads to large response spectral amplitudes around 10 sec.

  15. Proxy-SU(3) symmetry in heavy deformed nuclei

    NASA Astrophysics Data System (ADS)

    Bonatsos, Dennis; Assimakis, I. E.; Minkov, N.; Martinou, Andriana; Cakirli, R. B.; Casten, R. F.; Blaum, K.

    2017-06-01

    Background: Microscopic calculations of heavy nuclei face considerable difficulties due to the sizes of the matrices that need to be solved. Various approximation schemes have been invoked, for example by truncating the spaces, imposing seniority limits, or appealing to various symmetry schemes such as pseudo-SU(3). This paper proposes a new symmetry scheme also based on SU(3). This proxy-SU(3) can be applied to well-deformed nuclei, is simple to use, and can yield analytic predictions. Purpose: To present the new scheme and its microscopic motivation, and to test it using a Nilsson model calculation with the original shell model orbits and with the new proxy set. Method: We invoke an approximate, analytic, treatment of the Nilsson model, that allows the above vetting and yet is also transparent in understanding the approximations involved in the new proxy-SU(3). Results: It is found that the new scheme yields a Nilsson diagram for well-deformed nuclei that is very close to the original Nilsson diagram. The specific levels of approximation in the new scheme are also shown, for each major shell. Conclusions: The new proxy-SU(3) scheme is a good approximation to the full set of orbits in a major shell. Being able to replace a complex shell model calculation with a symmetry-based description now opens up the possibility to predict many properties of nuclei analytically and often in a parameter-free way. The new scheme works best for heavier nuclei, precisely where full microscopic calculations are most challenged. Some cases in which the new scheme can be used, often analytically, to make specific predictions, are shown in a subsequent paper.

  16. A Scheme for the Evaluation of Electron Delocalization and Conjugation Efficiency in Linearly π-Conjugated Systems.

    PubMed

    Bruschi, Maurizio; Limacher, Peter A; Hutter, Jürg; Lüthi, Hans Peter

    2009-03-10

    In this study, we present a scheme for the evaluation of electron delocalization and conjugation efficiency in lineraly π-conjugated systems. The scheme, based on the natural bond orbital theory, allows monitoring the evolution of electron delocalization along an extended conjugation path as well as its response to chemical modification. The scheme presented is evaluated and illustrated by means of a computational investigation of π-conjugation in all-trans polyacetylene [PA; H(-CH═CH)n-H], polydiacetylene [PDA, H(-C≡C-CH═CH)n-H], and polytriacetylene [PTA, H(-C≡C-CH═CH-C≡C)n-H] with up to 180 carbon atoms, all related by the number of ethynyl units incorporated in the chain. We are able to show that for short oligomers the incorporation of ethynyl spacers into the PA chain increases the π-delocalization energy, but, on the other hand, reduces the efficiency with which π-electron delocalization is promoted along the backbone. This explains the generally shorter effective conjugation lengths observed for the properties of the polyeneynes (PDA and PTA) relative to the polyenes (PA). It will also be shown that the reduced conjugation efficiency, within the NBO-based model presented in this work, can be related to the orbital interaction pattern along the π-conjugated chain. We will show that the orbital interaction energy pattern is characteristic for the type and the length of the backbone and may therefore serve as a descriptor for linearly π-conjugated chains.

  17. Orbital Advection with Magnetohydrodynamics and Vector Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyra, Wladimir; McNally, Colin P.; Heinemann, Tobias

    Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and ofmore » the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.« less

  18. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Krogel, Jaron T.; Reboredo, Fernando A.

    2018-01-01

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this work, we explore alternatives to reduce the memory usage of splined orbitals without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. For production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.

  19. Optics measurement and correction for the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Shen, Xiaozhe

    The quality of beam optics is of great importance for the performance of a high energy accelerator like the Relativistic Heavy Ion Collider (RHIC). The turn-by-turn (TBT) beam position monitor (BPM) data can be used to derive beam optics. However, the accuracy of the derived beam optics is often limited by the performance and imperfections of instruments as well as measurement methods and conditions. Therefore, a robust and model-independent data analysis method is highly desired to extract noise-free information from TBT BPM data. As a robust signal-processing technique, an independent component analysis (ICA) algorithm called second order blind identification (SOBI) has been proven to be particularly efficient in extracting physical beam signals from TBT BPM data even in the presence of instrument's noise and error. We applied the SOBI ICA algorithm to RHIC during the 2013 polarized proton operation to extract accurate linear optics from TBT BPM data of AC dipole driven coherent beam oscillation. From the same data, a first systematic estimation of RHIC BPM noise performance was also obtained by the SOBI ICA algorithm, and showed a good agreement with the RHIC BPM configurations. Based on the accurate linear optics measurement, a beta-beat response matrix correction method and a scheme of using horizontal closed orbit bumps at sextupoles for arc beta-beat correction were successfully applied to reach a record-low beam optics error at RHIC. This thesis presents principles of the SOBI ICA algorithm and theory as well as experimental results of optics measurement and correction at RHIC.

  20. Neural network decoder for quantum error correcting codes

    NASA Astrophysics Data System (ADS)

    Krastanov, Stefan; Jiang, Liang

    Artificial neural networks form a family of extremely powerful - albeit still poorly understood - tools used in anything from image and sound recognition through text generation to, in our case, decoding. We present a straightforward Recurrent Neural Network architecture capable of deducing the correcting procedure for a quantum error-correcting code from a set of repeated stabilizer measurements. We discuss the fault-tolerance of our scheme and the cost of training the neural network for a system of a realistic size. Such decoders are especially interesting when applied to codes, like the quantum LDPC codes, that lack known efficient decoding schemes.

  1. Dissipative quantum error correction and application to quantum sensing with trapped ions.

    PubMed

    Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A

    2017-11-28

    Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  2. The lunar orbit as probe of relativistic gravity.

    NASA Astrophysics Data System (ADS)

    Nordtvedt, K.

    The author has analytically determined in a unified treament all general relativistic corrections to the Moon's orbit observable by present-day laser ranging data. Because the solar tidal deformation of the lunar orbit plays such a central role in altering the amplitudes and frequencies of lunar motion, the post-Newtonian equations of motion are solved using procedures similar to those Hill introduced into classical lunar theory and which treat the orbit's tidal deformation in a partially non-perturbative manner. The amplitudes of all perturbations of monthly period are found to be significantly amplified by interaction with the orbit's tidal deformation. In particular, this enhances the sensitivity of the lunar orbit as an observational probe of the gravitational to inertial mass ratio of the Earth (and Moon). The "evection" amplitude is altered by general relativity at an observationally significant level. Relativistic corrections to the perigee precession rate are found to include not only the "de Sitter" term, but also corrections from the solar tidal force which are 10% as large. Lunar laser ranging presently provides the most precise measurements of not only general relativity's "space geometry" and non-linear coupling structures, but also the comparison of free fall rates of two different bodies (Earth and Moon) toward a third body (Sun).

  3. Effects of upstream-biased third-order space correction terms on multidimensional Crowley advection schemes

    NASA Technical Reports Server (NTRS)

    Schlesinger, R. E.

    1985-01-01

    The impact of upstream-biased corrections for third-order spatial truncation error on the stability and phase error of the two-dimensional Crowley combined advective scheme with the cross-space term included is analyzed, putting primary emphasis on phase error reduction. The various versions of the Crowley scheme are formally defined, and their stability and phase error characteristics are intercompared using a linear Fourier component analysis patterned after Fromm (1968, 1969). The performances of the schemes under prototype simulation conditions are tested using time-dependent numerical experiments which advect an initially cone-shaped passive scalar distribution in each of three steady nondivergent flows. One such flow is solid rotation, while the other two are diagonal uniform flow and a strongly deformational vortex.

  4. Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation.

    PubMed

    Huang, Ai-Mei; Nguyen, Truong

    2009-04-01

    In this paper, we address the problems of unreliable motion vectors that cause visual artifacts but cannot be detected by high residual energy or bidirectional prediction difference in motion-compensated frame interpolation. A correlation-based motion vector processing method is proposed to detect and correct those unreliable motion vectors by explicitly considering motion vector correlation in the motion vector reliability classification, motion vector correction, and frame interpolation stages. Since our method gradually corrects unreliable motion vectors based on their reliability, we can effectively discover the areas where no motion is reliable to be used, such as occlusions and deformed structures. We also propose an adaptive frame interpolation scheme for the occlusion areas based on the analysis of their surrounding motion distribution. As a result, the interpolated frames using the proposed scheme have clearer structure edges and ghost artifacts are also greatly reduced. Experimental results show that our interpolated results have better visual quality than other methods. In addition, the proposed scheme is robust even for those video sequences that contain multiple and fast motions.

  5. Numerical experiments on the accuracy of ENO and modified ENO schemes

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1990-01-01

    Further numerical experiments are made assessing an accuracy degeneracy phenomena. A modified essentially non-oscillatory (ENO) scheme is proposed, which recovers the correct order of accuracy for all the test problems with smooth initial conditions and gives comparable results with the original ENO schemes for discontinuous problems.

  6. LDPC-PPM Coding Scheme for Optical Communication

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Moision, Bruce; Divsalar, Dariush; Fitz, Michael

    2009-01-01

    In a proposed coding-and-modulation/demodulation-and-decoding scheme for a free-space optical communication system, an error-correcting code of the low-density parity-check (LDPC) type would be concatenated with a modulation code that consists of a mapping of bits to pulse-position-modulation (PPM) symbols. Hence, the scheme is denoted LDPC-PPM. This scheme could be considered a competitor of a related prior scheme in which an outer convolutional error-correcting code is concatenated with an interleaving operation, a bit-accumulation operation, and a PPM inner code. Both the prior and present schemes can be characterized as serially concatenated pulse-position modulation (SCPPM) coding schemes. Figure 1 represents a free-space optical communication system based on either the present LDPC-PPM scheme or the prior SCPPM scheme. At the transmitting terminal, the original data (u) are processed by an encoder into blocks of bits (a), and the encoded data are mapped to PPM of an optical signal (c). For the purpose of design and analysis, the optical channel in which the PPM signal propagates is modeled as a Poisson point process. At the receiving terminal, the arriving optical signal (y) is demodulated to obtain an estimate (a^) of the coded data, which is then processed by a decoder to obtain an estimate (u^) of the original data.

  7. Optimal JPWL Forward Error Correction Rate Allocation for Robust JPEG 2000 Images and Video Streaming over Mobile Ad Hoc Networks

    NASA Astrophysics Data System (ADS)

    Agueh, Max; Diouris, Jean-François; Diop, Magaye; Devaux, François-Olivier; De Vleeschouwer, Christophe; Macq, Benoit

    2008-12-01

    Based on the analysis of real mobile ad hoc network (MANET) traces, we derive in this paper an optimal wireless JPEG 2000 compliant forward error correction (FEC) rate allocation scheme for a robust streaming of images and videos over MANET. The packet-based proposed scheme has a low complexity and is compliant to JPWL, the 11th part of the JPEG 2000 standard. The effectiveness of the proposed method is evaluated using a wireless Motion JPEG 2000 client/server application; and the ability of the optimal scheme to guarantee quality of service (QoS) to wireless clients is demonstrated.

  8. Science Planning and Orbit Classification for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  9. Bias correction of daily satellite precipitation data using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Pratama, A. W.; Buono, A.; Hidayat, R.; Harsa, H.

    2018-05-01

    Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) was producted by blending Satellite-only Climate Hazards Group InfraRed Precipitation (CHIRP) with Stasion observations data. The blending process was aimed to reduce bias of CHIRP. However, Biases of CHIRPS on statistical moment and quantil values were high during wet season over Java Island. This paper presented a bias correction scheme to adjust statistical moment of CHIRP using observation precipitation data. The scheme combined Genetic Algorithm and Nonlinear Power Transformation, the results was evaluated based on different season and different elevation level. The experiment results revealed that the scheme robustly reduced bias on variance around 100% reduction and leaded to reduction of first, and second quantile biases. However, bias on third quantile only reduced during dry months. Based on different level of elevation, the performance of bias correction process is only significantly different on skewness indicators.

  10. Dispersion-based Fresh-slice Scheme for Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guetg, Marc

    The Fresh-slice technique improved the performance of several Self-Amplified Spontaneous Emission Free-Electron laser schemes by granting selective control on the temporal lasing slice without spoiling the other electron bunch slices. So far, the implementation required a special insertion device to create the beam yaw, called dechirper. We demonstrate a novel scheme to enable Freshslice operation based on electron energy chirp and orbit dispersion that can be implemented at any free-electron laser facility without additional hardware.

  11. Spin-orbit precession along eccentric orbits: Improving the knowledge of self-force corrections and of their effective-one-body counterparts

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Damour, Thibault; Geralico, Andrea

    2018-05-01

    The (first-order) gravitational self-force correction to the spin-orbit precession of a spinning compact body along a slightly eccentric orbit around a Schwarzschild black hole is computed through the ninth post-Newtonian order and to second order in the eccentricity, improving recent results by Kavanagh et al. [Phys. Rev. D 96, 064012 (2017), 10.1103/PhysRevD.96.064012]. We show that our higher-accurate theoretical estimates of the spin precession exhibits an improved agreement with corresponding numerical self-force data. We convert our new theoretical results into its corresponding effective-one-body counterpart, thereby determining several new post-Newtonian terms in the gyrogravitomagnetic ratio gS * .

  12. Computer Aided Ballistic Orbit Classification Around Small Bodies

    NASA Astrophysics Data System (ADS)

    Villac, Benjamin F.; Anderson, Rodney L.; Pini, Alex J.

    2016-09-01

    Orbital dynamics around small bodies are as varied as the shapes and dynamical states of these bodies. While various classes of orbits have been analyzed in detail, the global overview of relevant ballistic orbits at particular bodies is not easily computed or organized. Yet, correctly categorizing these orbits will ease their future use in the overall trajectory design process. This paper overviews methods that have been used to organize orbits, focusing on periodic orbits in particular, and introduces new methods based on clustering approaches.

  13. [Epoxide acrylate maleic resin and hydroxyapatite composite material as a bone graft substitute in surgical correction of orbital reconstruction].

    PubMed

    Mu, X; Dong, J; Wang, W

    1995-11-01

    This paper illustrates the results of surgical correction in 11 cases with orbital deformities such as periorbital deficiency after orbitotomy for retinoblastoma and orbital malposition after facial trauma. EH composite material, mixture of hydroxyapatite and epoxide acrylate maleic resin in constant proportion, was used as a good bone graft substitute in all 11 cases. This material was easier to be molded during surgery, safe to human body, had no toxic effects, no irritation and no implant-related complications. The early results obtained in these patients are encouraging.

  14. LANDSAT-4 World Reference System (WRS) users guide

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A functional description of the new LANDSAT-4 World Reference System (WRS) with an overview of the main orbital parameters and instrument coverages is presented to provide the data user with the primary information required to understand LANDSAT-4 orbital characteristics, to effectively use the WRS indexing scheme, and to request specific geographic coverage on the desired observation dates.

  15. LANDSAT-D Worldwide Reference System (WRS) users guide

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A functional description of the LANDSAT-D Worldwide Reference System (WRS) and an overview of the main orbital parameters and instrument coverages are presented. The primary information required to understand the LANDSAT-D orbital characteristics, to effectively use the Worldwide Reference System (WRS) indexing scheme, and to request specific geographic coverage on the desired observation dates is provided.

  16. Processing techniques for global land 1-km AVHRR data

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Steinwand, Daniel R.; Wivell, Charles E.; Hollaren, Douglas M.; Meyer, David

    1993-01-01

    The U.S. Geological Survey's (USGS) Earth Resources Observation Systems (EROS) Data Center (EDC) in cooperation with several international science organizations has developed techniques for processing daily Advanced Very High Resolution Radiometer (AVHRR) 1-km data of the entire global land surface. These techniques include orbital stitching, geometric rectification, radiometric calibration, and atmospheric correction. An orbital stitching algorithm was developed to combine consecutive observations acquired along an orbit by ground receiving stations into contiguous half-orbital segments. The geometric rectification process uses an AVHRR satellite model that contains modules for forward mapping, forward terrain correction, and inverse mapping with terrain correction. The correction is accomplished by using the hydrologic features coastlines and lakes from the Digital Chart of the World. These features are rasterized into the satellite projection and are matched to the AVHRR imagery using binary edge correlation techniques. The resulting coefficients are related to six attitude correction parameters: roll, roll rate, pitch, pitch rate, yaw, and altitude. The image can then be precision corrected to a variety of map projections and user-selected image frames. Because the AVHRR lacks onboard calibration for the optical wavelengths, a series of time-variant calibration coefficients derived from vicarious calibration methods and are used to model the degradation profile of the instruments. Reducing atmospheric effects on AVHRR data is important. A method has been develop that will remove the effects of molecular scattering and absorption from clear sky observations, using climatological measurements of ozone. Other methods to remove the effects of water vapor and aerosols are being investigated.

  17. Precision calculations for h → WW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f

    NASA Astrophysics Data System (ADS)

    Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi

    2018-03-01

    We have calculated the next-to-leading-order electroweak and QCD corrections to the decay processes h → WW/ZZ → 4 fermions of the light CP-even Higgs boson h of various types of Two-Higgs-Doublet Models (Types I and II, "lepton-specific" and "flipped" models). The input parameters are defined in four different renormalization schemes, where parameters that are not directly accessible by experiments are defined in the \\overline{MS} scheme. Numerical results are presented for the corrections to partial decay widths for various benchmark scenarios previously motivated in the literature, where we investigate the dependence on the \\overline{MS} renormalization scale and on the choice of the renormalization scheme in detail. We find that it is crucial to be precise with these issues in parameter analyses, since parameter conversions between different schemes can involve sizeable or large corrections, especially in scenarios that are close to experimental exclusion limits or theoretical bounds. It even turns out that some renormalization schemes are not applicable in specific regions of parameter space. Our investigation of differential distributions shows that corrections beyond the Standard Model are mostly constant offsets induced by the mixing between the light and heavy CP-even Higgs bosons, so that differential analyses of h→4 f decay observables do not help to identify Two-Higgs-Doublet Models. Moreover, the decay widths do not significantly depend on the specific type of those models. The calculations are implemented in the public Monte Carlo generator Prophecy4f and ready for application.

  18. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope ’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yifan; Apai, Dániel; Schneider, Glenn

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium . We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this processmore » that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam ) may also benefit from the extension of this model if similar systematic profiles are observed.« less

  19. A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Zhou, Yifan; Apai, Dániel; Lew, Ben W. P.; Schneider, Glenn

    2017-06-01

    The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (∼40 visits) of WFC3 observations and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need to be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.

  20. Geosynchronous Performance of a Lithium-titanium Disulfide Battery

    NASA Technical Reports Server (NTRS)

    Otzinger, B.

    1985-01-01

    An ambient temperature rechargeable Lithium-Titanium disulfide (Li-TiS2) five cell battery has completed the first orbital year of accelerated synchronous orbit testing. A novel charge/discharge, state of charge (SOC) control scheme is utilized, together with taper current charge backup to overcome deleterious effects associated with high end of charge and low end of discharge voltages. It is indicated that 10 orbital years of simulated synchronous operation may be achieved. Preliminary findings associated with cell matching and battery performance are identified.

  1. A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Cheng, H.; Zhang, Y.; Liu, J.

    A growing number of space activities have created an orbital debris environment that poses increasing impact risks to existing space systems and human space flight. For the safety of in-orbit spacecraft, a lot of observation facilities are needed to catalog space objects, especially in low earth orbit. Surveillance of Low earth orbit objects are mainly rely on ground-based radar, due to the ability limitation of exist radar facilities, a large number of ground-based radar need to build in the next few years in order to meet the current space surveillance demands. How to optimize the embattling of ground-based radar surveillance network is a problem to need to be solved. The traditional method for embattling optimization of ground-based radar surveillance network is mainly through to the detection simulation of all possible stations with cataloged data, and makes a comprehensive comparative analysis of various simulation results with the combinational method, and then selects an optimal result as station layout scheme. This method is time consuming for single simulation and high computational complexity for the combinational analysis, when the number of stations increases, the complexity of optimization problem will be increased exponentially, and cannot be solved with traditional method. There is no better way to solve this problem till now. In this paper, target detection procedure was simplified. Firstly, the space coverage of ground-based radar was simplified, a space coverage projection model of radar facilities in different orbit altitudes was built; then a simplified objects cross the radar coverage model was established according to the characteristics of space objects orbit motion; after two steps simplification, the computational complexity of the target detection was greatly simplified, and simulation results shown the correctness of the simplified results. In addition, the detection areas of ground-based radar network can be easily computed with the simplified model, and then optimized the embattling of ground-based radar surveillance network with the artificial intelligent algorithm, which can greatly simplifies the computational complexities. Comparing with the traditional method, the proposed method greatly improved the computational efficiency.

  2. Multi-photon self-error-correction hyperentanglement distribution over arbitrary collective-noise channels

    NASA Astrophysics Data System (ADS)

    Gao, Cheng-Yan; Wang, Guan-Yu; Zhang, Hao; Deng, Fu-Guo

    2017-01-01

    We present a self-error-correction spatial-polarization hyperentanglement distribution scheme for N-photon systems in a hyperentangled Greenberger-Horne-Zeilinger state over arbitrary collective-noise channels. In our scheme, the errors of spatial entanglement can be first averted by encoding the spatial-polarization hyperentanglement into the time-bin entanglement with identical polarization and defined spatial modes before it is transmitted over the fiber channels. After transmission over the noisy channels, the polarization errors introduced by the depolarizing noise can be corrected resorting to the time-bin entanglement. Finally, the parties in quantum communication can in principle share maximally hyperentangled states with a success probability of 100%.

  3. Network Adjustment of Orbit Errors in SAR Interferometry

    NASA Astrophysics Data System (ADS)

    Bahr, Hermann; Hanssen, Ramon

    2010-03-01

    Orbit errors can induce significant long wavelength error signals in synthetic aperture radar (SAR) interferograms and thus bias estimates of wide-scale deformation phenomena. The presented approach aims for correcting orbit errors in a preprocessing step to deformation analysis by modifying state vectors. Whereas absolute errors in the orbital trajectory are negligible, the influence of relative errors (baseline errors) is parametrised by their parallel and perpendicular component as a linear function of time. As the sensitivity of the interferometric phase is only significant with respect to the perpendicular base-line and the rate of change of the parallel baseline, the algorithm focuses on estimating updates to these two parameters. This is achieved by a least squares approach, where the unwrapped residual interferometric phase is observed and atmospheric contributions are considered to be stochastic with constant mean. To enhance reliability, baseline errors are adjusted in an overdetermined network of interferograms, yielding individual orbit corrections per acquisition.

  4. Analytical and numerical analysis of frictional damage in quasi brittle materials

    NASA Astrophysics Data System (ADS)

    Zhu, Q. Z.; Zhao, L. Y.; Shao, J. F.

    2016-07-01

    Frictional sliding and crack growth are two main dissipation processes in quasi brittle materials. The frictional sliding along closed cracks is the origin of macroscopic plastic deformation while the crack growth induces a material damage. The main difficulty of modeling is to consider the inherent coupling between these two processes. Various models and associated numerical algorithms have been proposed. But there are so far no analytical solutions even for simple loading paths for the validation of such algorithms. In this paper, we first present a micro-mechanical model taking into account the damage-friction coupling for a large class of quasi brittle materials. The model is formulated by combining a linear homogenization procedure with the Mori-Tanaka scheme and the irreversible thermodynamics framework. As an original contribution, a series of analytical solutions of stress-strain relations are developed for various loading paths. Based on the micro-mechanical model, two numerical integration algorithms are exploited. The first one involves a coupled friction/damage correction scheme, which is consistent with the coupling nature of the constitutive model. The second one contains a friction/damage decoupling scheme with two consecutive steps: the friction correction followed by the damage correction. With the analytical solutions as reference results, the two algorithms are assessed through a series of numerical tests. It is found that the decoupling correction scheme is efficient to guarantee a systematic numerical convergence.

  5. The GFZ real-time GNSS precise positioning service system and its adaption for COMPASS

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Ge, Maorong; Zhang, Hongping; Nischan, Thomas; Wickert, Jens

    2013-03-01

    Motivated by the IGS real-time Pilot Project, GFZ has been developing its own real-time precise positioning service for various applications. An operational system at GFZ is now broadcasting real-time orbits, clocks, global ionospheric model, uncalibrated phase delays and regional atmospheric corrections for standard PPP, PPP with ambiguity fixing, single-frequency PPP and regional augmented PPP. To avoid developing various algorithms for different applications, we proposed a uniform algorithm and implemented it into our real-time software. In the new processing scheme, we employed un-differenced raw observations with atmospheric delays as parameters, which are properly constrained by real-time derived global ionospheric model or regional atmospheric corrections and by the empirical characteristics of the atmospheric delay variation in time and space. The positioning performance in terms of convergence time and ambiguity fixing depends mainly on the quality of the received atmospheric information and the spatial and temporal constraints. The un-differenced raw observation model can not only integrate PPP and NRTK into a seamless positioning service, but also syncretize these two techniques into a unique model and algorithm. Furthermore, it is suitable for both dual-frequency and sing-frequency receivers. Based on the real-time data streams from IGS, EUREF and SAPOS reference networks, we can provide services of global precise point positioning (PPP) with 5-10 cm accuracy, PPP with ambiguity-fixing of 2-5 cm accuracy, PPP using single-frequency receiver with accuracy of better than 50 cm and PPP with regional augmentation for instantaneous ambiguity resolution of 1-3 cm accuracy. We adapted the system for current COMPASS to provide PPP service. COMPASS observations from a regional network of nine stations are used for precise orbit determination and clock estimation in simulated real-time mode, the orbit and clock products are applied for real-time precise point positioning. The simulated real-time PPP service confirms that real-time positioning services of accuracy at dm-level and even cm-level is achievable with COMPASS only.

  6. Multifocus image fusion scheme based on the multiscale curvature in nonsubsampled contourlet transform domain

    NASA Astrophysics Data System (ADS)

    Li, Xiaosong; Li, Huafeng; Yu, Zhengtao; Kong, Yingchun

    2015-07-01

    An efficient multifocus image fusion scheme in nonsubsampled contourlet transform (NSCT) domain is proposed. Based on the property of optical imaging and the theory of defocused image, we present a selection principle for lowpass frequency coefficients and also investigate the connection between a low-frequency image and the defocused image. Generally, the NSCT algorithm decomposes detail image information indwells in different scales and different directions in the bandpass subband coefficient. In order to correctly pick out the prefused bandpass directional coefficients, we introduce multiscale curvature, which not only inherits the advantages of windows with different sizes, but also correctly recognizes the focused pixels from source images, and then develop a new fusion scheme of the bandpass subband coefficients. The fused image can be obtained by inverse NSCT with the different fused coefficients. Several multifocus image fusion methods are compared with the proposed scheme. The experimental results clearly indicate the validity and superiority of the proposed scheme in terms of both the visual qualities and the quantitative evaluation.

  7. Security and Correctness Analysis on Privacy-Preserving k-Means Clustering Schemes

    NASA Astrophysics Data System (ADS)

    Su, Chunhua; Bao, Feng; Zhou, Jianying; Takagi, Tsuyoshi; Sakurai, Kouichi

    Due to the fast development of Internet and the related IT technologies, it becomes more and more easier to access a large amount of data. k-means clustering is a powerful and frequently used technique in data mining. Many research papers about privacy-preserving k-means clustering were published. In this paper, we analyze the existing privacy-preserving k-means clustering schemes based on the cryptographic techniques. We show those schemes will cause the privacy breach and cannot output the correct results due to the faults in the protocol construction. Furthermore, we analyze our proposal as an option to improve such problems but with intermediate information breach during the computation.

  8. Infrared Atmospheric Emission. I.

    DTIC Science & Technology

    1982-03-01

    work efitrely in the I-i coupling scheme. Since the electrostatic energies are usually given in a coupling scheme resulting in total orbital angular...For heteronuclear diatomic molecules, the case either molecule or atom. The energy lor sufered IR emission does not necessitate the electronic...apparently to work sufficiently pood in many cases, they are not ccurate enough . .. . . .. . . . . . .... . .1 6 S for the computation of the

  9. Magnetism in (Semi)Conducting Macrocycles of pi conjugated Polymers

    DTIC Science & Technology

    2016-12-09

    wise and avoiding a break in the continuity of the macrocycle. As a first criterion we tested the continuity of the electron orbitals over the...magnesium chloride) and post polymerization functionalization by a Sonogashira coupling reaction is required (scheme 2). Scheme 2: Synthetic...Sonogashira post - polymerization chain end functionalization and B isotopic model of the different population present in the final batch

  10. Investigation of the particle-core structure of odd-mass nuclei in the NpNn scheme

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Cata, G.; Cutoiu, D.; Dragulescu, E.; Ivasu, M.; Zamfir, N. V.; Gizon, A.; Gizon, J.

    1989-10-01

    The NpNn scheme is applied to data related to collective band structures determined by the unique parity shell model orbitals in odd-A nuclei from the mass regions A≌80-100 and A≌130. Simple systematics are obtained which give a synthetic picture of the evolution of the particle-core coupling in these nuclear regions.

  11. Integrated guidance and control for microsatellite real-time automated proximity operations

    NASA Astrophysics Data System (ADS)

    Chen, Ying; He, Zhen; Zhou, Ding; Yu, Zhenhua; Li, Shunli

    2018-07-01

    This paper investigates the trajectory planning and control of autonomous spacecraft proximity operations with impulsive dynamics. A new integrated guidance and control scheme is developed to perform automated close-range rendezvous for underactuated microsatellites. To efficiently prevent collision, a modified RRT* trajectory planning algorithm is proposed under this context. Several engineering constraints such as collision avoidance, plume impingement, field of view and control feasibility are considered simultaneously. Then, the feedback controller that employs a turn-burn-turn strategy with a combined impulsive orbital control and finite-time attitude control is designed to ensure the implementation of planned trajectory. Finally, the performance of trajectory planner and controller are evaluated through numerical tests. Simulation results indicate the real-time implementability of the proposed integrated guidance and control scheme with position control error less than 0.5 m and velocity control error less than 0.05 m/s. Consequently, the proposed scheme offers the potential for wide applications, such as on-orbit maintenance, space surveillance and debris removal.

  12. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    PubMed Central

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-01-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol−1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning. PMID:24320250

  13. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.

    PubMed

    Rocklin, Gabriel J; Mobley, David L; Dill, Ken A; Hünenberger, Philippe H

    2013-11-14

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol(-1)) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol(-1)). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.

  14. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: An accurate correction scheme for electrostatic finite-size effects

    NASA Astrophysics Data System (ADS)

    Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.

    2013-11-01

    The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges -5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol-1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB calculations for a given system, its dependence on the box size being analytical. The latter scheme also provides insight into the physical origin of the finite-size effects. These two schemes also encompass a correction for discrete solvent effects that persists even in the limit of infinite box sizes. Application of either scheme essentially eliminates the size dependence of the corrected charging free energies (maximal deviation of 1.5 kJ mol-1). Because it is simple to apply, the analytical correction scheme offers a general solution to the problem of finite-size effects in free-energy calculations involving charged solutes, as encountered in calculations concerning, e.g., protein-ligand binding, biomolecular association, residue mutation, pKa and redox potential estimation, substrate transformation, solvation, and solvent-solvent partitioning.

  15. Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.

    PubMed

    Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin

    2005-03-01

    This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.

  16. Reliable Channel-Adapted Error Correction: Bacon-Shor Code Recovery from Amplitude Damping

    NASA Astrophysics Data System (ADS)

    Piedrafita, Álvaro; Renes, Joseph M.

    2017-12-01

    We construct two simple error correction schemes adapted to amplitude damping noise for Bacon-Shor codes and investigate their prospects for fault-tolerant implementation. Both consist solely of Clifford gates and require far fewer qubits, relative to the standard method, to achieve exact correction to a desired order in the damping rate. The first, employing one-bit teleportation and single-qubit measurements, needs only one-fourth as many physical qubits, while the second, using just stabilizer measurements and Pauli corrections, needs only half. The improvements stem from the fact that damping events need only be detected, not corrected, and that effective phase errors arising due to undamped qubits occur at a lower rate than damping errors. For error correction that is itself subject to damping noise, we show that existing fault-tolerance methods can be employed for the latter scheme, while the former can be made to avoid potential catastrophic errors and can easily cope with damping faults in ancilla qubits.

  17. Data pre-processing: Stratospheric aerosol perturbing effect on the remote sensing of vegetation: Correction method for the composite NDVI after the Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Vermote, E.; Elsaleous, N.; Kaufman, Y. J.; Dutton, E.

    1994-01-01

    An operational stratospheric correction scheme used after the Mount Pinatubo (Phillipines) eruption (Jun. 1991) is presented. The stratospheric aerosol distribution is assumed to be only variable with latitude. Each 9 days the latitudinal distribution of the optical thickness is computed by inverting radiances observed in the NOAA AVHRR channel 1 (0.63 micrometers) and channel 2 (0.83 micrometers) over the Pacific Ocean. This radiance data set is used to check the validity of model used for inversion by checking consistency of the optical thickness deduced from each channel as well as optical thickness deduced from different scattering angles. Using the optical thickness profile previously computed and radiative transfer code assuming Lambertian boundary condition, each pixel of channel 1 and 2 are corrected prior to computation of NDVI (Normalized Difference Vegetation Index). Comparison between corrected, non corrected, and years prior to Pinatubo eruption (1989 to 1990) NDVI composite, shows the necessity and the accuracy of the operational correction scheme.

  18. Accurate Energies and Orbital Description in Semi-Local Kohn-Sham DFT

    NASA Astrophysics Data System (ADS)

    Lindmaa, Alexander; Kuemmel, Stephan; Armiento, Rickard

    2015-03-01

    We present our progress on a scheme in semi-local Kohn-Sham density-functional theory (KS-DFT) for improving the orbital description while still retaining the level of accuracy of the usual semi-local exchange-correlation (xc) functionals. DFT is a widely used tool for first-principles calculations of properties of materials. A given task normally requires a balance of accuracy and computational cost, which is well achieved with semi-local DFT. However, commonly used semi-local xc functionals have important shortcomings which often can be attributed to features of the corresponding xc potential. One shortcoming is an overly delocalized representation of localized orbitals. Recently a semi-local GGA-type xc functional was constructed to address these issues, however, it has the trade-off of lower accuracy of the total energy. We discuss the source of this error in terms of a surplus energy contribution in the functional that needs to be accounted for, and offer a remedy for this issue which formally stays within KS-DFT, and, which does not harshly increase the computational effort. The end result is a scheme that combines accurate total energies (e.g., relaxed geometries) with an improved orbital description (e.g., improved band structure).

  19. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  20. Hybrid and Constrained Resolution-of-Identity Techniques for Coulomb Integrals.

    PubMed

    Duchemin, Ivan; Li, Jing; Blase, Xavier

    2017-03-14

    The introduction of auxiliary bases to approximate molecular orbital products has paved the way to significant savings in the evaluation of four-center two-electron Coulomb integrals. We present a generalized dual space strategy that sheds a new light on variants over the standard density and Coulomb-fitting schemes, including the possibility of introducing minimization constraints. We improve in particular the charge- or multipole-preserving strategies introduced respectively by Baerends and Van Alsenoy that we compare to a simple scheme where the Coulomb metric is used for lowest angular momentum auxiliary orbitals only. We explore the merits of these approaches on the basis of extensive Hartree-Fock and MP2 calculations over a standard set of medium size molecules.

  1. Statistical Evaluation of Combined Daily Gauge Observations and Rainfall Satellite Estimations over Continental South America

    NASA Technical Reports Server (NTRS)

    Vila, Daniel; deGoncalves, Luis Gustavo; Toll, David L.; Rozante, Jose Roberto

    2008-01-01

    This paper describes a comprehensive assessment of a new high-resolution, high-quality gauge-satellite based analysis of daily precipitation over continental South America during 2004. This methodology is based on a combination of additive and multiplicative bias correction schemes in order to get the lowest bias when compared with the observed values. Inter-comparisons and cross-validations tests have been carried out for the control algorithm (TMPA real-time algorithm) and different merging schemes: additive bias correction (ADD), ratio bias correction (RAT) and TMPA research version, for different months belonging to different seasons and for different network densities. All compared merging schemes produce better results than the control algorithm, but when finer temporal (daily) and spatial scale (regional networks) gauge datasets is included in the analysis, the improvement is remarkable. The Combined Scheme (CoSch) presents consistently the best performance among the five techniques. This is also true when a degraded daily gauge network is used instead of full dataset. This technique appears a suitable tool to produce real-time, high-resolution, high-quality gauge-satellite based analyses of daily precipitation over land in regional domains.

  2. An analytic algorithm for global coverage of the revisiting orbit and its application to the CFOSAT satellite

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huang, Li

    2014-08-01

    This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.

  3. Orbital angular momentum (OAM) spectrum correction in free space optical communication.

    PubMed

    Liu, Yi-Dong; Gao, Chunqing; Qi, Xiaoqing; Weber, Horst

    2008-05-12

    Orbital angular momentum (OAM) of laser beams has potential application in free space optical communication, but it is sensitive against pointing instabilities of the beam, i.e. shift (lateral displacement) and tilt (deflection of the beam). This work proposes a method to correct the distorted OAM spectrum by using the mean square value of the orbital angular momentum as an indicator. Qualitative analysis is given, and the numerical simulation is carried out for demonstration. The results show that the mean square value can be used to determine the beam axis of the superimposed helical beams. The initial OAM spectrum can be recovered.

  4. On Choosing a Rational Flight Trajectory to the Moon

    NASA Astrophysics Data System (ADS)

    Gordienko, E. S.; Khudorozhkov, P. A.

    2017-12-01

    The algorithm for choosing a trajectory of spacecraft flight to the Moon is discussed. The characteristic velocity values needed for correcting the flight trajectory and a braking maneuver are estimated using the Monte Carlo method. The profile of insertion and flight to a near-circular polar orbit with an altitude of 100 km of an artificial lunar satellite (ALS) is given. The case of two corrections applied during the flight and braking phases is considered. The flight to an ALS orbit is modeled in the geocentric geoequatorial nonrotating coordinate system with the influence of perturbations from the Earth, the Sun, and the Moon factored in. The characteristic correction costs corresponding to corrections performed at different time points are examined. Insertion phase errors, the errors of performing the needed corrections, and the errors of determining the flight trajectory parameters are taken into account.

  5. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the subtraction terms I

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor; Trócsányi, Zoltán

    2008-08-01

    In previous articles we outlined a subtraction scheme for regularizing doubly-real emission and real-virtual emission in next-to-next-to-leading order (NNLO) calculations of jet cross sections in electron-positron annihilation. In order to find the NNLO correction these subtraction terms have to be integrated over the factorized unresolved phase space and combined with the two-loop corrections. In this paper we perform the integration of all one-parton unresolved subtraction terms.

  6. Use of corrected centrifugal sudden approximations for the calculation of effective cross sections. II. The N sub 2 --He system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thachuk, M.; McCourt, F.R.W.

    1991-09-15

    A series of centrifugal sudden (CS) and infinite-order sudden (IOS) approximations together with their corrected versions, respectively, the corrected centrifugal sudden (CCS) and corrected infinite-order sudden (CIOS) approximations, originally introduced by McLenithan and Secrest (J. Chem. Phys. {bold 80}, 2480 (1987)), have been compared with the close-coupled (CC) method for the N{sub 2}--He interaction. This extends previous work using the H{sub 2}--He system (J. Chem. Phys. {bold 93}, 3931 (1990)) to an interaction which is more anisotropic and more classical in nature. A set of eleven energy dependent cross sections, including both relaxation and production types, has been calculated usingmore » the {ital LF}- and {ital LA}-labeling schemes for the CS approximation, as well as the {ital KI}-, {ital KF}-, {ital KA}-, and {ital KM}-labeling schemes for the IOS approximation. The latter scheme is defined as {ital KM}={ital K}=max({ital k}{sub {ital j}},{ital k}{sub {ital j}{sub {ital I}}}). Further, a number of temperature dependent cross sections formed from thermal averages of the above set have also been compared at 100 and 200 K. These comparisons have shown that the CS approximation produced accurate results for relaxation type cross sections regardless of the {ital L}-labeling scheme chosen, but inaccurate results for production type cross sections. Further, except for one particular cross section, the CCS approximation did not generally improve the accuracy of the CS results using either the {ital LF}- or {ital LA}-labeling schemes. The accuracy of the IOS results vary greatly between the cross sections with the most accurate values given by the {ital KM}-labeling scheme. The CIOS approximation generally increases the accuracy of the corresponding IOS results but does not completely eliminate the errors associated with them.« less

  7. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  8. Random access to mobile networks with advanced error correction

    NASA Technical Reports Server (NTRS)

    Dippold, Michael

    1990-01-01

    A random access scheme for unreliable data channels is investigated in conjunction with an adaptive Hybrid-II Automatic Repeat Request (ARQ) scheme using Rate Compatible Punctured Codes (RCPC) Forward Error Correction (FEC). A simple scheme with fixed frame length and equal slot sizes is chosen and reservation is implicit by the first packet transmitted randomly in a free slot, similar to Reservation Aloha. This allows the further transmission of redundancy if the last decoding attempt failed. Results show that a high channel utilization and superior throughput can be achieved with this scheme that shows a quite low implementation complexity. For the example of an interleaved Rayleigh channel and soft decision utilization and mean delay are calculated. A utilization of 40 percent may be achieved for a frame with the number of slots being equal to half the station number under high traffic load. The effects of feedback channel errors and some countermeasures are discussed.

  9. Collar grids for intersecting geometric components within the Chimera overlapped grid scheme

    NASA Technical Reports Server (NTRS)

    Parks, Steven J.; Buning, Pieter G.; Chan, William M.; Steger, Joseph L.

    1991-01-01

    A method for overcoming problems with using the Chimera overset grid scheme in the region of intersecting geometry components is presented. A 'collar grid' resolves the intersection region and provides communication between the component grids. This approach is validated by comparing computed and experimental data for a flow about a wing/body configuration. Application of the collar grid scheme to the Orbiter fuselage and vertical tail intersection in a computation of the full Space Shuttle launch vehicle demonstrates its usefulness for simulation of flow about complex aerospace vehicles.

  10. Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of its correction

    NASA Astrophysics Data System (ADS)

    Fukushima, H.; Toratani, M.

    1997-07-01

    The paper first exhibits the influence of the Asian dust aerosol (KOSA) on a coastal zone color scanner (CZCS) image which records erroneously low or negative satellite-derived water-leaving radiance especially in a shorter wavelength region. This suggests the presence of spectrally dependent absorption which was disregarded in the past atmospheric correction algorithms. On the basis of the analysis of the scene, a semiempirical optical model of the Asian dust aerosol that relates aerosol single scattering albedo (ωA) to the spectral ratio of aerosol optical thickness between 550 nm and 670 nm is developed. Then, as a modification to a standard CZCS atmospheric correction algorithm (NASA standard algorithm), a scheme which estimates pixel-wise aerosol optical thickness, and in turn ωA, is proposed. The assumption of constant normalized water-leaving radiance at 550 nm is adopted together with a model of aerosol scattering phase function. The scheme is combined to the standard algorithm, performing atmospheric correction just the same as the standard version with a fixed Angstrom coefficient except in the case where the presence of Asian dust aerosol is detected by the lowered satellite-derived Angstrom exponent. Some of the model parameter values are determined so that the scheme does not produce any spatial discontinuity with the standard scheme. The algorithm was tested against the Japanese Asian dust CZCS scene with parameter values of the spectral dependency of ωA, first statistically determined and second optimized for selected pixels. Analysis suggests that the parameter values depend on the assumed Angstrom coefficient for standard algorithm, at the same time defining the spatial extent of the area to apply the Asian dust scheme. The algorithm was also tested for a Saharan dust scene, showing the relevance of the scheme but with different parameter setting. Finally, the algorithm was applied to a data set of 25 CZCS scenes to produce a monthly composite of pigment concentration for April 1981. Through these analyses, the modified algorithm is considered robust in the sense that it operates most compatibly with the standard algorithm yet performs adaptively in response to the magnitude of the dust effect.

  11. a Permanent Magnet Hall Thruster for Orbit Control of Lunar Polar Satellites

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Silva Moraes, Bruno; Soares Ferreira, Ivan; Cardozo Mour, Decio; Winter, Othon

    Future moon missions devoted to lunar surface remote sensing and to many others scientific exploration topics will require more fine and higher precision orbit control. It is well known that, lunar satellites in polar orbits will suffer a high increase on the eccentricity due to the gravitational perturbation of the Earth. Without proper orbit correction the satellite life time will decrease and end up in a collision with the moon surface. It is pointed out by many authors that this effect is a natural consequence of the Lidov-Kozai resonance. In the present work, we propose a precise method of orbit eccentricity control based on the use of a low thrust Hall plasma thruster. The proposed method is based on an approach intended to keep the orbital eccentricity of the satellite at low values. A previous work on this subject was made using numerical integration considering two systems: the 3-body problem, Moon-Earth-satellite and the 4-body problem, Moon-Earth-Sun-satellite (??). In such simulation it is possible to follow the evolution of the satellite's eccentricity and find empirical expressions for the length of time needed to occur the collision with the moon. In this work, a satellite orbit eccentricity control maneuvering is proposed. It is based on working parameters of a low thrust propulsion permanent magnet Hall plasma thruster (PMHT), which is been developed at University of Brasilia, Brazil. We studied different arcs of active lunar satellite propulsion in order to be able to introduce a correction of the eccentricity at each cycle. The calculations were made considering a set of different thrust values, from 0.1N up to 0.4N which can be obtained by using the PMHT. In each calculation procedure we measured the length of eccentricity correction provided by active propulsion. From these results we obtained empirical expressions of the time needed for the corrections as a function of the initial altitude and as a function of the thrust value. 1. Winter, O. C. et all in Controlling the Eccentricity of Polar Lunar Orbits with Low Thrust Propulsion, Mathematical Problems in Engineering, vol. on Space Dynamics, 2009.

  12. An error covariance model for sea surface topography and velocity derived from TOPEX/POSEIDON altimetry

    NASA Technical Reports Server (NTRS)

    Tsaoussi, Lucia S.; Koblinsky, Chester J.

    1994-01-01

    In order to facilitate the use of satellite-derived sea surface topography and velocity oceanographic models, methodology is presented for deriving the total error covariance and its geographic distribution from TOPEX/POSEIDON measurements. The model is formulated using a parametric model fit to the altimeter range observations. The topography and velocity modeled with spherical harmonic expansions whose coefficients are found through optimal adjustment to the altimeter range residuals using Bayesian statistics. All other parameters, including the orbit, geoid, surface models, and range corrections are provided as unadjusted parameters. The maximum likelihood estimates and errors are derived from the probability density function of the altimeter range residuals conditioned with a priori information. Estimates of model errors for the unadjusted parameters are obtained from the TOPEX/POSEIDON postlaunch verification results and the error covariances for the orbit and the geoid, except for the ocean tides. The error in the ocean tides is modeled, first, as the difference between two global tide models and, second, as the correction to the present tide model, the correction derived from the TOPEX/POSEIDON data. A formal error covariance propagation scheme is used to derive the total error. Our global total error estimate for the TOPEX/POSEIDON topography relative to the geoid for one 10-day period is found tio be 11 cm RMS. When the error in the geoid is removed, thereby providing an estimate of the time dependent error, the uncertainty in the topography is 3.5 cm root mean square (RMS). This level of accuracy is consistent with direct comparisons of TOPEX/POSEIDON altimeter heights with tide gauge measurements at 28 stations. In addition, the error correlation length scales are derived globally in both east-west and north-south directions, which should prove useful for data assimilation. The largest error correlation length scales are found in the tropics. Errors in the velocity field are smallest in midlatitude regions. For both variables the largest errors caused by uncertainty in the geoid. More accurate representations of the geoid await a dedicated geopotential satellite mission. Substantial improvements in the accuracy of ocean tide models are expected in the very near future from research with TOPEX/POSEIDON data.

  13. Study on the physical and non-physical drag coefficients for spherical satellites

    NASA Astrophysics Data System (ADS)

    Man, Haijun; Li, Huijun; Tang, Geshi

    In this study, the physical and non-physical drag coefficients (C_D) for spherical satellites in ANDERR are retrieved from the number density of atomic oxygen and the orbit decay data, respectively. We concern on what changes should be taken to the retrieved physical C_D and non-physical C_D as the accuracy of the atmospheric density model is improved. Firstly, Lomb-Scargle periodograms to these C_D series as well as the environmental parameters indicate that: (1) there are obvious 5-, 7-, and 9-day periodic variations in the daily Ap indices and the solar wind speed at 1 AU as well as the model density, which has been reported as a result from the interaction between the corotating solar wind and the magnetosphere; (2) The same short periods also exist in the retrieved C_D except for the significance level for each C_D series; (3) the physical and non-physical C_D have behaved almost homogeneously with model densities along the satellite trajectory. Secondly, corrections to each type of C_D are defined as the differences between the values derived from the density model of NRLMSISE-00 and that of JB2008. It has shown that: (1) the bigger the density corrections are, the bigger the corrections to C_D of both types have. In addition, corrections to the physical C_D distribute within an extension of 0.05, which is about an order lower than the extension that the non-physical C_D distribute (0.5). (2) Corrections to the non-physical C_D behaved reciprocally to the density corrections, while a similar relationship is also existing between corrections to the physical C_D and that of the model density. (3) As the orbital altitude are lower than 200 km, corrections to the C_D and the model density are both decreased asymptotically to zero. Results in this study highlight that the physical C_D for spherical satellites should play an important role in technique renovations for accurate density corrections with the orbital decay data or in searching for a way to decouple the product of density and C_D wrapped in the orbital decay data.

  14. Management of posttraumatic enophthalmos.

    PubMed

    Chen, Chien-Tzung; Huang, Faye; Chen, Yu-Ray

    2006-01-01

    Posttraumatic enophthalmos is one of the common sequelae that appears after facial injury and remains a challenge to treat for craniomaxillofacial surgeons. Several theories have been advocated regarding enophthalmos; however, the most well accepted concept is the enlargement of the orbital cavity after displacement due to orbital fractures. Generally, a 1 cm3 increase in orbital volume causes 0.8 mm of enophthalmos. Thorough knowledge of the orbital anatomy is fundamental and critical for the successful surgical correction of enophthalmos because most treatment failures are due to inadequate orbital dissection from fear of injuring the optic nerve and globe. A complete preoperative plan should be built on a comprehensive clinical examination of the periorbital soft tissue and bony components, detailed ophthalmic examination, and high resolution computed tomography scans in the axial, coronal and reformatted sagittal planes. Based on the anatomic deformities, there are two major fracture types including orbital blow out fractures and zygomatico-orbital fractures, resulting in posttraumatic enophthalmos. Treatment modalities and methods of approach are adapted according to the severity of the orbital deformities. Minor complications include ectropion, entropion, dystopia, diplopia, and residual enophthalmos. Rare but severe complications such as intraconal misplacement of the bone graft or retrobulbar hemorrhage with subsequent blindness may be encountered. The success of the procedures depend on adequate dissection and mobilization of the displaced soft tissue, correct repositioning of the dislocated or malunited bony orbit, and proper intra-orbital grafting.

  15. Temperature Data Assimilation with Salinity Corrections: Validation for the NSIPP Ocean Data Assimilation System in the Tropical Pacific Ocean, 1993-1998

    NASA Technical Reports Server (NTRS)

    Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.

    2003-01-01

    The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.

  16. Revised Chapman-Enskog analysis for a class of forcing schemes in the lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Li, Q.; Zhou, P.; Yan, H. J.

    2016-10-01

    In the lattice Boltzmann (LB) method, the forcing scheme, which is used to incorporate an external or internal force into the LB equation, plays an important role. It determines whether the force of the system is correctly implemented in an LB model and affects the numerical accuracy. In this paper we aim to clarify a critical issue about the Chapman-Enskog analysis for a class of forcing schemes in the LB method in which the velocity in the equilibrium density distribution function is given by u =∑αeαfα / ρ , while the actual fluid velocity is defined as u ̂=u +δtF / (2 ρ ) . It is shown that the usual Chapman-Enskog analysis for this class of forcing schemes should be revised so as to derive the actual macroscopic equations recovered from these forcing schemes. Three forcing schemes belonging to the above class are analyzed, among which Wagner's forcing scheme [A. J. Wagner, Phys. Rev. E 74, 056703 (2006), 10.1103/PhysRevE.74.056703] is shown to be capable of reproducing the correct macroscopic equations. The theoretical analyses are examined and demonstrated with two numerical tests, including the simulation of Womersley flow and the modeling of flat and circular interfaces by the pseudopotential multiphase LB model.

  17. Two-dimensional radiative transfer for the retrieval of limb emission measurements in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Kleinböhl, Armin; Friedson, A. James; Schofield, John T.

    2017-01-01

    The remote sounding of infrared emission from planetary atmospheres using limb-viewing geometry is a powerful technique for deriving vertical profiles of structure and composition on a global scale. Compared with nadir viewing, limb geometry provides enhanced vertical resolution and greater sensitivity to atmospheric constituents. However, standard limb profile retrieval techniques assume spherical symmetry and are vulnerable to biases produced by horizontal gradients in atmospheric parameters. We present a scheme for the correction of horizontal gradients in profile retrievals from limb observations of the martian atmosphere. It characterizes horizontal gradients in temperature, pressure, and aerosol extinction along the line-of-sight of a limb view through neighboring measurements, and represents these gradients by means of two-dimensional radiative transfer in the forward model of the retrieval. The scheme is applied to limb emission measurements from the Mars Climate Sounder instrument on Mars Reconnaissance Orbiter. Retrieval simulations using data from numerical models indicate that biases of up to 10 K in the winter polar region, obtained with standard retrievals using spherical symmetry, are reduced to about 2 K in most locations by the retrieval with two-dimensional radiative transfer. Retrievals from Mars atmospheric measurements suggest that the two-dimensional radiative transfer greatly reduces biases in temperature and aerosol opacity caused by observational geometry, predominantly in the polar winter regions.

  18. A Note on Multigrid Theory for Non-nested Grids and/or Quadrature

    NASA Technical Reports Server (NTRS)

    Douglas, C. C.; Douglas, J., Jr.; Fyfe, D. E.

    1996-01-01

    We provide a unified theory for multilevel and multigrid methods when the usual assumptions are not present. For example, we do not assume that the solution spaces or the grids are nested. Further, we do not assume that there is an algebraic relationship between the linear algebra problems on different levels. What we provide is a computationally useful theory for adaptively changing levels. Theory is provided for multilevel correction schemes, nested iteration schemes, and one way (i.e., coarse to fine grid with no correction iterations) schemes. We include examples showing the applicability of this theory: finite element examples using quadrature in the matrix assembly and finite volume examples with non-nested grids. Our theory applies directly to other discretizations as well.

  19. An orbital localization criterion based on the theory of "fuzzy" atoms.

    PubMed

    Alcoba, Diego R; Lain, Luis; Torre, Alicia; Bochicchio, Roberto C

    2006-04-15

    This work proposes a new procedure for localizing molecular and natural orbitals. The localization criterion presented here is based on the partitioning of the overlap matrix into atomic contributions within the theory of "fuzzy" atoms. Our approach has several advantages over other schemes: it is computationally inexpensive, preserves the sigma/pi-separability in planar systems and provides a straightforward interpretation of the resulting orbitals in terms of their localization indices and atomic occupancies. The corresponding algorithm has been implemented and its efficiency tested on selected molecular systems. (c) 2006 Wiley Periodicals, Inc.

  20. Self-shading associated with a skylight-blocked approach system for the measurement of water-leaving radiance and its correction.

    PubMed

    Shang, Zhehai; Lee, Zhongping; Dong, Qiang; Wei, Jianwei

    2017-09-01

    Self-shading associated with a skylight-blocked approach (SBA) system for the measurement of water-leaving radiance (L w ) and its correction [Appl. Opt.52, 1693 (2013)APOPAI0003-693510.1364/AO.52.001693] is characterized by Monte Carlo simulations, and it is found that this error is in a range of ∼1%-20% under most water properties and solar positions. A model for estimating this shading error is further developed, and eventually a scheme to correct this error based on the shaded measurements is proposed and evaluated. It is found that the shade-corrected value in the visible domain is within 3% of the true value, which thus indicates that we can obtain not only high precision but also high accuracy L w in the field with the SBA scheme.

  1. Unveiling magnetic interactions of ruthenium trichloride via constraining direction of orbital moments: Potential routes to realize a quantum spin liquid

    NASA Astrophysics Data System (ADS)

    Hou, Y. S.; Xiang, H. J.; Gong, X. G.

    2017-08-01

    Recent experiments reveal that the honeycomb ruthenium trichloride α -RuC l3 is a prime candidate of the Kitaev quantum spin liquid (QSL). However, there is no theoretical model which can properly describe its experimental dynamical response due to the lack of a full understanding of its magnetic interactions. Here, we propose a general scheme to calculate the magnetic interactions in systems (e.g., α -RuC l3 ) with nonnegligible orbital moments by constraining the directions of orbital moments. With this scheme, we put forward a minimal J1-K1-Γ1-J3-K3 model for α -RuC l3 and find that: (I) The third nearest neighbor (NN) antiferromagnetic Heisenberg interaction J3 stabilizes the zigzag antiferromagnetic order; (II) The NN symmetric off-diagonal exchange Γ1 plays a pivotal role in determining the preferred direction of magnetic moments and generating the spin wave gap. An exact diagonalization study on this model shows that the Kitaev QSL can be realized by suppressing the NN symmetric off-diagonal exchange Γ1 and the third NN Heisenberg interaction J3. Thus, we not only propose a powerful general scheme for investigating the intriguing magnetism of Jeff=1 /2 magnets, but also point out future directions for realizing the Kitaev QSL in the honeycomb ruthenium trichloride α -RuC l3 .

  2. Mathematical modeling and SAR simulation multifunction SAR technology efforts

    NASA Technical Reports Server (NTRS)

    Griffin, C. R.; Estes, J. M.

    1981-01-01

    The orbital SAR (synthetic aperture radar) simulation data was used in several simulation efforts directed toward advanced SAR development. Efforts toward simulating an operational radar, simulation of antenna polarization effects, and simulation of SAR images at serveral different wavelengths are discussed. Avenues for improvements in the orbital SAR simulation and its application to the development of advanced digital radar data processing schemes are indicated.

  3. Explicit Low-Thrust Guidance for Reference Orbit Targeting

    NASA Technical Reports Server (NTRS)

    Lam, Try; Udwadia, Firdaus E.

    2013-01-01

    The problem of a low-thrust spacecraft controlled to a reference orbit is addressed in this paper. A simple and explicit low-thrust guidance scheme with constrained thrust magnitude is developed by combining the fundamental equations of motion for constrained systems from analytical dynamics with a Lyapunov-based method. Examples are given for a spacecraft controlled to a reference trajectory in the circular restricted three body problem.

  4. On the use of the exact exchange optimized effective potential method for static response properties

    NASA Astrophysics Data System (ADS)

    Krykunov, Mykhaylo; Ziegler, Tom

    In the present work, we question the notion that the modified Kohn-Sham orbital energies and smaller HOMO-LUMO gaps, produced from the exact exchange optimized effective potential (EXX-OEP) method, might significantly improve the paramagnetic contribution to the NMR chemical shifts compared with the regular Hartree-Fock (HF) scheme. First of all, it is shown analytically that if there is such a local potential that produces the HF energy, and the Kohn-Sham orbitals are obtained as a result of separate rotations of the occupied and virtual HF orbitals, any static magnetic property obtained from the coupled perturbed HF method will be identical to that obtained from the EXX-OEP approach. In fact the EXX-OEP method is equivalent to the improved virtual orbitals (IVO) scheme in which the energies of the virtual orbitals are modified by an effective potential. It is shown that the IVO procedure leaves static response properties unchanged. To test our analysis numerically we have employed several variants of the EXX-OEP method, based on the expansion of the local exchange potential into a linear combination of fit functions. The different EXX-OEP schemes have been used to calculate the NMR chemical shifts for a set of small molecules containing C, H, N, O, and F atoms. Comparison of the deviation between experimental and calculated chemical shifts from the HF, the EXX-OEP, and the common energy denominator approximation (CEDA) approximation to the EXX-OEP methods has shown that for carbon, hydrogen, and fluorine the EXX-OEP methods do not yield any improvement over the HF method. For nitrogen and oxygen we have found that the EXX-OEP performs better than the HF method. However, in the limit of infinite fit basis set and, as a consequence of it, a perfect fit of the HF potential the EXX-OEP and the HF methods would afford the same chemical shifts according to our theoretical analysis. Unfortunately, without a perfect fit the chemical shifts from the EXX-OEP method strongly depend on the fit convergence. In our opinion, the EXX-OEP method should not be used for response properties as it is numerically unstable. Thus, any apparent improvement of the EXX-OEP method over the HF scheme for a finite fit basis set must be considered spurious.

  5. Tetrahedron Formation Control

    NASA Technical Reports Server (NTRS)

    Guzman, Jose J.

    2003-01-01

    Spacecraft flying in tetrahedron formations are excellent instrument platforms for electromagnetic and plasma studies. A minimum of four spacecraft - to establish a volume - is required to study some of the key regions of a planetary magnetic field. The usefulness of the measurements recorded is strongly affected by the tetrahedron orbital evolution. This paper considers the preliminary development of a general optimization procedure for tetrahedron formation control. The maneuvers are assumed to be impulsive and a multi-stage optimization method is employed. The stages include targeting to a fixed tetrahedron orientation, rotating and translating the tetrahedron and/or varying the initial and final times. The number of impulsive maneuvers citn also be varied. As the impulse locations and times change, new arcs are computed using a differential corrections scheme that varies the impulse magnitudes and directions. The result is a continuous trajectory with velocity discontinuities. The velocity discontinuities are then used to formulate the cost function. Direct optimization techniques are employed. The procedure is applied to the Magnetospheric Multiscale Mission (MMS) to compute preliminary formation control fuel requirements.

  6. Predicting Multicomponent Adsorption Isotherms in Open-Metal Site Materials Using Force Field Calculations Based on Energy Decomposed Density Functional Theory.

    PubMed

    Heinen, Jurn; Burtch, Nicholas C; Walton, Krista S; Fonseca Guerra, Célia; Dubbeldam, David

    2016-12-12

    For the design of adsorptive-separation units, knowledge is required of the multicomponent adsorption behavior. Ideal adsorbed solution theory (IAST) breaks down for olefin adsorption in open-metal site (OMS) materials due to non-ideal donor-acceptor interactions. Using a density-function-theory-based energy decomposition scheme, we develop a physically justifiable classical force field that incorporates the missing orbital interactions using an appropriate functional form. Our first-principles derived force field shows greatly improved quantitative agreement with the inflection points, initial uptake, saturation capacity, and enthalpies of adsorption obtained from our in-house adsorption experiments. While IAST fails to make accurate predictions, our improved force field model is able to correctly predict the multicomponent behavior. Our approach is also transferable to other OMS structures, allowing the accurate study of their separation performances for olefins/paraffins and further mixtures involving complex donor-acceptor interactions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. H4: A challenging system for natural orbital functional approximations

    NASA Astrophysics Data System (ADS)

    Ramos-Cordoba, Eloy; Lopez, Xabier; Piris, Mario; Matito, Eduard

    2015-10-01

    The correct description of nondynamic correlation by electronic structure methods not belonging to the multireference family is a challenging issue. The transition of D2h to D4h symmetry in H4 molecule is among the most simple archetypal examples to illustrate the consequences of missing nondynamic correlation effects. The resurgence of interest in density matrix functional methods has brought several new methods including the family of Piris Natural Orbital Functionals (PNOF). In this work, we compare PNOF5 and PNOF6, which include nondynamic electron correlation effects to some extent, with other standard ab initio methods in the H4 D4h/D2h potential energy surface (PES). Thus far, the wrongful behavior of single-reference methods at the D2h-D4h transition of H4 has been attributed to wrong account of nondynamic correlation effects, whereas in geminal-based approaches, it has been assigned to a wrong coupling of spins and the localized nature of the orbitals. We will show that actually interpair nondynamic correlation is the key to a cusp-free qualitatively correct description of H4 PES. By introducing interpair nondynamic correlation, PNOF6 is shown to avoid cusps and provide the correct smooth PES features at distances close to the equilibrium, total and local spin properties along with the correct electron delocalization, as reflected by natural orbitals and multicenter delocalization indices.

  8. GFO-1 Geophysical Data Record and Orbit Verifications for Global Change Studies

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2000-01-01

    This final report summarizes the research work conducted under NASA's Physical Oceanography Program, entitled, GFO-1 Geophysical Data Record And Orbit Verifications For Global Change Studies, for the investigation time period from December 1, 1997 through November 30, 2000. The primary objectives of the investigation include providing verification and improvement for the precise orbit, media, geophysical, and instrument corrections to accurately reduce U.S. Navy's Geosat-Followon-1 (GFO-1) mission radar altimeter data to sea level measurements. The status of the GFO satellite (instrument and spacecraft operations, orbital tracking and altimeter) is summarized. GFO spacecraft has been accepted by the Navy from Ball Aerospace and has been declared operational since November, 2000. We have participated in four official GFO calibration/validation periods (Cal/Val I-IV), spanning from June 1999 through October 2000. Results of verification of the GFO orbit and geophysical data record measurements both from NOAA (IGDR) and from the Navy (NGDR) are reported. Our preliminary results indicate that: (1) the precise orbit (GSFC and OSU) can be determined to approx. 5 - 6 cm rms radially using SLR and altimeter crossovers; (2) estimated GFO MOE (GSFC or NRL) radial orbit accuracy is approx. 7 - 30 cm and Operational Doppler orbit accuracy is approx. 60 - 350 cm. After bias and tilt adjustment (1000 km arc), estimated Doppler orbit accuracy is approx. 1.2 - 6.5 cm rms and the MOE accuracy is approx. 1.0 - 2.3 cm; (3) the geophysical and media corrections have been validated versus in situ measurements and measurements from other operating altimeters (T/P and ERS-2). Altimeter time bias is insignificant with 0-2 ms. Sea state bias is about approx. 3 - 4.5% of SWH. Wet troposphere correction has approx. 1 cm bias and approx. 3 cm rms when compared with ERS-2 data. Use of GIM and IRI95 provide ionosphere correction accurate to 2-3 cm rms during medium to high solar activities; (4) the noise of the GFO altimeter data (uncorrected SSH) is about 15 mm, compared to 19 min for ERS-2, and 12 min for TOPEX. It is anticipated that the operational GFO-1 altimeter data will contribute to a number of researches in physical oceanography. A list of relevant presentations and publications is attached.

  9. Self-force correction to geodetic spin precession in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Akcay, Sarp

    2017-08-01

    We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.

  10. Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement.

    PubMed

    Chen, Lixiang; She, Weilong

    2008-09-15

    We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.

  11. Spin-charge coupled dynamics driven by a time-dependent magnetization

    NASA Astrophysics Data System (ADS)

    Tölle, Sebastian; Eckern, Ulrich; Gorini, Cosimo

    2017-03-01

    The spin-charge coupled dynamics in a thin, magnetized metallic system are investigated. The effective driving force acting on the charge carriers is generated by a dynamical magnetic texture, which can be induced, e.g., by a magnetic material in contact with a normal-metal system. We consider a general inversion-asymmetric substrate/normal-metal/magnet structure, which, by specifying the precise nature of each layer, can mimic various experimentally employed setups. Inversion symmetry breaking gives rise to an effective Rashba spin-orbit interaction. We derive general spin-charge kinetic equations which show that such spin-orbit interaction, together with anisotropic Elliott-Yafet spin relaxation, yields significant corrections to the magnetization-induced dynamics. In particular, we present a consistent treatment of the spin density and spin current contributions to the equations of motion, inter alia, identifying a term in the effective force which appears due to a spin current polarized parallel to the magnetization. This "inverse-spin-filter" contribution depends markedly on the parameter which describes the anisotropy in spin relaxation. To further highlight the physical meaning of the different contributions, the spin-pumping configuration of typical experimental setups is analyzed in detail. In the two-dimensional limit the buildup of dc voltage is dominated by the spin-galvanic (inverse Edelstein) effect. A measuring scheme that could isolate this contribution is discussed.

  12. Error Correction for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei

    2016-05-01

    The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less

  13. Effects of tropospheric and ionospheric refraction errors in the utilization of GEOS-C altimeter data

    NASA Technical Reports Server (NTRS)

    Goad, C. C.

    1977-01-01

    The effects of tropospheric and ionospheric refraction errors are analyzed for the GEOS-C altimeter project in terms of their resultant effects on C-band orbits and the altimeter measurement itself. Operational procedures using surface meteorological measurements at ground stations and monthly means for ocean surface conditions are assumed, with no corrections made for ionospheric effects. Effects on the orbit height due to tropospheric errors are approximately 15 cm for single pass short arcs (such as for calibration) and 10 cm for global orbits of one revolution. Orbit height errors due to neglect of the ionosphere have an amplitude of approximately 40 cm when the orbits are determined from C-band range data with predominantly daylight tracking. Altimeter measurement errors are approximately 10 cm due to residual tropospheric refraction correction errors. Ionospheric effects on the altimeter range measurement are also on the order of 10 cm during the GEOS-C launch and early operation period.

  14. QED effects on individual atomic orbital energies

    NASA Astrophysics Data System (ADS)

    Kozioł, Karol; Aucar, Gustavo A.

    2018-04-01

    Several issues, concerning QED corrections, that are important in precise atomic calculations are presented. The leading QED corrections, self-energy and vacuum polarization, to the orbital energy for selected atoms with 30 ≤ Z ≤ 118 have been calculated. The sum of QED and Breit contributions to the orbital energy is analyzed. It has been found that for ns subshells the Breit and QED contributions are of comparative size, but for np and nd subshells the Breit contribution takes a major part of the QED+Breit sum. It has also, been found that the Breit to leading QED contributions ratio for ns subshells is almost independent of Z. The Z-dependence of QED and Breit+QED contributions per subshell is shown. The fitting coefficients may be used to estimate QED effects on inner molecular orbitals. We present results of our calculations for QED contributions to orbital energy of valence ns-subshell for group 1 and 11 atoms and discuss about the reliability of these numbers by comparing them with experimental first ionization potential data.

  15. Analysis of RDSS positioning accuracy based on RNSS wide area differential technique

    NASA Astrophysics Data System (ADS)

    Xing, Nan; Su, RanRan; Zhou, JianHua; Hu, XiaoGong; Gong, XiuQiang; Liu, Li; He, Feng; Guo, Rui; Ren, Hui; Hu, GuangMing; Zhang, Lei

    2013-10-01

    The BeiDou Navigation Satellite System (BDS) provides Radio Navigation Service System (RNSS) as well as Radio Determination Service System (RDSS). RDSS users can obtain positioning by responding the Master Control Center (MCC) inquiries to signal transmitted via GEO satellite transponder. The positioning result can be calculated with elevation constraint by MCC. The primary error sources affecting the RDSS positioning accuracy are the RDSS signal transceiver delay, atmospheric trans-mission delay and GEO satellite position error. During GEO orbit maneuver, poor orbit forecast accuracy significantly impacts RDSS services. A real-time 3-D orbital correction method based on wide-area differential technique is raised to correct the orbital error. Results from the observation shows that the method can successfully improve positioning precision during orbital maneuver, independent from the RDSS reference station. This improvement can reach 50% in maximum. Accurate calibration of the RDSS signal transceiver delay precision and digital elevation map may have a critical role in high precise RDSS positioning services.

  16. Definitive treatment of the negative vector orbit.

    PubMed

    Mommaerts, Maurice Y

    2018-05-09

    In a negative vector orbit, the most anterior globe portion protrudes past the malar eminence. As bulging eyes are considered unaesthetic, patients usually seek correction. However, most current correction techniques produce suboptimal results. Here, we present a surgical technique that sets back the globe and protrudes the malar bone using an intraoral approach. All five patients (aged 17-41 years) in our case series reported being satisfied with the improvement achieved using this technique. Based on our experience, a transoral approach to malar augmentation by valgisation osteotomy may address the bulging eyes aspect through transantral orbital fat reduction in select cases. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  17. Location verification algorithm of wearable sensors for wireless body area networks.

    PubMed

    Wang, Hua; Wen, Yingyou; Zhao, Dazhe

    2018-01-01

    Knowledge of the location of sensor devices is crucial for many medical applications of wireless body area networks, as wearable sensors are designed to monitor vital signs of a patient while the wearer still has the freedom of movement. However, clinicians or patients can misplace the wearable sensors, thereby causing a mismatch between their physical locations and their correct target positions. An error of more than a few centimeters raises the risk of mistreating patients. The present study aims to develop a scheme to calculate and detect the position of wearable sensors without beacon nodes. A new scheme was proposed to verify the location of wearable sensors mounted on the patient's body by inferring differences in atmospheric air pressure and received signal strength indication measurements from wearable sensors. Extensive two-sample t tests were performed to validate the proposed scheme. The proposed scheme could easily recognize a 30-cm horizontal body range and a 65-cm vertical body range to correctly perform sensor localization and limb identification. All experiments indicate that the scheme is suitable for identifying wearable sensor positions in an indoor environment.

  18. Analysis and correction of linear optics errors, and operational improvements in the Indus-2 storage ring

    NASA Astrophysics Data System (ADS)

    Husain, Riyasat; Ghodke, A. D.

    2017-08-01

    Estimation and correction of the optics errors in an operational storage ring is always vital to achieve the design performance. To achieve this task, the most suitable and widely used technique, called linear optics from closed orbit (LOCO) is used in almost all storage ring based synchrotron radiation sources. In this technique, based on the response matrix fit, errors in the quadrupole strengths, beam position monitor (BPM) gains, orbit corrector calibration factors etc. can be obtained. For correction of the optics, suitable changes in the quadrupole strengths can be applied through the driving currents of the quadrupole power supplies to achieve the desired optics. The LOCO code has been used at the Indus-2 storage ring for the first time. The estimation of linear beam optics errors and their correction to minimize the distortion of linear beam dynamical parameters by using the installed number of quadrupole power supplies is discussed. After the optics correction, the performance of the storage ring is improved in terms of better beam injection/accumulation, reduced beam loss during energy ramping, and improvement in beam lifetime. It is also useful in controlling the leakage in the orbit bump required for machine studies or for commissioning of new beamlines.

  19. A hybrid quantum eraser scheme for characterization of free-space and fiber communication channels

    NASA Astrophysics Data System (ADS)

    Nape, Isaac; Kyeremah, Charlotte; Vallés, Adam; Rosales-Guzmán, Carmelo; Buah-Bassuah, Paul K.; Forbes, Andrew

    2018-02-01

    We demonstrate a simple projective measurement based on the quantum eraser concept that can be used to characterize the disturbances of any communication channel. Quantum erasers are commonly implemented as spatially separated path interferometric schemes. Here we exploit the advantages of redefining the which-path information in terms of spatial modes, replacing physical paths with abstract paths of orbital angular momentum (OAM). Remarkably, vector modes (natural modes of free-space and fiber) have a non-separable feature of spin-orbit coupled states, equivalent to the description of two independently marked paths. We explore the effects of fiber perturbations by probing a step-index optical fiber channel with a vector mode, relevant to high-order spatial mode encoding of information for ultra-fast fiber communications.

  20. Satellite To Satellite Doppler Tracking (SSDT) for mapping of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Gaposchkin, E. M.; Grossi, M.

    1981-01-01

    Two SSDT schemes were evaluated: a standard, low-low, SSDT configuration, which both satellites are in basically the same low altitude nearly circular orbit and the pair is characterized by small angular separation; and a more general configuration in which the two satellites are in arbitrary orbits, so that different configurations can be comparatively analyed. The standard low-low SSDT configuration is capable of recovering 1 deg X 1 deg surface anomalies with a strength as low as 1 milligal, located on the projected satellite path, when observing from a height as large as 300 km. The Colombo scheme provides an important complement of SSDT observations, inasmuch as it is sensitive to radial velocity components, while keeping at the same performance level both measuring sensitivity and measurement resolution.

  1. Scalar self-force on eccentric geodesics in Schwarzschild spacetime: A time-domain computation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haas, Roland

    2007-06-15

    We calculate the self-force acting on a particle with scalar charge moving on a generic geodesic around a Schwarzschild black hole. This calculation requires an accurate computation of the retarded scalar field produced by the moving charge; this is done numerically with the help of a fourth-order convergent finite-difference scheme formulated in the time domain. The calculation also requires a regularization procedure, because the retarded field is singular on the particle's world line; this is handled mode-by-mode via the mode-sum regularization scheme first introduced by Barack and Ori. This paper presents the numerical method, various numerical tests, and a samplemore » of results for mildly eccentric orbits as well as ''zoom-whirl'' orbits.« less

  2. Economic aspects of spectrum management

    NASA Technical Reports Server (NTRS)

    Stibolt, R. D.

    1979-01-01

    Problems associated with the allocation of the radio frequency spectrum are addressed. It is observed that the current method very likely does not allocate the resource to those most valuing its use. Ecomonic criteria by which the effectiveness of resource allocation schemes can be judged are set forth and some thoughts on traditional objections to implementation of market characteristics into frequency allocation are offered. The problem of dividing orbit and spectrum between two satellite services sharing the same band but having significantly different system characteristics is discussed. The problem is compounded by the likelihood that one service will commence operation much sooner than the other. Some alternative schemes are offered that, within proper international constraints, could achieve a desired flexibility in the division of orbit and frequency between the two services domestically over the next several years.

  3. Limb Correction of Polar-Orbiting Imagery for the Improved Interpretation of RGB Composites

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Elmer, Nicholas

    2016-01-01

    Red-Green-Blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical path length of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This paper reviews a newly developed technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical path length in order to produce limb-corrected RGB composites. The improved utility of a limb-corrected Air Mass RGB composite from the application of this approach is demonstrated using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations.

  4. Guidance and Control strategies for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Hibey, J. L.; Naidu, D. S.; Charalambous, C. D.

    1989-01-01

    A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions.

  5. Large-size space debris flyby in low earth orbits

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total Δ V and with amount of detachable de-orbiting units onboard the maneuvering platform and onboard the refueling vehicle.

  6. A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations

    NASA Technical Reports Server (NTRS)

    Ghosh, Amitabha

    1997-01-01

    This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunnel. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally some results of the current investigation are presented.

  7. A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations

    NASA Technical Reports Server (NTRS)

    Ghosh, Amitabha

    1997-01-01

    This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunell. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally, some results of the current investigation are presented.

  8. Local bounds preserving stabilization for continuous Galerkin discretization of hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Mabuza, Sibusiso; Shadid, John N.; Kuzmin, Dmitri

    2018-05-01

    The objective of this paper is to present a local bounds preserving stabilized finite element scheme for hyperbolic systems on unstructured meshes based on continuous Galerkin (CG) discretization in space. A CG semi-discrete scheme with low order artificial dissipation that satisfies the local extremum diminishing (LED) condition for systems is used to discretize a system of conservation equations in space. The low order artificial diffusion is based on approximate Riemann solvers for hyperbolic conservation laws. In this case we consider both Rusanov and Roe artificial diffusion operators. In the Rusanov case, two designs are considered, a nodal based diffusion operator and a local projection stabilization operator. The result is a discretization that is LED and has first order convergence behavior. To achieve high resolution, limited antidiffusion is added back to the semi-discrete form where the limiter is constructed from a linearity preserving local projection stabilization operator. The procedure follows the algebraic flux correction procedure usually used in flux corrected transport algorithms. To further deal with phase errors (or terracing) common in FCT type methods, high order background dissipation is added to the antidiffusive correction. The resulting stabilized semi-discrete scheme can be discretized in time using a wide variety of time integrators. Numerical examples involving nonlinear scalar Burgers equation, and several shock hydrodynamics simulations for the Euler system are considered to demonstrate the performance of the method. For time discretization, Crank-Nicolson scheme and backward Euler scheme are utilized.

  9. SEAHT: A computer program for the use of intersecting arcs of altimeter data for sea surface height refinement

    NASA Technical Reports Server (NTRS)

    Allen, C. P.; Martin, C. F.

    1977-01-01

    The SEAHT program is designed to process multiple passes of altimeter data with intersecting ground tracks, with the estimation of corrections for orbital errors to each pass such that the data has the best overall agreement at the crossover points. Orbit error for each pass is modeled as a polynomial in time, with optional orders of 0, 1, or 2. One or more passes may be constrained in the adjustment process, thus allowing passes with the best orbits to provide the overall level and orientation of the estimated sea surface heights. Intersections which disagree by more than an input edit level are not used in the error parameter estimation. In the program implementation, passes are grouped into South-North passes and North-South passes, with the North-South passes partitioned out for the estimation of orbit error parameters. Computer core utilization is thus dependent on the number of parameters estimated for the set of South-North arcs, but is independent on the number of North-South passes. Estimated corrections for each pass are applied to the data at its input data rate and an output tape is written which contains the corrected data.

  10. Generalization of the Hartree-Fock approach to collision processes

    NASA Astrophysics Data System (ADS)

    Hahn, Yukap

    1997-06-01

    The conventional Hartree and Hartree-Fock approaches for bound states are generalized to treat atomic collision processes. All the single-particle orbitals, for both bound and scattering states, are determined simultaneously by requiring full self-consistency. This generalization is achieved by introducing two Ansäauttze: (a) the weak asymptotic boundary condition, which maintains the correct scattering energy and target orbitals with correct number of nodes, and (b) square integrable amputated scattering functions to generate self-consistent field (SCF) potentials for the target orbitals. The exact initial target and final-state asymptotic wave functions are not required and thus need not be specified a priori, as they are determined simultaneously by the SCF iterations. To check the asymptotic behavior of the solution, the theory is applied to elastic electron-hydrogen scattering at low energies. The solution is found to be stable and the weak asymptotic condition is sufficient to produce the correct scattering amplitudes. The SCF potential for the target orbital shows the strong penetration by the projectile electron during the collision, but the exchange term tends to restore the original form. Potential applicabilities of this extension are discussed, including the treatment of ionization and shake-off processes.

  11. Low- and high-order accurate boundary conditions: From Stokes to Darcy porous flow modeled with standard and improved Brinkman lattice Boltzmann schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Goncalo, E-mail: goncalo.nuno.silva@gmail.com; Talon, Laurent, E-mail: talon@fast.u-psud.fr; Ginzburg, Irina, E-mail: irina.ginzburg@irstea.fr

    The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes–Brinkman–Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes–Brinkman–Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies themore » effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM and FEM is thoroughly evaluated in three benchmark tests, which are run throughout three distinctive permeability regimes. The first configuration is a horizontal porous channel, studied with a symbolic approach, where we construct the exact solutions of FEM and BF/IBF with different boundary schemes. The second problem refers to an inclined porous channel flow, which brings in as new challenge the formation of spurious boundary layers in LBM; that is, numerical artefacts that arise due to a deficient accommodation of the bulk solution by the low-accurate boundary scheme. The third problem considers a porous flow past a periodic square array of solid cylinders, which intensifies the previous two tests with the simulation of a more complex flow pattern. The ensemble of numerical tests provides guidelines on the effect of grid resolution and the TRT free collision parameter over the accuracy and the quality of the velocity field, spanning from Stokes to Darcy permeability regimes. It is shown that, with the use of the high-order accurate boundary schemes, the simple, uniform-mesh-based TRT-LBM formulation can even surpass the accuracy of FEM employing hardworking body-fitted meshes.« less

  12. Low- and high-order accurate boundary conditions: From Stokes to Darcy porous flow modeled with standard and improved Brinkman lattice Boltzmann schemes

    NASA Astrophysics Data System (ADS)

    Silva, Goncalo; Talon, Laurent; Ginzburg, Irina

    2017-04-01

    The present contribution focuses on the accuracy of reflection-type boundary conditions in the Stokes-Brinkman-Darcy modeling of porous flows solved with the lattice Boltzmann method (LBM), which we operate with the two-relaxation-time (TRT) collision and the Brinkman-force based scheme (BF), called BF-TRT scheme. In parallel, we compare it with the Stokes-Brinkman-Darcy linear finite element method (FEM) where the Dirichlet boundary conditions are enforced on grid vertices. In bulk, both BF-TRT and FEM share the same defect: in their discretization a correction to the modeled Brinkman equation appears, given by the discrete Laplacian of the velocity-proportional resistance force. This correction modifies the effective Brinkman viscosity, playing a crucial role in the triggering of spurious oscillations in the bulk solution. While the exact form of this defect is available in lattice-aligned, straight or diagonal, flows; in arbitrary flow/lattice orientations its approximation is constructed. At boundaries, we verify that such a Brinkman viscosity correction has an even more harmful impact. Already at the first order, it shifts the location of the no-slip wall condition supported by traditional LBM boundary schemes, such as the bounce-back rule. For that reason, this work develops a new class of boundary schemes to prescribe the Dirichlet velocity condition at an arbitrary wall/boundary-node distance and that supports a higher order accuracy in the accommodation of the TRT-Brinkman solutions. For their modeling, we consider the standard BF scheme and its improved version, called IBF; this latter is generalized in this work to suppress or to reduce the viscosity correction in arbitrarily oriented flows. Our framework extends the one- and two-point families of linear and parabolic link-wise boundary schemes, respectively called B-LI and B-MLI, which avoid the interference of the Brinkman viscosity correction in their closure relations. The performance of LBM and FEM is thoroughly evaluated in three benchmark tests, which are run throughout three distinctive permeability regimes. The first configuration is a horizontal porous channel, studied with a symbolic approach, where we construct the exact solutions of FEM and BF/IBF with different boundary schemes. The second problem refers to an inclined porous channel flow, which brings in as new challenge the formation of spurious boundary layers in LBM; that is, numerical artefacts that arise due to a deficient accommodation of the bulk solution by the low-accurate boundary scheme. The third problem considers a porous flow past a periodic square array of solid cylinders, which intensifies the previous two tests with the simulation of a more complex flow pattern. The ensemble of numerical tests provides guidelines on the effect of grid resolution and the TRT free collision parameter over the accuracy and the quality of the velocity field, spanning from Stokes to Darcy permeability regimes. It is shown that, with the use of the high-order accurate boundary schemes, the simple, uniform-mesh-based TRT-LBM formulation can even surpass the accuracy of FEM employing hardworking body-fitted meshes.

  13. Synchronizing movements with the metronome: nonlinear error correction and unstable periodic orbits.

    PubMed

    Engbert, Ralf; Krampe, Ralf Th; Kurths, Jürgen; Kliegl, Reinhold

    2002-02-01

    The control of human hand movements is investigated in a simple synchronization task. We propose and analyze a stochastic model based on nonlinear error correction; a mechanism which implies the existence of unstable periodic orbits. This prediction is tested in an experiment with human subjects. We find that our experimental data are in good agreement with numerical simulations of our theoretical model. These results suggest that feedback control of the human motor systems shows nonlinear behavior. Copyright 2001 Elsevier Science (USA).

  14. Short-range second order screened exchange correction to RPA correlation energies

    NASA Astrophysics Data System (ADS)

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-01

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  15. Short-range second order screened exchange correction to RPA correlation energies.

    PubMed

    Beuerle, Matthias; Ochsenfeld, Christian

    2017-11-28

    Direct random phase approximation (RPA) correlation energies have become increasingly popular as a post-Kohn-Sham correction, due to significant improvements over DFT calculations for properties such as long-range dispersion effects, which are problematic in conventional density functional theory. On the other hand, RPA still has various weaknesses, such as unsatisfactory results for non-isogyric processes. This can in parts be attributed to the self-correlation present in RPA correlation energies, leading to significant self-interaction errors. Therefore a variety of schemes have been devised to include exchange in the calculation of RPA correlation energies in order to correct this shortcoming. One of the most popular RPA plus exchange schemes is the second order screened exchange (SOSEX) correction. RPA + SOSEX delivers more accurate absolute correlation energies and also improves upon RPA for non-isogyric processes. On the other hand, RPA + SOSEX barrier heights are worse than those obtained from plain RPA calculations. To combine the benefits of RPA correlation energies and the SOSEX correction, we introduce a short-range RPA + SOSEX correction. Proof of concept calculations and benchmarks showing the advantages of our method are presented.

  16. A secure smart-card based authentication and key agreement scheme for telecare medicine information systems.

    PubMed

    Lee, Tian-Fu; Liu, Chuan-Ming

    2013-06-01

    A smart-card based authentication scheme for telecare medicine information systems enables patients, doctors, nurses, health visitors and the medicine information systems to establish a secure communication platform through public networks. Zhu recently presented an improved authentication scheme in order to solve the weakness of the authentication scheme of Wei et al., where the off-line password guessing attacks cannot be resisted. This investigation indicates that the improved scheme of Zhu has some faults such that the authentication scheme cannot execute correctly and is vulnerable to the attack of parallel sessions. Additionally, an enhanced authentication scheme based on the scheme of Zhu is proposed. The enhanced scheme not only avoids the weakness in the original scheme, but also provides users' anonymity and authenticated key agreements for secure data communications.

  17. Wannier-function-based constrained DFT with nonorthogonality-correcting Pulay forces in application to the reorganization effects in graphene-adsorbed pentacene

    NASA Astrophysics Data System (ADS)

    Roychoudhury, Subhayan; O'Regan, David D.; Sanvito, Stefano

    2018-05-01

    Pulay terms arise in the Hellmann-Feynman forces in electronic-structure calculations when one employs a basis set made of localized orbitals that move with their host atoms. If the total energy of the system depends on a subspace population defined in terms of the localized orbitals across multiple atoms, then unconventional Pulay terms will emerge due to the variation of the orbital nonorthogonality with ionic translation. Here, we derive the required exact expressions for such terms, which cannot be eliminated by orbital orthonormalization. We have implemented these corrected ionic forces within the linear-scaling density functional theory (DFT) package onetep, and we have used constrained DFT to calculate the reorganization energy of a pentacene molecule adsorbed on a graphene flake. The calculations are performed by including ensemble DFT, corrections for periodic boundary conditions, and empirical Van der Waals interactions. For this system we find that tensorially invariant population analysis yields an adsorbate subspace population that is very close to integer-valued when based upon nonorthogonal Wannier functions, and also but less precisely so when using pseudoatomic functions. Thus, orbitals can provide a very effective population analysis for constrained DFT. Our calculations show that the reorganization energy of the adsorbed pentacene is typically lower than that of pentacene in the gas phase. We attribute this effect to steric hindrance.

  18. Molecular orbital imaging via above-threshold ionization with circularly polarized pulses.

    PubMed

    Zhu, Xiaosong; Zhang, Qingbin; Hong, Weiyi; Lu, Peixiang; Xu, Zhizhan

    2011-07-18

    Above-threshold ionization (ATI) for aligned or orientated linear molecules by circularly polarized laser pulsed is investigated. It is found that the all-round structural information of the molecular orbital is extracted with only one shot by the circularly polarized probe pulse rather than with multi-shot detections in a linearly polarized case. The obtained photoelectron momentum spectrum directly depicts the symmetry and electron distribution of the occupied molecular orbital, which results from the strong sensitivity of the ionization probability to these structural features. Our investigation indicates that the circularly polarized probe scheme would present a simple method to study the angle-dependent ionization and image the occupied electronic orbital.

  19. Regularization in Orbital Mechanics; Theory and Practice

    NASA Astrophysics Data System (ADS)

    Roa, Javier

    2017-09-01

    Regularized equations of motion can improve numerical integration for the propagation of orbits, and simplify the treatment of mission design problems. This monograph discusses standard techniques and recent research in the area. While each scheme is derived analytically, its accuracy is investigated numerically. Algebraic and topological aspects of the formulations are studied, as well as their application to practical scenarios such as spacecraft relative motion and new low-thrust trajectories.

  20. Design of a 35-kilowatt bipolar nickel-hydrogen battery for low Earth orbit application

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.; Smithrick, J. J.

    1982-01-01

    The needs of multikilowatt storage for low Earth orbit applications are featured. The modular concept, with projected energy densities of 20-24 W-hr/lb and 700-900 W-hr/ft3, has significant improvements over state of the art capabilities. Other design features are; active cooling, a new scheme for H2-O2 recombination, and pore size engineering of all cell components.

  1. Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

    NASA Astrophysics Data System (ADS)

    Zhang, Junwei; Zhu, Guoxuan; Liu, Jie; Wu, Xiong; Zhu, Jiangbo; Du, Cheng; Luo, Wenyong; Chen, Yujie; Yu, Siyuan

    2018-02-01

    An orbital-angular-momentum (OAM) mode-group multiplexing (MGM) scheme based on a graded-index ring-core fiber (GIRCF) is proposed, in which a single-input two-output (or receive diversity) architecture is designed for each MG channel and simple digital signal processing (DSP) is utilized to adaptively resist the mode partition noise resulting from random intra-group mode crosstalk. There is no need of complex multiple-input multiple-output (MIMO) equalization in this scheme. Furthermore, the signal-to-noise ratio (SNR) of the received signals can be improved if a simple maximal ratio combining (MRC) technique is employed on the receiver side to efficiently take advantage of the diversity gain of receiver. Intensity-modulated direct-detection (IM-DD) systems transmitting three OAM mode groups with total 100-Gb/s discrete multi-tone (DMT) signals over a 1-km GIRCF and two OAM mode groups with total 40-Gb/s DMT signals over an 18-km GIRCF are experimentally demonstrated, respectively, to confirm the feasibility of our proposed OAM-MGM scheme.

  2. Real Time GPS- Satellite Clock Estimation Development of a RTIGS Web Service

    NASA Astrophysics Data System (ADS)

    Opitz, M.; Weber, R.; Caissy, M.

    2006-12-01

    Since 3 years the IGS (International GNSS Service) Real-Time Working Group disseminates via Internet raw observation data of a subset of stations of the IGS network. This observation data can be used to establish a real-time integrity monitoring of the IGS predicted orbits (Ultra Rapid (IGU-) Orbits) and clocks, according to the recommendations of the IGS Workshop 2004 in Bern. The Institute for "Geodesy and Geophysics" of the TU-Vienna develops in cooperation with the IGS Real-Time Working Group the software "RTR- Control", which currently provides a real-time integrity monitoring of predicted IGU Clock Corrections to GPS Time. Our poster presents the results of a prototype version which is in operation since August this year. Besides RTR-Control allows for the comparison of pseudoranges measured at any permanent station in the global network with theoretical pseudoranges calculated on basis of the IGU- orbits. Thus, the programme can diagnose incorrectly predicted satellite orbits and clocks as well as detect multi-path distorted pseudoranges in real- time. RTR- Control calculates every 15 seconds Satellite Clock Corrections with respect to the most recent IGU- clocks (updated in a 6 hours interval). The clock estimations are referenced to a stable station clock (H-maser) with a small offset to GPS- time. This real-time Satellite Clocks are corrected for individual outliers and modelling errors. The most recent GPS- Satellite Clock Corrections (updated every 60 seconds) are published in Real Time via the Internet. The user group interested in a rigorous integrity monitoring comprises on the one hand the components of IGS itself to qualify the issued orbital data and on the other hand all users of the IGS Ultra Rapid Products (e.g. for PPP in Real Time).

  3. Critical analysis of fragment-orbital DFT schemes for the calculation of electronic coupling values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schober, Christoph; Reuter, Karsten; Oberhofer, Harald, E-mail: harald.oberhofer@ch.tum.de

    2016-02-07

    We present a critical analysis of the popular fragment-orbital density-functional theory (FO-DFT) scheme for the calculation of electronic coupling values. We discuss the characteristics of different possible formulations or “flavors” of the scheme which differ by the number of electrons in the calculation of the fragments and the construction of the Hamiltonian. In addition to two previously described variants based on neutral fragments, we present a third version taking a different route to the approximate diabatic state by explicitly considering charged fragments. In applying these FO-DFT flavors to the two molecular test sets HAB7 (electron transfer) and HAB11 (hole transfer),more » we find that our new scheme gives improved electronic couplings for HAB7 (−6.2% decrease in mean relative signed error) and greatly improved electronic couplings for HAB11 (−15.3% decrease in mean relative signed error). A systematic investigation of the influence of exact exchange on the electronic coupling values shows that the use of hybrid functionals in FO-DFT calculations improves the electronic couplings, giving values close to or even better than more sophisticated constrained DFT calculations. Comparing the accuracy and computational cost of each variant, we devise simple rules to choose the best possible flavor depending on the task. For accuracy, our new scheme with charged-fragment calculations performs best, while numerically more efficient at reasonable accuracy is the variant with neutral fragments.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadid, John Nicolas; Fish, Jacob; Waisman, Haim

    Two heuristic strategies intended to enhance the performance of the generalized global basis (GGB) method [H. Waisman, J. Fish, R.S. Tuminaro, J. Shadid, The Generalized Global Basis (GGB) method, International Journal for Numerical Methods in Engineering 61(8), 1243-1269] applied to nonlinear systems are presented. The standard GGB accelerates a multigrid scheme by an additional coarse grid correction that filters out slowly converging modes. This correction requires a potentially costly eigen calculation. This paper considers reusing previously computed eigenspace information. The GGB? scheme enriches the prolongation operator with new eigenvectors while the modified method (MGGB) selectively reuses the same prolongation. Bothmore » methods use the criteria of principal angles between subspaces spanned between the previous and current prolongation operators. Numerical examples clearly indicate significant time savings in particular for the MGGB scheme.« less

  5. Reprocessing the Elliptical Orbiting Galileo Satellites E14 and E18: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Männel, Benjamin

    2017-04-01

    In August 2014, the two Galileo satellites FOC-1 (E18) and FOC-2 (E14) were - due to a technical problem - launched into a wrong, elliptic orbit. In a recovery mission a series of orbit maneuvers were performed to raise the perigee to an altitude where both spacecrafts could be introduced to the Galileo navigation service. After this period of orbit maintenance both satellites started to transmit navigation signals at November 29, 2014 (E18) and March 17, 2015 (E14). However, as it was not possible to recover the nominal orbits due to propellant limitations, both spacecrafts orbit the Earth with a numerical eccentricity of 0.16 and an inclination of 50.2°. Very soon, it was assumed that both satellites could be highly useful for studies on general relativity, especially as the Galileo spacecrafts are equipped with very stable passive hydrogen masers. A prerequisite for dedicated studies in this field are highly accurate satellite orbits and clock corrections. Preliminary results for orbit and satellite clock determination will be presented based on an initial reprocessing over the past 2.5 years. The presentation focuses firstly on orbit modeling aspects with respect to the elliptically orbits. Secondly the derived clock corrections for the on-board passive clocks are assessed with respect to the reference clock at ground stations. The results will be discussed also with respect to the proposed Galileo-based studies on the gravitational redshift.

  6. Ionospheric refraction effects on orbit determination using the orbit determination error analysis system

    NASA Technical Reports Server (NTRS)

    Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.

    1990-01-01

    The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.

  7. Cryptanalysis and improvement of Yan et al.'s biometric-based authentication scheme for telecare medicine information systems.

    PubMed

    Mishra, Dheerendra; Mukhopadhyay, Sourav; Chaturvedi, Ankita; Kumari, Saru; Khan, Muhammad Khurram

    2014-06-01

    Remote user authentication is desirable for a Telecare Medicine Information System (TMIS) for the safety, security and integrity of transmitted data over the public channel. In 2013, Tan presented a biometric based remote user authentication scheme and claimed that his scheme is secure. Recently, Yan et al. demonstrated some drawbacks in Tan's scheme and proposed an improved scheme to erase the drawbacks of Tan's scheme. We analyze Yan et al.'s scheme and identify that their scheme is vulnerable to off-line password guessing attack, and does not protect anonymity. Moreover, in their scheme, login and password change phases are inefficient to identify the correctness of input where inefficiency in password change phase can cause denial of service attack. Further, we design an improved scheme for TMIS with the aim to eliminate the drawbacks of Yan et al.'s scheme.

  8. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks

    PubMed Central

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-01-01

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C/2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C/2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi’s model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments. PMID:29401668

  9. The Application of Social Characteristic and L1 Optimization in the Error Correction for Network Coding in Wireless Sensor Networks.

    PubMed

    Zhang, Guangzhi; Cai, Shaobin; Xiong, Naixue

    2018-02-03

    One of the remarkable challenges about Wireless Sensor Networks (WSN) is how to transfer the collected data efficiently due to energy limitation of sensor nodes. Network coding will increase network throughput of WSN dramatically due to the broadcast nature of WSN. However, the network coding usually propagates a single original error over the whole network. Due to the special property of error propagation in network coding, most of error correction methods cannot correct more than C /2 corrupted errors where C is the max flow min cut of the network. To maximize the effectiveness of network coding applied in WSN, a new error-correcting mechanism to confront the propagated error is urgently needed. Based on the social network characteristic inherent in WSN and L1 optimization, we propose a novel scheme which successfully corrects more than C /2 corrupted errors. What is more, even if the error occurs on all the links of the network, our scheme also can correct errors successfully. With introducing a secret channel and a specially designed matrix which can trap some errors, we improve John and Yi's model so that it can correct the propagated errors in network coding which usually pollute exactly 100% of the received messages. Taking advantage of the social characteristic inherent in WSN, we propose a new distributed approach that establishes reputation-based trust among sensor nodes in order to identify the informative upstream sensor nodes. With referred theory of social networks, the informative relay nodes are selected and marked with high trust value. The two methods of L1 optimization and utilizing social characteristic coordinate with each other, and can correct the propagated error whose fraction is even exactly 100% in WSN where network coding is performed. The effectiveness of the error correction scheme is validated through simulation experiments.

  10. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    DOE PAGES

    Krogel, Jaron T.; Reboredo, Fernando A.

    2018-01-25

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less

  11. A local framework for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD)

    DOE PAGES

    Baudin, Pablo; Bykov, Dmytro; Liakh, Dmitry I.; ...

    2017-02-22

    Here, the recently developed Local Framework for calculating Excitation energies (LoFEx) is extended to the coupled cluster singles and doubles (CCSD) model. In the new scheme, a standard CCSD excitation energy calculation is carried out within a reduced excitation orbital space (XOS), which is composed of localised molecular orbitals and natural transition orbitals determined from time-dependent Hartree–Fock theory. The presented algorithm uses a series of reduced second-order approximate coupled cluster singles and doubles (CC2) calculations to optimise the XOS in a black-box manner. This ensures that the requested CCSD excitation energies have been determined to a predefined accuracy compared tomore » a conventional CCSD calculation. We present numerical LoFEx-CCSD results for a set of medium-sized organic molecules, which illustrate the black-box nature of the approach and the computational savings obtained for transitions that are local compared to the size of the molecule. In fact, for such local transitions, the LoFEx-CCSD scheme can be applied to molecular systems where a conventional CCSD implementation is intractable.« less

  12. Kinetic energy classification and smoothing for compact B-spline basis sets in quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogel, Jaron T.; Reboredo, Fernando A.

    Quantum Monte Carlo calculations of defect properties of transition metal oxides have become feasible in recent years due to increases in computing power. As the system size has grown, availability of on-node memory has become a limiting factor. Saving memory while minimizing computational cost is now a priority. The main growth in memory demand stems from the B-spline representation of the single particle orbitals, especially for heavier elements such as transition metals where semi-core states are present. Despite the associated memory costs, splines are computationally efficient. In this paper, we explore alternatives to reduce the memory usage of splined orbitalsmore » without significantly affecting numerical fidelity or computational efficiency. We make use of the kinetic energy operator to both classify and smooth the occupied set of orbitals prior to splining. By using a partitioning scheme based on the per-orbital kinetic energy distributions, we show that memory savings of about 50% is possible for select transition metal oxide systems. Finally, for production supercells of practical interest, our scheme incurs a performance penalty of less than 5%.« less

  13. Machine Imperfection Studies of the RAON Superconducting Linac

    NASA Astrophysics Data System (ADS)

    Jeon, D.; Jang, J.-H.; Jin, H.

    2018-05-01

    Studies of the machine imperfections in the RAON superconducting linac (SCL) that employs normal conducting (NC) quadrupoles were done to assess the tolerable error budgets of the machine imperfections that ensure operation of the beam. The studies show that the beam loss requirement is met even before the orbit correction and that the beam loss requirement is met even without the MHB (multi-harmonic buncher) and VE (velocity equalizer) thanks to the RAON's radio-frequency quadrupole (RFQ) design feature. For the low energy section of the linac (SCL3), a comparison is made between the two superconducting linac lattice types: one lattice that employs NC quadrupoles and the other that employs SC solenoids. The studies show that both lattices meet the beam loss requirement after the orbit correction. However, before the orbit correction, the lattice employing SC solenoids does not meet the beam loss requirement and can cause a significant beam loss, while the lattice employing NC quadrupoles meets the requirement. For the lattice employing SC solenoids, care must be taken during the beam commissioning.

  14. Platform control for space-based imaging: the TOPSAT mission

    NASA Astrophysics Data System (ADS)

    Dungate, D.; Morgan, C.; Hardacre, S.; Liddle, D.; Cropp, A.; Levett, W.; Price, M.; Steyn, H.

    2004-11-01

    This paper describes the imaging mode ADCS design for the TOPSAT satellite, an Earth observation demonstration mission targeted at military applications. The baselined orbit for TOPSAT is a 600-700km sun synchronous orbit from which images up to 30° off track can be captured. For this baseline, the imaging camera proves a resolution of 2.5m and a nominal image size of 15x15km. The ADCS design solution for the imaging mode uses a moving demand approach to enable a single control algorithm solution for both the preparatory reorientation prior to image capture and the post capture return to nadir pointing. During image capture proper, control is suspended to minimise the disturbances experienced by the satellite from the wheels. Prior to each imaging sequence, the moving demand attitude and rate profiles are calculated such that the correct attitude and rate are achieved at the correct orbital position, enabling the correct target area to be captured.

  15. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anglin, J.R.; Schmiedmayer, J.

    2004-02-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict themore » precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r{sup 3} singularity which is an artifact of the adiabatic approximation.« less

  16. Quantum annealing correction with minor embedding

    NASA Astrophysics Data System (ADS)

    Vinci, Walter; Albash, Tameem; Paz-Silva, Gerardo; Hen, Itay; Lidar, Daniel A.

    2015-10-01

    Quantum annealing provides a promising route for the development of quantum optimization devices, but the usefulness of such devices will be limited in part by the range of implementable problems as dictated by hardware constraints. To overcome constraints imposed by restricted connectivity between qubits, a larger set of interactions can be approximated using minor embedding techniques whereby several physical qubits are used to represent a single logical qubit. However, minor embedding introduces new types of errors due to its approximate nature. We introduce and study quantum annealing correction schemes designed to improve the performance of quantum annealers in conjunction with minor embedding, thus leading to a hybrid scheme defined over an encoded graph. We argue that this scheme can be efficiently decoded using an energy minimization technique provided the density of errors does not exceed the per-site percolation threshold of the encoded graph. We test the hybrid scheme using a D-Wave Two processor on problems for which the encoded graph is a two-level grid and the Ising model is known to be NP-hard. The problems we consider are frustrated Ising model problem instances with "planted" (a priori known) solutions. Applied in conjunction with optimized energy penalties and decoding techniques, we find that this approach enables the quantum annealer to solve minor embedded instances with significantly higher success probability than it would without error correction. Our work demonstrates that quantum annealing correction can and should be used to improve the robustness of quantum annealing not only for natively embeddable problems but also when minor embedding is used to extend the connectivity of physical devices.

  17. Optimizing Spacecraft Placement for Liaison Constellations

    NASA Technical Reports Server (NTRS)

    Chow, C. Channing; Villac, Benjamin F.; Lo, Martin W.

    2011-01-01

    A navigation and communications network is proposed to support an anticipated need for infrastructure in the Earth-Moon system. Periodic orbits will host the constellations while a novel, autonomous navigation strategy will guide the spacecraft along their path strictly based on satellite-to-satellite telemetry. In particular, this paper investigates the second stage of a larger constellation optimization scheme for multi-spacecraft systems. That is, following an initial orbit down-selection process, this analysis provides insights into the ancillary problem of spacecraft placement. Two case studies are presented that consider configurations of up to four spacecraft for a halo orbit and a cycler trajectory.

  18. Applications of 3D orbital computer-assisted surgery (CAS).

    PubMed

    Scolozzi, P

    2017-09-01

    The purpose of the present report is to describe the indications for use of 3D orbital computer-assisted surgery (CAS). We analyzed the clinical and radiological data of all patients with orbital deformities treated using intra-operative navigation and CAD/CAM techniques at the Hôpitaux Universitaires de Genève, Switzerland, between 2009 and 2016. We recorded age and gender, orbital deformity, technical and surgical procedure and postoperative complications. One hundred and three patients were included. Mean age was 39.5years (range, 5 to 84years) and 85 (87.5%) were men. Of the 103 patients, 96 had intra-operative navigation (34 for primary and 3 for secondary orbito-zygomatic fractures, 15 for Le Fort fractures, 16 for orbital floor fractures, 10 for combined orbital floor and medial wall fractures, 7 for orbital medial wall fractures, 3 for NOE (naso-orbito-ethmoidal) fractures, 2 for isolated comminuted zygomatic arch fractures, 1 for enophthalmos, 3 for TMJ ankylosis and 2 for fibrous dysplasia bone recontouring), 8 patients had CAD/CAM PEEK-PSI for correction of residual orbital bone contour following craniomaxillofacial trauma, and 1 patient had CAD/CAM surgical splints and cutting guides for correction of orbital hypertelorism. Two patient (1.9%) required revision surgery for readjustment of an orbital mesh. The 1-year follow-up examination showed stable cosmetic and dimensional results in all patients. This study demonstrated that the application of 3D orbital CAS with regards to intra-operative navigation and CAD/CAM techniques allowed for a successful outcome in the patients presented in this series. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Laser line illumination scheme allowing the reduction of background signal and the correction of absorption heterogeneities effects for fluorescence reflectance imaging.

    PubMed

    Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc

    2015-10-01

    Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.

  20. S-Boxes Based on Affine Mapping and Orbit of Power Function

    NASA Astrophysics Data System (ADS)

    Khan, Mubashar; Azam, Naveed Ahmed

    2015-06-01

    The demand of data security against computational attacks such as algebraic, differential, linear and interpolation attacks has been increased as a result of rapid advancement in the field of computation. It is, therefore, necessary to develop such cryptosystems which can resist current cryptanalysis and more computational attacks in future. In this paper, we present a multiple S-boxes scheme based on affine mapping and orbit of the power function used in Advanced Encryption Standard (AES). The proposed technique results in 256 different S-boxes named as orbital S-boxes. Rigorous tests and comparisons are performed to analyse the cryptographic strength of each of the orbital S-boxes. Furthermore, gray scale images are encrypted by using multiple orbital S-boxes. Results and simulations show that the encryption strength of the orbital S-boxes against computational attacks is better than that of the existing S-boxes.

  1. Multiple-correction hybrid k-exact schemes for high-order compressible RANS-LES simulations on fully unstructured grids

    NASA Astrophysics Data System (ADS)

    Pont, Grégoire; Brenner, Pierre; Cinnella, Paola; Maugars, Bruno; Robinet, Jean-Christophe

    2017-12-01

    A Godunov's type unstructured finite volume method suitable for highly compressible turbulent scale-resolving simulations around complex geometries is constructed by using a successive correction technique. First, a family of k-exact Godunov schemes is developed by recursively correcting the truncation error of the piecewise polynomial representation of the primitive variables. The keystone of the proposed approach is a quasi-Green gradient operator which ensures consistency on general meshes. In addition, a high-order single-point quadrature formula, based on high-order approximations of the successive derivatives of the solution, is developed for flux integration along cell faces. The proposed family of schemes is compact in the algorithmic sense, since it only involves communications between direct neighbors of the mesh cells. The numerical properties of the schemes up to fifth-order are investigated, with focus on their resolvability in terms of number of mesh points required to resolve a given wavelength accurately. Afterwards, in the aim of achieving the best possible trade-off between accuracy, computational cost and robustness in view of industrial flow computations, we focus more specifically on the third-order accurate scheme of the family, and modify locally its numerical flux in order to reduce the amount of numerical dissipation in vortex-dominated regions. This is achieved by switching from the upwind scheme, mostly applied in highly compressible regions, to a fourth-order centered one in vortex-dominated regions. An analytical switch function based on the local grid Reynolds number is adopted in order to warrant numerical stability of the recentering process. Numerical applications demonstrate the accuracy and robustness of the proposed methodology for compressible scale-resolving computations. In particular, supersonic RANS/LES computations of the flow over a cavity are presented to show the capability of the scheme to predict flows with shocks, vortical structures and complex geometries.

  2. Accuracy of gravitational physics tests using ranges to the inner planets

    NASA Technical Reports Server (NTRS)

    Ashby, N.; Bender, P.

    1981-01-01

    A number of different types of deviations from Kepler's laws for planetary orbits can occur in nonNewtonian metric gravitational theories. These include secular changes in all of the orbital elements and in the mean motion, plus additional periodic perturbations in the coordinates. The first order corrections to the Keplerian motion of a single planet around the Sun due to the parameterized post Newtonian theory parameters were calculated as well as the corrections due to the solar quadrupole moment and a possible secular change in the gravitational constant. The results were applied to the case of proposed high accuracy ranging experiments from the Earth to a Mercury orbiting spacecraft in order to see how well the various parameters can be determined.

  3. Impact of GNSS orbit modeling on LEO orbit and gravity field determination

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Meyer, Ulrich; Sušnik, Andreja; Dach, Rolf; Jäggi, Adrian

    2017-04-01

    On January 4, 2015 the Center for Orbit Determination in Europe (CODE) changed the solar radiation pressure modeling for GNSS satellites to an updated version of the empirical CODE orbit model (ECOM). Furthermore, since September 2012 CODE operationally computes satellite clock corrections not only for the 3-day long-arc solutions, but also for the non-overlapping 1-day GNSS orbits. This provides different sets of GNSS products for Precise Point Positioning, as employed, e.g., in the GNSS-based precise orbit determination of low Earth orbiters (LEOs) and the subsequent Earth gravity field recovery from kinematic LEO orbits. While the impact of the mentioned changes in orbit modeling and solution strategy on the GNSS orbits and geophysical parameters was studied in detail, their implications on the LEO orbits were not yet analyzed. We discuss the impact of the update of the ECOM and the influence of 1-day and 3-day GNSS orbit solutions on zero-difference LEO orbit and gravity field determination, where the GNSS orbits and clock corrections, as well as the Earth rotation parameters are introduced as fixed external products. Several years of kinematic and reduced-dynamic orbits for the two GRACE LEOs are computed with GNSS products based on both the old and the updated ECOM, as well as with 1- and 3-day GNSS products. The GRACE orbits are compared by means of standard validation measures. Furthermore, monthly and long-term GPS-only and combined GPS/K-band gravity field solutions are derived from the different sets of kinematic LEO orbits. GPS-only fields are validated by comparison to combined GPS/K-band solutions, while the combined solutions are validated by analysis of the formal errors, as well as by comparing them to the combined GRACE solutions of the European Gravity Service for Improved Emergency Management (EGSIEM) project.

  4. Robust Real-Time Wide-Area Differential GPS Navigation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)

    1998-01-01

    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

  5. Shear-layer correction after Amiet under consideration of additional temperature gradient. Working diagrams for correction of signals

    NASA Technical Reports Server (NTRS)

    Dobrzynski, W.

    1984-01-01

    Amiet's correction scheme for sound wave transmission through shear-layers is extended to incorporate the additional effects of different temperatures in the flow-field in the surrounding medium at rest. Within a parameter-regime typical for acoustic measurements in wind tunnels amplitude- and angle-correction is calculated and plotted systematically to provide a data base for the test engineer.

  6. Flight Mechanics/Estimation Theory Symposium. [with application to autonomous navigation and attitude/orbit determination

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J. (Editor)

    1979-01-01

    Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.

  7. On-orbit checkout of satellites, volume 2. Part 3 of on-orbit checkout study. [space maintenance

    NASA Technical Reports Server (NTRS)

    Pritchard, E. I.

    1978-01-01

    Early satellite failures significantly degrading satellite operations are reviewed with emphasis on LANDSAT D, the Technology Demonstration Satellite, the ATREX/AEM spacecraft, STORMSAT 2, and the synchronous meteorological satellite. Candidates for correction with on-orbit checkout and appropriate actions are analyzed. On-orbit checkout subsystem level studies are summarized for electrical power, attitude control, thermal control, reaction control and propulsion, instruments, and angular rate matching for alignment of satellite IRU.

  8. High Earth orbit design for lunar assisted small Explorer class missions

    NASA Technical Reports Server (NTRS)

    Mathews, M.; Hametz, M.; Cooley, J.; Skillman, D.

    1994-01-01

    Small Expendable launch vehicles are capable of injecting modest payloads into high Earth orbits having apogee near the lunar distance. However, lunar and solar perturbations can quickly lower perigee and cause premature reentry. Costly perigee raising maneuvers by the spacecraft are required to maintain the orbit. In addition, the range of inclinations achievable is limited to those of launch sites unless costly spacecraft maneuvers are performed. This study investigates the use of a lunar swingby in a near-Hohmann transfer trajectory to raise perigee into the 8 to 25 solar radius range and reach a wide variety of inclinations without spacecraft maneuvers. It is found that extremely stable orbits can be obtained if the postencounter spacecraft orbital period is one-half of a lunar sidereal revolution and the Earth-vehicle-Moon geometry is within a specified range. Criteria for achieving stable orbits with various perigee heights and ecliptic inclinations are developed, and the sensitivity of the resulting mission orbits to transfer trajectory injection (TTI) errors is examined. It is shown that carefully designed orbits yield lifetimes of several years, with excellent ground station coverage characteristics and minimal eclipses. A phasing loop error correction strategy is considered with the spacecraft propulsion system delta V demand for TTI error correction and a postlunar encounter apogee trim maneuver typically in the 30 to 120 meters per second range.

  9. Towards a Global Operational Altimeter Service: RADS

    NASA Astrophysics Data System (ADS)

    Naeije, M.; Schrama, E.; Mathers, L.; Scharroo, R.

    2001-12-01

    DEOS' anticipation of the need for global altimeter services started the Radar Altimeter Database System (RADS) project. Embedded in the Netherlands Earth Observation NETwork (NEONET), this project is supported by the Dutch government. After defining the database content, collecting altimeter and ancillary data from all available altimeter missions and combining them with the latest (correction) models, we have arrived at an (inter)nationally appreciated validated, calibrated and consistent altimeter data set, comprising over 15 years of valuable sea level, wave height and wind data. Whenever new data or knowledge arrives the database is updated. Major assets of RADS are the upgraded ERS orbits and the flexible data organization. This paper presents an overview of the work involved in establishing RADS: the I/O, enhancements, screening, formatting, harmonization, and CAL/VAL. The aim is to improve the algorithms for converting satellite data to the final geophysical products. Global altimeter data from various satellites are inter-compared or compared to external data, like tide gauges, wind speed measurements, etc. This has been used to establish the data's quality and to enhance algorithms for deriving the geophysical parameters. Also: ironing out inconsistencies in significant wave height, sea state, inverse barometer, wet troposphere corrections, orbits, biases, drifts, and time tagging. Access to the database at level~1 level is provided for by a web portal (\\tt http://www.deos.tudelft.nl/altim/rads). Here also status, higher level products, software, and literature can be obtained. Finally, examples are given of putting in RADS in research and education. We fully automated the Gulf Stream and El Niño web pages: Hovmuller diagrams and eddy kinetic energy plots are refreshed regularly. Furthermore, RADS has been successfully used at Delft Hydraulics in a data assimilation scheme for improving tides and storm surge predictions, showing the importance of near real-time observations, and at the Dutch Meteorological Office KNMI for ENSO studies.

  10. Identification of Unexpressed Premises and Argumentation Schemes by Students in Secondary School.

    ERIC Educational Resources Information Center

    van Eemeren, Frans H.; And Others

    1995-01-01

    Reports on exploratory empirical investigations on the performances of Dutch secondary education students in identifying unexpressed premises and argumentation schemes. Finds that, in the absence of any disambiguating contextual information, unexpressed major premises and non-syllogistic premises are more often correctly identified that…

  11. One-step methods for the prediction of orbital motion, taking its periodic components into account

    NASA Astrophysics Data System (ADS)

    Lavrov, K. N.

    1988-03-01

    The paper examines the design and analysis of the properties of implicit one-step integration methods which use the trigonometric approximation of ordinary differential equations containing periodic components. With reference to an orbital-motion prediction example, it is shown that the proposed schemes are more efficient in terms of computer memory than Everhart's (1974) approach. The results obtained make it possible to improve Everhart's method.

  12. Development of a three-dimensional high-order strand-grids approach

    NASA Astrophysics Data System (ADS)

    Tong, Oisin

    Development of a novel high-order flux correction method on strand grids is presented. The method uses a combination of flux correction in the unstructured plane and summation-by-parts operators in the strand direction to achieve high-fidelity solutions. Low-order truncation errors are cancelled with accurate flux and solution gradients in the flux correction method, thereby achieving a formal order of accuracy of 3, although higher orders are often obtained, especially for highly viscous flows. In this work, the scheme is extended to high-Reynolds number computations in both two and three dimensions. Turbulence closure is achieved with a robust version of the Spalart-Allmaras turbulence model that accommodates negative values of the turbulence working variable, and the Menter SST turbulence model, which blends the k-epsilon and k-o turbulence models for better accuracy. A major advantage of this high-order formulation is the ability to implement traditional finite volume-like limiters to cleanly capture shocked and discontinuous flows. In this work, this approach is explored via a symmetric limited positive (SLIP) limiter. Extensive verification and validation is conducted in two and three dimensions to determine the accuracy and fidelity of the scheme for a number of different cases. Verification studies show that the scheme achieves better than third order accuracy for low and high-Reynolds number flows. Cost studies show that in three-dimensions, the third-order flux correction scheme requires only 30% more walltime than a traditional second-order scheme on strand grids to achieve the same level of convergence. In order to overcome meshing issues at sharp corners and other small-scale features, a unique approach to traditional geometry, coined "asymptotic geometry," is explored. Asymptotic geometry is achieved by filtering out small-scale features in a level set domain through min/max flow. This approach is combined with a curvature based strand shortening strategy in order to qualitatively improve strand grid mesh quality.

  13. Analysis of an ABE Scheme with Verifiable Outsourced Decryption.

    PubMed

    Liao, Yongjian; He, Yichuan; Li, Fagen; Jiang, Shaoquan; Zhou, Shijie

    2018-01-10

    Attribute-based encryption (ABE) is a popular cryptographic technology to protect the security of users' data in cloud computing. In order to reduce its decryption cost, outsourcing the decryption of ciphertexts is an available method, which enables users to outsource a large number of decryption operations to the cloud service provider. To guarantee the correctness of transformed ciphertexts computed by the cloud server via the outsourced decryption, it is necessary to check the correctness of the outsourced decryption to ensure security for the data of users. Recently, Li et al. proposed a full verifiability of the outsourced decryption of ABE scheme (ABE-VOD) for the authorized users and unauthorized users, which can simultaneously check the correctness of the transformed ciphertext for both them. However, in this paper we show that their ABE-VOD scheme cannot obtain the results which they had shown, such as finding out all invalid ciphertexts, and checking the correctness of the transformed ciphertext for the authorized user via checking it for the unauthorized user. We first construct some invalid ciphertexts which can pass the validity checking in the decryption algorithm. That means their "verify-then-decrypt" skill is unavailable. Next, we show that the method to check the validity of the outsourced decryption for the authorized users via checking it for the unauthorized users is not always correct. That is to say, there exist some invalid ciphertexts which can pass the validity checking for the unauthorized user, but cannot pass the validity checking for the authorized user.

  14. Analysis of an ABE Scheme with Verifiable Outsourced Decryption

    PubMed Central

    He, Yichuan; Li, Fagen; Jiang, Shaoquan; Zhou, Shijie

    2018-01-01

    Attribute-based encryption (ABE) is a popular cryptographic technology to protect the security of users’ data in cloud computing. In order to reduce its decryption cost, outsourcing the decryption of ciphertexts is an available method, which enables users to outsource a large number of decryption operations to the cloud service provider. To guarantee the correctness of transformed ciphertexts computed by the cloud server via the outsourced decryption, it is necessary to check the correctness of the outsourced decryption to ensure security for the data of users. Recently, Li et al. proposed a full verifiability of the outsourced decryption of ABE scheme (ABE-VOD) for the authorized users and unauthorized users, which can simultaneously check the correctness of the transformed ciphertext for both them. However, in this paper we show that their ABE-VOD scheme cannot obtain the results which they had shown, such as finding out all invalid ciphertexts, and checking the correctness of the transformed ciphertext for the authorized user via checking it for the unauthorized user. We first construct some invalid ciphertexts which can pass the validity checking in the decryption algorithm. That means their “verify-then-decrypt” skill is unavailable. Next, we show that the method to check the validity of the outsourced decryption for the authorized users via checking it for the unauthorized users is not always correct. That is to say, there exist some invalid ciphertexts which can pass the validity checking for the unauthorized user, but cannot pass the validity checking for the authorized user. PMID:29320418

  15. Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes.

    PubMed

    Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini

    2017-01-01

    For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.

  16. Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method

    NASA Astrophysics Data System (ADS)

    Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi

    2017-07-01

    This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.

  17. Coding for reliable satellite communications

    NASA Technical Reports Server (NTRS)

    Gaarder, N. T.; Lin, S.

    1986-01-01

    This research project was set up to study various kinds of coding techniques for error control in satellite and space communications for NASA Goddard Space Flight Center. During the project period, researchers investigated the following areas: (1) decoding of Reed-Solomon codes in terms of dual basis; (2) concatenated and cascaded error control coding schemes for satellite and space communications; (3) use of hybrid coding schemes (error correction and detection incorporated with retransmission) to improve system reliability and throughput in satellite communications; (4) good codes for simultaneous error correction and error detection, and (5) error control techniques for ring and star networks.

  18. Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulat, Falko; Höche, Stefan; Prestel, Stefan

    We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.

  19. A simulation study of emergency lunar escape to orbit using several simplified manual guidance and control techniques

    NASA Technical Reports Server (NTRS)

    Middleton, D. B.; Hurt, G. J., Jr.

    1971-01-01

    A fixed-base piloted simulator investigation has been made of the feasibility of using any of several manual guidance and control techniques for emergency lunar escape to orbit with very simplified, lightweight vehicle systems. The escape-to-orbit vehicles accommodate two men, but one man performs all of the guidance and control functions. Three basic attitude-control modes and four manually executed trajectory-guidance schemes were used successfully during approximately 125 simulated flights under a variety of conditions. These conditions included thrust misalinement, uneven propellant drain, and a vehicle moment-of-inertia range of 250 to 12,000 slugs per square foot. Two types of results are presented - orbit characteristics and pilot ratings of vehicle handling qualities.

  20. Introducing a new bond reactivity index: Philicities for natural bond orbitals.

    PubMed

    Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel

    2017-12-22

    In the present work, a new methodology defined for obtaining reactivity indices (philicities) is proposed. This is based on reactivity functions such as the Fukui function or the dual descriptor, and makes it possible to project the information from reactivity functions onto molecular orbitals, instead of onto the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecules' natural bond orbitals (bond reactivity indices) because these orbitals have the advantage of being localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology provides a "philicity" index for every NBO, and a representative set of molecules has been used to test the new definition. A new methodology has also been developed to compare the "finite difference" and the "frontier molecular orbital" approximations. To facilitate their use, the proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, condensation schemes based on atomic populations of the "atoms in molecules" theory, the Hirshfeld population analysis, the approximation of Mulliken (with a minimal basis set) and electrostatic potential-derived charges have also been implemented, including the calculation of "bond reactivity indices" defined in previous studies. Graphical abstract A new methodology defined for obtaining bond reactivity indices (philicities) is proposed and makes it possible to project the information from reactivity functions onto molecular orbitals. The proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, this version can use new atomic condensation schemes and new "utilities" have also been included in this second version.

  1. GEO-LEO reflectance band inter-comparison with BRDF and atmospheric scattering corrections

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Xiong, Xiaoxiong Jack; Keller, Graziela; Wu, Xiangqian

    2017-09-01

    The inter-comparison of the reflective solar bands between the instruments onboard a geostationary orbit satellite and onboard a low Earth orbit satellite is very helpful to assess their calibration consistency. GOES-R was launched on November 19, 2016 and Himawari 8 was launched October 7, 2014. Unlike the previous GOES instruments, the Advanced Baseline Imager on GOES-16 (GOES-R became GOES-16 after November 29 when it reached orbit) and the Advanced Himawari Imager (AHI) on Himawari 8 have onboard calibrators for the reflective solar bands. The assessment of calibration is important for their product quality enhancement. MODIS and VIIRS, with their stringent calibration requirements and excellent on-orbit calibration performance, provide good references. The simultaneous nadir overpass (SNO) and ray-matching are widely used inter-comparison methods for reflective solar bands. In this work, the inter-comparisons are performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with appropriate reflectance level, accurate adjustment for band spectral coverage difference, reduction of impact from pixel mismatching, and consistency of BRDF and atmospheric correction. The site in this work is a desert site in Australia (latitude -29.0 South; longitude 139.8 East). Due to the difference in solar and view angles, two corrections are applied to have comparable measurements. The first is the atmospheric scattering correction. The satellite sensor measurements are top of atmosphere reflectance. The scattering, especially Rayleigh scattering, should be removed allowing the ground reflectance to be derived. Secondly, the angle differences magnify the BRDF effect. The ground reflectance should be corrected to have comparable measurements. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum modeling and BRDF correction is performed using a semi-empirical model. AHI band 1 (0.47μm) shows good matching with VIIRS band M3 with difference of 0.15%. AHI band 5 (1.69μm) shows largest difference in comparison with VIIRS M10.

  2. Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.

  3. The scheme of a blindless positioning structure with parallel adjusting tables and swing rods for 4000 optical fibres of LAMOST.

    NASA Astrophysics Data System (ADS)

    Yunguo, Gao

    1996-12-01

    This scheme structure is for positioning 4000 optical fibres of LAMOST telescope. It adopts the swing rods adjusted parallel and simultaneously by many small tables. The problems, for example, positioning accuracy of the optical fibers, the time to readjust all the 4000 optical fibres and error correction, etc. have been considered in the scheme. The structure has no blind area.

  4. Permanence analysis of a concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.; Kasami, T.

    1983-01-01

    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed.

  5. Probability of undetected error after decoding for a concatenated coding scheme

    NASA Technical Reports Server (NTRS)

    Costello, D. J., Jr.; Lin, S.

    1984-01-01

    A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed.

  6. Sliced Costochondral Chip Grafts in Posttraumatic Enophthalmos Correction.

    PubMed

    Kim, Tae-Hoon; Park, Ie-Hyon; Hong, Sa-Hyeok; Eun, Seok-Chan

    2017-03-01

    Posttraumatic enophthalmos is a relatively common problem following orbitozygomatic fractures. However, inadequate long-term results are frequently observed due to the difficulty of performing intraoperative fine adjustments to soft-tissue volume and orbital size and gradual absorption of some grafted materials. Here, the authors describe an efficient method of enophthalmos correction using sliced costochondral bone and cartilage combination grafts. From 2005 to 2011, the authors corrected enophthalmos in 12 patients using sliced costochondral grafts. The mean follow-up period was 13 months. For costochondral graft harvest, an approximately 5-cm skin incision was made directly above the seventh costal cartilage, the perichondrium was peeled back, and a small piece of rib bone and costal cartilage was harvested from the anterior part of the seventh rib bone and cartilage and cut into 2-mm-thick slices. A subciliary and/or transcaruncular incision was made in the affected side eyelid to expose the operating field, subperiosteal dissection was performed in the orbit and orbital floor. The cartilage chips were gradually grafted onto the dissected areas from the posterior orbit. Aesthetically satisfactory results were obtained in all patients. No complications in the donor area were observed. Furthermore, no patients experienced a recurrence or deterioration of diplopia over the follow-up period. One patient experienced temporary high intraocular pressure, which spontaneously resolved with medication and eye drops. The costochondral graft is adequate for the reconstruction of the fracture, easy to obtain, easily adaptable to the orbital walls, and has minimal morbidity at the donor site.

  7. Stable Satellite Orbits for Global Coverage of the Moon

    NASA Technical Reports Server (NTRS)

    Ely, Todd; Lieb, Erica

    2006-01-01

    A document proposes a constellation of spacecraft to be placed in orbit around the Moon to provide navigation and communication services with global coverage required for exploration of the Moon. There would be six spacecraft in inclined elliptical orbits: three in each of two orthogonal orbital planes, suggestive of a linked-chain configuration. The orbits have been chosen to (1) provide 99.999-percent global coverage for ten years and (2) to be stable under perturbation by Earth gravitation and solar-radiation pressure, so that no deterministic firing of thrusters would be needed to maintain the orbits. However, a minor amount of orbit control might be needed to correct for such unmodeled effects as outgassing of the spacecraft.

  8. Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade-Ines, Eduardo; Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov

    We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-ordermore » models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.« less

  9. Adaptive free-space optical communications through turbulence using self-healing Bessel beams

    PubMed Central

    Li, Shuhui; Wang, Jian

    2017-01-01

    We present a scheme to realize obstruction- and turbulence-tolerant free-space orbital angular momentum (OAM) multiplexing link by using self-healing Bessel beams accompanied by adaptive compensation techniques. Compensation of multiple 16-ary quadrature amplitude modulation (16-QAM) data carrying Bessel beams through emulated atmospheric turbulence and obstructions is demonstrated. The obtained experimental results indicate that the compensation scheme can effectively reduce the inter-channel crosstalk, improve the bit-error rate (BER) performance, and recuperate the nondiffracting property of Bessel beams. The proposed scheme might be used in future high-capacity OAM links which are affected by atmospheric turbulence and obstructions. PMID:28230076

  10. Automatic rendezvous and docking systems functional and performance requirements

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A generalized mission design scheme which utilizes a standard mission profile for all OMV rendezvous operations, recognizes typical operational constraints, and minimizes propellant penalties due to nodal regression effects was developed. This scheme has been used to demonstrate a unified guidance and navigation maneuver processor (the UMP), which supports all mission phases through station-keeping. The initial demonstration version of the Orbital Rendezvous Mission Planner (ORMP) was provided for evaluation purposes, and program operation was discussed.

  11. Global properties in an experimental realization of time-delayed feedback control with an unstable control loop.

    PubMed

    Höhne, Klaus; Shirahama, Hiroyuki; Choe, Chol-Ung; Benner, Hartmut; Pyragas, Kestutis; Just, Wolfram

    2007-05-25

    We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize the importance of the coupling scheme for the global control performance.

  12. Experimental verification of Pyragas-Schöll-Fiedler control.

    PubMed

    von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram

    2010-09-01

    We present an experimental realization of time-delayed feedback control proposed by Schöll and Fiedler. The scheme enables us to stabilize torsion-free periodic orbits in autonomous systems, and to overcome the so-called odd number limitation. The experimental control performance is in quantitative agreement with the bifurcation analysis of simple model systems. The results uncover some general features of the control scheme which are deemed to be relevant for a large class of setups.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hégely, Bence; Nagy, Péter R.; Kállay, Mihály, E-mail: kallay@mail.bme.hu

    Exact schemes for the embedding of density functional theory (DFT) and wave function theory (WFT) methods into lower-level DFT or WFT approaches are introduced utilizing orbital localization. First, a simple modification of the projector-based embedding scheme of Manby and co-workers [J. Chem. Phys. 140, 18A507 (2014)] is proposed. We also use localized orbitals to partition the system, but instead of augmenting the Fock operator with a somewhat arbitrary level-shift projector we solve the Huzinaga-equation, which strictly enforces the Pauli exclusion principle. Second, the embedding of WFT methods in local correlation approaches is studied. Since the latter methods split up themore » system into local domains, very simple embedding theories can be defined if the domains of the active subsystem and the environment are treated at a different level. The considered embedding schemes are benchmarked for reaction energies and compared to quantum mechanics (QM)/molecular mechanics (MM) and vacuum embedding. We conclude that for DFT-in-DFT embedding, the Huzinaga-equation-based scheme is more efficient than the other approaches, but QM/MM or even simple vacuum embedding is still competitive in particular cases. Concerning the embedding of wave function methods, the clear winner is the embedding of WFT into low-level local correlation approaches, and WFT-in-DFT embedding can only be more advantageous if a non-hybrid density functional is employed.« less

  14. Uncertainty of InSAR velocity fields for measuring long-wavelength displacement

    NASA Astrophysics Data System (ADS)

    Fattahi, H.; Amelung, F.

    2014-12-01

    Long-wavelength artifacts in InSAR data are the main limitation to measure long-wavelength displacement; they are traditionally attributed mainly to the inaccuracy of the satellite orbits (orbital errors). However, most satellites are precisely tracked resulting in uncertainties of orbits of 2-10 cm. Orbits of these satellites are thus precise enough to obtain precise velocity fields with uncertainties better than 1 mm/yr/100 km for older satellites (e.g. Envisat) and better than 0.2 mm/yr/100 km for modern satellites (e.g. TerraSAR-X and Sentinel-1) [Fattahi & Amelung, 2014]. Such accurate velocity fields are achievable if long-wavelength artifacts from sources other than orbital errors are identified and corrected for. We present a modified Small Baseline approach to measure long-wavelength deformation and evaluate the uncertainty of these measurements. We use a redundant network of interferograms for detection and correction of unwrapping errors to ensure the unbiased estimation of phase history. We distinguish between different sources of long-wavelength artifacts and correct those introduced by atmospheric delay, topographic residuals, timing errors, processing approximations and hardware issues. We evaluate the uncertainty of the velocity fields using a covariance matrix with the contributions from orbital errors and residual atmospheric delay. For contributions from the orbital errors we consider the standard deviation of velocity gradients in range and azimuth directions as a function of orbital uncertainty. For contributions from the residual atmospheric delay we use several approaches including the structure functions of InSAR time-series epochs, the predicted delay from numerical weather models and estimated wet delay from optical imagery. We validate this InSAR approach for measuring long-wavelength deformation by comparing InSAR velocity fields over ~500 km long swath across the southern San Andreas fault system with independent GPS velocities and examine the estimated uncertainties in several non-deforming areas. We show the efficiency of the approach to study the continental deformation across the Chaman fault system at the western Indian plate boundary. Ref: Fattahi, H., & Amelung, F., (2014), InSAR uncertainty due to orbital errors, Geophys, J. Int (in press).

  15. Long distance quantum communication using quantum error correction

    NASA Technical Reports Server (NTRS)

    Gingrich, R. M.; Lee, H.; Dowling, J. P.

    2004-01-01

    We describe a quantum error correction scheme that can increase the effective absorption length of the communication channel. This device can play the role of a quantum transponder when placed in series, or a cyclic quantum memory when inserted in an optical loop.

  16. Study of hypervelocity meteoroid impact on orbital space stations

    NASA Technical Reports Server (NTRS)

    Leimbach, K. R.; Prozan, R. J.

    1973-01-01

    Structural damage resulting in hypervelocity impact of a meteorite on a spacecraft is discussed. Of particular interest is the backside spallation caused by such a collision. To treat this phenomenon two numerical schemes were developed in the course of this study to compute the elastic-plastic flow fracture of a solid. The numerical schemes are a five-point finite difference scheme and a four-node finite element scheme. The four-node finite element scheme proved to be less sensitive to the type of boundary conditions and loadings. Although further development work is needed to improve the program versatility (generalization of the network topology, secondary storage for large systems, improving of the coding to reduce the run time, etc.), the basic framework is provided for a utilitarian computer program which may be used in a wide variety of situations. Analytic results showing the program output are given for several test cases.

  17. Earth Resources Technology Satellite Operations Control Center (OCC). ERTS-B flight activation plan

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Included in this plan are general objectives through Day 7, operational guidelines and restraints. Following the activation of all subsystems (through Day 3), special series of payload operations were performed to obtain data samples for the different combinations of exposure/gain settings. This took place from Day 4 through Day 7. The Orbit Adjust was employed to perform vernier corrections after the orbit had been defined. The orbit data was collected through Day 3, with the corrections being made from Day 4 through Day 7. ERTS command auxiliary memory (ECAM) was turned on in Day 3 and the memory dumped to a narrow band tape recorder. A verification of memory was done in the off line mode. ECAM was not used in a payload support mode until Day 7.

  18. Potential Energy Surface for Large Barrierless Reaction Systems: Application to the Kinetic Calculations of the Dissociation of Alkanes and the Reverse Recombination Reactions.

    PubMed

    Yao, Qian; Cao, Xiao-Mei; Zong, Wen-Gang; Sun, Xiao-Hui; Li, Ze-Rong; Li, Xiang-Yuan

    2018-05-31

    The isodesmic reaction method is applied to calculate the potential energy surface (PES) along the reaction coordinates and the rate constants of the barrierless reactions for unimolecular dissociation reactions of alkanes to form two alkyl radicals and their reverse recombination reactions. The reaction class is divided into 10 subclasses depending upon the type of carbon atoms in the reaction centers. A correction scheme based on isodesmic reaction theory is proposed to correct the PESs at UB3LYP/6-31+G(d,p) level. To validate the accuracy of this scheme, a comparison of the PESs at B3LYP level and the corrected PESs with the PESs at CASPT2/aug-cc-pVTZ level is performed for 13 representative reactions, and it is found that the deviations of the PESs at B3LYP level are up to 35.18 kcal/mol and are reduced to within 2 kcal/mol after correction, indicating that the PESs for barrierless reactions in a subclass can be calculated meaningfully accurately at a low level of ab initio method using our correction scheme. High-pressure limit rate constants and pressure dependent rate constants of these reactions are calculated based on their corrected PESs and the results show the pressure dependence of the rate constants cannot be ignored, especially at high temperatures. Furthermore, the impact of molecular size on the pressure-dependent rate constants of decomposition reactions of alkanes and their reverse reactions has been studied. The present work provides an effective method to generate meaningfully accurate PESs for large molecular system.

  19. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/

  20. A complete solution for GP-B's gyroscopic precession by retarded gravitational theory

    NASA Astrophysics Data System (ADS)

    Tang, Keyun

    Mainstream physicists generally believe that Mercury’s Perihelion precession and GP-B’ gyroscopic precession are two of the strongest evidences supporting Einstein’ curved spacetime and general relativity. However, most classical literatures and textbooks (e.g. Ohanain: Gravitation and Spacetime) paint an incorrect picture of Mercury’s orbit anomaly, namely Mercury’s perihelion precessed 43 arc-seconds per century; a correct picture should be that Mercury rotated 43 arc-seconds per century more than along Newtonian theoretical orbit. The essence of Le Verrier’s and Newcomb’s observation and analysis is that the angular speed of Mercury is slightly faster than the Newtonian theoretical value. The complete explanation to Mercury’s orbit anomaly should include two factors, perihelion precession is one of two factors, in addition, the change of orbital radius will also cause a change of angular speed, which is another component of Mercury's orbital anomaly. If Schwarzschild metric is correct, then the solution of the Schwarzschild orbit equation must contain three non-ignorable items. The first corresponds to Newtonian ellipse; the second is a nonlinear perturbation with increasing amplitude, which causes the precession of orbit perihelion; this is just one part of the angular speed anomaly of Mercury; the third part is a linear perturbation, corresponding to a similar figure of the Newton's ellipse, but with a minimal radius; this makes no contribution to the perihelion precession of the Schwarzschild orbit, but makes the Schwarzschild orbital radius slightly smaller, leading to a slight increase in Mercury’s angular speed. All classical literatures of general relativity ignored this last factor, which is a gross oversight. If you correctly take all three factors into consideration, the final result is that the difference between the angles rotated along Schwarzschild’s orbit and the angle rotated along Newton’s orbit for one hundred years should be more than 130.5 arc-seconds; this means that Le Verrier’s observation on Mercury’s orbital anomaly can not be explained correctly by the Schwarzschild metric. In contrast, Mercury’s angular speed anomaly can be explained satisfactorily by the radial induction component and angular component of retarded gravitation. From the perspective of energy, the additional radial component of retarded gravitation makes the radius of Mercury’s orbit slightly smaller, i.e. some potential energy is lost. And the angular component of retarded gravitation changes the Mercury's angular momentum; this proves that the changes of Mercury’s orbit and angular speed are the results of gravitational radiation. I have found that there are similar errors in the explanation on the gyroscopic precession of GP-B, i.e. physicists only consider the contribution of the nonlinear perturbation terms and never consider the contribution of linear perturbation terms. For the precession of GP-B, the complete Schwarzschild’s solution should be about 19.8 arc-seconds per year; it is far more than the experimental results of 6.602 arc-seconds per year. I have calculated the gyroscopic precession of GP-B due to retarded gravitation, the result is 6.607 arc-seconds per year; this matches well with the experimental results. These successful explanations for both anomalies of Mercury’s orbit and the gyroscopic precession of GP -B shows that Retarded Gravitation is indeed a sound gravitational theory, and that spacetime is in fact flat, and gravity travels at the speed of light. Both Mercury’s angular speed anomaly and GP - B gyro precession were the result of the gravitational radiation!

  1. Quantum teleportation in the spin-orbit variables of photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoury, A. Z.; Milman, P.; Laboratoire Materiaux et Phenomenes Quantiques, CNRS UMR 7162, Universite Paris Diderot, F-75013, Paris

    2011-06-15

    We propose a polarization to orbital angular momentum teleportation scheme using entangled photon pairs generated by spontaneous parametric down-conversion. By making a joint detection of the polarization and angular momentum parity of a single photon, we are able to detect all the Bell states and perform, in principle, perfect teleportation from a discrete to a continuous system using minimal resources. The proposed protocol implementation demands experimental resources that are currently available in quantum optics laboratories.

  2. High-Resolution Topography of Mercury from Messenger Orbital Stereo Imaging - the Southern Hemisphere Quadrangles

    NASA Astrophysics Data System (ADS)

    Preusker, F.; Oberst, J.; Stark, A.; Burmeister, S.

    2018-04-01

    We produce high-resolution (222 m/grid element) Digital Terrain Models (DTMs) for Mercury using stereo images from the MESSENGER orbital mission. We have developed a scheme to process large numbers, typically more than 6000, images by photogrammetric techniques, which include, multiple image matching, pyramid strategy, and bundle block adjustments. In this paper, we present models for map quadrangles of the southern hemisphere H11, H12, H13, and H14.

  3. Control of Wannier orbitals for generating tunable Ising interactions of ultracold atoms in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inaba, Kensuke; Tamaki, Kiyoshi; Igeta, Kazuhiro

    2014-12-04

    In this study, we propose a method for generating cluster states of atoms in an optical lattice. By utilizing the quantum properties of Wannier orbitals, we create an tunable Ising interaction between atoms without inducing the spin-exchange interactions. We investigate the cause of errors that occur during entanglement generations, and then we propose an error-management scheme, which allows us to create high-fidelity cluster states in a short time.

  4. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using ``split window'' IR data from GOES and AVHRR

    NASA Astrophysics Data System (ADS)

    Yu, Tianxu; Rose, William I.; Prata, A. J.

    2002-08-01

    Volcanic ash in volcanic clouds can be mapped in two dimensions using two-band thermal infrared data available from meteorological satellites. Wen and Rose [1994] developed an algorithm that allows retrieval of the effective particle size, the optical depth of the volcanic cloud, and the mass of fine ash in the cloud. Both the mapping and the retrieval scheme are less accurate in the humid tropical atmosphere. In this study we devised and tested a scheme for atmospheric correction of volcanic ash mapping and retrievals. The scheme utilizes infrared (IR) brightness temperature (BT) information in two infrared channels (both between 10 and 12.5 μm) and the brightness temperature differences (BTD) to estimate the amount of BTD shift caused by lower tropospheric water vapor. It is supported by the moderate resolution transmission (MODTRAN) analysis. The discrimination of volcanic clouds in the new scheme also uses both BT and BTD data but corrects for the effects of the water vapor. The new scheme is demonstrated and compared with the old scheme using two well-documented examples: (1) the 18 August 1992 volcanic cloud of Crater Peak, Mount Spurr, Alaska, and (2) the 26 December 1997 volcanic cloud from Soufriere Hills, Montserrat. The Spurr example represents a relatively ``dry'' subarctic atmospheric condition. The new scheme sees a volcanic cloud that is about 50% larger than the old. The mean optical depth and effective radii of cloud particles are lower by 22% and 9%, and the fine ash mass in the cloud is 14% higher. The Montserrat cloud is much smaller than Spurr and is more sensitive to atmospheric moisture. It also was located in a moist tropical atmosphere. For the Montserrat example the new scheme shows larger differences, with the area of the volcanic cloud being about 5.5 times larger, the optical depth and effective radii of particles lower by 56% and 28%, and the total fine particle mass in the cloud increased by 53%. The new scheme can be automated and can contribute to more accurate remote volcanic ash detection. More tests are needed to find the best way to estimate the water vapor effects in real time.

  5. Early Mission Maneuver Operations for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Roberts, Craig; Case, Sara; Reagoso, John; Webster, Cassandra

    2015-01-01

    The Deep Space Climate Observatory mission launched on February 11, 2015, and inserted onto a transfer trajectory toward a Lissajous orbit around the Sun-Earth L1 libration point. This paper presents an overview of the baseline transfer orbit and early mission maneuver operations leading up to the start of nominal science orbit operations. In particular, the analysis and performance of the spacecraft insertion, mid-course correction maneuvers, and the deep-space Lissajous orbit insertion maneuvers are discussed, com-paring the baseline orbit with actual mission results and highlighting mission and operations constraints..

  6. Compositional variation in the Hadley Apennine region

    NASA Technical Reports Server (NTRS)

    Clark, P. E.; Hawke, B. R.

    1982-01-01

    Orbital geochemical data in the Hadley Apennine region are related to typical rock compositions and used in determining the distribution of soils derived from the rock types found in this region. Orbital XRF Mg/Si and Al/Si intensities are the orbital data that are used primarily. These data are corrected for spurious interorbit variation using a modification of a previously developed method. The corrected values are than converted to % MgO and % Al2O3, respectively, from theoretical considerations, and as such are compared with similar concentrations for typical lunar rocks and soils of the Apollo 15 landing site. The relationship of the XRF values to Fe, Ti, and Th concentrations, derived from gamma-ray observations, is also considered. It is established that the orbital geochemistry data for this region are consistent with the presence of a mixture of ANT suite and Fra Mauro basalt components frequently dominated by a KREEP basalt component toward the west and by a mafic pyroclastic component toward the east.

  7. Erratum: 2-Bromo-1-(4-methyl-phen-yl)-3-phenyl-prop-2-en-1-one. Corrigendum.

    PubMed

    Fun, Hoong-Kun; Jebas, Samuel Robinson; Patil, P S; Karthikeyan, M S; Dharmaprakash, S M

    2008-11-13

    The chemical name in the title and the scheme of the paper by Fun, Jebas, Patil, Karthikeyan & Dharmaprakash [Acta Cryst. (2008), E64, o1559] are corrected.[This corrects the article DOI: 10.1107/S1600536808022289.].

  8. Five-wave-packet quantum error correction based on continuous-variable cluster entanglement

    PubMed Central

    Hao, Shuhong; Su, Xiaolong; Tian, Caixing; Xie, Changde; Peng, Kunchi

    2015-01-01

    Quantum error correction protects the quantum state against noise and decoherence in quantum communication and quantum computation, which enables one to perform fault-torrent quantum information processing. We experimentally demonstrate a quantum error correction scheme with a five-wave-packet code against a single stochastic error, the original theoretical model of which was firstly proposed by S. L. Braunstein and T. A. Walker. Five submodes of a continuous variable cluster entangled state of light are used for five encoding channels. Especially, in our encoding scheme the information of the input state is only distributed on three of the five channels and thus any error appearing in the remained two channels never affects the output state, i.e. the output quantum state is immune from the error in the two channels. The stochastic error on a single channel is corrected for both vacuum and squeezed input states and the achieved fidelities of the output states are beyond the corresponding classical limit. PMID:26498395

  9. Macroscopic dielectric function within time-dependent density functional theory—Real time evolution versus the Casida approach

    NASA Astrophysics Data System (ADS)

    Sander, Tobias; Kresse, Georg

    2017-02-01

    Linear optical properties can be calculated by solving the time-dependent density functional theory equations. Linearization of the equation of motion around the ground state orbitals results in the so-called Casida equation, which is formally very similar to the Bethe-Salpeter equation. Alternatively one can determine the spectral functions by applying an infinitely short electric field in time and then following the evolution of the electron orbitals and the evolution of the dipole moments. The long wavelength response function is then given by the Fourier transformation of the evolution of the dipole moments in time. In this work, we compare the results and performance of these two approaches for the projector augmented wave method. To allow for large time steps and still rely on a simple difference scheme to solve the differential equation, we correct for the errors in the frequency domain, using a simple analytic equation. In general, we find that both approaches yield virtually indistinguishable results. For standard density functionals, the time evolution approach is, with respect to the computational performance, clearly superior compared to the solution of the Casida equation. However, for functionals including nonlocal exchange, the direct solution of the Casida equation is usually much more efficient, even though it scales less beneficial with the system size. We relate this to the large computational prefactors in evaluating the nonlocal exchange, which renders the time evolution algorithm fairly inefficient.

  10. Results after En Bloc Lateral Wall Decompression Surgery with Orbital Fat Resection in 111 Patients with Graves' Orbitopathy

    PubMed Central

    Fichter, Nicole; Guthoff, Rudolf F.

    2015-01-01

    Purpose. To evaluate the effect of en bloc lateral wall decompression with additional orbital fat resection in terms of exophthalmos reduction and complications. Methods. A retrospective, noncomparative case series study from 1999 to 2011 (chart review) in Graves' orbitopathy (GO) patients. The standardized surgical technique involved removal of the lateral orbital wall including the orbital rim via a lid crease approach combined with additional orbital fat resection. Exophthalmos, diplopia, retrobulbar pressure sensation, and complications were analyzed pre- and postoperatively. Results. A total of 111 patients (164 orbits) with follow-up >3 months were analysed. Mean exophthalmos reduction was 3.05mm and preoperative orbital pressure sensation resolved or improved in all patients. Visual acuity improved significantly in patients undergoing surgery for rehabilitative or vision threatening purposes. Preoperative diplopia improved in 10 patients (9.0%) but worsened in 5 patients (4.5%), necessitating surgical correction in 3 patients. There were no significant complications; however, one patient had slight hollowing of the temporalis muscle around the scar that did not necessitate revision, and another patient with a circumscribed retraction of the scar itself underwent surgical correction. Conclusions. The study confirms the efficiency of en bloc lateral wall decompression in GO in a large series of patients, highlighting the low risk of disturbance of binocular functions and of cosmetic blemish in the temporal midface region. PMID:26221142

  11. A Novel Grid SINS/DVL Integrated Navigation Algorithm for Marine Application

    PubMed Central

    Kang, Yingyao; Zhao, Lin; Cheng, Jianhua; Fan, Xiaoliang

    2018-01-01

    Integrated navigation algorithms under the grid frame have been proposed based on the Kalman filter (KF) to solve the problem of navigation in some special regions. However, in the existing study of grid strapdown inertial navigation system (SINS)/Doppler velocity log (DVL) integrated navigation algorithms, the Earth models of the filter dynamic model and the SINS mechanization are not unified. Besides, traditional integrated systems with the KF based correction scheme are susceptible to measurement errors, which would decrease the accuracy and robustness of the system. In this paper, an adaptive robust Kalman filter (ARKF) based hybrid-correction grid SINS/DVL integrated navigation algorithm is designed with the unified reference ellipsoid Earth model to improve the navigation accuracy in middle-high latitude regions for marine application. Firstly, to unify the Earth models, the mechanization of grid SINS is introduced and the error equations are derived based on the same reference ellipsoid Earth model. Then, a more accurate grid SINS/DVL filter model is designed according to the new error equations. Finally, a hybrid-correction scheme based on the ARKF is proposed to resist the effect of measurement errors. Simulation and experiment results show that, compared with the traditional algorithms, the proposed navigation algorithm can effectively improve the navigation performance in middle-high latitude regions by the unified Earth models and the ARKF based hybrid-correction scheme. PMID:29373549

  12. A correction scheme for a simplified analytical random walk model algorithm of proton dose calculation in distal Bragg peak regions

    NASA Astrophysics Data System (ADS)

    Yao, Weiguang; Merchant, Thomas E.; Farr, Jonathan B.

    2016-10-01

    The lateral homogeneity assumption is used in most analytical algorithms for proton dose, such as the pencil-beam algorithms and our simplified analytical random walk model. To improve the dose calculation in the distal fall-off region in heterogeneous media, we analyzed primary proton fluence near heterogeneous media and propose to calculate the lateral fluence with voxel-specific Gaussian distributions. The lateral fluence from a beamlet is no longer expressed by a single Gaussian for all the lateral voxels, but by a specific Gaussian for each lateral voxel. The voxel-specific Gaussian for the beamlet of interest is calculated by re-initializing the fluence deviation on an effective surface where the proton energies of the beamlet of interest and the beamlet passing the voxel are the same. The dose improvement from the correction scheme was demonstrated by the dose distributions in two sets of heterogeneous phantoms consisting of cortical bone, lung, and water and by evaluating distributions in example patients with a head-and-neck tumor and metal spinal implants. The dose distributions from Monte Carlo simulations were used as the reference. The correction scheme effectively improved the dose calculation accuracy in the distal fall-off region and increased the gamma test pass rate. The extra computation for the correction was about 20% of that for the original algorithm but is dependent upon patient geometry.

  13. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings

    PubMed Central

    Zheng, Shuang; Wang, Jian

    2017-01-01

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325

  14. Special Semaphore Scheme for UHF Spacecraft Communications

    NASA Technical Reports Server (NTRS)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  15. Communication: Density functional theory embedding with the orthogonality constrained basis set expansion procedure

    NASA Astrophysics Data System (ADS)

    Culpitt, Tanner; Brorsen, Kurt R.; Hammes-Schiffer, Sharon

    2017-06-01

    Density functional theory (DFT) embedding approaches have generated considerable interest in the field of computational chemistry because they enable calculations on larger systems by treating subsystems at different levels of theory. To circumvent the calculation of the non-additive kinetic potential, various projector methods have been developed to ensure the orthogonality of molecular orbitals between subsystems. Herein the orthogonality constrained basis set expansion (OCBSE) procedure is implemented to enforce this subsystem orbital orthogonality without requiring a level shifting parameter. This scheme is a simple alternative to existing parameter-free projector-based schemes, such as the Huzinaga equation. The main advantage of the OCBSE procedure is that excellent convergence behavior is attained for DFT-in-DFT embedding without freezing any of the subsystem densities. For the three chemical systems studied, the level of accuracy is comparable to or higher than that obtained with the Huzinaga scheme with frozen subsystem densities. Allowing both the high-level and low-level DFT densities to respond to each other during DFT-in-DFT embedding calculations provides more flexibility and renders this approach more generally applicable to chemical systems. It could also be useful for future extensions to embedding approaches combining wavefunction theories and DFT.

  16. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.

    PubMed

    Zheng, Shuang; Wang, Jian

    2017-01-17

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.

  17. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Lewis, Stephen R.; Steele, Liam J.; Holmes, James; Read, Peter L.; Valeanu, Alexandru; Smith, Michael D.; Kass, David; Kleinboehl, Armin; LMD Team, MGS/TES Team, MRO/MCS Team

    2016-10-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This four-dimensional dataset has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office.The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") located at the following URL: http://macdap.physics.ox.ac.uk/The first paper about MACDA reanalysis of TES retrievals appeared in 2006, although the acronym MACDA was not yet used at that time. Ten years later, MACDA v1.0 has been used by several researchers worldwide and has contributed to the advancement of the knowledge about the martian atmosphere in critical areas such as the radiative impact of water ice clouds, the solsticial pause in baroclinic wave activity, and the climatology and dynamics of polar vortices, to cite only a few. It is therefore timely to review the scientific results obtained by using such Mars reference atmospheric reanalysis, in order to understand what priorities the user community should focus on in the next decade.MACDA is an ongoing collaborative project, and work funded by NASA MDAP Programme is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust.

  18. Computational method for the correction of proximity effect in electron-beam lithography (Poster Paper)

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Owen, Gerry; Pease, Roger Fabian W.; Kailath, Thomas

    1992-07-01

    Dose correction is commonly used to compensate for the proximity effect in electron lithography. The computation of the required dose modulation is usually carried out using 'self-consistent' algorithms that work by solving a large number of simultaneous linear equations. However, there are two major drawbacks: the resulting correction is not exact, and the computation time is excessively long. A computational scheme, as shown in Figure 1, has been devised to eliminate this problem by the deconvolution of the point spread function in the pattern domain. The method is iterative, based on a steepest descent algorithm. The scheme has been successfully tested on a simple pattern with a minimum feature size 0.5 micrometers , exposed on a MEBES tool at 10 KeV in 0.2 micrometers of PMMA resist on a silicon substrate.

  19. Deterministic error correction for nonlocal spatial-polarization hyperentanglement

    PubMed Central

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-01-01

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681

  20. Deterministic error correction for nonlocal spatial-polarization hyperentanglement.

    PubMed

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-02-10

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.

  1. Lifting scheme-based method for joint coding 3D stereo digital cinema with luminace correction and optimized prediction

    NASA Astrophysics Data System (ADS)

    Darazi, R.; Gouze, A.; Macq, B.

    2009-01-01

    Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.

  2. A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Piatkowski, Marian; Müthing, Steffen; Bastian, Peter

    2018-03-01

    In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.

  3. Investigation of television transmission using adaptive delta modulation principles

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1976-01-01

    The results are presented of a study on the use of the delta modulator as a digital encoder of television signals. The computer simulation of different delta modulators was studied in order to find a satisfactory delta modulator. After finding a suitable delta modulator algorithm via computer simulation, the results were analyzed and then implemented in hardware to study its ability to encode real time motion pictures from an NTSC format television camera. The effects of channel errors on the delta modulated video signal were tested along with several error correction algorithms via computer simulation. A very high speed delta modulator was built (out of ECL logic), incorporating the most promising of the correction schemes, so that it could be tested on real time motion pictures. Delta modulators were investigated which could achieve significant bandwidth reduction without regard to complexity or speed. The first scheme investigated was a real time frame to frame encoding scheme which required the assembly of fourteen, 131,000 bit long shift registers as well as a high speed delta modulator. The other schemes involved the computer simulation of two dimensional delta modulator algorithms.

  4. Satellite laser ranging to low Earth orbiters: orbit and network validation

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof

    2018-04-01

    Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

  5. Participation and performance in INSTAND multi-analyte molecular genetics external quality assessment schemes from 2006 to 2012.

    PubMed

    Maly, Friedrich E; Fried, Roman; Spannagl, Michael

    2014-01-01

    INSTAND e.V. has provided Molecular Genetics Multi-Analyte EQA schemes since 2006. EQA participation and performance were assessed from 2006 - 2012. From 2006 to 2012, the number of analytes in the Multi-Analyte EQA schemes rose from 17 to 53. Total number of results returned rose from 168 in January 2006 to 824 in August 2012. The overall error rate was 1.40 +/- 0.84% (mean +/- SD, N = 24 EQA dates). From 2006 to 2012, no analyte was reported 100% correctly. Individual participant performance was analysed for one common analyte, Lactase (LCT) T-13910C. From 2006 to 2012, 114 laboratories participated in this EQA. Of these, 10 laboratories (8.8%) reported at least one wrong result during the whole observation period. All laboratories reported correct results after their failure incident. In spite of the low overall error rate, EQA will continue to be important for Molecular Genetics.

  6. A modified non-binary LDPC scheme based on watermark symbols in high speed optical transmission systems

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo

    2016-04-01

    We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.

  7. A concatenated coding scheme for error control

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1985-01-01

    A concatenated coding scheme for error contol in data communications was analyzed. The inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if either the inner code decoder fails to make a successful decoding or the outer code decoder detects the presence of errors after the inner code decoding. Probability of undetected error of the proposed scheme is derived. An efficient method for computing this probability is presented. Throughout efficiency of the proposed error control scheme incorporated with a selective repeat ARQ retransmission strategy is analyzed.

  8. A new radiation infrastructure for the Modular Earth Submodel System (MESSy, based on version 2.51)

    NASA Astrophysics Data System (ADS)

    Dietmüller, Simone; Jöckel, Patrick; Tost, Holger; Kunze, Markus; Gellhorn, Catrin; Brinkop, Sabine; Frömming, Christine; Ponater, Michael; Steil, Benedikt; Lauer, Axel; Hendricks, Johannes

    2016-06-01

    The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a base model via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT, and ORBIT. The submodel RAD (including the shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) online radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of online radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.

  9. Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation

    NASA Astrophysics Data System (ADS)

    Erhard, Manuel; Qassim, Hammam; Mand, Harjaspreet; Karimi, Ebrahim; Boyd, Robert W.

    2015-08-01

    There exists two prominent methods to transfer information between two spatially separated parties, namely Alice (A) and Bob (B): quantum teleportation and remote state preparation. However, the difference between these methods is, in the teleportation scheme, the state to be transferred is completely unknown, whereas in state preparation it should be known to the sender. In addition, photonic state teleportation is probabilistic due to the impossibility of performing a two-particle complete Bell-state analysis with linear optics, while remote state preparation can be performed deterministically. Here we report the first realization of photonic hybrid remote state preparation from spin to orbital angular momentum degrees of freedom. In our scheme, the polarization state of photon A is transferred to orbital angular momentum of photon B. The prepared states are visualized in real time by means of an intensified CCD camera. The quality of the prepared states is verified by performing quantum state tomography, which confirms an average fidelity higher than 99.4%. We believe that this experiment paves the way towards a novel means of quantum communication in which encryption and decryption are carried out in naturally different Hilbert spaces, and therefore may provide a means for enhancing security.

  10. SU(3) Orbital Kondo Effect with Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Nishida, Yusuke

    2013-09-01

    We propose a simple but novel scheme to realize the Kondo effect with ultracold atoms. Our system consists of a Fermi sea of spinless fermions interacting with an impurity atom of different species which is confined by an isotropic potential. The interspecies attraction can be tuned with an s-wave Feshbach resonance so that the impurity atom and a spinless fermion form a bound dimer that occupies a threefold-degenerate p orbital of the confinement potential. Many-body scatterings of this dimer and surrounding spinless fermions occur with exchanging their angular momenta and thus exhibit the SU(3) orbital Kondo effect. The associated Kondo temperature has a universal leading exponent given by TK∝exp⁡[-π/(3apkF3)] that depends only on an effective p-wave scattering volume ap and a Fermi wave vector kF. We also elucidate a Kondo singlet formation at zero temperature and an anisotropic interdimer interaction mediated by surrounding spinless fermions. The Kondo effect thus realized in ultracold atom experiments may be observed as an increasing atom loss by lowering the temperature or with radio-frequency spectroscopy. Our scheme and its extension to a dense Kondo lattice will be useful to develop new insights into yet unresolved aspects of Kondo physics.

  11. Symmetric weak ternary quantum homomorphic encryption schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  12. A secure and efficient password-based user authentication scheme using smart cards for the integrated EPR information system.

    PubMed

    Lee, Tian-Fu; Chang, I-Pin; Lin, Tsung-Hung; Wang, Ching-Cheng

    2013-06-01

    The integrated EPR information system supports convenient and rapid e-medicine services. A secure and efficient authentication scheme for the integrated EPR information system provides safeguarding patients' electronic patient records (EPRs) and helps health care workers and medical personnel to rapidly making correct clinical decisions. Recently, Wu et al. proposed an efficient password-based user authentication scheme using smart cards for the integrated EPR information system, and claimed that the proposed scheme could resist various malicious attacks. However, their scheme is still vulnerable to lost smart card and stolen verifier attacks. This investigation discusses these weaknesses and proposes a secure and efficient authentication scheme for the integrated EPR information system as alternative. Compared with related approaches, the proposed scheme not only retains a lower computational cost and does not require verifier tables for storing users' secrets, but also solves the security problems in previous schemes and withstands possible attacks.

  13. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.

    PubMed

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong

    2012-10-17

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  14. Orbital stability of the unseen solar companion linked to periodic extinction events

    NASA Technical Reports Server (NTRS)

    Torbett, M. V.; Smoluchowski, R.

    1984-01-01

    Evidence from three-dimensional numerical modelling is presented that only cometary orbits with a limited range in inclination with respect to the galactic plane are formally stable for the length of time required to cause periodic extinction events. The calculations were done using Cowell's method employing a fourth-order Runge-Kutta integration scheme in an inertial reference frame in orbit about the Galaxy. Tidal perturbations in the radial direction due to the Galaxy and the Coriolis forces are included. The vertical component of the gravitational field of the galactic disk is superimposed on these forces. The results indicate that orbits for Nemesis that are inclined at more than 30 deg to the galactic plane are not allowed and suggests that the search for Nemesis should be concentrated toward the plane of the Galaxy. Perturbations by passing stars or molecular clouds may make even the low-inclination orbits unstable.

  15. Dealing with Uncertainties in Initial Orbit Determination

    NASA Technical Reports Server (NTRS)

    Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato

    2015-01-01

    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

  16. Cubic scaling algorithms for RPA correlation using interpolative separable density fitting

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Thicke, Kyle

    2017-12-01

    We present a new cubic scaling algorithm for the calculation of the RPA correlation energy. Our scheme splits up the dependence between the occupied and virtual orbitals in χ0 by use of Cauchy's integral formula. This introduces an additional integral to be carried out, for which we provide a geometrically convergent quadrature rule. Our scheme also uses the newly developed Interpolative Separable Density Fitting algorithm to further reduce the computational cost in a way analogous to that of the Resolution of Identity method.

  17. Hybrid ququart-encoded quantum cryptography protected by Kochen-Specker contextuality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabello, Adan; Department of Physics, Stockholm University, S-10691 Stockholm; D'Ambrosio, Vincenzo

    2011-09-15

    Quantum cryptographic protocols based on complementarity are not secure against attacks in which complementarity is imitated with classical resources. The Kochen-Specker (KS) theorem provides protection against these attacks, without requiring entanglement or spatially separated composite systems. We analyze the maximum tolerated noise to guarantee the security of a KS-protected cryptographic scheme against these attacks and describe a photonic realization of this scheme using hybrid ququarts defined by the polarization and orbital angular momentum of single photons.

  18. Improvement of forecast skill for severe weather by merging radar-based extrapolation and storm-scale NWP corrected forecast

    NASA Astrophysics Data System (ADS)

    Wang, Gaili; Wong, Wai-Kin; Hong, Yang; Liu, Liping; Dong, Jili; Xue, Ming

    2015-03-01

    The primary objective of this study is to improve the performance of deterministic high resolution rainfall forecasts caused by severe storms by merging an extrapolation radar-based scheme with a storm-scale Numerical Weather Prediction (NWP) model. Effectiveness of Multi-scale Tracking and Forecasting Radar Echoes (MTaRE) model was compared with that of a storm-scale NWP model named Advanced Regional Prediction System (ARPS) for forecasting a violent tornado event that developed over parts of western and much of central Oklahoma on May 24, 2011. Then the bias corrections were performed to improve the forecast accuracy of ARPS forecasts. Finally, the corrected ARPS forecast and radar-based extrapolation were optimally merged by using a hyperbolic tangent weight scheme. The comparison of forecast skill between MTaRE and ARPS in high spatial resolution of 0.01° × 0.01° and high temporal resolution of 5 min showed that MTaRE outperformed ARPS in terms of index of agreement and mean absolute error (MAE). MTaRE had a better Critical Success Index (CSI) for less than 20-min lead times and was comparable to ARPS for 20- to 50-min lead times, while ARPS had a better CSI for more than 50-min lead times. Bias correction significantly improved ARPS forecasts in terms of MAE and index of agreement, although the CSI of corrected ARPS forecasts was similar to that of the uncorrected ARPS forecasts. Moreover, optimally merging results using hyperbolic tangent weight scheme further improved the forecast accuracy and became more stable.

  19. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule; correction. SUMMARY: The Federal...

  20. Turbulence mitigation scheme based on multiple-user detection in an orbital-angular-momentum multiplexed system

    NASA Astrophysics Data System (ADS)

    Zou, Li; Wang, Le; Zhao, Sheng-Mei; Chen, Han-Wu

    2016-11-01

    Atmospheric turbulence (AT) induced crosstalk can significantly impair the performance of a free-space optical (FSO) communication link using orbital angular momentum (OAM) multiplexing. In this paper, we propose a multiple-user detection (MUD) turbulence mitigation scheme in an OAM-multiplexed FSO communication link. First, we present a MUD equivalent communication model for an OAM-multiplexed FSO communication link under AT. In the equivalent model, each input bit stream represents one user’s information. The deformed OAM spatial modes caused by AT, instead of the pure OAM spatial modes, are used as information carriers, and the overlapping between the deformed OAM spatial modes are computed as the correlation coefficients between the users. Then, we present a turbulence mitigation scheme based on MUD idea to enhance AT tolerance of the OAM-multiplexed FSO communication link. In the proposed scheme, the crosstalk caused by AT is used as a useful component to deduce users’ information. The numerical results show that the performance of the OAM-multiplexed communication link has greatly improved by the proposed scheme. When the turbulence strength is 1 × 10-15 m-2/3, the transmission distance is 1000 m and the channel signal-to-noise ratio (SNR) is 26 dB, the bit-error-rate (BER) performance of four spatial multiplexed OAM modes lm = +1,+2,+3,+4 are all close to 10-5, and there is a 2-3 fold increase in the BER performance in comparison with those results without the proposed scheme. In addition, the proposed scheme is more effective for an OAM-multiplexed FSO communication link with a larger OAM mode topological charge interval. The proposed scheme is a promising direction for compensating the interference caused by AT in the OAM-multiplexed FSO communication link. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271238 and 61475075), the Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, China (Grant No. NYKL2015011), the Postgraduate Innovation Research Plan of Jiangsu Province, China (Grant No. CXZZ13_0489), and the University Natural Science Foundation of Jiangsu Province, China (Grant No. 16KJB510037).

  1. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    NASA Technical Reports Server (NTRS)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  2. Spin-orbit force, recoil corrections, and possible BB¯* and DD¯* molecular states

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2014-05-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons BB¯* and DD¯* from the t- and u-channel π-, η-, ρ-, ω-, and σ-meson exchanges with four kinds of quantum number: I=0, JPC=1++; I =0, JPC=1+-; I =1, JPC=1++; I =1, JPC=1+-. We keep the recoil corrections to the BB¯* and DD¯* systems up to O(1/M2). The spin-orbit force appears at O(/1M), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are unfavorable to the formation of the molecular states in the I =0, JPC=1++ and I =1, JPC=1+- channels in the DD¯* system.

  3. Fermi orbital derivatives in self-interaction corrected density functional theory: Applications to closed shell atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pederson, Mark R., E-mail: mark.pederson@science.doe.gov

    2015-02-14

    A recent modification of the Perdew-Zunger self-interaction-correction to the density-functional formalism has provided a framework for explicitly restoring unitary invariance to the expression for the total energy. The formalism depends upon construction of Löwdin orthonormalized Fermi-orbitals which parametrically depend on variational quasi-classical electronic positions. Derivatives of these quasi-classical electronic positions, required for efficient minimization of the self-interaction corrected energy, are derived and tested, here, on atoms. Total energies and ionization energies in closed-shell singlet atoms, where correlation is less important, using the Perdew-Wang 1992 Local Density Approximation (PW92) functional, are in good agreement with experiment and non-relativistic quantum-Monte-Carlo results albeitmore » slightly too low.« less

  4. Weak Localization and Antilocalization in Topological Materials with Impurity Spin-Orbit Interactions

    PubMed Central

    Hankiewicz, Ewelina M.; Culcer, Dimitrie

    2017-01-01

    Topological materials have attracted considerable experimental and theoretical attention. They exhibit strong spin-orbit coupling both in the band structure (intrinsic) and in the impurity potentials (extrinsic), although the latter is often neglected. In this work, we discuss weak localization and antilocalization of massless Dirac fermions in topological insulators and massive Dirac fermions in Weyl semimetal thin films, taking into account both intrinsic and extrinsic spin-orbit interactions. The physics is governed by the complex interplay of the chiral spin texture, quasiparticle mass, and scalar and spin-orbit scattering. We demonstrate that terms linear in the extrinsic spin-orbit scattering are generally present in the Bloch and momentum relaxation times in all topological materials, and the correction to the diffusion constant is linear in the strength of the extrinsic spin-orbit. In topological insulators, which have zero quasiparticle mass, the terms linear in the impurity spin-orbit coupling lead to an observable density dependence in the weak antilocalization correction. They produce substantial qualitative modifications to the magnetoconductivity, differing greatly from the conventional Hikami-Larkin-Nagaoka formula traditionally used in experimental fits, which predicts a crossover from weak localization to antilocalization as a function of the extrinsic spin-orbit strength. In contrast, our analysis reveals that topological insulators always exhibit weak antilocalization. In Weyl semimetal thin films having intermediate to large values of the quasiparticle mass, we show that extrinsic spin-orbit scattering strongly affects the boundary of the weak localization to antilocalization transition. We produce a complete phase diagram for this transition as a function of the mass and spin-orbit scattering strength. Throughout the paper, we discuss implications for experimental work, and, at the end, we provide a brief comparison with transition metal dichalcogenides. PMID:28773167

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Brandenburg, Jan Gerit; Bannwarth, Christoph

    A density functional theory (DFT) based composite electronic structure approach is proposed to efficiently compute structures and interaction energies in large chemical systems. It is based on the well-known and numerically robust Perdew-Burke-Ernzerhoff (PBE) generalized-gradient-approximation in a modified global hybrid functional with a relatively large amount of non-local Fock-exchange. The orbitals are expanded in Ahlrichs-type valence-double zeta atomic orbital (AO) Gaussian basis sets, which are available for many elements. In order to correct for the basis set superposition error (BSSE) and to account for the important long-range London dispersion effects, our well-established atom-pairwise potentials are used. In the design ofmore » the new method, particular attention has been paid to an accurate description of structural parameters in various covalent and non-covalent bonding situations as well as in periodic systems. Together with the recently proposed three-fold corrected (3c) Hartree-Fock method, the new composite scheme (termed PBEh-3c) represents the next member in a hierarchy of “low-cost” electronic structure approaches. They are mainly free of BSSE and account for most interactions in a physically sound and asymptotically correct manner. PBEh-3c yields good results for thermochemical properties in the huge GMTKN30 energy database. Furthermore, the method shows excellent performance for non-covalent interaction energies in small and large complexes. For evaluating its performance on equilibrium structures, a new compilation of standard test sets is suggested. These consist of small (light) molecules, partially flexible, medium-sized organic molecules, molecules comprising heavy main group elements, larger systems with long bonds, 3d-transition metal systems, non-covalently bound complexes (S22 and S66×8 sets), and peptide conformations. For these sets, overall deviations from accurate reference data are smaller than for various other tested DFT methods and reach that of triple-zeta AO basis set second-order perturbation theory (MP2/TZ) level at a tiny fraction of computational effort. Periodic calculations conducted for molecular crystals to test structures (including cell volumes) and sublimation enthalpies indicate very good accuracy competitive to computationally more involved plane-wave based calculations. PBEh-3c can be applied routinely to several hundreds of atoms on a single processor and it is suggested as a robust “high-speed” computational tool in theoretical chemistry and physics.« less

  6. Elucidation of molecular kinetic schemes from macroscopic traces using system identification

    PubMed Central

    González-Maeso, Javier; Sealfon, Stuart C.; Galocha-Iragüen, Belén; Brezina, Vladimir

    2017-01-01

    Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic) processes from the overall (macroscopic) response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE). SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology can be successfully applied to accurately derive molecular kinetic schemes from experimental macroscopic traces, and we anticipate that it may be useful in the study of a wide variety of biological systems. PMID:28192423

  7. Aerosol Correction for Improving OMPS/LP Ozone Retrieval

    NASA Technical Reports Server (NTRS)

    Chen, Zhong; Bhartia, Pawan K.; Loughman, Robert

    2015-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS-LP) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite was launched on Oct. 28, 2011. Limb profilers measures the radiance scattered from the Earth's atmospheric in limb viewing mode from 290 to 1000 nm and infer ozone profiles from tropopause to 60 km. The recently released OMPS-LP Version 2 data product contains the first publicly released ozone profiles retrievals, and these are now available for the entire OMPS mission, which extends from April, 2012. The Version 2 data product retrievals incorporate several important improvements to the algorithm. One of the primary changes is to turn off the aerosol retrieval module. The aerosol profiles retrieved inside the ozone code was not helping the ozone retrieval and was adding noise and other artifacts. Aerosols including polar stratospheric cloud (PSC) and polar mesospheric clouds (PMC) have a detectable effect on OMPS-LP data. Our results show that ignoring the aerosol contribution would produce an ozone density bias of up to 10 percent in the region of maximum aerosol extinction. Therefore, aerosol correction is needed to improve the quality of the retrieved ozone concentration profile. We provide Aerosol Scattering Index (ASI) for detecting aerosols-PMC-PSC, defined as ln(Im-Ic) normalized at 45km, where Im is the measured radiance and Ic is the calculated radiance assuming no aerosols. Since ASI varies with wavelengths, latitude and altitude, we can start by assuming no aerosol profiles in calculating the ASIs and then use the aerosol profile to see if it significantly reduces the residuals. We also discuss the effect of aerosol size distribution on the ozone profile retrieval process. Finally, we present an aerosol-PMC-PSC correction scheme.

  8. Explicitly correlated coupled-cluster theory using cusp conditions. II. Treatment of connected triple excitations.

    PubMed

    Köhn, Andreas

    2010-11-07

    The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Köhn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.

  9. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  10. Electronic structure studies of La2CuO4

    NASA Astrophysics Data System (ADS)

    Wachs, A. L.; Turchi, P. E. A.; Jean, Y. C.; Wetzler, K. H.; Howell, R. H.; Fluss, M. J.; Harshman, D. R.; Remeika, J. P.; Cooper, A. S.; Fleming, R. M.

    1988-07-01

    We report results of positron-electron momentum-distribution measurements of single-crystal La2CuO4 using two-dimensional angular correlation of positron-annihilation-radiation techniques. The data contain two components: a large (~85%), isotropic corelike electron contribution and a remaining, anisotropic valence-electron contribution modeled using a linear combination of atomic orbitals-molecular orbital method and a localized ion scheme, within the independent-particle model approximation. This work suggests a ligand-field Hamiltonian to be justified for describing the electronic properties of perovskite materials.

  11. Optoelectronic and Thermoelectric Properties of Bi2OX 2 (X = S, Se, Te) for Solar Cells and Thermoelectric Devices

    NASA Astrophysics Data System (ADS)

    Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya

    2018-02-01

    We have explored the optoelectronic structure and related thermoelectric properties of Bi2OX 2 (X = S, Se, Te) using density functional theory and spin-orbit coupling (SOC). We report herein calculations of the bandgap of these bismuth sulfides/oxysulfides to participate in the recent debate regarding such values. The generalized gradient approximation calculations corrected using the SOC scheme estimated bandgaps of 0.950 eV, 0.635 eV, and 0.441 eV for Bi2OS2, Bi2OSe2, and Bi2OTe2, respectively, in close agreement with experimental results and showing better accuracy compared with available theoretical calculations. This bandgap range shows the potential use of Bi2OX 2 for solar cell applications. Hence, we derived their optical and thermoelectric properties. Similarly to one of the parent materials, Bi2S3, a semiconductor with special photovoltaic and thermoelectric properties, the present derivatives Bi2OX 2 show promising characteristics for exploration in the near future for use in solar cells and thermoelectric devices.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Scott E.; Hesthaven, Jan S.; Lau, Stephen R.

    In the context of metric perturbation theory for nonspinning black holes, extreme mass ratio binary systems are described by distributionally forced master wave equations. Numerical solution of a master wave equation as an initial boundary value problem requires initial data. However, because the correct initial data for generic-orbit systems is unknown, specification of trivial initial data is a common choice, despite being inconsistent and resulting in a solution which is initially discontinuous in time. As is well known, this choice leads to a burst of junk radiation which eventually propagates off the computational domain. We observe another potential consequence ofmore » trivial initial data: development of a persistent spurious solution, here referred to as the Jost junk solution, which contaminates the physical solution for long times. This work studies the influence of both types of junk on metric perturbations, waveforms, and self-force measurements, and it demonstrates that smooth modified source terms mollify the Jost solution and reduce junk radiation. Our concluding section discusses the applicability of these observations to other numerical schemes and techniques used to solve distributionally forced master wave equations.« less

  13. The low-lying electronic states of pentacene and their roles in singlet fission.

    PubMed

    Zeng, Tao; Hoffmann, Roald; Ananth, Nandini

    2014-04-16

    We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) < E (D)) from multireference calculations with an appropriate active orbital space and dynamical correlation being incorporated. In order to understand the mechanism of singlet fission in pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction.

  14. Fundamental limits on beam stability at the Advanced Photon Source.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Decker, G. A.

    1998-06-18

    Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less

  15. Functional renormalization group study of orbital fluctuation mediated superconductivity: Impact of the electron-boson coupling vertex corrections

    NASA Astrophysics Data System (ADS)

    Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi

    2016-09-01

    In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.

  16. Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham

    2016-01-01

    NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  17. Use of magnetic resonance imaging for the investigation of orbital disease in small animals.

    PubMed

    Dennis, R

    2000-04-01

    Twenty-five small animal patients presenting with signs of orbital disease were investigated using magnetic resonance imaging (MRI) in an attempt to assess the value of this imaging technique for diagnosis. All patients were also examined using ultrasonography, and skull radiography was performed in 20 of these animals. The final diagnoses included neoplasia, inflammatory disease and foreign body penetration. MRI produced detailed images of orbital tissues and provided more information about the extent of pathology than the other imaging techniques; a correct diagnosis based solely on the MRI scan was made in 22 cases. Radiography was found to be helpful only in cases in which neoplastic disease extended markedly beyond the confines of the orbit into the nasal chamber and paranasal sinuses. Radiographic changes other than soft tissue swelling were not evident in other orbital disease processes. Ultrasonography gave both false negative and false positive diagnoses for neoplastic masses, although it allowed the correct diagnosis of both cases of foreign bodies and one of the three cases of retrobulbar abscesses in this series. MRI is recommended for patients in which radiography and ultrasonography fall to produce a confident diagnosis or for which surgery is proposed.

  18. Proceedings of the IFIP WG 11.3 Working Conference on Database Security (6th) Held in Vancouver, British Columbia on 19-22 August 1992.

    DTIC Science & Technology

    1992-01-01

    multiversioning scheme for this purpose was presented in [9]. The scheme guarantees that high level methods would read down object states at lower levels that...order given by fork-stamp, and terminated writing versions with timestamp WStamp. Such a history is needed to implement the multiversioning scheme...recovery protocol for multiversion schedulers and show that this protocol is both correct and secure. The behavior of the recovery protocol depends

  19. High-Order Methods for Computational Fluid Dynamics: A Brief Review of Compact Differential Formulations on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Huynh, H. T.; Wang, Z. J.; Vincent, P. E.

    2013-01-01

    Popular high-order schemes with compact stencils for Computational Fluid Dynamics (CFD) include Discontinuous Galerkin (DG), Spectral Difference (SD), and Spectral Volume (SV) methods. The recently proposed Flux Reconstruction (FR) approach or Correction Procedure using Reconstruction (CPR) is based on a differential formulation and provides a unifying framework for these high-order schemes. Here we present a brief review of recent developments for the FR/CPR schemes as well as some pacing items.

  20. A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms

    NASA Astrophysics Data System (ADS)

    Somogyi, Gábor

    2013-04-01

    We finish the definition of a subtraction scheme for computing NNLO corrections to QCD jet cross sections. In particular, we perform the integration of the soft-type contributions to the doubly unresolved counterterms via the method of Mellin-Barnes representations. With these final ingredients in place, the definition of the scheme is complete and the computation of fully differential rates for electron-positron annihilation into two and three jets at NNLO accuracy becomes feasible.

  1. Studies of Several New Modifications of Aggressive Packet Combining to Achieve Higher Throughput, Based on Correction Capability of Disjoint Error Vectors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Swarnendu Kumar; Goswami, Rajat Subhra; Bhunia, Chandan Tilak; Bhunia, Abhinandan

    2016-06-01

    Aggressive packet combining (APC) scheme is well-established in literature. Several modifications were studied earlier for improving throughput. In this paper, three new modifications of APC are proposed. The performance of proposed modified APC is studied by simulation and is reported here. A hybrid scheme is proposed here for getting higher throughput and also the disjoint factor is compared among conventional APC with proposed schemes for getting higher throughput.

  2. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  3. Mesoscopic Rings with Spin-Orbit Interactions

    ERIC Educational Resources Information Center

    Berche, Bertrand; Chatelain, Christophe; Medina, Ernesto

    2010-01-01

    A didactic description of charge and spin equilibrium currents on mesoscopic rings in the presence of spin-orbit interaction is presented. Emphasis is made on the non-trivial construction of the correct Hamiltonian in polar coordinates, the calculation of eigenvalues and eigenfunctions and the symmetries of the ground-state properties. Spin…

  4. Orbits of Selected Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Pérez-Villegas, A.; Rossi, L.; Ortolani, S.; Casotto, S.; Barbuy, B.; Bica, E.

    2018-05-01

    We present orbit analysis for a sample of eight inner bulge globular clusters, together with one reference halo object. We used proper motion values derived from long time base CCD data. Orbits are integrated in both an axisymmetric model and a model including the Galactic bar potential. The inclusion of the bar proved to be essential for the description of the dynamical behaviour of the clusters. We use the Monte Carlo scheme to construct the initial conditions for each cluster, taking into account the uncertainties in the kinematical data and distances. The sample clusters show typically maximum height to the Galactic plane below 1.5 kpc, and develop rather eccentric orbits. Seven of the bulge sample clusters share the orbital properties of the bar/bulge, having perigalactic and apogalatic distances, and maximum vertical excursion from the Galactic plane inside the bar region. NGC 6540 instead shows a completely different orbital behaviour, having a dynamical signature of the thick disc. Both prograde and prograde-retrograde orbits with respect to the direction of the Galactic rotation were revealed, which might characterise a chaotic behaviour.

  5. [Give attention to standardized management of orbital development in Chinese with microphthalmos or anophthalmos].

    PubMed

    Li, Dong-mei

    2013-08-01

    Congenital and acquired microphthalmos or anophthalmos are common ocular disorders that cause facial disfigurement in children. It is important to have timely and reasonable treatment to promote orbital growth. At present status, many patients miss the optimum opportunity for orbital reconstruction because of non-standardized management in China. The correct management for promoting orbital growth in microphthalmos or anophthalmos is thus elaborated. Conformers with progressively increasing size can be used in children at 1-3 years of age; while orbital implants could be used after 3-5 years of age. Rational and regular evaluation of the efficacy is critical for guiding the treatment process.

  6. a Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-Orthogonal Grids

    NASA Astrophysics Data System (ADS)

    Jessee, J. P.; Fiveland, W. A.

    1996-08-01

    The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations.A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.

  7. Benefits of a 4th Ice Class in the Simulated Radar Reflectivities of Convective Systems Using a Bulk Microphysics Scheme

    NASA Technical Reports Server (NTRS)

    Lang, Stephen E.; Tao, Wei-Kuo; Chern, Jiun-Dar; Wu, Di; Li, Xiaowen

    2015-01-01

    Numerous cloud microphysical schemes designed for cloud and mesoscale models are currently in use, ranging from simple bulk to multi-moment, multi-class to explicit bin schemes. This study details the benefits of adding a 4th ice class (hail) to an already improved 3-class ice bulk microphysics scheme developed for the Goddard Cumulus Ensemble model based on Rutledge and Hobbs (1983,1984). Besides the addition and modification of several hail processes from Lin et al. (1983), further modifications were made to the 3-ice processes, including allowing greater ice super saturation and mitigating spurious evaporationsublimation in the saturation adjustment scheme, allowing graupelhail to become snow via vapor growth and hail to become graupel via riming, and the inclusion of a rain evaporation correction and vapor diffusivity factor. The improved 3-ice snowgraupel size-mapping schemes were adjusted to be more stable at higher mixing rations and to increase the aggregation effect for snow. A snow density mapping was also added. The new scheme was applied to an intense continental squall line and a weaker, loosely-organized continental case using three different hail intercepts. Peak simulated reflectivities agree well with radar for both the intense and weaker case and were better than earlier 3-ice versions when using a moderate and large intercept for hail, respectively. Simulated reflectivity distributions versus height were also improved versus radar in both cases compared to earlier 3-ice versions. The bin-based rain evaporation correction affected the squall line case more but did not change the overall agreement in reflectivity distributions.

  8. Physical oceanography from satellites: Currents and the slope of the sea surface

    NASA Technical Reports Server (NTRS)

    Sturges, W.

    1974-01-01

    A global scheme using satellite altimetry in conjunction with thermometry techniques provides for more accurate determinations of first order leveling networks by overcoming discrepancies between ocean leveling and land leveling methods. The high noise content in altimetry signals requires filtering or correction for tides, etc., as well as carefully planned sampling schemes.

  9. Displacement data assimilation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.

    We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.

  10. NNLO QCD corrections to associated W H production and H →b b ¯ decay

    NASA Astrophysics Data System (ADS)

    Caola, Fabrizio; Luisoni, Gionata; Melnikov, Kirill; Röntsch, Raoul

    2018-04-01

    We present a computation of the next-to-next-to-leading-order (NNLO) QCD corrections to the production of a Higgs boson in association with a W boson at the LHC and the subsequent decay of the Higgs boson into a b b ¯ pair, treating the b quarks as massless. We consider various kinematic distributions and find significant corrections to observables that resolve the Higgs decay products. We also find that a cut on the transverse momentum of the W boson, important for experimental analyses, may have a significant impact on kinematic distributions and radiative corrections. We show that some of these effects can be adequately described by simulating QCD radiation in Higgs boson decays to b quarks using parton showers. We also describe contributions to Higgs decay to a b b ¯ pair that first appear at NNLO and that were not considered in previous fully differential computations. The calculation of NNLO QCD corrections to production and decay sub-processes is carried out within the nested soft-collinear subtraction scheme presented by some of us earlier this year. We demonstrate that this subtraction scheme performs very well, allowing a computation of the coefficient of the second-order QCD corrections at the level of a few per mill.

  11. A Simple Noise Correction Scheme for Diffusional Kurtosis Imaging

    PubMed Central

    Glenn, G. Russell; Tabesh, Ali; Jensen, Jens H.

    2014-01-01

    Purpose Diffusional kurtosis imaging (DKI) is sensitive to the effects of signal noise due to strong diffusion weightings and higher order modeling of the diffusion weighted signal. A simple noise correction scheme is proposed to remove the majority of the noise bias in the estimated diffusional kurtosis. Methods Weighted linear least squares (WLLS) fitting together with a voxel-wise, subtraction-based noise correction from multiple, independent acquisitions are employed to reduce noise bias in DKI data. The method is validated in phantom experiments and demonstrated for in vivo human brain for DKI-derived parameter estimates. Results As long as the signal-to-noise ratio (SNR) for the most heavily diffusion weighted images is greater than 2.1, errors in phantom diffusional kurtosis estimates are found to be less than 5 percent with noise correction, but as high as 44 percent for uncorrected estimates. In human brain, noise correction is also shown to improve diffusional kurtosis estimates derived from measurements made with low SNR. Conclusion The proposed correction technique removes the majority of noise bias from diffusional kurtosis estimates in noisy phantom data and is applicable to DKI of human brain. Features of the method include computational simplicity and ease of integration into standard WLLS DKI post-processing algorithms. PMID:25172990

  12. Weighted divergence correction scheme and its fast implementation

    NASA Astrophysics Data System (ADS)

    Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

    2017-05-01

    Forcing the experimental volumetric velocity fields to satisfy mass conversation principles has been proved beneficial for improving the quality of measured data. A number of correction methods including the divergence correction scheme (DCS) have been proposed to remove divergence errors from measurement velocity fields. For tomographic particle image velocimetry (TPIV) data, the measurement uncertainty for the velocity component along the light thickness direction is typically much larger than for the other two components. Such biased measurement errors would weaken the performance of traditional correction methods. The paper proposes a variant for the existing DCS by adding weighting coefficients to the three velocity components, named as the weighting DCS (WDCS). The generalized cross validation (GCV) method is employed to choose the suitable weighting coefficients. A fast algorithm for DCS or WDCS is developed, making the correction process significantly low-cost to implement. WDCS has strong advantages when correcting velocity components with biased noise levels. Numerical tests validate the accuracy and efficiency of the fast algorithm, the effectiveness of GCV method, and the advantages of WDCS. Lastly, DCS and WDCS are employed to process experimental velocity fields from the TPIV measurement of a turbulent boundary layer. This shows that WDCS achieves a better performance than DCS in improving some flow statistics.

  13. Use of RTIGS data streams for validating the performance of the IGS Ultra-Rapid products

    NASA Astrophysics Data System (ADS)

    Thaler, Gottfried; Weber, Robert

    2010-05-01

    The IGS (International GNSS Service) Real-Time Working Group (RTIGS) disseminates for several years raw observation data of a globally distributed steady growing station network in real-time via the internet. This observation data can be used for validating the performance of the IGS predicted orbits and clocks (Ultra-Rapid (IGU)). Therefore, based on pre-processed ITRF- station coordinates, clock corrections w.r.t GPS-Time for GPS-satellites and site-receivers as well as satellite orbits are calculated in quasi real-time and compared to the IGU solutions. The Institute for "Geodesy and Geophysics" of the Technical University of Vienna develops based on the software RTIGS Multicast Receive (RTIGSMR) provided by National Resources Canada (NRCan) the software RTIGU-Control. Using Code-smoothed observations RTIGU-Control calculates in a first step by means of a linear KALMAN-Filter and based on the orbit information of the IGUs real-time clock corrections and clock drifts w.r.t GPS-Time for the GPS-satellites and stations. The second extended KALMAN-Filter (kinematic approach) uses again the Code-smoothed observations corrected for the clock corrections of step 1 to calculate the positions and velocities of the satellites. The calculation interval is set to 30 seconds. The results and comparisons to IGU-products are displayed online but also stored as clock-RINEX- and SP3-files on the ftp-server of the institute, e.g. for validation of the performance of the IGU predicted products. A comparison to the more precise but delayed issued IGS Rapid products (IGR) allows also to validate the performance of RTIGU-Control. To carry out these comparisons the MatLab routine RTIGU-Analyse was established. This routine is for example able to import and process standard clock-RINEX-files of several sources and delivers a variety of comparisons both in graphical or numerical form. Results will become part of this presentation. Another way to analyse the quality and consistency of the RTIGU-Control products is to use them for positioning in post-processing mode. Preliminary results are already available and will also be presented. Further investigations will deal with upgrading RTIGU-Control to become independent of the IGU products. This means to initialize the KALMAN-Filter process using the orbits (and also clocks) from IGU but to use for all further calculation steps the own established orbits. This procedure results in totally independent satellite orbit and clock corrections which could be used for example instead of the broadcast ephemerides in a large number of real-time PPP applications.

  14. The refractive index in electron microscopy and the errors of its approximations.

    PubMed

    Lentzen, M

    2017-05-01

    In numerical calculations for electron diffraction often a simplified form of the electron-optical refractive index, linear in the electric potential, is used. In recent years improved calculation schemes have been proposed, aiming at higher accuracy by including higher-order terms of the electric potential. These schemes start from the relativistically corrected Schrödinger equation, and use a second simplified form, now for the refractive index squared, being linear in the electric potential. The second and higher-order corrections thus determined have, however, a large error, compared to those derived from the relativistically correct refractive index. The impact of the two simplifications on electron diffraction calculations is assessed through numerical comparison of the refractive index at high-angle Coulomb scattering and of cross-sections for a wide range of scattering angles, kinetic energies, and atomic numbers. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Signal processing of aircraft flyover noise

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.

    1991-01-01

    A detailed analysis of signal processing concerns for measuring aircraft flyover noise is presented. Development of a de-Dopplerization scheme for both corrected time history and spectral data is discussed along with an analysis of motion effects on measured spectra. A computer code was written to implement the de-Dopplerization scheme. Input to the code is the aircraft position data and the pressure time histories. To facilitate ensemble averaging, a uniform level flyover is considered but the code can accept more general flight profiles. The effects of spectral smearing and its removal is discussed. Using data acquired from XV-15 tilt rotor flyover test comparisons are made showing the measured and corrected spectra. Frequency shifts are accurately accounted for by the method. It is shown that correcting for spherical spreading, Doppler amplitude, and frequency can give some idea about source directivity. The analysis indicated that smearing increases with frequency and is more severe on approach than recession.

  16. Higgs boson decay into b-quarks at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Del Duca, Vittorio; Duhr, Claude; Somogyi, Gábor; Tramontano, Francesco; Trócsányi, Zoltán

    2015-04-01

    We compute the fully differential decay rate of the Standard Model Higgs boson into b-quarks at next-to-next-to-leading order (NNLO) accuracy in αs. We employ a general subtraction scheme developed for the calculation of higher order perturbative corrections to QCD jet cross sections, which is based on the universal infrared factorization properties of QCD squared matrix elements. We show that the subtractions render the various contributions to the NNLO correction finite. In particular, we demonstrate analytically that the sum of integrated subtraction terms correctly reproduces the infrared poles of the two-loop double virtual contribution to this process. We present illustrative differential distributions obtained by implementing the method in a parton level Monte Carlo program. The basic ingredients of our subtraction scheme, used here for the first time to compute a physical observable, are universal and can be employed for the computation of more involved processes.

  17. SPECTRAL CORRECTION FACTORS FOR CONVENTIONAL NEUTRON DOSE METERS USED IN HIGH-ENERGY NEUTRON ENVIRONMENTS-IMPROVED AND EXTENDED RESULTS BASED ON A COMPLETE SURVEY OF ALL NEUTRON SPECTRA IN IAEA-TRS-403.

    PubMed

    Oparaji, U; Tsai, Y H; Liu, Y C; Lee, K W; Patelli, E; Sheu, R J

    2017-06-01

    This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6"-9") are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. 3D early embryogenesis image filtering by nonlinear partial differential equations.

    PubMed

    Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O

    2010-08-01

    We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which are artificially connected due to acquisition error intrinsically linked to physics of LSM. In all studied aspects it turned out that the nonlinear diffusion filter which is called geodesic mean curvature flow (GMCF) has the best performance. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Computer and Voice Network Management Through Low Earth Orbiting Satellites

    DTIC Science & Technology

    2006-03-01

    Correction Chart” [web page] (29 July 2005 [cited 01 DEC 05]); available from World Wide Web @ http://www.amsat.orgamsat/ ariss /news...Available from World Wide Web @ http://www.amsat.orgamsat/ ariss /news/ISS_frequencies_and_Doppler_correction. rtf “Technical Specifications” [web

  20. Preliminary Analysis of Ground-based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    NASA Technical Reports Server (NTRS)

    Sease, Brad

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  1. Preliminary Analysis of Ground-Based Orbit Determination Accuracy for the Wide Field Infrared Survey Telescope (WFIRST)

    NASA Technical Reports Server (NTRS)

    Sease, Bradley; Myers, Jessica; Lorah, John; Webster, Cassandra

    2017-01-01

    The Wide Field Infrared Survey Telescope is a 2.4-meter telescope planned for launch to the Sun-Earth L2 point in 2026. This paper details a preliminary study of the achievable accuracy for WFIRST from ground-based orbit determination routines. The analysis here is divided into two segments. First, a linear covariance analysis of early mission and routine operations provides an estimate of the tracking schedule required to meet mission requirements. Second, a simulated operations'' scenario gives insight into the expected behavior of a daily Extended Kalman Filter orbit estimate over the first mission year given a variety of potential momentum unloading schemes.

  2. Use of high order, periodic orbits in the PIES code

    NASA Astrophysics Data System (ADS)

    Monticello, Donald; Reiman, Allan

    2010-11-01

    We have implemented a version of the PIES code (Princeton Iterative Equilibrium SolverootnotetextA. Reiman et al 2007 Nucl. Fusion 47 572) that uses high order periodic orbits to select the surfaces on which straight magnetic field line coordinates will be calculated. The use of high order periodic orbits has increase the robustness and speed of the PIES code. We now have more uniform treatment of in-phase and out-of-phase islands. This new version has better convergence properties and works well with a full Newton scheme. We now have the ability to shrink islands using a bootstrap like current and this includes the m=1 island in tokamaks.

  3. Contingency maneuver strategies for the Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP)

    NASA Technical Reports Server (NTRS)

    Kestler, James; Walls, Donna

    1995-01-01

    The Total Ozone Mapping Spectrometer-Earth Probe (TOMS-EP) is a polar-orbiting spacecraft designed to measure total ozone levels in the Earth's atmosphere. The nominal mission orbit is a 955-kilometer circular Sun-synchronous orbit with an ascending node mean local crossing time (MLT) between 11:02 a.m. and 11:25 a.m. These two mean local ascending node times constitute the boundaries of the MLT box for this mission. The MLT boundaries were chosen to maintain the Sun-to-Earth-to-vehicle orbit-normal (SVN) angle within a preselected set of seasonally independent boundaries. Because the SVN angle is seasonally dependent, but the MLT is not, contingency options for correcting the MLT of orbital states that fall outside of the required MLT range become time dependent. This paper focuses on contingency orbit adjustment strategies developed at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) during the mission planning phase of TOMS-EP. Time-dependent delta-V strategies are presented for correcting mission orbit states lying outside of the MLT range. Typically, passive control of the MLT drift rate can be used to restore the orbit state to the required MLT before a seasonal violation of SVN angle constraints can occur. Passive control of the MLT drift rate is obtained through adjustment of the semimajor axis and/or the inclination. The time between initial arrival on orbit at an 'out-of-the box' MLT state and violation of the SVN angle constraints is always less than or equal to 1 year. The choice of which parameter(s) to adjust is dictated by the duration of this time period, the desired mission lifetime, the delta-V cost, and operational constraints.

  4. Quantum gambling using two nonorthogonal states

    NASA Astrophysics Data System (ADS)

    Hwang, Won Young; Ahn, Doyeol; Hwang, Sung Woo

    2001-12-01

    We give a (remote) quantum-gambling scheme that makes use of the fact that quantum nonorthogonal states cannot be distinguished with certainty. In the proposed scheme, two participants Alice and Bob can be regarded as playing a game of making guesses on identities of quantum states that are in one of two given nonorthogonal states: if Bob makes a correct (an incorrect) guess on the identity of a quantum state that Alice has sent, he wins (loses). It is shown that the proposed scheme is secure against the nonentanglement attack. It can also be shown heuristically that the scheme is secure in the case of the entanglement attack.

  5. First order comparison of numerical calculation and two different turtle input schemes to represent a SLC defocusing magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, J.

    1983-07-14

    Correcting the dispersion function in the SLC north arc it turned out that backleg-windings (BLW) acting horizontally as well as BLW acting vertically have to be used. In the latter case the question arose what is the best representation of a defocusing magnet with excited BLW acting in the vertical plane for the computer code TURTLE. Two different schemes, the 14.-scheme and the 20.-scheme were studied and the TURTLE output for one ray through such a magnet compared with the numerical solution of the equation of motion; only terms of first order have been taken into account.

  6. Palmprint Based Multidimensional Fuzzy Vault Scheme

    PubMed Central

    Liu, Hailun; Sun, Dongmei; Xiong, Ke; Qiu, Zhengding

    2014-01-01

    Fuzzy vault scheme (FVS) is one of the most popular biometric cryptosystems for biometric template protection. However, error correcting code (ECC) proposed in FVS is not appropriate to deal with real-valued biometric intraclass variances. In this paper, we propose a multidimensional fuzzy vault scheme (MDFVS) in which a general subspace error-tolerant mechanism is designed and embedded into FVS to handle intraclass variances. Palmprint is one of the most important biometrics; to protect palmprint templates; a palmprint based MDFVS implementation is also presented. Experimental results show that the proposed scheme not only can deal with intraclass variances effectively but also could maintain the accuracy and meanwhile enhance security. PMID:24892094

  7. Sensitivity Analysis and Mitigation with Applications to Ballistic and Low-thrust Trajectory Design

    NASA Astrophysics Data System (ADS)

    Alizadeh, Iman

    The ever increasing desire to expand space mission capabilities within the limited budgets of space industries requires new approaches to the old problem of spacecraft trajectory design. For example, recent initiatives for space exploration involve developing new tools to design low-cost, fail-safe trajectories to visit several potential destinations beyond our celestial neighborhood such as Jupiter's moons, asteroids, etc. Designing and navigating spacecraft trajectories to reach these destinations safely are complex and challenging. In particular, fundamental questions of orbital stability imposed by planetary protection requirements are not easily taken into account by standard optimal control schemes. The event of temporary engine loss or an unexpected missed thrust can indeed quickly lead to impact with planetary bodies or other unrecoverable trajectories. While electric propulsion technology provides superior efficiency compared to chemical engines, the very low-control authority and engine performance degradation can impose higher risk to the mission in strongly perturbed orbital environments. The risk is due to the complex gravitational field and its associated chaotic dynamics which causes large navigation dispersions in a short time if left un-controlled. Moreover, in these situations it can be outside the low-thrust propulsion system capability to correct the spacecraft trajectory in a reasonable time frame. These concerns can lead to complete or partial mission failure or even an infeasible mission concept at the early design stage. The goal of this research is to assess and increase orbital stability of ballistic and low-thrust transfer trajectories in multi-body systems. In particular, novel techniques are presented to characterize sensitivity and improve recovery characteristics of ballistic and low-thrust trajectories in unstable orbital environments. The techniques developed are based on perturbation analysis around ballistic trajectories to determine analytically the maximum divergence directions and also optimal control theory with nonstandard cost functions along with inverse dynamics applied to low-thrust trajectories. Several mission scenarios are shown to demonstrate the applicability of the techniques in the Earth-Moon and the Jupiter-Europa system. In addition, the results provide fundamental insight into design, stability analysis and guidance, navigation and control of low-thrust trajectories to meet challenging mission requirements in support of NASA's vision for space exploration.

  8. In-Orbit Monitoring of Space Weather and Its Effects on Commercial- Off-The-Shelf (COTS) Electronics - A Decade of Research Using Micro-Satellites

    NASA Astrophysics Data System (ADS)

    Underwood, Craig I.; Sweeting, Martin, , Sir

    2002-01-01

    Over the past 20 years the University of Surrey has gained significant experience in the use of commercial-off-the-shelf (COTS) devices operating in low-Earth orbit through the design, manufacture, launch and operation of more than a dozen "UoSAT" micro-satellites. The deleterious effects of the ionising radiation environment is of particular concern when using COTS technologies in space, and over the last decade, particular emphasis has been given to a programme of monitoring "space weather" in terms of the high energy proton and heavy-ion cosmic-ray environment these spacecraft encounter, and to observing and analysing its effects - particularly with regard to single-event effects - upon the COTS devices on-board. The extended period of research has enabled a wide variety of conditions to be observed ranging across an entire solar cycle. This paper reports on the environment and effects observed, and describes the various methodologies that have been used to minimise the risk associated with the use of COTS devices in space. The practical importance of resilient error-detection and correction coding schemes to protect spacecraft data and control software is shown, as is the need for adequate levels of shielding against total ionising radiation dose. The relative effects of Galactic-Cosmic-Rays (GCRs), Solar Proton Events (SPEs) and trapped proton environments in Low-Earth orbit are discussed, and more recent flight data extends these observations out to very high orbit - approx 60,000 km altitude. As well as gaining practical data on space weather and its effects on advanced electronics, the research has resulted in the design and construction of a series of inexpensive, compact, and low- power particle detectors, which are capable of providing routine environmental "health" warnings for future operational spacecraft. Low cost micro-satellites have proven to be ideal vehicles for quick response and cost effective space technology verification missions, where environmental data has been gathered with regard to providing practical engineering data on systems' performance and reliability.

  9. Spin orbit coupling for molecular ab initio density matrix renormalization group calculations: Application to g-tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de

    Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctionsmore » are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.« less

  10. Gauge-independent renormalization of the N2HDM

    NASA Astrophysics Data System (ADS)

    Krause, Marcel; López-Val, David; Mühlleitner, Margarete; Santos, Rui

    2017-12-01

    The Next-to-Minimal 2-Higgs-Doublet Model (N2HDM) is an interesting benchmark model for a Higgs sector consisting of two complex doublet and one real singlet fields. Like the Next-to-Minimal Supersymmetric extension (NMSSM) it features light Higgs bosons that could have escaped discovery due to their singlet admixture. Thereby, the model allows for various different Higgs-to-Higgs decay modes. Contrary to the NMSSM, however, the model is not subject to supersymmetric relations restraining its allowed parameter space and its phenomenology. For the correct determination of the allowed parameter space, the correct interpretation of the LHC Higgs data and the possible distinction of beyond-the-Standard Model Higgs sectors higher order corrections to the Higgs boson observables are crucial. This requires not only their computation but also the development of a suitable renormalization scheme. In this paper we have worked out the renormalization of the complete N2HDM and provide a scheme for the gauge-independent renormalization of the mixing angles. We discuss the renormalization of the Z_2 soft breaking parameter m 12 2 and the singlet vacuum expectation value v S . Both enter the Higgs self-couplings relevant for Higgs-to-Higgs decays. We apply our renormalization scheme to different sample processes such as Higgs decays into Z bosons and decays into a lighter Higgs pair. Our results show that the corrections may be sizable and have to be taken into account for reliable predictions.

  11. Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei

    2018-05-01

    Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.

  12. In-orbit assembly mission for the Space Solar Power Station

    NASA Astrophysics Data System (ADS)

    Cheng, ZhengAi; Hou, Xinbin; Zhang, Xinghua; Zhou, Lu; Guo, Jifeng; Song, Chunlin

    2016-12-01

    The Space Solar Power Station (SSPS) is a large spacecraft that utilizes solar power in space to supply power to an electric grid on Earth. A large symmetrical integrated concept has been proposed by the China Academy of Space Technology (CAST). Considering its large scale, the SSPS requires a modular design and unitized general interfaces that would be assembled in orbit. Facilities system supporting assembly procedures, which include a Reusable Heavy Lift Launch Vehicle, orbital transfer and space robots, is introduced. An integrated assembly scheme utilizing space robots to realize this platform SSPS concept is presented. This paper tried to give a preliminary discussion about the minimized time and energy cost of the assembly mission under best sequence and route This optimized assembly mission planning allows the SSPS to be built in orbit rapidly, effectively and reliably.

  13. General contraction of Gaussian basis sets. II - Atomic natural orbitals and the calculation of atomic and molecular properties

    NASA Technical Reports Server (NTRS)

    Almlof, Jan; Taylor, Peter R.

    1990-01-01

    A recently proposed scheme for using natural orbitals from atomic configuration interaction wave functions as a basis set for linear combination of atomic orbitals (LCAO) calculations is extended for the calculation of molecular properties. For one-electron properties like multipole moments, which are determined largely by the outermost regions of the molecular wave function, it is necessary to increase the flexibility of the basis in these regions. This is most easily done by uncontracting the outermost Gaussian primitives, and/or by adding diffuse primitives. A similar approach can be employed for the calculation of polarizabilities. Properties which are not dominated by the long-range part of the wave function, such as spectroscopic constants or electric field gradients at the nucleus, can generally be treated satisfactorily with the original atomic natural orbital sets.

  14. Orbital eccentricity of Mercury and the origin of the moon.

    NASA Technical Reports Server (NTRS)

    Cameron, A. G. W.

    1972-01-01

    The results of some recent work conducted by Anderson (1972) are considered. If Anderson is correct in his conclusion that the bulk composition of the moon resembles that of the Allende inclusions, then the natural place for the formation of the moon in the solar system is inside the orbit of Mercury, through planetary accumulation from the condensed material to be found there. This explains the anomalous large eccentricity of the orbit of Mercury.

  15. Numerical applications of the advective-diffusive codes for the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Aseev, N. A.; Shprits, Y. Y.; Drozdov, A. Y.; Kellerman, A. C.

    2016-11-01

    In this study we present analytical solutions for convection and diffusion equations. We gather here the analytical solutions for the one-dimensional convection equation, the two-dimensional convection problem, and the one- and two-dimensional diffusion equations. Using obtained analytical solutions, we test the four-dimensional Versatile Electron Radiation Belt code (the VERB-4D code), which solves the modified Fokker-Planck equation with additional convection terms. The ninth-order upwind numerical scheme for the one-dimensional convection equation shows much more accurate results than the results obtained with the third-order scheme. The universal limiter eliminates unphysical oscillations generated by high-order linear upwind schemes. Decrease in the space step leads to convergence of a numerical solution of the two-dimensional diffusion equation with mixed terms to the analytical solution. We compare the results of the third- and ninth-order schemes applied to magnetospheric convection modeling. The results show significant differences in electron fluxes near geostationary orbit when different numerical schemes are used.

  16. Performance of concatenated Reed-Solomon trellis-coded modulation over Rician fading channels

    NASA Technical Reports Server (NTRS)

    Moher, Michael L.; Lodge, John H.

    1990-01-01

    A concatenated coding scheme for providing very reliable data over mobile-satellite channels at power levels similar to those used for vocoded speech is described. The outer code is a shorter Reed-Solomon code which provides error detection as well as error correction capabilities. The inner code is a 1-D 8-state trellis code applied independently to both the inphase and quadrature channels. To achieve the full error correction potential of this inner code, the code symbols are multiplexed with a pilot sequence which is used to provide dynamic channel estimation and coherent detection. The implementation structure of this scheme is discussed and its performance is estimated.

  17. Long-range analysis of density fitting in extended systems

    NASA Astrophysics Data System (ADS)

    Varga, Scarontefan

    Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long-range behavior point of view. We show that for the correct cancellation of divergent long-range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non-Coulomb metric fit can be made overlap-preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices.

  18. Classification of ring artifacts for their effective removal using type adaptive correction schemes.

    PubMed

    Anas, Emran Mohammad Abu; Lee, Soo Yeol; Hasan, Kamrul

    2011-06-01

    High resolution tomographic images acquired with a digital X-ray detector are often degraded by the so called ring artifacts. In this paper, a detail analysis including the classification, detection and correction of these ring artifacts is presented. At first, a novel idea for classifying rings into two categories, namely type I and type II rings, is proposed based on their statistical characteristics. The defective detector elements and the dusty scintillator screens result in type I ring and the mis-calibrated detector elements lead to type II ring. Unlike conventional approaches, we emphasize here on the separate detection and correction schemes for each type of rings for their effective removal. For the detection of type I ring, the histogram of the responses of the detector elements is used and a modified fast image inpainting algorithm is adopted to correct the responses of the defective pixels. On the other hand, to detect the type II ring, first a simple filtering scheme is presented based on the fast Fourier transform (FFT) to smooth the sum curve derived form the type I ring corrected projection data. The difference between the sum curve and its smoothed version is then used to detect their positions. Then, to remove the constant bias suffered by the responses of the mis-calibrated detector elements with view angle, an estimated dc shift is subtracted from them. The performance of the proposed algorithm is evaluated using real micro-CT images and is compared with three recently reported algorithms. Simulation results demonstrate superior performance of the proposed technique as compared to the techniques reported in the literature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, S.

    1986-01-01

    A coding scheme for error control in data communication systems is investigated. The scheme is obtained by cascading two error correcting codes, called the inner and the outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon < 1/2. It is shown that, if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging from high rates to very low rates and Reed-Solomon codes are considered, and their probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates, say 0.1 to 0.01. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  20. A cascaded coding scheme for error control and its performance analysis

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Kasami, Tadao; Fujiwara, Tohru; Takata, Toyoo

    1986-01-01

    A coding scheme is investigated for error control in data communication systems. The scheme is obtained by cascading two error correcting codes, called the inner and outer codes. The error performance of the scheme is analyzed for a binary symmetric channel with bit error rate epsilon <1/2. It is shown that if the inner and outer codes are chosen properly, extremely high reliability can be attained even for a high channel bit error rate. Various specific example schemes with inner codes ranging form high rates to very low rates and Reed-Solomon codes as inner codes are considered, and their error probabilities are evaluated. They all provide extremely high reliability even for very high bit error rates. Several example schemes are being considered by NASA for satellite and spacecraft down link error control.

  1. Sixth Annual Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    Lefferts, E. (Editor)

    1981-01-01

    Methods of orbital position estimation were reviewed. The problem of accuracy in orbital mechanics is discussed and various techniques in current use are presented along with suggested improvements. Of special interest is the compensation for bias in satelliteborne instruments due to attitude instabilities. Image processing and correctional techniques are reported for geodetic measurements and mapping.

  2. A cumulant functional for static and dynamic correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollett, Joshua W., E-mail: j.hollett@uwinnipeg.ca; Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2; Hosseini, Hessam

    A functional for the cumulant energy is introduced. The functional is composed of a pair-correction and static and dynamic correlation energy components. The pair-correction and static correlation energies are functionals of the natural orbitals and the occupancy transferred between near-degenerate orbital pairs, rather than the orbital occupancies themselves. The dynamic correlation energy is a functional of the statically correlated on-top two-electron density. The on-top density functional used in this study is the well-known Colle-Salvetti functional. Using the cc-pVTZ basis set, the functional effectively models the bond dissociation of H{sub 2}, LiH, and N{sub 2} with equilibrium bond lengths and dissociationmore » energies comparable to those provided by multireference second-order perturbation theory. The performance of the cumulant functional is less impressive for HF and F{sub 2}, mainly due to an underestimation of the dynamic correlation energy by the Colle-Salvetti functional.« less

  3. The Spacelab Instrument Pointing System (IPS) and its first flight

    NASA Astrophysics Data System (ADS)

    Heusmann, H.; Wolf, P.

    1985-11-01

    The development of the Instrument Pointing System (IPS) as part of Spacelab's experimental apparatus for open Pallet direct space exposure, and its test flight aboard the Shuttle Orbiter are discussed. The IPS is a three-axis-controlled platform with stellar, sun and earth pointing modes, and a better than 1 arcsec pointing ability. The development of an 'inside-out gimbal' configuration with the platform acting like a joint between the unstable Shuttle and the inertially stabilized payload facilitated close to hemispherical pointing and the adaptability for payloads of almost any size. Gimbal axes torquers counteract Orbiter acceleration due to crew movement and thruster firings, and facilitate target acquisition and precision pointing, by command from a crew-engaged computer preprogrammed for all possible control steps. Carrying an experimental solar-physics payload, the IPS correctly performed all intended functions and withstood launch and orbital loads. Several anomalies were detected and successfully corrected in-flight.

  4. Transfrontal orbitotomy in the dog: an adaptable three-step approach to the orbit.

    PubMed

    Håkansson, Nils Wallin; Håkansson, Berit Wallin

    2010-11-01

    To describe an adaptable and extensive method for orbitotomy in the dog. An adaptable three-step technique for orbitotomy was developed and applied in nine consecutive cases. The steps are zygomatic arch resection laterally, temporalis muscle elevation medially and zygomatic process osteotomy anteriorly-dorsally. The entire orbit is accessed with excellent exposure and room for surgical manipulation. Facial nerve, lacrimal nerve and lacrimal gland function are preserved. The procedure can easily be converted into an orbital exenteration. Exposure of the orbit was excellent in all cases and anatomically correct closure was achieved. Signs of postoperative discomfort were limited, with moderate, reversible swelling in two cases and mild in seven. Wound infection or emphysema did not occur, nor did any other complication attributable to the operative procedure. Blinking ability and lacrimal function were preserved over follow-up times ranging from 1 to 4 years. Transfrontal orbitotomy in the dog offers excellent exposure and room for manipulation. Anatomically correct closure is easily accomplished, postoperative discomfort is limited and complications are mild and temporary. © 2010 American College of Veterinary Ophthalmologists.

  5. Energy level alignment and quantum conductance of functionalized metal-molecule junctions: Density functional theory versus GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Chengjun; Markussen, Troels; Thygesen, Kristian S., E-mail: thygesen@fysik.dtu.dk

    We study the effect of functional groups (CH{sub 3}*4, OCH{sub 3}, CH{sub 3}, Cl, CN, F*4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GWmore » (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.« less

  6. Evaluation and Compensation of Detector Solenoid Effects in the JLEIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Guohui; Morozov, Vasiliy; Zhang, Yuhong

    2016-05-01

    The JLEIC detector solenoid has a strong 3 T field in the IR area, and its tails extend over a range of several meters. One of the main effects of the solenoid field is coupling of the horizontal and vertical betatron motions which must be corrected in order to preserve the dynamical stability and beam spot size match at the IP. Additional effects include influence on the orbit and dispersion caused by the angle between the solenoid axis and the beam orbit. Meanwhile it affects ion polarization breaking the figure-8 spin symmetry. Crab dynamics further complicates the picture. All ofmore » these effects have to be compensated or accounted for. The proposed correction system is equivalent to the Rotating Frame Method. However, it does not involve physical rotation of elements. It provides local compensation of the solenoid effects independently for each side of the IR. It includes skew quadrupoles, dipole correctors and anti-solenoids to cancel perturbations to the orbit and linear optics. The skew quadrupoles and FFQ together generate an effect equivalent to adjustable rotation angle to do the decoupling task. Details of all of the correction systems are presented.« less

  7. Multi-Objective Memetic Search for Robust Motion and Distortion Correction in Diffusion MRI.

    PubMed

    Hering, Jan; Wolf, Ivo; Maier-Hein, Klaus H

    2016-10-01

    Effective image-based artifact correction is an essential step in the analysis of diffusion MR images. Many current approaches are based on retrospective registration, which becomes challenging in the realm of high b -values and low signal-to-noise ratio, rendering the corresponding correction schemes more and more ineffective. We propose a novel registration scheme based on memetic search optimization that allows for simultaneous exploitation of different signal intensity relationships between the images, leading to more robust registration results. We demonstrate the increased robustness and efficacy of our method on simulated as well as in vivo datasets. In contrast to the state-of-art methods, the median target registration error (TRE) stayed below the voxel size even for high b -values (3000 s ·mm -2 and higher) and low SNR conditions. We also demonstrate the increased precision in diffusion-derived quantities by evaluating Neurite Orientation Dispersion and Density Imaging (NODDI) derived measures on a in vivo dataset with severe motion artifacts. These promising results will potentially inspire further studies on metaheuristic optimization in diffusion MRI artifact correction and image registration in general.

  8. Implementation and benchmark of a long-range corrected functional in the density functional based tight-binding method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutsker, V.; Niehaus, T. A., E-mail: thomas.niehaus@physik.uni-regensburg.de; Aradi, B.

    2015-11-14

    Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply themore » method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.« less

  9. Research Topics on Cluttered Environments Interrogation and Propagation

    DTIC Science & Technology

    2014-11-04

    propagation in random and complex media and looked at specific applications associated with imaging and communication through a cluttered medium...imaging and communication schemes. We have used the results on the fourth moment to analyze wavefront correction schemes and obtained novel...and com- plex media and looked at specific applications associated with imaging and communication through a cluttered medium. The main new

  10. Study on advanced information processing system

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Liu, Jyh-Charn

    1992-01-01

    Issues related to the reliability of a redundant system with large main memory are addressed. In particular, the Fault-Tolerant Processor (FTP) for Advanced Launch System (ALS) is used as a basis for our presentation. When the system is free of latent faults, the probability of system crash due to nearly-coincident channel faults is shown to be insignificant even when the outputs of computing channels are infrequently voted on. In particular, using channel error maskers (CEMs) is shown to improve reliability more effectively than increasing the number of channels for applications with long mission times. Even without using a voter, most memory errors can be immediately corrected by CEMs implemented with conventional coding techniques. In addition to their ability to enhance system reliability, CEMs--with a low hardware overhead--can be used to reduce not only the need of memory realignment, but also the time required to realign channel memories in case, albeit rare, such a need arises. Using CEMs, we have developed two schemes, called Scheme 1 and Scheme 2, to solve the memory realignment problem. In both schemes, most errors are corrected by CEMs, and the remaining errors are masked by a voter.

  11. Performance of MIMO-OFDM using convolution codes with QAM modulation

    NASA Astrophysics Data System (ADS)

    Astawa, I. Gede Puja; Moegiharto, Yoedy; Zainudin, Ahmad; Salim, Imam Dui Agus; Anggraeni, Nur Annisa

    2014-04-01

    Performance of Orthogonal Frequency Division Multiplexing (OFDM) system can be improved by adding channel coding (error correction code) to detect and correct errors that occur during data transmission. One can use the convolution code. This paper present performance of OFDM using Space Time Block Codes (STBC) diversity technique use QAM modulation with code rate ½. The evaluation is done by analyzing the value of Bit Error Rate (BER) vs Energy per Bit to Noise Power Spectral Density Ratio (Eb/No). This scheme is conducted 256 subcarrier which transmits Rayleigh multipath fading channel in OFDM system. To achieve a BER of 10-3 is required 10dB SNR in SISO-OFDM scheme. For 2×2 MIMO-OFDM scheme requires 10 dB to achieve a BER of 10-3. For 4×4 MIMO-OFDM scheme requires 5 dB while adding convolution in a 4x4 MIMO-OFDM can improve performance up to 0 dB to achieve the same BER. This proves the existence of saving power by 3 dB of 4×4 MIMO-OFDM system without coding, power saving 7 dB of 2×2 MIMO-OFDM and significant power savings from SISO-OFDM system.

  12. Coherent control of molecular alignment of homonuclear diatomic molecules by analytically designed laser pulses.

    PubMed

    Zou, Shiyang; Sanz, Cristina; Balint-Kurti, Gabriel G

    2008-09-28

    We present an analytic scheme for designing laser pulses to manipulate the field-free molecular alignment of a homonuclear diatomic molecule. The scheme is based on the use of a generalized pulse-area theorem and makes use of pulses constructed around two-photon resonant frequencies. In the proposed scheme, the populations and relative phases of the rovibrational states of the molecule are independently controlled utilizing changes in the laser intensity and in the carrier-envelope phase difference, respectively. This allows us to create the correct coherent superposition of rovibrational states needed to achieve optimal molecular alignment. The validity and efficiency of the scheme are demonstrated by explicit application to the H(2) molecule. The analytically designed laser pulses are tested by exact numerical solutions of the time-dependent Schrodinger equation including laser-molecule interactions to all orders of the field strength. The design of a sequence of pulses to further enhance molecular alignment is also discussed and tested. It is found that the rotating wave approximation used in the analytic design of the laser pulses leads to small errors in the prediction of the relative phase of the rotational states. It is further shown how these errors may be easily corrected.

  13. The effect of interference on delta modulation encoded video signals

    NASA Technical Reports Server (NTRS)

    Schilling, D. L.

    1979-01-01

    The results of a study on the use of the delta modulator as a digital encoder of television signals are presented. The computer simulation was studied of different delta modulators in order to find a satisfactory delta modulator. After finding a suitable delta modulator algorithm via computer simulation, the results are analyzed and then implemented in hardware to study the ability to encode real time motion pictures from an NTSC format television camera. The effects were investigated of channel errors on the delta modulated video signal and several error correction algorithms were tested via computer simulation. A very high speed delta modulator was built (out of ECL logic), incorporating the most promising of the correction schemes, so that it could be tested on real time motion pictures. The final area of investigation concerned itself with finding delta modulators which could achieve significant bandwidth reduction without regard to complexity or speed. The first such scheme to be investigated was a real time frame to frame encoding scheme which required the assembly of fourteen, 131,000 bit long shift registers as well as a high speed delta modulator. The other schemes involved two dimensional delta modulator algorithms.

  14. ESA technology flies on Italian mini-satellite launched from Russia

    NASA Astrophysics Data System (ADS)

    2000-07-01

    Owned by the Italian space agency (ASI) and developed by Carlo Gavazzi with contributions from many other Italian companies, MITA has two tasks to perform: in a circular orbit at 450 km altitude, the mini satellite will carry a cosmic particle detector, while its platform will be tested for the first time as a vehicle for future scientific missions. MITA also carries the MTS-AOMS payload (MicroTechSensor for Attitude and Orbit Measurement System), developed by Astrium in the framework of ESA's Technology Flight Opportunity trial programme. With the Technology Flight Opportunity scheme, funded by its General Studies Programme, ESA intends to provide access to space for European industry's technology products needing in-orbit demonstration to enhance their competitiveness on the space market. This new form of support to the European space industry ties in with ESA's strategy for fostering the competitiveness of European-made technology for eventual commercialisation. In-orbit demonstration is essential if new technologies are to compete on level terms on non-European markets. It thus consolidates strategic investments made by the space industry. The MTS-AOMS is a highly integrated sensor for autonomous attitude and orbit control systems. It combines three functions in one unit: Earth sensing, star sensing and magnetic field sensing. The equipment incorporates an active pixel array sensor and a 2-D fluxgate magnetometer. The aims of the flight are to verify in situ the payload's inherent functions and performance, which cannot be done on the ground, and to assess the behaviour of this type of technology when exposed to the space environment. The Technology Flight Opportunity rule is that ESA funds the launch and integration costs, industry the development and operating costs. According to present planning, two further in-orbit demonstrations funded by this scheme will be carried out between now and January 2001.

  15. DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.

    PubMed

    Wahiduzzaman, Mohammad; Oliveira, Augusto F; Philipsen, Pier; Zhechkov, Lyuben; van Lenthe, Erik; Witek, Henryk A; Heine, Thomas

    2013-09-10

    A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.

  16. Space shuttle orbit maneuvering engine reusable thrust chamber program

    NASA Technical Reports Server (NTRS)

    Senneff, J. M.

    1975-01-01

    The feasibility of potential reusable thrust chamber concepts is studied. Propellant condidates were examined and analytically combined with potential cooling schemes. A data base of engine data which would assist in a configuration selection was produced. The data base verification was performed by the demonstration of a thrust chamber of a selected coolant scheme design. A full scale insulated columbium thrust chamber was used for propellant coolant configurations. Combustion stability of the injectors and a reduced size thrust chamber were experimentally verified as proof of concept demonstrations of the design and study results.

  17. Elongation cutoff technique armed with quantum fast multipole method for linear scaling.

    PubMed

    Korchowiec, Jacek; Lewandowski, Jakub; Makowski, Marcin; Gu, Feng Long; Aoki, Yuriko

    2009-11-30

    A linear-scaling implementation of the elongation cutoff technique (ELG/C) that speeds up Hartree-Fock (HF) self-consistent field calculations is presented. The cutoff method avoids the known bottleneck of the conventional HF scheme, that is, diagonalization, because it operates within the low dimension subspace of the whole atomic orbital space. The efficiency of ELG/C is illustrated for two model systems. The obtained results indicate that the ELG/C is a very efficient sparse matrix algebra scheme. Copyright 2009 Wiley Periodicals, Inc.

  18. β -decay scheme of 140Te to I 140 : Suppression of Gamow-Teller transitions between the neutron h9 /2 and proton h11 /2 partner orbitals

    NASA Astrophysics Data System (ADS)

    Moon, B.; Moon, C.-B.; Odahara, A.; Lozeva, R.; Söderström, P.-A.; Browne, F.; Yuan, C.; Yagi, A.; Hong, B.; Jung, H. S.; Lee, P.; Lee, C. S.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Sumikama, T.; Watanabe, H.; Kojouharov, I.; Isobe, T.; Baba, H.; Sakurai, H.; Daido, R.; Fang, Y.; Nishibata, H.; Patel, Z.; Rice, S.; Sinclair, L.; Wu, J.; Xu, Z. Y.; Yokoyama, R.; Kubo, T.; Inabe, N.; Suzuki, H.; Fukuda, N.; Kameda, D.; Takeda, H.; Ahn, D. S.; Shimizu, Y.; Murai, D.; Bello Garrote, F. L.; Daugas, J. M.; Didierjean, F.; Ideguchi, E.; Ishigaki, T.; Morimoto, S.; Niikura, M.; Nishizuka, I.; Komatsubara, T.; Kwon, Y. K.; Tshoo, K.

    2017-07-01

    We report for the first time the β -decay scheme of 140Te (Z =52 ) to 140I (Z =53 ), with a specific focus on the Gamow-Teller strength along N =87 isotones. These results were obtained in an experiment performed at the Radioactive Ion Beam Factory (RIBF), RIKEN, where the parent nuclide, 140Te, was produced through the in-flight fission of a 238U beam at 345 MeV per nucleon impinging on a 9Be target. Based on data from the high-efficiency γ -ray spectrometer, EUROBALL-RIKEN Cluster Array (EURICA), we constructed a decay scheme of 140I. The half-life of 140Te has been determined to be 350(5) ms. A level at 926 keV has been assigned as a (1+) state based on the logf t value of 4.89(6). This (1+) state, commonly observed in odd-odd nuclei, can be interpreted in terms of the π h11 /2ν h9 /2 configuration formed by the Gamow-Teller transition between a neutron in the h9 /2 orbital and a proton in the h11 /2 orbital. We observe a sharp contrast to this type of β -decay branching to the lower-lying 1+ states between 140I and 136I, where we see a large reduction as the number of neutrons increases. This is in contrast to the prediction by large-scale shell model calculations. To investigate this type of the suppression, results of the Nilsson model calculations will be discussed. Along the isotones with N =87 , we discuss a characteristic feature of the Gamow-Teller distributions at 1+ states with respect to the isospin difference.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Learn, Mark Walter

    Sandia National Laboratories is currently developing new processing and data communication architectures for use in future satellite payloads. These architectures will leverage the flexibility and performance of state-of-the-art static-random-access-memory-based Field Programmable Gate Arrays (FPGAs). One such FPGA is the radiation-hardened version of the Virtex-5 being developed by Xilinx. However, not all features of this FPGA are being radiation-hardened by design and could still be susceptible to on-orbit upsets. One such feature is the embedded hard-core PPC440 processor. Since this processor is implemented in the FPGA as a hard-core, traditional mitigation approaches such as Triple Modular Redundancy (TMR) are not availablemore » to improve the processor's on-orbit reliability. The goal of this work is to investigate techniques that can help mitigate the embedded hard-core PPC440 processor within the Virtex-5 FPGA other than TMR. Implementing various mitigation schemes reliably within the PPC440 offers a powerful reconfigurable computing resource to these node-based processing architectures. This document summarizes the work done on the cache mitigation scheme for the embedded hard-core PPC440 processor within the Virtex-5 FPGAs, and describes in detail the design of the cache mitigation scheme and the testing conducted at the radiation effects facility on the Texas A&M campus.« less

  20. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

Top