Astrodynamics. Volume 1 - Orbit determination, space navigation, celestial mechanics.
NASA Technical Reports Server (NTRS)
Herrick, S.
1971-01-01
Essential navigational, physical, and mathematical problems of space exploration are covered. The introductory chapters dealing with conic sections, orientation, and the integration of the two-body problem are followed by an introduction to orbit determination and design. Systems of units and constants, as well as ephemerides, representations, reference systems, and data are then dealt with. A detailed attention is given to rendezvous problems and to differential processes in observational orbit correction, and in rendezvous or guidance correction. Finally, the Laplacian methods for determining preliminary orbits, and the orbit methods of Lagrange, Gauss, and Gibbs are reviewed.
A multi-satellite orbit determination problem in a parallel processing environment
NASA Technical Reports Server (NTRS)
Deakyne, M. S.; Anderle, R. J.
1988-01-01
The Engineering Orbit Analysis Unit at GE Valley Forge used an Intel Hypercube Parallel Processor to investigate the performance and gain experience of parallel processors with a multi-satellite orbit determination problem. A general study was selected in which major blocks of computation for the multi-satellite orbit computations were used as units to be assigned to the various processors on the Hypercube. Problems encountered or successes achieved in addressing the orbit determination problem would be more likely to be transferable to other parallel processors. The prime objective was to study the algorithm to allow processing of observations later in time than those employed in the state update. Expertise in ephemeris determination was exploited in addressing these problems and the facility used to bring a realism to the study which would highlight the problems which may not otherwise be anticipated. Secondary objectives were to gain experience of a non-trivial problem in a parallel processor environment, to explore the necessary interplay of serial and parallel sections of the algorithm in terms of timing studies, to explore the granularity (coarse vs. fine grain) to discover the granularity limit above which there would be a risk of starvation where the majority of nodes would be idle or under the limit where the overhead associated with splitting the problem may require more work and communication time than is useful.
On the orbital evolution of radiating binary systems
NASA Astrophysics Data System (ADS)
Bekov, A. A.; Momynov, S. B.
2018-05-01
The evolution of dynamic parameters of radiating binary systems with variable mass is studied. As a dynamic model, the problem of two gravitating and radiating bodies is considered, taking into account the gravitational attraction and the light pressure of the interacting bodies with the additional assumption of isotropic variability of their masses. The problem combines the Gylden-Meshchersky problem, acquiring a new physical meaning, and the two-body photogravitational Radzievsky problem. The evolving orbit is presented, unlike Kepler, with varying orbital elements - parameter and eccentricity, defines by the parameter µ(t), area integral C and quasi-integral energy h(t). Adiabatic invariants of the problem, which are of interest for the slow evolution of orbits, are determined. The general course of evolution of orbits of binary systems with radiation are determined by the change of the parameter µ(t) and the total energy of the system.
Orbit determination singularities in the Doppler tracking of a planetary orbiter
NASA Technical Reports Server (NTRS)
Wood, L. J.
1985-01-01
On a number of occasions, spacecraft launched by the U.S. have been placed into orbit about the moon, Venus, or Mars. It is pointed out that, in particular, in planetary orbiter missions two-way coherent Doppler data have provided the principal data type for orbit determination applications. The present investigation is concerned with the problem of orbit determination on the basis of Doppler tracking data in the case of a spacecraft in orbit about a natural body other than the earth or the sun. Attention is given to Doppler shift associated with a planetary orbiter, orbit determination using a zeroth-order model for the Doppler shift, and orbit determination using a first-order model for the Doppler shift.
Relative motion of orbiting satellites
NASA Technical Reports Server (NTRS)
Eades, J. B., Jr.
1972-01-01
The relative motion problem is analyzed, as a linearized case, and as a numerically determined solution to provide a time history of the geometries representing the motion state. The displacement history and the hodographs for families of solutions are provided, analytically and graphically, to serve as an aid to understanding this problem area. Linearized solutions to relative motion problems of orbiting particles are presented for the impulsive and fixed thrust cases. Second order solutions are described to enhance the accuracy of prediction. A method was developed to obtain accurate, numerical solutions to the intercept and rendezvous problem; and, special situations are examined. A particular problem related to relative motions, where the motion traces develop a cusp, is examined in detail. This phenomenon is found to be dependent on a particular relationship between orbital eccentricity and the inclination between orbital planes. These conditions are determined, and, example situations are presented and discussed.
NASA Astrophysics Data System (ADS)
Avdyushev, Victor A.
2017-12-01
Orbit determination from a small sample of observations over a very short observed orbital arc is a strongly nonlinear inverse problem. In such problems an evaluation of orbital uncertainty due to random observation errors is greatly complicated, since linear estimations conventionally used are no longer acceptable for describing the uncertainty even as a rough approximation. Nevertheless, if an inverse problem is weakly intrinsically nonlinear, then one can resort to the so-called method of disturbed observations (aka observational Monte Carlo). Previously, we showed that the weaker the intrinsic nonlinearity, the more efficient the method, i.e. the more accurate it enables one to simulate stochastically the orbital uncertainty, while it is strictly exact only when the problem is intrinsically linear. However, as we ascertained experimentally, its efficiency was found to be higher than that of other stochastic methods widely applied in practice. In the present paper we investigate the intrinsic nonlinearity in complicated inverse problems of Celestial Mechanics when orbits are determined from little informative samples of observations, which typically occurs for recently discovered asteroids. To inquire into the question, we introduce an index of intrinsic nonlinearity. In asteroid problems it evinces that the intrinsic nonlinearity can be strong enough to affect appreciably probabilistic estimates, especially at the very short observed orbital arcs that the asteroids travel on for about a hundredth of their orbital periods and less. As it is known from regression analysis, the source of intrinsic nonlinearity is the nonflatness of the estimation subspace specified by a dynamical model in the observation space. Our numerical results indicate that when determining asteroid orbits it is actually very slight. However, in the parametric space the effect of intrinsic nonlinearity is exaggerated mainly by the ill-conditioning of the inverse problem. Even so, as for the method of disturbed observations, we conclude that it practically should be still entirely acceptable to adequately describe the orbital uncertainty since, from a geometrical point of view, the efficiency of the method directly depends only on the nonflatness of the estimation subspace and it gets higher as the nonflatness decreases.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, Xin-ran; Wang, Xin
2017-04-01
When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.
NASA Astrophysics Data System (ADS)
Asada, Hideki
2006-11-01
There exists a very classical inverse problem regarding orbit determination of a binary system: "when an orbital plane of two bodies is inclined with respect to the line of sight, observables are their positions projected onto a celestial sphere. How do we determine the orbital elements from observations?" A "complete exact solution" has been found. It is reviewed with some related topics.
NASA Technical Reports Server (NTRS)
Lara, Martin; Palacian, Jesus F.
2007-01-01
Frozen orbits of the Hill problem are determined in the double averaged problem, where short and long period terms are removed by means of Lie transforms. The computation of initial conditions of corresponding quasi periodic solutions in the non-averaged problem is straightforward for the perturbation method used provides the explicit equations of the transformation that connects the averaged and non-averaged models. A fourth order analytical theory reveals necessary for the accurate computation of quasi periodic, frozen orbits.
NASA Technical Reports Server (NTRS)
Gordon, Steven C.
1993-01-01
Spacecraft in orbit near libration point L1 in the Sun-Earth system are excellent platforms for research concerning solar effects on the terrestrial environment. One spacecraft mission launched in 1978 used an L1 orbit for nearly 4 years, and future L1 orbital missions are also being planned. Orbit determination and station-keeping are, however, required for these orbits. In particular, orbit determination error analysis may be used to compute the state uncertainty after a predetermined tracking period; the predicted state uncertainty levels then will impact the control costs computed in station-keeping simulations. Error sources, such as solar radiation pressure and planetary mass uncertainties, are also incorporated. For future missions, there may be some flexibility in the type and size of the spacecraft's nominal trajectory, but different orbits may produce varying error analysis and station-keeping results. The nominal path, for instance, can be (nearly) periodic or distinctly quasi-periodic. A periodic 'halo' orbit may be constructed to be significantly larger than a quasi-periodic 'Lissajous' path; both may meet mission requirements, but perhaps the required control costs for these orbits are probably different. Also for this spacecraft tracking and control simulation problem, experimental design methods can be used to determine the most significant uncertainties. That is, these methods can determine the error sources in the tracking and control problem that most impact the control cost (output); it also produces an equation that gives the approximate functional relationship between the error inputs and the output.
Resonance transition periodic orbits in the circular restricted three-body problem
NASA Astrophysics Data System (ADS)
Lei, Hanlun; Xu, Bo
2018-04-01
This work studies a special type of cislunar periodic orbits in the circular restricted three-body problem called resonance transition periodic orbits, which switch between different resonances and revolve about the secondary with multiple loops during one period. In the practical computation, families of multiple periodic orbits are identified first, and then the invariant manifolds emanating from the unstable multiple periodic orbits are taken to generate resonant homoclinic connections, which are used to determine the initial guesses for computing the desired periodic orbits by means of multiple-shooting scheme. The obtained periodic orbits have potential applications for the missions requiring long-term continuous observation of the secondary and tour missions in a multi-body environment.
NASA Technical Reports Server (NTRS)
Chin, M. M.; Goad, C. C.; Martin, T. V.
1972-01-01
A computer program for the estimation of orbit and geodetic parameters is presented. The areas in which the program is operational are defined. The specific uses of the program are given as: (1) determination of definitive orbits, (2) tracking instrument calibration, (3) satellite operational predictions, and (4) geodetic parameter estimation. The relationship between the various elements in the solution of the orbit and geodetic parameter estimation problem is analyzed. The solution of the problems corresponds to the orbit generation mode in the first case and to the data reduction mode in the second case.
Mission planning for on-orbit servicing through multiple servicing satellites: A new approach
NASA Astrophysics Data System (ADS)
Daneshjou, K.; Mohammadi-Dehabadi, A. A.; Bakhtiari, M.
2017-09-01
In this paper, a novel approach is proposed for the mission planning of on-orbit servicing such as visual inspection, active debris removal and refueling through multiple servicing satellites (SSs). The scheduling has been done with the aim of minimization of fuel consumption and mission duration. So a multi-objective optimization problem is dealt with here which is solved by employing particle swarm optimization algorithm. Also, Taguchi technique is employed for robust design of effective parameters of optimization problem. The day that the SSs have to leave parking orbit, transfer duration from parking orbit to final orbit, transfer duration between one target to another, and time spent for the SS on each target are the decision parameters which are obtained from the optimization problem. The raised idea is that in addition to the aforementioned decision parameters, eccentricity and inclination related to the initial orbit and also phase difference between the SSs on the initial orbit are identified by means of optimization problem, so that the designer has not much role on determining them. Furthermore, it is considered that the SS and the target rendezvous at the servicing point and the SS does not perform any phasing maneuver to reach the target. It should be noted that Lambert theorem is used for determination of the transfer orbit. The results show that the proposed approach reduces the fuel consumption and the mission duration significantly in comparison with the conventional approaches.
Tethered body problems and relative motion orbit determination
NASA Technical Reports Server (NTRS)
Eades, J. B., Jr.; Wolf, H.
1972-01-01
Selected problems dealing with orbiting tethered body systems have been studied. In addition, a relative motion orbit determination program was developed. Results from these tasks are described and discussed. The expected tethered body motions were examined, analytically, to ascertain what influence would be played by the physical parameters of the tether, the gravity gradient and orbit eccentricity. After separating the motion modes these influences were determined; and, subsequently, the effects of oscillations and/or rotations, on tether force, were described. A study was undertaken, by examining tether motions, to see what type of control actions would be needed to accurately place a mass particle at a prescribed position relative to a main vehicle. Other applications for tethers were studied. Principally these were concerned with the producing of low-level gee forces by means of stabilized tether configurations; and, the initiation of free transfer trajectories from tether supported vehicle relative positions.
Spin-Orbit Coupling and the Conservation of Angular Momentum
ERIC Educational Resources Information Center
Hnizdo, V.
2012-01-01
In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…
Efficient Trajectory Propagation for Orbit Determination Problems
NASA Technical Reports Server (NTRS)
Roa, Javier; Pelaez, Jesus
2015-01-01
Regularized formulations of orbital motion apply a series of techniques to improve the numerical integration of the orbit. Despite their advantages and potential applications little attention has been paid to the propagation of the partial derivatives of the corresponding set of elements or coordinates, required in many orbit-determination scenarios and optimization problems. This paper fills this gap by presenting the general procedure for integrating the state-transition matrix of the system together with the nominal trajectory using regularized formulations and different sets of elements. The main difficulty comes from introducing an independent variable different from time, because the solution needs to be synchronized. The correction of the time delay is treated from a generic perspective not focused on any particular formulation. The synchronization using time-elements is also discussed. Numerical examples include strongly-perturbed orbits in the Pluto system, motivated by the recent flyby of the New Horizons spacecraft, together with a geocentric flyby of the NEAR spacecraft.
Orbital motion (3rd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Roy, A. E.
The fundamental principles of celestial mechanics are discussed in an introduction for students of astronomy, aerospace engineering, and geography. Chapters are devoted to the dynamic structure of the universe, coordinate and timekeeping systems, the reduction of observational data, the two-body problem, the many-body problem, general and special perturbations, and the stability and evolution of the solar system. Consideration is given to lunar theory, artificial satellites, rocket dynamics and transfer orbits, interplanetary and lunar trajectories, orbit determination and interplanetary navigation, binaries and other few-body systems, and many-body systems of stars. Diagrams, graphs, tables, and problems with solutions are provided.
Determination of celestial bodies orbits and probabilities of their collisions with the Earth
NASA Astrophysics Data System (ADS)
Medvedev, Yuri; Vavilov, Dmitrii
In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.
NASA Astrophysics Data System (ADS)
Zittersteijn, Michiel; Schildknecht, Thomas; Vananti, Alessandro; Dolado Perez, Juan Carlos; Martinot, Vincent
2016-07-01
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention. This problem is also known as the Multiple Target Tracking (MTT) problem. The complexity of the MTT problem is defined by its dimension S. Current research tends to focus on the S = 2 MTT problem. The reason for this is that for S = 2 the problem has a P-complexity. However, with S = 2 the decision to associate a set of observations is based on the minimum amount of information, in ambiguous situations (e.g. satellite clusters) this will lead to incorrect associations. The S > 2 MTT problem is an NP-hard combinatorial optimization problem. In previous work an Elitist Genetic Algorithm (EGA) was proposed as a method to approximately solve this problem. It was shown that the EGA is able to find a good approximate solution with a polynomial time complexity. The EGA relies on solving the Lambert problem in order to perform the necessary orbit determinations. This means that the algorithm is restricted to orbits that are described by Keplerian motion. The work presented in this paper focuses on the impact that this restriction has on the algorithm performance.
Satellite orbit determination from an airborne platform
NASA Astrophysics Data System (ADS)
Shepard, M. M.; Foshee, J. J.
This paper describes the requirements, approach, and problems associated with autonomous satellite orbit determination from an airborne platform. The ability to perform orbit determination from an airborne platform removes the reliance on ground control facilities. Aircraft orbit determination offers a more robust system in that it is less susceptible to direct attack, sabotage, or nuclear disaster. Ranging on a satellite and the processing of range/range-rate data along with INS inputs to produce a set of orbital parameters to be transmitted to user terminals are discussed. Several algorithms that could be utilized by the user terminal to recover the satellite position/velocity data from the transmitted message are presented. The ability to compress the ephemeris message to a small size while remaining autonomous for a long period of time, as would be needed in future military communication satellites, is discussed.
NASA Astrophysics Data System (ADS)
Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
NASA Technical Reports Server (NTRS)
Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)
1992-01-01
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
NASA Astrophysics Data System (ADS)
Vilhena de Moraes, Rodolpho; Cristiane Pardal, Paula; Koiti Kuga, Helio
The problem of orbit determination consists essentially of estimating parameter values that completely specify the body trajectory in the space, processing a set of information (measure-ments) from this body. Such observations can be collected through a conventional tracking network on Earth or through sensors like GPS. The Global Positioning System (GPS) is a powerful and low cost way to allow the computation of orbits for artificial Earth satellites. The Topex/Poseidon satellite is normally used as a reference for analyzing this system for space positioning. The orbit determination of artificial satellites is a nonlinear problem in which the disturbing forces are not easily modeled, like geopotential and direct solar radiation pressure. Through an onboard GPS receiver it is possible to obtain measurements (pseudo-range and phase) that can be used to estimate the state of the orbit. One intends to analyze the modeling of the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms as a method of estimation, with the aim of analyzing the performance of the orbit estimation process. Accuracy is not the main goal; one pursues to verify how differences of modeling can affect the final accuracy of the orbit determination. To accomplish that, the following effects were considered: perturbations up to high degree and order for the geopoten-tial coefficients; direct solar radiation pressure, Sun attraction, and Moon attraction. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. Although not presenting the ultimate accuracy, pseudo-range measurements corrected from ionospheric effects were considered enough to such analysis. The measurements were used to feed the batch least squares orbit determination process, in order to yield conclusive results about the orbit modeling issue. An application has been done, using such GPS data, for orbit determination of the Topex/Poseidon satellite, whose accurate ephemerides are freely available at Internet. It is shown that from a poor but acceptable modeling up to all effects included, the accuracy can vary from about 30m to 8m. Test results for short period (2 hours) and for long period (24 hours) are also shown.
NASA Technical Reports Server (NTRS)
Merlin, Peter W.
2006-01-01
The space shuttle orbiter was the first spacecraft designed with the aerodynamic characteristics and in-atmosphere handling qualities of a conventional airplane. In order to evaluate the orbiter's flight control systems and subsonic handling characteristics, a series of flight tests were undertaken at NASA Dryden Flight Research Center in 1977. A modified Boeing 747 Shuttle Carrier Aircraft carried the Enterprise, a prototype orbiter, during eight captive tests to determine how well the two vehicles flew together and to test some of the orbiter s systems. The free-flight phase of the ALT program allowed shuttle pilots to explore the orbiter's low-speed flight and landing characteristics. The Enterprise provided realistic, in-flight simulations of how subsequent space shuttles would be flown at the end of an orbital mission. The fifth free flight, with the Enterprise landing on a concrete runway for the first time, revealed a problem with the space shuttle flight control system that made it susceptible to pilot-induced oscillation, a potentially dangerous control problem. Further research using various aircraft, particularly NASA Dryden's F-8 Digital-Fly-By-Wire testbed, led to correction of the problem before the first Orbital Test Flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, B.; Alfriend, K.T.; Roehrich, R.L.
1992-01-01
The present conference on astrodynamics and advances in the astronautical sciences encompasses orbit determination, orbital debris, flexible-body dynamics and control, attitude dynamics and control, and topics related to the projects of the European space program. Specific issues addressed include a numerical approach to the angles-only initial orbit determination problem, precise orbit determination of the SPOT platform with DORIS, space-debris measurement and modeling, H(infinity)-optimized broadband compensator for wave-absorbing control, and the application of linear actuators for for telescope pointing control. Also addressed are attitude determination and dynamical performance in free drift for the Space Station Freedom, a Kalman filter for amore » gravity-gradient satellite, the positioning of the Eutelsat II satellite from supersynchronous transfer orbit to reduce satellite velocity-correction requirements, and trajectory analysis and issues.« less
Vigilance problems in orbiter processing
NASA Technical Reports Server (NTRS)
Swart, William W.; Safford, Robert R.; Kennedy, David B.; Yadi, Bert A.; Barth, Timothy S.
1993-01-01
A pilot experiment was done to determine what factors influence potential performance errors related to vigilance in Orbiter processing activities. The selected activities include post flight inspection for burned gap filler material and pre-rollout inspection for tile processing shim material. It was determined that the primary factors related to performance decrement were the color of the target and the difficulty of the target presentation.
Adaptive particle swarm optimization for optimal orbital elements of binary stars
NASA Astrophysics Data System (ADS)
Attia, Abdel-Fattah
2016-12-01
The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.
Filter Strategies for Mars Science Laboratory Orbit Determination
NASA Technical Reports Server (NTRS)
Thompson, Paul F.; Gustafson, Eric D.; Kruizinga, Gerhard L.; Martin-Mur, Tomas J.
2013-01-01
The Mars Science Laboratory (MSL) spacecraft had ambitious navigation delivery and knowledge accuracy requirements for landing inside Gale Crater. Confidence in the orbit determination (OD) solutions was increased by investigating numerous filter strategies for solving the orbit determination problem. We will discuss the strategy for the different types of variations: for example, data types, data weights, solar pressure model covariance, and estimating versus considering model parameters. This process generated a set of plausible OD solutions that were compared to the baseline OD strategy. Even implausible or unrealistic results were helpful in isolating sensitivities in the OD solutions to certain model parameterizations or data types.
A simplex method for the orbit determination of maneuvering satellites
NASA Astrophysics Data System (ADS)
Chen, JianRong; Li, JunFeng; Wang, XiJing; Zhu, Jun; Wang, DanNa
2018-02-01
A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.
Dealing with Uncertainties in Initial Orbit Determination
NASA Technical Reports Server (NTRS)
Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato
2015-01-01
A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.
Rendezvous missions with minimoons from L1
NASA Astrophysics Data System (ADS)
Chyba, M.; Haberkorn, T.; Patterson, G.
2014-07-01
We propose to present asteroid capture missions with the so-called minimoons. Minimoons are small asteroids that are temporarily captured objects on orbits in the Earth-Moon system. It has been suggested that, despite their small capture probability, at any time there are one or two meter diameter minimoons, and progressively greater numbers at smaller diameters. The minimoons orbits differ significantly from elliptical orbits which renders a rendezvous mission more challenging, however they offer many advantages for such missions that overcome this fact. First, they are already on geocentric orbits which results in short duration missions with low Delta-v, this translates in cost efficiency and low-risk targets. Second, beside their close proximity to Earth, an advantage is their small size since it provides us with the luxury to retrieve the entire asteroid and not only a sample of material. Accessing the interior structure of a near-Earth satellite in its morphological context is crucial to an in-depth analysis of the structure of the asteroid. Historically, 2006 RH120 is the only minimoon that has been detected but work is ongoing to determine which modifications to current observation facilities is necessary to provide detection algorithm capabilities. In the event that detection is successful, an efficient algorithm to produce a space mission to rendezvous with the detected minimoon is highly desirable to take advantage of this opportunity. This is the main focus of our work. For the design of the mission we propose the following. The spacecraft is first placed in hibernation on a Lissajoux orbit around the liberation point L1 of the Earth-Moon system. We focus on eight-shaped Lissajoux orbits to take advantage of the stability properties of their invariant manifolds for our transfers since the cost to minimize is the spacecraft fuel consumption. Once a minimoon has been detected we must choose a point on its orbit to rendezvous (in position and velocities) with the spacecraft. This is determined using a combination of distance between the minimoon's orbit to L1 and its energy level with respect to the Lissajoux orbit on which the spacecraft is hibernating. Once the spacecraft rendezvous with the minimoon, it will escort the temporarily captured object to analyze it until the withdrawal time when the spacecraft exits the orbit to return to its hibernating location awaiting for another minimoon to be detected. The entire mission including the return portion can be stated as an optimal control problem, however we choose to break it into smaller sub-problems as a first step to be refined later. To model our control system, we use the circular three-body problem since it provides a good approximation in the vicinity of the Earth-Moon dynamics. Expansion to more refined models will be considered once the problem has been solved for this first approximation. The problem is solved in several steps. First, we consider the time minimal problem since we will use a multiple of it for the minimal fuel consumption problem with fixed time. The techniques used to produce the transfers involve an indirect method based on the necessary optimality condition of the Pontriagyn maximum principle coupled with a continuation method to address the sensitivity of the numerical algorithm to initial values. Time local optimality is verified by computing the Jacobi fields of the Hamiltonian system associated to our optimal control problem to check the second-order conditions of optimality and determine the non-existence of conjugate points.
NASA Technical Reports Server (NTRS)
Smith, R. L.; Huang, C.
1986-01-01
A recent mathematical technique for solving systems of equations is applied in a very general way to the orbit determination problem. The study of this technique, the homotopy continuation method, was motivated by the possible need to perform early orbit determination with the Tracking and Data Relay Satellite System (TDRSS), using range and Doppler tracking alone. Basically, a set of six tracking observations is continuously transformed from a set with known solution to the given set of observations with unknown solutions, and the corresponding orbit state vector is followed from the a priori estimate to the solutions. A numerical algorithm for following the state vector is developed and described in detail. Numerical examples using both real and simulated TDRSS tracking are given. A prototype early orbit determination algorithm for possible use in TDRSS orbit operations was extensively tested, and the results are described. Preliminary studies of two extensions of the method are discussed: generalization to a least-squares formulation and generalization to an exhaustive global method.
NASA Astrophysics Data System (ADS)
Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok
2013-12-01
Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc
NASA Astrophysics Data System (ADS)
Li, Xin-ran; Wang, Xin
2017-01-01
A huge quantity of too-short-arc (TSA) observational data have been obtained in sky surveys of space objects. However, reasonable results for the TSAs can hardly be obtained with the classical methods of initial orbit determination (IOD). In this paper, the IOD is reduced to a two-stage hierarchical optimization problem containing three variables for each stage. Using the genetic algorithm, a new method of the IOD for TSAs is established, through the selections of the optimized variables and the corresponding genetic operators for specific problems. Numerical experiments based on the real measurements show that the method can provide valid initial values for the follow-up work.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc
NASA Astrophysics Data System (ADS)
Li, X. R.; Wang, X.
2016-01-01
The sky surveys of space objects have obtained a huge quantity of too-short-arc (TSA) observation data. However, the classical method of initial orbit determination (IOD) can hardly get reasonable results for the TSAs. The IOD is reduced to a two-stage hierarchical optimization problem containing three variables for each stage. Using the genetic algorithm, a new method of the IOD for TSAs is established, through the selection of optimizing variables as well as the corresponding genetic operator for specific problems. Numerical experiments based on the real measurements show that the method can provide valid initial values for the follow-up work.
A Comparison of JPDA and Belief Propagation for Data Association in SSA
NASA Astrophysics Data System (ADS)
Rutten, M.; Williams, J.; Gordon, N.; Jah, M.; Baldwin, J.; Stauch, J.
2014-09-01
The process of initial orbit determination, or catalogue maintenance, using a set of unlabeled observations requires a method of choosing which observation was due to which object. Realities of imperfect sensors mean that the association must be made in the presence of both missed detections and false alarms. Data association is not only essential to processing observations it can also be one of the most significant computational bottlenecks. The constrained admissible region multiple hypothesis filter (CAR-MHF) is an algorithm for initial orbit determination using short-arc observations of space objects. CAR-MHF has used joint probabilistic data association (JPDA), a well-established approach to multi-target data association. A recent development in the target tracking literature is the use of graphical models to formulate data association problems. Using an approximate inference algorithm, belief propagation (BP), on the graphical model results in an algorithm this is both computationally efficient and accurate. This paper compares CAR-MHF using JPDA and CAR-MHF using BP for the problem of initial orbit determination on a set of deep-space objects. The results of the analysis will show that by using the BP algorithm there are significant gains in computational load without any statistically significant loss in overall performance of the orbit determination.
NASA Technical Reports Server (NTRS)
Iona, Glenn; Butler, James; Guenther, Bruce; Graziani, Larissa; Johnson, Eric; Kennedy, Brian; Kent, Criag; Lambeck, Robert; Waluschka, Eugne; Xiong, Xiaoxiong
2012-01-01
A gradual, but persistent, decrease in the optical throughput was detected during the early commissioning phase for the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) Near Infrared (NIR) bands. Its initial rate and unknown cause were coincidently coupled with a decrease in sensitivity in the same spectral wavelength of the Solar Diffuser Stability Monitor (SDSM) raising concerns about contamination or the possibility of a system-level satellite problem. An anomaly team was formed to investigate and provide recommendations before commissioning could resume. With few hard facts in hand, there was much speculation about possible causes and consequences of the degradation. Two different causes were determined as will be explained in this paper. This paper will describe the build and test history of VIIRS, why there were no indicators, even with hindsight, of an on-orbit problem, the appearance of the on-orbit anomaly, the initial work attempting to understand and determine the cause, the discovery of the root cause and what Test-As-You-Fly (TAYF) activities, can be done in the future to greatly reduce the likelihood of similar optical anomalies. These TAYF activities are captured in the lessons learned section of this paper.
A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) Eureka
NASA Technical Reports Server (NTRS)
Mikkola, Seppo; Innanen, Kimmo; Muinonen, Karri; Bowell, Edward
1994-01-01
Observations and results of orbit determination of the first known Mars Trojan asteroid (5261) Eureka are presented. We have numerically calculated the evolution of the orbital elements, and have analyzed the behavior of the motion during the next 2 Myr. Strong perturbations by planets other than Mars seem to stabilize the eccentricity of the asteroid by stirring the high order resonances present in the elliptic restricted problem. As a result, the orbit appears stable at least on megayear timescales. The difference of the mean longitudes of Mars and Eureka and the semimajor axis of the asteroid form a pair of variables that essentially behave in an adiabatic manner, while the evolution of the other orbital elements is largely determined by the pertubations due to other planets.
Development of a Remotely Operated Autonomous Satellite Tracking System
2010-03-01
ability of Commercial-Off-The-Shelf (COTS) optical observation equipment to track and image Low Earth Orbiting (LEO) satellites. Using radar data in...SOR operates one of the world’s premier adaptive-optics telescopes capable of tracking low -earth orbiting satellites. The telescope has a 3.5-meter...student) published his thesis Initial Determination of Low Earth Orbits Using Commercial Telescopes. According to this document’s Problem Statement
Orbiting space debris: Dangers, measurement and mitigation
NASA Astrophysics Data System (ADS)
McNutt, Ross T.
1992-06-01
Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.
Elements of orbit-determination theory - Textbook
NASA Technical Reports Server (NTRS)
Solloway, C. B.
1971-01-01
Text applies to solution of various optimization problems. Concepts are logically introduced and refinements and complexities for computerized numerical solutions are avoided. Specific topics and essential equivalence of several different approaches to various aspects of the problem are given.
Determining characteristics of artificial near-Earth objects using observability analysis
NASA Astrophysics Data System (ADS)
Friedman, Alex M.; Frueh, Carolin
2018-03-01
Observability analysis is a method for determining whether a chosen state of a system can be determined from the output or measurements. Knowledge of state information availability resulting from observability analysis leads to improved sensor tasking for observation of orbital debris and better control of active spacecraft. This research performs numerical observability analysis of artificial near-Earth objects. Analysis of linearization methods and state transition matrices is performed to determine the viability of applying linear observability methods to the nonlinear orbit problem. Furthermore, pre-whitening is implemented to reformulate classical observability analysis. In addition, the state in observability analysis is typically composed of position and velocity; however, including object characteristics beyond position and velocity can be crucial for precise orbit propagation. For example, solar radiation pressure has a significant impact on the orbit of high area-to-mass ratio objects in geosynchronous orbit. Therefore, determining the time required for solar radiation pressure parameters to become observable is important for understanding debris objects. In order to compare observability analysis results with and without measurement noise and an extended state, quantitative measures of observability are investigated and implemented.
In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft
NASA Technical Reports Server (NTRS)
Slafer, L. I.
1979-01-01
The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.
NASA Astrophysics Data System (ADS)
Zeng, Hao; Zhang, Jingrui
2018-04-01
The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.
2011-01-01
The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing dependency on Earth-supplied logistics for future Constellation Program missions.
NASA Astrophysics Data System (ADS)
Ko, H.; Scheeres, D.
2014-09-01
Representing spacecraft orbit anomalies between two separate states is a challenging but an important problem in achieving space situational awareness for an active spacecraft. Incorporation of such a capability could play an essential role in analyzing satellite behaviors as well as trajectory estimation of the space object. A general way to deal with the anomaly problem is to add an estimated perturbing acceleration such as dynamic model compensation (DMC) into an orbit determination process based on pre- and post-anomaly tracking data. It is a time-consuming numerical process to find valid coefficients to compensate for unknown dynamics for the anomaly. Even if the orbit determination filter with DMC can crudely estimate an unknown acceleration, this approach does not consider any fundamental element of the unknown dynamics for a given anomaly. In this paper, a new way of representing a spacecraft anomaly using an interpolation technique with the Thrust-Fourier-Coefficients (TFCs) is introduced and several anomaly cases are studied using this interpolation method. It provides a very efficient way of reconstructing the fundamental elements of the dynamics for a given spacecraft anomaly. Any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver using an interpolation technique with the TFCs. Given unconnected orbit states between two epochs due to a spacecraft anomaly, it is possible to obtain a unique control law using the TFCs that is able to generate the desired secular behavior for the given orbital changes. This interpolation technique can capture the fundamental elements of combined unmodeled anomaly events. The interpolated orbit trajectory, using the TFCs compensating for a given anomaly, can be used to improve the quality of orbit fits through the anomaly period and therefore help to obtain a good orbit determination solution after the anomaly. Orbit Determination Toolbox (ODTBX) is modified to adapt this technique in order to verify the performance of this interpolation approach. Spacecraft anomaly cases are based on either single or multiple low or high thrust maneuvers and the unknown thrust accelerations are recovered and compared with the true thrust acceleration. The advantage of this approach is to easily append TFCs and its dynamics to the pre-built ODTBX, which enables us to blend post-anomaly tracking data to improve the performance of the interpolation representation in the absence of detailed information about a maneuver. It allows us to improve space situational awareness in the areas of uncertainty propagation, anomaly characterization and track correlation.
Solution of the flyby problem for large space debris at sun-synchronous orbits
NASA Astrophysics Data System (ADS)
Baranov, A. A.; Grishko, D. A.; Medvedevskikh, V. V.; Lapshin, V. V.
2016-05-01
the paper considers the flyby problem related to large space debris (LSD) objects at low earth orbits. The data on the overall dimensions of known last and upper stages of launch vehicles makes it possible to single out five compact groups of such objects from the NORAD catalog in the 500-2000 km altitude interval. The orbits of objects of each group have approximately the same inclinations. The features of the mutual distribution of the orbital planes of LSD objects in the group are shown in a portrait of the evolution of deviations of the right ascension of ascending nodes (RAAN). In the case of the first three groups (inclinations of 71°, 74°, and 81°), the straight lines of relative RAAN deviations of object orbits barely intersect each other. The fourth (83°) and fifth (97°-100°) LSD groups include a considerable number of objects whose orbits are described by straight lines (diagonals), which intersect other lines many times. The use of diagonals makes it possible to significantly reduce the temporal and total characteristic velocity expenditures required for object flybys, but it complicates determination of the flyby sequence. Diagonal solutions can be obtained using elements of graph theory. A solution to the flyby problem is presented for the case of group 5, formed of LSD objects at sun-synchronous orbits.
NASA Astrophysics Data System (ADS)
Rocco, Emr; Prado, Afbap; Souza, Mlos
In this work, the problem of bi-impulsive orbital transfers between coplanar elliptical orbits with minimum fuel consumption but with a time limit for this transfer is studied. As a first method, the equations presented by Lawden (1993) were used. Those equations furnishes the optimal transfer orbit with fixed time for this transfer, between two elliptical coplanar orbits considering fixed terminal points. The method was adapted to cases with free terminal points and those equations was solved to develop a software for orbital maneuvers. As a second method, the equations presented by Eckel and Vinh (1984) were used, those equations provide the transfer orbit between non-coplanar elliptical orbits with minimum fuel and fixed time transfer, or minimum time transfer for a prescribed fuel consumption, considering free terminal points. But in this work only the problem with fixed time transfer was considered, the case of minimum time for a prescribed fuel consumption was already studied in Rocco et al. (2000). Then, the method was modified to consider cases of coplanar orbital transfer, and develop a software for orbital maneuvers. Therefore, two software that solve the same problem using different methods were developed. The first method, presented by Lawden, uses the primer vector theory. The second method, presented by Eckel and Vinh, uses the ordinary theory of maxima and minima. So, to test the methods we choose the same terminal orbits and the same time as input. We could verify that we didn't obtain exactly the same result. In this work, that is an extension of Rocco et al. (2002), these differences in the results are explored with objective of determining the reason of the occurrence of these differences and which modifications should be done to eliminate them.
Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers
NASA Technical Reports Server (NTRS)
Lightsey, E. Glenn
2004-01-01
Satellite formation missions require the precise determination of both the position and attitude of multiple vehicles to achieve the desired objectives. In order to support the mission requirements for these applications, it is necessary to develop techniques for representing and controlling the attitude of formations of vehicles. A generalized method for representing the attitude of a formation of vehicles has been developed. The representation may be applied to both absolute and relative formation attitude control problems. The technique is able to accommodate formations of arbitrarily large number of vehicles. To demonstrate the formation attitude problem, the method is applied to the attitude determination of a simple leader-follower along-track orbit formation. A multiplicative extended Kalman filter is employed to estimate vehicle attitude. In a simulation study using GPS receivers as the attitude sensors, the relative attitude between vehicles in the formation is determined 3 times more accurately than the absolute attitude.
Orbiting space debris: Dangers, measurement, and mitigation
NASA Astrophysics Data System (ADS)
McNutt, Ross T.
1992-01-01
Space debris is a growing environmental problem. Accumulation of objects in Earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, Unites States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-Earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical, and diplomatic components. Actions need to be taken now for the following reasons: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the the loss of critical space systems such as the Space Shuttle or the Space Station.
Orbit Determination Error Analysis Results for the Triana Sun-Earth L2 Libration Point Mission
NASA Technical Reports Server (NTRS)
Marr, G.
2003-01-01
Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination error analysis results are presented for all phases of the Triana Sun-Earth L1 libration point mission and for the science data collection phase of a future Sun-Earth L2 libration point mission. The Triana spacecraft was nominally to be released by the Space Shuttle in a low Earth orbit, and this analysis focuses on that scenario. From the release orbit a transfer trajectory insertion (TTI) maneuver performed using a solid stage would increase the velocity be approximately 3.1 km/sec sending Triana on a direct trajectory to its mission orbit. The Triana mission orbit is a Sun-Earth L1 Lissajous orbit with a Sun-Earth-vehicle (SEV) angle between 4.0 and 15.0 degrees, which would be achieved after a Lissajous orbit insertion (LOI) maneuver at approximately launch plus 6 months. Because Triana was to be launched by the Space Shuttle, TTI could potentially occur over a 16 orbit range from low Earth orbit. This analysis was performed assuming TTI was performed from a low Earth orbit with an inclination of 28.5 degrees and assuming support from a combination of three Deep Space Network (DSN) stations, Goldstone, Canberra, and Madrid and four commercial Universal Space Network (USN) stations, Alaska, Hawaii, Perth, and Santiago. These ground stations would provide coherent two-way range and range rate tracking data usable for orbit determination. Larger range and range rate errors were assumed for the USN stations. Nominally, DSN support would end at TTI+144 hours assuming there were no USN problems. Post-TTI coverage for a range of TTI longitudes for a given nominal trajectory case were analyzed. The orbit determination error analysis after the first correction maneuver would be generally applicable to any libration point mission utilizing a direct trajectory.
Management of Orbital Diseases.
Betbeze, Caroline
2015-09-01
Orbital diseases are common in dogs and cats and can present on emergency due to the acute onset of many of these issues. The difficulty with diagnosis and therapy of orbital disease is that the location of the problem is not readily visible. The focus of this article is on recognizing classical clinical presentations of orbital disease, which are typically exophthalmos, strabismus, enophthalmos, proptosis, or intraconal swelling. After the orbital disease is confirmed, certain characteristics such as pain on opening the mouth, acute vs. chronic swelling, and involvement of nearby structures can be helpful in determining the underlying cause. Abscesses, cellulitis, sialoceles, neoplasia (primary or secondary), foreign bodies, and immune-mediated diseases can all lead to exophthalmos, but it can be difficult to determine the cause of disease without advanced diagnostic imaging, such as ultrasound, magnetic resonance imaging, or computed tomography scan. Fine-needle aspirates and biopsies of the retrobulbar space can also be performed. Published by Elsevier Inc.
On-orbit evaluation of the control system/structural mode interactions on OSO-8
NASA Technical Reports Server (NTRS)
Slafer, L. I.
1980-01-01
The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.
Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario
NASA Technical Reports Server (NTRS)
Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell
2010-01-01
Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.
On the determination of certain astronomical, selenodesic, and gravitational parameters of the moon
NASA Technical Reports Server (NTRS)
Aleksashin, Y. P.; Ziman, Y. L.; Isavnina, I. V.; Krasikov, V. A.; Nepoklonov, B. V.; Rodionov, B. N.; Tischenko, A. P.
1974-01-01
A method was examined for joint construction of a selenocentric fundamental system which can be realized by a coordinate catalog of reference contour points uniformly positioned over the entire lunar surface, and determination of the parameters characterizing the gravitational field, rotation, and orbital motion of the moon. Characteristic of the problem formulation is the introduction of a new complex of inconometric measurements which can be made using pictures obtained from an artificial lunar satellite. The proposed method can be used to solve similar problems on any other planet for which surface images can be obtained from a spacecraft. Characteristic of the proposed technique for solving the problem is the joint statistical analysis of all forms of measurements: orbital iconometric, earth-based trajectory, and also a priori information on the parameters in question which is known from earth-based astronomical studies.
Use of ground radar to detect reentering debris
NASA Technical Reports Server (NTRS)
Crews, J. L.
1985-01-01
The velocity of the particles is required to identify the type of particles producing the ionization trails. A method of approximating the velocity of a meteor from radar data was developed. The method requires the time between the spacings of the Fresnel interference fringes, the range to the ionization trail, and the wavelength of the radar system. The orbital mechanics of the problem are evaluated, if the particles originate with the shuttle, the orbital mechanics will substantiate the relative position of the particles with the position of the shuttle. A program to determine spacecraft orbital decay due to perturbations is utilized for a preliminary evaluation of the orbital mechanics of the problem. Many assumptions concerning the size, shape, density, etc. of the particles are necessary for the preliminary evaluation. The results do not negate the possibility that the events observed by the radar are reentering particles originating from the shuttle.
Automated generation and optimization of ballistic lunar capture transfer trajectories
NASA Astrophysics Data System (ADS)
Griesemer, Paul Ricord
The successful completion of the Hiten mission in 1991 provided real-world validation of a class of trajectories defined as ballistic lunar capture transfers. This class of transfers is often considered for missions to the Moon and for tours of the moons of other planets. In this study, the dynamics of the three and four body problems are examined to better explain the mechanisms of low energy transfers in the Earth-Moon system, and to determine their optimality. Families of periodic orbits in the restricted Earth-Sun-spacecraft three body problem are shown to be generating families for low energy transfers between orbits of the Earth. The low energy orbit-to-orbit transfers are shown to require less fuel than optimal direct transfers between the same orbits in the Earth-Sun-spacecraft circular restricted three body problem. The low energy transfers are categorized based on their generating family and the number of flybys in the reference three body trajectory. The practical application of these generating families to spacecraft mission design is demonstrated through a robust nonlinear targeting algorithm for finding Sun-Earth-Moon-spacecraft four body transfers based on startup transfers indentified in the Earth-Sun three body problem. The local optimality of the transfers is examined through use of Lawden's primer vector theory, and new conditions of optimality for single-impulse-to-capture lunar transfers are established.
Investigation of sonic boom for the Space Shuttle: Low cross-range orbiter
NASA Technical Reports Server (NTRS)
Levy, Lionel L., Jr.; Hicks, Raymond M.; Mendoza, Joel P.
1993-01-01
It is desired that the Space Shuttle Orbiter be capable of landing at airports equipped to handle present-day jet transports. Since the majority of such airports are located near heavily populated areas, an investigation has been undertaken to determine whether or not the sonic boom generated during reentry of Space Shuttle Orbiters is potentially a serious problem. The investigation was concerned with the low cross-range orbiter and reentry concept proposed by Faget of the Manned Spacecraft Center (MSC). This report describes the approach used and presents the results obtained to date.
Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt
NASA Technical Reports Server (NTRS)
Akim, E. L.; Stepanyants, V. A.; Tuchin, A. G.; Shishov, V. A.
2007-01-01
The SC "Phobos-Grunt" flight is planned to 2009 in Russia with the purpose to deliver to the Earth the soil samples of the Mars satellite Phobos. The mission will pass under the following scheme [1-4]: the SC flight from the Earth to the Mars, the SC transit on the Mars satellite orbit, the motion round the Mars on the observation orbit and on the quasi-synchronous one [5], landing on Phobos, taking of a ground and start in the direction to the Earth. The implementation of complicated dynamical operations in the Phobos vicinity is foreseen by the project. The SC will be in a disturbance sphere of gravitational fields from the Sun, the Mars and the Phobos. The SC orbit determination is carried out on a totality of trajectory measurements executed from ground tracking stations and measurements of autonomous systems onboard space vehicle relatively the Phobos. As ground measurements the radio engineering measurements of range and range rate are used. There are possible as onboard optical observations of the Phobos by a television system and ranges from the SC up to the Phobos surface by laser locator. As soon as the Phobos orbit accuracy is insufficient for a solution of a problem of landing its orbit determination will be carried out together with determination of the SC orbit. Therefore the algorithms for joint improving of initial conditions of the SC and the Phobos are necessary to determine parameters of the SC relative the Phobos motion within a single dynamical motion model. After putting on the martial satellite orbit, on the Phobos observation orbit, on the quasi-synchronous orbit in the Phobos vicinity the equipment guidance and the following process of the SC orbit determination relatively Phobos requires a priori knowledge of the Phobos orbit parameters with sufficiently high precision. These parameters should be obtained beforehand using both all modern observations and historical ones.
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Powell, R. W.
1979-01-01
Aft center-of-gravity locations dictated by the large number of rocket engines required has been a continuing problem of single-stage-to-orbit vehicles. Recent work at Langley has demonstrated that these aft center-of-gravity problems become more pronounced for the proposed heavy-lift mission, creating some unique design problems for both the SSTO and staged vehicle systems. During the course of this study, an effort was made to bring together automated vehicle design, wind-tunnel tests, and flight control analyses to assess the impact of longitudinal and lateral-directional instability, and control philosophy on entry vehicle design technology.
Nuclear reactor power as applied to a space-based radar mission
NASA Technical Reports Server (NTRS)
Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.
1988-01-01
A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.
Summary of the orbit determination of NOZOMI spacecraft for all the mission period
NASA Astrophysics Data System (ADS)
Yoshikawa, Makoto; Kawaguchi, Jun'Ichiro; Yamakawa, Hiroshi; Kato, Takaji; Ichikawa, Tsutomu; Ohnishi, Takafumi; Ishibashi, Shiro
2005-07-01
Japanese first Mars explorer NOZOMI, which was launched in July 1998, suffered several problems during the operation period of more than five years. It could have reached near Mars at the end of 2003, but it was not put into the orbit around Mars. Although NOZOMI was not able to execute its main mission, it provided us a lot of good experiences from the point of the orbit determination of spacecraft. One of the most difficult works was the orbit determination for the period without the telemetry. In this period, for the most of the time the high gain antenna did not point to the earth because of a constraint of the attitude. Therefore, the quality of the tracking data was not good, and for some period it was impossible to get the tracking data at all. Under such critical condition, we managed to get the solution of the orbit, and in a near-miraculous way, we were able to control NOZOMI and execute two earth swingbys successfully. Other issues related to the orbit determination are the spin modulation, the solar radiation pressure, the small force related to the attitude change, and the solar conjunction. We tried to solve these issues by the conventional way using range and Doppler data. However, we also tried the new method, that is the orbit determination by using the Delta-VLBI method (VLBI: Very Long Baseline Interferometry). In addition to this, we tried optical observations of NOZOMI at the earth swingbys.
NASA Astrophysics Data System (ADS)
Svoren, J.; Neslusan, L.; Porubcan, V.
1994-08-01
All known parent bodies of meteor showers belong to bodies moving in high-eccentricity orbits (e => 0.5). Recently, asteroids in low-eccentricity orbits (e < 0.5) approaching the Earth's orbit, were suggested as another population of possible parent bodies of meteor streams. This paper deals with the problem of calculation of meteor radiants connected with the bodies in low-eccentricity orbits from the point of view of optimal results depending on the method applied. The paper is a continuation of our previous analysis of high-eccentricity orbits (Svoren, J., Neslusan, L., Porubcan, V.: 1993, Contrib. Astron. Obs. Skalnate Pleso 23, 23). Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys. 7, 261) was applied. D <= 0.1 indicates a very good fit of orbits, 0.1 < D <= 0.2 is considered for a good fit and D > 0.2 means that the fit is rather poor and the change of orbit unrealistic. The optimal method, i.e. the one which results in the smallest D values for the population of low-eccentricity orbits, is that of adjusting the orbit by varying both the eccentricity and perihelion distance. A comparison of theoretical radiants obtained by various methods was made for typical representatives from each group of the NEA (near-Earth asteroids) objects.
Optical navigation during the Voyager Neptune encounter
NASA Technical Reports Server (NTRS)
Riedel, J. E.; Owen, W. M., Jr.; Stuve, J. A.; Synnott, S. P.; Vaughan, R. M.
1990-01-01
Optical navigation techniques were required to successfully complete the planetary exploration phase of the NASA deep-space Voyager mission. The last of Voyager's planetary encounters, with Neptune, posed unique problems from an optical navigation standpoint. In this paper we briefly review general aspects of the optical navigation process as practiced during the Voyager mission, and discuss in detail particular features of the Neptune encounter which affected optical navigation. New approaches to the centerfinding problem were developed for both stars and extended bodies, and these are described. Results of the optical navigation data analysis are presented, as well as a description of the optical orbit determination system and results of its use during encounter. Partially as a result of the optical navigation processing, results of scientific significance were obtained. These results include the discovery and orbit determination of several new satellites of Neptune and the determination of the size of Triton, Neptune's largest moon.
Regularization and computational methods for precise solution of perturbed orbit transfer problems
NASA Astrophysics Data System (ADS)
Woollands, Robyn Michele
The author has developed a suite of algorithms for solving the perturbed Lambert's problem in celestial mechanics. These algorithms have been implemented as a parallel computation tool that has broad applicability. This tool is composed of four component algorithms and each provides unique benefits for solving a particular type of orbit transfer problem. The first one utilizes a Keplerian solver (a-iteration) for solving the unperturbed Lambert's problem. This algorithm not only provides a "warm start" for solving the perturbed problem but is also used to identify which of several perturbed solvers is best suited for the job. The second algorithm solves the perturbed Lambert's problem using a variant of the modified Chebyshev-Picard iteration initial value solver that solves two-point boundary value problems. This method converges over about one third of an orbit and does not require a Newton-type shooting method and thus no state transition matrix needs to be computed. The third algorithm makes use of regularization of the differential equations through the Kustaanheimo-Stiefel transformation and extends the domain of convergence over which the modified Chebyshev-Picard iteration two-point boundary value solver will converge, from about one third of an orbit to almost a full orbit. This algorithm also does not require a Newton-type shooting method. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver to solve the perturbed two-impulse Lambert problem over multiple revolutions. The method of particular solutions is a shooting method but differs from the Newton-type shooting methods in that it does not require integration of the state transition matrix. The mathematical developments that underlie these four algorithms are derived in the chapters of this dissertation. For each of the algorithms, some orbit transfer test cases are included to provide insight on accuracy and efficiency of these individual algorithms. Following this discussion, the combined parallel algorithm, known as the unified Lambert tool, is presented and an explanation is given as to how it automatically selects which of the three perturbed solvers to compute the perturbed solution for a particular orbit transfer. The unified Lambert tool may be used to determine a single orbit transfer or for generating of an extremal field map. A case study is presented for a mission that is required to rendezvous with two pieces of orbit debris (spent rocket boosters). The unified Lambert tool software developed in this dissertation is already being utilized by several industrial partners and we are confident that it will play a significant role in practical applications, including solution of Lambert problems that arise in the current applications focused on enhanced space situational awareness.
NASA Astrophysics Data System (ADS)
Svoren, J.; Neslusan, L.; Porubcan, V.
1993-07-01
It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D<=0.1 indicates a very good fit of orbits, 0.1
NASA Technical Reports Server (NTRS)
1977-01-01
The microwave scanning beam landing system (MSBLS) is the primary position sensor of the Orbiter's navigation subsystem during the autoland phase of the flight. Portions of the system are discussed with special emphasis placed on potential problem areas as referenced to the Orbiter's mission. Topics discussed include system compatability, system accuracy, and expected RF signal levels. A block and flow diagram of MSBLS system operation is included with a list of special tests required to determine system performance.
Application of Numerical Integration and Data Fusion in Unit Vector Method
NASA Astrophysics Data System (ADS)
Zhang, J.
2012-01-01
The Unit Vector Method (UVM) is a series of orbit determination methods which are designed by Purple Mountain Observatory (PMO) and have been applied extensively. It gets the conditional equations for different kinds of data by projecting the basic equation to different unit vectors, and it suits for weighted process for different kinds of data. The high-precision data can play a major role in orbit determination, and accuracy of orbit determination is improved obviously. The improved UVM (PUVM2) promoted the UVM from initial orbit determination to orbit improvement, and unified the initial orbit determination and orbit improvement dynamically. The precision and efficiency are improved further. In this thesis, further research work has been done based on the UVM: Firstly, for the improvement of methods and techniques for observation, the types and decision of the observational data are improved substantially, it is also asked to improve the decision of orbit determination. The analytical perturbation can not meet the requirement. So, the numerical integration for calculating the perturbation has been introduced into the UVM. The accuracy of dynamical model suits for the accuracy of the real data, and the condition equations of UVM are modified accordingly. The accuracy of orbit determination is improved further. Secondly, data fusion method has been introduced into the UVM. The convergence mechanism and the defect of weighted strategy have been made clear in original UVM. The problem has been solved in this method, the calculation of approximate state transition matrix is simplified and the weighted strategy has been improved for the data with different dimension and different precision. Results of orbit determination of simulation and real data show that the work of this thesis is effective: (1) After the numerical integration has been introduced into the UVM, the accuracy of orbit determination is improved obviously, and it suits for the high-accuracy data of available observation apparatus. Compare with the classical differential improvement with the numerical integration, its calculation speed is also improved obviously. (2) After data fusion method has been introduced into the UVM, weighted distribution accords rationally with the accuracy of different kinds of data, all data are fully used and the new method is also good at numerical stability and rational weighted distribution.
Submillimeter Wave Astronomy Satellite (SWAS) Launch and Early Orbit Support Experiences
NASA Technical Reports Server (NTRS)
Kirschner, S.; Sedlak, J.; Challa, M.; Nicholson, A.; Sande, C.; Rohrbaugh, D.
1999-01-01
The Submillimeter Wave Astronomy Satellite (SWAS) was successfully launched on December 6, 1998 at 00:58 UTC. The two year mission is the fourth in the series of Small Explorer (SMEX) missions. SWAS is dedicated to the study of star formation and interstellar chemistry. SWAS was injected into a 635 km by 650 km orbit with an inclination of nearly 70 deg by an Orbital Sciences Corporation Pegasus XL launch vehicle. The Flight Dynamics attitude and navigation teams supported all phases of the early mission. This support included orbit determination, attitude determination, real-time monitoring, and sensor calibration. This paper reports the main results and lessons learned concerning navigation, support software, star tracker performance, magnetometer and gyroscope calibrations, and anomaly resolution. This includes information on spacecraft tip-off rates, first-day navigation problems, target acquisition anomalies, star tracker anomalies, and significant sensor improvements due to calibration efforts.
NASA Astrophysics Data System (ADS)
Ollé, Mercè; Pacha, Joan R.
1999-11-01
In the present work we use certain isolated symmetric periodic orbits found in some limiting Restricted Three-Body Problems to obtain, by numerical continuation, families of symmetric periodic orbits of the more general Spatial Elliptic Restricted Three Body Problem. In particular, the Planar Isosceles Restricted Three Body Problem, the Sitnikov Problem and the MacMillan problem are considered. A stability study for the periodic orbits of the families obtained - specially focused to detect transitions to complex instability - is also made.
NASA Astrophysics Data System (ADS)
Filho, Luiz Arthur Gagg; da Silva Fernandes, Sandro
2017-05-01
In this work, a study about the influence of the Sun on optimal two-impulse Earth-to-Moon trajectories for interior transfers with moderate time of flight is presented considering the three-body and the four-body models. The optimization criterion is the total characteristic velocity which represents the fuel consumption of an infinite thrust propulsion system. The optimization problem has been formulated using the classic planar circular restricted three-body problem (PCR3BP) and the planar bi-circular restricted four-body problem (PBR4BP), and, it consists of transferring a spacecraft from a circular low Earth orbit (LEO) to a circular low Moon orbit (LMO) with minimum fuel consumption. The Sequential Gradient Restoration Algorithm (SGRA) is applied to determine the optimal solutions. Numerical results are presented for several final altitudes of a clockwise or a counterclockwise circular low Moon orbit considering a specified altitude of a counterclockwise circular low Earth orbit. Two types of analysis are performed: in the first one, the initial position of the Sun is taken as a parameter and the major parameters describing the optimal trajectories are obtained by solving an optimization problem of one degree of freedom. In the second analysis, an optimization problem with two degrees of freedom is considered and the initial position of the Sun is taken as an additional unknown.
First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations
NASA Technical Reports Server (NTRS)
Kahle, R.; Kazeminejad, B.; Kirschner, M.; Yoon, Y.; Kiehling, R.; D'Amico, S.
2007-01-01
TerraSAR-X is an advanced synthetic aperture radar satellite system for scientific and commercial applications that is realized in a public-private partnership between the German Aerospace Center (DLR) and the Astrium GmbH. TerraSAR-X was launched at June 15, 2007 on top of a Russian DNEPR-1 rocket into a 514 km sun-synchronous dusk-dawn orbit with an 11-day repeat cycle and will be operated for a period of at least 5 years during which it will provide high resolution SAR-data in the X-band. Due to the objectives of the interferometric campaigns the satellite has to comply to tight orbit control requirements, which are formulated in the form of a 250 m toroidal tube around a pre-flight determined reference trajectory (see [1] for details). The acquisition of the reference orbit was one of the main and key activities during the Launch and Early Orbit Phase (LEOP) and had to compensate for both injection errors and spacecraft safe mode attitude control thruster activities. The paper summarizes the activities of GSOC flight dynamics team during both LEOP and early Commissioning Phase, where the main tasks have been 1) the first-acquisition support via angle-tracking and GPS-based orbit determination, 2) maneuver planning for target orbit acquisition and maintenance, and 3) precise orbit and attitude determination for SAR processing support. Furthermore, a presentation on the achieved results and encountered problems will be addressed.
Accuracy of estimating the masses of Phobos and Deimos from multiple Viking orbiter encounters
NASA Technical Reports Server (NTRS)
Tolson, R. H.; Mason, M. L.
1975-01-01
The problem was investigated of estimating the masses of Phobos and Deimos from Doppler and onboard optical measurements during the Viking extended mission. A Kalman filter was used to analyze the effects of gravitational uncertainties and nongravitational accelerations. These accelerations destroy the dynamical integrity of the orbit, and multibatch or limited memory filtering is preferred to single batch processing. Optical tracking is essential to improve the relative orbit geometry. The masses can be determined to about 10% and 25% respectively for Phobos and Deimos, assuming satellite densities of about 3 gr/cu cm.
Improved satellite constellations for CONUS ATC coverage
DOT National Transportation Integrated Search
1974-05-01
The report examines the problem of designing a constellation of orbiting satellites capable of supporting an aircraft navigation/surveillance service over CONUS. It is assumed that the aircraft positions are determined by hyperbolic multilateration u...
Bouncing ball problem: stability of the periodic modes.
Barroso, Joaquim J; Carneiro, Marcus V; Macau, Elbert E N
2009-02-01
Exploring all its ramifications, we give an overview of the simple yet fundamental bouncing ball problem, which consists of a ball bouncing vertically on a sinusoidally vibrating table under the action of gravity. The dynamics is modeled on the basis of a discrete map of difference equations, which numerically solved fully reveals a rich variety of nonlinear behaviors, encompassing irregular nonperiodic orbits, subharmonic and chaotic motions, chattering mechanisms, and also unbounded nonperiodic orbits. For periodic motions, the corresponding conditions for stability and bifurcation are determined from analytical considerations of a reduced map. Through numerical examples, it is shown that a slight change in the initial conditions makes the ball motion switch from periodic to chaotic orbits bounded by a velocity strip v=+/-Gamma(1-epsilon) , where Gamma is the nondimensionalized shaking acceleration and epsilon the coefficient of restitution which quantifies the amount of energy lost in the ball-table collision.
The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems
NASA Astrophysics Data System (ADS)
Adams, Fred C.
2018-04-01
Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.
Periodic orbits around areostationary points in the Martian gravity field
NASA Astrophysics Data System (ADS)
Liu, Xiao-Dong; Baoyin, Hexi; Ma, Xing-Rui
2012-05-01
This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.
NASA Technical Reports Server (NTRS)
Kessler, D. J.
1981-01-01
A general form is derived for Opik's equations relating to the probability of collision between two orbiting objects to their orbital elements, and used to determine the collisional lifetime of the eight outer moons of Jupiter. The derivation is based on a concept of spatial density, or average number of objects found in a unit volume, and results in a set of equations that are easily applied to a variety of orbital collision problems. When applied to the outer satellites, which are all in irregular orbits, the equations predict a relatively long collisional lifetime for the four retrograde moons (about 270 billon years on the average) and a shorter time for the four posigrade moons (0.9 billion years). This short time is suggestive of a past collision history, and may account for the orbiting dust detected by Pioneers 10 and 11.
Preliminary GPS orbit determination results for the Extreme Ultraviolet Explorer
NASA Technical Reports Server (NTRS)
Gold, Kenn; Bertiger, Willy; Wu, Sien; Yunck, Tom
1993-01-01
A single-frequency Motorola Global Positioning System (GPS) receiver was launched with the Extreme Ultraviolet Explorer mission in June 1992. The receiver utilizes dual GPS antennas placed on opposite sides of the satellite to obtain full GPS coverage as it rotates during its primary scanning mission. A data set from this GPS experiment has been processed at the Jet Propulsion Laboratory with the GIPSY-OASIS 2 software package. The single-frequency, dual antenna approach and the low altitude (approximately 500 km) orbit of the satellite create special problems for the GPS orbit determination analysis. The low orbit implies that the dynamics of the spacecraft will be difficult to model, and that atmospheric drag will be an important error source. A reduced-dynamic solution technique was investigated in which ad hoc accelerations were estimated at each time step to absorb dynamic model error. In addition, a single-frequency ionospheric correction was investigated, and a cycle-slip detector was written. Orbit accuracy is currently better than 5 m. Further optimization should improve this to about 1 m.
The GLAS Algorithm Theoretical Basis Document for Precision Orbit Determination (POD)
NASA Technical Reports Server (NTRS)
Rim, Hyung Jin; Yoon, S. P.; Schultz, Bob E.
2013-01-01
The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASA's Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas. The GLAS instrument operated from 2003 to 2009 and provided multi-year elevation data needed to determine changes in sea ice freeboard, land topography and vegetation around the globe, in addition to elevation changes of the Greenland and Antarctic ice sheets. This document describes the Precision Orbit Determination (POD) algorithm for the ICESat mission. The problem of determining an accurate ephemeris for an orbiting satellite involves estimating the position and velocity of the satellite from a sequence of observations. The ICESatGLAS elevation measurements must be very accurately geolocated, combining precise orbit information with precision pointing information. The ICESat mission POD requirement states that the position of the instrument should be determined with an accuracy of 5 and 20 cm (1-s) in radial and horizontal components, respectively, to meet the science requirements for determining elevation change.
Optimal impulsive time-fixed orbital rendezvous and interception with path constraints
NASA Technical Reports Server (NTRS)
Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.
1990-01-01
Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.
Optimization techniques applied to passive measures for in-orbit spacecraft survivability
NASA Technical Reports Server (NTRS)
Mog, Robert A.; Price, D. Marvin
1987-01-01
Optimization techniques applied to passive measures for in-orbit spacecraft survivability, is a six-month study, designed to evaluate the effectiveness of the geometric programming (GP) optimization technique in determining the optimal design of a meteoroid and space debris protection system for the Space Station Core Module configuration. Geometric Programming was found to be superior to other methods in that it provided maximum protection from impact problems at the lowest weight and cost.
Radial velocity detection of extra-solar planetary systems
NASA Technical Reports Server (NTRS)
Cochran, William D.
1991-01-01
The goal of this program was to detect planetary systems in orbit around other stars through the ultra high precision measurement of the orbital motion of the star around the star-planet barycenter. The survey of 33 nearby solar-type stars is the essential first step in understanding the overall problem of planet formation. The program will accumulate the necessary statistics to determine the frequency of planet formation as a function of stellar mass, age, and composition.
NASA Technical Reports Server (NTRS)
2000-01-01
Unable to solve their engineering problem with a rotor in their Orbital Vane product, DynEco Corporation turned to Kennedy Space Center for help. KSC engineers determined that the compressor rotor was causing a large concentration of stress, which led to cracking and instant rotor failure. NASA redesigned the lubrication system, which allowed the company to move forward with its compressor that has no rubbing parts. The Orbital Vane is a refrigerant compressor suitable for mobile air conditioning and refrigeration.
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
Cooper, W C
1985-01-01
The various congenital and acquired conditions which alter orbital volume are reviewed. Previous investigative work to determine orbital capacity is summarized. Since these studies were confined to postmortem evaluations, the need for a technique to measure orbital volume in the living state is presented. A method for volume determination of the orbit and its contents by high-resolution axial tomography and quantitative digital image analysis is reported. This procedure has proven to be accurate (the discrepancy between direct and computed measurements ranged from 0.2% to 4%) and reproducible (greater than 98%). The application of this method to representative clinical problems is presented and discussed. The establishment of a diagnostic system versatile enough to expand the usefulness of computerized axial tomography and polytomography should add a new dimension to ophthalmic investigation and treatment. Images FIGURE 8 FIGURE 9 FIGURE 10 A FIGURE 10 B FIGURE 11 A FIGURE 11 B FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 FIGURE 20 FIGURE 21 FIGURE 22 FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 A FIGURE 26 B FIGURE 27 FIGURE 28 FIGURE 29 FIGURE 30 FIGURE 31 FIGURE 32 PMID:3938582
The Importance of Semi-Major Axis Knowledge in the Determination of Near-Circular Orbits
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.
1998-01-01
Modem orbit determination has mostly been accomplished using Cartesian coordinates. This usage has carried over in recent years to the use of GPS for satellite orbit determination. The unprecedented positioning accuracy of GPS has tended to focus attention more on the system's capability to locate the spacecraft's location at a particular epoch than on its accuracy in determination of the orbit, per se. As is well-known, the latter depends on a coordinated knowledge of position, velocity, and the correlation between their errors. Failure to determine a properly coordinated position/velocity state vector at a given epoch can lead to an epoch state that does not propagate well, and/or may not be usable for the execution of orbit adjustment maneuvers. For the quite common case of near-circular orbits, the degree to which position and velocity estimates are properly coordinated is largely captured by the error in semi-major axis (SMA) they jointly produce. Figure 1 depicts the relationships among radius error, speed error, and their correlation which exist for a typical low altitude Earth orbit. Two familiar consequences are the relationship Figure 1 shows are the following: (1) downrange position error grows at the per orbit rate of 3(pi) times the SMA error; (2) a velocity change imparted to the orbit will have an error of (pi) divided by the orbit period times the SMA error. A less familiar consequence occurs in the problem of initializing the covariance matrix for a sequential orbit determination filter. An initial covariance consistent with orbital dynamics should be used if the covariance is to propagate well. Properly accounting for the SMA error of the initial state in the construction of the initial covariance accomplishes half of this objective, by specifying the partition of the covariance corresponding to down-track position and radial velocity errors. The remainder of the in-plane covariance partition may be specified in terms of the flight path angle error of the initial state. Figure 2 illustrates the effect of properly and not properly initializing a covariance. This figure was produced by propagating the covariance shown on the plot, without process noise, in a circular low Earth orbit whose period is 5828.5 seconds. The upper subplot, in which the proper relationships among position, velocity, and their correlation has been used, shows overall error growth, in terms of the standard deviations of the inertial position coordinates, of about half of the lower subplot, whose initial covariance was based on other considerations.
Mars Geoscience Orbiter and Lunar Geoscience Orbiter
NASA Technical Reports Server (NTRS)
Fuldner, W. V.; Kaskiewicz, P. F.
1983-01-01
The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.
Non-gravitational perturbations and satellite geodesy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, A.; Nobill, A.M.; Farinella, P.
1987-01-01
This book presents the basic ideas of the physics of non-gravitational perturbations and the mathematics required to compute their orbital effects. It conveys the relevance of the different problems that must be solved to achieve a given level of accuracy in orbit determination and in recovery of geophysically significant parameters. Selected Contents are: Orders of Magnitude of the Perturbing Forces, Tides and Apparent Forces, Tools from Celestial Mechanics, Solar Radiation Pressure-Direct Effects: Satellite-Solar Radiation Interaction, Long-Term Effects on Semi-Major Axis, Radiation Pressure-Indirect Effects: Earth-Reflected Radiation Pressure, Anisotropic Thermal Emission, Drag: Orbital Perturbations by a Drag-Like Force, and Charged Particle Drag.
Human Mars Mission: Launch Window from Earth Orbit. Pt. 1
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a DELTA V penalty. Usually, because of the DELTA V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Highly Elliptical Orbit (HEO) (2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) (3) One impulsive maneuver from a Low Earth Orbit (LEO) (4) Two impulsive maneuvers from LEO (5) Three impulsive maneuvers from LEO.
Minimum Propellant Low-Thrust Maneuvers near the Libration Points
NASA Astrophysics Data System (ADS)
Marinescu, A.; Dumitrache, M.
The impulse technique certainly can bring the vehicle on orbits around the libration points or close to them. The question that aries is, by what means can the vehicle arrive in such cases at the libration points? A first investigation carried out in this paper can give an answer: the use of the technique of low-thrust, which, in addition, can bring the vehicle from the libration points near to or into orbits around these points. This aspect is considered in this present paper where for the applications we have considered the transfer for orbits of the equidistant point L4 and of the collinear point L2, from Earth-moon system. This transfer maneuver can be used to insertion one satellite on libration points orbits. In Earth- moon system the points L 4 and L 5 because an vehicle in on of the equidistant points in quite stable and remains in its vicinity of perturbed, have potential interest for the establishment of transporder satellite for interplanetary tracking. In contrast an vehicle in one of the collinear points is quite instable and it will oscillate along the Earth-moon-axis at increasing amplitude and gradually escape from the libration point. Let use assume that a space vehicle equipped with a low-thrust propulsion is near a libration point L. We consider the planar motion in the restricted frame of the three bodies in the rotating system L, where the Earth-moon distance D=l. The unit of time T is period of the moon's orbit divided by 2 and multiplied by the square root of the quantity one plus the moon/Earth mass ratio, and the unit of mass is the Earth's mass. With these predictions the motion equatios of the vehicle equiped with a low-thrust propulsion installation in the linear approximation near the libration point, have been established. The parameters of the motion at the beginning and the end of these maneuvers are known, the variational problem has been formulated as a Lagrange type problem with fixed extremities. On established the differential equations of the extremals and integrating these differential equations we obtain the desired extremals which characterize the minimum propellant optimal manoeuvres of transfer from libration points to their orbits. By means of Legendre conditions for weak minimum and Weierstrass condition for strong minimum, is demonstrated that variational problem so formulated has sense and is a problem of minimum. The integration of extremal's differential equations system can not lead to analytical solutions easily to obtain and for this we have directed to a numerical integration. The problem is a bilocal one because the motion parameter values are predicted at the beginning and of the maneuver (the manoeuvre duration coincides with the combustion duration) the values of the Lagrange multipliers not being specified at the beginning and end of the manoeuvre. For determination of the velocities at any point on the libration point L4 and L2 has been elaborated the program of calculus on the integration of the motion equations without accelerations due thrust during a revolution period the coordinates and velocities to be equal, with which have been calculated the velocities at the apoapsis A and respectively A'. With these specifications, the final conditions (at the end of the maneuver) could be established, and the determination of optimal transfer parameters in the specified points could be determined. The calculus performed for the transfer from the libration points L4 and L2 to their orbits, shows that the evolution velocities on the orbits are in general small, the velocities on the L2 orbits being greater than the velocities on L 4 orbits having the same semimajor axis. This fact is explicable because the period of evolution on orbits of libration point L4 is greater than the period of orbits of the libration point L2. For the transfer in the apoapsis of both orbits (the points A. and A') on can remarque the fact the accelerations due thrust are greater for orbits around the libration point L2 comparatively with orbits having the same semimajor axis around the libration point L 4 ( maneuver duration = 106 s = 11.574 days for L 4 and = 105 s = 1.157 days for L2 ). Considering orbits around libration points L4 and L2 with semimajor axis between 150-15000 km the components of acceleration due thrust have values between 10-2 -10-5 m/S2 which lays in the range of performances of law thrust propulsion installations (the D, T units have been converted in m, s). *Senior Scientist. Member AIAA **Researche Engineer
NASA Technical Reports Server (NTRS)
Kolomiyets, S. V.
2011-01-01
Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.
Orbit determination performances using single- and double-differenced methods: SAC-C and KOMPSAT-2
NASA Astrophysics Data System (ADS)
Hwang, Yoola; Lee, Byoung-Sun; Kim, Haedong; Kim, Jaehoon
2011-01-01
In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.
On initial orbit determination
NASA Technical Reports Server (NTRS)
Taff, L. G.
1984-01-01
The classical methods of initial orbit determination are brought together within a larger viewpoint. This new synthesis stresses that all such techniques follow one of three approaches. Either they seek to compute the orbital element set, or its equivalent, by attacking the differential equations of motion (Laplace), the first integrals of the equations of motion (Taff), or the solution itself (Gauss). The particular technique pursued within a given type of approach should depend upon the nature of the observational data, the amount of a priori information one is willing to presume, and the object of the exercise. This might be a binary star system, a moon, a minor planet, or an artificial satellite. The efficacy of some algorithms for each approach is discussed briefly. Unfortunately, none of them work very well. Extensions of these techniques to radars or laser radars are trivial and have provided no new insights into the overall problem.
Microparticle impacts in space: Results from Solar Max and shuttle witness plate inspections
NASA Technical Reports Server (NTRS)
Mckay, David S.
1989-01-01
The Solar Maximum Satellite developed electronic problems after operating successfully in space for several years. Astronauts on Space Shuttle mission STS-41C retrieved the satellite into the orbiter cargo bay, replaced defective components, and re-deployed the repaired satellite into orbit. The defective components were returned to Earth for study. The space-exposed surfaces were examined. The approach and objectives were to: document morphology of impact; find and analyze projectile residue; classify impact by origin; determine flux distribution; and determine implications for space exposure. The purpose of the shuttle witness plate experiment was to detect impacts from PAM D2 solid rocket motor; determine flux and size distribution of particles; and determine abrasion effects on various conditions. Results are given for aluminum surfaces, copper surfaces, stainless steel surfaces, Inconel surfaces, and quartz glass surfaces.
The magnetic field of the earth - Performance considerations for space-based observing systems
NASA Technical Reports Server (NTRS)
Webster, W. J., Jr.; Taylor, P. T.; Schnetzler, C. C.; Langel, R. A.
1985-01-01
Basic problems inherent in carrying out observations of the earth magnetic field from space are reviewed. It is shown that while useful observations of the core and crustal fields are possible at the peak of the solar cycle, the greatest useful data volume is obtained during solar minimum. During the last three solar cycles, the proportion of data with a planetary disturbance index of less than 2 at solar maximum was in the range 0.4-0.8 in comparison with solar minimum. It is found that current state of the art orbit determination techniques should eliminate orbit error as a problem in gravitational field measurements from space. The spatial resolution obtained for crustal field anomalies during the major satellite observation programs of the last 30 years are compared in a table. The relationship between observing altitude and the spatial resolution of magnetic field structures is discussed. Reference is made to data obtained using the Magsat, the Polar Orbiting Geophysical Observatory (POGO), and instruments on board the Space Shuttle.
Solar Radiation Pressure Binning for the Geosynchronous Orbit
NASA Technical Reports Server (NTRS)
Hejduk, M. D.; Ghrist, R. W.
2011-01-01
Orbital maintenance parameters for individual satellites or groups of satellites have traditionally been set by examining orbital parameters alone, such as through apogee and perigee height binning; this approach ignored the other factors that governed an individual satellite's susceptibility to non-conservative forces. In the atmospheric drag regime, this problem has been addressed by the introduction of the "energy dissipation rate," a quantity that represents the amount of energy being removed from the orbit; such an approach is able to consider both atmospheric density and satellite frontal area characteristics and thus serve as a mechanism for binning satellites of similar behavior. The geo-synchronous orbit (of broader definition than the geostationary orbit -- here taken to be from 1300 to 1800 minutes in orbital period) is not affected by drag; rather, its principal non-conservative force is that of solar radiation pressure -- the momentum imparted to the satellite by solar radiometric energy. While this perturbation is solved for as part of the orbit determination update, no binning or division scheme, analogous to the drag regime, has been developed for the geo-synchronous orbit. The present analysis has begun such an effort by examining the behavior of geosynchronous rocket bodies and non-stabilized payloads as a function of solar radiation pressure susceptibility. A preliminary examination of binning techniques used in the drag regime gives initial guidance regarding the criteria for useful bin divisions. Applying these criteria to the object type, solar radiation pressure, and resultant state vector accuracy for the analyzed dataset, a single division of "large" satellites into two bins for the purposes of setting related sensor tasking and orbit determination (OD) controls is suggested. When an accompanying analysis of high area-to-mass objects is complete, a full set of binning recommendations for the geosynchronous orbit will be available.
From Ancient Paradoxes to Modern Orbit Determination
NASA Astrophysics Data System (ADS)
Giorgini, Jon D.
2008-09-01
In the 5th century BC, Zeno advanced a set of paradoxes to show motion and time are impossible, hence an illusion. The problem of motion has since driven much scientific thought and discovery, extending to Einstein's insights and the quantum revolution. To determine and predict the motion of remote objects within the solar system, a methodology has been refined over centuries. It integrates ideas from astronomy, physics, mathematics, measurement, and probability theory, having motivated most of those developments. Recently generalized and made numerically efficient, statistical orbit determination has made it possible to remotely fly Magellan and other spacecraft through the turbulent atmospheres of Venus and other planets while estimating atmospheric structure and internal mass distributions of the planet. Over limited time-scales, the methodology can predict the position of the Moon within a meter and asteroids within tens of meters -- their velocities at the millimeter per second level -- while characterizing the probable correctness of the prediction. Current software and networks disseminate such ephemeris information in moments; over the last 12 years, 10 million ephemerides have been provided by the Horizons system, at the request of 300000 different users. Applications range from ground and space telescope pointing to correlation with observations recorded on Babylonian cuneiform tablets. Rapid orbit updates are particularly important for planetary radars integrating weak small-body echoes moving quickly through the frequency spectrum due to relative motion. A loop is established in which the predicted delay-Doppler measurement and uncertainties are used to configure the radar. Both predictions are then compared to actual results, the asteroid or comet orbit solution improved, and the radar system optimally adjusted. Still, after 2500 years and tremendous descriptive success, there remain substantial problems understanding and predicting motion.
Transfers between libration-point orbits in the elliptic restricted problem
NASA Astrophysics Data System (ADS)
Hiday-Johnston, L. A.; Howell, K. C.
1994-04-01
A strategy is formulated to design optimal time-fixed impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior L1 libration point of the Sun-Earth/Moon barycenter system. The adjoint equation in terms of rotating coordinates in the elliptic restricted three-body problem is shown to be of a distinctly different form from that obtained in the analysis of trajectories in the two-body problem. Also, the necessary conditions for a time-fixed two-impulse transfer to be optimal are stated in terms of the primer vector. Primer vector theory is then extended to nonoptimal impulsive trajectories in order to establish a criterion whereby the addition of an interior impulse reduces total fuel expenditure. The necessary conditions for the local optimality of a transfer containing additional impulses are satisfied by requiring continuity of the Hamiltonian and the derivative of the primer vector at all interior impulses. Determination of location, orientation, and magnitude of each additional impulse is accomplished by the unconstrained minimization of the cost function using a multivariable search method. Results indicate that substantial savings in fuel can be achieved by the addition of interior impulsive maneuvers on transfers between libration-point orbits.
Influence of a weak gravitational wave on a bound system of two point-masses. [of binary stars
NASA Technical Reports Server (NTRS)
Turner, M. S.
1979-01-01
The problem of a weak gravitational wave impinging upon a nonrelativistic bound system of two point masses is considered. The geodesic equation for each mass is expanded in terms of two small parameters, v/c and dimensionless wave amplitude, in a manner similar to the post-Newtonian expansion; the geodesic equations are resolved into orbital and center-of-mass equations of motion. The effect of the wave on the orbit is determined by using Lagrange's planetary equations to calculate the time evolution of the orbital elements. The gauge properties of the solutions and, in particular, the gauge invariance of the secular effects are discussed.
NASA Astrophysics Data System (ADS)
Lubey, D.; Scheeres, D.
Tracking objects in Earth orbit is fraught with complications. This is due to the large population of orbiting spacecraft and debris that continues to grow, passive (i.e. no direct communication) and data-sparse observations, and the presence of maneuvers and dynamics mismodeling. Accurate orbit determination in this environment requires an algorithm to capture both a system's state and its state dynamics in order to account for mismodelings. Previous studies by the authors yielded an algorithm called the Optimal Control Based Estimator (OCBE) - an algorithm that simultaneously estimates a system's state and optimal control policies that represent dynamic mismodeling in the system for an arbitrary orbit-observer setup. The stochastic properties of these estimated controls are then used to determine the presence of mismodelings (maneuver detection), as well as characterize and reconstruct the mismodelings. The purpose of this paper is to develop the OCBE into an accurate real-time orbit tracking and maneuver detection algorithm by automating the algorithm and removing its linear assumptions. This results in a nonlinear adaptive estimator. In its original form the OCBE had a parameter called the assumed dynamic uncertainty, which is selected by the user with each new measurement to reflect the level of dynamic mismodeling in the system. This human-in-the-loop approach precludes real-time application to orbit tracking problems due to their complexity. This paper focuses on the Adaptive OCBE, a version of the estimator where the assumed dynamic uncertainty is chosen automatically with each new measurement using maneuver detection results to ensure that state uncertainties are properly adjusted to account for all dynamic mismodelings. The paper also focuses on a nonlinear implementation of the estimator. Originally, the OCBE was derived from a nonlinear cost function then linearized about a nominal trajectory, which is assumed to be ballistic (i.e. the nominal optimal control policy is zero for all times). In this paper, we relax this assumption on the nominal trajectory in order to allow for controlled nominal trajectories. This allows the estimator to be iterated to obtain a more accurate nonlinear solution for both the state and control estimates. Beyond these developments to the estimator, this paper also introduces a modified distance metric for maneuver detection. The original metric used in the OCBE only accounted for the estimated control and its uncertainty. This new metric accounts for measurement deviation and a priori state deviations, such that it accounts for all three major forms of uncertainty in orbit determination. This allows the user to understand the contributions of each source of uncertainty toward the total system mismodeling so that the user can properly account for them. Together these developments create an accurate orbit determination algorithm that is automated, robust to mismodeling, and capable of detecting and reconstructing the presence of mismodeling. These qualities make this algorithm a good foundation from which to approach the problem of real-time maneuver detection and reconstruction for Space Situational Awareness applications. This is further strengthened by the algorithm's general formulation that allows it to be applied to problems with an arbitrary target and observer.
Calculating wave-generated bottom orbital velocities from surface-wave parameters
Wiberg, P.L.; Sherwood, C.R.
2008-01-01
Near-bed wave orbital velocities and shear stresses are important parameters in many sediment-transport and hydrodynamic models of the coastal ocean, estuaries, and lakes. Simple methods for estimating bottom orbital velocities from surface-wave statistics such as significant wave height and peak period often are inaccurate except in very shallow water. This paper briefly reviews approaches for estimating wave-generated bottom orbital velocities from near-bed velocity data, surface-wave spectra, and surface-wave parameters; MATLAB code for each approach is provided. Aspects of this problem have been discussed elsewhere. We add to this work by providing a method for using a general form of the parametric surface-wave spectrum to estimate bottom orbital velocity from significant wave height and peak period, investigating effects of spectral shape on bottom orbital velocity, comparing methods for calculating bottom orbital velocity against values determined from near-bed velocity measurements at two sites on the US east and west coasts, and considering the optimal representation of bottom orbital velocity for calculations of near-bed processes. Bottom orbital velocities calculated using near-bed velocity data, measured wave spectra, and parametric spectra for a site on the northern California shelf and one in the mid-Atlantic Bight compare quite well and are relatively insensitive to spectral shape except when bimodal waves are present with maximum energy at the higher-frequency peak. These conditions, which are most likely to occur at times when bottom orbital velocities are small, can be identified with our method as cases where the measured wave statistics are inconsistent with Donelan's modified form of the Joint North Sea Wave Project (JONSWAP) spectrum. We define the 'effective' forcing for wave-driven, near-bed processes as the product of the magnitude of forcing times its probability of occurrence, and conclude that different bottom orbital velocity statistics may be appropriate for different problems. ?? 2008 Elsevier Ltd.
Stationkeeping of Lissajous Trajectories in the Earth-Moon System with Applications to ARTEMIS
NASA Technical Reports Server (NTRS)
Folta, D. C.; Pavlak, T. A.; Howell, K. C.; Woodard, M. A.; Woodfork, D. W.
2010-01-01
In the last few decades, several missions have successfully exploited trajectories near the.Sun-Earth L1 and L2 libration points. Recently, the collinear libration points in the Earth-Moon system have emerged as locations with immediate application. Most libration point orbits, in any system, are inherently unstable. and must be controlled. To this end, several stationkeeping strategies are considered for application to ARTEMIS. Two approaches are examined to investigate the stationkeeping problem in this regime and the specific options. available for ARTEMIS given the mission and vehicle constraints. (I) A baseline orbit-targeting approach controls the vehicle to remain near a nominal trajectory; a related global optimum search method searches all possible maneuver angles to determine an optimal angle and magnitude; and (2) an orbit continuation method, with various formulations determines maneuver locations and minimizes costs. Initial results indicate that consistent stationkeeping costs can be achieved with both approaches and the costs are reasonable. These methods are then applied to Lissajous trajectories representing a baseline ARTEMIS libration orbit trajectory.
Periodic orbit analysis of a system with continuous symmetry--A tutorial.
Budanur, Nazmi Burak; Borrero-Echeverry, Daniel; Cvitanović, Predrag
2015-07-01
Dynamical systems with translational or rotational symmetry arise frequently in studies of spatially extended physical systems, such as Navier-Stokes flows on periodic domains. In these cases, it is natural to express the state of the fluid in terms of a Fourier series truncated to a finite number of modes. Here, we study a 4-dimensional model with chaotic dynamics and SO(2) symmetry similar to those that appear in fluid dynamics problems. A crucial step in the analysis of such a system is symmetry reduction. We use the model to illustrate different symmetry-reduction techniques. The system's relative equilibria are conveniently determined by rewriting the dynamics in terms of a symmetry-invariant polynomial basis. However, for the analysis of its chaotic dynamics, the "method of slices," which is applicable to very high-dimensional problems, is preferable. We show that a Poincaré section taken on the "slice" can be used to further reduce this flow to what is for all practical purposes a unimodal map. This enables us to systematically determine all relative periodic orbits and their symbolic dynamics up to any desired period. We then present cycle averaging formulas adequate for systems with continuous symmetry and use them to compute dynamical averages using relative periodic orbits. The convergence of such computations is discussed.
Precise satellite orbit determination with particular application to ERS-1
NASA Astrophysics Data System (ADS)
Fernandes, Maria Joana Afonso Pereira
The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimme, Stefan, E-mail: grimme@thch.uni-bonn.de; Bannwarth, Christoph
2016-08-07
The computational bottleneck of the extremely fast simplified Tamm-Dancoff approximated (sTDA) time-dependent density functional theory procedure [S. Grimme, J. Chem. Phys. 138, 244104 (2013)] for the computation of electronic spectra for large systems is the determination of the ground state Kohn-Sham orbitals and eigenvalues. This limits such treatments to single structures with a few hundred atoms and hence, e.g., sampling along molecular dynamics trajectories for flexible systems or the calculation of chromophore aggregates is often not possible. The aim of this work is to solve this problem by a specifically designed semi-empirical tight binding (TB) procedure similar to the wellmore » established self-consistent-charge density functional TB scheme. The new special purpose method provides orbitals and orbital energies of hybrid density functional character for a subsequent and basically unmodified sTDA procedure. Compared to many previous semi-empirical excited state methods, an advantage of the ansatz is that a general eigenvalue problem in a non-orthogonal, extended atomic orbital basis is solved and therefore correct occupied/virtual orbital energy splittings as well as Rydberg levels are obtained. A key idea for the success of the new model is that the determination of atomic charges (describing an effective electron-electron interaction) and the one-particle spectrum is decoupled and treated by two differently parametrized Hamiltonians/basis sets. The three-diagonalization-step composite procedure can routinely compute broad range electronic spectra (0-8 eV) within minutes of computation time for systems composed of 500-1000 atoms with an accuracy typical of standard time-dependent density functional theory (0.3-0.5 eV average error). An easily extendable parametrization based on coupled-cluster and density functional computed reference data for the elements H–Zn including transition metals is described. The accuracy of the method termed sTDA-xTB is first benchmarked for vertical excitation energies of open- and closed-shell systems in comparison to other semi-empirical methods and applied to exemplary problems in electronic spectroscopy. As side products of the development, a robust and efficient valence electron TB method for the accurate determination of atomic charges as well as a more accurate calculation scheme of dipole rotatory strengths within the Tamm-Dancoff approximation is proposed.« less
NASA Technical Reports Server (NTRS)
Smith, Garrett; Phillips, Alan
2002-01-01
There are currently three dominant TSTO class architectures. These are Series Burn (SB), Parallel Burn with crossfeed (PBw/cf), and Parallel Burn without crossfeed (PBncf). The goal of this study was to determine what factors uniquely affect PBncf architectures, how each of these factors interact, and to determine from a performance perspective whether a PBncf vehicle could be competitive with a PBw/cf or SB vehicle using equivalent technology and assumptions. In all cases, performance was evaluated on a relative basis for a fixed payload and mission by comparing gross and dry vehicle masses of a closed vehicle. Propellant combinations studied were LOX: LH2 propelled orbiter and booster (HH) and LOX: Kerosene booster with LOX: LH2 orbiter (KH). The study conclusions were: 1) a PBncf orbiter should be throttled as deeply as possible after launch until the staging point. 2) a detailed structural model is essential to accurate architecture analysis and evaluation. 3) a PBncf TSTO architecture is feasible for systems that stage at mach 7. 3a) HH architectures can achieve a mass growth relative to PBw/cf of < 20%. 3b) KH architectures can achieve a mass growth relative to Series Burn of < 20%. 4) center of gravity (CG) control will be a major issue for a PBncf vehicle, due to the low orbiter specific thrust to weight ratio and to the position of the orbiter required to align the nozzle heights at liftoff. 5 ) thrust to weight ratios of 1.3 at liftoff and between 1.0 and 0.9 when staging at mach 7 appear to be close to ideal for PBncf vehicles. 6) performance for all vehicles studied is better when staged at mach 7 instead of mach 5. The study showed that a Series Burn architecture has the lowest gross mass for HH cases, and has the lowest dry mass for KH cases. The potential disadvantages of SB are the required use of an air-start for the orbiter engines and potential CG control issues. A Parallel Burn with crossfeed architecture solves both these problems, but the mechanics of a large bipropellant crossfeed system pose significant technical difficulties. Parallel Burn without crossfeed vehicles start both booster and orbiter engines on the ground and thus avoid both the risk of orbiter air-start and the complexity of a crossfeed system. The drawback is that the orbiter must use 20% to 35% of its propellant before reaching the staging point. This induces a weight penalty in the orbiter in order to carry additional propellant, which causes a further weight penalty in the booster to achieve the same staging point. One way to reduce the orbiter propellant consumption during the first stage is to throttle down the orbiter engines as much as possible. Another possibility is to use smaller or fewer engines. Throttling the orbiter engines soon after liftoff minimizes CG control problems due to a low orbiter liftoff thrust, but may result in an unnecessarily high orbiter thrust after staging. Reducing the number or size of engines size may cause CG control problems and drift at launch. The study suggested possible methods to maximize performance of PBncf vehicle architectures in order to meet mission design requirements.
Unilateral proptosis and orbital cellulitis in eight African hedgehogs (Atelerix albiventris).
Wheler, C L; Grahn, B H; Pocknell, A M
2001-06-01
Eight African hedgehogs (Atelerix albiventris) were presented with unilateral proptosis. Six animals presented specifically for an ocular problem, whereas two had concurrent neurologic disease. Enucleation and light microscopic examination of tissues was performed in five animals, and euthanasia followed by complete postmortem examination was performed in three animals. Histopathologic findings in all hedgehogs included orbital cellulitis, panophthalmitis, and corneal ulceration, with perforation in seven of eight eyes. The etiology of the orbital cellulitis was not determined, but it appeared to precede proptosis. Orbits in hedgehogs are shallow and the palpebral fissures are large, which may predispose them to proptosis, similar to brachycephalic dogs. This clinical presentation was seen in 15% (8/54) of African hedgehogs presented to the Western College of Veterinary Medicine over a 2-yr period from January 1995 to December 1996 and warrants further investigation.
Self-Shadowing of a Spacecraft in the Computation of Surface Forces. An Example in Planetary Geodesy
NASA Astrophysics Data System (ADS)
Balmino, G.; Marty, J. C.
2018-03-01
We describe in details the algorithms used in modelling the self-shadowing between spacecraft components, which appears when computing the surface forces as precisely as possible and especially when moving parts are involved. This becomes necessary in planetary geodesy inverse problems using more and more precise orbital information to derive fundamental parameters of geophysical interest. Examples are given with two Mars orbiters, which show significant improvement on drag and solar radiation pressure model multiplying factors, a prerequisite for improving in turn the determination of other global models.
NASA Technical Reports Server (NTRS)
Bakhshiyan, B. T.; Nazirov, R. R.; Elyasberg, P. E.
1980-01-01
The problem of selecting the optimal algorithm of filtration and the optimal composition of the measurements is examined assuming that the precise values of the mathematical expectancy and the matrix of covariation of errors are unknown. It is demonstrated that the optimal algorithm of filtration may be utilized for making some parameters more precise (for example, the parameters of the gravitational fields) after preliminary determination of the elements of the orbit by a simpler method of processing (for example, the method of least squares).
Hybrid near-optimal aeroassisted orbit transfer plane change trajectories
NASA Technical Reports Server (NTRS)
Calise, Anthony J.; Duckeman, Gregory A.
1994-01-01
In this paper, a hybrid methodology is used to determine optimal open loop controls for the atmospheric portion of the aeroassisted plane change problem. The method is hybrid in the sense that it combines the features of numerical collocation with the analytically tractable portions of the problem which result when the two-point boundary value problem is cast in the form of a regular perturbation problem. Various levels of approximation are introduced by eliminating particular collocation parameters and their effect upon problem complexity and required number of nodes is discussed. The results include plane changes of 10, 20, and 30 degrees for a given vehicle.
NASA Astrophysics Data System (ADS)
Liu, Bin; Tang, Jingshi; Hou, Xiyun
2016-07-01
Current studies indicate that there are stable orbits around but far away from the triangular libration points .Two special quasi-periodic orbits around each triangular libration points L4 , L5 in the Earth-Moon sys-tem perturbed by Sun are gain , and the stable orbits discussed in this work are ideal places for space colonies because no orbit control is needed. These stable orbits can also be used as nominal orbits for space VLBI (Very Long Baseline Interferometry) stations. The two stations can also form baselines with stations on the Earth and the Moon, or with stations located around another TLP. Due to the long distance between the stations, the observation precision can be greatly enhanced compared with the VLBI stations on the Earth. Such a VLBI constellation not only can advance the radio astronomy, but also can be used as a navigation system for human activities in the Earth-Moon system and even in the solar system. This paper will focus on the navigation constellation coverage issues, and the orbit determination accuracy problems within the Earth-Moon sys-tem and interplanetary space.
Direct Multiple Shooting Optimization with Variable Problem Parameters
NASA Technical Reports Server (NTRS)
Whitley, Ryan J.; Ocampo, Cesar A.
2009-01-01
Taking advantage of a novel approach to the design of the orbital transfer optimization problem and advanced non-linear programming algorithms, several optimal transfer trajectories are found for problems with and without known analytic solutions. This method treats the fixed known gravitational constants as optimization variables in order to reduce the need for an advanced initial guess. Complex periodic orbits are targeted with very simple guesses and the ability to find optimal transfers in spite of these bad guesses is successfully demonstrated. Impulsive transfers are considered for orbits in both the 2-body frame as well as the circular restricted three-body problem (CRTBP). The results with this new approach demonstrate the potential for increasing robustness for all types of orbit transfer problems.
NASA Technical Reports Server (NTRS)
Vaughan, William W.; Friedman, Mark J.; Monteiro, Anand C.
1993-01-01
In earlier papers, Doedel and the authors have developed a numerical method and derived error estimates for the computation of branches of heteroclinic orbits for a system of autonomous ordinary differential equations in R(exp n). The idea of the method is to reduce a boundary value problem on the real line to a boundary value problem on a finite interval by using a local (linear or higher order) approximation of the stable and unstable manifolds. A practical limitation for the computation of homoclinic and heteroclinic orbits has been the difficulty in obtaining starting orbits. Typically these were obtained from a closed form solution or via a homotopy from a known solution. Here we consider extensions of our algorithm which allow us to obtain starting orbits on the continuation branch in a more systematic way as well as make the continuation algorithm more flexible. In applications, we use the continuation software package AUTO in combination with some initial value software. The examples considered include computation of homoclinic orbits in a singular perturbation problem and in a turbulent fluid boundary layer in the wall region problem.
Small Mercury Relativity Orbiter
NASA Technical Reports Server (NTRS)
Bender, Peter L.; Vincent, Mark A.
1989-01-01
The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.
A new approach to impulsive rendezvous near circular orbit
NASA Astrophysics Data System (ADS)
Carter, Thomas; Humi, Mayer
2012-04-01
A new approach is presented for the problem of planar optimal impulsive rendezvous of a spacecraft in an inertial frame near a circular orbit in a Newtonian gravitational field. The total characteristic velocity to be minimized is replaced by a related characteristic-value function and this related optimization problem can be solved in closed form. The solution of this problem is shown to approach the solution of the original problem in the limit as the boundary conditions approach those of a circular orbit. Using a form of primer-vector theory the problem is formulated in a way that leads to relatively easy calculation of the optimal velocity increments. A certain vector that can easily be calculated from the boundary conditions determines the number of impulses required for solution of the optimization problem and also is useful in the computation of these velocity increments. Necessary and sufficient conditions for boundary conditions to require exactly three nonsingular non-degenerate impulses for solution of the related optimal rendezvous problem, and a means of calculating these velocity increments are presented. A simple example of a three-impulse rendezvous problem is solved and the resulting trajectory is depicted. Optimal non-degenerate nonsingular two-impulse rendezvous for the related problem is found to consist of four categories of solutions depending on the four ways the primer vector locus intersects the unit circle. Necessary and sufficient conditions for each category of solutions are presented. The region of the boundary values that admit each category of solutions of the related problem are found, and in each case a closed-form solution of the optimal velocity increments is presented. Similar results are presented for the simpler optimal rendezvous that require only one-impulse. For brevity degenerate and singular solutions are not discussed in detail, but should be presented in a following study. Although this approach is thought to provide simpler computations than existing methods, its main contribution may be in establishing a new approach to the more general problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minesaki, Yukitaka
2015-01-01
We propose the discrete-time restricted four-body problem (d-R4BP), which approximates the orbits of the restricted four-body problem (R4BP). The d-R4BP is given as a special case of the discrete-time chain regularization of the general N-body problem published in Minesaki. Moreover, we analytically prove that the d-R4BP yields the correct orbits corresponding to the elliptic relative equilibrium solutions of the R4BP when the three primaries form an equilateral triangle at any time. Such orbits include the orbit of a relative equilibrium solution already discovered by Baltagiannis and Papadakis. Until the proof in this work, there has been no discrete analog thatmore » preserves the orbits of elliptic relative equilibrium solutions in the R4BP. For a long time interval, the d-R4BP can precisely compute some stable periodic orbits in the Sun–Jupiter–Trojan asteroid–spacecraft system that cannot necessarily be reproduced by other generic integrators.« less
Resolving the Problem of Stellar Orbital Anisotropy
NASA Astrophysics Data System (ADS)
Humphrey, Philip
2006-09-01
Mass profiles of elliptical galaxies provide an insight into dark matter (DM) halo formation, while orbital structure is tied to evolutionary history. Unfortunately the mass-anisotropy degeneracy prevents either from being uniquely determined by stellar kinematics measurements alone. A recent controversy suggesting no DM in elliptical galaxies may be explained by this effect, illustrating the urgent need for better constraints. We propose a 75ks Chandra exposure of NGC4649 to break this degeneracy in a carefully-chosen galaxy. Combined with our deep optical spectra and PN and GC kinematics, this will provide definitive constraints on the mass and orbital anisotropy profiles. By combining all techniques for one galaxy, this will provide a textbook example of how to overcome the degeneracy.
NASA Astrophysics Data System (ADS)
Bykov, O. P.
Any CCD frames with stars or galaxies or clusters and other images must be studied for a searching of moving celestial objects, namely asteroids, comets, artificial Earth satellites inside them. At Pulkovo Astronomical Observatory, new methods and software were elaborated to solve this problem.
A refined orbit for the satellite of asteroid (107) Camilla
NASA Astrophysics Data System (ADS)
Pajuelo, Myriam Virginia; Carry, Benoit; Vachier, Frederic; Berthier, Jerome; Descamp, Pascal; Merline, William J.; Tamblyn, Peter M.; Conrad, Al; Storrs, Alex; Margot, Jean-Luc; Marchis, Frank; Kervella, Pierre; Girard, Julien H.
2015-11-01
The satellite of the Cybele asteroid (107) Camilla was discovered in March 2001 using the Hubble Space Telescope (Storrs et al., 2001, IAUC 7599). From a set of 23 positions derived from adaptive optics observations obtained over three years with the ESO VLT, Keck-II and Gemini-North telescopes, Marchis et al. (2008, Icarus 196) determined its orbit to be nearly circular.In the new work reported here, we compiled, reduced, and analyzed observations at 39 epochs (including the 23 positions previously analyzed) by adding additional observations taken from data archives: HST in 2001; Keck in 2002, 2003, and 2009; Gemini in 2010; and VLT in 2011. The present dataset hence contains twice as many epochs as the prior analysis and covers a time span that is three times longer (more than a decade).We use our orbit determination algorithm Genoid (GENetic Orbit IDentification), a genetic based algorithm that relies on a metaheuristic method and a dynamical model of the Solar System (Vachier et al., 2012, A&A 543). The method uses two models: a simple Keplerian model to minimize the search-time for an orbital solution, exploring a wide space of solutions; and a full N-body problem that includes the gravitational field of the primary asteroid up to 4th order.The orbit we derive fits all 39 observed positions of the satellite with an RMS residual of only milli-arcseconds, which corresponds to sub-pixel accuracy. We found the orbit of the satellite to be circular and roughly aligned with the equatorial plane of Camilla. The refined mass of the system is (12 ± 1) x 10^18 kg, for an orbital period of 3.71 days.We will present this improved orbital solution of the satellite of Camilla, as well as predictions for upcoming stellar occultation events.
Optimal aeroassisted orbital transfer with plane change using collocation and nonlinear programming
NASA Technical Reports Server (NTRS)
Shi, Yun. Y.; Nelson, R. L.; Young, D. H.
1990-01-01
The fuel optimal control problem arising in the non-planar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) with orbital plane change. The basic strategy here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the aeroassisted HEO to LEO transfer consists of three phases. In the first phase, the orbital transfer begins with a deorbit impulse at HEO which injects the vehicle into an elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and bank angle modulations to perform the desired orbital plane change and to satisfy heating constraints. Because of the energy loss during the turn, an impulse is required to initiate the third phase to boost the vehicle back to the desired LEO orbital altitude. The third impulse is then used to circularize the orbit at LEO. The problem is solved by a direct optimization technique which uses piecewise polynomial representation for the state and control variables and collocation to satisfy the differential equations. This technique converts the optimal control problem into a nonlinear programming problem which is solved numerically. Solutions were obtained for cases with and without heat constraints and for cases of different orbital inclination changes. The method appears to be more powerful and robust than other optimization methods. In addition, the method can handle complex dynamical constraints.
Disruption of the Globular Cluster Pal 5
NASA Technical Reports Server (NTRS)
Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey N. (Technical Monitor)
1995-01-01
Orbit calculations suggest that the sparse globular cluster, Pal 5, will pass within 7 kpc of the Galactic center the next time it crosses the plane, where it might be destroyed by tidal stresses. We study this problem, treating Pal 5 as a self-consistent dynamical system orbiting through an external potential that represents the Galaxy. The first part of the problem is to find suitable analytic approximations to the Galactic potential. They must be valid in all regions the cluster is likely to explore. Observed velocity and positional data for Pal 5 are used as initial conditions to determine the orbit. Methods we used for a different problem some 12 years ago have been adapted to this problem. Three experiments have been run, with M/L= 1, 3, and 10, for the cluster model. The cluster blew up shortly after passing through the Galactic plane (about 130 Myrs after the beginning of the run) with M/L=1. At M/L = 3 and 10 the cluster survived, although it got quite a kick in the fundamental mode on passing through the plane. But the fundamental mode oscillation died out in a couple of oscillation cycles at M/L=10. Pal 5 will probably be destroyed on its next crossing of the Galactic plane if M/L=1, but it can survive (albeit with fairly heavy damage) if NI/L=3. We haven't tried to trap the mass limits more closely than that. Pal 5 comes through pretty well unscathed at M/L=10. An interesting follow-up experiment would be to back the cluster up along its orbit to look at its previous passage through the Galactic plane, to see what kind of object it might have been at earlier times.
Sampling characteristics of satellite orbits
NASA Technical Reports Server (NTRS)
Wunsch, Carl
1989-01-01
The irregular space-time sampling of any finite region by an orbiting satellite raises difficult questions as to which frequencies and wavenumbers can be determined and which will alias into others. Conventional sampling theorems must be extended to account for both irregular data distributions and observational noise - the sampling irregularity making the system much more susceptible to noise than in regularly sampled cases. The problem is formulated here in terms of least-squares and applied to spacecraft in 10-day and 17-day repeating orbits. The 'diamond-pattern' laid down spatially in such repeating orbits means that either repeat period adequately samples the spatial variables, but the slow overall temporal coverage in the 17-day pattern leads to much greater uncertainty than in the shorter repeat cycle. The result is not definitive and it is not concluded that a 10-day orbit repeat is the most appropriate one. A major conclusion, however, is that different orbital choices have potentially quite different sampling characteristics which need to be analyzed in terms of the spectral characteristics of the moving sea surface.
Optimization of Insertion Cost for Transfer Trajectories to Libration Point Orbits
NASA Technical Reports Server (NTRS)
Howell, K. C.; Wilson, R. S.; Lo, M. W.
1999-01-01
The objective of this work is the development of efficient techniques to optimize the cost associated with transfer trajectories to libration point orbits in the Sun-Earth-Moon four body problem, that may include lunar gravity assists. Initially, dynamical systems theory is used to determine invariant manifolds associated with the desired libration point orbit. These manifolds are employed to produce an initial approximation to the transfer trajectory. Specific trajectory requirements such as, transfer injection constraints, inclusion of phasing loops, and targeting of a specified state on the manifold are then incorporated into the design of the transfer trajectory. A two level differential corrections process is used to produce a fully continuous trajectory that satisfies the design constraints, and includes appropriate lunar and solar gravitational models. Based on this methodology, and using the manifold structure from dynamical systems theory, a technique is presented to optimize the cost associated with insertion onto a specified libration point orbit.
Thermodynamic performance testing of the orbiter flash evaporator system
NASA Technical Reports Server (NTRS)
Jaax, J. R.; Melgares, M. A.; Frahm, J. P.
1980-01-01
System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.
Optimal trajectories based on linear equations
NASA Technical Reports Server (NTRS)
Carter, Thomas E.
1990-01-01
The Principal results of a recent theory of fuel optimal space trajectories for linear differential equations are presented. Both impulsive and bounded-thrust problems are treated. A new form of the Lawden Primer vector is found that is identical for both problems. For this reason, starting iteratives from the solution of the impulsive problem are highly effective in the solution of the two-point boundary-value problem associated with bounded thrust. These results were applied to the problem of fuel optimal maneuvers of a spacecraft near a satellite in circular orbit using the Clohessy-Wiltshire equations. For this case two-point boundary-value problems were solved using a microcomputer, and optimal trajectory shapes displayed. The results of this theory can also be applied if the satellite is in an arbitrary Keplerian orbit through the use of the Tschauner-Hempel equations. A new form of the solution of these equations has been found that is identical for elliptical, parabolic, and hyperbolic orbits except in the way that a certain integral is evaluated. For elliptical orbits this integral is evaluated through the use of the eccentric anomaly. An analogous evaluation is performed for hyperbolic orbits.
Applying Parallel Processing Techniques to Tether Dynamics Simulation
NASA Technical Reports Server (NTRS)
Wells, B. Earl
1996-01-01
The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.
2012-06-01
procedures have been driven by the rising significance of the orbital debris problem in Low Earth Orbit (LEO). Therefore current EOL plans are...does not display a currently valid OMB control number. 1. REPORT DATE JUN 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4...by the rising significance of the orbital debris problem in Low Earth Orbit (LEO). Therefore current EOL plans are written largely with the aim of
Parallel satellite orbital situational problems solver for space missions design and control
NASA Astrophysics Data System (ADS)
Atanassov, Atanas Marinov
2016-11-01
Solving different scientific problems for space applications demands implementation of observations, measurements or realization of active experiments during time intervals in which specific geometric and physical conditions are fulfilled. The solving of situational problems for determination of these time intervals when the satellite instruments work optimally is a very important part of all activities on every stage of preparation and realization of space missions. The elaboration of universal, flexible and robust approach for situation analysis, which is easily portable toward new satellite missions, is significant for reduction of missions' preparation times and costs. Every situation problem could be based on one or more situation conditions. Simultaneously solving different kinds of situation problems based on different number and types of situational conditions, each one of them satisfied on different segments of satellite orbit requires irregular calculations. Three formal approaches are presented. First one is related to situation problems description that allows achieving flexibility in situation problem assembling and presentation in computer memory. The second formal approach is connected with developing of situation problem solver organized as processor that executes specific code for every particular situational condition. The third formal approach is related to solver parallelization utilizing threads and dynamic scheduling based on "pool of threads" abstraction and ensures a good load balance. The developed situation problems solver is intended for incorporation in the frames of multi-physics multi-satellite space mission's design and simulation tools.
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.
1994-01-01
Orbital Acceleration Research Experiment (OARE) data on Space Transportation System (STS)-50 have been examined in detail during a 2-day time period. Absolute acceleration levels have been derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. During the interval, the tri-axial OARE raw telemetered acceleration measurements have been filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval have been analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z-axis sensitive range scale factors were determined in a separate process using orbiter maneuvers and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter center-of-gravity, which are the aerodynamic signals along each body axis. Results indicate that there is a force being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces have been reexamined, but none produces the observed effect. Thus, it is tentatively concluded that the orbiter is creating the environment observed. At least part of this force is thought to be due to the Flash Evaporator System.
Design of an unmanned, reusable vehicle to de-orbit debris in Earth orbit
NASA Technical Reports Server (NTRS)
Aziz, Shahed; Cunningham, Timothy W.; Moore-Mccassey, Michelle
1990-01-01
The space debris problem is becoming more important because as orbital missions increase, the amount of debris increases. It was the design team's objective to present alternative designs and a problem solution for a deorbiting vehicle that will alleviate the problem by reducing the amount of large debris in earth orbit. The design team was asked to design a reusable, unmanned vehicle to de-orbit debris in earth orbit. The design team will also construct a model to demonstrate the system configuration and key operating features. The alternative designs for the unmanned, reusable vehicle were developed in three stages: selection of project requirements and success criteria, formulation of a specification list, and the creation of alternatives that would satisfy the standards set forth by the design team and their sponsor. The design team selected a Chain and Bar Shot method for deorbiting debris in earth orbit. The De-orbiting Vehicle (DOV) uses the NASA Orbital Maneuvering Vehicle (OMV) as the propulsion and command modules with the deorbiting module attached to the front.
The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization
NASA Technical Reports Server (NTRS)
1980-01-01
Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.
A real-time approximate optimal guidance law for flight in a plane
NASA Technical Reports Server (NTRS)
Feeley, Timothy S.; Speyer, Jason L.
1990-01-01
A real-time guidance scheme is presented for the problem of maximizing the payload into orbit subject to the equations of motion of a rocket over a nonrotating spherical earth. The flight is constrained to a path in the equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of the problem can be separated into primary and perturbation effects by a small parameter, epsilon, which is the ratio of the atmospheric scale height to the radius of the earth. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form. The neglected perturbation terms are included in the higher-order terms of the expansion, which are determined from the solution of first-order linear partial differential equations requiring only integrations which are quadratures. The quadratures can be performed rapidly with emerging computer capability, so that real-time approximate optimization can be used to construct the launch guidance law. The application of this technique to flight in three-dimensions is made apparent from the solution presented.
Preliminary OARE absolute acceleration measurements on STS-50
NASA Technical Reports Server (NTRS)
Blanchard, Robert C.; Nicholson, John Y.; Ritter, James
1993-01-01
On-orbit Orbital Acceleration Research Experiment (OARE) data on STS-50 was examined in detail during a 2-day time period. Absolute acceleration levels were derived at the OARE location, the orbiter center-of-gravity, and at the STS-50 spacelab Crystal Growth Facility. The tri-axial OARE raw acceleration measurements (i.e., telemetered data) during the interval were filtered using a sliding trimmed mean filter in order to remove large acceleration spikes (e.g., thrusters) and reduce the noise. Twelve OARE measured biases in each acceleration channel during the 2-day interval were analyzed and applied to the filtered data. Similarly, the in situ measured x-axis scale factors in the sensor's most sensitive range were also analyzed and applied to the data. Due to equipment problem(s) on this flight, both y- and z- axis sensitive range scale factors were determined in a separate process (using the OARE maneuver data) and subsequently applied to the data. All known significant low-frequency corrections at the OARE location (i.e., both vertical and horizontal gravity-gradient, and rotational effects) were removed from the filtered data in order to produce the acceleration components at the orbiter's center-of-gravity, which are the aerodynamic signals along each body axes. Results indicate that there is a force of unknown origin being applied to the Orbiter in addition to the aerodynamic forces. The OARE instrument and all known gravitational and electromagnetic forces were reexamined, but none produce the observed effect. Thus, it is tentatively concluded that the Orbiter is creating the environment observed.
Siah, We Fong; Patel, Bhupendra Ck; Malhotra, Raman
2016-08-01
To report a case series of patients with persistent temple-related problems following lateral wall rim-sparing (LWRS) orbital decompression for thyroid-related orbitopathy and to discuss their management. Retrospective review of medical records of patients referred to two oculoplastic centres (Corneoplastic Unit, Queen Victoria Hospital, East Grinstead, UK and Moran Eye Center, University of Utah, Salt Lake City, USA) for intervention to improve/alleviate temple-related problems. All patients were seeking treatment for their persistent, temple-related problems of minimum 3 years' duration post decompression. The main outcome measure was the resolution or improvement of temple-related problems. Eleven orbits of six patients (five females) with a median age of 57 years (range 23-65) were included in this study. Temple-related problems consisted of cosmetically bothersome temple hollowness (n=11; 100%), masticatory oscillopsia (n=8; 73%), temple tenderness (n=4; 36%), 'clicking' sensation (n=4; 36%) and gaze-evoked ocular pain (n=4; 36%). Nine orbits were also complicated by proptosis and exposure keratopathy. Preoperative imaging studies showed the absence of lateral wall in all 11 orbits and evidence of prolapsed lacrimal gland into the wall defect in four orbits. Intervention included the repair of the lateral wall defect with a sheet implant, orbital decompression involving fat, the medial wall or orbital floor and autologous fat transfer or synthetic filler for temple hollowness. Postoperatively, there was full resolution of masticatory oscillation, temple tenderness, 'clicking' sensation and gaze-evoked ocular pain, and an improvement in temple hollowness. Pre-existing diplopia in one patient resolved after surgery while two patients developed new-onset diplopia necessitating strabismus surgery. This is the first paper to show that persistent, troublesome temple-related problems following LWRS orbital decompression can be surgically corrected. Patients should be counselled about the potential risk of these complications when considering LWRS orbital decompression. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The topology of the regularized integral surfaces of the 3-body problem
NASA Technical Reports Server (NTRS)
Easton, R.
1971-01-01
Momentum, angular momentum, and energy of integral surfaces in the planar three-body problem are considered. The end points of orbits which cross an isolating block are identified. It is shown that this identification has a unique extension to an identification which pairs the end points of orbits entering the block and which end in a binary collision with the end points of orbits leaving the block and which come from a binary collision. The problem of regularization is that of showing that the identification of the end points of crossing orbits has a continuous, unique extension. The regularized phase space for the three-body problem was obtained, as were regularized integral surfaces for the problem on which the three-body equations of motion induce flows. Finally the topology of these surfaces is described.
Periodic orbit analysis of a system with continuous symmetry—A tutorial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budanur, Nazmi Burak, E-mail: budanur3@gatech.edu; Cvitanović, Predrag; Borrero-Echeverry, Daniel
2015-07-15
Dynamical systems with translational or rotational symmetry arise frequently in studies of spatially extended physical systems, such as Navier-Stokes flows on periodic domains. In these cases, it is natural to express the state of the fluid in terms of a Fourier series truncated to a finite number of modes. Here, we study a 4-dimensional model with chaotic dynamics and SO(2) symmetry similar to those that appear in fluid dynamics problems. A crucial step in the analysis of such a system is symmetry reduction. We use the model to illustrate different symmetry-reduction techniques. The system's relative equilibria are conveniently determined bymore » rewriting the dynamics in terms of a symmetry-invariant polynomial basis. However, for the analysis of its chaotic dynamics, the “method of slices,” which is applicable to very high-dimensional problems, is preferable. We show that a Poincaré section taken on the 'slice' can be used to further reduce this flow to what is for all practical purposes a unimodal map. This enables us to systematically determine all relative periodic orbits and their symbolic dynamics up to any desired period. We then present cycle averaging formulas adequate for systems with continuous symmetry and use them to compute dynamical averages using relative periodic orbits. The convergence of such computations is discussed.« less
Engineering calculations for communications systems planning
NASA Technical Reports Server (NTRS)
Levis, C. A.; Martin, C. H.; Wang, C. W.; Gonsalvez, D.
1982-01-01
The single entry interference problem is treated for frequency sharing between the broadcasting satellite and intersatellite services near 23 GHz. It is recommended that very long (more than 120 longitude difference) intersatellite hops be relegated to the unshared portion of the band. When this is done, it is found that suitable orbit assignments can be determined easily with the aid of a set of universal curves. An attempt to develop synthesis procedures for optimally assigning frequencies and orbital slots for the broadcasting satellite service in region 2 was initiated. Several discrete programming and continuous optimization techniques are discussed.
On analytic modeling of lunar perturbations of artificial satellites of the earth
NASA Astrophysics Data System (ADS)
Lane, M. T.
1989-06-01
Two different procedures for analytically modeling the effects of the moon's direct gravitational force on artificial earth satellites are discussed from theoretical and numerical viewpoints. One is developed using classical series expansions of inclination and eccentricity for both the satellite and the moon, and the other employs the method of averaging. Both solutions are seen to have advantages, but it is shown that while the former is more accurate in special situations, the latter is quicker and more practical for the general orbit determination problem where observed data are used to correct the orbit in near real time.
Constellation Coverage Analysis
NASA Technical Reports Server (NTRS)
Lo, Martin W. (Compiler)
1997-01-01
The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.
Orbit Determination with Very Short Arcs: Admissible Regions
NASA Astrophysics Data System (ADS)
Gronchi, G. F.; Milani, A.; de'Michieli Vitturi, M.; Knezevic, Z.
2004-05-01
Contemporary observational surveys provide a huge number of detections of small solar system bodies, in particular of asteroids. These have to be reduced in real time in order to optimize the observational strategy and to select the targets for the follow-up and for the subsequent determination of an orbit. Typically, reported astrometry consists of few positions over a short time span, and this information is often not enough to compute a preliminary orbit and perform an identification. Classical methods for preliminary orbit determination based on three observations fail in such cases, and a new approach is necessary to cope with the problem. We introduce the concept of attributable, which is a vector composed by two angles and two angular velocities at a given time. It is then shown that the missing values (geocentric range and range rate), necessary for the computation of an orbit, can be constrained to a compact set that we call admissible region (AR). The latter is defined on the basis of requirements that the body belongs to the solar system, that it is not a satellite of the Earth, and that it is not a "shooting star" (very close and very small). A mathematical description of the AR is given, together with the proof of its topological properties: it turns out that the AR cannot have more than two connected components. A sampling of the AR can be performed by means of a Delaunay triangulation. A finite number of six-parameter sets of initial conditions are thus defined, with each node of triangulation representing a Virtual Asteroid for which it is possible to propagate the corresponding orbit and to predict ephemerides.
Optimization techniques applied to spectrum management for communications satellites
NASA Astrophysics Data System (ADS)
Ottey, H. R.; Sullivan, T. M.; Zusman, F. S.
This paper describes user requirements, algorithms and software design features for the application of optimization techniques to the management of the geostationary orbit/spectrum resource. Relevant problems include parameter sensitivity analyses, frequency and orbit position assignment coordination, and orbit position allotment planning. It is shown how integer and nonlinear programming as well as heuristic search techniques can be used to solve these problems. Formalized mathematical objective functions that define the problems are presented. Constraint functions that impart the necessary solution bounds are described. A versatile program structure is outlined, which would allow problems to be solved in stages while varying the problem space, solution resolution, objective function and constraints.
Continuation of periodic orbits in the Sun-Mercury elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Peng, Hao; Bai, Xiaoli; Xu, Shijie
2017-06-01
Starting from resonant Halo orbits in the Circular Restricted Three-Body Problem (CRTBP), Multi-revolution Elliptic Halo (ME-Halo) orbits around L1 and L2 points in the Sun-Mercury Elliptic Restricted Three-Body Problem (ERTBP) are generated systematically. Three pairs of resonant parameters M5N2, M7N3 and M9N4 are tested. The first pair shows special features and is investigated in detail. Three separated characteristic curves of periodic orbit around each libration point are obtained, showing the eccentricity varies non-monotonically along these curves. The eccentricity of the Sun-Mercury system can be achieved by continuation method in just a few cases. The stability analysis shows that these orbits are all unstable and the complex instability occurs with certain parameters. This paper shows new periodic orbits in both the CRTBP and the ERTBP. Totally four periodic orbits with parameters M5N2 around each libration points are extracted in the Sun-Mercury ERTBP.
Orbital measurements of the Earth's radiation budget during the first decade of the space program
NASA Technical Reports Server (NTRS)
Bandeen, W. R.
1982-01-01
The instrumentation and data analysis methods applied to data from the Explorer 7, TIROS 2, 3, 4, and 7, and Nimbus 2 and 3 experimental satellites are summarized. Problems encountered in analyzing these data included: determining the value of the solar constant, inaccuracies introduced by degradation of the sensors in orbit, the need to infer the total reflected and emitted radiation from filtered measurements, the development of corrections for anisotropy in order to determine the outgoing flux densities at the moment of measurement, and the development of corrections to account for diurnal variability. The corrections for long- and shortwave anisotropy and historical determinations of the solar constant and albedo are treated in detail. These early measurements indicated that the planetary albedo was lower, the emitted radiation higher, and the equator-to-pole gradient of net radiation greater than previously supposed.
NASA Technical Reports Server (NTRS)
Pina, J. F.; House, F. B.
1975-01-01
Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers.
Quantum mechanics of hyperbolic orbits in the Kepler problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rauh, Alexander; Parisi, Juergen
2011-04-15
The problem of deriving macroscopic properties from the Hamiltonian of the hydrogen atom is resumed by extending previous results in the literature, which predicted elliptic orbits, into the region of hyperbolic orbits. As a main tool, coherent states of the harmonic oscillator are used which are continued to imaginary frequencies. The Kustaanheimo-Stiefel (KS) map is applied to transform the original configuration space into the product space of four harmonic oscillators with a constraint. The relation derived between real time and oscillator (pseudo) time includes quantum corrections. In the limit ({h_bar}/2{pi}){yields}0, the time-dependent mean values of position and velocity describe themore » classical motion on a hyperbola and a circular hodograph, respectively. Moreover, the connection between pseudotime and real time comes out in analogy to Kepler's equation for elliptic orbits. The mean-square-root deviations of position and velocity components behave similarly in time to the corresponding ones of a spreading Gaussian wave packet in free space. To check the approximate treatment of the constraint, its contribution to the mean energy is determined with the result that it is negligible except for energy values close to the parabolic orbit with eccentricity equal to 1. It is inevitable to introduce a suitable scalar product in R{sup 4} which makes both the transformed Hamiltonian and the velocity operators Hermitian. An elementary necessary criterion is given for the energy interval where the constraint can be approximated by averaging.« less
Comprehensive analysis of airborne contaminants from recent Spacelab missions
NASA Technical Reports Server (NTRS)
Matney, M. L.; Boyd, J. F.; Covington, P. A.; Leano, H. J.; Pierson, D. L.; Limero, T. F.; James, J. T.
1993-01-01
The Shuttle experiences unique air contamination problems because of microgravity and the closed environment. Contaminant build-up in the closed atmosphere and the lack of a gravitational settling mechanism have produced some concern in previous missions about the amount of solid and volatile airborne contaminants in the Orbiter and Spacelab. Degradation of air quality in the Orbiter/Spacelab environment, through processes such as chemical contamination, high solid-particulate levels, and high microbial levels, may affect crew performance and health. A comprehensive assessment of the Shuttle air quality was undertaken during STS-40 and STS-42 missions, in which a variety of air sampling and monitoring techniques were employed to determine the contaminant load by characterizing and quantitating airborne contaminants. Data were collected on the airborne concentrations of volatile organic compounds, microorganisms, and particulate matter collected on Orbiter/Spacelab air filters. The results showed that STS-40/42 Orbiter/Spacelab air was toxicologically safe to breathe, except during STS-40 when the Orbiter Refrigerator/Freezer unit was releasing noxious gases in the middeck. On STS-40, the levels of airborne bacteria appeared to increase as the mission progressed; however, this trend was not observed for the STS-42 mission. Particulate matter in the Orbiter/Spacelab air filters was chemically analyzed in order to determine the source of particles. Only small amounts of rat hair and food bar (STS-40) and traces of soiless medium (STS-42) were detected in the Spacelab air filters, indicating that containment for Spacelab experiments was effective.
A minimum propellant solution to an orbit-to-orbit transfer using a low thrust propulsion system
NASA Technical Reports Server (NTRS)
Cobb, Shannon S.
1991-01-01
The Space Exploration Initiative is considering the use of low thrust (nuclear electric, solar electric) and intermediate thrust (nuclear thermal) propulsion systems for transfer to Mars and back. Due to the duration of such a mission, a low thrust minimum-fuel solution is of interest; a savings of fuel can be substantial if the propulsion system is allowed to be turned off and back on. This switching of the propulsion system helps distinguish the minimal-fuel problem from the well-known minimum-time problem. Optimal orbit transfers are also of interest to the development of a guidance system for orbital maneuvering vehicles which will be needed, for example, to deliver cargoes to the Space Station Freedom. The problem of optimizing trajectories for an orbit-to-orbit transfer with minimum-fuel expenditure using a low thrust propulsion system is addressed.
NASA Astrophysics Data System (ADS)
Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.
2017-10-01
This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.
Guidance and control strategies for aerospace vehicles
NASA Technical Reports Server (NTRS)
Naidu, Desineni S.; Hibey, Joseph L.
1989-01-01
The optimal control problem arising in coplanar orbital transfer employing aeroassist technology and the fuel-optimal control problem arising in orbital transfer vehicles employing aeroassist technology are addressed.
DPOD2005: An extension of ITRF2005 for Precise Orbit Determination
NASA Astrophysics Data System (ADS)
Willis, P.; Ries, J. C.; Zelensky, N. P.; Soudarin, L.; Fagard, H.; Pavlis, E. C.; Lemoine, F. G.
2009-09-01
For Precise Orbit Determination of altimetry missions, we have computed a data set of DORIS station coordinates defined for specific time intervals called DPOD2005. This terrestrial reference set is an extension of ITRF2005. However, it includes all new DORIS stations and is more reliable, as we disregard stations with large velocity formal errors as they could contaminate POD computations in the near future. About 1/4 of the station coordinates need to be defined as they do not appear in the original ITRF2005 realization. These results were verified with available DORIS and GPS results, as the integrity of DPOD2005 is almost as critical as its accuracy. Besides station coordinates and velocities, we also provide additional information such as periods for which DORIS data should be disregarded for specific DORIS stations, and epochs of coordinate and velocity discontinuities (related to either geophysical events, equipment problem or human intervention). The DPOD model was tested for orbit determination for TOPEX/Poseidon (T/P), Jason-1 and Jason-2. Test results show DPOD2005 offers improvement over the original ITRF2005, improvement that rapidly and significantly increases after 2005. Improvement is also significant for the early T/P cycles indicating improved station velocities in the DPOD2005 model and a more complete station set. Following 2005 the radial accuracy and centering of the ITRF2005-original orbits rapidly degrades due to station loss.
Optimal Control and Smoothing Techniques for Computing Minimum Fuel Orbital Transfers and Rendezvous
NASA Astrophysics Data System (ADS)
Epenoy, R.; Bertrand, R.
We investigate in this paper the computation of minimum fuel orbital transfers and rendezvous. Each problem is seen as an optimal control problem and is solved by means of shooting methods [1]. This approach corresponds to the use of Pontryagin's Maximum Principle (PMP) [2-4] and leads to the solution of a Two Point Boundary Value Problem (TPBVP). It is well known that this last one is very difficult to solve when the performance index is fuel consumption because in this case the optimal control law has a particular discontinuous structure called "bang-bang". We will show how to modify the performance index by a term depending on a small parameter in order to yield regular controls. Then, a continuation method on this parameter will lead us to the solution of the original problem. Convergence theorems will be given. Finally, numerical examples will illustrate the interest of our method. We will consider two particular problems: The GTO (Geostationary Transfer Orbit) to GEO (Geostationary Equatorial Orbit) transfer and the LEO (Low Earth Orbit) rendezvous.
A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Fuel Rendezvous Problem
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Mailhe, Laurie M.; Guzman, Jose J.
2002-01-01
In this paper we present a comparison of optimization approaches to the minimum fuel rendezvous problem. Both indirect and direct methods are compared for a variety of test cases. The indirect approach is based on primer vector theory. The direct approaches are implemented numerically and include Sequential Quadratic Programming (SQP), Quasi-Newton, Simplex, Genetic Algorithms, and Simulated Annealing. Each method is applied to a variety of test cases including, circular to circular coplanar orbits, LEO to GEO, and orbit phasing in highly elliptic orbits. We also compare different constrained optimization routines on complex orbit rendezvous problems with complicated, highly nonlinear constraints.
NASA Technical Reports Server (NTRS)
Ustinov, Eugene A.; Sunseri, Richard F.
2005-01-01
An approach is presented to the inversion of gravity fields based on evaluation of partials of observables with respect to gravity harmonics using the solution of adjoint problem of orbital dynamics of the spacecraft. Corresponding adjoint operator is derived directly from the linear operator of the linearized forward problem of orbital dynamics. The resulting adjoint problem is similar to the forward problem and can be solved by the same methods. For given highest degree N of gravity harmonics desired, this method involves integration of N adjoint solutions as compared to integration of N2 partials of the forward solution with respect to gravity harmonics in the conventional approach. Thus, for higher resolution gravity models, this approach becomes increasingly more effective in terms of computer resources as compared to the approach based on the solution of the forward problem of orbital dynamics.
Human Mars Mission: Launch Window from Earth Orbit. Pt. 1
NASA Technical Reports Server (NTRS)
Young, Archie
1999-01-01
The determination of orbital window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to the earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a delta V penalty. Usually, because of the delta V penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: 1) One impulsive maneuver from a Highly Elliptical Orbit (HEO); 2) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO); 3) One impulsive maneuver from a Low Earth Orbit (LEO); 4) Two impulsive maneuvers form LEO; and 5) Three impulsive maneuvers form LEO. The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data for space exploration studies. Also the formulation provides vector and geometrical data sufficient for use as a good starting point in detail trajectory analysis based on calculus of variations, steepest descent, or parameter optimization program techniques.
Human Exploration Missions Study Launch Window from Earth Orbit
NASA Technical Reports Server (NTRS)
Young, Archie
2001-01-01
The determination of orbital launch window characteristics is of major importance in the analysis of human interplanetary missions and systems. The orbital launch window characteristics are directly involved in the selection of mission trajectories, the development of orbit operational concepts, and the design of orbital launch systems. The orbital launch window problem arises because of the dynamic nature of the relative geometry between outgoing (departure) asymptote of the hyperbolic escape trajectory and the earth parking orbit. The orientation of the escape hyperbola asymptotic relative to earth is a function of time. The required hyperbola energy level also varies with time. In addition, the inertial orientation of the parking orbit is a function of time because of the perturbations caused by the Earth's oblateness. Thus, a coplanar injection onto the escape hyperbola can be made only at a point in time when the outgoing escape asymptote is contained by the plane of parking orbit. Even though this condition may be planned as a nominal situation, it will not generally represent the more probable injection geometry. The general case of an escape injection maneuver performed at a time other than the coplanar time will involve both a path angle and plane change and, therefore, a Delta(V) penalty. Usually, because of the Delta(V) penalty the actual departure injection window is smaller in duration than that determined by energy requirement alone. This report contains the formulation, characteristics, and test cases for five different launch window modes for Earth orbit. These modes are: (1) One impulsive maneuver from a Low Earth Orbit (LEO), (2) Two impulsive maneuvers from LEO, (3) Three impulsive maneuvers from LEO, (4) One impulsive maneuvers from a Highly Elliptical Orbit (HEO), (5) Two impulsive maneuvers from a Highly Elliptical Orbit (HEO) The formulation of these five different launch window modes provides a rapid means of generating realistic parametric data for space exploration studies. Also the formulation provides vector and geometrical data sufficient for use as a good starting point in detail trajectory analysis based on calculus of variations, steepest descent, or parameter optimization program techniques.
NASA Astrophysics Data System (ADS)
Lovell, T. Alan; Schmidt, D. K.
1994-03-01
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
OASIS - ORBIT ANALYSIS AND SIMULATION SOFTWARE
NASA Technical Reports Server (NTRS)
Wu, S. C.
1994-01-01
The Orbit Analysis and Simulation Software, OASIS, is a software system developed for covariance and simulation analyses of problems involving earth satellites, especially the Global Positioning System (GPS). It provides a flexible, versatile and efficient accuracy analysis tool for earth satellite navigation and GPS-based geodetic studies. To make future modifications and enhancements easy, the system is modular, with five major modules: PATH/VARY, REGRES, PMOD, FILTER/SMOOTHER, and OUTPUT PROCESSOR. PATH/VARY generates satellite trajectories. Among the factors taken into consideration are: 1) the gravitational effects of the planets, moon and sun; 2) space vehicle orientation and shapes; 3) solar pressure; 4) solar radiation reflected from the surface of the earth; 5) atmospheric drag; and 6) space vehicle gas leaks. The REGRES module reads the user's input, then determines if a measurement should be made based on geometry and time. PMOD modifies a previously generated REGRES file to facilitate various analysis needs. FILTER/SMOOTHER is especially suited to a multi-satellite precise orbit determination and geodetic-type problems. It can be used for any situation where parameters are simultaneously estimated from measurements and a priori information. Examples of nonspacecraft areas of potential application might be Very Long Baseline Interferometry (VLBI) geodesy and radio source catalogue studies. OUTPUT PROCESSOR translates covariance analysis results generated by FILTER/SMOOTHER into user-desired easy-to-read quantities, performs mapping of orbit covariances and simulated solutions, transforms results into different coordinate systems, and computes post-fit residuals. The OASIS program was developed in 1986. It is designed to be implemented on a DEC VAX 11/780 computer using VAX VMS 3.7 or higher. It can also be implemented on a Micro VAX II provided sufficient disk space is available.
NASA Technical Reports Server (NTRS)
Lovell, T. Alan; Schmidt, D. K.
1994-01-01
The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities.
Payload/orbiter signal-processing and data-handling system evaluation
NASA Technical Reports Server (NTRS)
Teasdale, W. E.; Polydoros, A.
1980-01-01
Incompatibilities between orbiter subsystems and payload communication systems to assure that acceptable and to end system performamce will be achieved are identified. The potential incompatabilities are associated with either payloads in the cargo bay or detached payloads communicating with the orbiter via an RF link. The payload signal processing and data handling systems are assessed by investigating interface problems experienced between the inertial upper stage and the orbiter since similar problems are expected for other payloads.
Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David
2012-01-01
The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light on how many debris pieces can be visited for various amounts of propellant, which launch vehicles can accommodate such missions, and how much margin is available for debris removal system payloads.
Multi-Body Capture to Low-altitude Circular Orbits at Europa
NASA Technical Reports Server (NTRS)
Grebow, Daniel J.; Petropoulos, Anastassios E.; Finlayson, Paul A.
2011-01-01
For capture to a 200-km circular orbit around Europa, millions of different points along the orbit are simulated in the Jupiter-Europa Restricted 3-Body Problem. The transfers exist as members of families of trajectories, where certain families consistently outperform the others. The trajectories are not sensitive to changes in inclination for the final circular orbit. The top performing trajectories appear to follow the invariant manifolds of L2 Lyapunov orbits for capture into a retrograde orbit, and in some cases saving up to 40% of the from the patched 2-body problem. Transfers are attached to the current nominal mission for NASA's Jupiter-Europa Orbiter, where the total cost is roughly 100 m/s less than the baseline mission.
NASA Technical Reports Server (NTRS)
Chesler, L.; Pierce, S.
1971-01-01
Generalized, cyclic, and modified multistep numerical integration methods are developed and evaluated for application to problems of satellite orbit computation. Generalized methods are compared with the presently utilized Cowell methods; new cyclic methods are developed for special second-order differential equations; and several modified methods are developed and applied to orbit computation problems. Special computer programs were written to generate coefficients for these methods, and subroutines were written which allow use of these methods with NASA's GEOSTAR computer program.
Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods
NASA Technical Reports Server (NTRS)
Khutorovsky, Z.; Kamensky, S.; Sbytov, N.; Alfriend, K. T.
2007-01-01
The problem of determining the orbit of a space object from measurements based on one pass through the field of view of a radar is not a new one. Extensive research in this area has been carried out in the USA and Russia since the late 50s when these countries started the development of ballistic missile defense (BMD) and Early Warning systems. In Russia these investigations got additional stimulation in the early 60s after the decision to create a Space Surveillance System, whose primary task would be the maintenance of the satellite catalog. These problems were the focus of research interest until the middle 70s when the appropriate techniques and software were implemented for all radars. Then for more than 20 years no new research papers appeared on this subject. This produced an impression that all the problems of track determination based on one pass had been solved and there was no need for further research. In the late 90s interest in this problem arose again in relation to the following. It was estimated that there would be greater than 100,000 objects with size greater than 1-2 cm and collision of an operational spacecraft with any of these objects could have catastrophic results. Thus, for prevention of hazardous approaches and collisions with valuable spacecraft the existing satellite catalog should be extended by at least an order of magnitude This is a very difficult scientific and engineering task. One of the issues is the development of data fusion procedures and the software capable of maintaining such a huge catalog in near real time. The number of daily processed measurements (of all types, radar and optical) for such a system may constitute millions, thus increasing the number of measurements by at least an order of magnitude. Since we will have ten times more satellites and measurements the computer effort required for the correlation of measurements will be two orders of magnitude greater. This could create significant problems for processing data close to real time even for modern computers. Preliminary "compression" of data for one pass through the field of view of a sensor can significantly reduce the requirements to computers and data communication. This compression will occur when all the single measurements of the sensor are replaced by the orbit determined on their basis. The single measurement here means the radar parameters (range, azimuth, elevation, and in some cases range rate) measured by a single pulse.
Advanced design for orbital debris removal in support of solar system exploration
NASA Technical Reports Server (NTRS)
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) is the ultimate goal. The craft will process, in situ, orbital debris using resources available in low Earth orbit (LEO). The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. This year, focus was on development of a versatile robotic manipulator to augment an existing robotic arm; incorporation of remote operation of robotic arms; and formulation of optimal (time and energy) trajectory planning algorithms for coordinating robotic arms. The mechanical design of the new arm is described in detail. The versatile work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time-optimal and energy-optimal problem. The optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamics programming.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.
Stable regions around Exoplanets: the search for Exomoons
NASA Astrophysics Data System (ADS)
Fernandes Guimaraes, Ana Helena; Moretto Tusnski, Luis Ricardo; Vieira-Neto, Ernesto; Silva Valio, Adriana
2015-08-01
There are hundreds of exoplanets which the data are available to a dynamical investigation. We extracted from the data base (exoplanets.org) all planets and candidates which have the necessary data available for the numerical investigation of the orbital stability of a body around a exoplanet in a total of 2749 of those.There is a wealth diversity of exoplanets types and the expectation in find our Earth-living conditions in another planet motivates the search for extra-solar planets, and a satellite around a planet would, in addiction, help to keep a favorable climate.Using the planets class according to PHL@Arecibo, those planets were sorted out in groups. Analyses of density, distance from the primary body, and mass ratios were done beside the suggested classification to fit some no-classified planets into one of the groups.The aim of this work is to derive the upper stability limit (or upper critical orbit) of fictitious direct satellites around exoplanets of any density, or size, orbiting single stars. Our search is for stable regions around the planet, the called S-type orbits. This orbit type determines if there is any chance to exist (or not) bodies around the planets. The investigation is limited to single stars, excluding binaries.We derived such limit purely through numerical simulations. Our proposal involved long-term integration of the circular restricted three bodies problem . Basically, the cut off of the stability zone determined in the previous work by Domingos et al. (2006) were confirmed for any planet type. However, the limitation due the Roche limit of the own satellite showed to be lower. We used this to determined possible size and to adjust orbital range were a third body could orbit the exoplanet.Independently of densities, distance, and sizes of the objects involved, the idea was to delimit where to find celestial bodies in any given system around single stars. Furthermore, we aim to provide tracks to the search for exomoons using planetary transits.
NASA Astrophysics Data System (ADS)
Zhamkov, A. S.; Zharov, V. E.
2017-05-01
This paper is concerned with improvement of the state vector of the Spektr-R spacecraft of the RadioAstron mission. The state vector includes three coordinates of the position of the spacecraft and three components of its velocity in the Geocentric Celestial Reference System. Improvement of the orbit of the spacecraft is understood as improvement of the state vector. The results are compared with the original orbits determined at the Keldysh Institute of Applied Mathematics (IAM). The paper considers both using the Kalman filter based on a single set of radio-range and Doppler data from ground-based stations and the analysis of conditions that will lead to improvement of the orbit. It has been shown that using three ground-based stations that perform simultaneous measurements the problem is solved completely, even when a poor initial approximation is used. Based on the results, a list of requirements is obtained that will provide more accurate information on the orbit of the Spektr-R spacecraft.
VLBI observations to the APOD satellite
NASA Astrophysics Data System (ADS)
Sun, Jing; Tang, Geshi; Shu, Fengchun; Li, Xie; Liu, Shushi; Cao, Jianfeng; Hellerschmied, Andreas; Böhm, Johannes; McCallum, Lucia; McCallum, Jamie; Lovell, Jim; Haas, Rüdiger; Neidhardt, Alexander; Lu, Weitao; Han, Songtao; Ren, Tianpeng; Chen, Lue; Wang, Mei; Ping, Jinsong
2018-02-01
The APOD (Atmospheric density detection and Precise Orbit Determination) is the first LEO (Low Earth Orbit) satellite in orbit co-located with a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI X/S dual band beacon. From the overlap statistics between consecutive solution arcs and the independent validation by SLR measurements, the orbit position deviation was below 10 cm before the on-board GNSS receiver got partially operational. In this paper, the focus is on the VLBI observations to the LEO satellite from multiple geodetic VLBI radio telescopes, since this is the first implementation of a dedicated VLBI transmitter in low Earth orbit. The practical problems of tracking a fast moving spacecraft with current VLBI ground infrastructure were solved and strong interferometric fringes were obtained by cross-correlation of APOD carrier and DOR (Differential One-way Ranging) signals. The precision in X-band time delay derived from 0.1 s integration time of the correlator output is on the level of 0.1 ns. The APOD observations demonstrate encouraging prospects of co-location of multiple space geodetic techniques in space, as a first prototype.
NASA Technical Reports Server (NTRS)
Lyon, Jeffery A.
1995-01-01
Optimal control theory is employed to determine the performance of abort to orbit (ATO) and return to launch site (RTLS) maneuvers for a single-stage to orbit vehicle. The vehicle configuration examined is a seven engine, winged-body vehicle, that lifts-off vertically and lands horizontally. The abort maneuvers occur as the vehicle ascends to orbit and are initiated when the vehicle suffers an engine failure. The optimal control problems are numerically solved in discretized form via a nonlinear programming (NLP) algorithm. A description highlighting the attributes of this NLP method is provided. ATO maneuver results show that the vehicle is capable of ascending to orbit with a single engine failure at lift-off. Two engine out ATO maneuvers are not possible from the launch pad, but are possible after launch when the thrust to weight ratio becomes sufficiently large. Results show that single engine out RTLS maneuvers can be made for up to 180 seconds after lift-off and that there are scenarios for which RTLS maneuvers should be performed instead of ATP maneuvers.
Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory
2013-01-01
Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.
NASA Astrophysics Data System (ADS)
Shi, Yu; Wang, Yue; Xu, Shijie
2018-04-01
The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.
Reprocessing the Elliptical Orbiting Galileo Satellites E14 and E18: Preliminary Results
NASA Astrophysics Data System (ADS)
Männel, Benjamin
2017-04-01
In August 2014, the two Galileo satellites FOC-1 (E18) and FOC-2 (E14) were - due to a technical problem - launched into a wrong, elliptic orbit. In a recovery mission a series of orbit maneuvers were performed to raise the perigee to an altitude where both spacecrafts could be introduced to the Galileo navigation service. After this period of orbit maintenance both satellites started to transmit navigation signals at November 29, 2014 (E18) and March 17, 2015 (E14). However, as it was not possible to recover the nominal orbits due to propellant limitations, both spacecrafts orbit the Earth with a numerical eccentricity of 0.16 and an inclination of 50.2°. Very soon, it was assumed that both satellites could be highly useful for studies on general relativity, especially as the Galileo spacecrafts are equipped with very stable passive hydrogen masers. A prerequisite for dedicated studies in this field are highly accurate satellite orbits and clock corrections. Preliminary results for orbit and satellite clock determination will be presented based on an initial reprocessing over the past 2.5 years. The presentation focuses firstly on orbit modeling aspects with respect to the elliptically orbits. Secondly the derived clock corrections for the on-board passive clocks are assessed with respect to the reference clock at ground stations. The results will be discussed also with respect to the proposed Galileo-based studies on the gravitational redshift.
Recovery considerations for possible high inclination long duration earth orbital missions
NASA Technical Reports Server (NTRS)
Obriant, T. E.; Ferguson, J. E.
1969-01-01
Problem areas are discussed and various solutions proposed. One of the major recovery problems encountered with missions having higher orbital inclinations than previous missions is the greater likelihood of severe weather conditions in the landing zones, especially if landing zones are optimized for orbital coverage considerations. Restricting the reentry window and increasing in-orbit wait times can partially eliminate the weather problem, but the possibility of emergency landings at higher latitudes still exists. It can be expected that the increased confidence level in spacecraft reliability that will exist by the time the high-inclination missions are flown will reduce the probabilities of an emergency landing in an unfavorable recovery location to a very low level.
Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.
Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald
2017-09-12
We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.
NASA Astrophysics Data System (ADS)
da Silva Fernandes, S.; das Chagas Carvalho, F.; Bateli Romão, J. V.
2018-04-01
A numerical-analytical procedure based on infinitesimal canonical transformations is developed for computing optimal time-fixed low-thrust limited power transfers (no rendezvous) between coplanar orbits with small eccentricities in an inverse-square force field. The optimization problem is formulated as a Mayer problem with a set of non-singular orbital elements as state variables. Second order terms in eccentricity are considered in the development of the maximum Hamiltonian describing the optimal trajectories. The two-point boundary value problem of going from an initial orbit to a final orbit is solved by means of a two-stage Newton-Raphson algorithm which uses an infinitesimal canonical transformation. Numerical results are presented for some transfers between circular orbits with moderate radius ratio, including a preliminary analysis of Earth-Mars and Earth-Venus missions.
Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control
NASA Astrophysics Data System (ADS)
Pérez-Palau, Daniel; Epenoy, Richard
2018-02-01
The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun-Earth-Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin's Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem's state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth-Moon and Sun-Earth is presented leading to a physical interpretation of the different families of trajectories.
Moon Search Algorithms for NASA's Dawn Mission to Asteroid Vesta
NASA Technical Reports Server (NTRS)
Memarsadeghi, Nargess; Mcfadden, Lucy A.; Skillman, David R.; McLean, Brian; Mutchler, Max; Carsenty, Uri; Palmer, Eric E.
2012-01-01
A moon or natural satellite is a celestial body that orbits a planetary body such as a planet, dwarf planet, or an asteroid. Scientists seek understanding the origin and evolution of our solar system by studying moons of these bodies. Additionally, searches for satellites of planetary bodies can be important to protect the safety of a spacecraft as it approaches or orbits a planetary body. If a satellite of a celestial body is found, the mass of that body can also be calculated once its orbit is determined. Ensuring the Dawn spacecraft's safety on its mission to the asteroid Vesta primarily motivated the work of Dawn's Satellite Working Group (SWG) in summer of 2011. Dawn mission scientists and engineers utilized various computational tools and techniques for Vesta's satellite search. The objectives of this paper are to 1) introduce the natural satellite search problem, 2) present the computational challenges, approaches, and tools used when addressing this problem, and 3) describe applications of various image processing and computational algorithms for performing satellite searches to the electronic imaging and computer science community. Furthermore, we hope that this communication would enable Dawn mission scientists to improve their satellite search algorithms and tools and be better prepared for performing the same investigation in 2015, when the spacecraft is scheduled to approach and orbit the dwarf planet Ceres.
NASA Technical Reports Server (NTRS)
Hatterick, R. G.
1973-01-01
A skill requirement definition method was applied to the problem of determining, at an early stage in system/mission definition, the skills required of on-orbit crew personnel whose activities will be related to the conduct or support of earth-orbital research. The experiment data base was selected from proposed experiments in NASA's earth orbital research and application investigation program as related to space shuttle missions, specifically those being considered for Sortie Lab. Concepts for two integrated workstation consoles for Sortie Lab experiment operations were developed, one each for earth observations and materials sciences payloads, utilizing a common supporting subsystems core console. A comprehensive data base of crew functions, operating environments, task dependencies, task-skills and occupational skills applicable to a representative cross section of earth orbital research experiments is presented. All data has been coded alphanumerically to permit efficient, low cost exercise and application of the data through automatic data processing in the future.
Initialization of Formation Flying Using Primer Vector Theory
NASA Technical Reports Server (NTRS)
Mailhe, Laurie; Schiff, Conrad; Folta, David
2002-01-01
In this paper, we extend primer vector analysis to formation flying. Optimization of the classical rendezvous or free-time transfer problem between two orbits using primer vector theory has been extensively studied for one spacecraft. However, an increasing number of missions are now considering flying a set of spacecraft in close formation. Missions such as the Magnetospheric MultiScale (MMS) and Leonardo-BRDF (Bidirectional Reflectance Distribution Function) need to determine strategies to transfer each spacecraft from the common launch orbit to their respective operational orbit. In addition, all the spacecraft must synchronize their states so that they achieve the same desired formation geometry over each orbit. This periodicity requirement imposes constraints on the boundary conditions that can be used for the primer vector algorithm. In this work we explore the impact of the periodicity requirement in optimizing each spacecraft transfer trajectory using primer vector theory. We first present our adaptation of primer vector theory to formation flying. Using this method, we then compute the AV budget for each spacecraft subject to different formation endpoint constraints.
Operator Station Design System - A computer aided design approach to work station layout
NASA Technical Reports Server (NTRS)
Lewis, J. L.
1979-01-01
The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.
NiO: correlated band structure of a charge-transfer insulator.
Kunes, J; Anisimov, V I; Skornyakov, S L; Lukoyanov, A V; Vollhardt, D
2007-10-12
The band structure of the prototypical charge-transfer insulator NiO is computed by using a combination of an ab initio band structure method and the dynamical mean-field theory with a quantum Monte-Carlo impurity solver. Employing a Hamiltonian which includes both Ni d and O p orbitals we find excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy. This brings an important progress in a long-standing problem of solid-state theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the context of low-energy model theories.
Coulomb matrix elements in multi-orbital Hubbard models.
Bünemann, Jörg; Gebhard, Florian
2017-04-26
Coulomb matrix elements are needed in all studies in solid-state theory that are based on Hubbard-type multi-orbital models. Due to symmetries, the matrix elements are not independent. We determine a set of independent Coulomb parameters for a d-shell and an f-shell and all point groups with up to 16 elements (O h , O, T d , T h , D 6h , and D 4h ). Furthermore, we express all other matrix elements as a function of the independent Coulomb parameters. Apart from the solution of the general point-group problem we investigate in detail the spherical approximation and first-order corrections to the spherical approximation.
Field Test: Results from the One Year Mission
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Rosenberg, M. J. F.; Bloomberg, J. J.; Stenger, M. B.; Lee, S. M. C.; Laurie, S. S.;
2017-01-01
The One Year Mission was designed to aid in determining the effect that extending the duration on orbit aboard the International Space Station (ISS) would have on a number of biological and physiological systems. Two crewmembers were selected to participate in this endeavor, one U.S. On-Orbit Segment (USOS) astronaut and one Russian cosmonaut. The Neuroscience and Cardiovascular and Vision Laboratories at the Johnson Space Center and the Sensory-Motor and Countermeasures Division within the Institute for Biomedical Problems were selected to investigate vestibular, sensorimotor and cardiovascular function with the two long-duration crewmembers using the established methodology developed for the Field Test (FT).
Performance of finned thermal capacitors. Ph.D. Thesis - Texas Univ., Austin
NASA Technical Reports Server (NTRS)
Humphries, W. R.
1974-01-01
The performance of typical thermal capacitors, both in earth and orbital environments, was investigated. Techniques which were used to make predictions of thermal behavior in a one-g earth environment are outlined. Orbital performance parameters are qualitatively discussed, and those effects expected to be important under zero-g conditions are outlined. A summary of thermal capacitor applications are documentated, along with significant problem areas and current configurations. An experimental program was conducted to determine typical one-g performance, and the physical significance of these data is discussed in detail. Numerical techniques were employed to allow comparison between analytical and experimental data.
Calculating Trajectories And Orbits
NASA Technical Reports Server (NTRS)
Alderson, Daniel J.; Brady, Franklyn H.; Breckheimer, Peter J.; Campbell, James K.; Christensen, Carl S.; Collier, James B.; Ekelund, John E.; Ellis, Jordan; Goltz, Gene L.; Hintz, Gerarld R.;
1989-01-01
Double-Precision Trajectory Analysis Program, DPTRAJ, and Orbit Determination Program, ODP, developed and improved over years to provide highly reliable and accurate navigation capability for deep-space missions like Voyager. Each collection of programs working together to provide desired computational results. DPTRAJ, ODP, and supporting utility programs capable of handling massive amounts of data and performing various numerical calculations required for solving navigation problems associated with planetary fly-by and lander missions. Used extensively in support of NASA's Voyager project. DPTRAJ-ODP available in two machine versions. UNIVAC version, NPO-15586, written in FORTRAN V, SFTRAN, and ASSEMBLER. VAX/VMS version, NPO-17201, written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER.
NASA Technical Reports Server (NTRS)
Reinhart, E. E.
1974-01-01
A systematic, tutorial analysis of the general problem of orbit-spectrum sharing among inhomogeneous satellite system is presented. Emphasis is placed on extrapolating and applying the available data on rain attenuation and on reconciling differences in the results of various measurements of the subjective effects of interference on television picture quality. An analytic method is presented for determining the approximate values of the intersatellite spacings required to keep mutual interference levels within prescribed limits when many dissimilar satellites share the orbit. A computer model was developed for assessing the interference compatibility of arbitrary configurations of large numbers of geostationary satellite systems. It is concluded that the band from 11.7 c GHz can be shared effectively by broadcasting-satellite and fixed-satellite systems. Recommendations for future study are included.
NASA Technical Reports Server (NTRS)
Jezewski, D.
1980-01-01
Prime vector theory is used in analyzing a set of linear relative-motion equations - the Clohessy-Wiltshire (C/W) equations - to determine the criteria and necessary conditions for an optimal N-impulse trajectory. The analysis develops the analytical criteria for improving a solution by: (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of: (1) fixed-end conditions, two impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized renezvous problem.
An Induced Environment Contamination Monitor for the Space Shuttle
NASA Technical Reports Server (NTRS)
Miller, E. R. (Editor); Decher, R. (Editor)
1978-01-01
The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.
A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits
NASA Astrophysics Data System (ADS)
Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.
2018-03-01
A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.
NASA Technical Reports Server (NTRS)
Tucker, W. B.; Hooper, H. L.
1963-01-01
This report presents two fundamental properties of lunar trajectories and makes use of these properties to solve various lunar landing site problems. Not only are various problems treated and solved but the properties and methods are established for use in the solution of other problems. This report presents an analysis of lunar landing site problems utilizing the direct mission mode as well as the orbital mission mode. A particular landing site is then specified and different flight profiles are analyzed for getting an exploration vehicle to that landing site. Rendezvous compatible lunar orbits for various stay-times at the landing site are treated. Launch opportunities are discussed for establishing rendezvous compatible lunar orbits without powered plane changes. Then, the minimum required plane changes for rendezvous in the lunar orbit are discussed for launching from earth on any day. On days that afford rendezvous compatible opportunities, there are no powered plane change requirements in the operations from launch at AMR through the rendezvous in lunar orbit, after the stay at the lunar site.
Orbital dynamics in the post-Newtonian planar circular restricted Sun-Jupiter system
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Dubeibe, F. L.
The theory of the post-Newtonian (PN) planar circular restricted three-body problem is used for numerically investigating the orbital dynamics of a test particle (e.g. a comet, asteroid, meteor or spacecraft) in the planar Sun-Jupiter system with a scattering region around Jupiter. For determining the orbital properties of the test particle, we classify large sets of initial conditions of orbits for several values of the Jacobi constant in all possible Hill region configurations. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) collisional. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. In order to get a spherical view of the dynamics of the system, the grids of the initial conditions of the orbits are defined on different types of two-dimensional planes. We locate the different types of basins and we also relate them with the corresponding spatial distributions of the escape and collision time. Our thorough analysis exposes the high complexity of the orbital dynamics and exhibits an appreciable difference between the final states of the orbits in the classical and PN approaches. Furthermore, our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant, along with a remarkable presence of fractal basin boundaries. Our outcomes are compared with the earlier ones regarding other planetary systems.
Orbital debris and near-Earth environmental management: A chronology
NASA Technical Reports Server (NTRS)
Portree, David S. F.; Loftus, Joseph P., Jr.
1993-01-01
This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.
Theory and computation of optimal low- and medium-thrust transfers
NASA Technical Reports Server (NTRS)
Chuang, C.-H.
1994-01-01
This report presents two numerical methods considered for the computation of fuel-optimal, low-thrust orbit transfers in large numbers of burns. The origins of these methods are observations made with the extremal solutions of transfers in small numbers of burns; there seems to exist a trend such that the longer the time allowed to perform an optimal transfer the less fuel that is used. These longer transfers are obviously of interest since they require a motor of low thrust; however, we also find a trend that the longer the time allowed to perform the optimal transfer the more burns are required to satisfy optimality. Unfortunately, this usually increases the difficulty of computation. Both of the methods described use small-numbered burn solutions to determine solutions in large numbers of burns. One method is a homotopy method that corrects for problems that arise when a solution requires a new burn or coast arc for optimality. The other method is to simply patch together long transfers from smaller ones. An orbit correction problem is solved to develop this method. This method may also lead to a good guidance law for transfer orbits with long transfer times.
Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination
NASA Technical Reports Server (NTRS)
Ryne, Mark S.; Wang, Tseng-Chan
1991-01-01
An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.
Calvello, Simone; Piccardo, Matteo; Rao, Shashank Vittal; Soncini, Alessandro
2018-03-05
We have developed and implemented a new ab initio code, Ceres (Computational Emulator of Rare Earth Systems), completely written in C++11, which is dedicated to the efficient calculation of the electronic structure and magnetic properties of the crystal field states arising from the splitting of the ground state spin-orbit multiplet in lanthanide complexes. The new code gains efficiency via an optimized implementation of a direct configurational averaged Hartree-Fock (CAHF) algorithm for the determination of 4f quasi-atomic active orbitals common to all multi-electron spin manifolds contributing to the ground spin-orbit multiplet of the lanthanide ion. The new CAHF implementation is based on quasi-Newton convergence acceleration techniques coupled to an efficient library for the direct evaluation of molecular integrals, and problem-specific density matrix guess strategies. After describing the main features of the new code, we compare its efficiency with the current state-of-the-art ab initio strategy to determine crystal field levels and properties, and show that our methodology, as implemented in Ceres, represents a more time-efficient computational strategy for the evaluation of the magnetic properties of lanthanide complexes, also allowing a full representation of non-perturbative spin-orbit coupling effects. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Gallium Compounds: A Possible Problem for the G2 Approaches
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Melius, Carl F.; Allendorf, Mark D.; Arnold, James (Technical Monitor)
1998-01-01
The G2 atomization energies of fluorine and oxygen containing Ga compounds are greatly in error. This arises from an inversion of the Ga 3d core orbital and the F 2s or O 2s valence orbitals. Adding the Ga 3d orbital to the correlation treatment or removing the F 2s orbitals from the correlation treatment are shown to eliminate the problem. Removing the O 2s orbital from the correlation treatment reduces the error, but it can still be more than 6 kcal/mol. It is concluded that the experimental atomization energy of GaF2 is too large.
NASA Technical Reports Server (NTRS)
Folkner, W. M.; Border, J. S.; Nandi, S.; Zukor, K. S.
1993-01-01
A new radio metric positioning technique has demonstrated improved orbit determination accuracy for the Magellan and Pioneer Venus Orbiter orbiters. The new technique, known as Same-Beam Interferometry (SBI), is applicable to the positioning of multiple planetary rovers, landers, and orbiters which may simultaneously be observed in the same beamwidth of Earth-based radio antennas. Measurements of carrier phase are differenced between spacecraft and between receiving stations to determine the plane-of-sky components of the separation vector(s) between the spacecraft. The SBI measurements complement the information contained in line-of-sight Doppler measurements, leading to improved orbit determination accuracy. Orbit determination solutions have been obtained for a number of 48-hour data arcs using combinations of Doppler, differenced-Doppler, and SBI data acquired in the spring of 1991. Orbit determination accuracy is assessed by comparing orbit solutions from adjacent data arcs. The orbit solution differences are shown to agree with expected orbit determination uncertainties. The results from this demonstration show that the orbit determination accuracy for Magellan obtained by using Doppler plus SBI data is better than the accuracy achieved using Doppler plus differenced-Doppler by a factor of four and better than the accuracy achieved using only Doppler by a factor of eighteen. The orbit determination accuracy for Pioneer Venus Orbiter using Doppler plus SBI data is better than the accuracy using only Doppler data by 30 percent.
The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers
NASA Astrophysics Data System (ADS)
Shi, Y. Y.; Nelson, R. L.; Young, D. H.; Gill, P. E.; Murray, W.; Saunders, M. A.
1992-01-01
Sequential quadratic programming (SQP) and collocation of the differential equations of motion were applied to optimal aeroassisted orbital transfers. The Optimal Trajectory by Implicit Simulation (OTIS) computer program codes with updated nonlinear programming code (NZSOL) were used as a testbed for the SQP nonlinear programming (NLP) algorithms. The state-of-the-art sparse SQP method is considered to be effective for solving large problems with a sparse matrix. Sparse optimizers are characterized in terms of memory requirements and computational efficiency. For the OTIS problems, less than 10 percent of the Jacobian matrix elements are nonzero. The SQP method encompasses two phases: finding an initial feasible point by minimizing the sum of infeasibilities and minimizing the quadratic objective function within the feasible region. The orbital transfer problem under consideration involves the transfer from a high energy orbit to a low energy orbit.
Penetrating maxillary sinus injury caused by a construction nail passing through the orbital cavity.
Simsek, Tekin; Demir, Bulent; Yosma, Engin; Keles, Musa K; Abdullayev, Asef
2014-03-01
Because of its anatomic position, the orbit is frequently subject to trauma, leading to functional and cosmetic problems. After blunt trauma, orbital fractures can cause functional problems by trapping the periocular tissues without affecting the anatomic integrity of the globe. In comparison, high-energy penetrating injuries can cause serious consequences such as disrupting the lacrimal drainage system and causing loss of vision. In rare cases, however, penetration of the orbit by a foreign body can result in a treatable injury that causes no functional or cosmetic problems.This article presents a patient in whom a nail penetrated the orbit from the inferomedial margin and reached the maxillary sinus without damaging the globe, extraocular muscles, or lacrimal duct system. Reports of similar injuries are reviewed, focusing on the anatomic structures that might be traumatized, to guide the readers in considering the diagnosis and treatment of such injuries.
Numerical Modeling in Problems of Near-Earth Object Dynamics
NASA Astrophysics Data System (ADS)
Aleksandrova, A. G.; Bordovitsyna, T. V.; Chuvashov, I. N.
2017-05-01
A method of numerical modeling is used to solve three most interesting problems of artificial Earth satellite (AES) dynamics. Orbital evolution of an ensemble of near-Earth objects at altitudes in the range from 1 500 to 60 000 km is considered, chaoticity of motion of objects in the geosynchronous zone is studied by the MEGNOanalysis, the parameters of AES motion are determined, and the models of forces are considered from measurements for GLONASS satellites. The recent versions of algorithms and programs used to perform investigations are briefly described.
The Ames-Lockheed orbiter processing scheduling system
NASA Technical Reports Server (NTRS)
Zweben, Monte; Gargan, Robert
1991-01-01
A general purpose scheduling system and its application to Space Shuttle Orbiter Processing at the Kennedy Space Center (KSC) are described. Orbiter processing entails all the inspection, testing, repair, and maintenance necessary to prepare the Shuttle for launch and takes place within the Orbiter Processing Facility (OPF) at KSC, the Vehicle Assembly Building (VAB), and on the launch pad. The problems are extremely combinatoric in that there are thousands of tasks, resources, and other temporal considerations that must be coordinated. Researchers are building a scheduling tool that they hope will be an integral part of automating the planning and scheduling process at KSC. The scheduling engine is domain independent and is also being applied to Space Shuttle cargo processing problems as well as wind tunnel scheduling problems.
Modeling of the Orbital Evolution of 2060 Chiron
NASA Astrophysics Data System (ADS)
Kovalenko, Nataliya S.; Babenko, Yury G.; Churyumov, Klim I.
2002-03-01
The origin of Centaurs is one of the most interesting problems of Solar system science, and it has not yet been solved. To shed light on this problem one can investigate Centaurs' past and future orbital evolution. In this paper we discuss the results of Chiron's orbital evolution modeling. It was the first discovered Centaur and is the brightest one. Numerical integration was produced for 1 Myr forward and backward from the present time. A program based on the Everhart single sequence method for integrating orbits was used.
Device for mass measurement under zero-gravity conditions.
Sarychev, V A; Sazonov, V V; Zlatorunsky, A S; Khlopina, S F; Egorov, A D; Somov, V I
1980-06-01
The problem considered in this paper is the investigation of the properties of a mass-meter, i.e. the device for determining the mass of cosmonaut's body under zero-gravity conditions. The estimates of accuracy of mass measurement by this device are given, and the results of measuring the masses of cosmonauts' bodies on the Salyut 5 and 6 orbital stations are presented.
Radar Orbit Analysis Tool Using Least Squares Estimator
2007-09-01
g gravity................................................................................................ km/s2 bodyg −2 v gravity due to two ...motion, it is necessary to determine how the dynamics between the two groups differ. One solution is to develop a model that can detect non...with just J2 and two -body terms was also addressed. Methodology Solving the estimation problem required dividing the process into four stages
Shuttle Orbiter Active Thermal Control Subsystem design and flight experience
NASA Technical Reports Server (NTRS)
Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo
1991-01-01
The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.
NASA Technical Reports Server (NTRS)
Shea, T. G.
1974-01-01
Disinfection and corrosion control in the water systems of the Saturn 5 Orbital Workshop Program are considered. Within this framework, the problem areas of concern are classified into four general areas: disinfection; corrosion; membrane-associated problems of disinfectant uptake and diffusion; and taste and odor problems arising from membrane-disinfectant interaction.
NASA Astrophysics Data System (ADS)
Shen, Xin; Zhang, Jing; Yao, Huang
2015-12-01
Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.
Search for and Study of Nearly Periodic Orbits in the Plane Problem of Three Equal-Mass Bodies
NASA Astrophysics Data System (ADS)
Martynova, A. I.; Orlov, V. V.
2005-09-01
We analyze nearly periodic solutions in the plane problem of three equal-mass bodies by numerically simulating the dynamics of triple systems. We identify families of orbits in which all three points are on one straight line (syzygy) at the initial time. In this case, at fixed total energy of a triple system, the set of initial conditions is a bounded region in four-dimensional parameter space. We scan this region and identify sets of trajectories in which the coordinates and velocities of all bodies are close to their initial values at certain times (which are approximately multiples of the period). We classify the nearly periodic orbits by the structure of trajectory loops over one period. We have found the families of orbits generated by von Schubart’s stable periodic orbit revealed in the rectilinear three-body problem. We have also found families of hierarchical, nearly periodic trajectories with prograde and retrograde motions. In the orbits with prograde motions, the trajectory loops of two close bodies form looplike structures. The trajectories with retrograde motions are characterized by leafed structures. Orbits with central and axial symmetries are identified among the families found.
Connecting orbits and invariant manifolds in the spatial restricted three-body problem
NASA Astrophysics Data System (ADS)
Gómez, G.; Koon, W. S.; Lo, M. W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.
2004-09-01
The invariant manifold structures of the collinear libration points for the restricted three-body problem provide the framework for understanding transport phenomena from a geometrical point of view. In particular, the stable and unstable invariant manifold tubes associated with libration point orbits are the phase space conduits transporting material between primary bodies for separate three-body systems. These tubes can be used to construct new spacecraft trajectories, such as a 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. This work extends the results to the three-dimensional case. Besides providing a full description of different kinds of libration motions in a large vicinity of these points, this paper numerically demonstrates the existence of heteroclinic connections between pairs of libration orbits, one around the libration point L1 and the other around L2. Since these connections are asymptotic orbits, no manoeuvre is needed to perform the transfer from one libration point orbit to the other. A knowledge of these orbits can be very useful in the design of missions such as the Genesis Discovery Mission, and may provide the backbone for other interesting orbits in the future.
Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.
2005-01-01
In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.
Minimum fuel coplanar aeroassisted orbital transfer using collocation and nonlinear programming
NASA Technical Reports Server (NTRS)
Shi, Yun Yuan; Young, D. H.
1991-01-01
The fuel optimal control problem arising in coplanar orbital transfer employing aeroassisted technology is addressed. The mission involves the transfer from high energy orbit (HEO) to low energy orbit (LEO) without plane change. The basic approach here is to employ a combination of propulsive maneuvers in space and aerodynamic maneuvers in the atmosphere. The basic sequence of events for the coplanar aeroassisted HEO to LEO orbit transfer consists of three phases. In the first phase, the transfer begins with a deorbit impulse at HEO which injects the vehicle into a elliptic transfer orbit with perigee inside the atmosphere. In the second phase, the vehicle is optimally controlled by lift and drag modulation to satisfy heating constraints and to exit the atmosphere with the desired flight path angle and velocity so that the apogee of the exit orbit is the altitude of the desired LEO. Finally, the second impulse is required to circularize the orbit at LEO. The performance index is maximum final mass. Simulation results show that the coplanar aerocapture is quite different from the case where orbital plane changes are made inside the atmosphere. In the latter case, the vehicle has to penetrate deeper into the atmosphere to perform the desired orbital plane change. For the coplanar case, the vehicle needs only to penetrate the atmosphere deep enough to reduce the exit velocity so the vehicle can be captured at the desired LEO. The peak heating rates are lower and the entry corridor is wider. From the thermal protection point of view, the coplanar transfer may be desirable. Parametric studies also show the maximum peak heating rates and the entry corridor width are functions of maximum lift coefficient. The problem is solved using a direct optimization technique which uses piecewise polynomial representation for the states and controls and collocation to represent the differential equations. This converts the optimal control problem into a nonlinear programming problem which is solved numerically by using a modified version of NPSOL. Solutions were obtained for the described problem for cases with and without heating constraints. The method appears to be more robust than other optimization methods. In addition, the method can handle complex dynamical constraints.
NASA Astrophysics Data System (ADS)
Chen, Ming; Guo, Jiming; Li, Zhicai; Zhang, Peng; Wu, Junli; Song, Weiwei
2017-04-01
BDS precision orbit determination is a key content of the BDS application, but the inadequate ground stations and the poor distribution of the network are the main reasons for the low accuracy of BDS precise orbit determination. In this paper, the BDS precise orbit determination results are obtained by using the IGS MGEX stations and the Chinese national reference stations,the accuracy of orbit determination of GEO, IGSO and MEO is 10.3cm, 2.8cm and 3.2cm, and the radial accuracy is 1.6cm,1.9cm and 1.5cm.The influence of ground reference stations distribution on BDS precise orbit determination is studied. The results show that the Chinese national reference stations contribute significantly to the BDS orbit determination, the overlap precision of GEO/IGSO/MEO satellites were improved by 15.5%, 57.5% and 5.3% respectively after adding the Chinese stations.Finally, the results of ODOP(orbit distribution of precision) and SLR are verified. Key words: BDS precise orbit determination; accuracy assessment;Chinese national reference stations;reference stations distribution;orbit distribution of precision
NASA Astrophysics Data System (ADS)
Arnot, C. S.; McInnes, C. R.; McKay, R. J.; Macdonald, M.; Biggs, J.
2018-02-01
This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill-Clohessy-Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The Δ v requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.
The multi-coloured universe of 2S 0114+650
NASA Astrophysics Data System (ADS)
Farrell, Sean A.
2007-07-01
This thesis presents the results of a comprehensive multi-wavelength study of the high mass X-ray binary 2S 0114+650. This enigmatic source has previously been proposed to be the first in a new class of super-slow X-ray pulsars, containing a neutron star revolving once every 2.7 h. The 11.6 d orbital period of this system has been well established in both X-ray and optical wavelengths. During the initial stages of the research presented in this thesis we discovered an additional 30.7 d "super-orbital" modulation in the X-ray emission from this source. While similar periodicities seen in other X-ray binaries are commonly attributed to the precession of a warped accretion disc, the observational evidence suggests the absence of such a disc in 2S 0114+650. The purpose of this project is thus to determine the nature of the super-orbital modulation and to better constrain the astrophysical parameters of this system. To investigate the long-term variability we analysed ~8.5 yr of archived data from the Rossi X-ray Timing Explorer space telescope. The problem of the spurious ~24 h periods in this data was solved as a by-product of these studies. Follow-up pointed observations were obtained with this satellite in order to examine the spectral and temporal behaviour over the spin, orbital and super-orbital timescales. Independent confirmation of the super-orbital modulation was performed using ~2 yr of data from the INTEGRAL satellite obtained during a long-term monitoring campaign of the Cassiopeia region. The evolution of the spin, orbital and super-orbital periods over ~10 yr was examined using archived data from the Rossi X-ray Timing Explorer satellite. Radio observations were performed with the Giant Meterwave Radio Telescope to search for any radio emission associated with this source and to determine whether it is variable over the known periodicities. Near infrared observations were performed with the Mt Abu telescope to determine wheth! er a Be star nature can be ruled out for the optical component! . Finally, a statistical analysis of the properties of the confirmed super-orbital X-ray binaries was performed in order to search for commonalities between these systems.
Finding fixed satellite service orbital allotments with a k-permutation algorithm
NASA Technical Reports Server (NTRS)
Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.
1990-01-01
A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.
Final Design for a Comprehensive Orbital Debris Management Program
NASA Technical Reports Server (NTRS)
1990-01-01
The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.
Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)
NASA Astrophysics Data System (ADS)
Li, X. R.; Wang, X.
2016-03-01
When using the genetic algorithm to solve the problem of too-short-arc (TSA) determination, due to the difference of computing processes between the genetic algorithm and classical method, the methods for outliers editing are no longer applicable. In the genetic algorithm, the robust estimation is acquired by means of using different loss functions in the fitness function, then the outlier problem of TSAs is solved. Compared with the classical method, the application of loss functions in the genetic algorithm is greatly simplified. Through the comparison of results of different loss functions, it is clear that the methods of least median square and least trimmed square can greatly improve the robustness of TSAs, and have a high breakdown point.
Resonance Trapping due to Nebula Disk Torques
NASA Astrophysics Data System (ADS)
Hahn, J. M.; Ward, W. R.
1996-03-01
A protoplanet embedded in the solar nebula launches spiral density waves from its Lindblad resonances in the gas disk, and its gravitational attraction for these disturbances results in a mutual torque exerted between the protoplanet and the disk. Consequently the orbit of a sufficiently massive protoplanet may decay on a timescale shorter than the nebula lifetime, and this mechanism is most significant during the formation of the cores of the giant planets. Due to their increased mobility, migrating protoplanets may have been able to accrete large swaths of the disk and/or encounter other protoplanets. Thus disk torques may have played an important role in determining the formation history and orbit spacings of the giant planets. An interesting phenomenon also associated with orbit decay is resonance trapping, whereby a large body is able to halt further orbit decay of smaller bodies at commensurability resonances. Examples of this effect include the trapping of planetesimals experiencing aerodynamic gas drag and dust suffering Poynting-Robertson drag. Below we address the cosmogonic implications of resonance trapping of planetary embryos experiencing orbit decay due to nebula disk torques. The following employs an approach similar to Malhotra's (1993) discussion of the gas drag trapping problem.
Proximity operations concept design study, task 6
NASA Technical Reports Server (NTRS)
Williams, A. N.
1990-01-01
The feasibility of using optical technology to perform the mission of the proximity operations communications subsystem on Space Station Freedom was determined. Proximity operations mission requirements are determined and the relationship to the overall operational environment of the space station is defined. From this information, the design requirements of the communication subsystem are derived. Based on these requirements, a preliminary design is developed and the feasibility of implementation determined. To support the Orbital Maneuvering Vehicle and National Space Transportation System, the optical system development is straightforward. The requirements on extra-vehicular activity are such as to allow large fields of uncertainty, thus exacerbating the acquisition problem; however, an approach is given that could mitigate this problem. In general, it is found that such a system could indeed perform the proximity operations mission requirement, with some development required to support extra-vehicular activity.
Other Challenges in the Development of the Orbiter Environmental Control Hardware
NASA Technical Reports Server (NTRS)
Gibb, J. W.; Mcintosh, M. E.; Heinrich, S. R.; Thomas, E.; Steele, M.; Schubert, F.; Koszenski, E. P.; Wynveen, R. A.; Murray, R. W.; Schelkopf, J. D.
1985-01-01
Development of the Space Shuttle orbiter environmental control and life support system (ECLSS) included the identification and resolution of several interesting problems in several systems. Some of these problems occurred late in the program, including the flight phase. Problems and solutions related to the ammonia boiler system (ABS), smoke detector, water/hydrogen separator, and waste collector system (WCS) are addressed.
NASA Technical Reports Server (NTRS)
Burrows, R. R.
1972-01-01
A particular type of three-impulse transfer between two circular orbits is analyzed. The possibility of three plane changes is recognized, and the problem is to optimally distribute these plane changes to minimize the sum of the individual impulses. Numerical difficulties and their solution are discussed. Numerical results obtained from a conjugate gradient technique are presented for both the case where the individual plane changes are unconstrained and for the case where they are constrained. Possibly not unexpectedly, multiple minima are found. The techniques presented could be extended to the finite burn case, but primarily the contents are addressed to preliminary mission design and vehicle sizing.
Performance analysis of a laser propelled interorbital tansfer vehicle
NASA Technical Reports Server (NTRS)
Minovitch, M. A.
1976-01-01
Performance capabilities of a laser-propelled interorbital transfer vehicle receiving propulsive power from one ground-based transmitter was investigated. The laser transmits propulsive energy to the vehicle during successive station fly-overs. By applying a series of these propulsive maneuvers, large payloads can be economically transferred between low earth orbits and synchronous orbits. Operations involving the injection of large payloads onto escape trajectories are also studied. The duration of each successive engine burn must be carefully timed so that the vehicle reappears over the laser station to receive additional propulsive power within the shortest possible time. The analytical solution for determining these time intervals is presented, as is a solution to the problem of determining maximum injection payloads. Parameteric computer analysis based on these optimization studies is presented. The results show that relatively low beam powers, on the order of 50 MW to 60 MW, produce significant performance capabilities.
Engineering model system study for a regenerative fuel cell: Study report
NASA Technical Reports Server (NTRS)
Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.
1984-01-01
Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2012-05-01
The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.
Time-free transfers between libration-point orbits in the elliptic restricted problem
NASA Astrophysics Data System (ADS)
Howell, K. C.; Hiday-Johnston, L. A.
This work is part of a larger research effort directed toward the formulation of a strategy to design optimal time-free impulsive transfers between three-dimensional libration-point orbits in the vicinity of the interior LI libration point of the Sun-Earth/Moon barycenter system. Inferior transfers that move a spacecraft from a large halo orbit to a smaller halo orbit are considered here. Primer vector theory is applied to non-optimal impulsive trajectories in the elliptic restricted three-body problem in order to establish whether the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The addition of interior impulses is also considered. Results indicate that a substantial savings in fuel can be achieved by the allowance for coastal periods on the specified libration-point orbits. The resulting time-free inferior transfers are compared to time-free superior transfers between halo orbits of equal z-amplitude separation.
Time-free transfers between libration-point orbits in the elliptic restricted problem
NASA Astrophysics Data System (ADS)
Howell, K. C.; Hiday, L. A.
1992-08-01
This work is directed toward the formulation of a strategy to design optimal time-free impulsive transfers between 3D libration-point orbits in the vicinity of the interior L1 libration point of the sun-earth/moon barycenter system. Inferior transfers that move a spacecraft from a large halo orbit to a smaller halo orbit are considered here. Primer vector theory is applied to nonoptimal impulsive trajectories in the elliptic restricted three-body problem in order to establish whether the implementation of a coast in the initial orbit, a coast in the final orbit, or dual coasts accomplishes a reduction in fuel expenditure. The addition of interior impulses is also considered. Results indicate that a substantial savings in fuel can be achieved by the allowance for coastal periods on the specified libration-point orbits. The resulting time-free inferior transfers are compared to time-free superior transfers between halo orbits of equal z-amplitude separation.
Alternative mathematical programming formulations for FSS synthesis
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.
1986-01-01
A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.
Galileo Jupiter approach orbit determination
NASA Technical Reports Server (NTRS)
Miller, J. K.; Nicholson, F. T.
1984-01-01
Orbit determination characteristics of the Jupiter approach phase of the Galileo mission are described. Predicted orbit determination performance is given for the various mission events that occur during Jupiter approach. These mission events include delivery of an atmospheric entry probe, acquisition of probe science data by the Galileo orbiter for relay to earth, delivery of an orbiter to a close encounter of the Galilean satellite Io, and insertion of the orbiter into orbit about Jupiter. The orbit determination strategy and resulting accuracies are discussed for the data types which include Doppler, range, optical imaging of Io, and a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR).
Heliocentric phasing performance of electric sail spacecraft
NASA Astrophysics Data System (ADS)
Mengali, Giovanni; Quarta, Alessandro A.; Aliasi, Generoso
2016-10-01
We investigate the heliocentric in-orbit repositioning problem of a spacecraft propelled by an Electric Solar Wind Sail. Given an initial circular parking orbit, we look for the heliocentric trajectory that minimizes the time required for the spacecraft to change its azimuthal position, along the initial orbit, of a (prescribed) phasing angle. The in-orbit repositioning problem can be solved using either a drift ahead or a drift behind maneuver and, in general, the flight times for the two cases are different for a given value of the phasing angle. However, there exists a critical azimuthal position, whose value is numerically found, which univocally establishes whether a drift ahead or behind trajectory is superior in terms of flight time it requires for the maneuver to be completed. We solve the optimization problem using an indirect approach for different values of both the spacecraft maximum propulsive acceleration and the phasing angle, and the solution is then specialized to a repositioning problem along the Earth's heliocentric orbit. Finally, we use the simulation results to obtain a first order estimate of the minimum flight times for a scientific mission towards triangular Lagrangian points of the Sun-[Earth+Moon] system.
Summary of EOS flight dynamics analysis
NASA Technical Reports Server (NTRS)
Newman, Lauri Kraft; Folta, David C.
1995-01-01
From a flight dynamics perspective, the Earth Observing System (EOS) spacecraft present a number of challenges to mission designers. The Flight Dynamics Support Branch of NASA GSFC has examined a number of these challenges, including managing the EOS constellation, disposing of the spacecraft at the end-of-life (EOL), and achieving the appropriate mission orbit given launch vehicle and ascent propulsion constraints. The EOS program consists of a number of spacecraft including EOS-AM, an ascending node spacecraft, EOS-PM, a descending node spacecraft, the EOS Chemistry mission (EOS-CHEM), the EOS Altimetry Laser (EOS-LALT), and the EOS-Altimetry Radar (EOS-RALT). The orbit characteristics of these missions are presented. In order to assure that downlinking data from each spacecraft will be possible without interference between any two spacecraft, a careful examination of the relationships between spacecraft and how to maintain the spacecraft in a configuration which would minimize these communications problems must be made. The FDSB has performed various analyses to determine whether the spacecraft will be in a position to interfere with each other, how the orbit dynamics will change the relative positioning of the spacecraft over their lifetimes, and how maintenance maneuvers could be performed, if needed, to minimize communications problems. Prompted by an activity at NASA HQ to set guidelines for spacecraft regarding their end-of-life dispositions, much analysis has also been performed to determine the spacecraft lifetime of EOS-AM1 under various conditions, and to make suggestions regarding the spacecraft disposal. In performing this analysis, some general trends have been observed in lifetime calculations. The paper will present the EOS-AM1 lifetime results, comment on general reentry conclusions, and discuss how these analyses reflect on the HQ NMI. Placing the EOS spacecraft into their respective mission orbits involves some intricate maneuver planning to assure that all mission orbit requirements are met, given the initial conditions supplied by the launch vehicle at injection. The FDSB has developed an ascent scenario to meet the mission requirements. This paper presents results of the ascent analysis.
NASA Astrophysics Data System (ADS)
Lubey, D.; Ko, H.; Scheeres, D.
The classical orbit determination (OD) method of dealing with unknown maneuvers is to restart the OD process with post-maneuver observations. However, it is also possible to continue the OD process through such unknown maneuvers by representing those unknown maneuvers with an appropriate event representation. It has been shown in previous work (Ko & Scheeres, JGCD 2014) that any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver connecting those two states using Thrust-Fourier-Coefficients (TFCs). Event representation using TFCs rigorously provides a unique control law that can generate the desired secular behavior for a given unknown maneuver. This paper presents applications of this representation approach to orbit prediction and maneuver detection problem across unknown maneuvers. The TFCs are appended to a sequential filter as an adjoint state to compensate unknown perturbing accelerations and the modified filter estimates the satellite state and thrust coefficients by processing OD across the time of an unknown maneuver. This modified sequential filter with TFCs is capable of fitting tracking data and maintaining an OD solution in the presence of unknown maneuvers. Also, the modified filter is found effective in detecting a sudden change in TFC values which indicates a maneuver. In order to illustrate that the event representation approach with TFCs is robust and sufficiently general to be easily adjustable, different types of measurement data are processed with the filter in a realistic LEO setting. Further, cases with mis-modeling of non-gravitational force are included in our study to verify the versatility and efficiency of our presented algorithm. Simulation results show that the modified sequential filter with TFCs can detect and estimate the orbit and thrust parameters in the presence of unknown maneuvers with or without measurement data during maneuvers. With no measurement data during maneuvers, the modified filter with TFCs uses an existing pre-maneuver orbit solution to compute a post-maneuver orbit solution by forcing TFCs to compensate for an unknown maneuver. With observation data available during maneuvers, maneuver start time and stop time is determined
NASA Astrophysics Data System (ADS)
Xu, Wenfu; Hu, Zhonghua; Zhang, Yu; Liang, Bin
2017-03-01
After being launched into space to perform some tasks, the inertia parameters of a space robotic system may change due to fuel consumption, hardware reconfiguration, target capturing, and so on. For precision control and simulation, it is required to identify these parameters on orbit. This paper proposes an effective method for identifying the complete inertia parameters (including the mass, inertia tensor and center of mass position) of a space robotic system. The key to the method is to identify two types of simple dynamics systems: equivalent single-body and two-body systems. For the former, all of the joints are locked into a designed configuration and the thrusters are used for orbital maneuvering. The object function for optimization is defined in terms of acceleration and velocity of the equivalent single body. For the latter, only one joint is unlocked and driven to move along a planned (exiting) trajectory in free-floating mode. The object function is defined based on the linear and angular momentum equations. Then, the parameter identification problems are transformed into non-linear optimization problems. The Particle Swarm Optimization (PSO) algorithm is applied to determine the optimal parameters, i.e. the complete dynamic parameters of the two equivalent systems. By sequentially unlocking the 1st to nth joints (or unlocking the nth to 1st joints), the mass properties of body 0 to n (or n to 0) are completely identified. For the proposed method, only simple dynamics equations are needed for identification. The excitation motion (orbit maneuvering and joint motion) is also easily realized. Moreover, the method does not require prior knowledge of the mass properties of any body. It is general and practical for identifying a space robotic system on-orbit.
A Methodology For Measuring Resilience in a Satellite-Based Communication Network
2014-03-27
solving the Travelling Salesman Problem (TSP) (Solnon p. 1). Based upon swarm intelligence, in a travelling salesman problem ants are sent out from...developed for the Travelling Salesman Problem (TSP) in 1992 (Solnon p. 1), this metaheuristic shows its roots in the original formulations. Given v, the...is lost. To tackle this problem , a common LEO orbit type is examined, the polar orbit. Polar LEO satellites travel from the south pole to the
The rectilinear three-body problem as a basis for studying highly eccentric systems
NASA Astrophysics Data System (ADS)
Voyatzis, G.; Tsiganis, K.; Gaitanas, M.
2018-01-01
The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity e'=1, but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003-1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter μ =0.5 (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke's computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to μ and e'<1. Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.
Application of artificial intelligence to impulsive orbital transfers
NASA Technical Reports Server (NTRS)
Burns, Rowland E.
1987-01-01
A generalized technique for the numerical solution of any given class of problems is presented. The technique requires the analytic (or numerical) solution of every applicable equation for all variables that appear in the problem. Conditional blocks are employed to rapidly expand the set of known variables from a minimum of input. The method is illustrated via the use of the Hohmann transfer problem from orbital mechanics.
ACCURATE ORBITAL INTEGRATION OF THE GENERAL THREE-BODY PROBLEM BASED ON THE D'ALEMBERT-TYPE SCHEME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minesaki, Yukitaka
2013-03-15
We propose an accurate orbital integration scheme for the general three-body problem that retains all conserved quantities except angular momentum. The scheme is provided by an extension of the d'Alembert-type scheme for constrained autonomous Hamiltonian systems. Although the proposed scheme is merely second-order accurate, it can precisely reproduce some periodic, quasiperiodic, and escape orbits. The Levi-Civita transformation plays a role in designing the scheme.
NASA Technical Reports Server (NTRS)
Flemming, Ken
1991-01-01
Lunar vehicles that will be space based and reusable will require resupply of propellants in orbit. Approximately 75 pct. of the total mass delivered to low earth orbit will be propellants. Consequently, the propellant management techniques selected for Space Exploration Initiative (SEI) orbital operations will have a major influence on the overall SEI architecture. Five proposed propellant management facility (PMF) concepts were analyzed and compared in order to determine the best method of resupplying reusable, space based Lunar Transfer Vehicles (LTVs). The processing time needed at the Space Station to prepare LTV for its next lunar mission was estimated for each of the PMF concepts. The estimated times required to assemble and maintain the different PMF concepts were also compared. The results of the maintenance analysis were similar, with co-orbiting depots needing 100 to 350 pct. more annual maintenance. The first few external tanks mating operations at KSC encountered many problems that could cause serious lunar mission schedule delays. The use of drop tanks on lunar vehicles increases by a factor of four the number of critical propellant interface disturbances.
Metrics in Keplerian orbits quotient spaces
NASA Astrophysics Data System (ADS)
Milanov, Danila V.
2018-03-01
Quotient spaces of Keplerian orbits are important instruments for the modelling of orbit samples of celestial bodies on a large time span. We suppose that variations of the orbital eccentricities, inclinations and semi-major axes remain sufficiently small, while arbitrary perturbations are allowed for the arguments of pericentres or longitudes of the nodes, or both. The distance between orbits or their images in quotient spaces serves as a numerical criterion for such problems of Celestial Mechanics as search for common origin of meteoroid streams, comets, and asteroids, asteroid families identification, and others. In this paper, we consider quotient sets of the non-rectilinear Keplerian orbits space H. Their elements are identified irrespective of the values of pericentre arguments or node longitudes. We prove that distance functions on the quotient sets, introduced in Kholshevnikov et al. (Mon Not R Astron Soc 462:2275-2283, 2016), satisfy metric space axioms and discuss theoretical and practical importance of this result. Isometric embeddings of the quotient spaces into R^n, and a space of compact subsets of H with Hausdorff metric are constructed. The Euclidean representations of the orbits spaces find its applications in a problem of orbit averaging and computational algorithms specific to Euclidean space. We also explore completions of H and its quotient spaces with respect to corresponding metrics and establish a relation between elements of the extended spaces and rectilinear trajectories. Distance between an orbit and subsets of elliptic and hyperbolic orbits is calculated. This quantity provides an upper bound for the metric value in a problem of close orbits identification. Finally the invariance of the equivalence relations in H under coordinates change is discussed.
Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994
NASA Technical Reports Server (NTRS)
Thomas, Walter B.
1996-01-01
This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).
A k-permutation algorithm for Fixed Satellite Service orbital allotments
NASA Technical Reports Server (NTRS)
Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.
1988-01-01
A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.
NASA Astrophysics Data System (ADS)
Antoniadou, Kyriaki I.; Libert, Anne-Sophie
2018-06-01
We consider a planetary system consisting of two primaries, namely a star and a giant planet, and a massless secondary, say a terrestrial planet or an asteroid, which moves under their gravitational attraction. We study the dynamics of this system in the framework of the circular and elliptic restricted three-body problem, when the motion of the giant planet describes circular and elliptic orbits, respectively. Originating from the circular family, families of symmetric periodic orbits in the 3/2, 5/2, 3/1, 4/1 and 5/1 mean-motion resonances are continued in the circular and the elliptic problems. New bifurcation points from the circular to the elliptic problem are found for each of the above resonances, and thus, new families continued from these points are herein presented. Stable segments of periodic orbits were found at high eccentricity values of the already known families considered as whole unstable previously. Moreover, new isolated (not continued from bifurcation points) families are computed in the elliptic restricted problem. The majority of the new families mainly consists of stable periodic orbits at high eccentricities. The families of the 5/1 resonance are investigated for the first time in the restricted three-body problems. We highlight the effect of stable periodic orbits on the formation of stable regions in their vicinity and unveil the boundaries of such domains in phase space by computing maps of dynamical stability. The long-term stable evolution of the terrestrial planets or asteroids is dependent on the existence of regular domains in their dynamical neighbourhood in phase space, which could host them for long-time spans. This study, besides other celestial architectures that can be efficiently modelled by the circular and elliptic restricted problems, is particularly appropriate for the discovery of terrestrial companions among the single-giant planet systems discovered so far.
The initial value problem as it relates to numerical relativity.
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
The initial value problem as it relates to numerical relativity
NASA Astrophysics Data System (ADS)
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
Seniority and orbital symmetry as tools for establishing a full configuration interaction hierarchy.
Bytautas, Laimutis; Henderson, Thomas M; Jiménez-Hoyos, Carlos A; Ellis, Jason K; Scuseria, Gustavo E
2011-07-28
We explore the concept of seniority number (defined as the number of unpaired electrons in a determinant) when applied to the problem of electron correlation in atomic and molecular systems. Although seniority is a good quantum number only for certain model Hamiltonians (such as the pairing Hamiltonian), we show that it provides a useful partitioning of the electronic full configuration interaction (FCI) wave function into rapidly convergent Hilbert subspaces whose weight diminishes as its seniority number increases. The primary focus of this study is the adequate description of static correlation effects. The examples considered are the ground states of the helium, beryllium, and neon atoms, the symmetric dissociation of the N(2) and CO(2) molecules, as well as the symmetric dissociation of an H(8) hydrogen chain. It is found that the symmetry constraints that are normally placed on the spatial orbitals greatly affect the convergence rate of the FCI expansion. The energy relevance of the seniority zero sector (determinants with all paired electrons) increases dramatically if orbitals of broken spatial symmetry (as those commonly used for Hubbard Hamiltonian studies) are allowed in the wave function construction. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Salmin, Vadim V.
2017-01-01
Flight mechanics with a low-thrust is a new chapter of mechanics of space flight, considered plurality of all problems trajectory optimization and movement control laws and the design parameters of spacecraft. Thus tasks associated with taking into account the additional factors in mathematical models of the motion of spacecraft becomes increasingly important, as well as additional restrictions on the possibilities of the thrust vector control. The complication of the mathematical models of controlled motion leads to difficulties in solving optimization problems. Author proposed methods of finding approximate optimal control and evaluating their optimality based on analytical solutions. These methods are based on the principle of extending the class of admissible states and controls and sufficient conditions for the absolute minimum. Developed procedures of the estimation enabling to determine how close to the optimal founded solution, and indicate ways to improve them. Authors describes procedures of estimate for approximately optimal control laws for space flight mechanics problems, in particular for optimization flight low-thrust between the circular non-coplanar orbits, optimization the control angle and trajectory movement of the spacecraft during interorbital flights, optimization flights with low-thrust between arbitrary elliptical orbits Earth satellites.
Precise Orbit Determination for ALOS
NASA Technical Reports Server (NTRS)
Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji
2007-01-01
The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.
NASA Technical Reports Server (NTRS)
Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray
2004-01-01
With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.
Closedness of orbits in a space with SU(2) Poisson structure
NASA Astrophysics Data System (ADS)
Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad
2014-06-01
The closedness of orbits of central forces is addressed in a three-dimensional space in which the Poisson bracket among the coordinates is that of the SU(2) Lie algebra. In particular it is shown that among problems with spherically symmetric potential energies, it is only the Kepler problem for which all bounded orbits are closed. In analogy with the case of the ordinary space, a conserved vector (apart from the angular momentum) is explicitly constructed, which is responsible for the orbits being closed. This is the analog of the Laplace-Runge-Lenz vector. The algebra of the constants of the motion is also worked out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallado, David A.; Cefola, Paul J.; Kiziah, Rex R.
Here, observing geosynchronous satellites has numerous applications. Lighting conditions near the equinoxes routinely cause problems for traditional observations of sensors near the equator – the solar exclusion. We investigate using sensors on satellites (in polar and high- altitude orbits) to observe satellites that are in geosynchronous orbit. It is hoped that these satellite configurations will alleviate many of these problems. Assessing the orbit insertion and station-keeping requirements are important to understand. We summarize the literature to understand the relevant perturbing forces and assess the delta-v requirements.
Vallado, David A.; Cefola, Paul J.; Kiziah, Rex R.; ...
2016-09-09
Here, observing geosynchronous satellites has numerous applications. Lighting conditions near the equinoxes routinely cause problems for traditional observations of sensors near the equator – the solar exclusion. We investigate using sensors on satellites (in polar and high- altitude orbits) to observe satellites that are in geosynchronous orbit. It is hoped that these satellite configurations will alleviate many of these problems. Assessing the orbit insertion and station-keeping requirements are important to understand. We summarize the literature to understand the relevant perturbing forces and assess the delta-v requirements.
On the Determination of the Orbits of Comets
NASA Astrophysics Data System (ADS)
Englefield, Henry
2013-06-01
Preface; 1. General view of the method; 2. On the motion of the point of intersection of the radius vector and cord; 3. On the comparison of the parabolic cord with the space which answers to the mean velocity of the earth in the same time; 4. Of the reduction of the second longitude of the comet; 5. On the proportion of the three curtate distances of the comet from the earth; 6. Of the graphical declination of the orbit of the earth; 7. Of the numerical quantities to be prepared for the construction or computation of the comet's orbit; 8. Determination of the distances of the comet from the earth and the sun; 9. Determination of the elements of the orbit from the determined distances; 10. Determination of the place of the comet from the earth and sun; 11. Determination of the distances of the comet from the earth and sun; 12. Determination of the comet's orbit; 13. Determination of the place of the comet; 14. Application of the graphical method to the comet of 1769; 15. Application of the distances found; 16. Determination of the place of the comet, for another given time; 17. Application of the trigonometrical method to the comet of 1769; 18. Determination of the elements of the orbit of the comet of 1769; Example of the graphical operation for the orbit of the comet of 1769; Example of the trigonometrical operation for the orbit of the comet of 1769; Conclusion; La Place's general method for determining the orbits of comets; Determination of the two elements of the orbit; Application of La Place's method of finding the approximate perihelion distance; Application of La Place's method for correcting the orbit of a comet, to the comet of 1769; Explanation and use of the tables; Tables; Appendix; Plates.
Periodic orbits in the restricted four-body problem with two equal masses
NASA Astrophysics Data System (ADS)
Burgos-García, Jaime; Delgado, Joaquín
2013-06-01
The restricted (equilateral) four-body problem consists of three bodies of masses m 1, m 2 and m 3 (called primaries) lying in a Lagrangian configuration of the three-body problem i.e., they remain fixed at the apices of an equilateral triangle in a rotating coordinate system. A massless fourth body moves under the Newtonian gravitation law due to the three primaries; as in the restricted three-body problem (R3BP), the fourth mass does not affect the motion of the three primaries. In this paper we explore symmetric periodic orbits of the restricted four-body problem (R4BP) for the case of two equal masses where they satisfy approximately the Routh's critical value. We will classify them in nine families of periodic orbits. We offer an exhaustive study of each family and the stability of each of them.
NASA Technical Reports Server (NTRS)
Lyons, Daniel T.; Sjogren, William; Johnson, William T. K.; Schmitt, Durwin; Mcronald, Angus
1992-01-01
While the Magellan spacecraft is currently in an elliptical orbit around Venus, its orbit may be circularized by means of an aerobraking maneuver during which a minor amount of aerodynamic drag is applied to 1000-2000 orbits. An evaluation is presently undertaken of the thermal-control and operational problems arising from such a maneuver, in virtue of its not having been considered among the design requirements of the spacecraft. Attention is given to atmospheric erosion and contamination problems to which the spacecraft surfaces could be exposed.
Expert systems applications for space shuttle payload integration automation
NASA Technical Reports Server (NTRS)
Morris, Keith
1988-01-01
Expert systems technologies have been and are continuing to be applied to NASA's Space Shuttle orbiter payload integration problems to provide a level of automation previously unrealizable. NASA's Space Shuttle orbiter was designed to be extremely flexible in its ability to accommodate many different types and combinations of satellites and experiments (payloads) within its payload bay. This flexibility results in differnet and unique engineering resource requirements for each of its payloads, creating recurring payload and cargo integration problems. Expert systems provide a successful solution for these recurring problems. The Orbiter Payload Bay Cabling Expert (EXCABL) was the first expert system, developed to solve the electrical services provisioning problem. A second expert system, EXMATCH, was developed to generate a list of the reusable installation drawings available for each EXCABL solution. These successes have proved the applicability of expert systems technologies to payload integration problems and consequently a third expert system is currently in work. These three expert systems, the manner in which they resolve payload problems and how they will be integrated are described.
Invariant Solar Sail Formations in Elliptical Sun-Synchronous Orbits
NASA Astrophysics Data System (ADS)
Parsay, Khashayar
Current and past missions that study the Earth's geomagnetic tail require multiple spacecraft to fly in formation about a highly eccentric Keplerian reference orbit that has its apogee inside a predefined science region of interest. Because the geomagnetic tail is directed along the Sun-Earth line and therefore rotates annually, inertially fixed Keplerian orbits are only aligned with the geomagnetic tail once per year. This limitation reduces the duration of the science phase to less than a few months annually. Solar sails are capable of creating non-Keplerian, Sun-synchronous orbits that rotate with the geomagnetic tail. A solar sail flying in a Sun-synchronous orbit will have a continuous presence in the geomagnetic tail throughout the entire year, which significantly improves the in situ observations of the magnetosphere. To achieve a Sun-synchronous orbit, a solar sail is required to maintain a Sun-pointing attitude, which leads to the artificial precession of the orbit apse line in a Sun-synchronous manner, leaving the orbit apogee inside the science region of interest throughout entire the year. To study the spatial and temporal variations of plasma in the highly dynamic environment of the magnetosphere, multiple spacecraft must fly in a formation. The objective for this dissertation is to investigate the feasibility of solar sail formation flying in the Earth-centered, Sun-synchronous orbit regime. The focus of this effort is to enable formation flying for a group of solar sails that maintain a nominally fixed Sun-pointing attitude during formation flight, solely for the purpose of precessing their orbit apse lines Sun-synchronously. A fixed-attitude solar sail formation is motivated by the difficulties in the simultaneous control of orbit and attitude in flying solar sails. First, the secular rates of the orbital elements resulting from the effects of solar radiation pressure (SRP) are determined using averaging theory for a Sun-pointing attitude sail. These averaged rates are used to analytically derive the necessary conditions for a drift-free solar sail formation in Sun-synchronous orbits, assuming a fixed Sun-pointing orientation for each sail in formation. Next, the problem of formation design is solved using nonlinear programming for optimal two-craft, three-craft, and four-craft solar sail formations, in terms of formation quality and stability. Finally, the problem of formation establishment is addressed using optimal control theory, assuming that the sails are capable of making small changes to their orientations with respect to the Sun. These studies demonstrate the feasibility of solar sail formation flying for exploring the geomagnetic tail and improve upon previous work, which only considered unnatural relative motions that require continuous use of active control to remain in formation.
Orbiter entry aerothermodynamics
NASA Technical Reports Server (NTRS)
Ried, R. C.
1985-01-01
The challenge in the definition of the entry aerothermodynamic environment arising from the challenge of a reliable and reusable Orbiter is reviewed in light of the existing technology. Select problems pertinent to the orbiter development are discussed with reference to comprehensive treatments. These problems include boundary layer transition, leeward-side heating, shock/shock interaction scaling, tile gap heating, and nonequilibrium effects such as surface catalysis. Sample measurements obtained from test flights of the Orbiter are presented with comparison to preflight expectations. Numerical and wind tunnel simulations gave efficient information for defining the entry environment and an adequate level of preflight confidence. The high quality flight data provide an opportunity to refine the operational capability of the orbiter and serve as a benchmark both for the development of aerothermodynamic technology and for use in meeting future entry heating challenges.
A parameter estimation subroutine package
NASA Technical Reports Server (NTRS)
Bierman, G. J.; Nead, W. M.
1977-01-01
Linear least squares estimation and regression analyses continue to play a major role in orbit determination and related areas. FORTRAN subroutines have been developed to facilitate analyses of a variety of parameter estimation problems. Easy to use multipurpose sets of algorithms are reported that are reasonably efficient and which use a minimal amount of computer storage. Subroutine inputs, outputs, usage and listings are given, along with examples of how these routines can be used.
Orbit Determination Using Vinti’s Solution
2016-09-15
Surveillance Network STK Systems Tool Kit TBP Two Body Problem TLE Two-line Element Set xv Acronym Definition UKF Unscented Kalman Filter WPAFB Wright...simplicity, stability, and speed. On the other hand, Kalman filters would be best suited for sequential estimation of stochastic or random components of a...be likened to how an Unscented Kalman Filter samples a system’s nonlinearities directly, avoiding linearizing the dynamics in the partials matrices
NASA Astrophysics Data System (ADS)
Perusich, Karl Anthony
1986-12-01
The problems and potential of a single proposed ballistic missile defense system, the X-ray laser-armed satellite, are examined in this research. Specifically, the X-ray laser satellite system is examined to determine its impact on the issues of cost-effectiveness and crisis stability. To examime the cost-effectiveness and the crisis stability of the X-ray laser satellites, a simulation of a nuclear exchange was constructed. The X-ray laser satellites were assumed to be vulnerable to attack from energy satellites with limited satellite-to-satellite lethal ranges. Symmetric weapons and force postures were used. Five principal weapon classes were used in the model: ICMBs, SLBMs, X-ray laser satellites, bombers, and endo-atmospheric silo defenses. Also, the orbital dynamics of the ballistic missiles and satellites were simulated. The cost-effectiveness of the X-ray laser satellites was determined for two different operational capabilities, damage-limitation and assured destruction. The following conclusions were reached. The effects of deployment of a new weapon system on the Triad as a whole should be examined. The X-ray laser was found to have little effectiveness as a damage-limiting weapon for a defender. For an assured destruction capability, X-ray laser satellites could be part of a minimum-cost force mix with that capability.
Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions
NASA Astrophysics Data System (ADS)
Ilgen, Marc R.
This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value of the flight path angle. A summary of performance results for all these guidance laws is presented in the fifth part of this thesis along with recommendations for further research.
Forbidden tangential orbit transfers between intersecting Keplerian orbits
NASA Technical Reports Server (NTRS)
Burns, Rowland E.
1990-01-01
The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.
Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris
NASA Technical Reports Server (NTRS)
Wiegman, Bruce M.
2009-01-01
This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.
Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Dubeibe, Fredy L.; González, Guillermo A.
2018-07-01
The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modelled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping, and (iii) displaying close encounters. Using the smaller alignment index chaos indicator, we further classify bounded orbits into regular, sticky, or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.
Hoffmann, Mark R; Helgaker, Trygve
2015-03-05
A new variation of the second-order generalized van Vleck perturbation theory (GVVPT2) for molecular electronic structure is suggested. In contrast to the established procedure, in which CASSCF or MCSCF orbitals are first obtained and subsequently used to define a many-electron model (or reference) space, the use of an orbital space obtained from the local density approximation (LDA) variant of density functional theory is considered. Through a final, noniterative diagonalization of an average Fock matrix within orbital subspaces, quasicanonical orbitals that are otherwise indistinguishable from quasicanonical orbitals obtained from a CASSCF or MCSCF calculation are obtained. Consequently, all advantages of the GVVPT2 method are retained, including use of macroconfigurations to define incomplete active spaces and rigorous avoidance of intruder states. The suggested variant is vetted on three well-known model problems: the symmetric stretching of the O-H bonds in water, the dissociation of N2, and the stretching of ground and excited states C2 to more than twice the equilibrium bond length of the ground state. It is observed that the LDA-based GVVPT2 calculations yield good results, of comparable quality to conventional CASSCF-based calculations. This is true even for the C2 model problem, in which the orbital space for each state was defined by the LDA orbitals. These results suggest that GVVPT2 can be applied to much larger problems than previously accessible.
Space shuttle orbiter digital data processing system timing sensitivity analysis OFT ascent phase
NASA Technical Reports Server (NTRS)
Lagas, J. J.; Peterka, J. J.; Becker, D. A.
1977-01-01
Dynamic loads were investigated to provide simulation and analysis of the space shuttle orbiter digital data processing system (DDPS). Segments of the ascent test (OFT) configuration were modeled utilizing the information management system interpretive model (IMSIM) in a computerized simulation modeling of the OFT hardware and software workload. System requirements for simulation of the OFT configuration were defined, and sensitivity analyses determined areas of potential data flow problems in DDPS operation. Based on the defined system requirements and these sensitivity analyses, a test design was developed for adapting, parameterizing, and executing IMSIM, using varying load and stress conditions for model execution. Analyses of the computer simulation runs are documented, including results, conclusions, and recommendations for DDPS improvements.
Orbital thermal analysis of lattice structured spacecraft using color video display techniques
NASA Technical Reports Server (NTRS)
Wright, R. L.; Deryder, D. D.; Palmer, M. T.
1983-01-01
A color video display technique is demonstrated as a tool for rapid determination of thermal problems during the preliminary design of complex space systems. A thermal analysis is presented for the lattice-structured Earth Observation Satellite (EOS) spacecraft at 32 points in a baseline non Sun-synchronous (60 deg inclination) orbit. Large temperature variations (on the order of 150 K) were observed on the majority of the members. A gradual decrease in temperature was observed as the spacecraft traversed the Earth's shadow, followed by a sudden rise in temperature (100 K) as the spacecraft exited the shadow. Heating rate and temperature histories of selected members and color graphic displays of temperatures on the spacecraft are presented.
Late stages of accumulation and early evolution of the planets
NASA Technical Reports Server (NTRS)
Vityazev, Andrey V.; Perchernikova, G. V.
1991-01-01
Recently developed solutions of problems are discussed that were traditionally considered fundamental in classical solar system cosmogony: determination of planetary orbit distribution patterns, values for mean eccentricity and orbital inclinations of the planets, and rotation periods and rotation axis inclinations of the planets. Two important cosmochemical aspects of accumulation are examined: the time scale for gas loss from the terrestrial planet zone, and the composition of the planets in terms of isotope data. It was concluded that the early beginning of planet differentiation is a function of the heating of protoplanets during collisions with large (thousands of kilometers) bodies. Energetics, heat mass transfer processes, and characteristic time scales of these processes at the early stages of planet evolution are considered.
NASA Technical Reports Server (NTRS)
Wilcher, J.; Stelzried, C.; Finley, S.
1986-01-01
In 1981, the Inter-Agency Consultative Group (composed of European, Soviet, Japanese and American space agency representatives) conceived the idea of using the two Soviet Vega spacecraft as pathfinders for Giotto since they would arrive at Halley's Comet approximately one week before Giotto. The Vega trajectory data and the Halley camera angle data were combined to improve the comet orbit accuracy. This was used to improve the Giotto fly-by targeting. The DSN performed delta DOR (VLBI) and one-way Doppler measurements of the Vega spacecraft for orbit determination. Although the early part-up phase had many problems, the results during the critical November 30, 1985 to March 4, 1986 operational phase had an overall 95 percent success rate, with 59 successes out of 62 two-station passes.
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2013-05-01
Abstract (2,250 Maximum Characters): The Astronomy Workshop (http://janus.astro.umd.edu) is a collection of interactive online educational tools developed for use by students, educators, professional astronomers, and the general public. The more than 20 tools in the Astronomy Workshop are rated for ease-of-use, and have been extensively tested in large university survey courses as well as more specialized classes for undergraduate majors and graduate students. Here we briefly describe the tools most relevant for the Professional Dynamical Astronomer. Solar Systems Visualizer: The orbital motions of planets, moons, and asteroids in the Solar System as well as many of the planets in exoplanetary systems are animated at their correct relative speeds in accurate to-scale drawings. Zoom in from the chaotic outer satellite systems of the giant planets all the way to their innermost ring systems. Orbital Integrators: Determine the orbital evolution of your initial conditions for a number of different scenarios including motions subject to general central forces, the classic three-body problem, and satellites of planets and exoplanets. Zero velocity curves are calculated and automatically included on relevant plots. Orbital Elements: Convert quickly and easily between state vectors and orbital elements with Changing the Elements. Use other routines to visualize your three-dimensional orbit and to convert between the different commonly used sets of orbital elements including the true, mean, and eccentric anomalies. Solar System Calculators: These tools calculate a user-defined mathematical expression simultaneously for all of the Solar System's planets (Planetary Calculator) or moons (Satellite Calculator). Key physical and orbital data are automatically accessed as needed.
Thermal analyses of power subsystem components
NASA Technical Reports Server (NTRS)
Morehouse, Jeffrey H.
1990-01-01
The hiatus in the Space Shuttle (Orbiter) program provided time for an in-depth examination of all the subsystems and their past performance. Specifically, problems with reliability and/or operating limits were and continue to be of major engineering concern. The Orbiter Auxiliary Power Unit (APU) currently operates with electric resistance line heaters which are controlled with thermostats. A design option simplification of this heater subsystem is being considered which would use self-regulating heaters. A determination of the properties and thermal operating characteristics of these self-regulating heaters was needed. The Orbiter fuel cells are cooled with a freon loop. During a loss of external heat exchanger coolant flow, the single pump circulating the freon is to be left running. It was unknown what temperature and flow rate transient conditions of the freon would provide the required fuel cell cooling and for how long. The overall objective was the development of the thermal characterization and subsequent analysis of both the proposed self-regulating APU heater and the fuel cell coolant loop subsystem. The specific objective of the APU subsystem effort was to determine the feasibility of replacing the current heater and thermostat arrangement with a self-regulating heater. The specific objective of the fuel cell coolant subsystem work was to determine the tranient coolant temperature and associated flow rates during a loss-of-external heat exchanger flow.
NASA Astrophysics Data System (ADS)
Ren, Xia; Yang, Yuanxi; Zhu, Jun; Xu, Tianhe
2017-11-01
Intersatellite Link (ISL) technology helps to realize the auto update of broadcast ephemeris and clock error parameters for Global Navigation Satellite System (GNSS). ISL constitutes an important approach with which to both improve the observation geometry and extend the tracking coverage of China's Beidou Navigation Satellite System (BDS). However, ISL-only orbit determination might lead to the constellation drift, rotation, and even lead to the divergence in orbit determination. Fortunately, predicted orbits with good precision can be used as a priori information with which to constrain the estimated satellite orbit parameters. Therefore, the precision of satellite autonomous orbit determination can be improved by consideration of a priori orbit information, and vice versa. However, the errors of rotation and translation in a priori orbit will remain in the ultimate result. This paper proposes a constrained precise orbit determination (POD) method for a sub-constellation of the new Beidou satellite constellation with only a few ISLs. The observation model of dual one-way measurements eliminating satellite clock errors is presented, and the orbit determination precision is analyzed with different data processing backgrounds. The conclusions are as follows. (1) With ISLs, the estimated parameters are strongly correlated, especially the positions and velocities of satellites. (2) The performance of determined BDS orbits will be improved by the constraints with more precise priori orbits. The POD precision is better than 45 m with a priori orbit constrain of 100 m precision (e.g., predicted orbits by telemetry tracking and control system), and is better than 6 m with precise priori orbit constraints of 10 m precision (e.g., predicted orbits by international GNSS monitoring & Assessment System (iGMAS)). (3) The POD precision is improved by additional ISLs. Constrained by a priori iGMAS orbits, the POD precision with two, three, and four ISLs is better than 6, 3, and 2 m, respectively. (4) The in-plane link and out-of-plane link have different contributions to observation configuration and system observability. The POD with weak observation configuration (e.g., one in-plane link and one out-of-plane link) should be tightly constrained with a priori orbits.
Information Measures for Statistical Orbit Determination
ERIC Educational Resources Information Center
Mashiku, Alinda K.
2013-01-01
The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…
Space Objects Maneuvering Detection and Prediction via Inverse Reinforcement Learning
NASA Astrophysics Data System (ADS)
Linares, R.; Furfaro, R.
This paper determines the behavior of Space Objects (SOs) using inverse Reinforcement Learning (RL) to estimate the reward function that each SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using the Feature Matching approach. This approach determines the optimal reward function that a SO is using while maneuvering by assuming that the observed trajectories are optimal with respect to the SO's own reward function. This paper uses estimated orbital elements data to determine the behavior of SOs in a data-driven fashion.
NASA Technical Reports Server (NTRS)
Morinelli, Patrick J.; Ward, Douglas T.; Blizzard, Michael R.; Mendelsohn, Chad R.
2008-01-01
This paper provides an overview of the lessons learned from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center s (GSFC) Flight Dynamics Facility s (FDF) support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft emergency in February 2007, and the Tracking and Data Relay Satellite-3 (TDRS-3) spacecraft emergency in March 2006. A successful and timely recovery from both of these spacecraft emergencies depended on accurate knowledge of the orbit. Unfortunately, the combination of each spacecraft emergency with very little tracking data contributed to difficulties in estimating and predicting the orbit and delayed recovery efforts in both cases. In both the THEMIS and TDRS-3 spacecraft emergencies, numerous factors contributed to problems with obtaining nominal tracking data measurements. This paper details the various causative factors and challenges. This paper further enumerates lessons learned from FDF s recovery efforts involving the THEMIS and TDRS-3 spacecraft emergencies and scant tracking data, as well as recommendations for improvements and corrective actions. In addition, this paper describes the broad range of resources and complex navigation methods employed within the FDF for supporting critical navigation activities during all mission phases, including launch, early orbit, and on-orbit operations.
Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis
NASA Technical Reports Server (NTRS)
Slojkowski, Steven E.
2014-01-01
Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.
A Comparison of Molecular Vibrational Theory to Huckel Molecular Orbital Theory.
ERIC Educational Resources Information Center
Keeports, David
1986-01-01
Compares the similar mathematical problems of molecular vibrational calculations (at any intermediate level of sophistication) and molecular orbital calculations (at the Huckel level). Discusses how the generalizations of Huckel treatment of molecular orbitals apply to vibrational theory. (TW)
NASA Astrophysics Data System (ADS)
Shirazi, Abolfazl
2016-10-01
This article introduces a new method to optimize finite-burn orbital manoeuvres based on a modified evolutionary algorithm. Optimization is carried out based on conversion of the orbital manoeuvre into a parameter optimization problem by assigning inverse tangential functions to the changes in direction angles of the thrust vector. The problem is analysed using boundary delimitation in a common optimization algorithm. A method is introduced to achieve acceptable values for optimization variables using nonlinear simulation, which results in an enlarged convergence domain. The presented algorithm benefits from high optimality and fast convergence time. A numerical example of a three-dimensional optimal orbital transfer is presented and the accuracy of the proposed algorithm is shown.
Unified Lambert Tool for Massively Parallel Applications in Space Situational Awareness
NASA Astrophysics Data System (ADS)
Woollands, Robyn M.; Read, Julie; Hernandez, Kevin; Probe, Austin; Junkins, John L.
2018-03-01
This paper introduces a parallel-compiled tool that combines several of our recently developed methods for solving the perturbed Lambert problem using modified Chebyshev-Picard iteration. This tool (unified Lambert tool) consists of four individual algorithms, each of which is unique and better suited for solving a particular type of orbit transfer. The first is a Keplerian Lambert solver, which is used to provide a good initial guess (warm start) for solving the perturbed problem. It is also used to determine the appropriate algorithm to call for solving the perturbed problem. The arc length or true anomaly angle spanned by the transfer trajectory is the parameter that governs the automated selection of the appropriate perturbed algorithm, and is based on the respective algorithm convergence characteristics. The second algorithm solves the perturbed Lambert problem using the modified Chebyshev-Picard iteration two-point boundary value solver. This algorithm does not require a Newton-like shooting method and is the most efficient of the perturbed solvers presented herein, however the domain of convergence is limited to about a third of an orbit and is dependent on eccentricity. The third algorithm extends the domain of convergence of the modified Chebyshev-Picard iteration two-point boundary value solver to about 90% of an orbit, through regularization with the Kustaanheimo-Stiefel transformation. This is the second most efficient of the perturbed set of algorithms. The fourth algorithm uses the method of particular solutions and the modified Chebyshev-Picard iteration initial value solver for solving multiple revolution perturbed transfers. This method does require "shooting" but differs from Newton-like shooting methods in that it does not require propagation of a state transition matrix. The unified Lambert tool makes use of the General Mission Analysis Tool and we use it to compute thousands of perturbed Lambert trajectories in parallel on the Space Situational Awareness computer cluster at the LASR Lab, Texas A&M University. We demonstrate the power of our tool by solving a highly parallel example problem, that is the generation of extremal field maps for optimal spacecraft rendezvous (and eventual orbit debris removal). In addition we demonstrate the need for including perturbative effects in simulations for satellite tracking or data association. The unified Lambert tool is ideal for but not limited to space situational awareness applications.
Nonlinear estimation theory applied to orbit determination
NASA Technical Reports Server (NTRS)
Choe, C. Y.
1972-01-01
The development of an approximate nonlinear filter using the Martingale theory and appropriate smoothing properties is considered. Both the first order and the second order moments were estimated. The filter developed can be classified as a modified Gaussian second order filter. Its performance was evaluated in a simulated study of the problem of estimating the state of an interplanetary space vehicle during both a simulated Jupiter flyby and a simulated Jupiter orbiter mission. In addition to the modified Gaussian second order filter, the modified truncated second order filter was also evaluated in the simulated study. Results obtained with each of these filters were compared with numerical results obtained with the extended Kalman filter and the performance of each filter is determined by comparison with the actual estimation errors. The simulations were designed to determine the effects of the second order terms in the dynamic state relations, the observation state relations, and the Kalman gain compensation term. It is shown that the Kalman gain-compensated filter which includes only the Kalman gain compensation term is superior to all of the other filters.
Benchmark Problems for Space Mission Formation Flying
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Leitner, Jesse A.; Folta, David C.; Burns, Richard
2003-01-01
To provide a high-level focus to distributed space system flight dynamics and control research, several benchmark problems are suggested for space mission formation flying. The problems cover formation flying in low altitude, near-circular Earth orbit, high altitude, highly elliptical Earth orbits, and large amplitude lissajous trajectories about co-linear libration points of the Sun-Earth/Moon system. These problems are not specific to any current or proposed mission, but instead are intended to capture high-level features that would be generic to many similar missions that are of interest to various agencies.
ISHM Decision Analysis Tool: Operations Concept
NASA Technical Reports Server (NTRS)
2006-01-01
The state-of-the-practice Shuttle caution and warning system warns the crew of conditions that may create a hazard to orbiter operations and/or crew. Depending on the severity of the alarm, the crew is alerted with a combination of sirens, tones, annunciator lights, or fault messages. The combination of anomalies (and hence alarms) indicates the problem. Even with much training, determining what problem a particular combination represents is not trivial. In many situations, an automated diagnosis system can help the crew more easily determine an underlying root cause. Due to limitations of diagnosis systems,however, it is not always possible to explain a set of alarms with a single root cause. Rather, the system generates a set of hypotheses that the crew can select from. The ISHM Decision Analysis Tool (IDAT) assists with this task. It presents the crew relevant information that could help them resolve the ambiguity of multiple root causes and determine a method for mitigating the problem. IDAT follows graphical user interface design guidelines and incorporates a decision analysis system. I describe both of these aspects.
French Meteor Network for High Precision Orbits of Meteoroids
NASA Technical Reports Server (NTRS)
Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.
2011-01-01
There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.
Guidance and control strategies for aerospace vehicles
NASA Technical Reports Server (NTRS)
Naidu, Desineni S.; Hibey, Joseph L.
1988-01-01
The optimal control problem arising in coplanar, orbital transfer employing aeroassist technology is addressed. The maneuver involves the transfer from high Earth orbit to low Earth orbit. A performance index is chosen the minimize the fuel consumpltion for the transfer. Simulations are carried out for establishing a corridor of entry conditions which are suitable for flying the spacecraft through the atmosphere. A highlight of the paper is the application of an efficient multiple shooting method for taming the notorious nonlinear, two-point, boundary value problem resulting from optimization procedure.
Orbit determination and prediction of GEO satellite of BeiDou during repositioning maneuver
NASA Astrophysics Data System (ADS)
Cao, Fen; Yang, XuHai; Li, ZhiGang; Sun, BaoQi; Kong, Yao; Chen, Liang; Feng, Chugang
2014-11-01
In order to establish a continuous GEO satellite orbit during repositioning maneuvers, a suitable maneuver force model has been established associated with an optimal orbit determination method and strategy. A continuous increasing acceleration is established by constructing a constant force that is equivalent to the pulse force, with the mass of the satellite decreasing throughout maneuver. This acceleration can be added to other accelerations, such as solar radiation, to obtain the continuous acceleration of the satellite. The orbit determination method and strategy are illuminated, with subsequent assessment of the orbit being determined and predicted accordingly. The orbit of the GEO satellite during repositioning maneuver can be determined and predicted by using C-Band pseudo-range observations of the BeiDou GEO satellite with COSPAR ID 2010-001A in 2011 and 2012. The results indicate that observations before maneuver do affect orbit determination and prediction, and should therefore be selected appropriately. A more precise orbit and prediction can be obtained compared to common short arc methods when observations starting 1 day prior the maneuver and 2 h after the maneuver are adopted in POD (Precise Orbit Determination). The achieved URE (User Range Error) under non-consideration of satellite clock errors is better than 2 m within the first 2 h after maneuver, and less than 3 m for further 2 h of orbit prediction.
Space station orbit maintenance
NASA Technical Reports Server (NTRS)
Kaplan, D. I.; Jones, R. M.
1983-01-01
The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.
An advanced analysis method of initial orbit determination with too short arc data
NASA Astrophysics Data System (ADS)
Li, Binzhe; Fang, Li
2018-02-01
This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.
Planning of an Experiment for VLBI Tracking of GNSS Satellites
NASA Technical Reports Server (NTRS)
Tornatore, Vincenza; Hass, Ruediger; Molera, Guifre; Pogrebenko, Sergei
2010-01-01
As a preparation for future possible orbit determination of global navigation satellite system (GNSS) satellites by VLBI observations an initial three-station experiment was planned and performed in January 2009. The goal was to get first experience and to verify the feasibility of using the method for accurate satellite tracking. GNSS orbits related to a satellite constellation can be expressed in the Terrestrial Reference Frame. A comparison with orbit results that might be obtained by VLBI can give valuable information on how the GNSS reference frame and the VLBI reference frame are linked. We present GNSS transmitter specifications and experimental results of the observations of some GLONASS satellites together with evaluations for the expected signal strengths at telescopes. The satellite flux densities detected on the Earth s surface are very high. The narrow bandwidth of the GNSS signal partly compensates for potential problems at the receiving stations, and signal attenuation is necessary. Attempts to correlate recorded data have been performed with different software.
NASA Technical Reports Server (NTRS)
Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.
1990-01-01
The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.
Fundamental Problems of Lunar Research, Technical Solutions, and Priority Lunar Regions for Research
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Basilevsky, A. T.; Bricheva, S. S.; Guseva, E. N.; Demidov, N. E.; Zakharova, M.; Krasil'nikov, S. S.
2017-11-01
In this article, we discuss four fundamental scientific problems of lunar research: (1) lunar chronology, (2) the internal structure of the Moon, (3) the lunar polar regions, and (4) lunar volcanism. After formulating the scientific problems and their components, we proceed to outlining a list of technical solutions and priority lunar regions for research. Solving the listed problems requires investigations on the lunar surface using lunar rovers, which can deliver a set of analytical equipment to places where geological conditions are known from a detailed analysis of orbital information. The most critical research methods, which can answer some of the key questions, are analysis of local geological conditions from panoramic photographs, determination of the chemical, isotopic, and mineral composition of the soil, and deep seismic sounding. A preliminary list is given of lunar regions with high scientific priority.
The possible effect of reaction wheel unloading on orbit determination for Chang'E-1 lunar mission
NASA Astrophysics Data System (ADS)
Jianguo, Yan; Jingsong, Ping; Fei, Li
During the flight of 3-axis stabilized lunar orbiter i e SELENE main orbiter Chang E-1 due to the overflow of the accumulated angular momentum the reaction-wheel will be unloaded during certain period so as to release the angular momentum for initialization Then the momentum wheel will be reloaded for satellite attitude measurement and control Above action will not only change the attitude but also change the orbit of the spacecraft Assuming the reaction-wheel unloading is carried out twice a day according to the current engineering designation and plan for SELENE main orbiter and Chang E-1 missions considering the algebra configuration of the tracking stations the Moon and the lunar orbiter the orbit determination is simulated for 14 days evolution of lunar orbiter In the simulation the satellite orbit is generated using GEODYNII code Based on the generated orbit the common view time period of the satellite by VLBI and USB network in every day is computed the orbit determination is processed for all the arcs of the orbit The orbit determination result of 28 orbits in 14 days is provided The orbits cover most of the possible geometrical configuration among orbiter the Moon and the tracking network The analysis here can benefit the tracking designation and plan for Chang E-1 mission
Bi-objective optimization of a multiple-target active debris removal mission
NASA Astrophysics Data System (ADS)
Bérend, Nicolas; Olive, Xavier
2016-05-01
The increasing number of space debris in Low-Earth Orbit (LEO) raises the question of future Active Debris Removal (ADR) operations. Typical ADR scenarios rely on an Orbital Transfer Vehicle (OTV) using one of the two following disposal strategies: the first one consists in attaching a deorbiting kit, such as a solid rocket booster, to the debris after rendezvous; with the second one, the OTV captures the debris and moves it to a low-perigee disposal orbit. For multiple-target ADR scenarios, the design of such a mission is very complex, as it involves two optimization levels: one for the space debris sequence, and a second one for the "elementary" orbit transfer strategy from a released debris to the next one in the sequence. This problem can be seen as a Time-Dependant Traveling Salesman Problem (TDTSP) with two objective functions to minimize: the total mission duration and the total propellant consumption. In order to efficiently solve this problem, ONERA has designed, under CNES contract, TOPAS (Tool for Optimal Planning of ADR Sequence), a tool that implements a Branch & Bound method developed in previous work together with a dedicated algorithm for optimizing the "elementary" orbit transfer. A single run of this tool yields an estimation of the Pareto front of the problem, which exhibits the trade-off between mission duration and propellant consumption. We first detail our solution to cope with the combinatorial explosion of complex ADR scenarios with 10 debris. The key point of this approach is to define the orbit transfer strategy through a small set of parameters, allowing an acceptable compromise between the quality of the optimum solution and the calculation cost. Then we present optimization results obtained for various 10 debris removal scenarios involving a 15-ton OTV, using either the deorbiting kit or the disposal orbit strategy. We show that the advantage of one strategy upon the other depends on the propellant margin, the maximum duration allowed for the mission and the orbit inclination domain. For high inclination orbits near 98 deg, the disposal orbit strategy is more appropriate for short duration missions, while the deorbiting kit strategy ensures a better propellant margin. Conversely, for lower inclination orbits near 65 deg, the deorbiting kit strategy appears to be the only possible with a 10 debris set. We eventually explain the consistency of these results with regards to astrodynamics.
GPS World, Innovation: Autonomous Navigation at High Earth Orbits
NASA Technical Reports Server (NTRS)
Bamford, William; Winternitz, Luke; Hay, Curtis
2005-01-01
Calculating a spacecraft's precise location at high orbital altitudes-22,000 miles (35,800 km) and beyond-is an important and challenging problem. New and exciting opportunities become possible if satellites are able to autonomously determine their own orbits. First, the repetitive task of periodically collecting range measurements from terrestrial antennas to high altitude spacecraft becomes less important-this lessens competition for control facilities and saves money by reducing operational costs. Also, autonomous navigation at high orbital altitudes introduces the possibility of autonomous station keeping. For example, if a geostationary satellite begins to drift outside of its designated slot it can make orbit adjustments without requiring commands from the ground. Finally, precise onboard orbit determination opens the door to satellites flying in formation-an emerging concept for many scientific space applications. The realization of these benefits is not a trivial task. While the navigation signals broadcast by GPS satellites are well suited for orbit and attitude determination at lower altitudes, acquiring and using these signals at geostationary (GEO) and highly elliptical orbits is much more difficult. The light blue trace describes the GPS orbit at approximately 12,550 miles (20,200 km) altitude. GPS satellites were designed to provide navigation signals to terrestrial users-consequently the antenna array points directly toward the earth. GEO and HE0 orbits, however, are well above the operational GPS constellation, making signal reception at these altitudes more challenging. The nominal beamwidth of a Block II/IIA GPS satellite antenna array is approximately 42.6 degrees. At GEO and HE0 altitudes, most of these primary beam transmissions are blocked by the Earth, leaving only a narrow region of nominal signal visibility near opposing limbs of the earth. This region is highlighted in gray. If GPS receivers at GEO and HE0 orbits were designed to use these higher power signals only, precise orbit determination would not be practical. Fortunately, the GPS satellite antenna array also produces side lobe signals at much lower power levels. NASA has designed and tested the Navigator, a new GPS receiver that can acquire and track these weaker signals, thereby dramatically increasing the signal visibility at these altitudes. While using much weaker signals is a fundamental requirement for a high orbital altitude GPS receiver, it is certainly not the only challenge. There are other unique characteristics of this application that must also be considered. For example, Position Dilution of Precision (PDOP) figures are much higher at GEO and HE0 altitudes because visible GPS satellites are concentrated in a much smaller area with respect to the spacecraft antenna. These poor PDOP values contribute considerable error to the point solutions calculated by the spacecraft GPS receiver. Finally, spacecraft GPS receivers must be designed to withstand a variety of extreme environmental conditions. Variations in acceleration between launch and booster separation are extreme. Temperature gradients in the space environment are also severe. Furthermore, radiation effects are a major concern-spacecraft-borne GPS receivers must be designed with radiation-hardened electronics to guard against this phenomenon, otherwise they simply will not work. Perhaps most importantly, there are no opportunities to repair or modify any space-borne GPS receiver after it has been launched. Great care must be taken to ensure all performance characteristics have been analyzed prior to liftoff.
On periodic motions of an orbital dumbbell-shaped body with a cabin-elevator
NASA Astrophysics Data System (ADS)
Burov, A. A.; Kosenko, I. I.; Troger, H.
2012-05-01
The motion of a dumbbell-shaped body (a pair of massive points connected with each other by a weightless rod along which the elevator, i.e., a third point, is moving according to a given law) in an attractive Newtonian central field is considered. In particular, such a mechanical system can be considered as a simplified model of an orbital cable system equipped with an elevator. The practically most interesting case where the cabin performs periodic "shuttle"motions is studied. Under the assumption that the elevator mass is small compared with the dumbbell mass, the Poincaré theory is used to determine the conditions for the existence of families of system periodic motions analytically depending on the arising small parameter and passing into some stable radial steady-state motion of the unperturbed problem as the small parameter tends to zero. It is also proved that, for sufficiently small parameter values, each of the radial relative equilibria generates exactly one family of such periodic motions. The stability of the obtained periodic solutions is studied in the linear approximation, and these solutions themselves are calculated up to terms of the firstorder in the small parameter. The contemporary studies of the motion of orbital dumbbell systems apparently originated in Okunev's papers [1, 2]. These studies were continued in [3], where plane motions of an orbit tether (represented as a dumbbell-shaped satellite) in a circular orbit were considered in the satellite approximation. In [4], in the case of equal masses and in the unbounded statement, the energy-momentum method was used to perform the dynamic reduction of the problem and analyze the stability of relative equilibria. A similar technique was used in [5], where, in contrast to the above-mentioned problems, the massive points were connected by an elastic spring resisting to compression and forming a dumbbell with elastic properties. Under such assumptions, the stability of radial configurations was investigated in that paper. The bifurcations and stability of steady-state configurations of a deformable elastic dumbbell were also studied in [6]. Various obstacles arising in the construction of orbital cable systems, in particular, the strong deformability of known materials, were discussed in [7]. In [8], the problem of orbital motion of a pair of massive points connected by an inextensible weightless cable was considered in the exact statement. In other words, it was assumed that a unilateral constraint is imposed on themassive points. The conditions of stability of vertical positions of the relative equilibria of the cable system, which were obtained in [8], can be used for any ratio of the subsatellite and station masses. In turn, these results agree well with the results obtained earlier in the studies of stability of vertical configurations in the case of equal masses of the system end bodies [3, 4]. One of the basic papers in the dynamics of three-body orbital cable systems is the paper [9]. The steady-state motions and their bifurcations and stability were studied depending on the elevator cabin position in [10].
Metrics on the relative spacecraft motion invariant manifold.
Gurfil, P; Kholshevnikov, Konstantin V
2005-12-01
This paper establishes a methodology for obtaining the general solution to the spacecraft relative motion problem by utilizing Cartesian configuration space in conjunction with classical orbital elements. The geometry of the relative motion configuration space is analyzed, and the relative motion invariant manifold is determined. Most importantly, the geometric structure of the relative motion problem is used to derive useful metrics for quantification of the minimum, maximum, and mean distance between spacecraft for commensurable and non-commensurable mean motions. A number of analytic solutions, as well as useful examples, are provided, illustrating the calculated bounds. A few particular cases are given that yield simple solutions.
NASA Technical Reports Server (NTRS)
Zyla, L. V.
1979-01-01
The modifications are described as necessary to give the Houston Operations Predictor/Estimator (HOPE) program the capability to solve for or consider vent forces for orbit determination. The model implemented in solving for vent forces is described along with the integrator problems encountered. A summary derivation of the mathematical principles applicable to solve/consider methodology is provided.
Prognostics & Health Management: A NASA Perspective
NASA Technical Reports Server (NTRS)
Boyer, Roger L.
2015-01-01
How can advanced automation techniques developed by NASA to perform Fault Detection, Isolation, and Recovery (FDIR) in space missions be used here on Earth in the Oil & Gas industry? Whether on a Mars orbiter or an oil platform, having an intelligent machine to back up the crew/operators to help monitor and diagnose the systems for possible problems and aid in determining a corrective action/response is an important and useful attribute for multiple industries.
NASA Technical Reports Server (NTRS)
King, J. C.
1975-01-01
The general orbit-coverage problem in a simplified physical model is investigated by application of numerical approaches derived from basic number theory. A system of basic and general properties is defined by which idealized periodic coverage patterns may be characterized, classified, and delineated. The principal common features of these coverage patterns are their longitudinal quantization, determined by the revolution number R, and their overall symmetry.
Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude
2009-12-01
For a high- cost spacecraft with accurate pointing requirements, the use of a star tracker is the preferred method for attitude determination. The...solutions, however there are certain costs with using this algorithm. There are significantly more features a triangle can provide when compared to an...to the other. The non-rotating geocentric equatorial frame provides an inertial frame for the two-body problem of a satellite in orbit. In this
Semi-Major Axis Knowledge and GPS Orbit Determination
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.; Bauer, F. (Technical Monitor)
2000-01-01
In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.
Semi-Major Axis Knowledge and GPS Orbit Determination
NASA Technical Reports Server (NTRS)
Carpenter, J. Russell; Schiesser, Emil R.; Bauer, F. (Technical Monitor)
2000-01-01
In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning, Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.
Asteroid orbit fitting with radar and angular observations
NASA Astrophysics Data System (ADS)
Baturin, A. P.
2013-12-01
The asteroid orbit fitting problem using their radar and angular observations has been considered. The problem was solved in a standanrd way by means of minimization of weighted sum of squares of residuals. In the orbit fitting both kinds of radar observa-tions have been used: the observations of time delays and of Doppler frequency shifts. The weight for angular observations has been set the same for all of them and has been determined as inverse mean-square residual obtained in the orbit fitting using just angular observations. The weights of radar observations have been set as inverse squared errors of these observations published together with them in the Minor Planet Center electronical circulars (MPECs). For the orbit fitting some five asteroids have been taken from these circulars. The asteroids have been chosen fulfilling the requirement of more than six radar observations of them to be available. The asteroids are 1950 DA, 1999 RQ36, 2002 NY40, 2004 DC and 2005 EU2. Several orbit fittings for these aster-oids have been done: with just angular observations; with just radar observations; with both angular and radar observations. The obtained results are quite acceptable because in the last case the mean-square angular residuals are approximately equal to the same ones obtained in the fitting with just angular observations. As to radar observations mean-square residuals, the time delay residuals for three asteroids do not exceed 1 μs, for two others ˜ 10 μs and the Doppler shift residuals for three asteroids do not exceed 1 Hz, for two others ˜ 10 Hz. The motion equations included perturbations from 9 planets and the Moon using their ephemerides DE422. The numerical integration has been performed with Everhart 27-order method with variable step. All calculations have been exe-cuted to a 34-digit decimal precision (i.e. using 128-bit floating-point numbers). Further, the sizes of confidence ellipsoids of im-proved orbit parameters have been compared. It has been accepted that an indicator of ellipsoid size is a geometric mean of its six semi-axes. A comparison of sizes has shown that confidence ellipsoids obtained in orbit fitting with both angular and radar obser-vations are several times less than ellipsoids obtained with just angular observations.
Dawn Orbit Determination Team : Trajectory Modeling and Reconstruction Processes at Vesta
NASA Technical Reports Server (NTRS)
Abrahamson, Matt; Ardito, Alessandro; Han, Don; Haw, Robert; Kennedy, Brian; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew
2013-01-01
The NASA Dawn spacecraft was launched on September 27, 2007 on a mission to study the asteroid belt's two largest objects, Vesta and Ceres. It is the first deep space orbiting mission to demonstrate solar-electric ion propulsion, providing the necessary delta-V to enable capture and escape from two extraterrestrial bodies. At this time, Dawn has completed its science campaign at Vesta and is currently on its journey to Ceres, where it will arrive in mid-2015. The spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012, capturing science data during four dedicated orbit phases. In order to maintain the reference orbits necessary for science and enable the transfers between those orbits, precise and timely orbit determination was required. The constraints associated with low-thrust ion propulsion coupled with the relatively unknown a priori gravity and rotation models for Vesta presented unique challenges for the Dawn orbit determination team. While [1] discusses the prediction performance of the orbit determination products, this paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.
DROMO formulation for planar motions: solution to the Tsien problem
NASA Astrophysics Data System (ADS)
Urrutxua, Hodei; Morante, David; Sanjurjo-Rivo, Manuel; Peláez, Jesús
2015-06-01
The two-body problem subject to a constant radial thrust is analyzed as a planar motion. The description of the problem is performed in terms of three perturbation methods: DROMO and two others due to Deprit. All of them rely on Hansen's ideal frame concept. An explicit, analytic, closed-form solution is obtained for this problem when the initial orbit is circular (Tsien problem), based on the DROMO special perturbation method, and expressed in terms of elliptic integral functions. The analytical solution to the Tsien problem is later used as a reference to test the numerical performance of various orbit propagation methods, including DROMO and Deprit methods, as well as Cowell and Kustaanheimo-Stiefel methods.
The effect of parking orbit constraints on the optimization of ballistic planetary trajectories
NASA Technical Reports Server (NTRS)
Sauer, C. G., Jr.
1984-01-01
The optimization of ballistic planetary trajectories is developed which includes constraints on departure parking orbit inclination and node. This problem is formulated to result in a minimum total Delta V where the entire constrained injection Delta V is included in the optimization. An additional Delta V is also defined to allow for possible optimization of parking orbit inclination when the launch vehicle orbit capability varies as a function of parking orbit inclination. The optimization problem is formulated using primer vector theory to derive partial derivatives of total Delta V with respect to possible free parameters. Minimization of total Delta V is accomplished using a quasi-Newton gradient search routine. The analysis is applied to an Eros rendezvous mission whose transfer trajectories are characterized by high values of launch asymptote declination during particular launch opportunities. Comparisons in performance are made between trajectories where parking orbit constraints are included in the optimization and trajectories where the constraints are not included.
End-of-life disposal of high elliptical orbit missions: The case of INTEGRAL
NASA Astrophysics Data System (ADS)
Armellin, Roberto; San-Juan, Juan F.; Lara, Martin
2015-08-01
Nowadays there is international consensus that space activities must be managed to minimize debris generation and risk. The paper presents a method for the end-of-life (EoL) disposal of spacecraft in high elliptical orbits (HEO). The time evolution of HEO is strongly affected by Earth's oblateness and luni-solar perturbation, and this can cause in the long-term to extended interferences with low Earth orbit (LEO) protected region and uncontrolled Earth re-entry. An EoL disposal concept that exploits the effect of orbital perturbations to reduce the disposal cost is presented. The problem is formulated as a multiobjective optimization problem, which is solved with an evolutionary algorithm. To explore at the best the search space a semi-analytical orbit propagator, which allows the propagation of the orbit motion for 100 years in few seconds, is adopted. The EoL disposal of the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) mission is used as a practical test-case to show the effectiveness of the proposed methodology.
Automatic trajectory planning for low-thrust active removal mission in low-earth orbit
NASA Astrophysics Data System (ADS)
Di Carlo, Marilena; Romero Martin, Juan Manuel; Vasile, Massimiliano
2017-03-01
In this paper two strategies are proposed to de-orbit up to 10 non-cooperative objects per year from the region within 800 and 1400 km altitude in Low Earth Orbit (LEO). The underlying idea is to use a single servicing spacecraft to de-orbit several objects applying two different approaches. The first strategy is analogous to the Traveling Salesman Problem: the servicing spacecraft rendezvous with multiple objects in order to physically attach a de-orbiting kit that reduces the perigee of the orbit. The second strategy is analogous to the Vehicle Routing Problem: the servicing spacecraft rendezvous and docks with an object, spirals it down to a lower altitude orbit, undocks, and then spirals up to the next target. In order to maximise the number of de-orbited objects with minimum propellant consumption, an optimal sequence of targets is identified using a bio-inspired incremental automatic planning and scheduling discrete optimisation algorithm. The optimisation of the resulting sequence is realised using a direct transcription method based on an asymptotic analytical solution of the perturbed Keplerian motion. The analytical model takes into account the perturbations deriving from the J2 gravitational effect and the atmospheric drag.
An Independent Orbit Determination Simulation for the OSIRIS-REx Asteroid Sample Return Mission
NASA Technical Reports Server (NTRS)
Getzandanner, Kenneth; Rowlands, David; Mazarico, Erwan; Antreasian, Peter; Jackman, Coralie; Moreau, Michael
2016-01-01
After arriving at the near-Earth asteroid (101955) Bennu in late 2018, the OSIRIS-REx spacecraft will execute a series of observation campaigns and orbit phases to accurately characterize Bennu and ultimately collect a sample of pristine regolith from its surface. While in the vicinity of Bennu, the OSIRIS-REx navigation team will rely on a combination of ground-based radiometric tracking data and optical navigation (OpNav) images to generate and deliver precision orbit determination products. Long before arrival at Bennu, the navigation team is performing multiple orbit determination simulations and thread tests to verify navigation performance and ensure interfaces between multiple software suites function properly. In this paper, we will summarize the results of an independent orbit determination simulation of the Orbit B phase of the mission performed to test the interface between the OpNav image processing and orbit determination software packages.
Alternative transfer to the Earth-Moon Lagrangian points L4 and L5 using lunar gravity assist
NASA Astrophysics Data System (ADS)
Salazar, F. J. T.; Macau, E. E. N.; Winter, O. C.
2014-02-01
Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth-Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon's sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon's gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.
Proceedings of the 20th International Symposium on Space Flight Dynamics
NASA Technical Reports Server (NTRS)
Woodard, Mark (Editor); Stengle, Tom (Editor)
2007-01-01
Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.
Comparison of ERBS orbit determination accuracy using batch least-squares and sequential methods
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Fabien, S. M.; Mistretta, G. D.; Hart, R. C.; Doll, C. E.
1991-01-01
The Flight Dynamics Div. (FDD) at NASA-Goddard commissioned a study to develop the Real Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination of spacecraft on a DOS based personal computer (PC). An overview is presented of RTOD/E capabilities and the results are presented of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOS/E on a PC with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. RTOD/E was used to perform sequential orbit determination for the Earth Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determination System (GTDS) was used to perform the batch least squares orbit determination. The estimated ERBS ephemerides were obtained for the Aug. 16 to 22, 1989, timeframe, during which intensive TDRSS tracking data for ERBS were available. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the solution differences were less than 40 meters after the filter had reached steady state.
Comparison of ERBS orbit determination accuracy using batch least-squares and sequential methods
NASA Astrophysics Data System (ADS)
Oza, D. H.; Jones, T. L.; Fabien, S. M.; Mistretta, G. D.; Hart, R. C.; Doll, C. E.
1991-10-01
The Flight Dynamics Div. (FDD) at NASA-Goddard commissioned a study to develop the Real Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination of spacecraft on a DOS based personal computer (PC). An overview is presented of RTOD/E capabilities and the results are presented of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOS/E on a PC with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. RTOD/E was used to perform sequential orbit determination for the Earth Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determination System (GTDS) was used to perform the batch least squares orbit determination. The estimated ERBS ephemerides were obtained for the Aug. 16 to 22, 1989, timeframe, during which intensive TDRSS tracking data for ERBS were available. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the solution differences were less than 40 meters after the filter had reached steady state.
Orbit determination for ISRO satellite missions
NASA Astrophysics Data System (ADS)
Rao, Ch. Sreehari; Sinha, S. K.
Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary
NASA Astrophysics Data System (ADS)
Choi, J.; Jo, J.
2016-09-01
The optical satellite tracking data obtained by the first Korean optical satellite tracking system, Optical Wide-field patrol - Network (OWL-Net), had been examined for precision orbit determination. During the test observation at Israel site, we have successfully observed a satellite with Laser Retro Reflector (LRR) to calibrate the angle-only metric data. The OWL observation system is using a chopper equipment to get dense observation data in one-shot over 100 points for the low Earth orbit objects. After several corrections, orbit determination process was done with validated metric data. The TLE with the same epoch of the end of the first arc was used for the initial orbital parameter. Orbit Determination Tool Kit (ODTK) was used for an analysis of a performance of orbit estimation using the angle-only measurements. We have been developing batch style orbit estimator.
Higher order approximation to the Hill problem dynamics about the libration points
NASA Astrophysics Data System (ADS)
Lara, Martin; Pérez, Iván L.; López, Rosario
2018-06-01
An analytical solution to the Hill problem Hamiltonian expanded about the libration points has been obtained by means of perturbation techniques. In order to compute the higher orders of the perturbation solution that are needed to capture all the relevant periodic orbits originated from the libration points within a reasonable accuracy, the normalization is approached in complex variables. The validity of the solution extends to energy values considerably far away from that of the libration points and, therefore, can be used in the computation of Halo orbits as an alternative to the classical Lindstedt-Poincaré approach. Furthermore, the theory correctly predicts the existence of the two-lane bridge of periodic orbits linking the families of planar and vertical Lyapunov orbits.
Research on periodic orbits in the three problem
NASA Astrophysics Data System (ADS)
Fernández, S.; Gámez, J.
In order to investigate the possible existence of small planets in extrasolar systems, a restricted, circular and plane three body problem is used. One of the two primaries has a mass similar to the Sun and the other one has a mass greater than Jupiter. Periodic and quasi-periodic orbits for the third body with different values of the Jacobi constant (C) are found by numerical methods. One of the three cases studied is fictitious, the others resemble two real systems of ext rasolar planets. The Everhart method is used and the results show the existence of periodic and quasi-periodic orbits for the lesser value of C. Irregular orbits appear for the other values of C, specially on the exterior zone of the secondary body.
NASA Technical Reports Server (NTRS)
Mellish, J. A.
1980-01-01
The feasibility and design impact of a requirement for the advanced expander cycle engine to be adaptable to extended low thrust operation of approximately 1K to 2K lb is assessed. It is determined that the orbit transfer vehicle point design engine can be reduced in thrust with minor injector modifications from 15K to 1K without significantly affecting combustion performance efficiency or injector face/chamber wall thermal compatibility. Likewise, high frequency transverse mode combustion instability is not expected to be detrimentally affected. Primarily, the operational limitations consist of feed system chugging instabilities and potential coupling of the injector response with the chamber longitudinal mode resonances under certain operating conditions. The recommended injector modification for low thrust operation is a change in the oxidizer injector element orifice size. Analyses also indicate that chamber coolant flow stability may be a concern below 2K 1bF operation and oxidizer pump stability could be a problem below a 2K thrust level although a recirculation flow could alleviate the problem.
Distant retrograde orbits for the Moon's exploration
NASA Astrophysics Data System (ADS)
Sidorenko, Vladislav
We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large scale browsing of the Moon’s environment. [1] Jackson, J. (1913) MNRAS, 74, 62-82. [2] Mikkola, S., Brasser, R., Wiegert, P., Innanen, K. (2004) MNRAS, 351, L63-L65. [3] Broucke, R.A. (1968) NASA Technical Report 32-1168, JPL. [4] Broucke, R.A. (1969) NASA Technical Report 32-1360, JPL. [5] Kogan, A.I. (1989) Cosmic Research, 26, 705-710. [6] Namouni, F. (1999) Icarus, 6, 293-314. [7] Sidorenko, V.V., Neishtadt, A.I., Artemyev, A.V., Zelenyi, L.M. (2013) Doklady Physics, 58, 207-211.
STS-35 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Camp, David W.; Germany, D. M.; Nicholson, Leonard S.
1991-01-01
The STS-35 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities during this thirty-eighth flight of the Space Shuttle and the tenth flight of the Orbiter vehicle Columbia (OV-102). In addition to the Columbia vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-35/LWT-28), three Space Shuttle main engines (SSME's) (serial numbers 2024, 2012, and 2028 in positions 1, 2, and 3, respectively), and two Solid Rocket Boosters (SRB's) designated as BI-038. The primary objectives of this flight were to successfully perform the planned operations of the Ultraviolet Astronomy (Astro-1) payload and the Broad-Band X-Ray Telescope (BBXRT) payload in a 190-nmi. circular orbit which had an inclination of 28.45 degrees. The sequence of events for this mission is shown in tablular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each Orbiter subsystem problem is cited in the applicable subsystem discussion.
Sun, Kaibiao; Zhang, Tonghua; Tian, Yuan
2016-09-01
This work presents a pest control predator-prey model, where rate of change in prey density follows a scaling law with exponent less than one and the control is by an integrated management strategy. The aim is to investigate the change in system dynamics and determine a pest control level with minimum control price. First, the dynamics of the proposed model without control is investigated by taking the exponent as an index parameter. And then, to determine the frequency of spraying chemical pesticide and yield releases of the predator, the existence of the order-1 periodic orbit of the control system is discussed in cases. Furthermore, to ensure a certain robustness of the adopted control, i.e., for an inaccurately detected species density or a deviation, the control system could be stabilized at the order-1 periodic orbit, the stability of the order-1 periodic orbit is verified by an stability criterion for a general semi-continuous dynamical system. In addition, to minimize the total cost input in pest control, an optimization problem is formulated and the optimum pest control level is obtained. At last, the numerical simulations with a specific model are carried out to complement the theoretical results. Copyright © 2016 Elsevier Inc. All rights reserved.
Thermal State-of-Charge in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Hall, Carsie A., Jr.; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.
1998-01-01
A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.
On the characteristic exponents of the general three-body problem
NASA Technical Reports Server (NTRS)
Broucke, R.
1976-01-01
A description is given of some properties of the characteristic exponents of the general three-body problem. The variational equations on which the analysis is based are obtained by linearizing the Lagrangian equations of motion in the neighborhood of a given known solution. Attention is given to the fundamental matrix of solutions, the characteristic equation, the three trivial solutions of the variational equations of the three-body problem, symmetric periodic orbits, and the half-period properties of symmetric periodic orbits.
GPS-based precision orbit determination - A Topex flight experiment
NASA Technical Reports Server (NTRS)
Melbourne, William G.; Davis, Edgar S.
1988-01-01
Plans for a Topex/Poseiden flight experiment to test the accuracy of using GPS data for precision orbit determination of earth satellites are presented. It is expected that the GPS-based precision orbit determination will provide subdecimeter accuracies in the radial component of the Topex orbit when the extant gravity model is tuned for wavelengths longer than about 1000 kms. The concept, design, flight receiver, antenna system, ground processing, and data processing of GPS are examined. Also, an accurate quasi-geometric orbit determination approach called nondynamic or reduced dynamic tracking which relies on the use of the pseudorange and the carrier phase measurements to reduce orbit errors arising from mismodeled dynamics is discussed.
NASA Technical Reports Server (NTRS)
Ericsson, L. E.; Reding, J. P.
1976-01-01
An analysis of the steady and unsteady aerodynamics of the space shuttle orbiter has been performed. It is shown that slender wing theory can be modified to account for the effect of Mach number and leading edge roundness on both attached and separated flow loads. The orbiter unsteady aerodynamics can be computed by defining two equivalent slender wings, one for attached flow loads and another for the vortex-induced loads. It is found that the orbiter is in the transonic speed region subject to vortex-shock-boundary layer interactions that cause highly nonlinear or discontinuous load changes which can endanger the structural integrity of the orbiter wing and possibly cause snap roll problems. It is presently impossible to simulate these interactions in a wind tunnel test even in the static case. Thus, a well planned combined analytic and experimental approach is needed to solve the problem.
Satellite orbit computation methods
NASA Technical Reports Server (NTRS)
1977-01-01
Mathematical and algorithmical techniques for solution of problems in satellite dynamics were developed, along with solutions to satellite orbit motion. Dynamical analysis of shuttle on-orbit operations were conducted. Computer software routines for use in shuttle mission planning were developed and analyzed, while mathematical models of atmospheric density were formulated.
Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits
NASA Technical Reports Server (NTRS)
Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David
2011-01-01
The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar radiation force for several hours. The effects of these events on orbit determination accuracy will be presented. In order to plan for upcoming stationkeeping maneuvers, the maneuver planning team must take the current orbit estimate, propagate it forward to the planned maneuver time, and determine the optimal maneuver to maintain the Lissajous orbit for one or more revolutions. The propagation is performed using a Runge-Kutta 7/8 integrator and typically the position and velocity uncertainty increases with propagation time, increasing the overall uncertainty of the orbit state at the maneuver execution time. The effect of orbit knowledge uncertainty on stationkeeping operations will be presented.
Analytical spectrum for a Hamiltonian of quantum dots with Rashba spin-orbit coupling
NASA Astrophysics Data System (ADS)
Dossa, Anselme F.; Avossevou, Gabriel Y. H.
2014-12-01
We determine the analytical solution for a Hamiltonian describing a confined charged particle in a quantum dot, including Rashba spin-orbit coupling and Zeeman splitting terms. The approach followed in this paper is straightforward and uses the symmetrization of the wave function's components. The eigenvalue problem for the Hamiltonian in Bargmann's Hilbert space reduces to a system of coupled first-order differential equations. Then we exploit the symmetry in the system to obtain uncoupled second-order differential equations, which are found to be the Whittaker-Ince limit of the confluent Heun equations. Analytical expressions as well as numerical results are obtained for the spectrum. One of the main features of such models, namely, the level splitting, is present through the spectrum obtained in this paper.
Flyght Dynamics of Artificial Satellite of the Minor Asteroid
NASA Astrophysics Data System (ADS)
Zakharov, Alexander; Eismont, Natan; Ledkov, Anton; Simonov, Alexander; Pol, Vadim
During last years the scientific interest to the asteroid is constantly growing. It may be explained by different reasons. One of the most important from them is confirmation of the fact that the asteroids present the real hazard to the Earth. The Chelyabinsk event demonstrates strong in support of this statement. Besides, the asteroids exploration promises to supply new data for understanding of the solar system origin and evolution. And the projects aimed to reach this goal have begun from the NASA NEAR mission to Eros. It was the first one when the spacecraft was landed on the surface of the asteroid. The other successive mission was fulfilled by JAXA with Hayabusa spacecraft which has returned to the Earth soil samples of Itokawa asteroid. In the nearest future the mission to RQ 36 asteroid is planned supposing landing and soil samples return. Unavoidable phase of such missions is the spacecraft flight in vicinity of the target asteroid, for example on the asteroid satellite orbit. It should be mentioned that quite visible number of asteroids has geometric form which is far from being sphere. Accordingly the gravity field of such asteroid cannot be presented as the one close to sphere. The problem is that prior to the mission to the asteroid one cannot receive good enough knowledge of its gravity field and even its gravity field constant. In the paper the flight dynamics problem of spacecraft moving along asteroid satellite orbit is explored. It is supposed that the asteroid is comparatively small with diameter (maximum size) about 300 m, like Apophis asteroid has, or less. To approximate the gravity field of asteroid the last is considered as totality of mass points. We assume such approach as more simple and effective as compared with the commonly accepted use of Legendre polynomial expansion. Different orbits near asteroid are analyzed with the sets of orbital parameters determining the size of orbit, its shape and position with respect to the Sun. The goal of this analysis is to understand what initial orbital parameters deliver stability of the orbit in terms of avoiding the collision with the asteroid surface. The orbital heights are calculated which allow to consider the asteroid gravity field as close to the spherical one de-pending on the shape of asteroid. Also maneuvers are estimated necessary for keeping the spacecraft on asteroid satellite orbit and for changing orbital parameters. Taking into account that gravity field parameters of the target asteroids may have pure accuracy it is supposed that spacecraft starts its motion in vicinity of the asteroid from the high enough orbit and then after processing of the tracking data maneuvers are executed to decrease spacecraft altitude. Methods of this procedure optimization are explored.
Satellite orbital conjunction reports assessing threatening encounters in space (SOCRATES)
NASA Astrophysics Data System (ADS)
Kelso, T. S.; Alfano, S.
2006-05-01
While many satellite operators are aware of the possibility of a collision between their satellite and another object in earth orbit, most seem unaware of the frequency of near misses occurring each day. Until recently, no service existed to advise satellite operators of an impending conjunction of a satellite payload with another satellite, putting the responsibility for determining these occurrences squarely on the satellite operator's shoulders. This problem has been further confounded by the lack of a timely, comprehensive data set of satellite orbital element sets and computationally efficient tools to provide predictions using industry-standard software. As a result, hundreds of conjunctions within 1 km occur each week, with little or no intervention, putting billions of dollars of space hardware at risk, along with their associated missions. As a service to the satellite operator community, the Center for Space Standards & Innovation (CSSI) offers SOCRATES-Satellite Orbital Conjunction Reports Assessing Threatening Encounters in Space. Twice each day, CSSI runs a list of all satellite payloads on orbit against a list of all objects on orbit using the catalog of all unclassified NORAD two-line element sets to look for conjunctions over the next seven days. The runs are made using STK/CAT-Satellite Tool Kit's Conjunction Analysis Tools-together with the NORAD SGP4 propagator in STK. This paper will discuss how SOCRATES works and how it can help satellite operators avoid undesired close approaches through advanced mission planning.
Orbit classification in an equal-mass non-spinning binary black hole pseudo-Newtonian system
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.; Dubeibe, F. L.; González, Guillermo A.
2018-04-01
The dynamics of a test particle in a non-spinning binary black hole system of equal masses is numerically investigated. The binary system is modeled in the context of the pseudo-Newtonian circular restricted three-body problem, such that the primaries are separated by a fixed distance and move in a circular orbit around each other. In particular, the Paczyński-Wiita potential is used for describing the gravitational field of the two non-Newtonian primaries. The orbital properties of the test particle are determined through the classification of the initial conditions of the orbits, using several values of the Jacobi constant, in the Hill's regions of possible motion. The initial conditions are classified into three main categories: (i) bounded, (ii) escaping and (iii) displaying close encounters. Using the smaller alignment index (SALI) chaos indicator, we further classify bounded orbits into regular, sticky or chaotic. To gain a complete view of the dynamics of the system, we define grids of initial conditions on different types of two-dimensional planes. The orbital structure of the configuration plane, along with the corresponding distributions of the escape and collision/close encounter times, allow us to observe the transition from the classical Newtonian to the pseudo-Newtonian regime. Our numerical results reveal a strong dependence of the properties of the considered basins with the Jacobi constant as well as with the Schwarzschild radius of the black holes.
Temporary satellite capture of comets by Jupiter
NASA Astrophysics Data System (ADS)
Emel'yanenko, N. Yu.
2012-05-01
This paper studies the dynamical evolution of 97 Jupiter-family comets over an 800-year time period. More than two hundred encounters with Jupiter are investigated, with the observed comets moving during a certain period of time in an elliptic jovicentric orbit. In most cases this is an ordinary temporary satellite capture of a comet in Everhart's sense, not associated with a transition of the small body into Jupiter's family of satellites. The phenomenon occurs outside the Hill sphere with comets with a high Tisserand constant relative to Jupiter; the comets' orbits have a small inclination to the ecliptic plane. An analysis of 236 encounters has allowed the determination within the planar pair two-body problem of a region of orbits in the plane ( a, e) whose semimajor axes and eccentricities contribute to the phenomenon under study. Comets with orbits belonging to this region experience a temporary satellite capture during some of their encounters; the jovicentric distance function has several minima; and the encounters are characterized by reversions of the line of apsides and some others features of their combination that are intrinsic to comets in this region. Therefore, this region is called a region of comets with specific features in their encounters with Jupiter. Twenty encounters (out of 236), whereby the comet enters an elliptic jovicentric orbit in the Hill sphere, are identified and investigated. The size and shape of the elliptic heliocentric orbits enabling this transition are determined. It is found that in 11 encounters the motion of small bodies in the Hill sphere has features the most important of which is multiple minima of the jovicentric distance function. The study of these 20 encounters has allowed the introduction of the concept of temporary gravitational capture of a small body into the Hill sphere. An analysis of variations in the Tisserand constant in these (20) encounters of the observable comets shows that their motion is unstable in Hill's sense.
NASA Technical Reports Server (NTRS)
Brown, Aaron J.
2011-01-01
Orbit maintenance is the series of burns performed during a mission to ensure the orbit satisfies mission constraints. Low-altitude missions often require non-trivial orbit maintenance (Delta)V due to sizable orbital perturbations and minimum altitude thresholds. A strategy is presented for minimizing this (Delta)V using impulsive burn parameter optimization. An initial estimate for the burn parameters is generated by considering a feasible solution to the orbit maintenance problem. An example demonstrates the dV savings from the feasible solution to the optimal solution.
A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer
NASA Technical Reports Server (NTRS)
Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin
2007-01-01
In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.
Infrared Spectroscopy of Symbiotic Stars. II. Orbits for Five S-Type Systems with Two-Year Periods
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Skrutskie, Michael F.
2000-12-01
Infrared radial velocities have been used to determine orbital elements for the cool giants of five well-known symbiotic systems, Z And, AG Dra, V443 Her, AX Per, and FG Ser, all of which have orbital periods near the two-year mean period for S-type symbiotics. The new orbits are in general agreement with previous orbits derived from optical velocities. From the combined optical and infrared velocities, improved orbital elements for the five systems have been determined. Each of the orbital periods has been determined solely from the radial-velocity data. The orbits are circular and have quite small mass functions of 0.001-0.03 Msolar. The infrared velocities of AG Dra do not show the large orbital velocity residuals found for its optical radial velocities.
Dawn Orbit Determination Team: Trajectory Modeling and Reconstruction Processes at Vesta
NASA Technical Reports Server (NTRS)
Abrahamson, Matthew J.; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Kennedy, Brian; Mastrodemos, Nick; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew
2013-01-01
The Dawn spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012. In order to maintain the designated science reference orbits and enable the transfers between those orbits, precise and timely orbit determination was required. Challenges included low-thrust ion propulsion modeling, estimation of relatively unknown Vesta gravity and rotation models, track-ing data limitations, incorporation of real-time telemetry into dynamics model updates, and rapid maneuver design cycles during transfers. This paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.
Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models
NASA Technical Reports Server (NTRS)
Carranza, Eric; Konopliv, Alex; Ryne, Mark
1999-01-01
The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.
Equilibrium Solutions of the Logarithmic Hamiltonian Leapfrog for the N-body Problem
NASA Astrophysics Data System (ADS)
Minesaki, Yukitaka
2018-04-01
We prove that a second-order logarithmic Hamiltonian leapfrog for the classical general N-body problem (CGNBP) designed by Mikkola and Tanikawa and some higher-order logarithmic Hamiltonian methods based on symmetric multicompositions of the logarithmic algorithm exactly reproduce the orbits of elliptic relative equilibrium solutions in the original CGNBP. These methods are explicit symplectic methods. Before this proof, only some implicit discrete-time CGNBPs proposed by Minesaki had been analytically shown to trace the orbits of elliptic relative equilibrium solutions. The proof is therefore the first existence proof for explicit symplectic methods. Such logarithmic Hamiltonian methods with a variable time step can also precisely retain periodic orbits in the classical general three-body problem, which generic numerical methods with a constant time step cannot do.
Effects of perturbations on space debris in supersynchronous storage orbits
NASA Astrophysics Data System (ADS)
Luu, Khanh Kim
1998-12-01
Accumulation of space debris in the geosynchronous region (GEO) has raised attention among spacefaring nations. The current mitigation measure supported is to boost satellites into supersynchronous orbits in the time before station-keeping fuel is expected to be exhausted. Because this solution does not remove mass from space, debris generation by fragmentation events remains a possibility. The collision hazard between inactive satellites in the supersynchronous region raises questions about the consequences of collisions in this regime and possible interaction with GEO. In considering the use of supersynchronous orbits for satellite disposal, the first concern is to determine the minimum safe distance above GEO such that objects in the disposal orbits will not interfere with the GEO population in the future. This involves defining the useful GEO area and studying the perturbation effects on objects in supersynchronous orbits. Thus far, research has focused on propagating the orbits of intact objects. However, in the aftermath of a collision, pieces of varying sizes and shapes can be found in orbits quite different from the parent objects' orbits. This document summarizes background information on debris in the GEO region, sources and management strategies, and then addresses the problem: Will orbits of fragments from a collision in a storage orbit occupy GEO altitudes at some time after the collision? If so, at what altitude should the storage orbit occupy such that collision fragments will not interfere with the GEO population? The methods and tools by which the effects of collisions in the supersynchronous region can be analyzed are discussed. A low-velocity collision model is employed to provide delta-velocities imparted to the fragments. An analytical study of perturbation effects, including solar and lunar third body gravitation, Earth oblateness through degree and order four, and solar radiation pressure, follows in order to evaluate the magnitude of these disturbing forces on the fragmentation debris. Validation of these results by numerical analysis using proven numerical and semianalytical orbit propagators is discussed. The results show that currently practiced reorbiting distances above GEO do not isolate debris from GEO after the occurrence of collisions in the storage orbit.
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Hodjatzadeh, M.; Samii, M. V.; Doll, C. E.; Hart, R. C.; Mistretta, G. D.
1991-01-01
The development of the Real-Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination on a Disk Operating System (DOS) based Personal Computer (PC) is addressed. The results of a study to compare the orbit determination accuracy of a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOD/E with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), is addressed. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for the Earth Radiation Budget Satellite (ERBS); the maximum solution differences were less than 25 m after the filter had reached steady state.
Vision Assisted Navigation for Miniature Unmanned Aerial Vehicles (MAVs)
2009-11-01
commanded to orbit a target of known location. The error in target geolocation is shown for 200 frames with filtering (dashed line) and without (solid...so the performance of the filter was determined by using the estimated poses to solve a geolocation problem. An MAV flying at an altitude of 70 meters... geolocation as well as significantly reducing the short-term variance in the estimates based on the GPS/IMU alone. Due to the nature of the autopilot
NASA Astrophysics Data System (ADS)
Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao
2018-01-01
Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate that the radial overlap differences between the autonomous orbits are less than 15.0 cm for the inclined geosynchronous orbit (IGSO) satellites and less than 10.0 cm for the MEO satellites. The SLR residuals are approximately 15.0 cm for the IGSO satellites and approximately 10.0 cm for the MEO satellites, representing an improvement over the L-band orbits.
NASA Astrophysics Data System (ADS)
Libraro, Paola
The general electric propulsion orbit-raising maneuver of a spacecraft must contend with four main limiting factors: the longer time of flight, multiple eclipses prohibiting continuous thrusting, long exposure to radiation from the Van Allen belt and high power requirement of the electric engines. In order to optimize a low-thrust transfer with respect to these challenges, the choice of coordinates and corresponding equations of motion used to describe the kinematical and dynamical behavior of the satellite is of critical importance. This choice can potentially affect the numerical optimization process as well as limit the set of mission scenarios that can be investigated. To increase the ability to determine the feasible set of mission scenarios able to address the challenges of an all-electric orbit-raising, a set of equations free of any singularities is required to consider a completely arbitrary injection orbit. For this purpose a new quaternion-based formulation of a spacecraft translational dynamics that is globally nonsingular has been developed. The minimum-time low-thrust problem has been solved using the new set of equations of motion inside a direct optimization scheme in order to investigate optimal low-thrust trajectories over the full range of injection orbit inclinations between 0 and 90 degrees with particular focus on high-inclinations. The numerical results consider a specific mission scenario in order to analyze three key aspects of the problem: the effect of the initial guess on the shape and duration of the transfer, the effect of Earth oblateness on transfer time and the role played by, radiation damage and power degradation in all-electric minimum-time transfers. Finally trade-offs between mass and cost savings are introduced through a test case.
Low-thrust orbit transfer optimization with refined Q-law and multi-objective genetic algorithm
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Petropoulos, Anastassios E.; von Allmen, Paul
2005-01-01
An optimization method for low-thrust orbit transfers around a central body is developed using the Q-law and a multi-objective genetic algorithm. in the hybrid method, the Q-law generates candidate orbit transfers, and the multi-objective genetic algorithm optimizes the Q-law control parameters in order to simultaneously minimize both the consumed propellant mass and flight time of the orbit tranfer. This paper addresses the problem of finding optimal orbit transfers for low-thrust spacecraft.
Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories
NASA Technical Reports Server (NTRS)
Kay-Bunnell, Linda
2004-01-01
The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.
Liu, Guangkun; Kaushal, Nitin; Liu, Shaozhi; ...
2016-06-24
A recently introduced one-dimensional three-orbital Hubbard model displays orbital-selective Mott phases with exotic spin arrangements such as spin block states [J. Rincón et al., Phys. Rev. Lett. 112, 106405 (2014)]. In this paper we show that the constrained-path quantum Monte Carlo (CPQMC) technique can accurately reproduce the phase diagram of this multiorbital one-dimensional model, paving the way to future CPQMC studies in systems with more challenging geometries, such as ladders and planes. The success of this approach relies on using the Hartree-Fock technique to prepare the trial states needed in CPQMC. In addition, we study a simplified version of themore » model where the pair-hopping term is neglected and the Hund coupling is restricted to its Ising component. The corresponding phase diagrams are shown to be only mildly affected by the absence of these technically difficult-to-implement terms. This is confirmed by additional density matrix renormalization group and determinant quantum Monte Carlo calculations carried out for the same simplified model, with the latter displaying only mild fermion sign problems. Lastly, we conclude that these methods are able to capture quantitatively the rich physics of the several orbital-selective Mott phases (OSMP) displayed by this model, thus enabling computational studies of the OSMP regime in higher dimensions, beyond static or dynamic mean-field approximations.« less
Libration of arguments of circumbinary-planet orbits at resonance
NASA Astrophysics Data System (ADS)
Schubart, Joachim
2017-06-01
The paper refers to fictitious resonant orbits of planet type that surround both components of a binary system. In case of 16 studied examples a suitable choice of the starting values leads to a process of libration of special angular arguments and to an evolution with an at least temporary stay of the planet in the resonant orbit. The ratio of the periods of revolution of the binary and a planet is equal to 1:5. Eight orbits depend on the ratio 1:5 of the masses of the binary components, but two other ratios appear as well. The basis of this study is the planar, elliptic or circular restricted problem of three bodies, but remarks at the end of the text refer to a four-body problem.
Electrostatic antenna space environment interaction study
NASA Technical Reports Server (NTRS)
Katz, I.
1981-01-01
The interactions of the electrostatic antenna with the space environment in both low Earth orbit and geosynchronous orbit are investigated. It is concluded that the electrostatically controlled membrane mirror is a viable concept for space applications. However, great care must be taken to enclose the high voltage electrodes in a Faraday cage structure to separate the high voltage region from the ambient plasma. For this reason, metallized cloth is not acceptable as a membrane material. Conventional spacecraft charging at geosynchronous orbit should not be a problem provided ancillary structures (such as booms) are given nonnegligible conductivity and adequate grounding. Power loss due to plasma electrons entering the high field region is a potentially serious problem. In low earth orbit any opening whatever in the Faraday cage is likely to produce an unacceptable power drain.
Optimal solar sail planetocentric trajectories
NASA Technical Reports Server (NTRS)
Sackett, L. L.
1977-01-01
The analysis of solar sail planetocentric optimal trajectory problem is described. A computer program was produced to calculate optimal trajectories for a limited performance analysis. A square sail model is included and some consideration is given to a heliogyro sail model. Orbit to a subescape point and orbit to orbit transfer are considered. Trajectories about the four inner planets can be calculated and shadowing, oblateness, and solar motion may be included. Equinoctial orbital elements are used to avoid the classical singularities, and the method of averaging is applied to increase computational speed. Solution of the two-point boundary value problem which arises from the application of optimization theory is accomplished with a Newton procedure. Time optimal trajectories are emphasized, but a penalty function has been considered to prevent trajectories which intersect a planet's surface.
Explicit Low-Thrust Guidance for Reference Orbit Targeting
NASA Technical Reports Server (NTRS)
Lam, Try; Udwadia, Firdaus E.
2013-01-01
The problem of a low-thrust spacecraft controlled to a reference orbit is addressed in this paper. A simple and explicit low-thrust guidance scheme with constrained thrust magnitude is developed by combining the fundamental equations of motion for constrained systems from analytical dynamics with a Lyapunov-based method. Examples are given for a spacecraft controlled to a reference trajectory in the circular restricted three body problem.
Guidance and control of swarms of spacecraft
NASA Astrophysics Data System (ADS)
Morgan, Daniel James
There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms using computer simulations. The swarm-keeping problem can be solved by placing the spacecraft on J2-invariant relative orbits, which prevent collisions and minimize the drift of the swarm over hundreds of orbits using a single burn. These orbits are achieved by energy matching the spacecraft to the reference orbit. Additionally, these conditions can be repeatedly applied to minimize the drift of the swarm when atmospheric drag has a large effect (orbits with an altitude under 500 km). The swarm reconfiguration is achieved using two steps: trajectory optimization and assignment. The trajectory optimization problem can be written as a nonlinear, optimal control problem. This optimal control problem is discretized, decoupled, and convexified so that the individual femtosats can efficiently solve the optimization. Sequential convex programming is used to generate the control sequences and trajectories required to safely and efficiently transfer a spacecraft from one position to another. The sequence of trajectories is shown to converge to a Karush-Kuhn-Tucker point of the nonconvex problem. In the case where many of the spacecraft are interchangeable, a variable-swarm, distributed auction algorithm is used to determine the assignment of spacecraft to target positions. This auction algorithm requires only local communication and all of the bidding parameters are stored locally. The assignment generated using this auction algorithm is shown to be near optimal and to converge in a finite number of bids. Additionally, the bidding process is used to modify the number of targets used in the assignment so that the reconfiguration can be achieved even when there is a disconnected communication network or a significant loss of agents. Once the assignment is achieved, the trajectory optimization can be run using the terminal positions determined by the auction algorithm. To implement these algorithms in real time a model predictive control formulation is used. Model predictive control uses a finite horizon to apply the most up-to-date control sequence while simultaneously calculating a new assignment and trajectory based on updated state information. Using a finite horizon allows collisions to only be considered between spacecraft that are near each other at the current time. This relaxes the all-to-all communication assumption so that only neighboring agents need to communicate. Experimental validation is done using the formation flying testbed. The swarm-reconfiguration algorithms are tested using multiple quadrotors. Experiments have been performed using sequential convex programming for offline trajectory planning, model predictive control and sequential convex programming for real-time trajectory generation, and the variable-swarm, distributed auction algorithm for optimal assignment. These experiments show that the swarm-reconfiguration algorithms can be implemented in real time using actual hardware. In general, this dissertation presents guidance and control algorithms that maintain and reconfigure swarms of spacecraft while maintaining the shape of the swarm, preventing collisions between the spacecraft, and minimizing the amount of propellant used.
Bayesian Orbit Computation Tools for Objects on Geocentric Orbits
NASA Astrophysics Data System (ADS)
Virtanen, J.; Granvik, M.; Muinonen, K.; Oszkiewicz, D.
2013-08-01
We consider the space-debris orbital inversion problem via the concept of Bayesian inference. The methodology has been put forward for the orbital analysis of solar system small bodies in early 1990's [7] and results in a full solution of the statistical inverse problem given in terms of a posteriori probability density function (PDF) for the orbital parameters. We demonstrate the applicability of our statistical orbital analysis software to Earth orbiting objects, both using well-established Monte Carlo (MC) techniques (for a review, see e.g. [13] as well as recently developed Markov-chain MC (MCMC) techniques (e.g., [9]). In particular, we exploit the novel virtual observation MCMC method [8], which is based on the characterization of the phase-space volume of orbital solutions before the actual MCMC sampling. Our statistical methods and the resulting PDFs immediately enable probabilistic impact predictions to be carried out. Furthermore, this can be readily done also for very sparse data sets and data sets of poor quality - providing that some a priori information on the observational uncertainty is available. For asteroids, impact probabilities with the Earth from the discovery night onwards have been provided, e.g., by [11] and [10], the latter study includes the sampling of the observational-error standard deviation as a random variable.
NASA Technical Reports Server (NTRS)
Thurman, Sam W.; Estefan, Jeffrey A.
1991-01-01
Approximate analytical models are developed and used to construct an error covariance analysis for investigating the range of orbit determination accuracies which might be achieved for typical Mars approach trajectories. The sensitivity or orbit determination accuracy to beacon/orbiter position errors and to small spacecraft force modeling errors is also investigated. The results indicate that the orbit determination performance obtained from both Doppler and range data is a strong function of the inclination of the approach trajectory to the Martian equator, for surface beacons, and for orbiters, the inclination relative to the orbital plane. Large variations in performance were also observed for different approach velocity magnitudes; Doppler data in particular were found to perform poorly in determining the downtrack (along the direction of flight) component of spacecraft position. In addition, it was found that small spacecraft acceleration modeling errors can induce large errors in the Doppler-derived downtrack position estimate.
NASA Astrophysics Data System (ADS)
Lehtola, Susi; Parkhill, John; Head-Gordon, Martin
2018-03-01
We describe the implementation of orbital optimisation for the models in the perfect pairing hierarchy. Orbital optimisation, which is generally necessary to obtain reliable results, is pursued at perfect pairing (PP) and perfect quadruples (PQ) levels of theory for applications on linear polyacenes, which are believed to exhibit strong correlation in the π space. While local minima and σ-π symmetry breaking solutions were found for PP orbitals, no such problems were encountered for PQ orbitals. The PQ orbitals are used for single-point calculations at PP, PQ and perfect hextuples (PH) levels of theory, both only in the π subspace, as well as in the full σπ valence space. It is numerically demonstrated that the inclusion of single excitations is necessary also when optimised orbitals are used. PH is found to yield good agreement with previously published density matrix renormalisation group data in the π space, capturing over 95% of the correlation energy. Full-valence calculations made possible by our novel, efficient code reveal that strong correlations are weaker when larger basis sets or active spaces are employed than in previous calculations. The largest full-valence PH calculations presented correspond to a (192e,192o) problem.
Shuttle/payload communications and data systems interface analysis
NASA Technical Reports Server (NTRS)
Huth, G. K.
1980-01-01
The payload/orbiter functional command signal flow and telemetry signal flow are discussed. Functional descriptions of the various orbiter communication/avionic equipment involved in processing a command to a payload either from the ground through the orbiter by the payload specialist on the orbiter are included. Functional descriptions of the various orbiter communication/avionic equipment involved in processing telemetry data by the orbiter and transmitting the processed data to the ground are presented. The results of the attached payload/orbiter single processing and data handling system evaluation are described. The causes of the majority of attached payload/orbiter interface problems are delineated. A refined set of required flux density values for a detached payload to communicate with the orbiter is presented.
Research on the impact factors of GRACE precise orbit determination by dynamic method
NASA Astrophysics Data System (ADS)
Guo, Nan-nan; Zhou, Xu-hua; Li, Kai; Wu, Bin
2018-07-01
With the successful use of GPS-only-based POD (precise orbit determination), more and more satellites carry onboard GPS receivers to support their orbit accuracy requirements. It provides continuous GPS observations in high precision, and becomes an indispensable way to obtain the orbit of LEO satellites. Precise orbit determination of LEO satellites plays an important role for the application of LEO satellites. Numerous factors should be considered in the POD processing. In this paper, several factors that impact precise orbit determination are analyzed, namely the satellite altitude, the time-variable earth's gravity field, the GPS satellite clock error and accelerometer observation. The GRACE satellites provide ideal platform to study the performance of factors for precise orbit determination using zero-difference GPS data. These factors are quantitatively analyzed on affecting the accuracy of dynamic orbit using GRACE observations from 2005 to 2011 by SHORDE software. The study indicates that: (1) with the altitude of the GRACE satellite is lowered from 480 km to 460 km in seven years, the 3D (three-dimension) position accuracy of GRACE satellite orbit is about 3˜4 cm based on long spans data; (2) the accelerometer data improves the 3D position accuracy of GRACE in about 1 cm; (3) the accuracy of zero-difference dynamic orbit is about 6 cm with the GPS satellite clock error products in 5 min sampling interval and can be raised to 4 cm, if the GPS satellite clock error products with 30 s sampling interval can be adopted. (4) the time-variable part of earth gravity field model improves the 3D position accuracy of GRACE in about 0.5˜1.5 cm. Based on this study, we quantitatively analyze the factors that affect precise orbit determination of LEO satellites. This study plays an important role to improve the accuracy of LEO satellites orbit determination.
Satellite orbit determination using quantum correlation technology
NASA Astrophysics Data System (ADS)
Zhang, Bo; Sun, Fuping; Zhu, Xinhui; Jia, Xiaolin
2018-03-01
After the presentation of second-order correlation ranging principles with quantum entanglement, the concept of quantum measurement is introduced to dynamic satellite precise orbit determination. Based on the application of traditional orbit determination models for correcting the systematic errors within the satellite, corresponding models for quantum orbit determination (QOD) are established. This paper experiments on QOD with the BeiDou Navigation Satellite System (BDS) by first simulating quantum observations of 1 day arc-length. Then the satellite orbits are resolved and compared with the reference precise ephemerides. Subsequently, some related factors influencing the accuracy of QOD are discussed. Furthermore, the accuracy for GEO, IGSO and MEO satellites increase about 20, 30 and 10 times, respectively, compared with the results from the resolution by measured data. Therefore, it can be expected that quantum technology may also bring delightful surprises to satellite orbit determination as have already emerged in other fields.
Engineering calculations for communications satellite systems planning
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.
1985-01-01
Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.
2001-05-23
KENNEDY SPACE CENTER, FLA. -- Banks of lights dry tiles on orbiter Atlantis in the Orbiter Processing Facility. Significant rainstorms during the orbiter’s turnaround for a ferry flight home from Edwards Air Force Base, Calif., caused the moisture problem. The tiles are part of the Thermal Protection System used on orbiters for extreme temperatures encountered during landing
2001-05-23
KENNEDY SPACE CENTER, FLA. -- Banks of lights dry tiles on orbiter Atlantis in the Orbiter Processing Facility. Significant rainstorms during the orbiter’s turnaround for a ferry flight home from Edwards Air Force Base, Calif., caused the moisture problem. The tiles are part of the Thermal Protection System used on orbiters for extreme temperatures encountered during landing
Determination of GPS orbits to submeter accuracy
NASA Technical Reports Server (NTRS)
Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.
1988-01-01
Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.
Strategies for high-precision Global Positioning System orbit determination
NASA Technical Reports Server (NTRS)
Lichten, Stephen M.; Border, James S.
1987-01-01
Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.
Dynamic loading and stress life analysis of permanent space station modules
NASA Astrophysics Data System (ADS)
Anisimov, A. V.; Krokhin, I. A.; Likhoded, A. I.; Malinin, A. A.; Panichkin, N. G.; Sidorov, V. V.; Titov, V. A.
2016-11-01
Some methodological approaches to solving several key problems of dynamic loading and structural strength analysis of Permanent Space Station (PSS)modules developed on the basis of the working experience of Soviet and Russian PSS and the International Space station (ISS) are presented. The solutions of the direct and semi-inverse problems of PSS structure dynamics are mathematically stated. Special attention is paid to the use of the results of ground structural strength tests of space station modules and the data on the actual flight actions on the station and its dynamic responses in the orbital operation regime. The procedure of determining the dynamics and operation life parameters of elements of the PSS modules is described.
Minimum impulse transfers to rotate the line of apsides
NASA Technical Reports Server (NTRS)
Phong, Connie; Sweetser, Theodore H.
2005-01-01
Transfer between two coplanar orbits can be accomplished via a single impulse if the two orbits intersect. Optimization of a single-impulse transfer, however, is not possible since the transfer orbit is completely constrained by the initial and final orbits. On the other hand, two-impulse transfers are possible between any two terminal orbits. While optimal scenarios are not known for the general two-impulse case, there are various approximate solutions to many special cases. We consider the problem of an inplane rotation of the line of apsides, leaving the size and shape of the orbit unaffected.
On the Coplanar Integrable Case of the Twice-Averaged Hill Problem with Central Body Oblateness
NASA Astrophysics Data System (ADS)
Vashkov'yak, M. A.
2018-01-01
The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.
Optimal aeroassisted coplanar orbital transfer using an energy model
NASA Technical Reports Server (NTRS)
Halyo, Nesim; Taylor, Deborah B.
1989-01-01
The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer was investigated. The equations of motion for the problem are expressed using reduced order model and total vehicle energy, kinetic plus potential, as the independent variable rather than time. The order reduction is achieved analytically without an approximation of the vehicle dynamics. In this model, the problem of coplanar orbit transfer is seen as one in which a given amount of energy must be transferred from the vehicle to the atmosphere during the trajectory without overheating the vehicle. An optimal control problem is posed where a linear combination of the integrated square of the heating rate and the vehicle drag is the cost function to be minimized. The necessary conditions for optimality are obtained. These result in a 4th order two-point-boundary-value problem. A parametric study of the optimal guidance trajectory in which the proportion of the heating rate term versus the drag varies is made. Simulations of the guidance trajectories are presented.
A partitioned correlation function interaction approach for describing electron correlation in atoms
NASA Astrophysics Data System (ADS)
Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.
2013-04-01
The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.
Flyby Characterization of Lower-Degree Spherical Harmonics Around Small Bodies
NASA Technical Reports Server (NTRS)
Takahashi, Yu; Broschart, Stephen; Lantoine, Gregory
2014-01-01
Interest in studying small bodies has grown significantly in the last two decades, and there are a number of past, present, and future missions. These small body missions challenge navigators with significantly different kinds of problems than the planets and moons do. The small bodies' shape is often irregular and their gravitational field significantly weak, which make the designing of a stable orbit a complex dynamical problem. In the initial phase of spacecraft rendezvous with a small body, the determination of the gravitational parameter and lower-degree spherical harmonics are of crucial importance for safe navigation purposes. This motivates studying how well one can determine the total mass and lower-degree spherical harmonics in a relatively short time in the initial phase of the spacecraft rendezvous via flybys. A quick turnaround for the gravity data is of high value since it will facilitate the subsequent mission design of the main scientific observation campaign. We will present how one can approach the problem to determine a desirable flyby geometry for a general small body. We will work in the non-dimensional formulation since it will generalize our results across different size/mass bodies and the rotation rate for a specific combination of gravitational coefficients.
NASA Technical Reports Server (NTRS)
Bradley, P. F.; Throckmorton, D. A.
1981-01-01
A study was completed to determine the sensitivity of computed convective heating rates to uncertainties in the thermal protection system thermal model. Those parameters considered were: density, thermal conductivity, and specific heat of both the reusable surface insulation and its coating; coating thickness and emittance; and temperature measurement uncertainty. The assessment used a modified version of the computer program to calculate heating rates from temperature time histories. The original version of the program solves the direct one dimensional heating problem and this modified version of The program is set up to solve the inverse problem. The modified program was used in thermocouple data reduction for shuttle flight data. Both nominal thermal models and altered thermal models were used to determine the necessity for accurate knowledge of thermal protection system's material thermal properties. For many thermal properties, the sensitivity (inaccuracies created in the calculation of convective heating rate by an altered property) was very low.
Harmonic oscillators and resonance series generated by a periodic unstable classical orbit
NASA Technical Reports Server (NTRS)
Kazansky, A. K.; Ostrovsky, Valentin N.
1995-01-01
The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.
Thermal control evaluation of a Shuttle Orbiter solar observatory using Skylab ATM backup hardware
NASA Technical Reports Server (NTRS)
Class, C. R.; Presta, G.; Trucks, H.
1975-01-01
A study under the sponsorship of Marshall Space Flight Center (MSFC) established the feasibility to utilize the Skylab Apollo Telescope Mount (ATM) backup hardware for early low cost Shuttle Orbiter solar observation missions. A solar inertial attitude and a seven-day, full sun exposure were baselined. As a portion of the study, a series of thermal control evaluations were performed to resolve the problems caused by the relocation of the ATM to the Shuttle Orbiter bay and resulting configuration changes. Thermal control requirements, problems, the use of solar shields, Spacelab supplied fluid cooling and component placement are discussed.
TDRS orbit determination by radio interferometry
NASA Technical Reports Server (NTRS)
Pavloff, Michael S.
1994-01-01
In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.
Energy analysis in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Qi, Yi; de Ruiter, Anton
2018-07-01
The gravity assist or flyby is investigated by analysing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. First, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighbourhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the Solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.
Energy Analysis in the Elliptic Restricted Three-body Problem
NASA Astrophysics Data System (ADS)
Qi, Yi; de Ruiter, Anton
2018-05-01
The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.
Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics
NASA Astrophysics Data System (ADS)
Koon, Wang Sang; Lo, Martin W.; Marsden, Jerrold E.; Ross, Shane D.
2000-06-01
In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L1 and the other around L2, with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the ``interior'' and ``exterior'' Hill's regions and other resonant phenomena.
On the problem of meteor shower's radiants displacement
NASA Astrophysics Data System (ADS)
Tikhomirova, E. N.
2011-06-01
In the context of the perturbed two-body problem a method to evaluate radiant shift for a meteor shower is suggested. We consider the evolution of a meteoroid particle which after every complete revolution "migrates" from one elliptic orbit to another with slightly changed orbital parameters. The obtained analytical solutions of the equations of particle's motion take into account radiation pressure, Poynting-Robertson effect and its corpuscular part.
Size Dependence of Dust Distribution around the Earth Orbit
NASA Astrophysics Data System (ADS)
Ueda, Takahiro; Kobayashi, Hiroshi; Takeuchi, Taku; Ishihara, Daisuke; Kondo, Toru; Kaneda, Hidehiro
2017-05-01
In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting-Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI. The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μm band and 3.0% in the 18 μm band. In order to reveal dust properties causing leading-trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and a dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading-trailing asymmetry so that intermediate sized dust (˜10-100 μm) produces a greater asymmetry than zodiacal light. The leading-trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μm and 18 μm bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μm and 18 μm bands, respectively, if the maximum dust radius is set to be s max = 3000 μm. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ˜10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.
Size Dependence of Dust Distribution around the Earth Orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueda, Takahiro; Takeuchi, Taku; Kobayashi, Hiroshi
In the solar system, interplanetary dust particles (IDPs) originating mainly from asteroid collisions and cometary activities drift to Earth orbit due to Poynting–Robertson drag. We analyzed the thermal emission from IDPs that was observed by the first Japanese infrared astronomical satellite, AKARI . The observed surface brightness in the trailing direction of the Earth orbit is 3.7% greater than that in the leading direction in the 9 μ m band and 3.0% in the 18 μ m band. In order to reveal dust properties causing leading–trailing surface brightness asymmetry, we numerically integrated orbits of the Sun, the Earth, and amore » dust particle as a restricted three-body problem including radiation from the Sun. The initial orbits of particles are determined according to the orbits of main-belt asteroids or Jupiter-family comets. Orbital trapping in mean motion resonances results in a significant leading–trailing asymmetry so that intermediate sized dust (∼10–100 μ m) produces a greater asymmetry than zodiacal light. The leading–trailing surface brightness difference integrated over the size distribution of the asteroidal dust is obtained to be 27.7% and 25.3% in the 9 μ m and 18 μ m bands, respectively. In contrast, the brightness difference for cometary dust is calculated as 3.6% and 3.1% in the 9 μ m and 18 μ m bands, respectively, if the maximum dust radius is set to be s {sub max} = 3000 μ m. Taking into account these values and their errors, we conclude that the contribution of asteroidal dust to the zodiacal infrared emission is less than ∼10%, while cometary dust of the order of 1 mm mainly accounts for the zodiacal light in infrared.« less
2014-08-01
be evaluated. Orbits are determined with the OCEAN Weighted Least Squares Orbit Determination (WLS-OD) methodology using successive five day increments...of SLR data. The orbit solution from the first five day data arc is propagated forward in time to thirty days . The WLS-OD process is repeated for...successive five day data arcs. These orbit solutions are then compared to the predicted orbit from the first data arc solution. Thirty days was chosen as
An investigation of quasi-inertial attitude control for a solar power satellite
NASA Technical Reports Server (NTRS)
Juang, J.-N.; Wang, S. J.
1982-01-01
An efficient means, a quasi-inertial attitude mode, is developed for maintaining the normal solar orientation of a space satellite for power collection in a synchronous orbit. Formulae are presented which establish the basic parametric properties for ideal quasi-inertial attitude and phasing. An active control system is necessary to compensate for the energy loss since energy dissipation in widely oscillating flexible bodies produces an instability of the quasi-inertial attitude in the sense that the spacecraft will tumble at the orbit rate. A fixed terminal time and state optimal control problem is formulated and an algorithm for determining the optimal control as a means for the periodical attitude and phase compensation is developed. The vehicle orientation affected by internal disturbance (structural flexibility) and external disturbances (e.g., drag forces) is maintained by a specialized controller design.
Avionics Box Cold Plate Damage Prevention
NASA Technical Reports Server (NTRS)
Stambolian, Damon; Larcher, Steven; Henderson, Gena; Tran, Donald
2011-01-01
Over the years there have been several occurrences of damage to Space Shuttle Orbiter cold plates during removal and replacement of avionics boxes. Thus a process improvement team was put together to determine ways to prevent these kinds of damage. From this effort there were many solutions including, protective covers, training, and improved operations instructions. The focus of this paper is to explain the cold plate damage problem and the corrective actions for preventing future damage to aerospace avionics cold plate designs.
Optimal impulsive manoeuvres and aerodynamic braking
NASA Technical Reports Server (NTRS)
Jezewski, D. J.
1985-01-01
A method developed for obtaining solutions to the aerodynamic braking problem, using impulses in the exoatmospheric phases is discussed. The solution combines primer vector theory and the results of a suboptimal atmospheric guidance program. For a specified initial and final orbit, the solution determines: (1) the minimum impulsive cost using a maximum of four impulses, (2) the optimal atmospheric entry and exit-state vectors subject to equality and inequality constraints, and (3) the optimal coast times. Numerical solutions which illustrate the characteristics of the solution are presented.
NASA Technical Reports Server (NTRS)
Doll, C.; Mistretta, G.; Hart, R.; Oza, D.; Cox, C.; Nemesure, M.; Bolvin, D.; Samii, Mina V.
1993-01-01
Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using the Goddard Trajectory Determination System (GTDS) and a real-time extended Kalman filter estimation system to process Tracking Data and Relay Satellite (TDRS) System (TDRSS) measurements in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. GTDS is the operational orbit determination system used by the FDD, and the extended Kalman fliter was implemented in an analysis prototype system, the Real-Time Orbit Determination System/Enhanced (RTOD/E). The Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generates an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the Geodynamics (GEODYN) orbit determination system with laser ranging tracking data. The TOPEX/Poseidon trajectories were estimated for the October 22 - November 1, 1992, timeframe, for which the latest preliminary POD results were available. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch cases were assessed using overlap comparisons, while the sequential cases were assessed with covariances and the first measurement residuals. The batch least-squares and forward-filtered RTOD/E orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 10 meters (m) for the batch least squares and less than 18 m for the sequential estimation solutions. The differences among the POD, GTDS, and RTOD/E solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.
On the period of the periodic orbits of the restricted three body problem
NASA Astrophysics Data System (ADS)
Perdomo, Oscar
2017-09-01
We will show that the period T of a closed orbit of the planar circular restricted three body problem (viewed on rotating coordinates) depends on the region it encloses. Roughly speaking, we show that, 2 T=kπ +\\int _Ω g where k is an integer, Ω is the region enclosed by the periodic orbit and g:R^2→ R is a function that only depends on the constant C known as the Jacobian constant; it does not depend on Ω . This theorem has a Keplerian flavor in the sense that it relates the period with the space "swept" by the orbit. As an application we prove that there is a neighborhood around L_4 such that every periodic solution contained in this neighborhood must move clockwise. The same result holds true for L_5.
SPECTROSCOPIC ORBITS FOR 15 LATE-TYPE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willmarth, Daryl W.; Abt, Helmut A.; Fekel, Francis C.
2016-08-01
Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their massmore » functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.« less
NASA Astrophysics Data System (ADS)
Sokova, I. A.; Sokov, E. N.; Roschina, E. A.; Rastegaev, D. A.; Kiselev, A. A.; Balega, Yu. Yu.; Gorshanov, D. L.; Malogolovets, E. V.; Dyachenko, V. V.; Maksimov, A. F.
2014-07-01
In this paper we present the orbital elements of Linus satellite of 22 Kalliope asteroid. Orbital element determination is based on the speckle interferometry data obtained with the 6-m BTA telescope operated by SAO RAS. We processed 9 accurate positions of Linus orbiting around the main component of 22 Kalliope between 10 and 16 December, 2011. In order to determine the orbital elements of the Linus we have applied the direct geometric method. The formal errors are about 5 mas. This accuracy makes it possible to study the variations of the Linus orbital elements influenced by different perturbations over the course of time. Estimates of six classical orbital elements, such as the semi-major axis of the Linus orbit a = 1109 ± 6 km, eccentricity e = 0.016 ± 0.004, inclination i = 101° ± 1° to the ecliptic plane and others, are presented in this work.
NASA Astrophysics Data System (ADS)
Piefke, Christoph; Lechermann, Frank
2018-03-01
The theory of correlated electron systems on a lattice proves notoriously complicated because of the exponential growth of Hilbert space. Mean-field approaches provide valuable insight when the self-energy has a dominant local structure. Additionally, the extraction of effective low-energy theories from the generalized many-body representation is highly desirable. In this respect, the rotational-invariant slave-boson (RISB) approach in its mean-field formulation enables versatile access to correlated lattice problems. However, in its original form, due to numerical complexity, the RISB approach is limited to about three correlated orbitals per lattice site. We thus present a thorough symmetry-adapted advancement of RISB theory, suited to efficiently deal with multiorbital Hubbard Hamiltonians for complete atomic-shell manifolds. It is utilized to study the intriguing problem of Hund's physics for three- and especially five-orbital manifolds on the correlated lattice, including crystal-field terms as well as spin-orbit interaction. The well-known Janus-face phenomenology, i.e., strengthening of correlations at smaller-to-intermediate Hubbard U accompanied by a shift of the Mott transition to a larger U value, has a stronger signature and more involved multiplet resolution for five-orbital problems. Spin-orbit interaction effectively reduces the critical local interaction strength and weakens the Janus-face behavior. Application to the realistic challenge of Fe chalcogenides underlines the subtle interplay of the orbital degrees of freedom in these materials.
Life testing of secondary silver-zinc cells for the orbiting maneuvering vehicle
NASA Technical Reports Server (NTRS)
Brewer, Jeffrey C.; Doreswamy, Rajiv; Jackson, Lorna G.
1990-01-01
Over the past 5 years, extensive testing has been performed at the Marshall Space Flight Center (MSFC) on a variety of secondary (rechargeable) silver-zinc (Ag-Zn) cells for the Orbital Maneuvering Vehicle (OMV). The first tests performed were to determine the feasibility of using such a cell in a long-life (18-month), low-Earth-orbit (LEO) application. Results from these tests were promising, so testing continued with a 250-Ah cell that was specifically designed for this type of application. Once again, results from the tests were promising. Following a review of the data from these previous tests, slight modifications to the 250-Ah design were necessary to alleviate problem areas. Currently, MSFC is testing a 350-Ah design that has incorporated these changes and is the baseline design for the OMV. This test began in mid-November, 1989, and will be complete in the spring of 1991, barring any substantial offline time. A report is presented on the preliminary results from the first few months of this test and they are compared to results obtained in previous tests done at MFSC.
NASA Astrophysics Data System (ADS)
Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.
The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the May 18-24, 1992, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. During this period, there were two separate orbit-adjust maneuvers on one of the TDRSS spacecraft (TDRS-East) and one small orbit-adjust maneuver for Landsat-4. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 30 meters after the filter had reached steady state.
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.
1993-01-01
The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the May 18-24, 1992, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. During this period, there were two separate orbit-adjust maneuvers on one of the TDRSS spacecraft (TDRS-East) and one small orbit-adjust maneuver for Landsat-4. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 30 meters after the filter had reached steady state.
Improved orbiter waste collection system study
NASA Technical Reports Server (NTRS)
Bastin, P. H.
1984-01-01
Design concepts for improved fecal waste collection both on the space shuttle orbiter and as a precursor for the space station are discussed. Inflight usage problems associated with the existing orbiter waste collection subsystem are considered. A basis was sought for the selection of an optimum waste collection system concept which may ultimately result in the development of an orbiter flight test article for concept verification and subsequent production of new flight hardware. Two concepts were selected for orbiter and are shown in detail. Additionally, one concept selected for application to the space station is presented.
NASA Technical Reports Server (NTRS)
Llanos, Pedro J.; Hintz, Gerald R.; Lo, Martin W.; Miller, James K.
2013-01-01
Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L(sub 4) and L(sub 5) and the collinear point L(sub 3) of the Circular Restricted Three-Body Problem (CRTBP) in the Sun-Earth system.
Banks of lights dry tiles on Atlantis
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the Orbiter Processing Facility, a worker points to some of the tiles on orbiter Atlantis that are being dried by clusters of 200-300 watt heat lamps. Significant rainstorms during the orbiter'''s turnaround for a ferry flight home from Edwards Air Force Base, Calif., caused a moisture problem. The tiles are part of the Thermal Protection System used on orbiters for extreme temperatures encountered during landing. Engineers are evaluating the current procedures to assure the tiles are in a safe and flight-ready condition.
Periodic Trojan-type orbits in the earth-sun system
NASA Technical Reports Server (NTRS)
Weissman, P. R.; Wetherill, G. W.
1974-01-01
Periodic orbits about the triangular equilibrium points are found for the planar restricted three-body problem using the earth-sun system. The maximum semimajor axis for tadpole orbits ranges from the infinitesimal orbit at 1.000 AU to the near-limiting orbit at 1.00285 AU. Horseshoe orbits are found for 1.0029 to 1.0080 AU, larger horseshoes being unstable because of close approaches to the earth. Using stability tests devised by Rabe (1961, 1962), the limit of stability for nonperiodic orbits is found to occur for maximum semimajor axes near 1.0020 AU. In addition, near-periodic tadpole orbits appear to be stable against perturbations by Jupiter and Venus for periods of at least 10,000 yr. The possibility that minor planets actually exist in such orbits is considered.
CODE's new solar radiation pressure model for GNSS orbit determination
NASA Astrophysics Data System (ADS)
Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.
2015-08-01
The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which substantially reduces the spurious signals in the geocenter coordinate (by about a factor of 2-6), reduces the orbit misclosures at the day boundaries by about 10 %, slightly improves the consistency of the estimated ERPs with those of the IERS 08 C04 Earth rotation series, and substantially reduces the systematics in the SLR validation of the GNSS orbits.
NASA Technical Reports Server (NTRS)
Mc Kenna, K. J.; Schmeichel, H.
1968-01-01
This design survey summarizes the history of the Orbiting Geophysical Observatories' (OGO) Attitude Control Subsystem (ACS) from the proposal phase through current flight experience. Problems encountered in design, fabrication, test, and on orbit are discussed. It is hoped that the experiences of the OGO program related here will aid future designers.
THE COMPUTATION OF CHARACTERISTIC EXPONENTS IN THE PLANAR RESTRICTED PROBLEM OF THREE BODIES
methods are applied to evaluate the characteristic exponents of Rabe’s Trojan Orbits; they are found to be of the stable type for the ovals, and of...the unstable type for the horse -shoe shaped orbit. When the periodic orbit is symmetric with respect to the axis of syzygies, four independent
Gravity-oriented satellite dynamics subject to gravitational and active damping torques
NASA Astrophysics Data System (ADS)
Sarychev, V. A.; Gutnik, S. A.
2018-01-01
The dynamics of the rotational motion of a satellite moving in the central Newtonian field of force over a circular orbit under the effect of gravitational and active damping torques, which depend on the satellite angular velocity projections, has been investigated. The paper proposes a method of determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of damping coefficients and principal central moments of inertia. The conditions of their existence have been obtained. For a zero equilibrium position where the axes of the satellite-centered coordinate system coincide with the axes of the orbital coordinate system, the necessary and sufficient conditions for asymptotic stability are obtained using the Routh-Hurwitz criterion. A detailed analysis of the regions where the conditions of the asymptotic stability of a zero equilibrium position are fulfilled have been obtained depending on three dimensionless parameters of the problem, and the numerical study of the process of attenuation of satellite's spatial oscillations for various damping coefficients has been carried out. It has been shown that there is a wide range of damping parameters from which, by choosing the necessary values, one can provide the asymptotic stability of satellite's zero equilibrium position in the orbital coordinate system.
Phase Change Material Heat Exchanger Life Test
NASA Technical Reports Server (NTRS)
Lillibridge, Sean; Stephan, Ryan; Lee, Steve; He, Hung
2008-01-01
Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed and reported in the current document.
High-Pressure Oxygen Generation for Outpost EVA
NASA Technical Reports Server (NTRS)
Jeng, Frank; Conger, Bruce; Anderson, Molly
2008-01-01
Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The emitted infrared (IR) heat flux from the lunar surface varies drastically from the light side to the dark side of the moon. Due to the extremely high incident IR flux, especially at low beta angles, a radiator is oftentimes unable to reject the vehicle heat load throughout the entire lunar orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor, storing thermal energy when the radiator is unable to reject the required heat load. The stored energy is then removed from the PCM heat exchanger when the environment is more benign. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration Low Lunar Orbit missions. The Advanced Thermal Control project at JSC is completing a PCM heat exchanger life test to determine whether further technology development is warranted. The life test is being conducted on four nPentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 meltfreeze cycles will be performed and reported in the current document.
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Henry, Gregory W.; Tomkin, Jocelyn
2017-09-01
From an extensive number of newly acquired radial velocities we determine the orbital elements for three late-type dwarf systems, HD 96511, HR 7578, and KZ And. The orbital periods are 18.89737 ± 0.00002, 46.81610 ± 0.00006, and 3.0329113 ± 0.0000005 days, respectively, and all three systems are eccentric, although KZ And is just barely so. We have detected lines of the secondary of HD 96511 for the first time. The orbital dimensions (a 1 sin I and a 2 sin I) and minimum masses (m 1 sin3 I and m 2 sin3 I) of the binary components all have accuracies of 0.2% or better. Extensive photometry of the chromospherically active binary HR 7578 confirms a rather long rotation period of 16.446 ± 0.002 days and that the K3 V components do not eclipse. We have estimated the basic properties of the stars in the three systems and compared those results with evolutionary tracks. The results for KZ And that we computed with the revised Hipparcos parallax of van Leeuwen produce inconsistencies. That parallax appears to be too large, and so, instead, we used the original Hipparcos parallax of the common proper motion primary, which improves the results, although some problems remain.
TOPEX/Poseidon precision orbit determination production and expert system
NASA Technical Reports Server (NTRS)
Putney, Barbara; Zelensky, Nikita; Klosko, Steven
1993-01-01
TOPEX/Poseidon (T/P) is a joint mission between NASA and the Centre National d'Etudes Spatiales (CNES), the French Space Agency. The TOPEX/Poseidon Precision Orbit Determination Production System (PODPS) was developed at Goddard Space Flight Center (NASA/GSFC) to produce the absolute orbital reference required to support the fundamental ocean science goals of this satellite altimeter mission within NASA. The orbital trajectory for T/P is required to have a RMS accuracy of 13 centimeters in its radial component. This requirement is based on the effective use of the satellite altimetry for the isolation of absolute long-wavelength ocean topography important for monitoring global changes in the ocean circulation system. This orbit modeling requirement is at an unprecedented accuracy level for this type of satellite. In order to routinely produce and evaluate these orbits, GSFC has developed a production and supporting expert system. The PODPS is a menu driven system allowing routine importation and processing of tracking data for orbit determination, and an evaluation of the quality of the orbit so produced through a progressive series of tests. Phase 1 of the expert system grades the orbit and displays test results. Later phases undergoing implementation, will prescribe corrective actions when unsatisfactory results are seen. This paper describes the design and implementation of this orbit determination production system and the basis for its orbit accuracy assessment within the expert system.
NASA Astrophysics Data System (ADS)
Kelecy, Tom; Shoemaker, Michael; Jah, Moriba
2013-08-01
A break-up in Low Earth Orbit (LEO) is simulated for 10 objects having area-to-mass ratios (AMR's) ranging from 0.1-10.0 m2/kg. The Constrained Admissible Region Multiple Hypothesis Filter (CAR-MHF) is applied to determining and characterizing the orbit and atmospheric drag parameters (CdA/m) simultaneously for each of the 10 objects with no a priori orbit or drag information. The results indicate that CAR-MHF shows promise for accurate, unambiguous and autonomous determination of the orbit and drag states.
Regions of stability of asteroids
NASA Technical Reports Server (NTRS)
Szebehely, V.; Lundberg, J.; Vicente, R.
1983-01-01
Using Hill's modified stability criterion, regions of orbital elements are established for conditions of stability. The model of the three-dimensional restricted problem of three bodies is used with the sun and Jupiter as the primaries. Four different cases are studied: direct and retrograde, outside and inside asteroidal orbits. The directions of the asteroidal orbits refer to the synodical reference frame and the positions refer to Jupiter's orbit. The orbital parameters of the asteroids are the semi-major axis (a), the eccentricity (e), and the inclination from Jupiter's orbital plane (i). The argument of the perihelion and the longitude of the ascending node are fixed at Omega = omega = 90 deg and the time of perihelion passage is T = 0 for all orbits.
NASA Technical Reports Server (NTRS)
Brown, Aaron J.
2011-01-01
Orbit maintenance is the series of burns performed during a mission to ensure the orbit satisfies mission constraints. Low-altitude missions often require non-trivial orbit maintenance Delta V due to sizable orbital perturbations and minimum altitude thresholds. A strategy is presented for minimizing this Delta V using impulsive burn parameter optimization. An initial estimate for the burn parameters is generated by considering a feasible solution to the orbit maintenance problem. An low-lunar orbit example demonstrates the Delta V savings from the feasible solution to the optimal solution. The strategy s extensibility to more complex missions is discussed, as well as the limitations of its use.
Improved solution accuracy for TDRSS-based TOPEX/Poseidon orbit determination
NASA Technical Reports Server (NTRS)
Doll, C. E.; Mistretta, G. D.; Hart, R. C.; Oza, D. H.; Bolvin, D. T.; Cox, C. M.; Nemesure, M.; Niklewski, D. J.; Samii, M. V.
1994-01-01
Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using a batch-least-squares estimator available in the Goddard Trajectory Determination System (GTDS) and an extended Kalman filter estimation system to process Tracking and Data Relay Satellite (TDRS) System (TDRSS) measurements. GTDS is the operational orbit determination system used by the FDD in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. The extended Kalman filter was implemented in an orbit determination analysis prototype system, closely related to the Real-Time Orbit Determination System/Enhanced (RTOD/E) system. In addition, the Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generated an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the geodynamics (GEODYN) orbit determination system with laser ranging and Doppler Orbitography and Radiopositioning integrated by satellite (DORIS) tracking measurements. The TOPEX/Poseidon trajectories were estimated for November 7 through November 11, 1992, the timeframe under study. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch-least-squares solutions were assessed based on the solution residuals, while the sequential solutions were assessed based on primarily the estimated covariances. The batch-least-squares and sequential orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 2 meters for the batch-least-squares and less than 13 meters for the sequential estimation solutions. After the sequential estimation solutions were processed with a smoother algorithm, position differences with POD orbit solutions of less than 7 meters were obtained. The differences among the POD, GTDS, and filter/smoother solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.
NASA Astrophysics Data System (ADS)
Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.
2014-05-01
A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.
The GEOS-3 orbit determination investigation
NASA Technical Reports Server (NTRS)
Pisacane, V. L.; Eisner, A.; Yionoulis, S. M.; Mcconahy, R. J.; Black, H. D.; Pryor, L. L.
1978-01-01
The nature and improvement in satellite orbit determination when precise altimetric height data are used in combination with conventional tracking data was determined. A digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, Doppler range difference, and altimetric height data. Two intervals were selected and used in a preliminary evaluation of the altimeter data. With the data available, it was possible to determine the semimajor axis and eccentricity to within several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either C-band or laser range data, it was shown that altimeter data can improve the orbit solution.
Estimating maneuvers for precise relative orbit determination using GPS
NASA Astrophysics Data System (ADS)
Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs
2017-01-01
Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.
Two-craft Coulomb formation study about circular orbits and libration points
NASA Astrophysics Data System (ADS)
Inampudi, Ravi Kishore
This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the calculus of variations approach. The optimality criteria are minimum time, minimum acceleration of the separation distance, minimum Coulomb and electric propulsion fuel usage, and minimum electrical power consumption. The continuous time problem is discretized using a pseudospectral method, and the resulting finite dimensional problem is solved using a sequential quadratic programming algorithm. The software package, DIDO, implements this approach. This second part illustrates how pseudospectral methods significantly simplify the solution-finding process.
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Zook, Herbert A.; Jackson, A. A.
1995-01-01
In this paper, we examine the effects of radiation pressure, Poynting-Robertson (PR) drag, and solar wind drag on dust grains trapped in mean motion resonances with the Sun and Jupiter in the restricted (negligible dust mass) three-body Problem. We especially examine the evolution of dust grains in the 1:1 resonance. As a first step, the Sun and Jupiter are idealized to both be in circular orbit about a common center of mass (circular restricted three-body problem). From the equation of motion of the dust particle in the rotating reference frame, the drag-induced time rate of change of its Jacobi "constant," C, is then derived and expressed in spherical coordinates. This new mathematical expression in spherical coordinates shows that C, in the 1:1 resonance, both oscillates and secularly increases with increasing time. The new expression gives rise to an easy understanding of how an orbit evolves when the radiation force and solar wind drag are included. All dust grain orbits are unstable in time when PR and solar wind drag are included in the Sun-Jupiter-dust system. Tadpole orbits evolve into horseshoe orbits; and these orbits continuously expand in size to lead to close encounters with Jupiter. Permanent trapping is impossible. Orbital evolutions of a dust grain trapped in the 1:1 resonance in the planar circular, an inclined case, an eccentric case, and the actual Sun-Jupiter case are numerically simulated and compared with each other and show grossly similar time behavior. Resonances other than 1:1 are also explored with the new expression. Stable exterior resonance trapping may be possible under certain conditions. One necessary condition for such a trap is derived. Trapping in interior resonances is shown to be always unstable.
NASA Astrophysics Data System (ADS)
Zamaro, M.; Biggs, J. D.
2015-07-01
The Martian moon Phobos is becoming an appealing destination for future scientific missions. The orbital dynamics around this planetary satellite is particularly complex due to the unique combination of both small mass-ratio and length-scale of the Mars-Phobos couple: the resulting sphere of influence of the moon is very close to its surface, therefore both the classical two-body problem and circular restricted three-body problem (CR3BP) do not provide an accurate approximation to describe the spacecraft's dynamics in the vicinity of Phobos. The aim of this paper is to extend the model of the CR3BP to consider the orbital eccentricity and the highly-inhomogeneous gravity field of Phobos, by incorporating the gravity harmonics series expansion into an elliptic R3BP, named ER3BP-GH. Following this, the dynamical substitutes of the Libration Point Orbits (LPOs) are computed in this more realistic model of the relative dynamics around Phobos, combining methodologies from dynamical systems theory and numerical continuation techniques. Results obtained show that the structure of the periodic and quasi-periodic LPOs differs substantially from the classical case without harmonics. Several potential applications of these natural orbits are presented to enable unique low-cost operations in the proximity of Phobos, such as close-range observation, communication, and passive radiation shielding for human spaceflight. Furthermore, their invariant manifolds are demonstrated to provide high-performance natural landing and take-off pathways to and from Phobos' surface, and transfers from and to Martian orbits. These orbits could be exploited in upcoming and future space missions targeting the exploration of this Martian moon.
Method of resolving radio phase ambiguity in satellite orbit determination
NASA Technical Reports Server (NTRS)
Councelman, Charles C., III; Abbot, Richard I.
1989-01-01
For satellite orbit determination, the most accurate observable available today is microwave radio phase, which can be differenced between observing stations and between satellites to cancel both transmitter- and receiver-related errors. For maximum accuracy, the integer cycle ambiguities of the doubly differenced observations must be resolved. To perform this ambiguity resolution, a bootstrapping strategy is proposed. This strategy requires the tracking stations to have a wide ranging progression of spacings. By conventional 'integrated Doppler' processing of the observations from the most widely spaced stations, the orbits are determined well enough to permit resolution of the ambiguities for the most closely spaced stations. The resolution of these ambiguities reduces the uncertainty of the orbit determination enough to enable ambiguity resolution for more widely spaced stations, which further reduces the orbital uncertainty. In a test of this strategy with six tracking stations, both the formal and the true errors of determining Global Positioning System satellite orbits were reduced by a factor of 2.
Thermal Protection System Imagery Inspection Management System -TIIMS
NASA Technical Reports Server (NTRS)
Goza, Sharon; Melendrez, David L.; Henningan, Marsha; LaBasse, Daniel; Smith, Daniel J.
2011-01-01
TIIMS is used during the inspection phases of every mission to provide quick visual feedback, detailed inspection data, and determination to the mission management team. This system consists of a visual Web page interface, an SQL database, and a graphical image generator. These combine to allow a user to ascertain quickly the status of the inspection process, and current determination of any problem zones. The TIIMS system allows inspection engineers to enter their determinations into a database and to link pertinent images and video to those database entries. The database then assigns criteria to each zone and tile, and via query, sends the information to a graphical image generation program. Using the official TIPS database tile positions and sizes, the graphical image generation program creates images of the current status of the orbiter, coloring zones, and tiles based on a predefined key code. These images are then displayed on a Web page using customized JAVA scripts to display the appropriate zone of the orbiter based on the location of the user's cursor. The close-up graphic and database entry for that particular zone can then be seen by selecting the zone. This page contains links into the database to access the images used by the inspection engineer when they make the determination entered into the database. Status for the inspection zones changes as determinations are refined and shown by the appropriate color code.
NASA Astrophysics Data System (ADS)
Sandrik, Suzannah
Optimal solutions to the impulsive circular phasing problem, a special class of orbital maneuver in which impulsive thrusts shift a vehicle's orbital position by a specified angle, are found using primer vector theory. The complexities of optimal circular phasing are identified and illustrated using specifically designed Matlab software tools. Information from these new visualizations is applied to explain discrepancies in locally optimal solutions found by previous researchers. Two non-phasing circle-to-circle impulsive rendezvous problems are also examined to show the applicability of the tools developed here to a broader class of problems and to show how optimizing these rendezvous problems differs from the circular phasing case.
Integración automatizada de las ecuaciones de Lagrange en el movimiento orbital.
NASA Astrophysics Data System (ADS)
Abad, A.; San Juan, J. F.
The new techniques of algebraic manipulation, especially the Poisson Series Processor, permit the analytical integration of the more and more complex problems of celestial mechanics. The authors are developing a new Poisson Series Processor, PSPC, and they use it to solve the Lagrange equation of the orbital motion. They integrate the Lagrange equation by using the stroboscopic method, and apply it to the main problem of the artificial satellite theory.
Space shuttle contamination due to backflow from control motor exhaust
NASA Technical Reports Server (NTRS)
Robertson, S. J.; Chan, S. T. K.; Lee, A. L.
1976-01-01
Spacecraft contamination of the space shuttle orbiter and accompanying Spacelab payloads is studied. The scattering of molecules from the vernier engines and flash evaporator nozzle after impingement on the orbiter wing surfaces, and the backflow of molecules out of the flash evaporator nozzle plume flow field due to intermolecular collisions in the plume are the problems discussed. A method was formulated for dealing with these problems, and detailed results are given.
Real-Time and Post-Processed Orbit Determination and Positioning
NASA Technical Reports Server (NTRS)
Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Mark A. (Inventor); Bar-Sever, Yoaz E. (Inventor); Miller, Kevin J. (Inventor); Romans, Larry J. (Inventor); Dorsey, Angela R. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Bertiger, William I. (Inventor);
2015-01-01
Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.
Real-Time and Post-Processed Orbit Determination and Positioning
NASA Technical Reports Server (NTRS)
Bar-Sever, Yoaz E. (Inventor); Romans, Larry J. (Inventor); Weiss, Jan P. (Inventor); Gross, Jason (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Dorsey, Angela R. (Inventor); Miller, Mark A. (Inventor); Sibthorpe, Anthony J. (Inventor); Bertiger, William I. (Inventor);
2016-01-01
Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.
STS-38 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Camp, David W.; Germany, D. M.; Nicholson, Leonard S.
1991-01-01
The STS-38 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-seventh flight of the Space Shuttle and the seventh flight of the Orbiter vehicle Atlantis (OV-104). In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-40/LWT-33), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2022, 2027), and two Solid Rocket Boosters (SRB's), designated as BI-039. The STS-38 mission was a classified Department of Defense mission, and as much, the classified portions of the mission are not presented in this report. The sequence of events for this mission is shown. The significant problems that occurred in the Space Shuttle Orbiter subsystem during the mission are summarized and the official problem tracking list is presented. In addition, each Space Shuttle Orbiter problem is cited in the subsystem discussion.
Full self-consistency in the Fermi-orbital self-interaction correction
NASA Astrophysics Data System (ADS)
Yang, Zeng-hui; Pederson, Mark R.; Perdew, John P.
2017-05-01
The Perdew-Zunger self-interaction correction cures many common problems associated with semilocal density functionals, but suffers from a size-extensivity problem when Kohn-Sham orbitals are used in the correction. Fermi-Löwdin-orbital self-interaction correction (FLOSIC) solves the size-extensivity problem, allowing its use in periodic systems and resulting in better accuracy in finite systems. Although the previously published FLOSIC algorithm Pederson et al., J. Chem. Phys. 140, 121103 (2014)., 10.1063/1.4869581 appears to work well in many cases, it is not fully self-consistent. This would be particularly problematic for systems where the occupied manifold is strongly changed by the correction. In this paper, we demonstrate a different algorithm for FLOSIC to achieve full self-consistency with only marginal increase of computational cost. The resulting total energies are found to be lower than previously reported non-self-consistent results.
Baggie: A unique solution to an orbiter icing problem
NASA Technical Reports Server (NTRS)
Walkover, L. J.
1982-01-01
The orbiter icing problem, located in two lower surface mold line cavities, was solved. These two cavities are open during Shuttle ground operations and ascent, and are then closed after orbit insertion. If not protected, these cavities may be coated with ice, which may be detrimental to the adjacent thermal protection system (TPS) tiles if the ice breaks up during ascent, and may hinder the closing of the cavity doors if the ice does not break up. The problem of ice in these cavities was solved by the use of a passive mechanism called baggie, which is purge curtain used to enclose the cavity and is used in conjunction with gaseous nitrogen as the local purge gas. The baggie, the final solution, is unique in its simplicity, but its design and development were not. The final baggie design and its development testing are discussed. Also discussed are the baggie concepts and other solutions not used.
STS-36 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Mechelay, Joseph E.; Germany, D. M.; Nicholson, Leonard S.
1990-01-01
The STS-36 Space Shuttle Program Mission Report contains a summary of the vehicle subsystem activities on this thirty-fourth flight of the Space Shuttle and the sixth flight of the OV-104 Orbiter vehicle, Atlantis. In addition to the Atlantis vehicle, the flight vehicle consisted of an External Tank (ET) (designated as ET-33/LWT-26), three Space Shuttle main engines (SSME's) (serial numbers 2019, 2030, and 2029), and two Solid Rocket Boosters (SRB's) (designated as BI-036). The STS-36 mission was a classified Department of Defense mission, and as such, the classified portions of the mission are not discussed. The unclassified sequence of events for this mission is shown in tabular form. Summarized are the significant problems that occurred in the Orbiter subsystems during the mission. The official problem tracking list is presented. In addition, each of the Orbiter problems is cited in the subsystem discussion.
Impact of GNSS orbit modeling on LEO orbit and gravity field determination
NASA Astrophysics Data System (ADS)
Arnold, Daniel; Meyer, Ulrich; Sušnik, Andreja; Dach, Rolf; Jäggi, Adrian
2017-04-01
On January 4, 2015 the Center for Orbit Determination in Europe (CODE) changed the solar radiation pressure modeling for GNSS satellites to an updated version of the empirical CODE orbit model (ECOM). Furthermore, since September 2012 CODE operationally computes satellite clock corrections not only for the 3-day long-arc solutions, but also for the non-overlapping 1-day GNSS orbits. This provides different sets of GNSS products for Precise Point Positioning, as employed, e.g., in the GNSS-based precise orbit determination of low Earth orbiters (LEOs) and the subsequent Earth gravity field recovery from kinematic LEO orbits. While the impact of the mentioned changes in orbit modeling and solution strategy on the GNSS orbits and geophysical parameters was studied in detail, their implications on the LEO orbits were not yet analyzed. We discuss the impact of the update of the ECOM and the influence of 1-day and 3-day GNSS orbit solutions on zero-difference LEO orbit and gravity field determination, where the GNSS orbits and clock corrections, as well as the Earth rotation parameters are introduced as fixed external products. Several years of kinematic and reduced-dynamic orbits for the two GRACE LEOs are computed with GNSS products based on both the old and the updated ECOM, as well as with 1- and 3-day GNSS products. The GRACE orbits are compared by means of standard validation measures. Furthermore, monthly and long-term GPS-only and combined GPS/K-band gravity field solutions are derived from the different sets of kinematic LEO orbits. GPS-only fields are validated by comparison to combined GPS/K-band solutions, while the combined solutions are validated by analysis of the formal errors, as well as by comparing them to the combined GRACE solutions of the European Gravity Service for Improved Emergency Management (EGSIEM) project.
NASA Technical Reports Server (NTRS)
Luthcke, Scott B.; Zelensky, Nikita P.; Rowlands, David D.; Lemoine, Frank G.; Williams, Teresa A.
2003-01-01
Jason-1, launched on December 7, 2001, is continuing the time series of centimeter level ocean topography observations as the follow-on to the highly successful TOPEX/POSEIDON (T/P) radar altimeter satellite. The precision orbit determination (POD) is a critical component to meeting the ocean topography goals of the mission. Jason-1 is no exception and has set a 1 cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1 cm radial orbit accuracy and evaluating and validating the performance of the 1 cm orbit. Fortunately, Jason-1 POD can rely on four independent tracking data types including near continuous tracking data from the dual frequency codeless BlackJack GPS receiver. In addition, to the enhanced GPS receiver, Jason-1 carries significantly improved SLR and DORIS tracking systems along with the altimeter itself. We demonstrate the 1 cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS and crossover data that are a significant improvement over the SLR and DORIS based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits.
Non-Fermi-liquid and topological states with strong spin-orbit coupling.
Moon, Eun-Gook; Xu, Cenke; Kim, Yong Baek; Balents, Leon
2013-11-15
We argue that a class of strongly spin-orbit-coupled materials, including some pyrochlore iridates and the inverted band gap semiconductor HgTe, may be described by a minimal model consisting of the Luttinger Hamiltonian supplemented by Coulomb interactions, a problem studied by Abrikosov and collaborators. It contains twofold degenerate conduction and valence bands touching quadratically at the zone center. Using modern renormalization group methods, we update and extend Abrikosov's classic work and show that interactions induce a quantum critical non-Fermi-liquid phase, stable provided time-reversal and cubic symmetries are maintained. We determine the universal power-law exponents describing various observables in this Luttinger-Abrikosov-Beneslavskii state, which include conductivity, specific heat, nonlinear susceptibility, and the magnetic Gruneisen number. Furthermore, we determine the phase diagram in the presence of cubic and/or time-reversal symmetry breaking perturbations, which includes a topological insulator and Weyl semimetal phases. Many of these phases possess an extraordinarily large anomalous Hall effect, with the Hall conductivity scaling sublinearly with magnetization σ(xy)∼M0.51.
Zarya Energy Balance Analysis: The Effect of Spacecraft Shadowing on Solar Array Performance
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Kolosov, Vladimir
1999-01-01
The first element of the International Space Station (ISS). Zarya, was funded by NASA and built by the Russian aerospace company Khrunichev State Research and Production Space Center (KhSC). NASA Glenn Research Center (GRC) and KhSC collaborated in performing analytical predictions of the on-orbit electrical performance of Zarya's solar arrays. GRC assessed the pointing characteristics of and shadow patterns on Zarya's solar arrays to determine the average solar energy incident on the arrays. KHSC used the incident energy results to determine Zarya's electrical power generation capability and orbit-average power balance. The power balance analysis was performed over a range of solar beta angles and vehicle operational conditions. This analysis enabled identification of problems that could impact the power balance for specific flights during ISS assembly and was also used as the primary means of verifying that Zarya complied with electrical power requirements. Analytical results are presented for select stages in the ISS assembly sequence along with a discussion of the impact of shadowing on the electrical performance of Zarya's solar arrays.
NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment
NASA Technical Reports Server (NTRS)
Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.
1992-01-01
The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.
An approach to ground based space surveillance of geostationary on-orbit servicing operations
NASA Astrophysics Data System (ADS)
Scott, Robert (Lauchie); Ellery, Alex
2015-07-01
On Orbit Servicing (OOS) is a class of dual-use robotic space missions that could potentially extend the life of orbiting satellites by fuel replenishment, repair, inspection, orbital maintenance or satellite repurposing, and possibly reduce the rate of space debris generation. OOS performed in geostationary orbit poses a unique challenge for the optical space surveillance community. Both satellites would be performing proximity operations in tight formation flight with separations less than 500 m making atmospheric seeing (turbulence) a challenge to resolving a geostationary satellite pair when viewed from the ground. The two objects would appear merged in an image as the resolving power of the telescope and detector, coupled with atmospheric seeing, limits the ability to resolve the two objects. This poses an issue for obtaining orbital data for conjunction flight safety or, in matters pertaining to space security, inferring the intent and trajectory of an unexpected object perched very close to one's satellite asset on orbit. In order to overcome this problem speckle interferometry using a cross spectrum approach is examined as a means to optically resolve the client and servicer's relative positions to enable a means to perform relative orbit determination of the two spacecraft. This paper explores cases where client and servicing satellites are in unforced relative motion flight and examines the observability of the objects. Tools are described that exploit cross-spectrum speckle interferometry to (1) determine the presence of a secondary in the vicinity of the client satellite and (2) estimate the servicing satellite's motion relative to the client. Experimental observations performed with the Mont Mégantic 1.6 m telescope on co-located geostationary satellites (acting as OOS proxy objects) are described. Apparent angular separations between Anik G1 and Anik F1R from 5 to 1 arcsec were observed as the two satellites appeared to graze one another. Data reduction using differential angular measurements derived from speckle images collected by the 1.6 m telescope produced relative orbit estimates with better than 90 m accuracy in the cross-track and in-track directions but exhibited highly variable behavior in the radial component from 50 to 1800 m. Simulations of synthetic tracking data indicated that the radial component requires approximately six hours of tracking data for an Extended Kalman Filter to converge on an relative orbit estimate with less than 100 m overall uncertainty. The cross-spectrum approach takes advantage of the Fast Fourier Transform (FFT) permitting near real-time estimation of the relative orbit of the two satellites. This also enables the use of relatively larger detector arrays (>106 pixels) helping to ease acquisition process to acquire optical angular data.
Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)
NASA Technical Reports Server (NTRS)
Mesarch, Michael A.; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James
2007-01-01
This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF's orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.
Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)
NASA Technical Reports Server (NTRS)
Mesarch, Michael; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James
2007-01-01
This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF s orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.
Testing Ultracool Atmospheres with Mass Benchmarks
NASA Astrophysics Data System (ADS)
Dupuy, Trent J.; Liu, Michael C.
2011-08-01
After years of patient orbital monitoring, there is now a sample of ~10 very low-mass stars and brown dwarfs with precise (~5%) dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to obtain narrow-band imaging with Keck/OSIRIS LGS to measure resolved SEDs for this first sizable sample of ultracool binaries with well-determined dynamical masses. This multi- band photometry will enable us to precisely estimate spectral types and effective temperatures of individual binary components, providing the strongest constraints to date on widely used evolutionary and atmospheric models. Our proposed Keck observations are much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these data are equally vital for robust tests of theory. (Note: Our proposed time is intended to replace the 1 night awarded by NOAO to carry out this program in 2010B, which was completely lost due to weather.)
NASA's Technical Handbook for Avoiding On-Orbit ESD Anomalies Due to Internal Charging Effects
NASA Technical Reports Server (NTRS)
Whittlesey, Albert; Garrett, Henry B.
1996-01-01
This paper describes NASA-HDBK-4002, "Avoiding Problems Caused by Spacecraft On-Orbit Internal Charging Effects". The handbook includes a description of internal charging and why it is of concern to spacecraft designers. It also suggests how to determine when a project needs to consider internal spacecraft charging, it contains an electron penetration depth chart, rationale for a critical electron flux criterion, a worst-case geosynchronous electron plasma spectrum, general design guidelines, quantitative design guidelines, and a typical materials characteristics list. Appendices include a listing of some environment codes, electron transport codes, a discussion of geostationary electron plasma environments, a brief description of electron beam and other materials tests, and transient susceptibility tests. The handbook will be in the web page, hftp://standards.nasa.gov. A prior document, NASA TP2361 "Design Guidelines for Assessing and controlling Spacecraft Charging Effects", 1984, is in use to describe mitigation techniques for the effects of surface charging of satellites in space plasma environments. HDBK-4002 is meant to complement 2361 and together, the pair of documents describe both cause and mitigation designs for problems caused by energetic space plasmas.
Real-time approximate optimal guidance laws for the advanced launch system
NASA Technical Reports Server (NTRS)
Speyer, Jason L.; Feeley, Timothy; Hull, David G.
1989-01-01
An approach to optimal ascent guidance for a launch vehicle is developed using an expansion technique. The problem is to maximize the payload put into orbit subject to the equations of motion of a rocket over a rotating spherical earth. It is assumed that the thrust and gravitational forces dominate over the aerodynamic forces. It is shown that these forces can be separated by a small parameter epsilon, where epsilon is the ratio of the atmospheric scale height to the radius of the earth. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in a series where the zeroth-order term (epsilon = 0) can be obtained in closed form. The zeroth-order problem is that of putting maximum payload into orbit subject to the equations of motion of a rocket in a vacuum over a flat earth. The neglected inertial and aerodynamic terms are included in higher order terms of the expansion, which are determined from the solution of first-order linear partial differential equations requiring only quadrature integrations. These quadrature integrations can be performed rapidly, so that real-time approximate optimization can be used to construct the launch guidance law.
Intermediary LEO propagation including higher order zonal harmonics
NASA Astrophysics Data System (ADS)
Hautesserres, Denis; Lara, Martin
2017-04-01
Two new intermediary orbits of the artificial satellite problem are proposed. The analytical solutions include higher order effects of the geopotential, and are obtained by means of a torsion transformation applied to the quasi-Keplerian system resulting after the elimination of the parallax simplification, for the first intermediary, and after the elimination of the parallax and perigee simplifications, for the second one. The new intermediaries perform notably well for low Earth orbits propagation, are free from special functions, and result advantageous, both in accuracy and efficiency, when compared to the standard Cowell integration of the J_2 problem, thus providing appealing alternatives for onboard, short-term, orbit propagation under limited computational resources.
Linear frictional forces cause orbits to neither circularize nor precess
NASA Astrophysics Data System (ADS)
Hamilton, B.; Crescimanno, M.
2008-06-01
For the undamped Kepler potential the lack of precession has historically been understood in terms of the Runge-Lenz symmetry. For the damped Kepler problem this result may be understood in terms of the generalization of Poisson structure to damped systems suggested recently by Tarasov (2005 J. Phys. A: Math. Gen. 38 2145). In this generalized algebraic structure the orbit-averaged Runge-Lenz vector remains a constant in the linearly damped Kepler problem to leading order in the damping coefficient. Beyond Kepler, we prove that, for any potential proportional to a power of the radius, the orbit shape and precession angle remain constant to leading order in the linear friction coefficient.
Periodic orbits of hybrid systems and parameter estimation via AD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guckenheimer, John.; Phipps, Eric Todd; Casey, Richard
Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical modelsmore » of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method [GM00, Phi03]. Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance between two given periodic orbits which is then minimized using a trust-region minimization algorithm [DS83] to find optimal fits of the model to a reference orbit [Cas04]. There are two different yet related goals that motivate the algorithmic choices listed above. The first is to provide a simple yet powerful framework for studying periodic motions in mechanical systems. Formulating mechanically correct equations of motion for systems of interconnected rigid bodies, while straightforward, is a time-consuming error prone process. Much of this difficulty stems from computing the acceleration of each rigid body in an inertial reference frame. The acceleration is computed most easily in a redundant set of coordinates giving the spatial positions of each body: since the acceleration is just the second derivative of these positions. Rather than providing explicit formulas for these derivatives, automatic differentiation can be employed to compute these quantities efficiently during the course of a simulation. The feasibility of these ideas was investigated by applying these techniques to the problem of locating stable walking motions for a disc-foot passive walking machine [CGMR01, Gar99, McG91]. The second goal for this work was to investigate the application of smooth optimization methods to periodic orbit parameter estimation problems in neural oscillations. Others [BB93, FUS93, VB99] have favored non-continuous optimization methods such as genetic algorithms, stochastic search methods, simulated annealing and brute-force random searches because of their perceived suitability to the landscape of typical objective functions in parameter space, particularly for multi-compartmental neural models. Here we argue that a carefully formulated optimization problem is amenable to Newton-like methods and has a sufficiently smooth landscape in parameter space that these methods can be an efficient and effective alternative. The plan of this paper is as follows. In Section 1 we provide a definition of hybrid systems that is the basis for modeling systems with discontinuities or discrete transitions. Sections 2, 3, and 4 briefly describe the Taylor series integration, periodic orbit tracking, and parameter estimation algorithms. For full treatments of these algorithms, we refer the reader to [Phi03, Cas04, CPG04]. The software implementation of these algorithms is briefly described in Section 5 with particular emphasis on the automatic differentiation software ADMC++. Finally, these algorithms are applied to the bipedal walking and Hodgkin-Huxley based neural oscillation problems discussed above in Section 6.« less
TDRSS-user orbit determination using batch least-squares and sequential methods
NASA Astrophysics Data System (ADS)
Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, Mina V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.
1993-02-01
The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), and operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were less than 40 meters after the filter had reached steady state.
TDRSS-user orbit determination using batch least-squares and sequential methods
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, Mina V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.
1993-01-01
The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), and operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were less than 40 meters after the filter had reached steady state.
Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit
NASA Technical Reports Server (NTRS)
Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.
1992-01-01
The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.
Lunar orbiting microwave beam power system
NASA Technical Reports Server (NTRS)
Fay, Edgar H.; Cull, Ronald C.
1990-01-01
A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.
A satellite constellation optimization for a regional GNSS remote sensing mission
NASA Astrophysics Data System (ADS)
Gavili Kilaneh, Narin; Mashhadi Hossainali, Masoud
2017-04-01
Due to the recent advances in the Global Navigation Satellite System Remote sensing (GNSS¬R) applications, optimization of a satellite orbit to investigate the Earth's properties seems significant. The comparison of the GNSS direct and reflected signals received by a Low Earth Orbit (LEO) satellite introduces a new technique to remotely sense the Earth. Several GNSS¬R missions including Cyclone Global Navigation Satellite System (CYGNSS) have been proposed for different applications such as the ocean wind speed and height monitoring. The geometric optimization of the satellite orbit before starting the mission is a key step for every space mission. Since satellite constellation design varies depending on the application, we have focused on the required geometric criteria for oceanography applications in a specified region. Here, the total number of specular points, their spatial distribution and the accuracy of their position are assumed to be sufficient for oceanography applications. Gleason's method is used to determine the position of specular points. We considered the 2-D lattice and 3-D lattice theory of flower constellation to survey whether a circular orbit or an elliptical one is suitable to improve the solution. Genetic algorithm is implemented to solve the problem. To check the visibility condition between the LEO and GPS satellites, the satellite initial state is propagated by a variable step size numerical integration method. Constellation orbit parameters achieved by optimization provide a better resolution and precession for the specular points in the study area of this research.
ERIC Educational Resources Information Center
Quimby, Donald J.
1984-01-01
Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)
Modified lateral orbital wall decompression in Graves' orbitopathy using computer-assisted planning.
Spalthoff, S; Jehn, P; Zimmerer, R; Rana, M; Gellrich, N-C; Dittmann, J
2018-02-01
Graves' orbitopathy, a condition seen in the autoimmune syndrome Graves' disease, affects the fatty tissue and muscles inside the orbit. Graves' orbitopathy is associated with increasing exophthalmos and sometimes leads to compressive dysthyroid optic neuropathy, resulting in progressive vision loss. Dysthyroid compressive optic neuropathy, functional problems, and cosmetic problems are the main indications for surgical decompression of the orbit, especially if conservative treatment has not led to a reduction in symptoms. Many surgical techniques are described in the literature. This article presents a modification of the lateral orbital wall osteotomy, involving the rotation and reduction of the osteotomized bone segment using preoperative planning, intraoperative computed navigation, and piezoelectric surgery. This new method combines the advantages of different techniques and appears to be a valid approach to the treatment of severe cases of Graves' orbitopathy. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Fuel-optimal trajectories of aeroassisted orbital transfer with plane change
NASA Technical Reports Server (NTRS)
Naidu, Desineni Subbaramaiah; Hibey, Joseph L.
1989-01-01
The problem of minimization of fuel consumption during the atmospheric portion of an aeroassisted, orbital transfer with plane change is addressed. The complete mission has required three characteristic velocities, a deorbit impulse at high earth orbit (HEO), a boost impulse at the atmospheric exit, and a reorbit impulse at low earth orbit (LEO). A performance index has been formulated as the sum of these three impulses. Application of optimal control principles has led to a nonlinear, two-point, boundary value problem which was solved by using a multiple shooting algorithm. The strategy for the atmospheric portion of the minimum-fuel transfer is to start initially with the maximum positive lift in order to recover from the downward plunge, and then to fly with a gradually decreasing lift such that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.
What's New for Laser Orbital Debris Removal
NASA Astrophysics Data System (ADS)
Phipps, Claude; Lander, Mike
2011-11-01
Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm is now a reality that we ignore at our peril. The least costly, and most comprehensive, solution is Laser Orbital Debris Removal (LODR). In this approach, a high power pulsed laser on the Earth creates a laser-ablation jet on the debris object's surface which provides the small impulse required to cause it to re-enter and burn up in the atmosphere. The LODR system should be located near the Equator, and includes the laser, a large, agile mirror, and systems for active detection, tracking and atmospheric path correction. In this paper, we discuss advances that have occurred since LODR was first proposed, which make this solution to the debris problem look quite realistic.
Non-conservative perturbations of homoclinic snaking scenarios
NASA Astrophysics Data System (ADS)
Knobloch, Jürgen; Vielitz, Martin
2016-01-01
Homoclinic snaking refers to the continuation of homoclinic orbits to an equilibrium E near a heteroclinic cycle connecting E and a periodic orbit P. Typically homoclinic snaking appears in one-parameter families of reversible, conservative systems. Here we discuss perturbations of this scenario which are both non-reversible and non-conservative. We treat this problem analytically in the spirit of the work [3]. The continuation of homoclinic orbits happens with respect to both the original continuation parameter μ and the perturbation parameter λ. The continuation curves are parametrised by the dwelling time L of the homoclinic orbit near P. It turns out that λ (L) tends to zero while the μ vs. L diagram displays isolas or criss-cross snaking curves in a neighbourhood of the original snakes-and-ladder structure. In the course of our studies we adapt both Fenichel coordinates near P and the analysis of Shilnikov problems near P to the present situation.
Nymmik, R A
1999-10-01
A wide range of the galactic cosmic ray and SEP event flux simulation problems for the near-Earth satellite and manned spacecraft orbits and for the interplanetary mission trajectories are discussed. The models of the galactic cosmic ray and SEP events in the Earth orbit beyond the Earth's magnetosphere are used as a basis. The particle fluxes in the near-Earth orbits should be calculated using the transmission functions. To calculate the functions, the dependences of the cutoff rigidities on the magnetic disturbance level and on magnetic local time have to be known. In the case of space flights towards the Sun and to the boundary of the solar system, particular attention is paid to the changes in the SEP event occurrence frequency and size. The particle flux gradients are applied in this case to galactic cosmic ray fluxes.
Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation
NASA Technical Reports Server (NTRS)
Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.
1995-01-01
Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be used in February of 2001. The initial attitude and spin rate of Eros, as well as estimates of reference landmark locations, are obtained from images of the asteroid. These initial estimates are used as a priori values for a more precise refinement of these parameters by the orbit determination software which combines optical measurements with Doppler tracking data to obtain solutions for the required parameters. As the spacecraft is maneuvered; closer to the asteroid, estimates of spacecraft state, asteroid attitude, solar pressure, landmark locations and Eros physical parameters including mass, moments of inertia and gravity harmonics are determined with increasing precision. The determination of the elements of the inertia tensor of the asteroid is critical to spacecraft orbit determination and prediction of the asteroid attitude. The moments of inertia about the principal axes are also of scientific interest since they provide some insight into the internal mass distribution. Determination of the principal axes moments of inertia will depend on observing free precession in the asteroid's attitude dynamics. Gravity harmonics are in themselves of interest to science. When compared with the asteroid shape, some insight may be obtained into Eros' internal structure. The location of the center of mass derived from the first degree harmonic coefficients give a direct indication of overall mass distribution. The second degree harmonic coefficients relate to the radial distribution of mass. Higher degree harmonics may be compared with surface features to gain additional insight into mass distribution. In this paper, estimates of Eros physical parameters obtained from the December 23,1998 flyby will be presented. This new knowledge will be applied to simplification of Eros orbital operations in February of 2001. The resulting revision to the orbit determination strategy will also be discussed.
Localized and Spectroscopic Orbitals: Squirrel Ears on Water.
ERIC Educational Resources Information Center
Martin, R. Bruce
1988-01-01
Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)
Sentinel-1A - First precise orbit determination results
NASA Astrophysics Data System (ADS)
Peter, H.; Jäggi, A.; Fernández, J.; Escobar, D.; Ayuga, F.; Arnold, D.; Wermuth, M.; Hackel, S.; Otten, M.; Simons, W.; Visser, P.; Hugentobler, U.; Féménias, P.
2017-09-01
Sentinel-1A is the first satellite of the European Copernicus programme. Equipped with a Synthetic Aperture Radar (SAR) instrument the satellite was launched on April 3, 2014. Operational since October 2014 the satellite delivers valuable data for more than two years. The orbit accuracy requirements are given as 5 cm in 3D. In order to fulfill this stringent requirement the precise orbit determination (POD) is based on the dual-frequency GPS observations delivered by an eight-channel GPS receiver. The Copernicus POD (CPOD) Service is in charge of providing the orbital and auxiliary products required by the PDGS (Payload Data Ground Segment). External orbit validation is regularly performed by comparing the CPOD Service orbits to orbit solutions provided by POD expert members of the Copernicus POD Quality Working Group (QWG). The orbit comparisons revealed systematic orbit offsets mainly in radial direction (approx. 3 cm). Although no independent observation technique (e.g. DORIS, SLR) is available to validate the GPS-derived orbit solutions, comparisons between the different antenna phase center variations and different reduced-dynamic orbit determination approaches used in the various software packages helped to detect the cause of the systematic offset. An error in the given geometry information about the satellite has been found. After correction of the geometry the orbit validation shows a significant reduction of the radial offset to below 5 mm. The 5 cm orbit accuracy requirement in 3D is fulfilled according to the results of the orbit comparisons between the different orbit solutions from the QWG.
A Self-Tuning Kalman Filter for Autonomous Spacecraft Navigation
NASA Technical Reports Server (NTRS)
Truong, Son H.
1998-01-01
Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman Filter and Global Positioning System (GPS) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. Current techniques of Kalman filtering, however, still rely on manual tuning from analysts, and cannot help in optimizing autonomy without compromising accuracy and performance. This paper presents an approach to produce a high accuracy autonomous navigation system fully integrated with the flight system. The resulting system performs real-time state estimation by using an Extended Kalman Filter (EKF) implemented with high-fidelity state dynamics model, as does the GPS Enhanced Orbit Determination Experiment (GEODE) system developed by the NASA Goddard Space Flight Center. Augmented to the EKF is a sophisticated neural-fuzzy system, which combines the explicit knowledge representation of fuzzy logic with the learning power of neural networks. The fuzzy-neural system performs most of the self-tuning capability and helps the navigation system recover from estimation errors. The core requirement is a method of state estimation that handles uncertainties robustly, capable of identifying estimation problems, flexible enough to make decisions and adjustments to recover from these problems, and compact enough to run on flight hardware. The resulting system can be extended to support geosynchronous spacecraft and high-eccentricity orbits. Mathematical methodology, systems and operations concepts, and implementation of a system prototype are presented in this paper. Results from the use of the prototype to evaluate optimal control algorithms implemented are discussed. Test data and major control issues (e.g., how to define specific roles for fuzzy logic to support the self-learning capability) are also discussed. In addition, architecture of a complete end-to-end candidate flight system that provides navigation with highly autonomous control using data from GPS is presented.
Lunar rover navigation concepts
NASA Astrophysics Data System (ADS)
Burke, James D.
1993-01-01
With regard to the navigation of mobile lunar vehicles on the surface, candidate techniques are reviewed and progress of simulations and experiments made up to now are described. Progress that can be made through precursor investigations on Earth is considered. In the early seventies the problem was examined in a series of relevant tests made in the California desert. Meanwhile, Apollo rovers made short exploratory sorties and robotic Lunokhods traveled over modest distances on the Moon. In these early missions some of the required methods were demonstrated. The navigation problem for a lunar traverse can be viewed in three parts: to determine the starting point with enough accuracy to enable the desired mission; to determine the event sequence required to reach the site of each traverse objective; and to redetermine actual positions enroute. The navigator's first tool is a map made from overhead imagery. The Moon was almost completely photographed at moderate resolution by spacecraft launched in the sixties, but that data set provides imprecise topographic and selenodetic information. Therefore, more advanced orbital missions are now proposed as part of a resumed lunar exploration program. With the mapping coverage expected from such orbiters, it will be possible to use a combination of visual landmark navigation and external radio and optical references (Earth and Sun) to achieve accurate surface navigation almost everywhere on the near side of the Moon. On the far side and in permanently dark polar areas, there are interesting exploration targets where additional techniques will have to be used.
The Double Star Orbit Initial Value Problem
NASA Astrophysics Data System (ADS)
Hensley, Hagan
2018-04-01
Many precise algorithms exist to find a best-fit orbital solution for a double star system given a good enough initial value. Desmos is an online graphing calculator tool with extensive capabilities to support animations and defining functions. It can provide a useful visual means of analyzing double star data to arrive at a best guess approximation of the orbital solution. This is a necessary requirement before using a gradient-descent algorithm to find the best-fit orbital solution for a binary system.
Deep Reconditioning Testing for near Earth Orbits
NASA Technical Reports Server (NTRS)
Betz, F. E.; Barnes, W. L.
1984-01-01
The problems and benefits of deep reconditioning to near Earth orbit missions with high cycle life and shallow discharge depth requirements is discussed. A simple battery level approach to deep reconditioning of nickel cadmium batteries in near Earth orbit is considered. A test plan was developed to perform deep reconditioning in direct comparison with an alternative trickle charge approach. The results demonstrate that the deep reconditioning procedure described for near Earth orbit application is inferior to the alternative of trickle charging.
Advances in the management of orbital fractures.
Nguyen, P N; Sullivan, P
1992-01-01
Great progress has been made in both the basic science and the clinical knowledge base used in orbital reconstruction. With this, increasing complex orbital reconstructive problems are better managed. The diagnosis, treatment plan, and the actual reconstruction have evolved to a higher level. Several areas of progress are of note: the greater appreciation of the intimate relation between the bony orbit's shape and the position of the globe; application of computer technology in orbital injuries; effect of rigid fixation on autogenous and alloplastic graft; and the use of advanced biocompatible synthetic materials in orbital reconstruction. Although this progress has great impact on treatment of orbital injuries, there are many unanswered challenges in the treatment of the fragile frame of the window to the human soul.
Trajectory design for Saturnian Ocean Worlds orbiters using multidimensional Poincaré maps
NASA Astrophysics Data System (ADS)
Davis, Diane Craig; Phillips, Sean M.; McCarthy, Brian P.
2018-02-01
Missions based on low-energy orbits in the vicinity of planetary moons, such as Titan or Enceladus, involve significant end-to-end trajectory design challenges due to the gravitational effects of the distant larger primary. To address these challenges, the current investigation focuses on the visualization and use of multidimensional Poincaré maps to perform preliminary design of orbits with significant out-of-plane components, including orbits that provide polar coverage. Poincaré maps facilitate the identification of families of solutions to a given orbit problem and provide the ability to easily respond to changing inputs and requirements. A visual-based design process highlights a variety of trajectory options near Saturn's ocean worlds, including both moon-centered orbits and libration point orbits.
Orbital Transfer Techniques for Round-Trip Mars Missions
NASA Technical Reports Server (NTRS)
Landau, Damon
2013-01-01
The human exploration of Phobos and Deimos or the retrieval of a surface sample launched to low-Mars orbit presents a highly constrained orbital transfer problem. In general, the plane of the target orbit will not be accessible from the arrival or departure interplanetary trajectories with an (energetically optimal) tangential burn at periapsis. The orbital design is further complicated by the addition of a high-energy parking orbit for the relatively massive Deep Space Vehicle to reduce propellant expenditure, while the crew transfers to and from the target orbit in a smaller Space Exploration Vehicle. The proposed strategy shifts the arrival and departure maneuvers away from periapsis so that the apsidal line of the parking orbit lies in the plane of the target orbit, permitting highly efficient plane change maneuvers at apoapsis of the elliptical parking orbit. An apsidal shift during the arrival or departure maneuver is approximately five times as efficient as maneuvering while in Mars orbit, thus significantly reducing the propellant necessary to transfer between the arrival, target, and departure orbits.
Discovery of orbital decay in SMC X-1
NASA Technical Reports Server (NTRS)
Levine, A.; Rappaport, S.; Boynton, P.; Deeter, J.; Nagase, F.
1992-01-01
The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system.
Accuracy of Satellite Optical Observations and Precise Orbit Determination
NASA Astrophysics Data System (ADS)
Shakun, L.; Koshkin, N.; Korobeynikova, E.; Strakhova, S.; Dragomiretsky, V.; Ryabov, A.; Melikyants, S.; Golubovskaya, T.; Terpan, S.
The monitoring of low-orbit space objects (LEO-objects) is performed in the Astronomical Observatory of Odessa I.I. Mechnikov National University (Ukraine) for many years. Decades-long archives of these observations are accessible within Ukrainian network of optical observers (UMOS). In this work, we give an example of orbit determination for the satellite with the 1500-km height of orbit based on angular observations in our observatory (Int. No. 086). For estimation of the measurement accuracy and accuracy of determination and propagation of satellite position, we analyze the observations of Ajisai satellite with the well-determined orbit. This allows making justified conclusions not only about random errors of separate measurements, but also to analyze the presence of systematic errors, including external ones to the measurement process. We have shown that the accuracy of one measurement has the standard deviation about 1 arcsec across the track and 1.4 arcsec along the track and systematical shifts in measurements of one track do not exceed 0.45 arcsec. Ajisai position in the interval of the orbit fitting is predicted with accuracy better than 30 m along the orbit and better than 10 m across the orbit for any its point.
OSO-6 Orbiting Solar Observatory
NASA Technical Reports Server (NTRS)
1972-01-01
The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.
Novelli, Giorgio; Gramegna, Marco; Tonellini, Gabriele; Valente, Gabriella; Boni, Pietro; Bozzetti, Alberto; Sozzi, Davide
2016-09-01
Osteoblastoma is a benign tumor of bone, representing less than 1% of bone tumors. Craniomaxillofacial localizations account for up to 15% of the total and frequently involve the posterior mandible. Endo-orbital localization is very rare, with most occurring in young patients. Very few of these tumors become malignant. Orbital localization requires radical removal of the tumor followed by careful surgical reconstruction of the orbit to avoid subsequent aesthetic or functional problems. Here, we present a clinical case of this condition and describe a surgical protocol that uses and integrates state-of-the art technologies to achieve orbital reconstruction.
Orbit determination support of the Ocean Topography Experiment (TOPEX)/Poseidon operational orbit
NASA Technical Reports Server (NTRS)
Schanzle, A. F.; Rovnak, J. E.; Bolvin, D. T.; Doll, C. E.
1993-01-01
The Ocean Topography Experiment (TOPEX/Poseidon) mission is designed to determine the topography of the Earth's sea surface over a 3-year period, beginning shortly after launch in July 1992. TOPEX/Poseidon is a joint venture between the United States National Aeronautics and Space Administration (NASA) and the French Centre Nationale d'Etudes Spatiales. The Jet Propulsion Laboratory is NASA's TOPEX/Poseidon project center. The Tracking and Data Relay Satellite System (TDRSS) will nominally be used to support the day-to-day orbit determination aspects of the mission. Due to its extensive experience with TDRSS tracking data, the NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) will receive and process TDRSS observational data. To fulfill the scientific goals of the mission, it is necessary to achieve and maintain a very precise orbit. The most stringent accuracy requirements are associated with planning and evaluating orbit maneuvers, which will place the spacecraft in its mission orbit and maintain the required ground track. To determine if the FDF can meet the TOPEX/Poseidon maneuver accuracy requirements, covariance analysis was undertaken with the Orbit Determination Error Analysis System (ODEAS). The covariance analysis addressed many aspects of TOPEX/Poseidon orbit determination, including arc length, force models, and other processing options. The most recent analysis has focused on determining the size of the geopotential field necessary to meet the maneuver support requirements. Analysis was undertaken with the full 50 x 50 Goddard Earth Model (GEM) T3 field as well as smaller representations of this model.
Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks
NASA Astrophysics Data System (ADS)
Li, Xingxing; Yuan, Yongqiang; Zhu, Yiting; Huang, Jiande; Wu, Jiaqi; Xiong, Yun; Zhang, Xiaohong; Li, Xin
2018-04-01
In this contribution, we focus on the precise orbit determination (POD) for BDS3 experimental satellites with the international GNSS Monitoring and Assessment System (iGMAS) and Multi-GNSS Experiment (MGEX) tracking networks. The datasets of DOY (day of year) 001-230 in 2017 are analyzed with different processing strategies. By comparing receiver clock biases and receiver B1I-B3I DCBs, it is confirmed that there is no obvious systematic bias between experimental BDS3 and BDS2 in the common B1I and B3I signals, which indicates that experimental BDS3 and BDS2 can be treated as one system when performing combined POD. With iGMAS-only BDS3 stations, the 24-h overlap RMS of BDS3 + BDS2 + GPS combined POD is 24.3, 16.1 and 8.4 cm in along-track, cross-track and radial components, which is better than BDS3-only POD by 80-90% and better than BDS3+BDS2 combined POD by about 10%. With more stations (totally 20 stations from both iGMAS and MGEX) and the proper ambiguity resolution strategy (GEO ambiguities are float and BDS3 ambiguities are fixed), the performance of BDS3 POD can be further improved to 14.6, 7.9 and 3.7 cm, respectively, in along-track, cross-track and radial components, which is comparable to the performance of BDS2 POD. The 230-day SLR validations of C32, C33 and C34 show that the mean differences of - 3.48 , 7.81 and 8.19 cm can be achieved, while the STD is 13.35, 13.46 and 13.11 cm, respectively. Furthermore, the 230-day overlap comparisons reveal that C31 most likely still uses an orbit-normal mode and exhibits similar orbit modeling problems in orbit-normal periods as found in most of the BDS2 satellites.
NASA Technical Reports Server (NTRS)
Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike
2007-01-01
This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.
NASA Technical Reports Server (NTRS)
Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika
2007-01-01
This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.
Art Concepts- Skylab (Sun Shade)
1973-05-18
S73-26127 (1973) --- An artist's concept of the Skylab space station cluster in Earth orbit illustrating the deployment of the twin pole thermal shield to shade the Orbital Workshop (OWS) from the sun. This is one of the sunshade possibilities considered to solve the problem of the overheated OWS. Here the two Skylab 2 astronauts have completely deployed the sunshade. Note the evidence of another Skylab problem - the solar panels on the OWS are not deployed as required. Photo credit: NASA
Robust on-off pulse control of flexible space vehicles
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi
1993-01-01
The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.
NASA Technical Reports Server (NTRS)
Murad, P. A.
1993-01-01
Tsien's method is extended to treat the orbital motion of a body undergoing accelerations and decelerations. A generalized solution is discussed for the generalized case where a body undergoes azimuthal and radial thrust and the problem is further simplified for azimuthal thrust alone. Judicious selection of thrust could generate either an elliptic or hyperbolic trajectory. This is unexpected especially when the body has only enough energy for a lower state trajectory. The methodology is extended treating the problem of vehicle thrust for orbiting a sphere and vehicle thrust within the classical restricted three-body problem. Results for the latter situation can produce hyperbolic trajectories through eigen value decomposition. Since eigen values for no-thrust can be imaginary, thrust can generate real eigen values to describe hyperbolic trajectories. Keplerian dynamics appears to represent but a small subset of a much larger non-Keplerian domain especially when thrust effects are considered. The need for high thrust long duration space-based propulsion systems for changing a trajectory's canonical form is clearly demonstrated.
NASA Astrophysics Data System (ADS)
Lynam, Alfred E.
2014-01-01
Triple-satellite-aided capture employs gravity-assist flybys of three of the Galilean moons of Jupiter in order to decrease the amount of ΔV required to capture a spacecraft into Jupiter orbit. Similarly, triple flybys can be used within a Jupiter satellite tour to rapidly modify the orbital parameters of a Jovicentric orbit, or to increase the number of science flybys. In order to provide a nearly comprehensive search of the solution space of Callisto-Ganymede-Io triple flybys from 2024 to 2040, a third-order, Chebyshev's method variant of the p-iteration solution to Lambert's problem is paired with a second-order, Newton-Raphson method, time of flight iteration solution to the V∞-matching problem. The iterative solutions of these problems provide the orbital parameters of the Callisto-Ganymede transfer, the Ganymede flyby, and the Ganymede-Io transfer, but the characteristics of the Callisto and Io flybys are unconstrained, so they are permitted to vary in order to produce an even larger number of trajectory solutions. The vast amount of solution data is searched to find the best triple-satellite-aided capture window between 2024 and 2040.
Resonant dynamics of gravitationally bound pair of binaries: the case of 1:1 resonance
NASA Astrophysics Data System (ADS)
Breiter, Slawomir; Vokrouhlický, David
2018-04-01
The work presents a study of the 1:1 resonance case in a hierarchical quadruple stellar system of the 2+2 type. The resonance appears if orbital periods of both binaries are approximately equal. It is assumed that both periods are significantly shorter than the period of principal orbit of one binary with respect to the other. In these circumstances, the problem can be treated as three independent Kepler problems perturbed by mutual gravitational interactions. By means of canonical perturbation methods, the planar problem is reduced to a secular system with 1 degree of freedom involving a resonance angle (the difference of mean longitudes of the binaries) and its conjugate momentum (involving the ratio of orbital period in one binary to the period of principal orbit). The resonant model is supplemented with short periodic perturbations expressions, and verified by the comparison with numerical integration of the original equations of motion. Estimates of the binaries periods variations indicate that the effect is rather weak, but possibly detectible if it occurs in a moderately compact system. However, the analysis of resonance capture scenarios implies that the 1:1 resonance should be exceptional amongst the 2+2 quadruples.
The Torino Impact Hazard Scale
NASA Astrophysics Data System (ADS)
Binzel, Richard P.
2000-04-01
Newly discovered asteroids and comets have inherent uncertainties in their orbit determinations owing to the natural limits of positional measurement precision and the finite lengths of orbital arcs over which determinations are made. For some objects making predictable future close approaches to the Earth, orbital uncertainties may be such that a collision with the Earth cannot be ruled out. Careful and responsible communication between astronomers and the public is required for reporting these predictions and a 0-10 point hazard scale, reported inseparably with the date of close encounter, is recommended as a simple and efficient tool for this purpose. The goal of this scale, endorsed as the Torino Impact Hazard Scale, is to place into context the level of public concern that is warranted for any close encounter event within the next century. Concomitant reporting of the close encounter date further conveys the sense of urgency that is warranted. The Torino Scale value for a close approach event is based upon both collision probability and the estimated kinetic energy (collision consequence), where the scale value can change as probability and energy estimates are refined by further data. On the scale, Category 1 corresponds to collision probabilities that are comparable to the current annual chance for any given size impactor. Categories 8-10 correspond to certain (probability >99%) collisions having increasingly dire consequences. While close approaches falling Category 0 may be no cause for noteworthy public concern, there remains a professional responsibility to further refine orbital parameters for such objects and a figure of merit is suggested for evaluating such objects. Because impact predictions represent a multi-dimensional problem, there is no unique or perfect translation into a one-dimensional system such as the Torino Scale. These limitations are discussed.
Orbits of Two-Body Problem From the Lenz Vector
ERIC Educational Resources Information Center
Caplan, S.; And Others
1978-01-01
Obtains the orbits with reference to the center of mass of two bodies under mutual universe square law interaction by use of the eccentricity vector which is equivalent to the Lenz vector within a numerical factor. (Author/SL)
Secular Orbit Evolution in Systems with a Strong External Perturber—A Simple and Accurate Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrade-Ines, Eduardo; Eggl, Siegfried, E-mail: eandrade.ines@gmail.com, E-mail: siegfried.eggl@jpl.nasa.gov
We present a semi-analytical correction to the seminal solution for the secular motion of a planet’s orbit under gravitational influence of an external perturber derived by Heppenheimer. A comparison between analytical predictions and numerical simulations allows us to determine corrective factors for the secular frequency and forced eccentricity in the coplanar restricted three-body problem. The correction is given in the form of a polynomial function of the system’s parameters that can be applied to first-order forced eccentricity and secular frequency estimates. The resulting secular equations are simple, straight forward to use, and improve the fidelity of Heppenheimers solution well beyond higher-ordermore » models. The quality and convergence of the corrected secular equations are tested for a wide range of parameters and limits of its applicability are given.« less
Numerical solution of the geoelectrodynamic problem
NASA Technical Reports Server (NTRS)
Cain, Joseph C.
1990-01-01
The primary goal is to understand the sources of the near-Earth ambient magnetic field as observed by recent spacecraft surveys and surface variational magnetic observations so as to determine the electrical properties of the crust and upper mantle. Also included is the structure and changes on a short time scale of the core field which must be separated and identified. The Magsat data collection interval provides an opportunity to compare the vector field projections of ionospheric currents computed from surface data above the ionosphere as does the POGO data for scalar projections. The limitation of Magsat is its sun-synchronous orbit, which only sampled low latitudes at dawn and dusk, whereas POGO, though only making observations of the scalar field, sampled all local times. Magsat operated at a lower altitude than POGO (down to 350 km) whereas the orbits of the three POGO spacecraft ranged up to 1500 km and were never lower than about 400 km.
High voltage plasma sheath analysis related to TSS-1
NASA Technical Reports Server (NTRS)
Sheldon, John W.
1991-01-01
On the first mission of the Tethered Satellite System (TSS-1), a 1.8 m diameter spherical satellite will be deployed a distance of 20 km above the space shuttle Orbiter on an insulated conducting tether. The satellite will be held at electric potentials up to 5000 volts positive with respect to the ambient plasma. Due to the passage of the conducting tether through the Earth's magnetic field, an emf will be created, driving electrons down the tether to the orbiter, out through an electron gun into the ionosphere and back into the positive biased satellite. Instrumentation on the satellite will measure electron flow to the surface at several locations, but these detectors have a limited range of acceptance angle. The problem addressed herein is the determination of the electron current distribution over the satellite surface and the angle of incidence of the incoming electrons relative to the surface normal.
Neoclassical orbit calculations with a full-f code for tokamak edge plasmas
NASA Astrophysics Data System (ADS)
Rognlien, T. D.; Cohen, R. H.; Dorr, M.; Hittinger, J.; Xu, X. Q.; Collela, P.; Martin, D.
2008-11-01
Ion distribution function modifications are considered for the case of neoclassical orbit widths comparable to plasma radial-gradient scale-lengths. Implementation of proper boundary conditions at divertor plates in the continuum TEMPEST code, including the effect of drifts in determining the direction of total flow, enables such calculations in single-null divertor geometry, with and without an electrostatic potential. The resultant poloidal asymmetries in densities, temperatures, and flows are discussed. For long-time simulations, a slow numerical instability develops, even in simplified (circular) geometry with no endloss, which aids identification of the mixed treatment of parallel and radial convection terms as the cause. The new Edge Simulation Laboratory code, expected to be operational, has algorithmic refinements that should address the instability. We will present any available results from the new code on this problem as well as geodesic acoustic mode tests.
Quasi-Tangency Points on the Orbits of a Small Body and a Planet at the Low-Velocity Encounter
NASA Astrophysics Data System (ADS)
Emel'yanenko, N. Yu.
2018-03-01
We propose a method for selecting a low-velocity encounter of a small body with a planet from the evolution of the orbital elements. Polar orbital coordinates of the quasi-tangency point on the orbit of a small body are determined. Rectangular heliocentric coordinates of the quasi-tangency point on the orbit of a planet are determined. An algorithm to search for low-velocity encounters in the evolution of the orbital elements of small bodies is described. The low-velocity encounter of comet 39P/Oterma with Jupiter is considered as an example.
Particle orbits in model current sheet with a nonzero B(y) component
NASA Technical Reports Server (NTRS)
Zhu, Zhongwei; Parks, George
1993-01-01
The problem of charged particle motions in magnetotaillike model current sheets is revisited with the inclusion of a nonzero dawn-dusk magnetic field component. Three cases are examined considering both trapped and escaped orbits. The results show that a nonzero B(y) component disturbs the particle orbits by destroying orbit symmetry in the phase space about the z = 0 plane. It also changes the bounce frequency of particle orbits. The presence of B(y) thus modifies the Speiser orbits, particularly near the ejection phase. The process of ejected particle such as ejection direction, ejection velocity, and pitch angles are shown to depend on the sign of the charge.
Optimal design of the satellite constellation arrangement reconfiguration process
NASA Astrophysics Data System (ADS)
Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid
2016-08-01
In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.
Seasonal Variations of the James Webb Space Telescope Orbital Dynamics
NASA Technical Reports Server (NTRS)
Brown, Jonathan; Petersen, Jeremy; Villac, Benjamin; Yu, Wayne
2015-01-01
While spacecraft orbital variations due to the Earth's tilt and orbital eccentricity are well-known phenomena, the implications for the James Webb Space Telescope present unique features. We investigate the variability of the observatory trajectory characteristics, and present an explanation of some of these effects using invariant manifold theory and local approximation of the dynamics in terms of the restricted three-body problem.
NASA Technical Reports Server (NTRS)
Fuchs, A. J. (Editor)
1979-01-01
Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.
Singular Optimal Controls of Rocket Motion (Survey)
NASA Astrophysics Data System (ADS)
Kiforenko, B. N.
2017-05-01
Survey of modern state and discussion of problems of the perfection of methods of investigation of variational problems with a focus on mechanics of space flight are presented. The main attention is paid to the enhancement of the methods of solving of variational problems of rocket motion in the gravitational fields, including rocket motion in the atmosphere. These problems are directly connected with the permanently actual problem of the practical astronautics to increase the payload that is orbited by the carrier rockets in the circumplanetary orbits. An analysis of modern approaches to solving the problems of control of rockets and spacecraft motion on the trajectories with singular arcs that are optimal for the motion of the variable mass body in the medium with resistance is given. The presented results for some maneuvers can serve as an information source for decision making on designing promising rocket and space technology
High voltage space plasma interactions. [charging the solar power satellites
NASA Technical Reports Server (NTRS)
Mccoy, J. E.
1980-01-01
Two primary problems resulted from plasma interactions; one of concern to operations in geosynchronous orbit (GEO), the other in low orbits (LEO). The two problems are not the same. Spacecraft charging has become widely recognized as a problem, particularly for communications satellites operating in GEO. The very thin thermal plasmas at GEO are insufficient to bleed off voltage buildups due to higher energy charged particle radiation collected on outer surfaces. Resulting differential charging/discharging causes electrical transients, spurious command signals and possible direct overload damage. An extensive NASA/Air Force program has been underway for several years to address this problem. At lower altitudes, the denser plasmas of the plasmasphere/ionosphere provide sufficient thermal current to limit such charging to a few volts or less. Unfortunately, these thermal plasma currents which solve the GEO spacecraft charging problem can become large enough to cause just the opposite problem in LEO.
PCVs Estimation and their Impacts on Precise Orbit Determination of LEOs
NASA Astrophysics Data System (ADS)
Chunmei, Z.; WANG, X.
2017-12-01
In the last decade the precise orbit determination (POD) based on GNSS, such as GPS, has been considered as one of the efficient methods to derive orbits of Low Earth Orbiters (LEOs) that demand accuracy requirements. The Earth gravity field recovery and its related researches require precise dynamic orbits of LEOs. With the improvements of GNSS satellites' orbit and clock accuracy, the algorithm optimization and the refinement of perturbation force models, the antenna phase-center variations (PCVs) of space-borne GNSS receiver have become an increasingly important factor that affects POD accuracy. A series of LEOs such as HY-2, ZY-3 and FY-3 with homebred space-borne GNSS receivers have been launched in the past several years in China. Some of these LEOs load dual-mode GNSS receivers of GPS and BDS signals. The reliable performance of these space-borne receivers has been establishing an important foundation for the future launches of China gravity satellites. Therefore, we first evaluate the data quality of on-board GNSS measurement by examining integrity, multipath error, cycle slip ratio and other quality indices. Then we determine the orbits of several LEOs at different altitudes by the reduced dynamic orbit determination method. The corresponding ionosphere-free carrier phase post-fit residual time series are obtained. And then we establish the PCVs model by the ionosphere-free residual approach and analyze the effects of antenna phase-center variation on orbits. It is shown that orbit accuracy of LEO satellites is greatly improved after in-flight PCV calibration. Finally, focus on the dual-mode receiver of FY-3 satellite we analyze the quality of onboard BDS data and then evaluate the accuracy of the FY-3 orbit determined using only BDS measurement onboard. The accuracy of LEO satellites orbit based on BDS would be well improved with the global completion of BDS by 2020.
Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments
NASA Astrophysics Data System (ADS)
Vaquero Escribano, Tatiana Mar
Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems. In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is also examined. To add versatility to the proposed design method, a system translation technique enables the straightforward transition of solutions from the Earth-Moon system to any Sun-planet or planet-moon three-body system. The circular restricted three-body problem serves as a basis to quickly generate solutions that meet specific requirements, but candidate transfer trajectories are then transitioned to an ephemeris model for validation.
Sinus involvement in inflammatory orbital pseudotumor.
Eshaghian, J; Anderson, R L
1981-04-01
Orbital pseudotumor is a difficult diagnosis to establish preoperatively. The relationship between sinus disease and orbital pseudotumor is controversial. We describe two patients with unilateral proptosis, diplopia, palpable orbital masses, ocular discomfort, and sinus problems of short duration. Echographically, both had low reflective masses in the orbit and the adjacent sinuses. Roentgenograms and echograms were interpreted as showing erosion of the bony orbital wall. A presumptive diagnosis of sinus malignant neoplasm with orbital extension was made. Sinus histopathologic examination in one case and nasal histopathologic examination in the other showed chronic inflammatory changes compatible with the diagnosis of pseudotumor. At orbitotomy, one patient had vessels communicating between the orbital and sinus lesions, and both patients had irregular pitting of the bone next to the histologically proved orbital pseudotumors. The lytic erosive changes predicted preoperatively were not present. Simultaneous orbital and sinus pseudotumors seem to be a distinct clinicopathologic entity. Those concerned with the diagnosis and management of orbital disease should be aware of this entity.
Optimal Low Energy Earth-Moon Transfers
NASA Technical Reports Server (NTRS)
Griesemer, Paul Ricord; Ocampo, Cesar; Cooley, D. S.
2010-01-01
The optimality of a low-energy Earth-Moon transfer is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the ballistic lunar capture trajectory is examined to determine whether one or more additional impulses may improve on the cost of the transfer.
Sun-Earth L1 Region Halo-To-Halo Orbit and Halo-To-LisaJous Orbit Transfers
NASA Technical Reports Server (NTRS)
Roberts, Craig E.; DeFazio, Robert
2004-01-01
Practical techniques for designing transfer trajectories between Libration Point Orbits (LPOs) are presented. Motivation for development of these techniques was provided by a hardware contingency experienced by the Solar Heliospheric Observatory (SOHO), a joint mission of the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) orbiting the L1 point of the Sun-Earth system. A potential solution to the problem involved a transfer from SOHO s periodic halo orbit to a new LPO of substantially different dimensions. Assuming the SOHO halo orbit as the departure orbit, several practical LPO transfer techniques were developed to obtain new Lissajous or periodic halo orbits that satisfy mission requirements and constraints. While not implemented for the SOHO mission, practical LPO transfer techniques were devised that are generally applicable to current and future LPO missions.
Optimal reentry prediction of space objects from LEO using RSM and GA
NASA Astrophysics Data System (ADS)
Mutyalarao, M.; Raj, M. Xavier James
2012-07-01
The accurate estimation of the orbital life time (OLT) of decaying near-Earth objects is of considerable importance for the prediction of risk object re-entry time and hazard assessment as well as for mitigation strategies. Recently, due to the reentries of large number of risk objects, which poses threat to the human life and property, a great concern is developed in the space scientific community all over the World. The evolution of objects in Low Earth Orbit (LEO) is determined by a complex interplay of the perturbing forces, mainly due to atmospheric drag and Earth gravity. These orbits are mostly in low eccentric (eccentricity < 0.2) and have variations in perigee and apogee altitudes due to perturbations during a revolution. The changes in the perigee and apogee altitudes of these orbits are mainly due to the gravitational perturbations of the Earth and the atmospheric density. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. Further the re-entry time of the objects in such orbits is sensitive to the initial conditions. In this paper the problem of predicting re-entry time is attempted as an optimal estimation problem. It is known that the errors are more in eccentricity for the observations based on two line elements (TLEs). Thus two parameters, initial eccentricity and ballistic coefficient, are chosen for optimal estimation. These two parameters are computed with response surface method (RSM) using a genetic algorithm (GA) for the selected time zones, based on rough linear variation of response parameter, the mean semi-major axis during orbit evolution. Error minimization between the observed and predicted mean Semi-major axis is achieved by the application of an optimization algorithm such as Genetic Algorithm (GA). The basic feature of the present approach is that the model and measurement errors are accountable in terms of adjusting the ballistic coefficient and eccentricity. The methodology is tested with the recently reentered objects ROSAT and PHOBOS GRUNT satellites. The study reveals a good agreement with the actual reentry time of these objects. It is also observed that the absolute percentage error in re-entry prediction time for all the two objects is found to be very less. Keywords: low eccentric, Response surface method, Genetic algorithm, apogee altitude, Ballistic coefficient
DORIS/Jason-2: Better than 10 cm on-board orbits available for Near-Real-Time Altimetry
NASA Astrophysics Data System (ADS)
Jayles, C.; Chauveau, J. P.; Rozo, F.
2010-12-01
DIODE (DORIS Immediate Orbit on-board Determination) is a real-time on-board orbit determination software, embedded in the DORIS receiver. The purpose of this paper is to focus on DIODE performances. After a description of the recent DORIS evolutions, we detail how compliance with specifications are verified during extensive ground tests before the launch, then during the in-flight commissioning phase just after the launch, and how well they are met in the routine phase and today. Future improvements are also discussed for Jason-2 as well as for the next missions. The complete DORIS ground validation using DORIS simulator and new DORIS test equipments has shown prior to the Jason-2 flight that every functional requirement was fulfilled, and also that better than 10 cm real-time DIODE orbits would be achieved on-board Jason-2. The first year of Jason-2 confirmed this, and after correction of a slowly evolving polar motion error at the end of the commissioning phase, the DIODE on-board orbits are indeed better than the 10 cm specification: in the beginning of the routine phase, the discrepancy was already 7.7 cm Root-Mean-Square (RMS) in the radial component as compared to the final Precise Orbit Ephemerides (POE) orbit. Since the first day of Jason-2 cycle 1, the real-time DIODE orbits have been delivered in the altimetry fast delivery products. Their accuracy and their 100% availability make them a key input to fairly precise Near-Real-Time Altimetry processing. Time-tagging is at the microsecond level. In parallel, a few corrections (quaternion problem) and improvements have been gathered in an enhanced version of DIODE, which is already implemented and validated. With this new version, a 5 cm radial accuracy is achieved during ground validation over more than Jason-2 first year (cycles 1-43, from July 12th, 2008 to September 11th, 2009). The Seattle Ocean Surface Topography Science Team Meeting (OSTST) has recommended an upload of this v4.02 version on-board Jason-2 in order to take benefit from more accurate real-time orbits. For the future, perhaps the most important point of this work is that a 9 mm consistency is observed on-ground between simulated and adjusted orbits, proving that the DORIS measurement is very precisely and properly modelled in the DIODE navigation software. This implies that improvement of DIODE accuracy is still possible and should be driven by enhancement of the physical models: forces and perturbations of the satellite movement, Radio/Frequency phenomena perturbing measurements. A 2-cm accuracy is possible with future versions, if analysis and model improvements continue to progress.
NASA Technical Reports Server (NTRS)
Forcey, W.; Minnie, C. R.; Defazio, R. L.
1995-01-01
The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design
NASA Technical Reports Server (NTRS)
Gomez, G.; Koon, W. S.; Lo, Martin W.; Marsden, J. E.; Masdemont, J.; Ross, S. D.
2001-01-01
The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold 'tubes' associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as 'Petit Grand Tour' of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case.
Optimal orbit transfer suitable for large flexible structures
NASA Technical Reports Server (NTRS)
Chatterjee, Alok K.
1989-01-01
The problem of continuous low-thrust planar orbit transfer of large flexible structures is formulated as an optimal control problem with terminal state constraints. The dynamics of the spacecraft motion are treated as a point-mass central force field problem; the thrust-acceleration magnitude is treated as an additional state variable; and the rate of change of thrust-acceleration is treated as a control variable. To ensure smooth transfer, essential for flexible structures, an additional quadratic term is appended to the time cost functional. This term penalizes any abrupt change in acceleration. Numerical results are presented for the special case of a planar transfer.
NASA Astrophysics Data System (ADS)
Lee, Dae Young
The design of a small satellite is challenging since they are constrained by mass, volume, and power. To mitigate these constraint effects, designers adopt deployable configurations on the spacecraft that result in an interesting and difficult optimization problem. The resulting optimization problem is challenging due to the computational complexity caused by the large number of design variables and the model complexity created by the deployables. Adding to these complexities, there is a lack of integration of the design optimization systems into operational optimization, and the utility maximization of spacecraft in orbit. The developed methodology enables satellite Multidisciplinary Design Optimization (MDO) that is extendable to on-orbit operation. Optimization of on-orbit operations is possible with MDO since the model predictive controller developed in this dissertation guarantees the achievement of the on-ground design behavior in orbit. To enable the design optimization of highly constrained and complex-shaped space systems, the spherical coordinate analysis technique, called the "Attitude Sphere", is extended and merged with an additional engineering tools like OpenGL. OpenGL's graphic acceleration facilitates the accurate estimation of the shadow-degraded photovoltaic cell area. This technique is applied to the design optimization of the satellite Electric Power System (EPS) and the design result shows that the amount of photovoltaic power generation can be increased more than 9%. Based on this initial methodology, the goal of this effort is extended from Single Discipline Optimization to Multidisciplinary Optimization, which includes the design and also operation of the EPS, Attitude Determination and Control System (ADCS), and communication system. The geometry optimization satisfies the conditions of the ground development phase; however, the operation optimization may not be as successful as expected in orbit due to disturbances. To address this issue, for the ADCS operations, controllers based on Model Predictive Control that are effective for constraint handling were developed and implemented. All the suggested design and operation methodologies are applied to a mission "CADRE", which is space weather mission scheduled for operation in 2016. This application demonstrates the usefulness and capability of the methodology to enhance CADRE's capabilities, and its ability to be applied to a variety of missions.
NASA Technical Reports Server (NTRS)
Marr, Greg C.
2003-01-01
The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.
Dynamics of Dust Particles Released from Oort Cloud Comets and Their Contribution to Radar Meteors
NASA Technical Reports Server (NTRS)
Nesvorny, David; Vokrouhlicky, David; Pokorny, Petr; Janches, Diego
2012-01-01
The Oort Cloud Comets (OCCs), exemplified by the Great Comet of 1997 (Hale-Bopp), are occasional visitors from the heatless periphery of the solar system. Previous works hypothesized that a great majority of OCCs must physically disrupt after one or two passages through the inner solar system, where strong thermal gradients can cause phase transitions or volatile pressure buildup. Here we study the fate of small debris particles produced by OCC disruptions to determine whether the imprints of a hypothetical population of OCC meteoroids can be found in the existing meteor radar data. We find that OCC particles with diameters D < or approx. 10 microns are blown out from the solar system by radiation pressure, while those with D > or approx. 1 mm have a very low Earth-impact probability. The intermediate particle sizes, D approx. 100 microns represent a sweet spot. About 1% of these particles orbitally evolve by Poynting-Robertson drag to reach orbits with semimajor axis a approx. 1 AU. They are expected to produce meteors with radiants near the apex of the Earth s orbital motion. We find that the model distributions of their impact speeds and orbits provide a good match to radar observations of apex meteors, except for the eccentricity distribution, which is more skewed toward e approx. 1 in our model. Finally, we propose an explanation for the long-standing problem in meteor science related to the relative strength of apex and helion/antihelion sources. As we show in detail, the observed trend, with the apex meteors being more prominent in observations of highly sensitive radars, can be related to orbital dynamics of particles released on the long-period orbits.
How can periodic orbits puzzle out the coexistence of terrestrial planets with giant eccentric ones?
NASA Astrophysics Data System (ADS)
Antoniadou, K. I.; Libert, A.-S.
2017-09-01
Hitherto unprecedented detections of exoplanets have been triggered by missions and ground based telescopes. The quest of ``exo-Earths'' has become intriguing and the long-term stability of planetary orbits is a crucial factor for the biosphere to evolve. Planets in mean-motion resonances (MMRs) prompt the investigation of the dynamics in the framework of the three-body problem, where the families of stable periodic orbits constitute the backbone of stability domains in phase space. In this talk, we address the question of the possible coexistence of terrestrial planets with a giant companion on circular or eccentric orbit and explore the extent of the stability regions, when both the eccentricity of the outer giant planet and the semi-major axis of the inner terrestrial one vary, i.e. we investigate both non-resonant and resonant configurations. The families of periodic orbits in the restricted three-body problem are computed for the 3/2, 2/1, 5/2, 3/1, 4/1 and 5/1 MMRs. We then construct maps of dynamical stability (DS-maps) to identify the boundaries of the stability domains where such a coexistence is allowed. Guided by the periodic orbits, we delve into regular motion in phase space and propose the essential values of the orbital elements, in order for such configurations to survive long time spans and hence, for observations to be complemented or revised.
NASA Astrophysics Data System (ADS)
Polyakhova, Elena; Shmyrov, Alexander; Shmyrov, Vasily
2018-05-01
Orbital maneuvering in a neighborhood of the collinear libration point L1 of Sun-Earth system has specific properties, primarily associated with the instability L1. For a long stay in this area of space the stabilization problem of orbital motion requires a solution. Numerical experiments have shown that for stabilization of motion it is requires very small control influence in comparison with the gravitational forces. On the other hand, the stabilization time is quite long - months, and possibly years. This makes it highly desirable to use solar pressure forces. In this paper we illustrate the solar sail possibilities for solving of stabilization problem in a neighborhood L1 with use of the model example.
2015-01-01
between the two positions in the orbit. Although derived by Kepler for orbiting bodies, this method can be used to model and simulate missile...laws in the Lambert and Kepler problems and numerically solving them is the universal formulation method.56 This method allows multiple propagations...Publications, Inc., New York, 1971. 57 The algorithm for the universal formulation of Lambert and the Kepler problem can be found in Vallado, 1997, pp. 262