Sample records for orbit determination support

  1. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, Jennifer; Blizzard, Mike; Robertson, Mike

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC)2. The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  2. Orbit Determination and Navigation of the Time History of Events and Macroscale Interactions during Substorms (THEMIS)

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick; Cosgrove, jennifer; Blizzard, Mike; Nicholson, Ann; Robertson, Mika

    2007-01-01

    This paper provides an overview of the launch and early orbit activities performed by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of five probes comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft. The FDF was tasked to support THEMIS in a limited capacity providing backup orbit determination support for validation purposes for all five THEMIS probes during launch plus 30 days in coordination with University of California Berkeley Flight Dynamics Center (UCB/FDC). The FDF's orbit determination responsibilities were originally planned to be as a backup to the UCB/FDC for validation purposes only. However, various challenges early on in the mission and a Spacecraft Emergency declared thirty hours after launch placed the FDF team in the role of providing the orbit solutions that enabled contact with each of the probes and the eventual termination of the Spacecraft Emergency. This paper details the challenges and various techniques used by the GSFC FDF team to successfully perform orbit determination for all five THEMIS probes during the early mission. In addition, actual THEMIS orbit determination results are presented spanning the launch and early orbit mission phase. Lastly, this paper enumerates lessons learned from the THEMIS mission, as well as demonstrates the broad range of resources and capabilities within the FDF for supporting critical launch and early orbit navigation activities, especially challenging for constellation missions.

  3. Intial orbit determination results for Jason-1: towards a 1-cm orbit

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Haines, B.; Bertiger, W.; Desai, S.; Kuang, D.; Munson, T.; Reichert, A.; Young, L.; Willis, P.

    2002-01-01

    The U.S/France Jason-1 oceanographic mission is carrying state-of-the-art radiometric tracking systems (GPS and Doris) to support precise orbit determination (POD) requirements. The performance of the systems is strongly reflected in the early POD results. Results of both internal and external (e.g., satellite laser ranging) comparisons support that the 2.5 cm radial Rh4S requirement is being readily met, and provide reasons for optimism that 1 cm can be achieved. We discuss the POD strategy underlying these orbits, as well as the challenging issues that bear on the understanding and characterization of an orbit solution at the l-cm level. We also describe a system for producing science quality orbits in near real time in order to support emerging applications in operational oceanography.

  4. An intelligent interface for satellite operations: Your Orbit Determination Assistant (YODA)

    NASA Technical Reports Server (NTRS)

    Schur, Anne

    1988-01-01

    An intelligent interface is often characterized by the ability to adapt evaluation criteria as the environment and user goals change. Some factors that impact these adaptations are redefinition of task goals and, hence, user requirements; time criticality; and system status. To implement adaptations affected by these factors, a new set of capabilities must be incorporated into the human-computer interface design. These capabilities include: (1) dynamic update and removal of control states based on user inputs, (2) generation and removal of logical dependencies as change occurs, (3) uniform and smooth interfacing to numerous processes, databases, and expert systems, and (4) unobtrusive on-line assistance to users of concepts were applied and incorporated into a human-computer interface using artificial intelligence techniques to create a prototype expert system, Your Orbit Determination Assistant (YODA). YODA is a smart interface that supports, in real teime, orbit analysts who must determine the location of a satellite during the station acquisition phase of a mission. Also described is the integration of four knowledge sources required to support the orbit determination assistant: orbital mechanics, spacecraft specifications, characteristics of the mission support software, and orbit analyst experience. This initial effort is continuing with expansion of YODA's capabilities, including evaluation of results of the orbit determination task.

  5. Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael A.; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James

    2007-01-01

    This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF's orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.

  6. Orbit Determination and Navigation of the Solar Terrestrial Relations Observatory (STEREO)

    NASA Technical Reports Server (NTRS)

    Mesarch, Michael; Robertson, Mika; Ottenstein, Neil; Nicholson, Ann; Nicholson, Mark; Ward, Douglas T.; Cosgrove, Jennifer; German, Darla; Hendry, Stephen; Shaw, James

    2007-01-01

    This paper provides an overview of the required upgrades necessary for navigation of NASA's twin heliocentric science missions, Solar TErestrial RElations Observatory (STEREO) Ahead and Behind. The orbit determination of the STEREO spacecraft was provided by the NASA Goddard Space Flight Center's (GSFC) Flight Dynamics Facility (FDF) in support of the mission operations activities performed by the Johns Hopkins University Applied Physics Laboratory (APL). The changes to FDF s orbit determination software included modeling upgrades as well as modifications required to process the Deep Space Network X-band tracking data used for STEREO. Orbit results as well as comparisons to independently computed solutions are also included. The successful orbit determination support aided in maneuvering the STEREO spacecraft, launched on October 26, 2006 (00:52 Z), to target the lunar gravity assists required to place the spacecraft into their final heliocentric drift-away orbits where they are providing stereo imaging of the Sun.

  7. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    NASA Technical Reports Server (NTRS)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  8. Orbit determination support of the Ocean Topography Experiment (TOPEX)/Poseidon operational orbit

    NASA Technical Reports Server (NTRS)

    Schanzle, A. F.; Rovnak, J. E.; Bolvin, D. T.; Doll, C. E.

    1993-01-01

    The Ocean Topography Experiment (TOPEX/Poseidon) mission is designed to determine the topography of the Earth's sea surface over a 3-year period, beginning shortly after launch in July 1992. TOPEX/Poseidon is a joint venture between the United States National Aeronautics and Space Administration (NASA) and the French Centre Nationale d'Etudes Spatiales. The Jet Propulsion Laboratory is NASA's TOPEX/Poseidon project center. The Tracking and Data Relay Satellite System (TDRSS) will nominally be used to support the day-to-day orbit determination aspects of the mission. Due to its extensive experience with TDRSS tracking data, the NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) will receive and process TDRSS observational data. To fulfill the scientific goals of the mission, it is necessary to achieve and maintain a very precise orbit. The most stringent accuracy requirements are associated with planning and evaluating orbit maneuvers, which will place the spacecraft in its mission orbit and maintain the required ground track. To determine if the FDF can meet the TOPEX/Poseidon maneuver accuracy requirements, covariance analysis was undertaken with the Orbit Determination Error Analysis System (ODEAS). The covariance analysis addressed many aspects of TOPEX/Poseidon orbit determination, including arc length, force models, and other processing options. The most recent analysis has focused on determining the size of the geopotential field necessary to meet the maneuver support requirements. Analysis was undertaken with the full 50 x 50 Goddard Earth Model (GEM) T3 field as well as smaller representations of this model.

  9. GEODYN system support program, volume 4. [computer program for trajectory analysis of artificial satellites

    NASA Technical Reports Server (NTRS)

    Mullins, N. E.

    1972-01-01

    The GEODYN Orbit Determination and Geodetic Parameter Estimation System consists of a set of computer programs designed to determine and analyze definitive satellite orbits and their associated geodetic and measurement parameters. This manual describes the Support Programs used by the GEODYN System. The mathematics and programming descriptions are detailed. The operational procedures of each program are presented. GEODYN ancillary analysis programs may be grouped into three different categories: (1) orbit comparison - DELTA (2) data analysis using reference orbits - GEORGE, and (3) pass geometry computations - GROUNDTRACK. All of the above three programs use one or more tapes written by the GEODYN program in either a data reduction or orbit generator run.

  10. Aerodynamic results of a support system interference effects test conducted at NASA/LaRC UPWT using an 0.015-scale model of the configuration 140A/B SSV orbiter (0A20B)

    NASA Technical Reports Server (NTRS)

    Campbell, J. H., II; Embury, W. R.

    1974-01-01

    An experimental aerodynamic investigation was conducted to determine the interference effects of a wind tunnel support system. The test article was a 0.015 scale model of the space shuttle orbiter. The primary objective of the test was to determine the extent that aerodynamic simulation of the space shuttle orbiter is affected by base mounting the model, without nozzles, on a straight sting. Two support systems were tested. The characteristics of the support systems are described. Data from the tests are presented in the form of graphs and tables.

  11. TOPEX/Poseidon precision orbit determination production and expert system

    NASA Technical Reports Server (NTRS)

    Putney, Barbara; Zelensky, Nikita; Klosko, Steven

    1993-01-01

    TOPEX/Poseidon (T/P) is a joint mission between NASA and the Centre National d'Etudes Spatiales (CNES), the French Space Agency. The TOPEX/Poseidon Precision Orbit Determination Production System (PODPS) was developed at Goddard Space Flight Center (NASA/GSFC) to produce the absolute orbital reference required to support the fundamental ocean science goals of this satellite altimeter mission within NASA. The orbital trajectory for T/P is required to have a RMS accuracy of 13 centimeters in its radial component. This requirement is based on the effective use of the satellite altimetry for the isolation of absolute long-wavelength ocean topography important for monitoring global changes in the ocean circulation system. This orbit modeling requirement is at an unprecedented accuracy level for this type of satellite. In order to routinely produce and evaluate these orbits, GSFC has developed a production and supporting expert system. The PODPS is a menu driven system allowing routine importation and processing of tracking data for orbit determination, and an evaluation of the quality of the orbit so produced through a progressive series of tests. Phase 1 of the expert system grades the orbit and displays test results. Later phases undergoing implementation, will prescribe corrective actions when unsatisfactory results are seen. This paper describes the design and implementation of this orbit determination production system and the basis for its orbit accuracy assessment within the expert system.

  12. Submillimeter Wave Astronomy Satellite (SWAS) Launch and Early Orbit Support Experiences

    NASA Technical Reports Server (NTRS)

    Kirschner, S.; Sedlak, J.; Challa, M.; Nicholson, A.; Sande, C.; Rohrbaugh, D.

    1999-01-01

    The Submillimeter Wave Astronomy Satellite (SWAS) was successfully launched on December 6, 1998 at 00:58 UTC. The two year mission is the fourth in the series of Small Explorer (SMEX) missions. SWAS is dedicated to the study of star formation and interstellar chemistry. SWAS was injected into a 635 km by 650 km orbit with an inclination of nearly 70 deg by an Orbital Sciences Corporation Pegasus XL launch vehicle. The Flight Dynamics attitude and navigation teams supported all phases of the early mission. This support included orbit determination, attitude determination, real-time monitoring, and sensor calibration. This paper reports the main results and lessons learned concerning navigation, support software, star tracker performance, magnetometer and gyroscope calibrations, and anomaly resolution. This includes information on spacecraft tip-off rates, first-day navigation problems, target acquisition anomalies, star tracker anomalies, and significant sensor improvements due to calibration efforts.

  13. Orbit determination for ISRO satellite missions

    NASA Astrophysics Data System (ADS)

    Rao, Ch. Sreehari; Sinha, S. K.

    Indian Space Research Organisation (ISRO) has been successful in using the in-house developed orbit determination and prediction software for satellite missions of Bhaskara, Rohini and APPLE. Considering the requirements of satellite missions, software packages are developed, tested and their accuracies are assessed. Orbit determination packages developed are SOIP, for low earth orbits of Bhaskara and Rohini missions, ORIGIN and ODPM, for orbits related to all phases of geo-stationary missions and SEGNIP, for drift and geo-stationary orbits. Software is tested and qualified using tracking data of SIGNE-3, D5-B, OTS, SYMPHONIE satellites with the help of software available with CNES, ESA and DFVLR. The results match well with those available from these agencies. These packages have supported orbit determination successfully throughout the mission life for all ISRO satellite missions. Member-Secretary

  14. Determination of Orbiter and Carrier Aerodynamic Coefficients from Load Cell Measurements

    NASA Technical Reports Server (NTRS)

    Glenn, G. M.

    1976-01-01

    A method of determining orbiter and carrier total aerodynamic coefficients from load cell measurements is required to support the inert and the captive active flights of the ALT program. A set of equations expressing the orbiter and carrier total aerodynamic coefficients in terms of the load cell measurements, the sensed dynamics of the Boeing 747 (carrier) aircraft, and the relative geometry of the orbiter/carrier is derived.

  15. Comparison of TOPEX/Poseidon orbit determination solutions obtained by the Goddard Space Flight Center Flight Dynamics Division and Precision Orbit Determination Teams

    NASA Technical Reports Server (NTRS)

    Doll, C.; Mistretta, G.; Hart, R.; Oza, D.; Cox, C.; Nemesure, M.; Bolvin, D.; Samii, Mina V.

    1993-01-01

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using the Goddard Trajectory Determination System (GTDS) and a real-time extended Kalman filter estimation system to process Tracking Data and Relay Satellite (TDRS) System (TDRSS) measurements in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. GTDS is the operational orbit determination system used by the FDD, and the extended Kalman fliter was implemented in an analysis prototype system, the Real-Time Orbit Determination System/Enhanced (RTOD/E). The Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generates an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the Geodynamics (GEODYN) orbit determination system with laser ranging tracking data. The TOPEX/Poseidon trajectories were estimated for the October 22 - November 1, 1992, timeframe, for which the latest preliminary POD results were available. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch cases were assessed using overlap comparisons, while the sequential cases were assessed with covariances and the first measurement residuals. The batch least-squares and forward-filtered RTOD/E orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 10 meters (m) for the batch least squares and less than 18 m for the sequential estimation solutions. The differences among the POD, GTDS, and RTOD/E solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.

  16. Orbit Determination Support for the Microwave Anisotropy Probe (MAP)

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Truong, Son H.; Cuevas, Osvaldo O.; Slojkowski, Steven

    2003-01-01

    NASA's Microwave Anisotropy Probe (MAP) was launched from the Cape Canaveral Air Force Station Complex 17 aboard a Delta II 7425-10 expendable launch vehicle on June 30, 2001. The spacecraft received a nominal direct insertion by the Delta expendable launch vehicle into a 185-km circular orbit with a 28.7deg inclination. MAP was then maneuvered into a sequence of phasing loops designed to set up a lunar swingby (gravity-assisted acceleration) of the spacecraft onto a transfer trajectory to a lissajous orbit about the Earth-Sun L2 Lagrange point, about 1.5 million km from Earth. Because of its complex orbital characteristics, the mission provided a unique challenge for orbit determination (OD) support in many orbital regimes. This paper summarizes the premission trajectory covariance error analysis, as well as actual OD results. The use and impact of the various tracking stations, systems, and measurements will be also discussed. Important lessons learned from the MAP OD support team will be presented. There will be a discussion of the challenges presented to OD support including the effects of delta-Vs at apogee as well as perigee, and the impact of the spacecraft attitude mode on the OD accuracy and covariance analysis.

  17. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  18. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Beri, A. C.; Doll, C. E.

    1990-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process is activated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  19. Automation of orbit determination functions for National Aeronautics and Space Administration (NASA)-supported satellite missions

    NASA Technical Reports Server (NTRS)

    Mardirossian, H.; Heuerman, K.; Beri, A.; Samii, M. V.; Doll, C. E.

    1989-01-01

    The Flight Dynamics Facility (FDF) at Goddard Space Flight Center (GSFC) provides spacecraft trajectory determination for a wide variety of National Aeronautics and Space Administration (NASA)-supported satellite missions, using the Tracking Data Relay Satellite System (TDRSS) and Ground Spaceflight and Tracking Data Network (GSTDN). To take advantage of computerized decision making processes that can be used in spacecraft navigation, the Orbit Determination Automation System (ODAS) was designed, developed, and implemented as a prototype system to automate orbit determination (OD) and orbit quality assurance (QA) functions performed by orbit operations. Based on a machine-resident generic schedule and predetermined mission-dependent QA criteria, ODAS autonomously activates an interface with the existing trajectory determination system using a batch least-squares differential correction algorithm to perform the basic OD functions. The computational parameters determined during the OD are processed to make computerized decisions regarding QA, and a controlled recovery process isactivated when the criteria are not satisfied. The complete cycle is autonomous and continuous. ODAS was extensively tested for performance under conditions resembling actual operational conditions and found to be effective and reliable for extended autonomous OD. Details of the system structure and function are discussed, and test results are presented.

  20. Operational Challenges In TDRS Post-Maneuver Orbit Determination

    NASA Technical Reports Server (NTRS)

    Laing, Jason; Myers, Jessica; Ward, Douglas; Lamb, Rivers

    2015-01-01

    The GSFC Flight Dynamics Facility (FDF) is responsible for daily and post maneuver orbit determination for the Tracking and Data Relay Satellite System (TDRSS). The most stringent requirement for this orbit determination is 75 meters total position accuracy (3-sigma) predicted over one day for Terra's onboard navigation system. To maintain an accurate solution onboard Terra, a solution is generated and provided by the FDF Four hours after a TDRS maneuver. A number of factors present challenges to this support, such as maneuver prediction uncertainty and potentially unreliable tracking from User satellities. Reliable support is provided by comparing an extended Kalman Filter (estimated using ODTK) against a Batch Least Squares system (estimated using GTDS).

  1. Improved solution accuracy for TDRSS-based TOPEX/Poseidon orbit determination

    NASA Technical Reports Server (NTRS)

    Doll, C. E.; Mistretta, G. D.; Hart, R. C.; Oza, D. H.; Bolvin, D. T.; Cox, C. M.; Nemesure, M.; Niklewski, D. J.; Samii, M. V.

    1994-01-01

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using a batch-least-squares estimator available in the Goddard Trajectory Determination System (GTDS) and an extended Kalman filter estimation system to process Tracking and Data Relay Satellite (TDRS) System (TDRSS) measurements. GTDS is the operational orbit determination system used by the FDD in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. The extended Kalman filter was implemented in an orbit determination analysis prototype system, closely related to the Real-Time Orbit Determination System/Enhanced (RTOD/E) system. In addition, the Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generated an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the geodynamics (GEODYN) orbit determination system with laser ranging and Doppler Orbitography and Radiopositioning integrated by satellite (DORIS) tracking measurements. The TOPEX/Poseidon trajectories were estimated for November 7 through November 11, 1992, the timeframe under study. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch-least-squares solutions were assessed based on the solution residuals, while the sequential solutions were assessed based on primarily the estimated covariances. The batch-least-squares and sequential orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 2 meters for the batch-least-squares and less than 13 meters for the sequential estimation solutions. After the sequential estimation solutions were processed with a smoother algorithm, position differences with POD orbit solutions of less than 7 meters were obtained. The differences among the POD, GTDS, and filter/smoother solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.

  2. Orbit Determination Error Analysis Results for the Triana Sun-Earth L2 Libration Point Mission

    NASA Technical Reports Server (NTRS)

    Marr, G.

    2003-01-01

    Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination error analysis results are presented for all phases of the Triana Sun-Earth L1 libration point mission and for the science data collection phase of a future Sun-Earth L2 libration point mission. The Triana spacecraft was nominally to be released by the Space Shuttle in a low Earth orbit, and this analysis focuses on that scenario. From the release orbit a transfer trajectory insertion (TTI) maneuver performed using a solid stage would increase the velocity be approximately 3.1 km/sec sending Triana on a direct trajectory to its mission orbit. The Triana mission orbit is a Sun-Earth L1 Lissajous orbit with a Sun-Earth-vehicle (SEV) angle between 4.0 and 15.0 degrees, which would be achieved after a Lissajous orbit insertion (LOI) maneuver at approximately launch plus 6 months. Because Triana was to be launched by the Space Shuttle, TTI could potentially occur over a 16 orbit range from low Earth orbit. This analysis was performed assuming TTI was performed from a low Earth orbit with an inclination of 28.5 degrees and assuming support from a combination of three Deep Space Network (DSN) stations, Goldstone, Canberra, and Madrid and four commercial Universal Space Network (USN) stations, Alaska, Hawaii, Perth, and Santiago. These ground stations would provide coherent two-way range and range rate tracking data usable for orbit determination. Larger range and range rate errors were assumed for the USN stations. Nominally, DSN support would end at TTI+144 hours assuming there were no USN problems. Post-TTI coverage for a range of TTI longitudes for a given nominal trajectory case were analyzed. The orbit determination error analysis after the first correction maneuver would be generally applicable to any libration point mission utilizing a direct trajectory.

  3. TDRS orbit determination by radio interferometry

    NASA Technical Reports Server (NTRS)

    Pavloff, Michael S.

    1994-01-01

    In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.

  4. SPECTROSCOPIC ORBITS FOR 15 LATE-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willmarth, Daryl W.; Abt, Helmut A.; Fekel, Francis C.

    2016-08-01

    Spectroscopic orbital elements are determined for 15 stars with periods from 8 to 6528 days with six orbits computed for the first time. Improved astrometric orbits are computed for two stars and one new orbit is derived. Visual orbits were previously determined for four stars, four stars are members of multiple systems, and five stars have Hipparcos “G” designations or have been resolved by speckle interferometry. For the nine binaries with previous spectroscopic orbits, we determine improved or comparable elements. For HD 28271 and HD 200790, our spectroscopic results support the conclusions of previous authors that the large values of their massmore » functions and lack of detectable secondary spectrum argue for the secondary in each case being a pair of low-mass dwarfs. The orbits given here may be useful in combination with future interferometric and Gaia satellite observations.« less

  5. Precise orbit determination and rapid orbit recovery supported by time synchronization

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Zhou, JianHua; Hu, XiaoGong; Liu, Li; Tang, Bo; Li, XiaoJie; Wu, Shan

    2015-06-01

    In order to maintain optimal signal coverage, GNSS satellites have to experience orbital maneuvers. For China's COMPASS system, precise orbit determination (POD) as well as rapid orbit recovery after maneuvers contribute to the overall Positioning, Navigation and Timing (PNT) service performance in terms of accuracy and availability. However, strong statistical correlations between clock offsets and the radial component of a satellite's positions require long data arcs for POD to converge. We propose here a new strategy which relies on time synchronization between ground tracking stations and in-orbit satellites. By fixing satellite clock offsets measured by the satellite station two-way synchronization (SSTS) systems and receiver clock offsets, POD and orbital recovery performance can be improved significantly. Using the Satellite Laser Ranging (SLR) as orbital accuracy evaluation, we find the 4-hr recovered orbit achieves about 0.71 m residual root mean square (RMS) error of fit SLR data, the recovery time is improved from 24-hr to 4-hr compared with the conventional POD without time synchronization support. In addition, SLR evaluation shows that for 1-hr prediction, about 1.47 m accuracy is achieved with the new proposed POD strategy.

  6. Office of Spaceflight Standard Spaceborne Global Positioning System (GPS) user equipment project

    NASA Technical Reports Server (NTRS)

    Saunders, Penny E.

    1991-01-01

    The Global Positioning System (GPS) provides the following: (1) position and velocity determination to support vehicle GN&C, precise orbit determination, and payload pointing; (2) time reference to support onboard timing systems and data time tagging; (3) relative position and velocity determination to support cooperative vehicle tracking; and (4) attitude determination to support vehicle attitude control and payload pointing.

  7. Flight dynamics facility operational orbit determination support for the ocean topography experiment

    NASA Technical Reports Server (NTRS)

    Bolvin, D. T.; Schanzle, A. F.; Samii, M. V.; Doll, C. E.

    1991-01-01

    The Ocean Topography Experiment (TOPEX/POSEIDON) mission is designed to determine the topography of the Earth's sea surface across a 3 yr period, beginning with launch in June 1992. The Goddard Space Flight Center Dynamics Facility has the capability to operationally receive and process Tracking and Data Relay Satellite System (TDRSS) tracking data. Because these data will be used to support orbit determination (OD) aspects of the TOPEX mission, the Dynamics Facility was designated to perform TOPEX operational OD. The scientific data require stringent OD accuracy in navigating the TOPEX spacecraft. The OD accuracy requirements fall into two categories: (1) on orbit free flight; and (2) maneuver. The maneuver OD accuracy requirements are of two types; premaneuver planning and postmaneuver evaluation. Analysis using the Orbit Determination Error Analysis System (ODEAS) covariance software has shown that, during the first postlaunch mission phase of the TOPEX mission, some postmaneuver evaluation OD accuracy requirements cannot be met. ODEAS results also show that the most difficult requirements to meet are those that determine the change in the components of velocity for postmaneuver evaluation.

  8. Using an Iterative Fourier Series Approach in Determining Orbital Elements of Detached Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.

    2007-12-01

    We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.

  9. Filter parameter tuning analysis for operational orbit determination support

    NASA Technical Reports Server (NTRS)

    Dunham, J.; Cox, C.; Niklewski, D.; Mistretta, G.; Hart, R.

    1994-01-01

    The use of an extended Kalman filter (EKF) for operational orbit determination support is being considered by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). To support that investigation, analysis was performed to determine how an EKF can be tuned for operational support of a set of earth-orbiting spacecraft. The objectives of this analysis were to design and test a general purpose scheme for filter tuning, evaluate the solution accuracies, and develop practical methods to test the consistency of the EKF solutions in an operational environment. The filter was found to be easily tuned to produce estimates that were consistent, agreed with results from batch estimation, and compared well among the common parameters estimated for several spacecraft. The analysis indicates that there is not a sharply defined 'best' tunable parameter set, especially when considering only the position estimates over the data arc. The comparison of the EKF estimates for the user spacecraft showed that the filter is capable of high-accuracy results and can easily meet the current accuracy requirements for the spacecraft included in the investigation. The conclusion is that the EKF is a viable option for FDD operational support.

  10. Space tug/shuttle interface compatibility study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Shuttle interfaces required for space tug accommodation are primarily involved with supporting and servicing the tug during launch countdown, flight, and postlanding; deploying and retrieving the tug on orbit; and maintaining control over the tug when it is in or near the orbiter. Each of these interface areas was investigated to determine the best physical and operational method of accomplishing the required functions, with an overriding goal of establishing simple and flexible orbiter interface requirements suitable for tug, tug payloads, IUS and other cargo. It is concluded the orbiter payload accommodations and the MSFC baseline tug are generally interface compatible. Specific minor changes to tug and orbiter interfaces were identified to provide full compatibility. A system concept for supporting and deploying tug from orbiter is described.

  11. First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations

    NASA Technical Reports Server (NTRS)

    Kahle, R.; Kazeminejad, B.; Kirschner, M.; Yoon, Y.; Kiehling, R.; D'Amico, S.

    2007-01-01

    TerraSAR-X is an advanced synthetic aperture radar satellite system for scientific and commercial applications that is realized in a public-private partnership between the German Aerospace Center (DLR) and the Astrium GmbH. TerraSAR-X was launched at June 15, 2007 on top of a Russian DNEPR-1 rocket into a 514 km sun-synchronous dusk-dawn orbit with an 11-day repeat cycle and will be operated for a period of at least 5 years during which it will provide high resolution SAR-data in the X-band. Due to the objectives of the interferometric campaigns the satellite has to comply to tight orbit control requirements, which are formulated in the form of a 250 m toroidal tube around a pre-flight determined reference trajectory (see [1] for details). The acquisition of the reference orbit was one of the main and key activities during the Launch and Early Orbit Phase (LEOP) and had to compensate for both injection errors and spacecraft safe mode attitude control thruster activities. The paper summarizes the activities of GSOC flight dynamics team during both LEOP and early Commissioning Phase, where the main tasks have been 1) the first-acquisition support via angle-tracking and GPS-based orbit determination, 2) maneuver planning for target orbit acquisition and maintenance, and 3) precise orbit and attitude determination for SAR processing support. Furthermore, a presentation on the achieved results and encountered problems will be addressed.

  12. Orbit Determination (OD) Error Analysis Results for the Triana Sun-Earth L1 Libration Point Mission and for the Fourier Kelvin Stellar Interferometer (FKSI) Sun-Earth L2 Libration Point Mission Concept

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.

    2003-01-01

    The Triana spacecraft was designed to be launched by the Space Shuttle. The nominal Triana mission orbit will be a Sun-Earth L1 libration point orbit. Using the NASA Goddard Space Flight Center's Orbit Determination Error Analysis System (ODEAS), orbit determination (OD) error analysis results are presented for all phases of the Triana mission from the first correction maneuver through approximately launch plus 6 months. Results are also presented for the science data collection phase of the Fourier Kelvin Stellar Interferometer Sun-Earth L2 libration point mission concept with momentum unloading thrust perturbations during the tracking arc. The Triana analysis includes extensive analysis of an initial short arc orbit determination solution and results using both Deep Space Network (DSN) and commercial Universal Space Network (USN) statistics. These results could be utilized in support of future Sun-Earth libration point missions.

  13. Flight Experiment Demonstration System (FEDS): Mathematical specification

    NASA Technical Reports Server (NTRS)

    Shank, D. E.

    1984-01-01

    Computational models for the flight experiment demonstration system (FEDS) code 580 were developed. The FEDS is a modification of the automated orbit determination system which was developed during 1981 and 1982. The purpose of FEDS is to demonstrate, in a simulated spacecraft environment, the feasibility of using microprocessors to perform onboard orbit determination with limited ground support.

  14. ESOC's System for Interplanetary Orbit Determination: Implementation and Operational Experience

    NASA Astrophysics Data System (ADS)

    Budnik, F.; Morley, T. A.; MacKenzie, R. A.

    A system for interplanetary orbit determination has been developed at ESOC over the past six years. Today, the system is in place and has been proven to be both reliable and robust by successfully supporting critical operations of ESA's interplanetary spacecraft Rosetta, Mars Express, and SMART-1. To reach this stage a long and challenging way had to be travelled. This paper gives a digest about the journey from the development and testing to the operational use of ESOC's new interplanetary orbit determination system. It presents the capabilities and reflects experiences gained from the performed tests and tracking campaigns.

  15. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  16. Lunar prospector mission design and trajectory support

    NASA Technical Reports Server (NTRS)

    Lozier, David; Galal, Ken; Folta, David; Beckman, Mark

    1998-01-01

    The Lunar Prospector mission is the first dedicated NASA lunar mapping mission since the Apollo Orbiter program which was flown over 25 years ago. Competitively selected under the NASA Discovery Program, Lunar Prospector was launched on January 7, 1998 on the new Lockheed Martin Athena 2 launch vehicle. The mission design of Lunar Prospector is characterized by a direct minimum energy transfer trajectory to the moon with three scheduled orbit correction maneuvers to remove launch and cislunar injection errors prior to lunar insertion. At lunar encounter, a series of three lunar orbit insertion maneuvers and a small circularization burn were executed to achieve a 100 km altitude polar mapping orbit. This paper will present the design of the Lunar Prospector transfer, lunar insertion and mapping orbits, including maneuver and orbit determination strategies in the context of mission goals and constraints. Contingency plans for handling transfer orbit injection and lunar orbit insertion anomalies are also summarized. Actual flight operations results are discussed and compared to pre-launch support analysis.

  17. Automated Orbit Determination System (AODS) requirements definition and analysis

    NASA Technical Reports Server (NTRS)

    Waligora, S. R.; Goorevich, C. E.; Teles, J.; Pajerski, R. S.

    1980-01-01

    The requirements definition for the prototype version of the automated orbit determination system (AODS) is presented including the AODS requirements at all levels, the functional model as determined through the structured analysis performed during requirements definition, and the results of the requirements analysis. Also specified are the implementation strategy for AODS and the AODS-required external support software system (ADEPT), input and output message formats, and procedures for modifying the requirements.

  18. A Journey with MOM

    NASA Technical Reports Server (NTRS)

    Helfrich, Cliff; Berry, David S.; Bhat, Ramachandra; Border, James; Graat, Eric; Halsell, Allen; Kruizinga, Gerhard; Lau, Eunice; Mottinger, Neil; Rush, Brian; hide

    2015-01-01

    In late 2013, the Indian Space Research Organization (ISRO) launched its "Mars Orbiter Mission" (MOM). ISRO engaged NASA's Jet Propulsion Laboratory (JPL) for navigation services to support ISRO's objectives of MOM achieving and maintaining Mars orbit. The navigation support included planning, documentation, testing, orbit determination, maneuver design /analysis, and tracking data analysis. Several of MOM's attributes had an impact on navigation processes, e.g., S -band telecommunications, Earth Orbit Phase maneuvers, and frequent angular momentum desaturation s (AMDs). The primary source of tracking data was NASA/ JPL's Deep Space Network (DSN); JPL also conducted a performance assessment of Indian Deep Space Network (IDSN) tracking data. Planning for the Mars Orbit Insertion (MOI) was complicated by a pressure regulator failure that created uncertainty regarding MOM's main engine and raised potential planetary protection issues. A successful main engine test late on approach resolved these issues; it was quickly followed by a successful MOI on 24-September - 2014 at 02:00 UTC. Less than a month later, Comet Siding Spring's Mars flyby necessitated plans to minimize potential spacecraft damage. At the time of this writing, MOM's orbital operations continue, and plans to extend JPL 's support are in progress. This paper covers the JPL 's support of MOM through the Comet Siding Spring event.

  19. Dawn Orbit Determination Team: Trajectory and Gravity Prediction Performance During Vesta Science Phases

    NASA Technical Reports Server (NTRS)

    Kennedy, Brian; Abrahamson, Matt; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft was launched on September 27th, 2007. Its mission is to consecutively rendezvous with and observe the two largest bodies in the asteroid belt, Vesta and Ceres. It has already completed over a year's worth of direct observations of Vesta (spanning from early 2011 through late 2012) and is currently on a cruise trajectory to Ceres, where it will begin scientific observations in mid-2015. Achieving this data collection required careful planning and execution from all spacecraft teams. Dawn's Orbit Determination (OD) team was tasked with accurately predicting the trajectory of the Dawn spacecraft during the Vesta science phases, and also determining the parameters of Vesta to support future science orbit design. The future orbits included the upcoming science phase orbits as well as the transfer orbits between science phases. In all, five science phases were executed at Vesta, and this paper will describe some of the OD team contributions to the planning and execution of those phases.

  20. Angles-only relative orbit determination in low earth orbit

    NASA Astrophysics Data System (ADS)

    Ardaens, Jean-Sébastien; Gaias, Gabriella

    2018-06-01

    The paper provides an overview of the angles-only relative orbit determination activities conducted to support the Autonomous Vision Approach Navigation and Target Identification (AVANTI) experiment. This in-orbit endeavor was carried out by the German Space Operations Center (DLR/GSOC) in autumn 2016 to demonstrate the capability to perform spaceborne autonomous close-proximity operations using solely line-of-sight measurements. The images collected onboard have been reprocessed by an independent on-ground facility for precise relative orbit determination, which served as ultimate instance to monitor the formation safety and to characterize the onboard navigation and control performances. During two months, several rendezvous have been executed, generating a valuable collection of images taken at distances ranging from 50 km to only 50 m. Despite challenging experimental conditions characterized by a poor visibility and strong orbit perturbations, angles-only relative positioning products could be continuously derived throughout the whole experiment timeline, promising accuracy at the meter level during the close approaches. The results presented in the paper are complemented with former angles-only experience gained with the PRISMA satellites to better highlight the specificities induced by different orbits and satellite designs.

  1. James Webb Space Telescope Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Yoon, Sungpil; Rosales, Jose; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is designed to study and answer fundamental astrophysical questions from an orbit about the Sun-Earth/Moon L2 libration point, 1.5 million km away from Earth. This paper describes the results of an orbit determination (OD) analysis of the JWST mission emphasizing the challenges specific to this mission in various mission phases. Three mid-course correction (MCC) maneuvers during launch and early orbit phase and transfer orbit phase are required for the spacecraft to reach L2. These three MCC maneuvers are MCC-1a at Launch+12 hours, MCC-1b at L+2.5 days and MCC-2 at L+30 days. Accurate OD solutions are needed to support MCC maneuver planning. A preliminary analysis shows that OD performance with the given assumptions is adequate to support MCC maneuver planning. During the nominal science operations phase, the mission requires better than 2 cm/sec velocity estimation performance to support stationkeeping maneuver planning. The major challenge to accurate JWST OD during the nominal science phase results from the unusually large solar radiation pressure force acting on the huge sunshield. Other challenges are stationkeeping maneuvers at 21-day intervals to keep JWST in orbit around L2, frequent attitude reorientations to align the JWST telescope with its targets and frequent maneuvers to unload momentum accumulated in the reaction wheels. Monte Carlo analysis shows that the proposed OD approach can produce solutions that meet the mission requirements.

  2. Orbit Determination of the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) Mission Using Differenced One-way Doppler (DOWD)Tracking Data from the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Marr, Greg C.; Maher, Michael; Blizzard, Michael; Showell, Avanaugh; Asher, Mark; Devereux, Will

    2004-01-01

    Over an approximately 48-hour period from September 26 to 28,2002, the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) mission was intensively supported by the Tracking and Data Relay Satellite System (TDRSS). The TIMED satellite is in a nearly circular low-Earth orbit with a semimajor axis of approximately 7000 km and an inclination of approximately 74 degrees. The objective was to provide TDRSS tracking support for orbit determination (OD) to generate a definitive ephemeris of 24-hour duration or more with a 3-sigma position error no greater than 100 meters, and this tracking campaign was successful. An ephemeris was generated by Goddard Space Flight Center (GSFC) personnel using the TDRSS tracking data and was compared with an ephemeris generated by the Johns Hopkins University's Applied Physics Lab (APL) using TIMED Global Positioning System (GPS) data. Prior to the tracking campaign OD error analysis was performed to justify scheduling the TDRSS support.

  3. Sentinel-2A: Orbit Modelling Improvements and their Impact on the Orbit Prediction

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Otten, Michiel; Fernández Sánchez, Jaime; Fernández Martín, Carlos; Féménias, Pierre

    2016-07-01

    Sentinel-2A is the second satellite of the European Copernicus Programme. The satellite has been launched on 23rd June 2015 and it is operational since mid October 2015. This optical mission carries a GPS receiver for precise orbit determination. The Copernicus POD (Precise Orbit Determination) Service is in charge of generating precise orbital products and auxiliary files for Sentinel-2A as well as for the Sentinel-1 and -3 missions. The accuracy requirements for the Sentinel-2A orbit products are not very stringent with 3 m in 3D (3 sigma) for the near real-time (NRT) orbit and 10 m in 2D (3 sigma) for the predicted orbit. The fulfilment of the orbit accuracy requirements is normally not an issue. The Copernicus POD Service aims, however, to provide the best possible orbits for all three Sentinel missions. Therefore, a sophisticated box-wing model is generated for the Sentinel-2 satellite as it is done for the other two missions as well. Additionally, the solar wing of the satellite is rewound during eclipse, which has to be modelled accordingly. The quality of the orbit prediction is dependent on the results of the orbit estimation performed before it. The values of the last estimation of each parameter is taken for the orbit propagation, i.e. estimating ten atmospheric drag coefficients per 24h, the value of the last coefficient is used as a fix parameter for the subsequent orbit prediction. The question is whether the prediction might be stabilised by, e.g. using an average value of all ten coefficients. This paper presents the status and the quality of the Sentinel-2 orbit determination in the operational environment of the Copernicus POD Service. The impact of the orbit model improvements on the NRT and predicted orbits is studied in detail. Changes in the orbit parametrization as well as in the settings for the orbit propagation are investigated. In addition, the impact of the quality of the input GPS orbit and clock product on the Sentinel-2A orbit prediction results is checked. The results of this study do not only improve the Sentinel-2 orbit products but will also support the generation of reliable orbit predictions for the Sentinel-3 mission. The Sentinel-3 satellite is equipped with a laser retro-reflector and reliable orbit predictions are, therefore, very important to guarantee a continuous support of the satellite laser tracking stations.

  4. Research on the impact factors of GRACE precise orbit determination by dynamic method

    NASA Astrophysics Data System (ADS)

    Guo, Nan-nan; Zhou, Xu-hua; Li, Kai; Wu, Bin

    2018-07-01

    With the successful use of GPS-only-based POD (precise orbit determination), more and more satellites carry onboard GPS receivers to support their orbit accuracy requirements. It provides continuous GPS observations in high precision, and becomes an indispensable way to obtain the orbit of LEO satellites. Precise orbit determination of LEO satellites plays an important role for the application of LEO satellites. Numerous factors should be considered in the POD processing. In this paper, several factors that impact precise orbit determination are analyzed, namely the satellite altitude, the time-variable earth's gravity field, the GPS satellite clock error and accelerometer observation. The GRACE satellites provide ideal platform to study the performance of factors for precise orbit determination using zero-difference GPS data. These factors are quantitatively analyzed on affecting the accuracy of dynamic orbit using GRACE observations from 2005 to 2011 by SHORDE software. The study indicates that: (1) with the altitude of the GRACE satellite is lowered from 480 km to 460 km in seven years, the 3D (three-dimension) position accuracy of GRACE satellite orbit is about 3˜4 cm based on long spans data; (2) the accelerometer data improves the 3D position accuracy of GRACE in about 1 cm; (3) the accuracy of zero-difference dynamic orbit is about 6 cm with the GPS satellite clock error products in 5 min sampling interval and can be raised to 4 cm, if the GPS satellite clock error products with 30 s sampling interval can be adopted. (4) the time-variable part of earth gravity field model improves the 3D position accuracy of GRACE in about 0.5˜1.5 cm. Based on this study, we quantitatively analyze the factors that affect precise orbit determination of LEO satellites. This study plays an important role to improve the accuracy of LEO satellites orbit determination.

  5. Independent Orbiter Assessment (IOA): Analysis of the life support and airlock support subsystems

    NASA Technical Reports Server (NTRS)

    Arbet, Jim; Duffy, R.; Barickman, K.; Saiidi, Mo J.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Life Support System (LSS) and Airlock Support System (ALSS). Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The LSS provides for the management of the supply water, collection of metabolic waste, management of waste water, smoke detection, and fire suppression. The ALSS provides water, oxygen, and electricity to support an extravehicular activity in the airlock.

  6. Experience Gained From Launch and Early Orbit Support of the Rossi X-Ray Timing Explorer (RXTE)

    NASA Technical Reports Server (NTRS)

    Fink, D. R.; Chapman, K. B.; Davis, W. S.; Hashmall, J. A.; Shulman, S. E.; Underwood, S. C.; Zsoldos, J. M.; Harman, R. R.

    1996-01-01

    this paper reports the results to date of early mission support provided by the personnel of the Goddard Space Flight Center Flight Dynamics Division (FDD) for the Rossi X-Ray Timing Explorer (RXTE) spacecraft. For this mission, the FDD supports onboard attitude determination and ephemeris propagation by supplying ground-based orbit and attitude solutions and calibration results. The first phase of that support was to provide launch window analyses. As the launch window was determined, acquisition attitudes were calculated and calibration slews were planned. postlaunch, these slews provided the basis for ground determined calibration. Ground determined calibration results are used to improve the accuracy of onboard solutions. The FDD is applying new calibration tools designed to facilitate use of the simultaneous, high-accuracy star observations from the two RXTE star trackers for ground attitude determination and calibration. An evaluation of the performance of these tools is presented. The FDD provides updates to the onboard star catalog based on preflight analysis and analysis of flight data. The in-flight results of the mission support in each area are summarized and compared with pre-mission expectations.

  7. PSA: A program to streamline orbit determination for launch support operations

    NASA Technical Reports Server (NTRS)

    Legerton, V. N.; Mottinger, N. A.

    1988-01-01

    An interactive, menu driven computer program was written to streamline the orbit determination process during the critical launch support phase of a mission. Residing on a virtual memory minicomputer, this program retains the quantities in-core needed to obtain a least squares estimate of the spacecraft trajectory with interactive displays to assist in rapid radio metric data evaluation. Menu-driven displays allow real time filter and data strategy development. Graphical and tabular displays can be sent to a laser printer for analysis without exiting the program. Products generated by this program feed back to the main orbit determination program in order to further refine the estimate of the trajectory. The final estimate provides a spacecraft ephemeris which is transmitted to the mission control center and used for antenna pointing and frequency predict generation by the Deep Space Network. The development and implementation process of this program differs from that used for most other navigation software by allowing the users to check important operating features during development and have changes made as needed.

  8. Support requirements for remote sensor systems on unmanned planetary missions, phase 3

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results of a study to determine the support requirements for remote sensor systems on unmanned planetary flyby and orbiter missions are presented. Sensors and experiment groupings for selected missions are also established. Computer programs were developed to relate measurement requirements to support requirements. Support requirements were determined for sensors capable of performing required measurements at various points along the trajectories of specific selected missions.

  9. Systems design study of the Pioneer Venus spacecraft. Volume 1: Technical analyses and tradeoffs, sections 8-12 (part 4 of 4)

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The probe bus and orbiter subsystems are defined, and tradeoffs analyzed. Subsystems discussed include: communications, electric power, data handling, attitude determination and control, propulsion, thermal control, structure and mechanisms, NASA/ESRO orbiter interface, mission operation, and flight support.

  10. Geostationary Operational Environmental Satellite (GOES)-8 mission flight experience

    NASA Technical Reports Server (NTRS)

    Noonan, C. H.; Mcintosh, R. J.; Rowe, J. N.; Defazio, R. L.; Galal, K. F.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 spacecraft was launched on April 13, 1994, at 06:04:02 coordinated universal time (UTC), with separation from the Atlas-Centaur launch vehicle occurring at 06:33:05 UTC. The launch was followed by a series of complex, intense operations to maneuver the spacecraft into its geosynchronous mission orbit. The Flight Dynamics Facility (FDF) of the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) was responsible for GOES-8 attitude, orbit maneuver, orbit determination, and station acquisition support during the ascent phase. This paper summarizes the efforts of the FDF support teams and highlights some of the unique challenges the launch team faced during critical GOES-8 mission support. FDF operations experience discussed includes: (1) The abort of apogee maneuver firing-1 (AMF-1), cancellation of AMF-3, and the subsequent replans of the maneuver profile; (2) The unexpectedly large temperature dependence of the digital integrating rate assembly (DIRA) and its effect on GOES-8 attitude targeting in support of perigee raising maneuvers; (3) The significant effect of attitude control thrusting on GOES-8 orbit determination solutions; (4) Adjustment of the trim tab to minimize torque due to solar radiation pressure; and (5) Postlaunch analysis performed to estimate the GOES-8 separation attitude. The paper also discusses some key FDF GOES-8 lessons learned to be considered for the GOES-J launch which is currently scheduled for May 19, 1995.

  11. The Copernicus POD Service and beyond: Scientific exploitation of the orbit-related data and products

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Fernández, Jaime; Fernández, Carlos; Féménias, Pierre

    2017-04-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus Processing Data Ground Segment (PDGS) of the Sentinel-1, -2 and -3 missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. The orbital products are available through the dedicated Copernicus data hub. The Copernicus POD Service is supported by the Copernicus POD Quality Working Group (QWG) for the validation of the orbit product accuracy. The QWG is delivering independent orbit solutions for the satellites. The cross-comparison of all these orbit solutions is essential to monitor and to improve the orbit accuracy because for Sentinel-1 and -2 this is the only possibility to externally assess the quality of the orbits. Each of the Sentinel-1, -2, and -3 satellites carries dual-frequency GPS receivers delivering the necessary measurements for the precise orbit determination of the satellites. The Sentinel-3 satellites are additionally equipped with a DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) receiver and a Laser Retro Reflector for Satellite Laser Ranging. These two additional observation techniques allow for independent validation of the GPS-derived orbit determination results and for studying biases between the different techniques. The scientific exploitation of the orbit determination and the corresponding input data is manifold. Sophisticated satellite macro models improve the modelling of the non-gravitational forces acting on the satellite. On the other hand, comparisons to orbits based on pure empirical modelling of the non-gravitational forces help to sort out deficiencies in the satellite geometry information. The dual-frequency GPS data delivered by the satellites can give valuable input for ionospheric studies important for Space Weather research. So-called kinematic orbits, being a time series of discrete satellite positions derived from GPS, may be used for the modelling of the time-variable low degree harmonics of the Earth's gravity field. This is very important to support filling the possible gap between the dedicated gravity field missions GRACE and GRACE Follow-on. Many other important research topics could be mentioned here as well. Therefore a broad scientific community could benefit of an open access not only to the operational orbits (which is partially available today), but also to the GPS observations, satellite attitude and other ancillary information to perform POD. This poster presents firstly the status of the Copernicus POD Service in terms of products generated, accuracy and timeliness of the operational orbital products and all potential inputs available. Then the main focus of the poster is to outline the possibilities for scientific exploitation of the orbit determination and the corresponding input data. The great scientific potential of these data is explained to confirm the need of making them publicly available for scientists.

  12. Short arc orbit determination for altimeter calibration and validation on TOPEX/POSEIDON

    NASA Technical Reports Server (NTRS)

    Williams, B. G.; Christensen, E. J.; Yuan, D. N.; Mccoll, K. C.; Sunseri, R. F.

    1993-01-01

    TOPEX/POSEIDON (T/P) is a joint mission of United States' National Aeronautics and Space Administration (NASA) and French Centre National d'Etudes Spatiales (CNES) design launched August 10, 1992. It carries two radar altimeters which alternately share a common antenna. There are two project designated verification sites, a NASA site off the coast at Pt. Conception, CA and a CNES site near Lampedusa Island in the Mediterranean Sea. Altimeter calibration and validation for T/P is performed over these highly instrumented sites by comparing the spacecraft's altimeter radar range to computed range based on in situ measurements which include the estimated orbit position. This paper presents selected results of orbit determination over each of these sites to support altimeter verification. A short arc orbit determination technique is used to estimate a locally accurate position determination of T/P from less than one revolution of satellite laser ranging (SLR) data. This technique is relatively insensitive to gravitational and non-gravitational force modeling errors and is demonstrated by covariance analysis and by comparison to orbits determined from longer arcs of data and other tracking data types, such as Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and Global Positioning System Demonstration Receiver (GPSDR) data.

  13. Tethered body problems and relative motion orbit determination

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.; Wolf, H.

    1972-01-01

    Selected problems dealing with orbiting tethered body systems have been studied. In addition, a relative motion orbit determination program was developed. Results from these tasks are described and discussed. The expected tethered body motions were examined, analytically, to ascertain what influence would be played by the physical parameters of the tether, the gravity gradient and orbit eccentricity. After separating the motion modes these influences were determined; and, subsequently, the effects of oscillations and/or rotations, on tether force, were described. A study was undertaken, by examining tether motions, to see what type of control actions would be needed to accurately place a mass particle at a prescribed position relative to a main vehicle. Other applications for tethers were studied. Principally these were concerned with the producing of low-level gee forces by means of stabilized tether configurations; and, the initiation of free transfer trajectories from tether supported vehicle relative positions.

  14. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  15. Mars Express Interplanetary Navigation from Launch to Mars Orbit Insertion: The JPL Experience

    NASA Technical Reports Server (NTRS)

    Han, Dongsuk; Highsmith, Dolan; Jah, Moriba; Craig, Diane; Border, James; Kroger, Peter

    2004-01-01

    The National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL) played a significant role in supporting the safe arrival of the European Space Agency (ESA) Mars Express (MEX) orbiter to Mars on 25 December 2003. MEX mission is an international collaboration between member nations of the ESA and NASA, where NASA is supporting partner. JPL's involvement included providing commanding and tracking service with JPL's Deep Space Network (DSN), in addition to navigation assurance. The collaborative navigation effort between European Space Operations Centre (ESOC) and JPL is the first since ESA's last deep space mission, Giotto, and began many years before the MEX launch. This paper discusses the navigational experience during the cruise and final approach phase of the mission from JPL's perspective. Topics include technical challenges such as orbit determination using non-DSN tracking data and media calibrations, and modeling of spacecraft physical properties for accurate representation of non-gravitational dynamics. Also mentioned in this paper is preparation and usage of DSN Delta Differential Oneway Range ((Delta)DOR) measurements, a key element to the accuracy of the orbit determination.

  16. DSMC Simulations in Support of the Columbia Shuttle Orbiter Accident Investigation

    NASA Technical Reports Server (NTRS)

    Boyles, Katie; LeBeau, Gerald J.; Gallis, Michael A.

    2004-01-01

    Three-dimensional Direct Simulation Monte Carlo simulations of Columbia Shuttle Orbiter flight STS-107 are presented. The aim of this work is to determine the aerodynamic and heating behavior of the Orbiter during aerobraking maneuvers and to provide piecewise integration of key scenario events to assess the plausibility of the candidate failure scenarios. The flight of the Orbiter is examined at two altitudes: 350-kft and 300-kft. The flowfield around the Orbiter and the heat transfer to it are calculated for the undamaged configuration. The flow inside the wing for an assumed damage to the leading edge in the form of a 10- inch hole is studied.

  17. STK/Lifetime as a Replacement for Heritage Orbital Lifetime Software

    NASA Technical Reports Server (NTRS)

    Dove, Edwin

    2004-01-01

    The Flight Dynamics Analysis Branch (FDAB) of NASNGSFC is tasked with determining the orbital lifetime of several developmental and operational satellites, which include the Hubble Space Telescope. A DOS based program developed by the FDAB many years ago, called PC Lifetime, is used to determine a satellite s lifetime and could soon be in need of a replacement. STK s Lifetime Object Tool is a possible candidate. Due to the reduced support of the PC Lifetime program, and the growing incompatibility of older programs with new operating systems, a comparative analysis was done to determine if STWLifetime could meet the stringent requirements that were laid before it. The use of highly accurate numerical propagators such as STK s High Precision Orbit Propagator ( OP) and the Goddard Trajectory Determination System (GTDS) provided a basis on which to compare STWLifetime s results. Several test cases were run, but the main four test cases would determine whether or not STWLifetime could be PC- Lifetime s replacement. These four cases include a geotransfer orbit, two circular LEOS, and a Poiar LEO. Following rigorous testmg procedures, a conclusion will be determined. STK has proved to be a versatile program on many satellite missions and the FDAB has high hopes that it can pass FDAB s requirements for orbital lifetime prediction.

  18. Navigation Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member's semi-major axis are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or vice versa. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  19. Accurate orbit determination strategies for the tracking and data relay satellites

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Bolvin, D. T.; Lorah, J. M.; Lee, T.; Doll, C. E.

    1995-01-01

    The National Aeronautics and Space Administration (NASA) has developed the Tracking and Data Relay Satellite (TDRS) System (TDRSS) for tracking and communications support of low Earth-orbiting satellites. TDRSS has the operational capability of providing 85% coverage for TDRSS-user spacecraft. TDRSS currently consists of five geosynchronous spacecraft and the White Sands Complex (WSC) at White Sands, New Mexico. The Bilateration Ranging Transponder System (BRTS) provides range and Doppler measurements for each TDRS. The ground-based BRTS transponders are tracked as if they were TDRSS-user spacecraft. Since the positions of the BRTS transponders are known, their radiometric tracking measurements can be used to provide a well-determined ephemeris for the TDRS spacecraft. For high-accuracy orbit determination of a TDRSS user, such as the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft, high-accuracy TDRS orbits are required. This paper reports on successive refinements in improved techniques and procedures leading to more accurate TDRS orbit determination strategies using the Goddard Trajectory Determination System (GTDS). These strategies range from the standard operational solution using only the BRTS tracking measurements to a sophisticated iterative process involving several successive simultaneous solutions for multiple TDRSs and a TDRSS-user spacecraft. Results are presented for GTDS-generated TDRS ephemerides produced in simultaneous solutions with the TOPEX/Poseidon spacecraft. Strategies with different user spacecraft, as well as schemes for recovering accurate TDRS orbits following a TDRS maneuver, are also presented. In addition, a comprehensive assessment and evaluation of alternative strategies for TDRS orbit determination, excluding BRTS tracking measurements, are presented.

  20. Magnetospheric Multiscale (MMS) Mission Commissioning Phase Orbit Determination Error Analysis

    NASA Technical Reports Server (NTRS)

    Chung, Lauren R.; Novak, Stefan; Long, Anne; Gramling, Cheryl

    2009-01-01

    The Magnetospheric MultiScale (MMS) mission commissioning phase starts in a 185 km altitude x 12 Earth radii (RE) injection orbit and lasts until the Phase 1 mission orbits and orientation to the Earth-Sun li ne are achieved. During a limited time period in the early part of co mmissioning, five maneuvers are performed to raise the perigee radius to 1.2 R E, with a maneuver every other apogee. The current baseline is for the Goddard Space Flight Center Flight Dynamics Facility to p rovide MMS orbit determination support during the early commissioning phase using all available two-way range and Doppler tracking from bo th the Deep Space Network and Space Network. This paper summarizes th e results from a linear covariance analysis to determine the type and amount of tracking data required to accurately estimate the spacecraf t state, plan each perigee raising maneuver, and support thruster cal ibration during this phase. The primary focus of this study is the na vigation accuracy required to plan the first and the final perigee ra ising maneuvers. Absolute and relative position and velocity error hi stories are generated for all cases and summarized in terms of the ma ximum root-sum-square consider and measurement noise error contributi ons over the definitive and predictive arcs and at discrete times inc luding the maneuver planning and execution times. Details of the meth odology, orbital characteristics, maneuver timeline, error models, and error sensitivities are provided.

  1. The Orbiter camera payload system's large-format camera and attitude reference system

    NASA Technical Reports Server (NTRS)

    Schardt, B. B.; Mollberg, B. H.

    1985-01-01

    The Orbiter camera payload system (OCPS) is an integrated photographic system carried into earth orbit as a payload in the Space Transportation System (STS) Orbiter vehicle's cargo bay. The major component of the OCPS is a large-format camera (LFC), a precision wide-angle cartographic instrument capable of producing high-resolution stereophotography of great geometric fidelity in multiple base-to-height ratios. A secondary and supporting system to the LFC is the attitude reference system (ARS), a dual-lens stellar camera array (SCA) and camera support structure. The SCA is a 70 mm film system that is rigidly mounted to the LFC lens support structure and, through the simultaneous acquisition of two star fields with each earth viewing LFC frame, makes it possible to precisely determine the pointing of the LFC optical axis with reference to the earth nadir point. Other components complete the current OCPS configuration as a high-precision cartographic data acquisition system. The primary design objective for the OCPS was to maximize system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment. The full OCPS configuration was launched on a highly successful maiden voyage aboard the STS Orbiter vehicle Challenger on Oct. 5, 1984, as a major payload aboard the STS-41G mission.

  2. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  3. A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

    NASA Astrophysics Data System (ADS)

    Kim, Youngkwang; Park, Sang-Young; Lee, Eunji; Kim, Minsik

    2017-06-01

    This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for highfidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

  4. Chandra X-Ray Observatory Pointing Control System Performance During Transfer Orbit and Initial On-Orbit Operations

    NASA Technical Reports Server (NTRS)

    Quast, Peter; Tung, Frank; West, Mark; Wider, John

    2000-01-01

    The Chandra X-ray Observatory (CXO, formerly AXAF) is the third of the four NASA great observatories. It was launched from Kennedy Space Flight Center on 23 July 1999 aboard the Space Shuttle Columbia and was successfully inserted in a 330 x 72,000 km orbit by the Inertial Upper Stage (IUS). Through a series of five Integral Propulsion System burns, CXO was placed in a 10,000 x 139,000 km orbit. After initial on-orbit checkout, Chandra's first light images were unveiled to the public on 26 August, 1999. The CXO Pointing Control and Aspect Determination (PCAD) subsystem is designed to perform attitude control and determination functions in support of transfer orbit operations and on-orbit science mission. After a brief description of the PCAD subsystem, the paper highlights the PCAD activities during the transfer orbit and initial on-orbit operations. These activities include: CXO/IUS separation, attitude and gyro bias estimation with earth sensor and sun sensor, attitude control and disturbance torque estimation for delta-v burns, momentum build-up due to gravity gradient and solar pressure, momentum unloading with thrusters, attitude initialization with star measurements, gyro alignment calibration, maneuvering and transition to normal pointing, and PCAD pointing and stability performance.

  5. Manned Orbital Transfer Vehicle (MOTV). Volume 2: Mission handbook

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The use of the manned orbit transfer vehicle (MOTV) for support of future space missions is defined. Some 20 generic missions are defined each representative of the types of missions expected to be flown in the future. These include the service and update of communications satellites, emergency repair of surveillance satellites, and passenger transport of a six man crew rotation/resupply service to a deep space command post. The propulsive and functional capabilities required of the MOTV to support a particular mission are described and data to enable the user to determine the number of STS flights needed to support the mission, mission peculiar equipment requirements, parametrics on mission phasing and requirements, ground and flight support requirements, recovery considerations, and IVA/EVA trade analysis are presented.

  6. Navigation Accuracy Guidelines for Orbital Formation Flying

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2004-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation s semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver time, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  7. Navigation Accuracy Guidelines for Orbital Formation Flying Missions

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Alfriend, Kyle T.

    2003-01-01

    Some simple guidelines based on the accuracy in determining a satellite formation's semi-major axis differences are useful in making preliminary assessments of the navigation accuracy needed to support such missions. These guidelines are valid for any elliptical orbit, regardless of eccentricity. Although maneuvers required for formation establishment, reconfiguration, and station-keeping require accurate prediction of the state estimate to the maneuver we, and hence are directly affected by errors in all the orbital elements, experience has shown that determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. Furthermore, any differences among the member s semi-major axes are undesirable for a satellite formation, since it will lead to differential along-track drift due to period differences. Since inevitable navigation errors prevent these differences from ever being zero, one may use the guidelines this paper presents to determine how much drift will result from a given relative navigation accuracy, or conversely what navigation accuracy is required to limit drift to a given rate. Since the guidelines do not account for non-two-body perturbations, they may be viewed as useful preliminary design tools, rather than as the basis for mission navigation requirements, which should be based on detailed analysis of the mission configuration, including all relevant sources of uncertainty.

  8. Orbit determination and orbit control for the Earth Observing System (EOS) AM spacecraft

    NASA Technical Reports Server (NTRS)

    Herberg, Joseph R.; Folta, David C.

    1993-01-01

    Future NASA Earth Observing System (EOS) Spacecraft will make measurements of the earth's clouds, oceans, atmosphere, land and radiation balance. These EOS Spacecraft will be part of the NASA Mission to Planet Earth. This paper specifically addresses the EOS AM Spacecraft, referred to as 'AM' because it has a sun-synchronous orbit with a 10:30 AM descending node. This paper describes the EOS AM Spacecraft mission orbit requirements, orbit determination, orbit control, and navigation system impact on earth based pointing. The EOS AM Spacecraft will be the first spacecraft to use the TDRSS Onboard Navigation System (TONS) as the primary means of navigation. TONS flight software will process one-way forward Doppler measurements taken during scheduled TDRSS contacts. An extended Kalman filter will estimate spacecraft position, velocity, drag coefficient correction, and ultrastable master oscillator frequency bias and drift. The TONS baseline algorithms, software, and hardware implementation are described in this paper. TONS integration into the EOS AM Spacecraft Guidance, Navigation, and Control (GN&C) System; TONS assisted onboard time maintenance; and the TONS Ground Support System (TGSS) are also addressed.

  9. Determination of the ground state of an Au-supported FePc film based on the interpretation of Fe K - and L -edge x-ray magnetic circular dichroism measurements

    NASA Astrophysics Data System (ADS)

    Natoli, Calogero R.; Krüger, Peter; Bartolomé, Juan; Bartolomé, Fernando

    2018-04-01

    We determine the magnetic ground state of the FePc molecule on Au-supported thin films based on the observed values of orbital anisotropy and spectroscopic x-ray magnetic circular dichroism (XMCD) measurements at the Fe K and L edges. Starting from ab initio molecular orbital multiplet calculations for the isolated molecule, we diagonalize the spin-orbit interaction in the subspace spanned by the three lowest spin triplet states of 3A2 g and 3Eg symmetry in the presence of a saturating magnetic field at a polar angle θ with respect to the normal to the plane of the film, plus an external perturbation representing the effect of the molecules in the stack on the FePc molecule under consideration. We find that the orbital moment of the ground state strongly depends on the magnetic field direction in agreement with the sum rule analysis of the L23-edge XMCD data. We calculate integrals over the XMCD spectra at the Fe K and L23 edges as used in the sum rules and explicitly show that they agree with the expectation values of the orbital moment and effective spin moment of the ground state. On the basis of this analysis, we can rule out alternative candidates proposed in the literature.

  10. One-Centimeter Orbits in Near-Real Time: The GPS Experience on OSTM/JASON-2

    NASA Technical Reports Server (NTRS)

    Haines, Bruce; Armatys, Michael; Bar-Sever, Yoaz; Bertiger, Willy; Desai, Shailen; Dorsey, Angela; Lane, Christopher; Weiss, Jan

    2010-01-01

    The advances in Precise Orbit Determination (POD) over the past three decades have been driven in large measure by the increasing demands of satellite altimetry missions. Since the launch of Seasat in 1978, both tracking-system technologies and orbit modeling capabilities have evolved considerably. The latest in a series of precise (TOPEX-class) altimeter missions is the Ocean Surface Topography Mission (OSTM, also Jason-2). GPS-based orbit solutions for this mission are accurate to 1-cm (radial RMS) within 3-5 hrs of real time. These GPS-based orbit products provide the basis for a near-real time sea-surface height product that supports increasingly diverse applications of operational oceanography and climate forecasting.

  11. Comparison of theoretical and experimental values of the number of metallic orbitals per atom in hypoelectronic and hyperelectronic metals

    PubMed Central

    Pauling, Linus; Kamb, Barclay

    1985-01-01

    The statistical resonating-valence-bond theory of metals is applied in the purely theoretical calculation of the composition of the Ni-Cu alloy at the foot of the curve of saturation ferromagnetic moment, which marks the boundary between hypoelectronic and hyperelectronic metals and determines the value of the number of metallic orbitals per atom. The results, Ni44Cu56 and 0.722 metallic orbitals, agree with the observed values. This agreement provides strong support of the theory. PMID:16593633

  12. Performance of three-way data types during Voyager's encounter with Neptune

    NASA Technical Reports Server (NTRS)

    Roth, D. C.; Taylor, T. H.; Jacobson, R. A.; Lewis, G. D.

    1990-01-01

    Voyager's flyby of Neptune in August of 1989 was the most distant planetary encounter ever achieved. Round trip light travel time was more than eight hours, exceeding view periods at two of the three tracking station sites. Consequently, the majority of radiometric tracking was accomplished by transmitting the uplink from one station, and receiving the downlink at a different station. This procedure defines three-way data. Dependence on three-way data for orbit determination is one distinguishing element of Voyager's successful encounter with Neptune. This paper addresses the performance of three-way range and Doppler data supporting pre-encounter orbit determination and post-encounter orbit reconstruction. Also, calibrations which reduce systematic errors inherent to three-way data are described and analyzed.

  13. Excess science accommodation capabilities and excess performance capabilities assessment for Mars Geoscience and Climatology Orbiter: Extended study

    NASA Technical Reports Server (NTRS)

    Clark, K.; Flacco, A.; Kaskiewicz, P.; Lebsock, K.

    1983-01-01

    The excess science accommodation and excess performance capabilities of a candidate spacecraft bus for the Mars Geoscience and Climatology Orbiter MGCO mission are assessed. The appendices are included to support the conclusions obtained during this contract extension. The appendices address the mission analysis, the attitude determination and control, the propulsion subsystem, and the spacecraft configuration.

  14. Relative motion of orbiting particles under the influence of perturbing forces. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1974-01-01

    The relative motion for orbiting vehicles, under the influence of various perturbing forces, has been studied to determine what influence these inputs, and others, can have. The analytical tasks are discribed in general terms; the force types considered, are outlined modelled and simulated, and the capabilities of the computer programs which have evolved in support of this work are denoted.

  15. Evaluation of semiempirical atmospheric density models for orbit determination applications

    NASA Technical Reports Server (NTRS)

    Cox, C. M.; Feiertag, R. J.; Oza, D. H.; Doll, C. E.

    1994-01-01

    This paper presents the results of an investigation of the orbit determination performance of the Jacchia-Roberts (JR), mass spectrometer incoherent scatter 1986 (MSIS-86), and drag temperature model (DTM) atmospheric density models. Evaluation of the models was performed to assess the modeling of the total atmospheric density. This study was made generic by using six spacecraft and selecting time periods of study representative of all portions of the 11-year cycle. Performance of the models was measured for multiple spacecraft, representing a selection of orbit geometries from near-equatorial to polar inclinations and altitudes from 400 kilometers to 900 kilometers. The orbit geometries represent typical low earth-orbiting spacecraft supported by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The best available modeling and orbit determination techniques using the Goddard Trajectory Determination System (GTDS) were employed to minimize the effects of modeling errors. The latest geopotential model available during the analysis, the Goddard earth model-T3 (GEM-T3), was employed to minimize geopotential model error effects on the drag estimation. Improved-accuracy techniques identified for TOPEX/Poseidon orbit determination analysis were used to improve the Tracking and Data Relay Satellite System (TDRSS)-based orbit determination used for most of the spacecraft chosen for this analysis. This paper shows that during periods of relatively quiet solar flux and geomagnetic activity near the solar minimum, the choice of atmospheric density model used for orbit determination is relatively inconsequential. During typical solar flux conditions near the solar maximum, the differences between the JR, DTM, and MSIS-86 models begin to become apparent. Time periods of extreme solar activity, those in which the daily and 81-day mean solar flux are high and change rapidly, result in significant differences between the models. During periods of high geomagnetic activity, the standard JR model was outperformed by DTM. Modification of the JR model to use a geomagnetic heating delay of 3 hours, as used in DTM, instead of the 6.7-hour delay produced results comparable to or better than the DTM performance, reducing definitive orbit solution ephermeris overlap differences by 30 to 50 percent. The reduction in the overlap differences would be useful for mitigating the impact of geomagnetic storms on orbit prediction.

  16. Near-real time orbit determination for the GPS, CHAMP, GRACE, TerraSAR-X, and TanDEM-X satellites

    NASA Astrophysics Data System (ADS)

    Michalak, Grzegorz; Koenig, Rolf

    The GFZ German Research Centre for Geosciences developed a near-real time (NRT) orbit gen-eration system for GPS and Low Earth Orbiting (LEO) satellites to support radio occultation data processing for the CHAMP, GRACE, Terra-SAR-X and the upcoming TanDEM-X mis-sions and fast baseline determination for the TanDEM-X mission. Precise NRT orbits are being generated for the CHAMP and GRACE-A satellites since August 2006 and for TerraSAR-X since August 2007. For each LEO, the system consists of three independent chains delivering NRT orbits with different latencies and accuracies. The first chain generates in a preceding step NRT GPS orbits and clock biases and based thereon LEO orbits with delays of 30 minutes counted from the last measurement point to the time the orbit product is available. The orbit accuracies can be assessed via Satellite Laser Ranging (SLR) to 7 cm. The second chain is based on predicted GPS orbits from the International GNSS Service (IGS) but endowed with in-house estimated clock biases. This chain generates orbits with the same latency of 30 minutes but with better accuracies of 5 cm SLR RMS. The third chain, the least accurate but the fastest, is based on predicted IGS GPS orbits and clocks and delivers LEO orbits with latencies of 13 minutes and accuracies of 10 cm SLR RMS. The system design is such that it can easily be extended to cope with new satellites like TanDEM-X requiring precise and fast available orbits.

  17. Core heat convection in NSTX-U via modification of electron orbits by high frequency Alfvén eigenmodes

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Tritz, K.; White, R. B.; Fredrickson, E. D.; Gorelenkov, N. N.; NSTX-U Team

    2015-11-01

    New simulation results demonstrate that high frequency compressional (CAE) and global (GAE) Alfvén eigenmodes cause radial convection of electrons, with implications for particle and energy confinement, as well as electric field formation in NSTX-U. Simulations of electron orbits in the presence of multiple experimentally determined CAEs and GAEs, using the gyro-center code ORBIT, have revealed substantial convective transport, in addition to the expected diffusion via orbit stochastization. These results advance understanding of anomalous core energy transport expected in high performance, beam-heated NSTX-U plasmas. The simulations make use of experimentally determined density perturbation (δn) amplitudes and mode structures obtained by inverting measurements from 16 a channel reflectometer array using a synthetic diagnostic. Combined with experimentally determined mode polarizations (i.e. CAE or GAE), the δn are used to estimate the ExB displacements for use in ORBIT. Preliminary comparison of the simulation results with transport modeling by TRANSP indicate that the convection is currently underestimated. Supported by US DOE Contracts DE-SC0011810, DE-FG02-99ER54527 & DE-AC02-09CH11466.

  18. Improving the Estimates of International Space Station (ISS) Induced K-Factor Failure Rates for On-Orbit Replacement Unit (ORU) Supportability Analyses

    NASA Technical Reports Server (NTRS)

    Anderson, Leif F.; Harrington, Sean P.; Omeke, Ojei, II; Schwaab, Douglas G.

    2009-01-01

    This is a case study on revised estimates of induced failure for International Space Station (ISS) on-orbit replacement units (ORUs). We devise a heuristic to leverage operational experience data by aggregating ORU, associated function (vehicle sub -system), and vehicle effective' k-factors using actual failure experience. With this input, we determine a significant failure threshold and minimize the difference between the actual and predicted failure rates. We conclude with a discussion on both qualitative and quantitative improvements the heuristic methods and potential benefits to ISS supportability engineering analysis.

  19. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.

  20. Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report

    NASA Technical Reports Server (NTRS)

    Stengle, T.; Flores-Amaya, F.

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key analysis results and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the discipline of flight dynamics, which involves spacecraft trajectory (orbit) and attitude analysis, as well as orbit and attitude determination and control. The FDAB currently provides support for missions involving NASA, government, university, and commercial space missions, at various stages in the mission life cycle.

  1. Joint JSC/GSFC two-TDRS navigation certification results for STS-29, STS-30, and STS-32

    NASA Technical Reports Server (NTRS)

    Schmidt, Thomas G.; Brown, Edward T.; Murdock, Valerie E.; Cappellari, James O., Jr.; Smith, Evan A.; Schmitt, Mark W.; Omalley, James W.; Lowes, Flora B.; Joyce, James B.

    1990-01-01

    The procedures used and the results obtained in the joint Johnson Space Center (JSC)/Goddard Space Flight Center (GSFC) navigation certification of the two-Tracking and Data Relay Satellite (TDRS) S-band tracking configuration for support of low- to medium-inclination (28.5 to 62 degrees) Shuttle missions (STS-29 and STS-30) and Shuttle rendezvous missions (STS-32) are described. The objective of this certification effort was to certify the two-TDRS configuration for nominal Space Transportation System (STS) on-orbit navigation support, thereby making it possible to significantly reduce the ground tracking support requirements for routine STS on-orbit navigation. JSC had the primary responsibility for certification of the two-TDRS configuration for STS support, and GSFC supported the effort by performing Ground Network (GN) and Space Network (SN) tracking data evaluation, parallel orbit solutions, and solution comparisons. In the certification process, two types of orbit determination solutions were generated by JSC and by GSFC for each tracking arc evaluated, one type using TDRS-East and TDRS-West tracking data combined with ground tracking data (the reference solutions) and one type using only TDRS-East and TDRS-West tracking data. The two types of solutions were then compared to determine the maximum position differences over the solution arcs and whether these differences satisfied the navigation certification criteria. The certification criteria were a function of the type of Shuttle activity in the tracking arc, i.e., quiet, moderate, or active. Quiet periods included no attitude maneuvers or ventings; moderate periods included one or two maneuvers or ventings; and active periods included more than two maneuvers or ventings. The results of the individual JSC and GSFC certification analyses for the STS-29, STS-30, and STS-32 missions and the joint JSC/GSFC conclusions regarding certification of the two-TDRS S-band configuration for STS support are presented.

  2. Replacement Capability Options for the United States Space Shuttle

    DTIC Science & Technology

    2013-09-01

    extended periods, and to expand our knowledge of solar astronomy well beyond Earth-based observations.” During the Skylab missions, both the man...determined Skylab’s orbit was no longer stable due to higher than predicted solar activity. Therefore, Skylab had to be de-orbited earlier than...Module houses the oxygen, life support, power, communications, thermal control, and propulsions systems. The solar arrays for the Soyuz are also

  3. Development of flight experiment work performance and workstation interface requirements, part 1. Technical report and appendices A through G

    NASA Technical Reports Server (NTRS)

    Hatterick, R. G.

    1973-01-01

    A skill requirement definition method was applied to the problem of determining, at an early stage in system/mission definition, the skills required of on-orbit crew personnel whose activities will be related to the conduct or support of earth-orbital research. The experiment data base was selected from proposed experiments in NASA's earth orbital research and application investigation program as related to space shuttle missions, specifically those being considered for Sortie Lab. Concepts for two integrated workstation consoles for Sortie Lab experiment operations were developed, one each for earth observations and materials sciences payloads, utilizing a common supporting subsystems core console. A comprehensive data base of crew functions, operating environments, task dependencies, task-skills and occupational skills applicable to a representative cross section of earth orbital research experiments is presented. All data has been coded alphanumerically to permit efficient, low cost exercise and application of the data through automatic data processing in the future.

  4. Reference manual for the Thermal Analyst's Help Desk Expert System

    NASA Technical Reports Server (NTRS)

    Ormsby, Rachel A.

    1994-01-01

    This document provides technical information and programming guidance for the maintenance and future development of the Thermal Analyst's Help Desk. Help Desk is an expert system that operates within the EXSYSTM expert system shell, and is used to determine first approximations of thermal capacity for spacecraft and instruments. The five analyses supported in Help Desk are: (1) surface area required for a radiating surface, (2) equilibrium temperature of a surface, (3) enclosure temperature and heat loads for a defined position in orbit, (4) enclosure temperature and heat loads over a complete orbit and, (5) selection of appropriate surface properties. The two geometries supported by Help Desk are a single flat plate and a rectangular box enclosure. The technical information includes the mathematical approach and analytical derivations used in the analyses such as: radiation heat balance, view factor calculation, and orbit determination with coordinate transformation. The programming guide for developers describes techniques for enhancement of Help Desk. Examples are provided showing the addition of new features, user interface development and enhancement, and external program interfaces.

  5. Results of an external tank separation test in AEDC/VKF tunnel B on 0.010-scale replica of space shuttle vehicle model 52-OT(IA17A), Volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.; Daileda, J. J.

    1975-01-01

    Tests were conducted on scale models of the space shuttle orbiter and external tank (ET) to determine the aerodynamic interactions during a return to launch site abort separation. The orbiter model was built to vehicle 3 configuration lines (139B) and the ET model approximated the vehicle 5 configurations with protuberances and attach hardware. For these investigations the orbiter was mounted on the primary support system and the external tank was mounted on the captive trajectory system. Six-component data were obtained for each vehicle at various orbiter angles of attack and sideslip for a range of relative angular and linear displacements of the ET from the orbiter.

  6. Tracking and Data Relay Satellite (TDRS) Orbit Estimation Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Ward, Douglas T.; Dang, Ket D.; Slojkowski, Steve; Blizzard, Mike; Jenkins, Greg

    2007-01-01

    Alternatives to the Tracking and Data Relay Satellite (TDRS) orbit estimation procedure were studied to develop a technique that both produces more reliable results and is more amenable to automation than the prior procedure. The Earth Observing System (EOS) Terra mission has TDRS ephemeris prediction 3(sigma) requirements of 75 meters in position and 5.5 millimeters per second in velocity over a 1.5-day prediction span. Meeting these requirements sometimes required reruns of the prior orbit determination (OD) process, with manual editing of tracking data to get an acceptable solution. After a study of the available alternatives, the Flight Dynamics Facility (FDF) began using the Real-Time Orbit Determination (RTOD(Registered TradeMark)) Kalman filter program for operational support of TDRSs in February 2007. This extended Kalman filter (EKF) is used for daily support, including within hours after most thrusting, to estimate the spacecraft position, velocity, and solar radiation coefficient of reflectivity (C(sub R)). The tracking data used are from the Bilateration Ranging Transponder System (BRTS), selected TDRS System (TDRSS) User satellite tracking data, and Telemetry, Tracking, and Command (TT&C) data. Degraded filter results right after maneuvers and some momentum unloads provided incentive for a hybrid OD technique. The results of combining EKF strengths with the Goddard Trajectory Determination System (GTDS) Differential Correction (DC) program batch-least-squares solutions, as recommended in a 2005 paper on the chain-bias technique, are also presented.

  7. On-orbit technology experiment facility definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Buchan, Robert W.; Gates, Richard M.

    1988-01-01

    A study was conducted to identify on-orbit integrated facility needs to support in-space technology experiments on the Space Station and associated free flyers. In particular, the first task was to examine the proposed technology development missions (TDMX's) from the model mission set and other proposed experimental facilities, both individually and by theme, to determine how and if the experiments might be combined, what equipment might be shared, what equipment might be used as generic equipment for continued experimentation, and what experiments will conflict with the conduct of other experiments or Space Station operations. Then using these results, to determine on-orbit facility needs to optimize the implementation of technology payloads. Finally, to develop one or more scenarios, design concepts, and outfitting requirements for implementation of onboard technology experiments.

  8. New approaches for tracking earth orbiters using modified GPS ground receivers

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Young, L. E.; Nandi, S.; Haines, B. J.; Dunn, C. E.; Edwards, C. D.

    1993-01-01

    A Global Positioning System (GPS) flight receiver provides a means to precisely determine orbits for satellites in low to moderate altitude orbits. Above a 5000-km altitude, however, relatively few GPS satellites are visible. New approaches to orbit determination for satellites at higher altitudes could reduce DSN antenna time needed to provide navigation and orbit determination support to future missions. Modification of GPS ground receivers enables a beacon from the orbiter to be tracked simultaneously with GPS data. The orbit accuracy expected from this GPS-like tracking (GLT) technique is expected to be in the range of a few meters or better for altitudes up to 100,000 km with a global ground network. For geosynchronous satellites, however, there are unique challenges due to geometrical limitations and to the lack of strong dynamical signature in tracking data. We examine two approaches for tracking the Tracking and Data Relay Satellite System (TDRSS) geostationary orbiters. One uses GLT with a global network; the other relies on a small 'connected element' ground network with a distributed clock for short-baseline differential carrier phase (SB Delta Phi). We describe an experiment planned for late 1993, which will combine aspects of both GLT and SB Delta Phi, to demonstrate a new approach for tracking the Tracking and Data Relay Satellites (TDRSs) that offers a number of operationally convenient and attractive features. The TDRS demonstration will be in effect a proof-of-concept experiment for a new approach to tracking spacecraft which could be applied more generally to deep-space as well as near-Earth regimes.

  9. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  10. Orbiter ECLSS support of Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Morris, D. W.; Prince, R. N.

    1974-01-01

    The orbiter ECLSS (Environmental Control and Life Support System) provides the functions of atmosphere revitalization, crew life support, and active thermal control. This paper describes these functions as they relate to the support of Shuttle payloads, including automated spacecraft, Spacelab and Department of Defense missions. Functional and performance requirements for the orbiter ECLSS which affect payload support are presented for the atmosphere revitalization subsystem, the food, water and waste subsystem, and the active thermal control subsystem. Schematics for these subsystems are also described. Finally, based on the selected orbiter configuration, preliminary design and off-design thermodynamic data are presented to quantify the baseline orbiter capability; to quantify the payload chargeable penalties for increasing this support; and to identify the significant limits of orbiter ECLSS support available to Shuttle payloads.

  11. Calculating Trajectories And Orbits

    NASA Technical Reports Server (NTRS)

    Alderson, Daniel J.; Brady, Franklyn H.; Breckheimer, Peter J.; Campbell, James K.; Christensen, Carl S.; Collier, James B.; Ekelund, John E.; Ellis, Jordan; Goltz, Gene L.; Hintz, Gerarld R.; hide

    1989-01-01

    Double-Precision Trajectory Analysis Program, DPTRAJ, and Orbit Determination Program, ODP, developed and improved over years to provide highly reliable and accurate navigation capability for deep-space missions like Voyager. Each collection of programs working together to provide desired computational results. DPTRAJ, ODP, and supporting utility programs capable of handling massive amounts of data and performing various numerical calculations required for solving navigation problems associated with planetary fly-by and lander missions. Used extensively in support of NASA's Voyager project. DPTRAJ-ODP available in two machine versions. UNIVAC version, NPO-15586, written in FORTRAN V, SFTRAN, and ASSEMBLER. VAX/VMS version, NPO-17201, written in FORTRAN V, SFTRAN, PL/1 and ASSEMBLER.

  12. Improved satellite constellations for CONUS ATC coverage

    DOT National Transportation Integrated Search

    1974-05-01

    The report examines the problem of designing a constellation of orbiting satellites capable of supporting an aircraft navigation/surveillance service over CONUS. It is assumed that the aircraft positions are determined by hyperbolic multilateration u...

  13. Characterization of Orbital Debris Via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models. DebriSat is intended to be representative of modern LEO satellites.Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. A key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992 .Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  14. Determining the properties of accretion-gap neutron stars

    NASA Technical Reports Server (NTRS)

    Kluzniak, Wlodzimierz; Michelson, Peter; Wagoner, Robert V.

    1990-01-01

    If neutron stars have radii as small as has been argued by some, observations of accretion-powered X-rays could verify the existence of innermost stable circular orbits (predicted by general relativity) around weakly magnetized neutron stars. This may be done by detecting X-ray emission from clumps of matter before and after they cross the gap (where matter cannot be supported by rotation) between the inner accretion disk and the stellar surface. Assuming the validity of general relativity, it would then be possible to determine the masses of such neutron stars independently of any knowledge of binary orbital parameters. If an accurate mass determination were already available through any of the methods conventionally used, the new mass determination method proposed here could then be used to quantitatively test strong field effects of gravitational theory.

  15. Mission Report on the Orbiter Camera Payload System (OCPS) Large Format Camera (LFC) and Attitude Reference System (ARS)

    NASA Technical Reports Server (NTRS)

    Mollberg, Bernard H.; Schardt, Bruton B.

    1988-01-01

    The Orbiter Camera Payload System (OCPS) is an integrated photographic system which is carried into earth orbit as a payload in the Space Transportation System (STS) Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC), a precision wide-angle cartographic instrument that is capable of producing high resolution stereo photography of great geometric fidelity in multiple base-to-height (B/H) ratios. A secondary, supporting system to the LFC is the Attitude Reference System (ARS), which is a dual lens Stellar Camera Array (SCA) and camera support structure. The SCA is a 70-mm film system which is rigidly mounted to the LFC lens support structure and which, through the simultaneous acquisition of two star fields with each earth-viewing LFC frame, makes it possible to determine precisely the pointing of the LFC optical axis with reference to the earth nadir point. Other components complete the current OCPS configuration as a high precision cartographic data acquisition system. The primary design objective for the OCPS was to maximize system performance characteristics while maintaining a high level of reliability compatible with Shuttle launch conditions and the on-orbit environment. The full-up OCPS configuration was launched on a highly successful maiden voyage aboard the STS Orbiter vehicle Challenger on October 5, 1984, as a major payload aboard mission STS 41-G. This report documents the system design, the ground testing, the flight configuration, and an analysis of the results obtained during the Challenger mission STS 41-G.

  16. An investigation in MSFC 14-inch TWT to determine the static stability characteristics of 0.004-scale model (74-OTS) space shuttle vehicle 5 configuration (IA33), volume 1

    NASA Technical Reports Server (NTRS)

    Allen, E. C.

    1975-01-01

    Wind tunnel tests were conducted to: (1) determine the static stability characteristics of the Shuttle Vehicle 5 configuration; (2) determine the effect on the Vehicle 5 aerodynamic characteristics of External Tank (ET) and Solid Rocket Booster (SRB) nose shape, SRB nozzle shroud flare angle, orbiter to tank fairing, and sting location; (3) provide flow visualization using thin film oil paint; and (4) determine rudder, body flap, and inboard and outboard elevon hinge moments. The mated vehicle model was mounted in three different ways: (1) the orbiter mounted on the balance with the SRB's attached to the tank and the tank in turn attached to the orbiter; (2) the tank mounted on the balance (with the sting protruding through the tank base) with the SRB's and orbiter attached to the tank, and (3) with the tank mounted on the balance and the balance in turn supported by a forked sting entering the nozzle of each SRB, extending forward into the SRB's then crossing over to the tank to provide a balance socket. Data were obtained for Mach numbers from 0.6 through 4.96 at angles-of-attack and -sideslip from -10 to 10 degrees.

  17. Flight Experiment Demonstration System (FEDS) functional description and interface document

    NASA Technical Reports Server (NTRS)

    Belcher, R. C.; Shank, D. E.

    1984-01-01

    This document presents a functional description of the Flight Experiment Demonstration System (FEDS) and of interfaces between FEDS and external hardware and software. FEDS is a modification of the Automated Orbit Determination System (AODS). FEDS has been developed to support a ground demonstration of microprocessor-based onboard orbit determination. This document provides an overview of the structure and logic of FEDS and details the various operational procedures to build and execute FEDS. It also documents a microprocessor interface between FEDS and a TDRSS user transponder and describes a software simulator of the interface used in the development and system testing of FEDS.

  18. The Orbiting Primate Experiment (OPE)

    NASA Technical Reports Server (NTRS)

    Bourne, G. H.; Debourne, M. N. G.; Mcclure, H. M.

    1977-01-01

    Instrumentation and life support systems are described for an experiment to determine the physiological effects of long term space flight on unrestrained, minimally instrumented rhesus macaques flown in orbit for periods up to six months or one year. On return from orbit, vestibular, cardiovascular, and skeletal muscle function will be tested. Blood chemistry and hematological studies will be conducted as well as tests of the immunological competence of selected animals. Nasal, rectal, and throat swabs will be used for bacterial and viral studies, and histopathological and histochemical investigations will be be made of all organs using light and electron microscopy. The experiment is being considered as a payload for the biomedical experiment scientific satellite.

  19. A Representative Shuttle Environmental Control System

    NASA Technical Reports Server (NTRS)

    Brose, H. F.; Stanley, M. D.; Leblanc, J. C.

    1977-01-01

    The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.

  20. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  1. Precise Orbit Determination for GEOSAT Follow-On Using Satellite Laser Ranging Data and Intermission Altimeter Crossovers

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rowlands, David D.; Luthcke, Scott B.; Zelensky, Nikita P.; Chinn, Douglas S.; Pavlis, Despina E.; Marr, Gregory

    2001-01-01

    The US Navy's GEOSAT Follow-On Spacecraft was launched on February 10, 1998 with the primary objective of the mission to map the oceans using a radar altimeter. Following an extensive set of calibration campaigns in 1999 and 2000, the US Navy formally accepted delivery of the satellite on November 29, 2000. Satellite laser ranging (SLR) and Doppler (Tranet-style) beacons track the spacecraft. Although limited amounts of GPS data were obtained, the primary mode of tracking remains satellite laser ranging. The GFO altimeter measurements are highly precise, with orbit error the largest component in the error budget. We have tuned the non-conservative force model for GFO and the gravity model using SLR, Doppler and altimeter crossover data sampled over one year. Gravity covariance projections to 70x70 show the radial orbit error on GEOSAT was reduced from 2.6 cm in EGM96 to 1.3 cm with the addition of SLR, GFO/GFO and TOPEX/GFO crossover data. Evaluation of the gravity fields using SLR and crossover data support the covariance projections and also show a dramatic reduction in geographically-correlated error for the tuned fields. In this paper, we report on progress in orbit determination for GFO using GFO/GFO and TOPEX/GFO altimeter crossovers. We will discuss improvements in satellite force modeling and orbit determination strategy, which allows reduction in GFO radial orbit error from 10-15 cm to better than 5 cm.

  2. Aerodynamic results of a separation test (CA20) conducted at the Boeing transonic wind tunnel using 0.030-scale models of the configuration 140A/B (modified) SSV orbiter (model no. 45-0) and the Boeing 747 carrier (model no. AX 1319 I-1), volume 1. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Dziubala, T.; Esparza, V.; Gillins, R. L.; Petrozzi, M.

    1975-01-01

    A Rockwell built 0.030-scale 45-0 modified Space Shuttle Orbiter Configuration 14?A/B model and a Boeing built 0.030-scale 747 carrier model were tested to provide six component force and moment data for each vehicle in proximity to the other at a matrix of relative positions, attitudes and test conditions (angles of attack and sideslip were varied). Orbiter model support system tare effects were determined for corrections to obtain support-free aerodynamics. In addition to the balance force data, pressures were measured. Pressure orifices were located at the base of the Orbiter, on either side of the vertical blade strut, and at the mid-root chord on either side of the vertical tail. Strain gages were installed on the Boeing 747 vertical tail to indicate buffet onset. Photographs of aerodynamic configurations tested are shown.

  3. Results of transonic tests in the NASA/MSFC 14-inch trisonic wind tunnel on a 0.004-scale model (74-OTS) space shuttle launch vehicle (FA25)

    NASA Technical Reports Server (NTRS)

    Lundy, T. E.

    1979-01-01

    The primary objective of the test was to determine the aerodynamic increments due to the attach structure. Secondary objectives were to determine the effects of: (1) orbiter nose mold line changes; (2) wire bundle fairings on data measurements; and (3) flow angularity. The scale model was tested over the Mach range from 0.60 to 1.25 at angles of attack and sideslip from -8 to +8 deg. The total pressure was 22 psia for all runs. Six-component orbiter data were obtained from a balance in the orbiter which was sting supported. The external tank was attached to the solid rocket booster, each of which was sting supported. An alternate two sting/two balance arrangement was also tested with a single sting and balance in the external tank measuring combined ET/SRB aero data replacing the two stings in the SRB's. Two runs were also made at Mach number 4.96 with the two SRB's removed. The aerodynamic coefficients obtained are tabulated as a function of angle of attack or sideslip for each Mach number value.

  4. Platform options for the Space Station program

    NASA Technical Reports Server (NTRS)

    Mangano, M. J.; Rowley, R. W.

    1986-01-01

    Platforms for polar and 28.5 deg orbits were studied to determine the platform requirements and characteristics necessary to support the science objectives. Large platforms supporting the Earth-Observing System (EOS) were initially studied. Co-orbiting platforms were derived from these designs. Because cost estimates indicated that the large platform approach was likely to be too expensive, require several launches, and generally be excessively complex, studies of small platforms were undertaken. Results of these studies show the small platform approach to be technically feasible at lower overall cost. All designs maximized hardware inheritance from the Space Station program to reduce costs. Science objectives as defined at the time of these studies are largely achievable.

  5. Numerical Algorithms for Precise and Efficient Orbit Propagation and Positioning

    NASA Astrophysics Data System (ADS)

    Bradley, Ben K.

    Motivated by the growing space catalog and the demands for precise orbit determination with shorter latency for science and reconnaissance missions, this research improves the computational performance of orbit propagation through more efficient and precise numerical integration and frame transformation implementations. Propagation of satellite orbits is required for astrodynamics applications including mission design, orbit determination in support of operations and payload data analysis, and conjunction assessment. Each of these applications has somewhat different requirements in terms of accuracy, precision, latency, and computational load. This dissertation develops procedures to achieve various levels of accuracy while minimizing computational cost for diverse orbit determination applications. This is done by addressing two aspects of orbit determination: (1) numerical integration used for orbit propagation and (2) precise frame transformations necessary for force model evaluation and station coordinate rotations. This dissertation describes a recently developed method for numerical integration, dubbed Bandlimited Collocation Implicit Runge-Kutta (BLC-IRK), and compare its efficiency in propagating orbits to existing techniques commonly used in astrodynamics. The BLC-IRK scheme uses generalized Gaussian quadratures for bandlimited functions. It requires significantly fewer force function evaluations than explicit Runge-Kutta schemes and approaches the efficiency of the 8th-order Gauss-Jackson multistep method. Converting between the Geocentric Celestial Reference System (GCRS) and International Terrestrial Reference System (ITRS) is necessary for many applications in astrodynamics, such as orbit propagation, orbit determination, and analyzing geoscience data from satellite missions. This dissertation provides simplifications to the Celestial Intermediate Origin (CIO) transformation scheme and Earth orientation parameter (EOP) storage for use in positioning and orbit propagation, yielding savings in computation time and memory. Orbit propagation and position transformation simulations are analyzed to generate a complete set of recommendations for performing the ITRS/GCRS transformation for a wide range of needs, encompassing real-time on-board satellite operations and precise post-processing applications. In addition, a complete derivation of the ITRS/GCRS frame transformation time-derivative is detailed for use in velocity transformations between the GCRS and ITRS and is applied to orbit propagation in the rotating ITRS. EOP interpolation methods and ocean tide corrections are shown to impact the ITRS/GCRS transformation accuracy at the level of 5 cm and 20 cm on the surface of the Earth and at the Global Positioning System (GPS) altitude, respectively. The precession-nutation and EOP simplifications yield maximum propagation errors of approximately 2 cm and 1 m after 15 minutes and 6 hours in low-Earth orbit (LEO), respectively, while reducing computation time and memory usage. Finally, for orbit propagation in the ITRS, a simplified scheme is demonstrated that yields propagation errors under 5 cm after 15 minutes in LEO. This approach is beneficial for orbit determination based on GPS measurements. We conclude with a summary of recommendations on EOP usage and bias-precession-nutation implementations for achieving a wide range of transformation and propagation accuracies at several altitudes. This comprehensive set of recommendations allows satellite operators, astrodynamicists, and scientists to make informed decisions when choosing the best implementation for their application, balancing accuracy and computational complexity.

  6. Independent Orbiter Assessment (IOA): Analysis of the Orbiter Experiment (OEX) subsystem

    NASA Technical Reports Server (NTRS)

    Compton, J. M.

    1987-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Experiments hardware. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. The Orbiter Experiments (OEX) Program consists of a multiple set of experiments for the purpose of gathering environmental and aerodynamic data to develop more accurate ground models for Shuttle performance and to facilitate the design of future spacecraft. This assessment only addresses currently manifested experiments and their support systems. Specifically this list consists of: Shuttle Entry Air Data System (SEADS); Shuttle Upper Atmosphere Mass Spectrometer (SUMS); Forward Fuselage Support System for OEX (FFSSO); Shuttle Infrared Laced Temperature Sensor (SILTS); Aerodynamic Coefficient Identification Package (ACIP); and Support System for OEX (SSO). There are only two potential critical items for the OEX, since the experiments only gather data for analysis post mission and are totally independent systems except for power. Failure of any experiment component usually only causes a loss of experiment data and in no way jeopardizes the crew or mission.

  7. Results of a 0.03- scale aerodynamic characteristics investigation of Boeing 747 carrier (model no. AX 1319 I-1) mated with a space shuttle orbiter (model 45-0) conducted in the Boeing transonic wind tunnel (CA5), volume 1

    NASA Technical Reports Server (NTRS)

    Sarver, D.; Mulkey, T. L.; Lindahl, R. H.

    1975-01-01

    The performance, stability, and control characteristics of various carrier aircraft configurations are presented. Aerodynamic characteristics of the carrier mated with the Orbiter, carrier alone, and Orbiter alone were investigated. Carrier support system tare and interference effects were determined. Six-component force and moment data were recorded for the carrier and Orbiter. Buffet onset characteristics of the carrier vertical tail and horizontal tail were recorded. Angles of attack from -3 deg through 26 deg and angles of slideslip between +12 deg and -12 deg were investigated at Mach numbers from 0.15 through 0.70. Photographs are included.

  8. Space shuttle engineering and operations support. Orbiter to spacelab electrical power interface. Avionics system engineering

    NASA Technical Reports Server (NTRS)

    Emmons, T. E.

    1976-01-01

    The results are presented of an investigation of the factors which affect the determination of Spacelab (S/L) minimum interface main dc voltage and available power from the orbiter. The dedicated fuel cell mode of powering the S/L is examined along with the minimum S/L interface voltage and available power using the predicted fuel cell power plant performance curves. The values obtained are slightly lower than current estimates and represent a more marginal operating condition than previously estimated.

  9. The evolution of Orbiter depot support, with applications to future space vehicles

    NASA Technical Reports Server (NTRS)

    Mcclain, Michael L.

    1990-01-01

    The reasons for depot consolidation and the processes established to implement the Orbiter depot are presented. The Space Shuttle Orbiter depot support is presently being consolidated due to equipment suppliers leaving the program, escalating depot support costs, and increasing repair turnaround times. Details of the depot support program for orbiter hardware and selected pieces of support equipment are discussed. The benefits gained from this consolidation and the lessons learned are then applied to future reuseable space vehicles to provide program managers a forward look at the need for efficient depot support.

  10. Precise Orbit Determination for LEO Spacecraft Using GNSS Tracking Data from Multiple Antennas

    NASA Technical Reports Server (NTRS)

    Kuang, Da; Bertiger, William; Desai, Shailen; Haines, Bruce

    2010-01-01

    To support various applications, certain Earth-orbiting spacecrafts (e.g., SRTM, COSMIC) use multiple GNSS antennas to provide tracking data for precise orbit determination (POD). POD using GNSS tracking data from multiple antennas poses some special technical issues compared to the typical single-antenna approach. In this paper, we investigate some of these issues using both real and simulated data. Recommendations are provided for POD with multiple GNSS antennas and for antenna configuration design. The observability of satellite position with multiple antennas data is compared against single antenna case. The impact of differential clock (line biases) and line-of-sight (up, along-track, and cross-track) on kinematic and reduced-dynamic POD is evaluated. The accuracy of monitoring the stability of the spacecraft structure by simultaneously performing POD of the spacecraft and relative positioning of the multiple antennas is also investigated.

  11. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.

    PubMed

    Błoński, Piotr; Hafner, Jürgen

    2014-04-09

    The structural and magnetic properties of mixed PtCo, PtFe, and IrCo dimers in the gas phase and supported on a free-standing graphene layer have been calculated using density-functional theory, both in the scalar-relativistic limit and self-consistently including spin-orbit coupling. The influence of the strong magnetic moments of the 3d atoms on the spin and orbital moments of the 5d atoms, and the influence of the strong spin-orbit coupling contributed by the 5d atom on the orbital moments of the 3d atoms have been studied in detail. The magnetic anisotropy energy is found to depend very sensitively on the nature of the eigenstates in the vicinity of the Fermi level, as determined by band filling, exchange splitting and spin-orbit coupling. The large magnetic anisotropy energy of free PtCo and IrCo dimers relative to the easy direction parallel to the dimer axis is coupled to a strong anisotropy of the orbital magnetic moments of the Co atom for both dimers, and also on the Ir atom in IrCo. In contrast the PtFe dimer shows a weak perpendicular anisotropy and only small spin and orbital anisotropies of opposite sign on the two atoms. For dimers supported on graphene, the strong binding within the dimer and the stronger interaction of the 3d atom with the substrate stabilizes an upright geometry. Spin and orbital moments on the 3d atom are strongly quenched, but due to the weaker binding within the dimer the properties of the 5d atom are more free-atom-like with increased spin and orbital moments. The changes in the magnetic moment are reflected in the structure of the electronic eigenstates near the Fermi level, for all three dimers the easy magnetic direction is now parallel to the dimer axis and perpendicular to the graphene layer. The already very large magnetic anisotropy energy (MAE) of IrCo is further enhanced by the interaction with the support, the MAE of PtFe changes sign, and that of the PtCo dimer is reduced. These changes are discussed in relation to the relativistic electronic structure of free and supported dimers and it is demonstrated that the existence of a partially occupied quasi-degenerate state at the Fermi level favors the formation of a large magnetic anisotropy.

  12. Data Acquisition, Management, and Analysis in Support of the Audiology and Hearing Conservation and the Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Dicken, Todd

    2012-01-01

    My internship at Johnson Space Center, Houston TX comprised of working simultaneously in the Space Life Science Directorate (Clinical Services Branch, SD3) in Audiology and Hearing Conservation and in the Astromaterials Research and Exploration Sciences Directorate in the Orbital Debris Program Office (KX). The purpose of the project done to support the Audiology and Hearing Conservation Clinic (AuHCon) is to organize and analyze auditory test data that has been obtained from tests conducted onboard the International Space Station (ISS) and in Johnson Space Center's clinic. Astronauts undergo a special type of auditory test called an On-Orbit Hearing Assessment (OOHA), which monitors hearing function while crewmembers are exposed to noise and microgravity during long-duration spaceflight. Data needed to be formatted to assist the Audiologist in studying, analyzing and reporting OOHA results from all ISS missions, with comparison to conventional preflight and post-flight audiometric test results of crewmembers. Orbital debris is the #1 threat to manned spacecraft; therefore NASA is investing in different measurement techniques to acquire information on orbital debris. These measurements are taken with telescopes in different parts of the world to acquire brightness variations over time, from which size, rotation rates and material information can be determined for orbital debris. Currently many assumptions are taken to resolve size and material from observed brightness, therefore a laboratory (Optical Measurement Center) is used to simulate the space environment and acquire information of known targets suited to best model the orbital debris population. In the Orbital Debris Program Office (ODPO) telescopic data were acquired and analyzed to better assess the orbital debris population.

  13. Landsat Data Continuity Mission (LDCM) Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Good, Susan M.; Nicholson, Ann M.

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) will be launched in January 2013 to continue the legacy of Landsat land imagery collection that has been on-going for the past 40 years. While the overall mission and science goals are designed to produce the SAME data over the years, the ground systems designed to support the mission objectives have evolved immensely. The LDCM Flight Dynamics System (FDS) currently being tested and deployed for operations is highly automated and well integrated with the other ground system elements. The FDS encompasses the full suite of flight dynamics functional areas, including orbit and attitude determination and prediction, orbit and attitude maneuver planning and execution, and planning product generation. The integration of the orbit, attitude, maneuver, and products functions allows a very smooth flow for daily operations support with minimal input needed from the operator. The system also provides a valuable real-time component that monitors the on-board orbit and attitude during every ground contact and will autonomously alert the Flight Operations Team (FOT) personnel when any violations are found. This paper provides an overview of the LDCM Flight Dynamics System and a detailed description of how it is used to support space operations. For the first time on a Goddard Space Flight Center (GSFC)-managed mission, the ground attitude and orbits systems are fully integrated into a cohesive package. The executive engine of the FDS permits three levels of automation: low, medium, and high. The high-level, which will be the standard mode for LDCM, represents nearly lights-out operations. The paper provides an in-depth look at these processes within the FDS in support of LDCM in all mission phases.

  14. Orbit Determination During Spacecraft Emergencies with Sparse Tracking Data - THEMIS and TDRS-3 Lessons Learned

    NASA Technical Reports Server (NTRS)

    Morinelli, Patrick J.; Ward, Douglas T.; Blizzard, Michael R.; Mendelsohn, Chad R.

    2008-01-01

    This paper provides an overview of the lessons learned from the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center s (GSFC) Flight Dynamics Facility s (FDF) support of the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft emergency in February 2007, and the Tracking and Data Relay Satellite-3 (TDRS-3) spacecraft emergency in March 2006. A successful and timely recovery from both of these spacecraft emergencies depended on accurate knowledge of the orbit. Unfortunately, the combination of each spacecraft emergency with very little tracking data contributed to difficulties in estimating and predicting the orbit and delayed recovery efforts in both cases. In both the THEMIS and TDRS-3 spacecraft emergencies, numerous factors contributed to problems with obtaining nominal tracking data measurements. This paper details the various causative factors and challenges. This paper further enumerates lessons learned from FDF s recovery efforts involving the THEMIS and TDRS-3 spacecraft emergencies and scant tracking data, as well as recommendations for improvements and corrective actions. In addition, this paper describes the broad range of resources and complex navigation methods employed within the FDF for supporting critical navigation activities during all mission phases, including launch, early orbit, and on-orbit operations.

  15. Determination of Orbital Parameters for Visual Binary Stars Using a Fourier-Series Approach

    NASA Astrophysics Data System (ADS)

    Brown, D. E.; Prager, J. R.; DeLeo, G. G.; McCluskey, G. E., Jr.

    2001-12-01

    We expand on the Fourier transform method of Monet (ApJ 234, 275, 1979) to infer the orbital parameters of visual binary stars, and we present results for several systems, both simulated and real. Although originally developed to address binary systems observed through at least one complete period, we have extended the method to deal explicitly with cases where the orbital data is less complete. This is especially useful in cases where the period is so long that only a fragment of the orbit has been recorded. We utilize Fourier-series fitting methods appropriate to data sets covering less than one period and containing random measurement errors. In so doing, we address issues of over-determination in fitting the data and the reduction of other deleterious Fourier-series artifacts. We developed our algorithm using the MAPLE mathematical software code, and tested it on numerous "synthetic" systems, and several real binaries, including Xi Boo, 24 Aqr, and Bu 738. This work was supported at Lehigh University by the Delaware Valley Space Grant Consortium and by NSF-REU grant PHY-9820301.

  16. Impingement effect of service module reaction control system engine plumes. Results of service module reaction control system plume model force field application to an inflight Skylab mission proximity operation situation with the inflight Skylab response

    NASA Technical Reports Server (NTRS)

    Lobb, J. D., Jr.

    1978-01-01

    Plume impingement effects of the service module reaction control system thruster firings were studied to determine if previous flight experience would support the current plume impingement model for the orbiter reaction control system engines. The orbiter reaction control system is used for rotational and translational maneuvers such as those required during rendezvous, braking, docking, and station keeping. Therefore, an understanding of the characteristics and effects of the plume force fields generated by the reaction control system thruster firings were examined to develop the procedures for orbiter/payload proximity operations.

  17. The 'Outcome Reporting in Brief Intervention Trials: Alcohol' (ORBITAL) framework: protocol to determine a core outcome set for efficacy and effectiveness trials of alcohol screening and brief intervention.

    PubMed

    Shorter, G W; Heather, N; Bray, Jeremy W; Giles, E L; Holloway, A; Barbosa, C; Berman, A H; O'Donnell, A J; Clarke, M; Stockdale, K J; Newbury-Birch, D

    2017-12-22

    The evidence base to assess the efficacy and effectiveness of alcohol brief interventions (ABI) is weakened by variation in the outcomes measured and by inconsistent reporting. The 'Outcome Reporting in Brief Intervention Trials: Alcohol' (ORBITAL) project aims to develop a core outcome set (COS) and reporting guidance for its use in future trials of ABI in a range of settings. An international Special Interest Group was convened through INEBRIA (International Network on Brief Interventions for Alcohol and Other Drugs) to inform the development of a COS for trials of ABI. ORBITAL will incorporate a systematic review to map outcomes used in efficacy and effectiveness trials of ABI and their measurement properties, using the COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) criteria. This will support a multi-round Delphi study to prioritise outcomes. Delphi panellists will be drawn from a range of settings and stakeholder groups, and the Delphi study will also be used to determine if a single COS is relevant for all settings. A consensus meeting with key stakeholder representation will determine the final COS and associated guidance for its use in trials of ABI. ORBITAL will develop a COS for alcohol screening and brief intervention trials, with outcomes stratified into domains and guidance on outcome measurement instruments. The standardisation of ABI outcomes and their measurement will support the ongoing development of ABI studies and a systematic synthesis of emerging research findings. We will track the extent to which the COS delivers on this promise through an exploration of the use of the guidance in the decade following COS publication.

  18. Large Deployable Reflector (LDR) thermal characteristics

    NASA Technical Reports Server (NTRS)

    Miyake, R. N.; Wu, Y. C.

    1988-01-01

    The thermal support group, which is part of the lightweight composite reflector panel program, developed thermal test and analysis evaluation tools necessary to support the integrated interdisciplinary analysis (IIDA) capability. A detailed thermal mathematical model and a simplified spacecraft thermal math model were written. These models determine the orbital temperature level and variation, and the thermally induced gradients through and across a panel, for inclusion in the IIDA.

  19. Copernicus POD Service Operations

    NASA Astrophysics Data System (ADS)

    Fernandez, Jaime; Ayuga, Francisco; Fernandez, Carlos; Peter, Heike; Femenias, Pierre

    2016-08-01

    The Copernicus POD (Precise Orbit Determination) Serviceis part of the Copernicus PDGS Ground Segment of the Sentinel missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files of Sentinel-1, -2, & -3 missions, for their use as part of the processing chains of the respective Sentinel PDGS.Although the characteristics and the requirements are different for the three missions, the same core POD setup is used to the largest possible extent. At the moment, the CPOD Service is operating 3 satellites: Sentinel-1A, -2A and -3A, and is ready to support operations of Sentinel-1B.This paper presents the status of the CPOD Service in terms of operations and orbital accuracy achieved for the different orbit products of the different missions, focusing on Sentinel-3A preliminary results.

  20. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  1. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies.

    PubMed

    Scivetti, Iván; Persson, Mats

    2017-09-06

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals-HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  2. Generating precise and homogeneous orbits for Jason-1 and Jason-2

    NASA Astrophysics Data System (ADS)

    Flohrer, Claudia; Otten, Michiel; Springer, Tim; Dow, John M.

    Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are needed. Satellite altimetry missions meanwhile span over three decades, in which our understanding of the Earth has increased significantly. As also the models used for precise orbit determination (POD) have improved, the satellite orbits of the altimetry satellites are not available in an uniform reference system. Homogeneously determined orbits referring to the same global reference system are, however, needed to improve our understanding of the Earth system. With the launch of the TOPEX/Poseidon (T/P) mission in 1992 a still ongoing time series of high-altimetry measurements of ocean topography started. In 2001 the altimetry mission Jason-1 took over and in 2009 the follow-on program Jason-2/OSTM started. All three satellites follow the same ground-track by flying in the same orbit, thus ensuring a continuous time-series of centimetre-level ocean topography observations. Therefore a reprocessing of the orbit determination for these altimetry satellites would be highly beneficial for altimetry applications. The Navigation Support Office at ESA/ESOC has enhanced the GNSS processing capabilities of its NAPEOS software. Thus it is now in the unique position to do orbit determination by combining different types of data, and by using one single software system for different satellite types, including the most recent improvements in orbit and observation modelling and IERS conventions. Our presentation focuses on the re-processing efforts carried out by ESA/ESOC for the gener-ation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. At the same time ESOC carried out a re-processing of the com-bined GPS/GLONASS IGS solution from 2002-2009 for the generation of 30 second satellite clocks, which enabled us to use 30 second-sampled GPS observations in our POD process. Data of all three tracking instruments on-board the satellites, i.e. GPS, DORIS, and SLR measure-ments, were used in a combined data analysis. About 8 years of Jason-1 data and about 2 years of Jason-2 data were processed. We present the orbit determination results, focusing on the benefits when adding the 30 second-sampled GPS data (used together with DORIS and SLR measurements) to the solution. We evaluate the orbit accuracy by analysing post-fit residuals, orbit overlap errors, and orbit differences between our orbits and external orbits generated by other analysis centres. The consistency between our solutions and external orbits is below the 1 cm level in the radial direction, the most crucial component for altimetry height measurements. In the cross-track component we observe a clear improvement when adding GPS data to the POD process. The use of GPS data also seems to improve the DORIS data processing, as the DORIS post-fit residuals clearly benefit.

  3. Gravity model development for TOPEX/POSEIDON: Joint gravity models 1 and 2

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Lerch, F. J.; Marshall, J. A.; Pavlis, E. C.; Putney, B. H.; Tapley, B. D.; Eanes, R. J.; Ries, J. C.; Schutz, B. E.; Shum, C. K.

    1994-01-01

    The TOPEX/POSEIDON (T/P) prelaunch Joint Gravity Model-1 (JGM-1) and the postlaunch JGM-2 Earth gravitational models have been developed to support precision orbit determination for T/P. Each of these models is complete to degree 70 in spherical harmonics and was computed from a combination of satellite tracking data, satellite altimetry, and surface gravimetry. While improved orbit determination accuracies for T/P have driven the improvements in the models, the models are general in application and also provide an improved geoid for oceanographic computations. The postlaunch model, JGM-2, which includes T/P satellite laser ranging (SLR) and Doppler orbitography and radiopositioning integrated by satellite (DORIS) tracking data, introduces radial orbit errors for T/P that are only 2 cm RMS with the commission errors of the marine geoid for terms to degree 70 being +/- 25 cm. Errors in modeling the nonconservative forces acting on T/P increase the total radial errors to only 3-4 cm root mean square (RMS), a result much better than premission goals. While the orbit accuracy goal for T/P has been far surpassed geoid errors still prevent the absolute determination of the ocean dynamic topography for wavelengths shorter than about 2500 km. Only a dedicated gravitational field satellite mission will likely provide the necessary improvement in the geoid.

  4. Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers

    NASA Technical Reports Server (NTRS)

    Lightsey, E. Glenn

    2004-01-01

    Satellite formation missions require the precise determination of both the position and attitude of multiple vehicles to achieve the desired objectives. In order to support the mission requirements for these applications, it is necessary to develop techniques for representing and controlling the attitude of formations of vehicles. A generalized method for representing the attitude of a formation of vehicles has been developed. The representation may be applied to both absolute and relative formation attitude control problems. The technique is able to accommodate formations of arbitrarily large number of vehicles. To demonstrate the formation attitude problem, the method is applied to the attitude determination of a simple leader-follower along-track orbit formation. A multiplicative extended Kalman filter is employed to estimate vehicle attitude. In a simulation study using GPS receivers as the attitude sensors, the relative attitude between vehicles in the formation is determined 3 times more accurately than the absolute attitude.

  5. Small Aerostationary Telecommunications Orbiter Concept for Mars in the 2020s

    NASA Technical Reports Server (NTRS)

    Lock, Robert E.; Edwards, Charles D., Jr.; Nicholas, Austin; Woolley, Ryan; Bell, David J.

    2016-01-01

    Current Mars science orbiters carry UHF proximity payloads to provide limited access and data services to landers and rovers on Mars surface. In the era of human spaceflight to Mars, very high rate and reliable relay services will be needed to serve a large number of supporting vehicles, habitats, and orbiters, as well as astronaut EVAs. These will likely be provided by a robust network of orbiting assets in very high orbits, such as areostationary orbits. In the decade leading to that era, telecommunications orbits can be operated at areostationary orbit that can support a significant population of robotic precursor missions and build the network capabilities needed for the human spaceflight era. Telecommunications orbiters of modest size and cost, delivered by Solar Electric Propulsion to areostationary orbit, can provide continuous access at very high data rates to users on the surface and in Mars orbit.In the era of human spaceflight to Mars very high rate andreliable relay services will be needed to serve a largenumber of supporting vehicles, habitats, and orbiters, aswell as astronaut EVAs. These could be provided by arobust network of orbiting assets in very high orbits. In thedecade leading to that era, telecommunications orbiterscould be operated at areostationary orbit that could support asignificant population of robotic precursor missions andbuild the network capabilities needed for the humanspaceflight era. These orbiters could demonstrate thecapabilities and services needed for the future but withoutthe high bandwidth and high reliability requirements neededfor human spaceflight.Telecommunications orbiters of modest size and cost,delivered by Solar Electric Propulsion to areostationaryorbit, could provide continuous access at very high datarates to users on the surface and in Mars orbit. Twoexamples highlighting the wide variety of orbiter deliveryand configuration options were shown that could providehigh-performance service to users.

  6. Early Assessment of VIIRS On-Orbit Calibration and Support Activities

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Kwofu; McIntire, Jeffrey; Oudrari, Hassan; Wu, Aisheng; Schwaller, Mathew; Butler, James

    2012-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST.

  7. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An introduction to the MAPSEP organization and a detailed analytical description of all models and algorithms are given. These include trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes. Earth orbital MAPSEP contains the capability of analyzing almost any currently projected low thrust mission from low earth orbit to super synchronous altitudes. Furthermore, MAPSEP is sufficiently flexible to incorporate extended dynamic models, alternate mission strategies, and almost any other system requirement imposed by the user. As in the interplanetary version, earth orbital MAPSEP represents a trade-off between precision modeling and computational speed consistent with defining necessary system requirements. It can be used in feasibility studies as well as in flight operational support. Pertinent operational constraints are available both implicitly and explicitly. However, the reader should be warned that because of program complexity, MAPSEP is only as good as the user and will quickly succumb to faulty user inputs.

  8. Orbit determination singularities in the Doppler tracking of a planetary orbiter

    NASA Technical Reports Server (NTRS)

    Wood, L. J.

    1985-01-01

    On a number of occasions, spacecraft launched by the U.S. have been placed into orbit about the moon, Venus, or Mars. It is pointed out that, in particular, in planetary orbiter missions two-way coherent Doppler data have provided the principal data type for orbit determination applications. The present investigation is concerned with the problem of orbit determination on the basis of Doppler tracking data in the case of a spacecraft in orbit about a natural body other than the earth or the sun. Attention is given to Doppler shift associated with a planetary orbiter, orbit determination using a zeroth-order model for the Doppler shift, and orbit determination using a first-order model for the Doppler shift.

  9. Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry. Part 2: Orbit Determination Analysis

    NASA Technical Reports Server (NTRS)

    Folkner, W. M.; Border, J. S.; Nandi, S.; Zukor, K. S.

    1993-01-01

    A new radio metric positioning technique has demonstrated improved orbit determination accuracy for the Magellan and Pioneer Venus Orbiter orbiters. The new technique, known as Same-Beam Interferometry (SBI), is applicable to the positioning of multiple planetary rovers, landers, and orbiters which may simultaneously be observed in the same beamwidth of Earth-based radio antennas. Measurements of carrier phase are differenced between spacecraft and between receiving stations to determine the plane-of-sky components of the separation vector(s) between the spacecraft. The SBI measurements complement the information contained in line-of-sight Doppler measurements, leading to improved orbit determination accuracy. Orbit determination solutions have been obtained for a number of 48-hour data arcs using combinations of Doppler, differenced-Doppler, and SBI data acquired in the spring of 1991. Orbit determination accuracy is assessed by comparing orbit solutions from adjacent data arcs. The orbit solution differences are shown to agree with expected orbit determination uncertainties. The results from this demonstration show that the orbit determination accuracy for Magellan obtained by using Doppler plus SBI data is better than the accuracy achieved using Doppler plus differenced-Doppler by a factor of four and better than the accuracy achieved using only Doppler by a factor of eighteen. The orbit determination accuracy for Pioneer Venus Orbiter using Doppler plus SBI data is better than the accuracy using only Doppler data by 30 percent.

  10. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  11. Concept considerations for a small orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Green, M.; Sibila, A. I.

    1979-01-01

    This paper summarizes a study of small orbital transfer vehicles to place payloads in orbits with altitudes above those of the standard Shuttle operations. The overall objective of the study is to examine the role of the small orbital transfer vehicle (SOTV) in Shuttle operations and to identify typical propulsion concepts for accomplishing the mission. Consideration is given to existing and planned systems and upper stages, along with new propulsion stages. The new propulsion concept development examines tandem and clustered solids, controlled solids, monopropellant and bipropellant liquids, and staged solid/liquid combinations. The paper presents considerations of the mission requirements, tradeoffs of the various configurations, and candidate selections. For the selected candidate concepts the performance, support equipment, operational considerations and program costs were determined. The results show that a new modular liquid stage system is cost effective in handling the majority of the payloads considered. The remainder of the payloads can be accomodated by existing systems.

  12. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, C. H.; Medling, S. A.; Jiang, Yu

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These newmore » results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.« less

  13. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  14. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.

    1982-01-01

    A test was conducted to determine the solar reflections from the Orbiter radiator panels. A one-tenth scale model of the forward and mid-forward radiator panels in the deployed position was utilized in the test. Test data was obtained to define the reflected one-sun envelope for the embossed silver/Teflon radiator coating. The effects of the double contour on the forward radiator panels were included in the test. Solar concentrations of 2 suns were measured and the one-sun envelope was found to extend approximately 86 inches above the radiator panel. A limited amount of test data was also obtained for the radiator panels with the smooth silver/Teflon coating to support the planned EVA on the Orbiter STS-5 flight. Reflected solar flux concentrations as high as 8 suns were observed with the smooth coating and the one-sun envelope was determined to extend 195 inches above the panel. It is recommended that additional testing be conducted to define the reflected solar environment beyond the one-sun boundary.

  15. Navigation of the space VLBI mission-HALCA

    NASA Technical Reports Server (NTRS)

    You, Tung Han; Ellis, Jordan; Mottinger, Neil

    1998-01-01

    In February 1997, the Japanese Space Agency ISAS launched the first space VLBI satellite, HALCA, with an 8 meter diameter wire mesh antenna and radio astronomy receivers capable of observing at 1.6, 4.8, and 22 Ghz. In a 560 by 21000 km orbit with a 6 hour period and 31 degree inclination, it observes celestial radio sources in conjunction with a world wide network of ground radio telescopes as part of an international collaborative effort which includes facilities in Japan, the U.S., Canada, Australia, and Europe. JPL is providing tracking and navigation support using a dedicated subnet of 11 meter antennas as well as co-observations using the DSN 70 meter antennas. This paper describes the spacecraft dynamics model and orbit determination strategies developed to meet the stringent trajectory accuracy requirements for generating predictions for the transfer of a stable uplink frequency to the spacecraft and for determining reconstructed orbits for delivery to the NRAO VLBI correlator and the international VLBI science community.

  16. User's guide for the thermal analyst's help desk expert system

    NASA Technical Reports Server (NTRS)

    Ormsby, Rachel A.

    1994-01-01

    A guide for users of the Thermal Analyst's Help Desk is provided. Help Desk is an expert system that runs on a DOS based personal computer and operates within the EXSYS expert system shell. Help Desk is an analysis tool designed to provide users having various degrees of experience with the capability to determine first approximations of thermal capacity for spacecraft and instruments. The five analyses supported in Help Desk are: surface area required for a radiating surface, equilibrium temperature of a surface, enclosure temperature and heat loads for a defined position in orbit, enclosure temperature and heat loads over a complete orbit, and selection of appropriate surface properties. The two geometries supported by Help Desk are a single flat plate and a rectangular box enclosure.

  17. Accuracy assessment of BDS precision orbit determination and the influence analysis of site distribution

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Guo, Jiming; Li, Zhicai; Zhang, Peng; Wu, Junli; Song, Weiwei

    2017-04-01

    BDS precision orbit determination is a key content of the BDS application, but the inadequate ground stations and the poor distribution of the network are the main reasons for the low accuracy of BDS precise orbit determination. In this paper, the BDS precise orbit determination results are obtained by using the IGS MGEX stations and the Chinese national reference stations,the accuracy of orbit determination of GEO, IGSO and MEO is 10.3cm, 2.8cm and 3.2cm, and the radial accuracy is 1.6cm,1.9cm and 1.5cm.The influence of ground reference stations distribution on BDS precise orbit determination is studied. The results show that the Chinese national reference stations contribute significantly to the BDS orbit determination, the overlap precision of GEO/IGSO/MEO satellites were improved by 15.5%, 57.5% and 5.3% respectively after adding the Chinese stations.Finally, the results of ODOP(orbit distribution of precision) and SLR are verified. Key words: BDS precise orbit determination; accuracy assessment;Chinese national reference stations;reference stations distribution;orbit distribution of precision

  18. Post-aerocapture orbit selection and maintenance for the Aerofast mission to Mars

    NASA Astrophysics Data System (ADS)

    Pontani, Mauro; Teofilatto, Paolo

    2012-10-01

    Aerofast is the abbreviation of “aerocapture for future space transportation” and represents a project aimed at developing aerocapture techniques with regard to an interplanetary mission to Mars, in the context of the 7th Framework Program, with the financial support of the European Union. This paper describes the fundamental characteristics of the operational orbit after aerocapture for the mission of interest, as well as the related maintenance strategy. The final orbit selection depends on the desired lighting conditions, maximum revisit time of specific target regions, and feasibility of the orbit maintenance strategy. A sunsynchronous, frozen, repeating-ground-track orbit is chosen. First, the period of repetition is such that adjacent ascending node crossings (over the Mars surface) have a separation compatible with the swath of the optical payload. Secondly, the sunsynchronism condition ensures that a given latitude is periodically visited at the same local time, which condition is essential for comparing images of the same region at different epochs. Lastly, the fulfillment of the frozen condition guarantees improved orbit stability with respect to perturbations due to the zonal harmonics of Mars gravitational field. These three fundamental features of the operational orbit lead to determining its mean orbital elements. The evaluation of short and long period effects (e.g., those due to the sectorial harmonics of the gravitational field or to the aerodynamic drag) requires the determination of the osculating orbital elements at an initial reference time. This research describes a simple and accurate approach that leads to numerically determining these initial values, without employing complicated analytical developments. Numerical simulations demonstrate the long-period stability of the orbit when a significant number of harmonics of the gravitational field are taken into account. However, aerodynamic drag produces a relatively slow orbital decay at the altitudes considered for the mission. This circumstance implies the progressive loss of the sunsynchronism condition, and therefore corrective maneuvers are to be performed. This work proves that actually only in-plane maneuvers are necessary, evaluates the overall delta-v budget needed in the period of repetition (85 Martian nodal days), and proposes a simple maintenance strategy, making reference to the worst-case scenario, which corresponds to the highest seasonal values of the atmospheric density and to the maximum value of the ballistic coefficient of the spacecraft.

  19. Fast aurora zone analysis

    NASA Technical Reports Server (NTRS)

    Booker, Mattie

    1992-01-01

    The Flight Dynamics Facility (FDF) of the Flight Dynamics Division (FDD), of the Goddard Space Flight Center provides acquisition data to tracking stations and orbit and attitude services to scientists and mission support personnel. The following paper explains how a method was determined that found spacecraft entry and exit times of the aurora zone.

  20. Observations of Spacecraft Targets, Unusual Asteroids, and Targets of Opportunity

    NASA Technical Reports Server (NTRS)

    Tholen, David J.

    1998-01-01

    Obtain physical and astrometric observations of: (1) spacecraft targets to support mission operations; (2) known asteroids with unusual orbits to help determine their origin; and (3) newly discovered minor planets (including both asteroids and comets) that represent a particular opportunity to add significant new knowledge of the Solar System.

  1. Flight Experiment Demonstration System (FEDS) analysis report

    NASA Technical Reports Server (NTRS)

    Shank, D. E.

    1986-01-01

    The purpose of the Flight Experiment Demonstration System (FEDS) was to show, in a simulated spacecraft environment, the feasibility of using a microprocessor to automate the onboard orbit determination functions. The software and hardware configuration used to support FEDS during the demonstration and the results of the demonstration are discussed.

  2. Manned Orbital Transfer Vehicle (MOTV). Volume 4: Supporting analysis

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    Generic missions were defined to enable potential users to determine the parameters for suggested user projects. Mission modes were identified for providing operation, interfaces, performance, and cost data for studying payloads. Safety requirements for emergencies during various phases of the mission are considered with emphasis on radiation hazards.

  3. Performance Assessment of Two GPS Receivers on Space Shuttle

    NASA Technical Reports Server (NTRS)

    Schroeder, Christine A.; Schutz, Bob E.

    1996-01-01

    Space Shuttle STS-69 was launched on September 7, 1995, carrying the Wake Shield Facility (WSF-02) among its payloads. The mission included two GPS receivers: a Collins 3M receiver onboard the Endeavour and an Osborne flight TurboRogue, known as the TurboStar, onboard the WSF-02. Two of the WSF-02 GPS Experiment objectives were to: (1) assess the ability to use GPS in a relative satellite positioning mode using the receivers on Endeavour and WSF-02; and (2) assess the performance of the receivers to support high precision orbit determination at the 400 km altitude. Three ground tests of the receivers were conducted in order to characterize the respective receivers. The analysis of the tests utilized the Double Differencing technique. A similar test in orbit was conducted during STS-69 while the WSF-02 was held by the Endeavour robot arm for a one hour period. In these tests, biases were observed in the double difference pseudorange measurements, implying that biases up to 140 m exist which do not cancel in double differencing. These biases appear to exist in the Collins receiver, but their effect can be mitigated by including measurement bias parameters to accommodate them in an estimation process. An additional test was conducted in which the orbit of the combined Endeavour/WSF-02 was determined independently with each receiver. These one hour arcs were based on forming double differences with 13 TurboRogue receivers in the global IGS network and estimating pseudorange biases for the Collins. Various analyses suggest the TurboStar overall orbit accuracy is about one to two meters for this period, based on double differenced phase residuals of 34 cm. These residuals indicate the level of unmodeled forces on Endeavour produced by gravitational and nongravitational effects. The rms differences between the two independently determined orbits are better than 10 meters, thereby demonstrating the accuracy of the Collins-determined orbit at this level as well as the accuracy of the relative positioning using these two receivers.

  4. Circular revisit orbits design for responsive mission over a single target

    NASA Astrophysics Data System (ADS)

    Li, Taibo; Xiang, Junhua; Wang, Zhaokui; Zhang, Yulin

    2016-10-01

    The responsive orbits play a key role in addressing the mission of Operationally Responsive Space (ORS) because of their capabilities. These capabilities are usually focused on supporting specific targets as opposed to providing global coverage. One subtype of responsive orbits is repeat coverage orbit which is nearly circular in most remote sensing applications. This paper deals with a special kind of repeating ground track orbit, referred to as circular revisit orbit. Different from traditional repeat coverage orbits, a satellite on circular revisit orbit can visit a target site at both the ascending and descending stages in one revisit cycle. This typology of trajectory allows a halving of the traditional revisit time and does a favor to get useful information for responsive applications. However the previous reported numerical methods in some references often cost lots of computation or fail to obtain such orbits. To overcome this difficulty, an analytical method to determine the existence conditions of the solutions to revisit orbits is presented in this paper. To this end, the mathematical model of circular revisit orbit is established under the central gravity model and the J2 perturbation. A constraint function of the circular revisit orbit is introduced, and the monotonicity of that function has been studied. The existent conditions and the number of such orbits are naturally worked out. Taking the launch cost into consideration, optimal design model of circular revisit orbit is established to achieve a best orbit which visits a target twice a day in the morning and in the afternoon respectively for several days. The result shows that it is effective to apply circular revisit orbits in responsive application such as reconnoiter of natural disaster.

  5. Orbital construction support equipment - Manned remote work station

    NASA Technical Reports Server (NTRS)

    Nassiff, S. H.

    1978-01-01

    The Manned Remote Work Station (MRWS) is a versatile piece of orbital construction support equipment which can support in-space construction in various modes of operation. Proposed near-term Space Shuttle mission support and future large orbiting systems support, along with the various construction modes of MRWS operation, are discussed. Preliminary flight subsystems requirements and configuration design are presented. Integration of the MRWS development test article with the JSC Mockup and Integration Facility, including ground-test objectives and techniques for zero-g simulations, is also presented.

  6. Block distributions on the lunar surface: A comparison between measurements obtained from surface and orbital photography

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Mcbride, Kathleen M.

    1995-01-01

    Among the hazards that must be negotiated by lunar-landing spacecraft are blocks on the surface of the Moon. Unfortunately, few data exist that can be used to evaluate the threat posed by such blocks to landing spacecraft. Perhaps the best information is that obtained from Surveyor photographs, but those data do not extend to the dimensions of the large blocks that would pose the greatest hazards. Block distributions in the vicinities of the Surveyor 1, 3, 6, and 7 sites have been determined from Lunar Orbiter photography and are presented here. Only large (i.e., greater than or equal to 2.5 m) blocks are measurable in these pictures, resulting in a size gap between the Surveyor and Lunar Orbiter distributions. Nevertheless, the orbital data are self-consistent, a claim supported by the similarity in behavior between the subsets of data from the Surveyor 1, 3, and 6 sites and by the good agreement in position (if not slopes) between the data obtained from the Surveyor 3 photography and those derived from the Lunar Orbiter photographs. Confidence in the results is also justified by the well-behaved distribution of large blocks at the surveyor site. Comparisons between the Surveyor distributions and those derived from the orbital photography permit these observations: (1) in all cases but that for Surveyor 3, the density of large blocks is overestimated by extrapolation of the Surveyor-derived trends; (2) the slopes of the Surveyor-derived distributions are consistently lower than those determined for the large blocks; and (3) these apparent disagreements could be mitigated if the overall shapes of the cumulative lunar block populations were nonlinear, allowing for different slopes over different size intervals. The relatively large gaps between the Surveyor-derived and Orbiter-derived data sets, however, do not permit a determination of those shapes.

  7. Geosynchronous platform definition study. Volume 6: Geosynchronous program evaluation and recommendations

    NASA Technical Reports Server (NTRS)

    Myers, H. L.

    1973-01-01

    The programmatic analyses conducted to achieve the objectives of the study are presented. The characteristics are examined of alternate geosynchronous programs based on servicing concepts, geosynchronous platform configurations, and equipment definitions which have evolved during the study. The logistics support necessary to carry out programs using these systems is defined considering alternate approaches for on-orbit servicing. The costs of the resultant programs are then determined and the alternate program approaches compared. Conventional programs with expendable satellites are also defined to the extent necessary to permit comparison with on-orbit serviced platform programs.

  8. Achieving Space Shuttle Abort-to-Orbit Using the Five-Segment Booster

    NASA Technical Reports Server (NTRS)

    Craft, Joe; Ess, Robert; Sauvageau, Don

    2003-01-01

    The Five-Segment Booster design concept was evaluated by a team that determined the concept to be feasible and capable of achieving the desired abort-to-orbit capability when used in conjunction with increased Space Shuttle main engine throttle capability. The team (NASA Johnson Space Center, NASA Marshall Space Flight Center, ATK Thiokol Propulsion, United Space Alliance, Lockheed-Martin Space Systems, and Boeing) selected the concept that provided abort-to-orbit capability while: 1) minimizing Shuttle system impacts by maintaining the current interface requirements with the orbiter, external tank, and ground operation systems; 2) minimizing changes to the flight-proven design, materials, and processes of the current four-segment Shuttle booster; 3) maximizing use of existing booster hardware; and 4) taking advantage of demonstrated Shuttle main engine throttle capability. The added capability can also provide Shuttle mission planning flexibility. Additional performance could be used to: enable implementation of more desirable Shuttle safety improvements like crew escape, while maintaining current payload capability; compensate for off nominal performance in no-fail missions; and support missions to high altitudes and inclinations. This concept is a low-cost, low-risk approach to meeting Shuttle safety upgrade objectives. The Five-Segment Booster also has the potential to support future heavy-lift missions.

  9. Independent Orbiter Assessment (IOA): Analysis of the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Raffaelli, Gary G.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Extravehicular Mobility Unit (EMU) hardware. The EMU is an independent anthropomorphic system that provides environmental protection, mobility, life support, and communications for the Shuttle crewmember to perform Extravehicular Activity (EVA) in Earth orbit. Two EMUs are included on each baseline Orbiter mission, and consumables are provided for three two-man EVAs. The EMU consists of the Life Support System (LSS), Caution and Warning System (CWS), and the Space Suit Assembly (SSA). Each level of hardware was evaluated and analyzed for possible failure modes and effects. The majority of these PCIs are resultant from failures which cause loss of one or more primary functions: pressurization, oxygen delivery, environmental maintenance, and thermal maintenance. It should also be noted that the quantity of PCIs would significantly increase if the SOP were to be treated as an emergency system rather than as an unlike redundant element.

  10. Galileo Jupiter approach orbit determination

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Nicholson, F. T.

    1984-01-01

    Orbit determination characteristics of the Jupiter approach phase of the Galileo mission are described. Predicted orbit determination performance is given for the various mission events that occur during Jupiter approach. These mission events include delivery of an atmospheric entry probe, acquisition of probe science data by the Galileo orbiter for relay to earth, delivery of an orbiter to a close encounter of the Galilean satellite Io, and insertion of the orbiter into orbit about Jupiter. The orbit determination strategy and resulting accuracies are discussed for the data types which include Doppler, range, optical imaging of Io, and a new Very Long Baseline Interferometry (VLBI) data type called Differential One-Way Range (DOR).

  11. Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS)

    NASA Technical Reports Server (NTRS)

    Rush, John; Israel, David; Harlacher, Marc; Haas, Lin

    2003-01-01

    The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.

  12. The Solar and Heliospheric Observatory (SOHO) Mission: An Overview of Flight Dynamics Support of the Early Mission Phase

    NASA Technical Reports Server (NTRS)

    Short, R.; Behuncik, J.

    1996-01-01

    The SOHO spacecraft was successfully launched by an Atlas 2AS from the Eastern Range on December 2, 1995. After a short time in a nearly circular parking orbit, the spacecraft was placed by the Centaur upper stage on a transfer trajectory to the L1 libration point where it was inserted into a class 1 Halo orbit. The nominal mission lifetime is two years which will be spent collecting data from the Sun using a complement of twelve instruments. An overview of the early phases of Flight Dynamics Facility support of the mission is given. Maneuvers required for the mission are discussed, and an evaluation of these maneuvers is given with the attendent effects on the resultant orbit. Thruster performance is presented as well as real time monitoring of thruster activity during maneuvers. Attitude areas presented are the star identification process and role angle determination, momentum management, operating constraints on the star tracker, and guide star switching. A brief description of the two Heads Up displays is given.

  13. Crew appliance study

    NASA Technical Reports Server (NTRS)

    Proctor, B. W.; Reysa, R. P.; Russell, D. J.

    1975-01-01

    Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.

  14. Orbital Expansion for Congenital Anophthalmia May Be Achievable in Infancy But Not in Childhood.

    PubMed

    Morrow, Brad T; Albright, William B; Neves, Rogerio I; Wilkinson, Michael J; Samson, Thomas D

    2016-10-01

    Congenital anophthalmia is a rare anomaly that results in micro-orbitism and craniofacial microsomia. Treatment with static conformers is labor-intensive and provides minimal stimulation for orbital growth that requires eventual reconstruction with orbital osteotomies after skeletal maturity. A protocol for the treatment of congenital anophthalmia is presented. Patients underwent a preoperative low-dose radiation computed tomography (CT) scan of the facial bones to assess orbital volume. An intraorbital expander was placed and was filled on a monthly basis. Quantitative changes in the affected and unaffected orbits were assessed by a repeat CT scan obtained 1 year postoperatively. Two patients with left unilateral congenital anophthalmia were prospectively followed. In a 4-month-old, the affected orbital width and height increased by 171.6% and 116.7% respectively compared with the unaffected orbit. In a 4-year-old, the affected orbital width increased by 36.1% but the height decreased by 35.3% compared with the unaffected orbit. At 18 months follow-up, no complications, ruptures, infections, or extrusions have been observed. Our results support that accelerated expansion can be achieved in a 4-month-old orbit reversing the effects of anophthalmia. However, in a 4-year-old, minimal growth was observed. The lack of accelerated growth in this study may be explained by synostosis of the orbital sutures. As such, expansion should be initiated at the earliest age possible. Further longitudinal study is ongoing to determine if sustained catch-up growth will obviate or reduce the complexity of a secondary correction.

  15. SSC Tenant Meeting: NASA Near Earth Network (NEN) Overview

    NASA Technical Reports Server (NTRS)

    Carter, David; Larsen, David; Baldwin, Philip; Wilson, Cristy; Ruley, LaMont

    2018-01-01

    The Near Earth Network (NEN) consists of globally distributed tracking stations that are strategically located throughout the world which provide Telemetry, Tracking, and Commanding (TTC) services support to a variety of orbital and suborbital flight missions, including Low Earth Orbit (LEO), Geosynchronous Earth Orbit (GEO), highly elliptical, and lunar orbits. Swedish Space Corporation (SSC), which is one of the NEN Commercial Service Provider, has provided the NEN with TTC services support from its Alaska, Hawaii, Chile and Sweden. The presentation will give an overview of the NEN and its support from SSC.

  16. Performance Evaluation of Orbit Determination System during Initial Phase of INSAT-3 Mission

    NASA Astrophysics Data System (ADS)

    Subramanian, B.; Vighnesam, N. V.

    INSAT-3C is the second in the third generation of ISRO's INSAT series of satellites that was launched by ARIANE-SPACE on 23 January 2002 at 23 h 46 m 57 s (lift off time in U.T). The ARIANE-4 Flight Nr.147 took off from Kourou in French Guyana and injected the 2750-kg communications satellite in a geostationary transfer orbit of (571 X 35935) km with an inclination of 4.007 deg at 00 h 07 m 48 s U.T on 24 January 2002 (1252 s after lift off). The satellite was successfully guided into its intended geostationary position of 74 deg E longitude by 09 February 2002 after a series of four firings of its Liquid Apogee Motor (LAM) and four station acquisition (STAQ) maneuvers. Six distinct phases of the mission were categorized based on the orbit characteristics of the INSAT- 3C mission, namely, the pre-launch phase, the launch phase, transfer orbit phase, intermediate orbit phase, drift orbit phase and synchronous orbit phase. The orbit with a perigee height of 571 km at injection of the satellite, was gradually raised to higher orbits with perigee height increasing to 9346 km after Apogee Motor Firing #1 (AMF #1), 18335 km after AMF #2, 32448 km after AMF #3 and 35493 km after AMF #4. The North and South solar panels and the reflectors were deployed at this stage of the mission and the attitude of the satellite with respect to the three axes was stabilized. The Orbit Determination System (ODS) that was used in the initial phase of the mission played a crucial role in realizing the objectives of the mission. This system which consisted of Tracking Data Pre-Processing (TDPP) software, Ephemeris Generation (EPHGEN) software and the Orbit Determination (OD) software, performed rigorously and its results were used for planning the AMF and STAQ strategies with a greater degree of accuracy. This paper reports the results of evaluation of the performance of the apogee-motor firings employed to place the satellite in its intended position where it is collocated with INSAT-1D satellite. The orbit of the satellite had to be determined continuously at each stage of the initial phase of the mission at a brisk pace and this study shows that the ODS provided consistent results to meet the stringent requirements of the mission operations. At each stage of the mission the orbit was determined using tracking data obtained over varying periods of time. The orbit solutions obtained from short arc OD's are compared with that obtained using the longest arc OD of each stage of the initial phase of the mission. The results of this study have been tabled in this paper. The performance of the ODS in calibrating the ARIANE-4 launch vehicle has been analyzed. A comparison of the orbit elements obtained from the mission operational ODS with the injection parameters provided by CNES, Centre Spatial Guyanais has been made in this paper which shows that the satellite was injected well within the 1 dispersions quoted by ARIANE-SPACE. A comparison has also been shown between the determined transfer orbit elements with pre-launch nominal orbit elements. For the initial phase of this mission ranging support was provided by Hassan earth station at India and INMARSAT network of stations at LakeCowichan (Canada), Fucino (Italy) and Beijing (China). The performance of the tracking systems employed by these stations has been studied. The quality of tracking data obtained from these stations has also been assessed.

  17. Orbit Tomography: A Method for Determining the Population of Individual Fast-ion Orbits from Experimental Measurements

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-10-01

    Due to the complicated nature of the fast-ion distribution function, diagnostic velocity-space weight functions are used to analyze experimental data. In a technique known as Velocity-space Tomography (VST), velocity-space weight functions are combined with experimental measurements to create a system of linear equations that can be solved. However, VST (which by definition ignores spatial dependencies) is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostics. In this work we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e. Orbit Tomography. Examples of orbit weights functions for different diagnostics and reconstructions of fast-ion distributions are shown for DIII-D experiments. This work was supported by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  18. How the modified method of orbit quality assessment works for Oort spike comets?

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata; Dybczyński, Piotr A.

    2018-06-01

    We present a brief overview of the effectiveness of the modified method of a quality of orbit estimation proposed by us a few years ago. Having now a complete sample of 100 Oort spike comets with large perihelion distances, we show that it was justified to introduce more restricted conditions separating the individual quality classes as well as introducing a new quality class containing orbits of the excellent quality, marked by us as 1a+. To enrich the perception, we provided a complete collection of visual time distributions of positional data sets used by us for an orbit determination (see the Appendix). We show that modern positional measurements of large-perihelion Oort spike comets should be carried out for at least 3 yr around perihelion (three-four oppositions) to be almost certain that the derived orbit will be of the highest quality (1a+ class). Our results strongly support an expectation that in near future it will be possible to study the shape of 1/aori-distribution of the Oort spike comets in great detail basing only on the highest quality orbits, having 1/aori-uncertainties well below 5 × 10-6 au-1.

  19. Infrared Spectroscopy of the Late-Type Star in the Neutron Star X-ray Symbiotic System 4U 1700+24 = V934 Herculis

    NASA Astrophysics Data System (ADS)

    Hinkle, Kenneth; Fekel, Francis; Joyce, Richard; Mikolajewska, Joanna; Galan, Cezary

    2018-01-01

    V934 Her = 4U 1700+24 is a previously known M giant - neutron star X-ray symbiotic system. Employing newly measured optical and infrared radial velocities spanning 29 years plus the extensive set of velocities in the literature, we have computed the orbit of the M III in that system. We determine an orbital period of 4391 days or 12.0 yr, far longer than the 404 day orbit commonly cited in the literature. In addition to the 12.0 yr orbital period we find a shorter period of 420 days, similar to that previously found. Instead of orbital motion, we attribute this shorter period to a long secondary pulsation (LSP) period in the SRb variable M3 III. The orbit is seen nearly pole on explaining why X-ray pulsations associated with the neutron star have not been detected. Arguments are made that this orientation supports a pulsation origin for LSP. We also measure CNO and Fe peak abundances of the M giant. Basic properties of the M giant are derived. We discuss the possible evolutionary paths this system has taken to get to its current state.

  20. Lunar orbiting microwave beam power system

    NASA Technical Reports Server (NTRS)

    Fay, Edgar H.; Cull, Ronald C.

    1990-01-01

    A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.

  1. An independent determination of Fomalhaut b's orbit and the dynamical effects on the outer dust belt

    NASA Astrophysics Data System (ADS)

    Beust, H.; Augereau, J.-C.; Bonsor, A.; Graham, J. R.; Kalas, P.; Lebreton, J.; Lagrange, A.-M.; Ertel, S.; Faramaz, V.; Thébault, P.

    2014-01-01

    Context. The nearby star Fomalhaut harbors a cold, moderately eccentric (e ~ 0.1) dust belt with a sharp inner edge near 133 au. A low-mass, common proper motion companion, Fomalhaut b (Fom b), was discovered near the inner edge and was identified as a planet candidate that could account for the belt morphology. However, the most recent orbit determination based on four epochs of astrometry over eight years reveals a highly eccentric orbit (e = 0.8 ± 0.1) that appears to cross the belt in the sky plane projection. Aims: We perform here a full orbital determination based on the available astrometric data to independently validate the orbit estimates previously presented. Adopting our values for the orbital elements and their associated uncertainties, we then study the dynamical interaction between the planet and the dust ring, to check whether the proposed disk sculpting scenario by Fom b is plausible. Methods: We used a dedicated MCMC code to derive the statistical distributions of the orbital elements of Fom b. Then we used symplectic N-body integration to investigate the dynamics of the dust belt, as perturbed by a single planet. Different attempts were made assuming different masses for Fom b. We also performed a semi-analytical study to explain our results. Results: Our results are in good agreement with others regarding the orbit of Fom b. We find that the orbit is highly eccentric, is close to apsidally aligned with the belt, and has a mutual inclination relative to the belt plane of <29° (67% confidence). If coplanar, this orbit crosses the disk. Our dynamical study then reveals that the observed planet could sculpt a transient belt configuration with a similar eccentricity to what is observed, but it would not be simultaneously apsidally aligned with the planet. This transient configuration only occurs a short time after the planet is placed on such an orbit (assuming an initially circular disk), a time that is inversely proportional to the planet's mass, and that is in any case much less than the 440 Myr age of the star. Conclusions: We constrain how long the observed dust belt could have survived with Fom b on its current orbit, as a function of its possible mass. This analysis leads us to conclude that Fom b is likely to have low mass, that it is unlikely to be responsible for the sculpting of the belt, and that it supports the hypothesis of a more massive, less eccentric planet companion Fomalhaut c.

  2. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    PubMed

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.

  3. Kepler's Laws: Demonstration and Derivation Without Calculus

    ERIC Educational Resources Information Center

    Chapman, Seville

    1969-01-01

    Presents a demonstration apparatus for Kepler's three laws of planetary motion consisting of an air-supported "satellite whose orbit on a level table surface is determined by an inverse square force generated by a Peaucellier linkage and long spring. The device can also be used to illustrate centrifugal force, statics, friction, momentum and…

  4. Navigation Operations for the Magnetospheric Multiscale Mission

    NASA Technical Reports Server (NTRS)

    Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission employs four identical spinning spacecraft flying in highly elliptical Earth orbits. These spacecraft will fly in a series of tetrahedral formations with separations of less than 10 km. MMS navigation operations use onboard navigation to satisfy the mission definitive orbit and time determination requirements and in addition to minimize operations cost and complexity. The onboard navigation subsystem consists of the Navigator GPS receiver with Goddard Enhanced Onboard Navigation System (GEONS) software, and an Ultra-Stable Oscillator. The four MMS spacecraft are operated from a single Mission Operations Center, which includes a Flight Dynamics Operations Area (FDOA) that supports MMS navigation operations, as well as maneuver planning, conjunction assessment and attitude ground operations. The System Manager component of the FDOA automates routine operations processes. The GEONS Ground Support System component of the FDOA provides the tools needed to support MMS navigation operations. This paper provides an overview of the MMS mission and associated navigation requirements and constraints and discusses MMS navigation operations and the associated MMS ground system components built to support navigation-related operations.

  5. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The likely system concepts which might be representative of NASA and DoD space programs in the 1980-2000 time period were studied along with the programs' likely needs for major space transportation vehicles, orbital support vehicles, and technology developments which could be shared by the military and civilian space establishments in that time period. Such needs could then be used by NASA as an input in determining the nature of its long-range development plan. The approach used was to develop a list of possible space system concepts (initiatives) in parallel with a list of needs based on consideration of the likely environments and goals of the future. The two lists thus obtained represented what could be done, regardless of need; and what should be done, regardless of capability, respectively. A set of development program plans for space application concepts was then assembled, matching needs against capabilities, and the requirements of the space concepts for support vehicles, transportation, and technology were extracted. The process was pursued in parallel for likely military and civilian programs, and the common support needs thus identified.

  6. Prominence formation and ejection in cool stars

    NASA Astrophysics Data System (ADS)

    Villarreal D'Angelo, Carolina; Jardine, Moira; See, Victor

    2018-03-01

    The observational signatures of prominences have been detected in single and binary G and K type stars for many years now, but recently this has been extended to the M dwarf regime. Prominences carry away both mass and angular momentum when they are ejected and the impact of this mass on any orbiting planets may be important for the evolution of exoplanetary atmospheres. By means of the classification used in the massive star community, that involves knowledge of two parameters (the co-rotation and Alfvén radii, rK and rA), we have determined which cool stars could support prominences. From a model of mechanical support, we have determined that the prominence mass mp/M⋆ = (EM/EG)(r⋆/rK)2F where E_MB_\\star ^2r_\\star ^3 and E_G = GM_\\star ^2/r_\\star are magnetic and gravitational energies and F is a geometric factor. Our calculated masses and ejection frequencies (typically 1016 - 1017 g and 0.4 d, respectively) are consistent with observations and are sufficient to ensure that an exoplanet orbiting in the habitable zone of an M dwarf could suffer frequent impacts.

  7. Precise Orbit Determination for ALOS

    NASA Technical Reports Server (NTRS)

    Nakamura, Ryo; Nakamura, Shinichi; Kudo, Nobuo; Katagiri, Seiji

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) has been developed to contribute to the fields of mapping, precise regional land coverage observation, disaster monitoring, and resource surveying. Because the mounted sensors need high geometrical accuracy, precise orbit determination for ALOS is essential for satisfying the mission objectives. So ALOS mounts a GPS receiver and a Laser Reflector (LR) for Satellite Laser Ranging (SLR). This paper deals with the precise orbit determination experiments for ALOS using Global and High Accuracy Trajectory determination System (GUTS) and the evaluation of the orbit determination accuracy by SLR data. The results show that, even though the GPS receiver loses lock of GPS signals more frequently than expected, GPS-based orbit is consistent with SLR-based orbit. And considering the 1 sigma error, orbit determination accuracy of a few decimeters (peak-to-peak) was achieved.

  8. On the Determination of the Orbits of Comets

    NASA Astrophysics Data System (ADS)

    Englefield, Henry

    2013-06-01

    Preface; 1. General view of the method; 2. On the motion of the point of intersection of the radius vector and cord; 3. On the comparison of the parabolic cord with the space which answers to the mean velocity of the earth in the same time; 4. Of the reduction of the second longitude of the comet; 5. On the proportion of the three curtate distances of the comet from the earth; 6. Of the graphical declination of the orbit of the earth; 7. Of the numerical quantities to be prepared for the construction or computation of the comet's orbit; 8. Determination of the distances of the comet from the earth and the sun; 9. Determination of the elements of the orbit from the determined distances; 10. Determination of the place of the comet from the earth and sun; 11. Determination of the distances of the comet from the earth and sun; 12. Determination of the comet's orbit; 13. Determination of the place of the comet; 14. Application of the graphical method to the comet of 1769; 15. Application of the distances found; 16. Determination of the place of the comet, for another given time; 17. Application of the trigonometrical method to the comet of 1769; 18. Determination of the elements of the orbit of the comet of 1769; Example of the graphical operation for the orbit of the comet of 1769; Example of the trigonometrical operation for the orbit of the comet of 1769; Conclusion; La Place's general method for determining the orbits of comets; Determination of the two elements of the orbit; Application of La Place's method of finding the approximate perihelion distance; Application of La Place's method for correcting the orbit of a comet, to the comet of 1769; Explanation and use of the tables; Tables; Appendix; Plates.

  9. Mission support plan STS-2

    NASA Technical Reports Server (NTRS)

    Ibanez, F.

    1981-01-01

    The plan defines the anticipated GSTDN/DOD station support and configuration requirements for a nominal flight with an orbital inclination of 38.4 degrees and a circular orbit of 120 nautical miles for the first 5 orbits and 137 nautical miles thereafter. A complete set of preliminary site configuration messages (SCM) define nominal station AOS/LOS times and configurations for S-Band and UHF support. This document is intended for use as a planning tool, providing the necessary guidelines and data base for SCM generation in support of STS-2.

  10. Space Launch System Mission Flexibility Assessment

    NASA Technical Reports Server (NTRS)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  11. A Comprehensive Orbit Reconstruction for the Galileo Prime Mission in the J2000 System

    NASA Technical Reports Server (NTRS)

    Jacobson, Robert A.; Haw, Robert J.; McElrath, Tim P.; Antreasian, Peter G.

    1999-01-01

    The Galileo spacecraft arrived at Jupiter in December of 1995 to begin an orbital tour of the Jovian system. The objective of the tour was up close study of the planet, its satellites, and its magnetosphere. The spacecraft completed its 11 orbit prime mission in November of 1997 having had 16 successful close encounters with the Galilean satellites (including two prior to Jupiter orbit insertion). Galileo continues to operate and will have made an additional 10 orbits of Jupiter by the date of this Conference. Earlier papers discuss the determination of the spacecraft orbit in support of mission operations from arrival at Jupiter through the first 9 orbits. In this paper we re-examine those earlier orbits and extend the analysis through orbit 12, the first orbit of the Galileo Europa Mission (GEM). The objective of our work is the reconstruction of the spacecraft trajectory together with the development of a consistent set of ephemerides for the Galilean satellites. As a necessary byproduct of the reconstruction we determine improved values for the Jovian system gravitational parameters and for the Jupiter pole orientation angles. Our preliminary analyses have already led to many of the results reported in the scientific literature. Unlike the Galileo Navigation Team which operates in the EME-1950 coordinate system, we elected to work in the (J2000) International Celestial Reference Frame (ICRF), the reference frame of the current JPL planetary and satellite ephemerides as well as the standard frame of the international astronomical and planetary science community. Use of this frame permits more precise modelling of the spacecraft and satellite observations. Moreover, it is the frame of choice for all other operational JPL missions and will probably be the frame for future missions for some time. Consequently, our adoption of the ICRF will facilitate the combination of our results with any obtained from future missions (e.g. the proposed Europa Orbiter mission). In addition, our results may be used by the science community, without need of a reference frame conversion.

  12. Evaluation of minimum coverage size and orbital accuracy at different orbital regimes for one order of magnitude reduction of the catastrophic collision risk

    NASA Astrophysics Data System (ADS)

    Sánchez-Ortiz, Noelia; Domínguez-González, Raúl; Krag, Holger

    2015-03-01

    One of the main objectives of Space Surveillance and Tracking (SST) systems is to support space collision avoidance activities. This collision avoidance capability aims to significantly reduce the catastrophic collision risk of space objects. In particular, for the case of the future European SST, the objective is translated into a risk reduction of one order of magnitude whilst keeping a low number of false alarm events. In order to translate this aim into system requirements, an evaluation of the current catastrophic collision risk for different orbital regimes is addressed. The reduction of such risk depends on the amount of catalogued objects (coverage) and the knowledge of the associated orbits in the catalogue (accuracy). This paper presents an analysis of the impact of those two aspects in the capability to reduce the catastrophic collision risk at some orbital regimes. A reliable collision avoidance support depends on the accuracy of the predicted miss-events. The assessment of possible conjunctions is normally done by computing the estimated miss-distances between objects (which is compared with a defined distance threshold) or by computing the associated collision risk (which is compared with the corresponding accepted collision probability level). This second method is normally recommended because it takes into account the reliability of the orbits and allows reducing false alarm events. The collision risk depends on the estimated miss-distance, the object sizes and the accuracy of the two orbits at the time of event. This accuracy depends on the error of the orbits at the orbit determination epoch and the error derived from the propagation from that epoch up to the time of event. The modified DRAMA ARES (Domínguez-González et al., 2012, 2013a,b; Gelhaus et al., 2014) provides information on the expected number of encounters for a given mission and year. It also provides information on the capacity to reduce the risk of collision by means of avoidance manoeuvres as a function of the accepted collision probability level and the cataloguing performance of the surveillance system (determined by the limiting coverage size-altitude function and the orbital data accuracy). The assessment of avoidance strategies takes into account statistical models of the space object environment, as provided by ESA's MASTER-2009 model, and a mathematical framework for the collision risk estimation as used in satellite operations. In this papers, results are provided for some orbit types, covering different orbital regimes. The analysis is done for different cataloguing capacity levels (accuracy and coverage), concluding that 5 cm are to be covered at LEO for diminishing the catastrophic collision risk by one order of magnitude. For MEO and GEO regime, coverage down to 40 and 100 cm respectively allow similar reduction of risk.

  13. Laser ranging with the MéO telescope to improve orbital accuracy of space debris

    NASA Astrophysics Data System (ADS)

    Hennegrave, L.; Pyanet, M.; Haag, H.; Blanchet, G.; Esmiller, B.; Vial, S.; Samain, E.; Paris, J.; Albanese, D.

    2013-05-01

    Improving orbital accuracy of space debris is one of the major prerequisite to performing reliable collision prediction in low earth orbit. The objective is to avoid false alarms and useless maneuvers for operational satellites. This paper shows how laser ranging on debris can improve the accuracy of orbit determination. In March 2012 a joint OCA-Astrium team had the first laser echoes from space debris using the MéO (Métrologie Optique) telescope of the Observatoire de la Côte d'Azur (OCA), upgraded with a nanosecond pulsed laser. The experiment was conducted in full compliance with the procedures dictated by the French Civil Aviation Authorities. To perform laser ranging measurement on space debris, the laser link budget needed to be improved. Related technical developments were supported by implementation of a 2J pulsed laser purchased by ASTRIUM and an adapted photo detection. To achieve acquisition of the target from low accuracy orbital data such as Two Lines Elements, a 2.3-degree field of view telescope was coupled to the original MéO telescope 3-arcmin narrow field of view. The wide field of view telescope aimed at pointing, adjusting and acquiring images of the space debris for astrometry measurement. The achieved set-up allowed performing laser ranging and angular measurements in parallel, on several rocket stages from past launches. After a brief description of the set-up, development issues and campaigns, the paper discusses added-value of laser ranging measurement when combined to angular measurement for accurate orbit determination. Comparison between different sets of experimental results as well as simulation results is given.

  14. Abort Region Determinator (ARD) module feasibility report. Mission planning, mission analysis and software formulation

    NASA Technical Reports Server (NTRS)

    Draeger, B. G.; Joyner, J. A.

    1976-01-01

    A detailed performance evaluation of the Abort Region Determinator (ARD) module design was provided in support of OFT-1 ascent and OFT-1 intact launch aborts. The evaluation method used compared ARD results against results obtained using the full-up Space Vehicle Dynamic Simulations program under the same conditions. Results were presented for each of the three major ARD math models: (1) the ascent numerical integrator; (2) the mass model, and (3) the second stage predictor as well as the total ARD module. These results demonstrate that the baselined ARD module meets all design objectives for mission control center orbital flight test launch/abort support.

  15. DSMS investment in support of satellite constellations and formation flying

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    2003-01-01

    Over the years, NASA has supported unmanned space missions, beyond earth orbit, through a Deep Space Mission System (DSMS) that is developed and operated by the Jet Propulsion Laboratory (JPL) and subcontractors. The DSMS capabilities have been incrementally upgraded since its establishment in the late '50s and are delivered primarily through three Deep Space Communications Complexes (DSCC 's) near Goldstone, California, Madrid, Spain, and Canberra, Australia and from facilities at JPL. Traditionally, mission support (tracking, command, telemetry, etc) is assigned on an individual-mission basis, between each mission and a ground-based asset, independent of other missions. As NASA, and its international partners, move toward flying fullconstellations and precision formations, the DSMS is developing plans and technologies to provide the requisite support. The key activities under way are: (1) integrated communications architecture for Mars exploration, including relays on science orbiters and dedicated relay satellites to provide continuous coverage for orbiters, landers and rovers. JPL is developing an architecture, as well as protocols and equipment, required for the cost-effective operations of such an infrastructure. (2) Internet-type protocols that will allow for efficient operations across the deep-space distances, accounting for and accommodating the long round-trip-light-time. JPL is working with the CCSDS to convert these protocols to an international standard and will deploy such protocol, the CCSDS File Delivery Protocol (CFDP), on the Mars Reconnaissance Orbiter (MRO) and on the Deep Impact (01) missions. (3) Techniques to perform cross-navigation between spacecrafi that fly in a loose formation. Typical cases are cross-navigation between missions that approach Mars and missionsthat are at Mars, or the determination of a baseline for missions that fly in an earth-lead- lag configuration. (4) Techniques and devices that allow the precise metrology and controllability of tightformations for precision constellation missions. In this paper we discuss the four classes of constellatiodformation support with emphasis of DSMS current status (technology and implementation) and plans in the first three areas.

  16. DASTCOM5: A Portable and Current Database of Asteroid and Comet Orbit Solutions

    NASA Astrophysics Data System (ADS)

    Giorgini, Jon D.; Chamberlin, Alan B.

    2014-11-01

    A portable direct-access database containing all NASA/JPL asteroid and comet orbit solutions, with the software to access it, is available for download (ftp://ssd.jpl.nasa.gov/pub/xfr/dastcom5.zip; unzip -ao dastcom5.zip). DASTCOM5 contains the latest heliocentric IAU76/J2000 ecliptic osculating orbital elements for all known asteroids and comets as determined by a least-squares best-fit to ground-based optical, spacecraft, and radar astrometric measurements. Other physical, dynamical, and covariance parameters are included when known. A total of 142 parameters per object are supported within DASTCOM5. This information is suitable for initializing high-precision numerical integrations, assessing orbit geometry, computing trajectory uncertainties, visual magnitude, and summarizing physical characteristics of the body. The DASTCOM5 distribution is updated as often as hourly to include newly discovered objects or orbit solution updates. It includes an ASCII index of objects that supports look-ups based on name, current or past designation, SPK ID, MPC packed-designations, or record number. DASTCOM5 is the database used by the NASA/JPL Horizons ephemeris system. It is a subset exported from a larger MySQL-based relational Small-Body Database ("SBDB") maintained at JPL. The DASTCOM5 distribution is intended for programmers comfortable with UNIX/LINUX/MacOSX command-line usage who need to develop stand-alone applications. The goal of the implementation is to provide small, fast, portable, and flexibly programmatic access to JPL comet and asteroid orbit solutions. The supplied software library, examples, and application programs have been verified under gfortran, Lahey, Intel, and Sun 32/64-bit Linux/UNIX FORTRAN compilers. A command-line tool ("dxlook") is provided to enable database access from shell or script environments.

  17. Copernicus POD Service Operations

    NASA Astrophysics Data System (ADS)

    Fernandez, Jaime; Escobar, Diego; Ayuga, Francisco; Peter, Heike; Femenias, Pierre

    2015-12-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus PDGS Ground Segment of the Sentinel missions. A GMV-led consortium is operating the Copernicus POD Service (CPOD) being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS (Payload Data Ground Segment). This paper describes the CPOD Service and presents the current status operating Sentinel-1A and its readiness to support the Sentinel-2A and in particular Sentinel-3A incoming Commissioning Phases, with an especial emphasis on describing the Calibration and Validation (Cal/Val) activities to be performed during the Comm. Phase. Then, it is shown how the quality of the orbital products is guaranteed through external validation activities and the role of the Copernicus POD QWG (Quality Working Group).

  18. An Induced Environment Contamination Monitor for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Miller, E. R. (Editor); Decher, R. (Editor)

    1978-01-01

    The Induced Environment Contamination Monitor (IECM), a set of ten instruments integrated into a self-contained unit and scheduled to fly on shuttle Orbital Flight Tests 1 through 6 and on Spacelabs 1 and 2, is described. The IECM is designed to measure the actual environment to determine whether the strict controls placed on the shuttle system have solved the contamination problem. Measurements are taken during prelaunch, ascent, on-orbit, descent, and postlanding. The on-orbit measurements are molecular return flux, background spectral intensity, molecular deposition, and optical surface effects. During the other mission phases dew point, humidity, aerosol content, and trace gas are measured as well as optical surface effects and molecular deposition. The IECM systems and thermal design are discussed. Preflight and ground operations are presented together with associated ground support equipment. Flight operations and data reduction plans are given.

  19. Orbit determination of the Next-Generation Beidou satellites with Intersatellite link measurements and a priori orbit constraints

    NASA Astrophysics Data System (ADS)

    Ren, Xia; Yang, Yuanxi; Zhu, Jun; Xu, Tianhe

    2017-11-01

    Intersatellite Link (ISL) technology helps to realize the auto update of broadcast ephemeris and clock error parameters for Global Navigation Satellite System (GNSS). ISL constitutes an important approach with which to both improve the observation geometry and extend the tracking coverage of China's Beidou Navigation Satellite System (BDS). However, ISL-only orbit determination might lead to the constellation drift, rotation, and even lead to the divergence in orbit determination. Fortunately, predicted orbits with good precision can be used as a priori information with which to constrain the estimated satellite orbit parameters. Therefore, the precision of satellite autonomous orbit determination can be improved by consideration of a priori orbit information, and vice versa. However, the errors of rotation and translation in a priori orbit will remain in the ultimate result. This paper proposes a constrained precise orbit determination (POD) method for a sub-constellation of the new Beidou satellite constellation with only a few ISLs. The observation model of dual one-way measurements eliminating satellite clock errors is presented, and the orbit determination precision is analyzed with different data processing backgrounds. The conclusions are as follows. (1) With ISLs, the estimated parameters are strongly correlated, especially the positions and velocities of satellites. (2) The performance of determined BDS orbits will be improved by the constraints with more precise priori orbits. The POD precision is better than 45 m with a priori orbit constrain of 100 m precision (e.g., predicted orbits by telemetry tracking and control system), and is better than 6 m with precise priori orbit constraints of 10 m precision (e.g., predicted orbits by international GNSS monitoring & Assessment System (iGMAS)). (3) The POD precision is improved by additional ISLs. Constrained by a priori iGMAS orbits, the POD precision with two, three, and four ISLs is better than 6, 3, and 2 m, respectively. (4) The in-plane link and out-of-plane link have different contributions to observation configuration and system observability. The POD with weak observation configuration (e.g., one in-plane link and one out-of-plane link) should be tightly constrained with a priori orbits.

  20. Orbit determination software development for microprocessor based systems: Evaluation and recommendations

    NASA Technical Reports Server (NTRS)

    Shenitz, C. M.; Mcgarry, F. E.; Tasaki, K. K.

    1980-01-01

    A guide is presented for National Aeronautics and Space Administration management personnel who stand to benefit from the lessons learned in developing microprocessor-based flight dynamics software systems. The essential functional characteristics of microprocessors are presented. The relevant areas of system support software are examined, as are the distinguishing characteristics of flight dynamics software. Design examples are provided to illustrate the major points presented, and actual development experience obtained in this area is provided as evidence to support the conclusions reached.

  1. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  2. Operator Station Design System - A computer aided design approach to work station layout

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1979-01-01

    The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.

  3. Crew appliance computer program manual, volume 1

    NASA Technical Reports Server (NTRS)

    Russell, D. J.

    1975-01-01

    Trade studies of numerous appliance concepts for advanced spacecraft galley, personal hygiene, housekeeping, and other areas were made to determine which best satisfy the space shuttle orbiter and modular space station mission requirements. Analytical models of selected appliance concepts not currently included in the G-189A Generalized Environmental/Thermal Control and Life Support Systems (ETCLSS) Computer Program subroutine library were developed. The new appliance subroutines are given along with complete analytical model descriptions, solution methods, user's input instructions, and validation run results. The appliance components modeled were integrated with G-189A ETCLSS models for shuttle orbiter and modular space station, and results from computer runs of these systems are presented.

  4. Engineering Support of Microgravity Life Science Research: Development of an Avian Development Facility

    NASA Technical Reports Server (NTRS)

    Vellinger, J.; Deuser, M.; Hullinger, R.

    1995-01-01

    The Avian Development Facility (ADF) is designed to provide a 'window' for the study of embryogenesis in space. It allows researchers to determine and then to mitigate or nullify the forces of altered gravity upon embryos when leaving and re-entering the Earth's gravity. The ADF design will allow investigations to begin their incubation after their experiments have achieved orbit, and shut down the experiment and fix specimens before leaving orbit. In effect, the ADF makes every attempt to minimize launch and re-entry effects in order to isolate and preserve the effects of the experimental variable(s) of the space environment.

  5. Information Measures for Statistical Orbit Determination

    ERIC Educational Resources Information Center

    Mashiku, Alinda K.

    2013-01-01

    The current Situational Space Awareness (SSA) is faced with a huge task of tracking the increasing number of space objects. The tracking of space objects requires frequent and accurate monitoring for orbit maintenance and collision avoidance using methods for statistical orbit determination. Statistical orbit determination enables us to obtain…

  6. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  7. Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.

    2012-01-01

    Mars Relay Network is prepared to support MSL: a) ODY/MRO/MEX will all provide critical event comm support during EDL. b) New Electra/Electra-Lite capabilities on the MSL-MRO link will support >250 Mb/sol MSL data return. 2013 MAVEN orbiter will replenish on-orbit relay infrastructure as prior orbiters approach end-of-life. While NASA has withdrawn from the 2016 EMTGO and 2018 Joint Rover missions, analysis of the potential link shows a path to Gbit/sol relay capability 2012.

  8. Forecast of space shuttle flight requirements for launch of commercial communications satellites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The number of communication satellites required over the next 25 years to support domestic and regional communication systems for telephony, telegraphy and other low speed data; video teleconferencing, new data services, direct TV broadcasting; INTELSAT; and maritime and aeronautical services was estimated to determine the number of space shuttle flights necessary for orbital launching.

  9. Precise orbit determination of the Sentinel-3A altimetry satellite using ambiguity-fixed GPS carrier phase observations

    NASA Astrophysics Data System (ADS)

    Montenbruck, Oliver; Hackel, Stefan; Jäggi, Adrian

    2017-11-01

    The Sentinel-3 mission takes routine measurements of sea surface heights and depends crucially on accurate and precise knowledge of the spacecraft. Orbit determination with a targeted uncertainty of less than 2 cm in radial direction is supported through an onboard Global Positioning System (GPS) receiver, a Doppler Orbitography and Radiopositioning Integrated by Satellite instrument, and a complementary laser retroreflector for satellite laser ranging. Within this study, the potential of ambiguity fixing for GPS-only precise orbit determination (POD) of the Sentinel-3 spacecraft is assessed. A refined strategy for carrier phase generation out of low-level measurements is employed to cope with half-cycle ambiguities in the tracking of the Sentinel-3 GPS receiver that have so far inhibited ambiguity-fixed POD solutions. Rather than explicitly fixing double-difference phase ambiguities with respect to a network of terrestrial reference stations, a single-receiver ambiguity resolution concept is employed that builds on dedicated GPS orbit, clock, and wide-lane bias products provided by the CNES/CLS (Centre National d'Études Spatiales/Collecte Localisation Satellites) analysis center of the International GNSS Service. Compared to float ambiguity solutions, a notably improved precision can be inferred from laser ranging residuals. These decrease from roughly 9 mm down to 5 mm standard deviation for high-grade stations on average over low and high elevations. Furthermore, the ambiguity-fixed orbits offer a substantially improved cross-track accuracy and help to identify lateral offsets in the GPS antenna or center-of-mass (CoM) location. With respect to altimetry, the improved orbit precision also benefits the global consistency of sea surface measurements. However, modeling of the absolute height continues to rely on proper dynamical models for the spacecraft motion as well as ground calibrations for the relative position of the altimeter reference point and the CoM.

  10. A Self-Tuning Kalman Filter for Autonomous Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1998-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman Filter and Global Positioning System (GPS) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. Current techniques of Kalman filtering, however, still rely on manual tuning from analysts, and cannot help in optimizing autonomy without compromising accuracy and performance. This paper presents an approach to produce a high accuracy autonomous navigation system fully integrated with the flight system. The resulting system performs real-time state estimation by using an Extended Kalman Filter (EKF) implemented with high-fidelity state dynamics model, as does the GPS Enhanced Orbit Determination Experiment (GEODE) system developed by the NASA Goddard Space Flight Center. Augmented to the EKF is a sophisticated neural-fuzzy system, which combines the explicit knowledge representation of fuzzy logic with the learning power of neural networks. The fuzzy-neural system performs most of the self-tuning capability and helps the navigation system recover from estimation errors. The core requirement is a method of state estimation that handles uncertainties robustly, capable of identifying estimation problems, flexible enough to make decisions and adjustments to recover from these problems, and compact enough to run on flight hardware. The resulting system can be extended to support geosynchronous spacecraft and high-eccentricity orbits. Mathematical methodology, systems and operations concepts, and implementation of a system prototype are presented in this paper. Results from the use of the prototype to evaluate optimal control algorithms implemented are discussed. Test data and major control issues (e.g., how to define specific roles for fuzzy logic to support the self-learning capability) are also discussed. In addition, architecture of a complete end-to-end candidate flight system that provides navigation with highly autonomous control using data from GPS is presented.

  11. PyORBIT: A Python Shell For ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jean-Francois Ostiguy; Jeffrey Holmes

    2003-07-01

    ORBIT is code developed at SNS to simulate beam dynamics in accumulation rings and synchrotrons. The code is structured as a collection of external C++ modules for SuperCode, a high level interpreter shell developed at LLNL in the early 1990s. SuperCode is no longer actively supported and there has for some time been interest in replacing it by a modern scripting language, while preserving the feel of the original ORBIT program. In this paper, we describe a new version of ORBIT where the role of SuperCode is assumed by Python, a free, well-documented and widely supported object-oriented scripting language. Wemore » also compare PyORBIT to ORBIT from the standpoint of features, performance and future expandability.« less

  12. A Modular Artificial Intelligence Inference Engine System (MAIS) for support of on orbit experiments

    NASA Technical Reports Server (NTRS)

    Hancock, Thomas M., III

    1994-01-01

    This paper describes a Modular Artificial Intelligence Inference Engine System (MAIS) support tool that would provide health and status monitoring, cognitive replanning, analysis and support of on-orbit Space Station, Spacelab experiments and systems.

  13. Orbit determination and prediction of GEO satellite of BeiDou during repositioning maneuver

    NASA Astrophysics Data System (ADS)

    Cao, Fen; Yang, XuHai; Li, ZhiGang; Sun, BaoQi; Kong, Yao; Chen, Liang; Feng, Chugang

    2014-11-01

    In order to establish a continuous GEO satellite orbit during repositioning maneuvers, a suitable maneuver force model has been established associated with an optimal orbit determination method and strategy. A continuous increasing acceleration is established by constructing a constant force that is equivalent to the pulse force, with the mass of the satellite decreasing throughout maneuver. This acceleration can be added to other accelerations, such as solar radiation, to obtain the continuous acceleration of the satellite. The orbit determination method and strategy are illuminated, with subsequent assessment of the orbit being determined and predicted accordingly. The orbit of the GEO satellite during repositioning maneuver can be determined and predicted by using C-Band pseudo-range observations of the BeiDou GEO satellite with COSPAR ID 2010-001A in 2011 and 2012. The results indicate that observations before maneuver do affect orbit determination and prediction, and should therefore be selected appropriately. A more precise orbit and prediction can be obtained compared to common short arc methods when observations starting 1 day prior the maneuver and 2 h after the maneuver are adopted in POD (Precise Orbit Determination). The achieved URE (User Range Error) under non-consideration of satellite clock errors is better than 2 m within the first 2 h after maneuver, and less than 3 m for further 2 h of orbit prediction.

  14. An advanced analysis method of initial orbit determination with too short arc data

    NASA Astrophysics Data System (ADS)

    Li, Binzhe; Fang, Li

    2018-02-01

    This paper studies the initial orbit determination (IOD) based on space-based angle measurement. Commonly, these space-based observations have short durations. As a result, classical initial orbit determination algorithms give poor results, such as Laplace methods and Gauss methods. In this paper, an advanced analysis method of initial orbit determination is developed for space-based observations. The admissible region and triangulation are introduced in the method. Genetic algorithm is also used for adding some constraints of parameters. Simulation results show that the algorithm can successfully complete the initial orbit determination.

  15. Space Shuttle orbiter modifications to support Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Segert, Randall; Lichtenfels, Allyson

    1992-01-01

    The Space Shuttle will be the primary vehicle to support the launch, assembly, and maintenance of the Space Station Freedom (SSF). In order to accommodate this function, the Space Shuttle orbiter will require significant modifications. These modifications are currently in development in the Space Shuttle Program. The requirements for the planned modifications to the Space Shuttle orbiter are dependent on the design of the SSF. Therefore, extensive coordination is required with the Space Station Freedom Program (SSFP) in order to identify requirements and resolve integration issues. This paper describes the modifications to the Space Shuttle orbiter required to support SSF assembly and operations.

  16. Ionospheric refraction effects on orbit determination using the orbit determination error analysis system

    NASA Technical Reports Server (NTRS)

    Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.

    1990-01-01

    The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.

  17. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  18. The possible effect of reaction wheel unloading on orbit determination for Chang'E-1 lunar mission

    NASA Astrophysics Data System (ADS)

    Jianguo, Yan; Jingsong, Ping; Fei, Li

    During the flight of 3-axis stabilized lunar orbiter i e SELENE main orbiter Chang E-1 due to the overflow of the accumulated angular momentum the reaction-wheel will be unloaded during certain period so as to release the angular momentum for initialization Then the momentum wheel will be reloaded for satellite attitude measurement and control Above action will not only change the attitude but also change the orbit of the spacecraft Assuming the reaction-wheel unloading is carried out twice a day according to the current engineering designation and plan for SELENE main orbiter and Chang E-1 missions considering the algebra configuration of the tracking stations the Moon and the lunar orbiter the orbit determination is simulated for 14 days evolution of lunar orbiter In the simulation the satellite orbit is generated using GEODYNII code Based on the generated orbit the common view time period of the satellite by VLBI and USB network in every day is computed the orbit determination is processed for all the arcs of the orbit The orbit determination result of 28 orbits in 14 days is provided The orbits cover most of the possible geometrical configuration among orbiter the Moon and the tracking network The analysis here can benefit the tracking designation and plan for Chang E-1 mission

  19. On-Orbit Maintenance Operations Strategy for the International Space Station - Concept and Implementation

    NASA Technical Reports Server (NTRS)

    Patterson, Linda P.

    2001-01-01

    The International Space Station (ISS) has an operational mission and profile that makes it a Logistics and Maintenance (L&M) support challenge different from previous programs. It is permanently manned, assembled on orbit, and multi-national. With this technical and operational challenge, a unique approach is needed to support the hardware and crew. The key is the integration of on-orbit and ground analysis, supply, maintenance, and crew training into a coherent functional process that supports ISS goals and objectives. To integrate all the necessary aspects of hardware and personnel to support on-orbit maintenance, a myriad of products and processes must be created and coordinated, such that the right resources are in the right place at the right time to ensure continued ISS functionality. This paper will familiarize the audience with ISS On-Orbit Maintenance (OOM) concepts and capabilities for different maintenance tasks and discuss some of the logic behind their selection. It will also identify the operational maintenance support responsibility split between the U.S. and the various International Partners (IPs).

  20. C-band station coordinate determination for the GEOS-C altimeter calibration area

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Klosko, S. M.

    1974-01-01

    Dynamical orbital techniques were employed to estimate the center-of-mass station coordinates of six C-band radars located in the designated primary GEOS-C radar altimeter calibration area. This work was performed in support of the planned GEOS-C mission (December, 1974 launch). The sites included Bermuda, Grand Turk, Antigua, Wallops Island (Virginia), and Merritt Island (Florida). Two sites were estimated independently at Wallops Island yielding better than 40 cm relative height recovery, with better than 10 cm and 1 m (relative) recovery for phi and gamma respectively. Error analysis and comparisons with other investigators indicate that better than 2 m relative recovery was achieved at all sites. The data used were exclusively that from the estimated sites and included 18 orbital arcs which were less than two orbital revolutions in length, having successive tracks over the area. The techniques employed here, given their independence of global tracking support, can be effectively employed to improve various geodetic datums by providing very long and accurate baselines. The C-band data taken on GEOS-C should be employed to improve such geodetic datums as the European-1950 using similar techniques.

  1. Semi-Major Axis Knowledge and GPS Orbit Determination

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Schiesser, Emil R.; Bauer, F. (Technical Monitor)

    2000-01-01

    In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.

  2. Semi-Major Axis Knowledge and GPS Orbit Determination

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Schiesser, Emil R.; Bauer, F. (Technical Monitor)

    2000-01-01

    In recent years spacecraft designers have increasingly sought to use onboard Global Positioning System receivers for orbit determination. The superb positioning accuracy of GPS has tended to focus more attention on the system's capability to determine the spacecraft's location at a particular epoch than on accurate orbit determination, per se. The determination of orbit plane orientation and orbit shape to acceptable levels is less challenging than the determination of orbital period or semi-major axis. It is necessary to address semi-major axis mission requirements and the GPS receiver capability for orbital maneuver targeting and other operations that require trajectory prediction. Failure to determine semi-major axis accurately can result in a solution that may not be usable for targeting the execution of orbit adjustment and rendezvous maneuvers. Simple formulas, charts, and rules of thumb relating position, velocity, and semi-major axis are useful in design and analysis of GPS receivers for near circular orbit operations, including rendezvous and formation flying missions. Space Shuttle flights of a number of different GPS receivers, including a mix of unfiltered and filtered solution data and Standard and Precise Positioning, Service modes, have been accomplished. These results indicate that semi-major axis is often not determined very accurately, due to a poor velocity solution and a lack of proper filtering to provide good radial and speed error correlation.

  3. Payload/orbiter contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Ress, E. B.

    1975-01-01

    The development and use is described of a basic contamination mathematical model of the shuttle orbiter which incorporates specific shuttle orbiter configurations and contamination sources. These configurations and sources were evaluated with respect to known shuttle orbiter operational surface characteristics and specific lines-of-sight which encompass the majority of viewing requirements for shuttle payloads. The results of these evaluations are presented as summary tables for each major source. In addition, contamination minimization studies were conducted and recommendations are made, where applicable, to support the shuttle orbiter design and operational planning for those sources which were identified to present a significant contamination threat.

  4. Oblique view of the Orbiter Discovery from an elevated platform ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the Forward Reaction Control System (RCS) Module from the forward section and the Orbiter Maneuvering System (OMS)/RCS pods from the aft section have been removed. Ground support equipment called Strongbacks are attached to the payload bay doors and the Flight Deck windows have been covered by ground support equipment. Also note the scale figure standing by the Orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  5. Operational support to collision avoidance activities by ESA's space debris office

    NASA Astrophysics Data System (ADS)

    Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.

    2016-09-01

    The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for third-party missions not operated from the European Space Operations Centre (ESOC). Finally, we provide statistics on the identified conjunction events, taking into account the known significant changes in the LEO orbital environment and share ESA's experience along with recent examples.

  6. Dawn Orbit Determination Team : Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matt; Ardito, Alessandro; Han, Don; Haw, Robert; Kennedy, Brian; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The NASA Dawn spacecraft was launched on September 27, 2007 on a mission to study the asteroid belt's two largest objects, Vesta and Ceres. It is the first deep space orbiting mission to demonstrate solar-electric ion propulsion, providing the necessary delta-V to enable capture and escape from two extraterrestrial bodies. At this time, Dawn has completed its science campaign at Vesta and is currently on its journey to Ceres, where it will arrive in mid-2015. The spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012, capturing science data during four dedicated orbit phases. In order to maintain the reference orbits necessary for science and enable the transfers between those orbits, precise and timely orbit determination was required. The constraints associated with low-thrust ion propulsion coupled with the relatively unknown a priori gravity and rotation models for Vesta presented unique challenges for the Dawn orbit determination team. While [1] discusses the prediction performance of the orbit determination products, this paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  7. Long-Term Periodicity of the Mars Exospheric Density from MRO and Mars Odyssey Radio Tracking Data

    NASA Astrophysics Data System (ADS)

    Genova, A.; Goossens, S. J.; Lemoine, F. G.; Mazarico, E.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    The Mars Odyssey and Mars Reconnaissance Orbiter (MRO) missions have collected more than 11 years of continuous tracking data of spacecraft in orbit around Mars. The radio science data are generally used to determine the static and seasonal gravity field of the central body. However, these two spacecraft are in different sun-synchronous orbits that cover a wide range of altitudes (250-410 km) where investigation of the atmosphere and climate of Mars so far have not been supported by in situ and remote sensing measurements. The drag perturbation acting on the probes provides indirect measurements of the Martian atmospheric density. Therefore, we focused our work on the determination of the long-term periodicity of the atmospheric constituents in the Mars exosphere with Mars Odyssey and MRO radio tracking data. We implemented the Drag Temperature Model (DTM) -Mars model into our Precise Orbit Determination (POD) program GEODYN-II to adequately reproduce variations in temperature and (partial) density along ODY and MRO trajectories. The recovery of Mars' atmospheric dynamics using Doppler tracking data requires the accurate modeling of all forces acting on the spacecraft. The main non-conservative force, apart from drag, is solar radiation pressure. Spacecraft panel reflectivities and the radiation pressure-scaling factor are not estimated, but we adjusted empirical once-per-revolution along-track periodic accelerations (cosine and sine) over each orbital arc to mitigate solar radiation pressure mismodeling. After converging the orbital data arcs, and editing out all the data during superior conjunctions, we combined the MRO and Mars Odyssey arcs in a global solution where we estimated spacecraft initial states, time-correlated drag scale factors, and annual and semi-annual variability of the major constituents in the Mars upper atmosphere. We will show that the updated DTM-Mars model provides a better prediction of the long-term variability of the dominant species, which are CO2, O, and He at the MRO and ODY orbit altitudes. The indirect measurements of atmospheric density profiles at those altitudes provide additional information to improve general circulation models, which already suitably represent lower altitudes in the atmosphere.

  8. Orbit Determination of the Lunar Reconnaissance Orbiter: Status and Recent Development

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Mazarico, E.; Goossens, S. J.; Nicholas, J. B.; Wagner, R.; Speyerer, E. J.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    The LRO mission has been operated since June 2009, and the productivity of its seven instruments has led to a wealth of new data and scientific results. The high-resolution data acquired benefit from precise orbit determination (OD), alleviating human intervention in their geolocation and co-registration. The initial position knowledge requirement (50 meters) was met with radio tracking data from the primary NASA White Sands ground station supported by USN, after combination with LOLA altimetric crossovers. LRO-specific gravity field solutions were thus determined and allowed radio-only OD to perform adequately, although secular inclination changes required frequent updates. The high-accuracy gravity fields from GRAIL, with <10 km resolution, further improved the radio-only orbit reconstruction quality. However, it is in part limited by the 0.3-0.5 mm/s measurement noise level in the S-band. One-way tracking through Laser Ranging can supplement the tracking available for OD with 28 Hz ranges with 20 cm single-shot precision, but is available only on the nearside. The LOLA altimetric data afford accurate, independent information about LRO's orbit, with a very different geometry that includes coverage over the lunar farside. With LOLA's highest-quality topographic model of the Moon and the Kaguya Terrain Camera stereo-derived elevation model, and their combination named SLDEM2015, another altimetric measurement is now possible to use in OD. This `direct altimetry' tracking type was developed to calibrate the laser boresight pointing of the IceSAT/GLAS altimeter, as differences in geolocated height of profiles with respect to an ocean surface reference geoid were primarily attributed to pointing errors. We extended this technique to short-scale, high-resolution targets, and can now use the SLDEM2015 topographic model as a basemap to match individual LOLA tracks during OD, adjusting both spacecraft position and pointing to minimize the discrepancies. Comparisons with the radio-only orbits through the mission are used to evaluate the benefit of this new tracking data type, which might be used for the OD of future lunar orbiters carrying a laser altimeter. LROC NAC images provide independent accuracy estimation, through the repeated views taken of anthropogenic features for instance.

  9. KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

    NASA Image and Video Library

    1997-01-16

    KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility make final adjustments to the Flight Support System (FSS) for STS-82, the second Hubble Space Telescope servicing mission. The FSS is reusable flight hardware that provides the mechanical, structural and electrical interfaces between HST, the space support equipment and the orbiter for payload retrieval and on-orbit servicing. Liftoff aboard Discovery is targeted Feb. 11 with a crew of seven.

  10. Integrated communications and optical navigation system

    NASA Astrophysics Data System (ADS)

    Mueller, J.; Pajer, G.; Paluszek, M.

    2013-12-01

    The Integrated Communications and Optical Navigation System (ICONS) is a flexible navigation system for spacecraft that does not require global positioning system (GPS) measurements. The navigation solution is computed using an Unscented Kalman Filter (UKF) that can accept any combination of range, range-rate, planet chord width, landmark, and angle measurements using any celestial object. Both absolute and relative orbit determination is supported. The UKF employs a full nonlinear dynamical model of the orbit including gravity models and disturbance models. The ICONS package also includes attitude determination algorithms using the UKF algorithm with the Inertial Measurement Unit (IMU). The IMU is used as the dynamical base for the attitude determination algorithms. This makes the sensor a more capable plug-in replacement for a star tracker, thus reducing the integration and test cost of adding this sensor to a spacecraft. Recent additions include an integrated optical communications system which adds communications, and integrated range and range rate measurement and timing. The paper includes test results from trajectories based on the NASA New Horizons spacecraft.

  11. Payload Performance of TDRS KL and Future Services

    NASA Technical Reports Server (NTRS)

    Toral, Marco A.; Heckler, Gregory W.; Pogorelc, Patricia M.; George, Nicholas E.; Han, Katherine S.

    2017-01-01

    NASA has accepted two of the 3nd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and GT; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, GT, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.

  12. Payload Performance of Third Generation TDRS and Future Services

    NASA Technical Reports Server (NTRS)

    Toral, Marco; Heckler, Gregory; Pogorelc, Patsy; George, Nicholas; Han, Katherine S.

    2017-01-01

    NASA has accepted two of the 3rd generation Tracking and Data Relay Satellites, TDRS K, L, and M, designed and built by Boeing Defense, Space & Security (DSS). TDRS K, L, and M provide S-band Multiple Access (MA) service and S-band, Ku-band and Ka-band Single Access (SA) services to near Earth orbiting satellites. The TDRS KLM satellites offer improved services relative to the 1st generation TDRS spacecraft, such as: an enhanced MA service featuring increased EIRPs and G/T; and Ka-band SA capability which provides a 225 and 650 MHz return service (customer-to-TDRS direction) bandwidth and a 50 MHz forward service (TDRS-to-customer direction) bandwidth. MA services are provided through a 15 element forward phased array that forms up to two beams with onboard active beamforming and a 32 element return phased array supported by ground-based beamforming. SA services are provided through two 4.6m tri-band reflector antennas which support program track pointing and autotrack pointing. Prior to NASAs acceptance of the satellites, payload on-orbit testing was performed on each satellite to determine on-orbit compliance with design requirements. Performance parameters evaluated include: EIRP, G/T, antenna gain patterns, SA antenna autotrack performance, and radiometric tracking performance. On-orbit antenna calibration and pointing optimization was also performed on the MA and SA antennas including 24 hour duration tests to characterize and calibrate out diurnal effects. Bit-Error-Rate (BER) tests were performed to evaluate the end-to-end link BER performance of service through a TDRS K and L spacecraft. The TDRS M is planned to be launched in August 2017. This paper summarizes the results of the TDRS KL communications payload on-orbit performance verification and end-to-end service characterization and compares the results with the performance of the 2nd generation TDRS J. The paper also provides a high-level overview of an optical communications application that will augment the data rates supported by the Space Network.

  13. GRYPHON: Air launched space booster

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon's mission control center. The Structures group was responsible for ensuring the structural integrity of the vehicle. Their designs included the payload shroud, payload support structure, exterior hull and engine support struts. The Gryphon's power requirements were determined by the Power/Thermal/Attitude Control Group. This group then selected suitable batteries and other components to meet these requirements. The group also designed heat shielding and cooling systems to ensure subsystem performance. In addition to these responsibilities this group designed the attitude control methods and RCS components for the vehicle. The Aircraft Integration Group was responsible for all aspects of the booster aircraft connection. This included the design of the connection structure and the drop mechanism. This group also designed the vehicle assembly facility and identified possible ground bases for the plane.

  14. GRYPHON: Air launched space booster

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon's mission control center. The Structures group was responsible for ensuring the structural integrity of the vehicle. Their designs included the payload shroud, payload support structure, exterior hull and engine support struts. The Gryphon's power requirements were determined by the Power/Thermal/Attitude Control Group.

  15. An Independent Orbit Determination Simulation for the OSIRIS-REx Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Getzandanner, Kenneth; Rowlands, David; Mazarico, Erwan; Antreasian, Peter; Jackman, Coralie; Moreau, Michael

    2016-01-01

    After arriving at the near-Earth asteroid (101955) Bennu in late 2018, the OSIRIS-REx spacecraft will execute a series of observation campaigns and orbit phases to accurately characterize Bennu and ultimately collect a sample of pristine regolith from its surface. While in the vicinity of Bennu, the OSIRIS-REx navigation team will rely on a combination of ground-based radiometric tracking data and optical navigation (OpNav) images to generate and deliver precision orbit determination products. Long before arrival at Bennu, the navigation team is performing multiple orbit determination simulations and thread tests to verify navigation performance and ensure interfaces between multiple software suites function properly. In this paper, we will summarize the results of an independent orbit determination simulation of the Orbit B phase of the mission performed to test the interface between the OpNav image processing and orbit determination software packages.

  16. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    NASA Technical Reports Server (NTRS)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  17. Space Shuttle life support systems - A status report

    NASA Technical Reports Server (NTRS)

    Faget, M. A.; Guy, W. W.

    1981-01-01

    The Space Shuttle Program has two independent life support systems. One provides the basic environmental control for the Orbiter cabin while the second enables the crewmen to function outside the spacecraft for extravehicular operation. Although both of these systems were developed and fabricated under contract to NASA, all system-level testing was conducted at the Johnson Space Center. The paper will discuss the results of this testing which, in part, includes: (1) certification of the Orbiter cabin atmospheric pressure and composition control system at three operational pressures (8 psia, 9 psia and 14.7 psia); (2) certification of the Orbiter atmospheric revitalization system at 9 psia and 14.7 psia; (3) manrating of the Orbiter airlock at 14.7 psia, 9 psia and vacuum; and (4) certification of the space suit/life support system in the airlock and at deep space thermal/vacuum conditions. In addition, pertinent flight information from the on-orbit performance of the Shuttle life support systems will be presented.

  18. Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.

    2012-01-01

    In the past decade, an evolving network of Mars relay orbiters has provided telecommunication relay services to the Mars Exploration Rovers, Spirit and Opportunity, and to the Mars Phoenix Lander, enabling high-bandwidth, energy-efficient data transfer and greatly increasing the volume of science data that can be returned from the Martian surface, compared to conventional direct-to-Earth links. The current relay network, consisting of NASA's Odyssey and Mars Reconnaissance Orbiter and augmented by ESA's Mars Express Orbiter, stands ready to support the Mars Science Laboratory, scheduled to arrive at Mars on Aug 6, 2012, with new capabilities enabled by the Electra and Electra-Lite transceivers carried by MRO and MSL, respectively. The MAVEN orbiter, planned for launch in 2013, and the ExoMars/Trace Gas Orbiter, planned for launch in 2016, will replenish the on-orbit relay network as the current orbiter approach their end of life. Currently planned support scenarios for this future relay network include an ESA EDL Demonstrator Module deployed by the 2016 ExoMars/TGO orbiter, and the 2018 NASA/ESA Joint Rover, representing the first step in a multimission Mars Sample Return campaign.

  19. Proceedings of the 20th International Symposium on Space Flight Dynamics

    NASA Technical Reports Server (NTRS)

    Woodard, Mark (Editor); Stengle, Tom (Editor)

    2007-01-01

    Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.

  20. Comparison of ERBS orbit determination accuracy using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Fabien, S. M.; Mistretta, G. D.; Hart, R. C.; Doll, C. E.

    1991-01-01

    The Flight Dynamics Div. (FDD) at NASA-Goddard commissioned a study to develop the Real Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination of spacecraft on a DOS based personal computer (PC). An overview is presented of RTOD/E capabilities and the results are presented of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOS/E on a PC with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. RTOD/E was used to perform sequential orbit determination for the Earth Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determination System (GTDS) was used to perform the batch least squares orbit determination. The estimated ERBS ephemerides were obtained for the Aug. 16 to 22, 1989, timeframe, during which intensive TDRSS tracking data for ERBS were available. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the solution differences were less than 40 meters after the filter had reached steady state.

  1. Comparison of ERBS orbit determination accuracy using batch least-squares and sequential methods

    NASA Astrophysics Data System (ADS)

    Oza, D. H.; Jones, T. L.; Fabien, S. M.; Mistretta, G. D.; Hart, R. C.; Doll, C. E.

    1991-10-01

    The Flight Dynamics Div. (FDD) at NASA-Goddard commissioned a study to develop the Real Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination of spacecraft on a DOS based personal computer (PC). An overview is presented of RTOD/E capabilities and the results are presented of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOS/E on a PC with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. RTOD/E was used to perform sequential orbit determination for the Earth Radiation Budget Satellite (ERBS), and the Goddard Trajectory Determination System (GTDS) was used to perform the batch least squares orbit determination. The estimated ERBS ephemerides were obtained for the Aug. 16 to 22, 1989, timeframe, during which intensive TDRSS tracking data for ERBS were available. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for ERBS; the solution differences were less than 40 meters after the filter had reached steady state.

  2. Orbit Determination with Angle-only Data from the First Korean Optical Satellite Tracking System, OWL-Net

    NASA Astrophysics Data System (ADS)

    Choi, J.; Jo, J.

    2016-09-01

    The optical satellite tracking data obtained by the first Korean optical satellite tracking system, Optical Wide-field patrol - Network (OWL-Net), had been examined for precision orbit determination. During the test observation at Israel site, we have successfully observed a satellite with Laser Retro Reflector (LRR) to calibrate the angle-only metric data. The OWL observation system is using a chopper equipment to get dense observation data in one-shot over 100 points for the low Earth orbit objects. After several corrections, orbit determination process was done with validated metric data. The TLE with the same epoch of the end of the first arc was used for the initial orbital parameter. Orbit Determination Tool Kit (ODTK) was used for an analysis of a performance of orbit estimation using the angle-only measurements. We have been developing batch style orbit estimator.

  3. Generalized environmental control and life support system computer program (G189A) configuration control. [computer subroutine libraries for shuttle orbiter analyses

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.

    1973-01-01

    A G189A simulation of the shuttle orbiter EC/lSS was prepared and used to study payload support capabilities. Two master program libraries of the G189A computer program were prepared for the NASA/JSC computer system. Several new component subroutines were added to the G189A program library and many existing subroutines were revised to improve their capabilities. A number of special analyses were performed in support of a NASA/JSC shuttle orbiter EC/LSS payload support capability study.

  4. Orbital Spacecraft Consumables Resupply System (OSCRS). Volume 3: Program Cost Estimate

    NASA Technical Reports Server (NTRS)

    Perry, D. L.

    1986-01-01

    A cost analysis for the design, development, qualification, and production of the monopropellant and bipropellant Orbital Spacecraft Consumable Resupply System (OSCRS) tankers, their associated avionics located in the Orbiter payload bay, and the unique ground support equipment (GSE) and airborne support equipment (ASE) required to support operations is presented. Monopropellant resupply for the Gamma Ray Observatory (GRO) in calendar year 1991 is the first defined resupply mission with bipropellant resupply missions expected in the early to mid 1990's. The monopropellant program estimate also includes contractor costs associated with operations support through the first GRO resupply mission.

  5. Lunar base mission technology issues and orbital demonstration requirements on space station

    NASA Technical Reports Server (NTRS)

    Llewellyn, Charles P.; Weidman, Deene J.

    1992-01-01

    The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.

  6. Navigation of the GRAIL Spacecraft Pair Through the Extended Mission at the Moon

    NASA Technical Reports Server (NTRS)

    Goodson, Troy D.; Antreasian, Peter G.; Bhat, Ram S.; Chung, Min-Kun; Criddle, Kevin E.; Hatch, Sara J.; Jefferson, David C.; Lau, Eunice L.; Roncoli, Ralph B.; Ryne, Mark S.; hide

    2013-01-01

    The GRAIL extended mission (XM) dramatically expands the scope of GRAIL's gravity science investigation by flying the pair of spacecraft at the lowest orbit the flight team can safely support. From the perspective of the Navigation team, the low orbit altitude introduces new challenges. At this lower altitude, navigation is more sensitive to higher-order terms of the gravity field so that orbit determination solutions are more difficult and there is less certainty of achieving maneuver targets. This paper reports on the strategy and performance of the Navigation system for GRAIL's XM. On a weekly basis, the Navigation team provided reference trajectory updates, designed three maneuvers, and reconstructed the execution of those maneuvers. In all, the XM involved 55 planned maneuvers; five were canceled. The results of the Navigation team's efforts, in terms of maintaining the reference-trajectory targets, satisfying requirements, and achieving desired separation distances, are assessed.

  7. Magnetic and transport signatures of Rashba spin-orbit coupling on the Kondo lattice model in two dimensional clusters

    NASA Astrophysics Data System (ADS)

    Riera, Jose

    2014-03-01

    Motivated by emergent phenomena at oxide surfaces and heterostructures, particularly those involving transition metal oxides with perovskite crystal structure such as LaTiO3/SrTiO3, we examine the Kondo lattice model in the presence of a Rashba spin-orbit coupling (RSOC). Using an array of numerical techniques, under the assumption that the electrons on localized orbitals may be treated as classical continuum spins, we compute various charge, spin and transport properties on square clusters and on ladders at zero and finite temperatures. The main goal is to determine magnetic and transport signatures due to the RSOC. The same model can be used to study at an effective level the combined effect on magnetic and transport properties of Rashba and ferromagnetic moments, such as the ones present at LMnO3/SrMnO3 interfaces. Support from CONICET (ARGENTINA).

  8. Precise interferometric tracking of the DSCS II geosynchronous orbiter

    NASA Astrophysics Data System (ADS)

    Border, J. S.; Donivan, F. F., Jr.; Shiomi, T.; Kawano, N.

    1986-01-01

    A demonstration of the precise tracking of a geosynchronous orbiter by radio metric techniques based on very-long-baseline interferometry (VLBI) has been jointly conducted by the Jet Propulsion Laboratory and Japan's Radio Research Laboratory. Simultaneous observations of a U.S. Air Force communications satellite from tracking stations in California, Australia, and Japan have determined the satellite's position with an accuracy of a few meters. Accuracy claims are based on formal statistics, which include the effects of errors in non-estimated parameters and which are supported by a chi-squared of less than one, and on the consistency of orbit solutions from disjoint data sets. A study made to assess the impact of shorter baselines and reduced data noise concludes that with a properly designed system, similar accuracy could be obtained for either a satellite viewed from stations located within the continental U.S. or for a satellite viewed from stations within Japanese territory.

  9. Aeroheating Analysis for the Mars Reconnaissance Orbiter with Comparison to Flight Data

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2007-01-01

    The aeroheating environment of the Mars Reconnaissance Orbiter (MRO) has been analyzed using the direct simulation Monte Carlo and free-molecular techniques. The results of these analyses were used to develop an aeroheating database to be used for the preflight planning and the in-flight operations support for the aerobraking phase of the MRO mission. The aeroheating predictions calculated for the MRO include the heat transfer coefficient (CH) over a range of angles-of-attack, sideslip angles, and number densities. The effects of flow chemistry, surface temperature, and surface grid resolution were also investigated to determine the aeroheating database uncertainties. Flight heat flux data has been calculated from surface temperature sensor data returned to Earth from the MRO in orbit around Mars during the aerobraking phase of its mission. The heat flux data have been compared to the aeroheating database and agree favorably.

  10. Trapped particle and solar proton radiation prediction for ISEE (IME): Mother-daughter mission

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1974-01-01

    The charged particle fluxes incident on spacecrafts in very eccentric orbits were investigated in support of the International Sun-Earth Explorer (International Magnetospheric Explorer) For this purpose, two flightpaths were considered having identical inclinations but different perigee altitudes (240 and 1364 kilometers, respectively). Apogee altitude was approximately the same for both cases (about 22 earth radii). For each of the two perigee altitudes investigated, two nominal trajectories were generated, having identical orbital configurations but with their major axes rotated by 180 deg in the plane of orbit, which resulted in placing the initial apogee into into opposite hemispheres. This was done in order to determine the corresponding variation in the vehicle-encountered particle intensities. Estimates of average energetic solar proton fluxes are given for a one year mission duration at selected integranlenergies ranging from E 10 to E 100 MeV. Results are summarized and discussed.

  11. GPS-based precision orbit determination - A Topex flight experiment

    NASA Technical Reports Server (NTRS)

    Melbourne, William G.; Davis, Edgar S.

    1988-01-01

    Plans for a Topex/Poseiden flight experiment to test the accuracy of using GPS data for precision orbit determination of earth satellites are presented. It is expected that the GPS-based precision orbit determination will provide subdecimeter accuracies in the radial component of the Topex orbit when the extant gravity model is tuned for wavelengths longer than about 1000 kms. The concept, design, flight receiver, antenna system, ground processing, and data processing of GPS are examined. Also, an accurate quasi-geometric orbit determination approach called nondynamic or reduced dynamic tracking which relies on the use of the pseudorange and the carrier phase measurements to reduce orbit errors arising from mismodeled dynamics is discussed.

  12. Satellite laser ranging to low Earth orbiters: orbit and network validation

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Montenbruck, Oliver; Hackel, Stefan; Sośnica, Krzysztof

    2018-04-01

    Satellite laser ranging (SLR) to low Earth orbiters (LEOs) provides optical distance measurements with mm-to-cm-level precision. SLR residuals, i.e., differences between measured and modeled ranges, serve as a common figure of merit for the quality assessment of orbits derived by radiometric tracking techniques. We discuss relevant processing standards for the modeling of SLR observations and highlight the importance of line-of-sight-dependent range corrections for the various types of laser retroreflector arrays. A 1-3 cm consistency of SLR observations and GPS-based precise orbits is demonstrated for a wide range of past and present LEO missions supported by the International Laser Ranging Service (ILRS). A parameter estimation approach is presented to investigate systematic orbit errors and it is shown that SLR validation of LEO satellites is not only able to detect radial but also along-track and cross-track offsets. SLR residual statistics clearly depend on the employed precise orbit determination technique (kinematic vs. reduced-dynamic, float vs. fixed ambiguities) but also reveal pronounced differences in the ILRS station performance. Using the residual-based parameter estimation approach, corrections to ILRS station coordinates, range biases, and timing offsets are derived. As a result, root-mean-square residuals of 5-10 mm have been achieved over a 1-year data arc in 2016 using observations from a subset of high-performance stations and ambiguity-fixed orbits of four LEO missions. As a final contribution, we demonstrate that SLR can not only validate single-satellite orbit solutions but also precise baseline solutions of formation flying missions such as GRACE, TanDEM-X, and Swarm.

  13. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    The ARTEMIS mission, part of the THEMIS extended mission, is the first to fly spacecraft in the Earth-Moon Lissajous regions. In 2009, two of the five THEMIS spacecraft were redeployed from Earth-centered orbits to arrive in Earth-Moon Lissajous orbits in late 2010. Starting in August 2010, the ARTEMIS P1 spacecraft executed numerous stationkeeping maneuvers, initially maintaining a lunar L2 Lissajous orbit before transitioning into a lunar L1 orbit. The ARTEMIS P2 spacecraft entered a L1 Lissajous orbit in October 2010. In April 2011, both ARTEMIS spacecraft will suspend Lissajous stationkeeping and will be maneuvered into lunar orbits. The success of the ARTEMIS mission has allowed the science team to gather unprecedented magnetospheric measurements in the lunar Lissajous regions. In order to effectively perform lunar Lissajous stationkeeping maneuvers, the ARTEMIS operations team has provided orbit determination solutions with typical accuracies on the order of 0.1 km in position and 0.1 cm/s in velocity. The ARTEMIS team utilizes the Goddard Trajectory Determination System (GTDS), using a batch least squares method, to process range and Doppler tracking measurements from the NASA Deep Space Network (DSN), Berkeley Ground Station (BGS), Merritt Island (MILA) station, and United Space Network (USN). The team has also investigated processing of the same tracking data measurements using the Orbit Determination Tool Kit (ODTK) software, which uses an extended Kalman filter and recursive smoother to estimate the orbit. The orbit determination results from each of these methods will be presented and we will discuss the advantages and disadvantages associated with using each method in the lunar Lissajous regions. Orbit determination accuracy is dependent on both the quality and quantity of tracking measurements, fidelity of the orbit force models, and the estimation techniques used. Prior to Lissajous operations, the team determined the appropriate quantity of tracking measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar radiation force for several hours. The effects of these events on orbit determination accuracy will be presented. In order to plan for upcoming stationkeeping maneuvers, the maneuver planning team must take the current orbit estimate, propagate it forward to the planned maneuver time, and determine the optimal maneuver to maintain the Lissajous orbit for one or more revolutions. The propagation is performed using a Runge-Kutta 7/8 integrator and typically the position and velocity uncertainty increases with propagation time, increasing the overall uncertainty of the orbit state at the maneuver execution time. The effect of orbit knowledge uncertainty on stationkeeping operations will be presented.

  14. Mars Reconnaissance Orbiter Navigation Strategy for Mars Science Laboratory Entry, Descent and Landing Telecommunication Relay Support

    NASA Technical Reports Server (NTRS)

    Williams, Jessica L.; Menon, Premkumar R.; Demcak, Stuart W.

    2012-01-01

    The Mars Reconnaissance Orbiter (MRO) is an orbiting asset that performs remote sensing observations in order to characterize the surface, subsurface and atmosphere of Mars. To support upcoming NASA Mars Exploration Program Office objectives, MRO will be used as a relay communication link for the Mars Science Laboratory (MSL) mission during the MSL Entry, Descent and Landing sequence. To do so, MRO Navigation must synchronize the MRO Primary Science Orbit (PSO) with a set of target conditions requested by the MSL Navigation Team; this may be accomplished via propulsive maneuvers. This paper describes the MRO Navigation strategy for and operational performance of MSL EDL relay telecommunication support.

  15. Payload/orbiter contamination control requirement study: Spacelab configuration contamination study

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Hetrick, M. A.; Ress, E. B.; Strange, D. A.

    1976-01-01

    The assessment of the Spacelab carrier induced contaminant environment was continued, and the ability of Spacelab to meet established contamination control criteria for the space transportation system program was determined. The primary areas considered included: (1) updating, refining, and improving the Spacelab contamination computer model and contamination analysis methodology, (2) establishing the resulting adjusted induced environment predictions for comparison with the applicable criteria, (3) determining the Spacelab design and operational requirements necessary to meet the criteria, (4) conducting mission feasibility analyses of the combined Spacelab/Orbiter contaminant environment for specific proposed mission and payload mixes, and (5) establishing a preliminary Spacelab mission support plan as well as model interface requirements; A summary of those activities conducted to date with respect to the modelling, analysis, and predictions of the induced environment, including any modifications in approach or methodology utilized in the contamination assessment of the Spacelab carrier, was presented.

  16. A conceptual design for the attitude control and determination system for the Magnetosphere Imager spacecraft

    NASA Technical Reports Server (NTRS)

    Polites, M. E.; Carrington, C. K.

    1995-01-01

    This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.

  17. Engineering model system study for a regenerative fuel cell: Study report

    NASA Technical Reports Server (NTRS)

    Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.

    1984-01-01

    Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.

  18. Multi-Sensor Image Fusion for Target Recognition in the Environment of Network Decision Support Systems

    DTIC Science & Technology

    2015-12-01

    FOV Field of view GEO Geosynchronous, or geostationary , earth orbit HEO Highly elliptical earth orbit HTTP Hypertext transfer protocol HTTPS...orbit (MEO), geosynchronous or geostationary earth orbit (GEO), and highly elliptical earth orbit (HEO) [38]. Furthermore, if we consider the actual

  19. A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer

    NASA Technical Reports Server (NTRS)

    Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin

    2007-01-01

    In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.

  20. Infrared Spectroscopy of Symbiotic Stars. II. Orbits for Five S-Type Systems with Two-Year Periods

    NASA Astrophysics Data System (ADS)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Skrutskie, Michael F.

    2000-12-01

    Infrared radial velocities have been used to determine orbital elements for the cool giants of five well-known symbiotic systems, Z And, AG Dra, V443 Her, AX Per, and FG Ser, all of which have orbital periods near the two-year mean period for S-type symbiotics. The new orbits are in general agreement with previous orbits derived from optical velocities. From the combined optical and infrared velocities, improved orbital elements for the five systems have been determined. Each of the orbital periods has been determined solely from the radial-velocity data. The orbits are circular and have quite small mass functions of 0.001-0.03 Msolar. The infrared velocities of AG Dra do not show the large orbital velocity residuals found for its optical radial velocities.

  1. Dawn Orbit Determination Team: Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Kennedy, Brian; Mastrodemos, Nick; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012. In order to maintain the designated science reference orbits and enable the transfers between those orbits, precise and timely orbit determination was required. Challenges included low-thrust ion propulsion modeling, estimation of relatively unknown Vesta gravity and rotation models, track-ing data limitations, incorporation of real-time telemetry into dynamics model updates, and rapid maneuver design cycles during transfers. This paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  2. Payload/cargo processing at the launch site

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1983-01-01

    Payload processing at Kennedy Space Center is described, with emphasis on payload contamination control. Support requirements are established after documentation of the payload. The processing facilities feature enclosed, environmentally controlled conditions, with account taken of the weather conditions, door openings, accessing the payload, industrial activities, and energy conservation. Apparatus are also available for purges after Orbiter landing. The payloads are divided into horizontal, vertical, mixed, and life sciences and Getaway Special categories, which determines the processing route through the facilities. A canister/transport system features sealed containers for moving payloads from one facility building to another. All payloads are exposed to complete Orbiter bay interface checkouts in a simulator before actually being mounted in the bay.

  3. Laser Ranging for Effective and Accurate Tracking of Space Debris in Low Earth Orbits

    NASA Astrophysics Data System (ADS)

    Blanchet, Guillaume; Haag, Herve; Hennegrave, Laurent; Assemat, Francois; Vial, Sophie; Samain, Etienne

    2013-08-01

    The paper presents the results of preliminary design options for an operational laser ranging system adapted to the measurement of the distance of space debris. Thorough analysis of the operational parameters is provided with identification of performance drivers and assessment of enabling design options. Results from performance simulation demonstrate how the range measurement enables improvement of the orbit determination when combined with astrometry. Besides, experimental results on rocket-stage class debris in LEO were obtained by Astrium beginning of 2012, in collaboration with the Observatoire de la Côte d'Azur (OCA), by operating an experimental laser ranging system supported by the MéO (Métrologie Optique) telescope.

  4. Orbiter Capability for Providing Water to the International Space Station according to the Most Probable Flight Attitudes

    NASA Technical Reports Server (NTRS)

    Dunaway, Brian; Edeen, Marybeth

    2000-01-01

    Water to be generated by, delivered to, and processed by the International Space Station (ISS) is a critical Environmental Control and Life Support (ECLS) element, especially for the early ISS missions. A significant portion of the water required by the ISS shall be provided by the Shuttle Transportation System (STS) Orbiter. The balance of water generated by the Orbiter Fuel Cells (FC), minus that water consumed by the Orbiter Flash Evaporator System (FES) and crew, is available for transfer to the ISS. During later missions, crew respired and perspired water, as well as effluent water from the Orbiter LiOH canisters, will be collected as condensate and available for transfer to the ISS. Orbiter radiator performance provides the most variance in determining the amount of net Orbiter water available for transfer to the ISS. As radiator performance decreases, the dependence upon the FES (and FC water) increases for rejecting Orbiter waste heat. Generally, radiator performance decreases as the ISS assembly size increases (especially as solar arrays are added), and also as beta angle increases. ISS solar array deployment necessitates the use of models with articulating solar arrays (for Earth local-vertical attitudes), as array position dramatically affects Orbiter radiator performance. Recent developments in the relaxation of beta angle limitations have also increased the complexity and difficulty of providing water to the ISS. Other factors that may hinder the ability to transfer water are the number of empty Contingency Water Containers (CWCs) available, duration of open-hatch time, crew activity timeline, and full CWC storage capability. A parametric study has been accomplished that provides a quick-reference table for determining expected water generation rates for ISS missions 2A.2 through 7A.1. An hourly Orbiter water generation rate is reported according to a matrix that consists of: (1) (six) significant changes in ISS assembly configuration; (2) (four) beta angles (0 deg. , +37 deg., +53 deg. , and +75 deg.); (3) the (three) most representative ISS attitudes (XPOP-O, XPOP-180 and +XVV); (4) (four) Orbiter radiator configurations (both stowed, starboard deployed, port deployed, and both deployed) and (5) the (two) conditions (radiator inlet temperatures and fuel cell power) most consistent with sleep and wake periods. Those permutations of higher probability of occurrence than others have been identified. Another parametric study has been accomplished that provides a quick-reference table for determining expected water generation rates for ISS assembly complete missions. An hourly Orbiter water generation rate is reported according to a matrix that consists of: (1) (seven) beta angles (-75 deg., -60 deg., -30 deg., 0 deg., +30 deg., +60 deg., and +75 deg.); (2) the (nine) PYR angles that define the corners of the envelope; (3) (four) Orbiter radiator configurations (both stowed, starboard deployed, port deployed, and both deployed) and (4) the (two) conditions (radiator inlet temperatures and fuel cell power) most consistent with sleep and wake periods.

  5. Evaluation of TDRSS-user orbit determination accuracy using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Hodjatzadeh, M.; Samii, M. V.; Doll, C. E.; Hart, R. C.; Mistretta, G. D.

    1991-01-01

    The development of the Real-Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination on a Disk Operating System (DOS) based Personal Computer (PC) is addressed. The results of a study to compare the orbit determination accuracy of a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOD/E with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), is addressed. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for the Earth Radiation Budget Satellite (ERBS); the maximum solution differences were less than 25 m after the filter had reached steady state.

  6. Filter Tuning Using the Chi-Squared Statistic

    NASA Technical Reports Server (NTRS)

    Lilly-Salkowski, Tyler

    2017-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF) performs orbit determination (OD) for the Aqua and Aura satellites. Both satellites are located in low Earth orbit (LEO), and are part of what is considered the A-Train satellite constellation. Both spacecraft are currently in the science phase of their respective missions. The FDF has recently been tasked with delivering definitive covariance for each satellite.The main source of orbit determination used for these missions is the Orbit Determination Toolkit developed by Analytical Graphics Inc. (AGI). This software uses an Extended Kalman Filter (EKF) to estimate the states of both spacecraft. The filter incorporates force modelling, ground station and space network measurements to determine spacecraft states. It also generates a covariance at each measurement. This covariance can be useful for evaluating the overall performance of the tracking data measurements and the filter itself. An accurate covariance is also useful for covariance propagation which is utilized in collision avoidance operations. It is also valuable when attempting to determine if the current orbital solution will meet mission requirements in the future.This paper examines the use of the Chi-square statistic as a means of evaluating filter performance. The Chi-square statistic is calculated to determine the realism of a covariance based on the prediction accuracy and the covariance values at a given point in time. Once calculated, it is the distribution of this statistic that provides insight on the accuracy of the covariance.For the EKF to correctly calculate the covariance, error models associated with tracking data measurements must be accurately tuned. Over estimating or under estimating these error values can have detrimental effects on the overall filter performance. The filter incorporates ground station measurements, which can be tuned based on the accuracy of the individual ground stations. It also includes measurements from the NASA space network (SN), which can be affected by the assumed accuracy of the TDRS satellite state at the time of the measurement.The force modelling in the EKF is also an important factor that affects the propagation accuracy and covariance sizing. The dominant force in the LEO orbit regime is the drag force caused by atmospheric drag. Accurate accounting of the drag force is especially important for the accuracy of the propagated state. The implementation of a box and wing model to improve drag estimation accuracy, and its overall effect on the covariance state is explored.The process of tuning the EKF for Aqua and Aura support is described, including examination of the measurement errors of available observation types (Doppler and range), and methods of dealing with potentially volatile atmospheric drag modeling. Predictive accuracy and the distribution of the Chi-square statistic, calculated based of the ODTK EKF solutions, are assessed versus accepted norms for the orbit regime.

  7. Review of Orbiter Flight Boundary Layer Transition Data

    NASA Technical Reports Server (NTRS)

    Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.

    2006-01-01

    In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.

  8. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    NASA Astrophysics Data System (ADS)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate that the radial overlap differences between the autonomous orbits are less than 15.0 cm for the inclined geosynchronous orbit (IGSO) satellites and less than 10.0 cm for the MEO satellites. The SLR residuals are approximately 15.0 cm for the IGSO satellites and approximately 10.0 cm for the MEO satellites, representing an improvement over the L-band orbits.

  9. Providing relay communications support for the Mars Environmental Survey (MESUR) mission

    NASA Technical Reports Server (NTRS)

    Swenson, Byron L.; Friedlander, Alan L.

    1992-01-01

    The purpose of the Mars Environmental Survey (MESUR) mission is to put in place, over several launch opportunities, a constellation of Mars landers to make long-term surface observations of the circulation of the atmosphere and changes in climate, and to record the seismic activity of the planetary crust. Short-term objectives will also be addressed. An orbital communications infrastructure capable of providing regular high-rate data transfer to earth from the landers, which are scattered globally from pole to pole, is key to accomplishing the mission goals. A study is thereby presented of the orbit selection for the orbiter spacecraft, which will provide this support, and the relay communications operation. It is concluded that adequate communications support for the objectives of the MESUR mission can be provided by a single orbiter, provided care is taken in the selection of the size and orientation (i.e., inclination and apse line alignment) of the spacecraft orbit.

  10. Orbit Determination Accuracy for Comets on Earth-Impacting Trajectories

    NASA Technical Reports Server (NTRS)

    Kay-Bunnell, Linda

    2004-01-01

    The results presented show the level of orbit determination accuracy obtainable for long-period comets discovered approximately one year before collision with Earth. Preliminary orbits are determined from simulated observations using Gauss' method. Additional measurements are incorporated to improve the solution through the use of a Kalman filter, and include non-gravitational perturbations due to outgassing. Comparisons between observatories in several different circular heliocentric orbits show that observatories in orbits with radii less than 1 AU result in increased orbit determination accuracy for short tracking durations due to increased parallax per unit time. However, an observatory at 1 AU will perform similarly if the tracking duration is increased, and accuracy is significantly improved if additional observatories are positioned at the Sun-Earth Lagrange points L3, L4, or L5. A single observatory at 1 AU capable of both optical and range measurements yields the highest orbit determination accuracy in the shortest amount of time when compared to other systems of observatories.

  11. Life Cycle Testing of Viscoelastic Material for Hubble Space Telescope Solar Array 3 Damper

    NASA Technical Reports Server (NTRS)

    Maly, Joseph R.; Reed, Benjamin B.; Viens, Michael J.; Parker, Bradford H.; Pendleton, Scott C.

    2003-01-01

    During the March 2002 Servicing Mission by Space Shuttle (STS 109), the Hubble Space Telescope (HST) was refurbished with two new solar arrays that now provide all of its power. These arrays were built with viscoelastic/titanium dampers, integral to the supporting masts, which reduce the interaction of the wing bending modes with the Telescope. Damping of over 3% of critical was achieved. To assess the damper s ability to maintain nominal performance over the 10-year on-orbit design goal, material specimens were subjected to an accelerated life test. The test matrix consisted of scheduled events to expose the specimens to pre-determined combinations of temperatures, frequencies, displacement levels, and numbers of cycles. These exposure events were designed to replicate the life environment of the damper from fabrication through testing to launch and life on-orbit. To determine whether material degradation occurred during the exposure sequence, material performance was evaluated before and after the accelerated aging with complex stiffness measurements. Based on comparison of pre- and post-life-cycle measurements, the material is expected to maintain nominal performance through end of life on-orbit. Recent telemetry from the Telescope indicates that the dampers are performing nominally.

  12. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Technical Reports Server (NTRS)

    Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert

    1991-01-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  13. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    NASA Astrophysics Data System (ADS)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  14. Space shuttle launch vehicle (13 P-OTS) strut support interference effects study in the Rockwell International 7- by 7-foot trisonic wind tunnel (IA68)

    NASA Technical Reports Server (NTRS)

    Rogge, R. L.

    1974-01-01

    Strut support interference investigations were conducted on an 0.004-(-) scale representation of the space shuttle launch vehicle in order to determine transonic and supersonic model support interference effects for use in a future exhaust plume effects study. Strut configurations were also tested. Orbiter, external tank, and solid rocket booster pressures were recorded at Mach numbers 0.9, 1.2, 1.5, and 2.0. Angle of attack and angle of sideslip were varied between plus or minus 4 degrees in 2 degree increments. Parametric variations consisted only of the strut configurations.

  15. Economic analysis requirements in support of orbital debris regulatory policy

    NASA Astrophysics Data System (ADS)

    Greenberg, Joel S.

    1996-10-01

    As the number of Earth orbiting objects increases so does the potential for generating orbital debris with the consequent increase in the likelihood of impacting and damaging operating satellites. Various debris remediation approaches are being considered that encompass both in-orbit and return-to-Earth schema and have varying degrees of operations, cost, international competitiveness, and safety implications. Because of the diversity of issues, concerns and long-term impacts, there is a clear need for the setting of government policies that will lead to an orderly abatement of the potential orbital debris hazards. These policies may require the establishment of a supportive regulatory regime. The Department of Transportation is likely to have regulatory responsibilities relating to orbital debris stemming from its charge to protect the public health and safety, safety of property, and national security interests and foreign policy interests of the United States. This paper describes DOT's potential regulatory role relating to orbital debris remediation, the myriad of issues concerning the need for establishing government policies relating to orbital debris remediation and their regulatory implications, the proposed technological solutions and their economic and safety implications. Particular emphasis is placed upon addressing cost-effectiveness and economic analyses as they relate to economic impact analysis in support of regulatory impact analysis.

  16. Mars approach navigation using Doppler and range measurements to surface beacons and orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Thurman, Sam W.; Estefan, Jeffrey A.

    1991-01-01

    Approximate analytical models are developed and used to construct an error covariance analysis for investigating the range of orbit determination accuracies which might be achieved for typical Mars approach trajectories. The sensitivity or orbit determination accuracy to beacon/orbiter position errors and to small spacecraft force modeling errors is also investigated. The results indicate that the orbit determination performance obtained from both Doppler and range data is a strong function of the inclination of the approach trajectory to the Martian equator, for surface beacons, and for orbiters, the inclination relative to the orbital plane. Large variations in performance were also observed for different approach velocity magnitudes; Doppler data in particular were found to perform poorly in determining the downtrack (along the direction of flight) component of spacecraft position. In addition, it was found that small spacecraft acceleration modeling errors can induce large errors in the Doppler-derived downtrack position estimate.

  17. (1) Majorana fermions in pinned vortices; (2) Manipulating and probing Majorana fermions using superconducting circuits; and (3) Controlling a nanowire spin-orbit qubit via electric-dipole spin resonance

    NASA Astrophysics Data System (ADS)

    Nori, Franco

    2014-03-01

    We study a heterostructure which consists of a topological insulator and a superconductor with a hole. This system supports a robust Majorana fermion state bound to the vortex core. We study the possibility of using scanning tunneling spectroscopy (i) to detect the Majorana fermion in this setup and (ii) to study excited states bound to the vortex core. The Majorana fermion manifests itself as an H-dependent zero-bias anomaly of the tunneling conductance. The excited states spectrum differs from the spectrum of a typical Abrikosov vortex, providing additional indirect confirmation of the Majorana state observation. We also study how to manipulate and probe Majorana fermions using super-conducting circuits. In we consider a semiconductor nanowire quantum dot with strong spin-orbit coupling (SOC), which can be used to achieve a spin-orbit qubit. In contrast to a spin qubit, the spin-orbit qubit can respond to an external ac electric field, i.e., electric-dipole spin resonance. We develop a theory that can apply in the strong SOC regime. We find that there is an optimal SOC strength ηopt = √ 2/2, where the Rabi frequency induced by the ac electric field becomes maximal. Also, we show that both the level spacing and the Rabi frequency of the spin-orbit qubit have periodic responses to the direction of the external static magnetic field. These responses can be used to determine the SOC in the nanowire. FN is partly supported by the RIKEN CEMS, iTHES Project, MURI Center for Dynamic Magneto-Optics, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program.

  18. Minimum Equipment Lists, Flight Rules and ... Past, Present and Future of Safety Pre-Determined Decisions for Operations

    NASA Astrophysics Data System (ADS)

    Herd, A.; Wolff, M.

    2012-01-01

    Extended mission operations, such as human spaceflight to Mars provide an opportunity for take current human exploration beyond Low Earth Orbit, such as the operations undertaken on the International Space Station (ISS). This opportunity also presents a challenge in terms of extending what we currently understand as "remote operations" performed on ISS, offering learning beyond that gained from the successful moon- lander expeditions. As such there is a need to assess how the existing operations concept of ground support teams directing (and supporting) on-orbit ISS operations can be applied in the extended mission concept. The current mission support concept involves three interacting operations products - a short term plan, crew procedures and flight rules. Flight rules (for ISS operations) currently provide overall planning, engineering and operations constraints (including those derived from a safety perspective) in the form of a rule book. This paper will focus specifically on flight rules, and describe the current use of them, and assess the future role of flight rules to support exploration, including the deployment of decision support tools (DSTs) to ensure flight rule compliancy for missions with minimal ground support. Taking consideration of the historical development of pre-planned decisions, and their manifestation within the operations environment, combined with the extended remoteness of human exploration missions, we will propose a future development of this product and a platform on which it could be presented.

  19. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin

    2015-06-01

    Recent observations have discovered the presence of a box/peanut or X-shape structure in the Galactic bulge. Such box/peanut structures are common in external disc galaxies, and are well known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models, it has been claimed in the past that box/peanut bulges are supported by `bananas', or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent made-to-measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45 per cent of the stellar mass.

  20. Space station systems analysis study. Part 1, volume 1: Executive study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Potential space station system options were examined for a permanent, manned, orbital space facility and to provide data to NASA program planners and decision makers for their use in future program planning. There were ten space station system objectives identified. These were categorized into five major objectives and five supporting objectives. The major objectives were to support the development of: (1) satellite power systems, (2) nuclear energy plants in space, (3) space processing, (4) earth services, and (5) space cosmological research and development. The five supporting objectives, to define space facilities which would be basic building blocks for future systems, were: (1) a multidiscipline science laboratory, (2) an orbital depot to maintain, fuel, and service orbital transfer vehicles, (3) cluster support systems to provide power and data processing for multiple orbital elements, (4) a sensor development facility, and (5) the facilities necessary to enhance man's living and working in space.

  1. Satellite orbit determination using quantum correlation technology

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Sun, Fuping; Zhu, Xinhui; Jia, Xiaolin

    2018-03-01

    After the presentation of second-order correlation ranging principles with quantum entanglement, the concept of quantum measurement is introduced to dynamic satellite precise orbit determination. Based on the application of traditional orbit determination models for correcting the systematic errors within the satellite, corresponding models for quantum orbit determination (QOD) are established. This paper experiments on QOD with the BeiDou Navigation Satellite System (BDS) by first simulating quantum observations of 1 day arc-length. Then the satellite orbits are resolved and compared with the reference precise ephemerides. Subsequently, some related factors influencing the accuracy of QOD are discussed. Furthermore, the accuracy for GEO, IGSO and MEO satellites increase about 20, 30 and 10 times, respectively, compared with the results from the resolution by measured data. Therefore, it can be expected that quantum technology may also bring delightful surprises to satellite orbit determination as have already emerged in other fields.

  2. Researches on the Orbit Determination and Positioning of the Chinese Lunar Exploration Program

    NASA Astrophysics Data System (ADS)

    Li, P. J.

    2015-07-01

    This dissertation studies the precise orbit determination (POD) and positioning of the Chinese lunar exploration spacecraft, emphasizing the variety of VLBI (very long baseline interferometry) technologies applied for the deep-space exploration, and their contributions to the methods and accuracies of the precise orbit determination and positioning. In summary, the main contents are as following: In this work, using the real-time data measured by the CE-2 (Chang'E-2) detector, the accuracy of orbit determination is analyzed for the domestic lunar probe under the present condition, and the role played by the VLBI tracking data is particularly reassessed through the precision orbit determination experiments for CE-2. The experiments of the short-arc orbit determination for the lunar probe show that the combination of the ranging and VLBI data with the arc of 15 minutes is able to improve the accuracy by 1-1.5 order of magnitude, compared to the cases for only using the ranging data with the arc of 3 hours. The orbital accuracy is assessed through the orbital overlapping analysis, and the results show that the VLBI data is able to contribute to the CE-2's long-arc POD especially in the along-track and orbital normal directions. For the CE-2's 100 km× 100 km lunar orbit, the position errors are better than 30 meters, and for the CE-2's 15 km× 100 km orbit, the position errors are better than 45 meters. The observational data with the delta differential one-way ranging (Δ DOR) from the CE-2's X-band monitoring and control system experimental are analyzed. It is concluded that the accuracy of Δ DOR delay is dramatically improved with the noise level better than 0.1 ns, and the systematic errors are well calibrated. Although it is unable to support the development of an independent lunar gravity model, the tracking data of CE-2 provided the evaluations of different lunar gravity models through POD, and the accuracies are examined in terms of orbit-to-orbit solution differences for several gravity models. It is found that for the 100 km× 100 km lunar orbit, with a degree and order expansion up to 165, the JPL's gravity model LP165P does not show noticeable improvement over Japan's SGM series models (100× 100), but for the 15 km× 100 km lunar orbit, a higher degree-order model can significantly improve the orbit accuracy. After accomplished its nominal mission, CE-2 launched its extended missions, which involving the L2 mission and the 4179 Toutatis mission. During the flight of the extended missions, the regime offers very little dynamics thus requires an extensive amount of time and tracking data in order to attain a solution. The overlap errors are computed, and it is indicated that the use of VLBI measurements is able to increase the accuracy and reduce the total amount of tracking time. An orbit determination method based on the polynomial fitting is proposed for the CE-3's planned lunar soft landing mission. In this method, spacecraft's dynamic modeling is not necessary, and its noise reduction is expected to be better than that of the point positioning method by making full use of all-arc observational data. The simulation experiments and real data processing showed that the optimal description of the CE-1's free-fall landing trajectory is a set of five-order polynomial functions for each of the position components as well as velocity components in J2000.0. The combination of the VLBI delay, the delay rate data, and the USB (united S-band) ranging data significantly improved the accuracy than the use of USB data alone. In order to determine the position for the CE-3's Lunar Lander, a kinematic statistical method is proposed. This method uses both ranging and VLBI measurements to the lander for a continuous arc, combing with precise knowledge about the motion of the moon as provided by planetary ephemeris, to estimate the lander's position on the lunar surface with high accuracy. Application of the lunar digital elevation model (DEM) as constraints in the lander positioning is helpful. The positioning method for the traverse of lunar rover is also investigated. The integration of delay-rate method is able to achieve higher precise positioning results than the point positioning method. This method provides a wide application of the VLBI data. In the automated sample return mission, the lunar orbit rendezvous and docking are involved. Precise orbit determination using the same-beam VLBI (SBI) measurement for two spacecraft at the same time is analyzed. The simulation results showed that the SBI data is able to improve the absolute and relative orbit accuracy for two targets by 1-2 orders of magnitude. In order to verify the simulation results and test the two-target POD software developed by SHAO (Shanghai Astronomical Observatory), the real SBI data of the SELENE (Selenological and Engineering Explorer) are processed. The POD results for the Rstar and the Vstar showed that the combination of SBI data could significantly improve the accuracy for the two spacecraft, especially for the Vstar with less ranging data, and the POD accuracy is improved by approximate one order of magnitude to the POD accuracy of the Rstar.

  3. Experiment module concepts study. Volume 5 book 1, appendix A: Shuttle only task

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Results of a preliminary investigation of the effect on the candidate experiment program implementation of experiment module operations in the absence of an orbiting space station and with the availability of the space shuttle orbiter vehicle only are presented. The fundamental hardware elements for shuttle-only operation of the program are: (1) integrated common experiment modules CM-1, CM-3, and CM-4, together with the propulsion slice; (2) support modules capable of supplying on-orbit crew life support, power, data management, and other services normally provided by a space station; (3) dormancy kits to enable normally attached modules to remain in orbit while shuttle returns to earth; and (4) shuttle orbiter. Preliminary cost estimates for 30 day on-orbit and 5 day on-orbit capabilities for a four year implementation period are $4.2 billion and $2.1 billion, respectively.

  4. Extended duration Orbiter life support definition

    NASA Technical Reports Server (NTRS)

    Kleiner, G. N.; Thompson, C. D.

    1978-01-01

    Extending the baseline seven-day Orbiter mission to 30 days or longer and operating with a solar power module as the primary source for electrical power requires changes to the existing environmental control and life support (ECLS) system. The existing ECLS system imposes penalties on longer missions which limit the Orbiter capabilities and changes are required to enhance overall mission objectives. Some of these penalties are: large quantities of expendables, the need to dump or store large quantities of waste material, the need to schedule fuel cell operation, and a high landing weight penalty. This paper presents the study ground rules and examines the limitations of the present ECLS system against Extended Duration Orbiter mission requirements. Alternate methods of accomplishing ECLS functions for the Extended Duration Orbiter are discussed. The overall impact of integrating these options into the Orbiter are evaluated and significant Orbiter weight and volume savings with the recommended approaches are described.

  5. Determination of GPS orbits to submeter accuracy

    NASA Technical Reports Server (NTRS)

    Bertiger, W. I.; Lichten, S. M.; Katsigris, E. C.

    1988-01-01

    Orbits for satellites of the Global Positioning System (GPS) were determined with submeter accuracy. Tests used to assess orbital accuracy include orbit comparisons from independent data sets, orbit prediction, ground baseline determination, and formal errors. One satellite tracked 8 hours each day shows rms error below 1 m even when predicted more than 3 days outside of a 1-week data arc. Differential tracking of the GPS satellites in high Earth orbit provides a powerful relative positioning capability, even when a relatively small continental U.S. fiducial tracking network is used with less than one-third of the full GPS constellation. To demonstrate this capability, baselines of up to 2000 km in North America were also determined with the GPS orbits. The 2000 km baselines show rms daily repeatability of 0.3 to 2 parts in 10 to the 8th power and agree with very long base interferometry (VLBI) solutions at the level of 1.5 parts in 10 to the 8th power. This GPS demonstration provides an opportunity to test different techniques for high-accuracy orbit determination for high Earth orbiters. The best GPS orbit strategies included data arcs of at least 1 week, process noise models for tropospheric fluctuations, estimation of GPS solar pressure coefficients, and combine processing of GPS carrier phase and pseudorange data. For data arc of 2 weeks, constrained process noise models for GPS dynamic parameters significantly improved the situation.

  6. Strategies for high-precision Global Positioning System orbit determination

    NASA Technical Reports Server (NTRS)

    Lichten, Stephen M.; Border, James S.

    1987-01-01

    Various strategies for the high-precision orbit determination of the GPS satellites are explored using data from the 1985 GPS field test. Several refinements to the orbit determination strategies were found to be crucial for achieving high levels of repeatability and accuracy. These include the fine tuning of the GPS solar radiation coefficients and the ground station zenith tropospheric delays. Multiday arcs of 3-6 days provided better orbits and baselines than the 8-hr arcs from single-day passes. Highest-quality orbits and baselines were obtained with combined carrier phase and pseudorange solutions.

  7. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    NASA Technical Reports Server (NTRS)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  8. Initial Determination of Low Earth Orbits Using Commercial Telescopes

    DTIC Science & Technology

    2008-03-01

    many new technologies have significantly changed the face of private astronomy . Developments such as inexpensive but high-quality sensors, rapid... astronomy . Unpar- alleled access to quality equipment, rapid personal computing, and extensive community support enable nearly anyone to achieve feats in...other subdisciplines of astronomy , this field benefits greatly from recent advances. This project examines how modern equipment is used to track Low Earth

  9. Proximity operations concept design study, task 6

    NASA Technical Reports Server (NTRS)

    Williams, A. N.

    1990-01-01

    The feasibility of using optical technology to perform the mission of the proximity operations communications subsystem on Space Station Freedom was determined. Proximity operations mission requirements are determined and the relationship to the overall operational environment of the space station is defined. From this information, the design requirements of the communication subsystem are derived. Based on these requirements, a preliminary design is developed and the feasibility of implementation determined. To support the Orbital Maneuvering Vehicle and National Space Transportation System, the optical system development is straightforward. The requirements on extra-vehicular activity are such as to allow large fields of uncertainty, thus exacerbating the acquisition problem; however, an approach is given that could mitigate this problem. In general, it is found that such a system could indeed perform the proximity operations mission requirement, with some development required to support extra-vehicular activity.

  10. German telecommunications satellite (Deutscher fernmelde satellit) (DFS-1 and -2)

    NASA Technical Reports Server (NTRS)

    Hiendlmeier, G.; Schmeller, H.

    1991-01-01

    The German Telecommunications Satellite (DFS) Program is to provide telecommunications service for high data rate transmission of text and video data to the Federal Republic of Germany within the 11-14 GHz and 20-30 GHz bands. The space segment of this program is composed of three satellites, DFS-1, DFS-2, and DFS-3, which will be located at 23.5 degrees E longitude of the geostationary orbit. The DFS will be launched from the Center Spatial Guyanis in French Giana on an Ariane launch vehicle. The mission follows the typical injection sequence: parking orbit, transfer orbit, and earth orbit. Attitude maneuvers will be performed to orient the spacecraft prior to Apogee Kick Motor (AKM) firing. After AKM firing, drift phase orbital and attitude maneuvers will be performed to place the spacecraft in its final geostationary position. The Deep Space Network (DSN) will support the transfer and drift orbit mission phases. Information is presented in tabular form for the following areas: DSN support, compatibility testing, frequency assignments, telemetry, command, and tracking support responsibilities.

  11. Libration Orbit Mission Design: Applications of Numerical & Dynamical Methods

    NASA Technical Reports Server (NTRS)

    Bauer, Frank (Technical Monitor); Folta, David; Beckman, Mark

    2002-01-01

    Sun-Earth libration point orbits serve as excellent locations for scientific investigations. These orbits are often selected to minimize environmental disturbances and maximize observing efficiency. Trajectory design in support of libration orbits is ever more challenging as more complex missions are envisioned in the next decade. Trajectory design software must be further enabled to incorporate better understanding of the libration orbit solution space and thus improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple libration missions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes algorithm and software development. The recently launched Microwave Anisotropy Probe (MAP) and upcoming James Webb Space Telescope (JWST) and Constellation-X missions are examples of the use of improved numerical methods for attaining constrained orbital parameters and controlling their dynamical evolution at the collinear libration points. This paper presents a history of libration point missions, a brief description of the numerical and dynamical design techniques including software used, and a sample of future GSFC mission designs.

  12. On Comparing Precision Orbit Solutions of Geodetic Satellites Given Several Ocean Tide and Geopotential Models

    DTIC Science & Technology

    2014-08-01

    be evaluated. Orbits are determined with the OCEAN Weighted Least Squares Orbit Determination (WLS-OD) methodology using successive five day increments...of SLR data. The orbit solution from the first five day data arc is propagated forward in time to thirty days . The WLS-OD process is repeated for...successive five day data arcs. These orbit solutions are then compared to the predicted orbit from the first data arc solution. Thirty days was chosen as

  13. DebriSat: The New Hypervelocity Impact Test for Satellite Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2015-01-01

    To replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoD and NASA breakup models: DebriSat is intended to be representative of modern LEO satellites. Major design decisions were reviewed and approved by Aerospace subject matter experts from different disciplines. DebriSat includes 7 major subsystems. Attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. center dotA key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), supporting the development of the DoD and NASA satellite breakup models was conducted at AEDC in 1992. Breakup models based on SOCIT have supported many applications and matched on-orbit events reasonably well over the years.

  14. Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies

    NASA Astrophysics Data System (ADS)

    Scivetti, Iván; Persson, Mats

    2017-09-01

    We present calculations of vertical electron and hole attachment energies to the frontier orbitals of a pentacene molecule absorbed on multi-layer sodium chloride films supported by a copper substrate using a simplified density functional theory (DFT) method. The adsorbate and the film are treated fully within DFT, whereas the metal is treated implicitly by a perfect conductor model. We find that the computed energy gap between the highest and lowest unoccupied molecular orbitals—HOMO and LUMO -from the vertical attachment energies increases with the thickness of the insulating film, in agreement with experiments. This increase of the gap can be rationalised in a simple dielectric model with parameters determined from DFT calculations and is found to be dominated by the image interaction with the metal. We find, however, that this simplified model overestimates the downward shift of the energy gap in the limit of an infinitely thick film.

  15. Gaseous Nitrogen Orifice Mass Flow Calculator

    NASA Technical Reports Server (NTRS)

    Ritrivi, Charles

    2013-01-01

    The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.

  16. Breakthrough in orbit determination of a binary. - In expectation of astrometric observations with high precision such as VERA and JASMINE -

    NASA Astrophysics Data System (ADS)

    Asada, Hideki

    2006-11-01

    There exists a very classical inverse problem regarding orbit determination of a binary system: "when an orbital plane of two bodies is inclined with respect to the line of sight, observables are their positions projected onto a celestial sphere. How do we determine the orbital elements from observations?" A "complete exact solution" has been found. It is reviewed with some related topics.

  17. Modeling radiation forces acting on TOPEX/Poseidon for precision orbit determination

    NASA Technical Reports Server (NTRS)

    Marshall, J. A.; Luthcke, S. B.; Antreasian, P. G.; Rosborough, G. W.

    1992-01-01

    Geodetic satellites such as GEOSAT, SPOT, ERS-1, and TOPEX/Poseidon require accurate orbital computations to support the scientific data they collect. Until recently, gravity field mismodeling was the major source of error in precise orbit definition. However, albedo and infrared re-radiation, and spacecraft thermal imbalances produce in combination no more than a 6-cm radial root-mean-square (RMS) error over a 10-day period. This requires the development of nonconservative force models that take the satellite's complex geometry, attitude, and surface properties into account. For TOPEX/Poseidon, a 'box-wing' satellite form was investigated that models the satellite as a combination of flat plates arranged in a box shape with a connected solar array. The nonconservative forces acting on each of the eight surfaces are computed independently, yielding vector accelerations which are summed to compute the total aggregate effect on the satellite center-of-mass. In order to test the validity of this concept, 'micro-models' based on finite element analysis of TOPEX/Poseidon were used to generate acceleration histories in a wide variety of orbit orientations. These profiles are then compared to the box-wing model. The results of these simulations and their implication on the ability to precisely model the TOPEX/Poseidon orbit are discussed.

  18. The binary Asteroid 22 Kalliope: Linus orbit determination on the basis of speckle interferometric observations

    NASA Astrophysics Data System (ADS)

    Sokova, I. A.; Sokov, E. N.; Roschina, E. A.; Rastegaev, D. A.; Kiselev, A. A.; Balega, Yu. Yu.; Gorshanov, D. L.; Malogolovets, E. V.; Dyachenko, V. V.; Maksimov, A. F.

    2014-07-01

    In this paper we present the orbital elements of Linus satellite of 22 Kalliope asteroid. Orbital element determination is based on the speckle interferometry data obtained with the 6-m BTA telescope operated by SAO RAS. We processed 9 accurate positions of Linus orbiting around the main component of 22 Kalliope between 10 and 16 December, 2011. In order to determine the orbital elements of the Linus we have applied the direct geometric method. The formal errors are about 5 mas. This accuracy makes it possible to study the variations of the Linus orbital elements influenced by different perturbations over the course of time. Estimates of six classical orbital elements, such as the semi-major axis of the Linus orbit a = 1109 ± 6 km, eccentricity e = 0.016 ± 0.004, inclination i = 101° ± 1° to the ecliptic plane and others, are presented in this work.

  19. IUS/TUG orbital operations and mission support study. Volume 2: Interim upper stage operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Background data and study results are presented for the interim upper stage (IUS) operations phase of the IUS/tug orbital operations study. The study was conducted to develop IUS operational concepts and an IUS baseline operations plan, and to provide cost estimates for IUS operations. The approach used was to compile and evaluate baseline concepts, definitions, and system, and to use that data as a basis for the IUS operations phase definition, analysis, and costing analysis. Both expendable and reusable IUS configurations were analyzed and two autonomy levels were specified for each configuration. Topics discussed include on-orbit operations and interfaces with the orbiter, the tracking and data relay satellites and ground station support capability analysis, and flight control center sizing to support the IUS operations.

  20. Evaluation of Landsat-4 orbit determination accuracy using batch least-squares and sequential methods

    NASA Astrophysics Data System (ADS)

    Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the May 18-24, 1992, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. During this period, there were two separate orbit-adjust maneuvers on one of the TDRSS spacecraft (TDRS-East) and one small orbit-adjust maneuver for Landsat-4. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 30 meters after the filter had reached steady state.

  1. Integrated orbit and attitude hardware-in-the-loop simulations for autonomous satellite formation flying

    NASA Astrophysics Data System (ADS)

    Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok

    2013-12-01

    Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.

  2. Evaluation of Landsat-4 orbit determination accuracy using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the May 18-24, 1992, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. During this period, there were two separate orbit-adjust maneuvers on one of the TDRSS spacecraft (TDRS-East) and one small orbit-adjust maneuver for Landsat-4. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 30 meters after the filter had reached steady state.

  3. Determination of intermediate perturbed orbits of Near-Earth asteroids from range and range rate measurements at three times

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.

    2014-12-01

    Two methods that the author developed earlier for finding the intermediate perturbed orbit of a small celestial body from three pairs of range and range rate observations [1, 2] are applied to the determination of orbits of Near-Earth asteroids. The methods are based on using the superosculating orbits with three- and fourth-order tangency. The degrees of approximation of the real motion by the constructed intermediate orbits near the middle measurement time are two and three orders of magnitude higher than by the Keplerian orbit determined with the help of traditional methods. We calculated the orbits of the asteroids 99942 Apophis, 1566 Icarus, 4179 Toutatis, 2007 DN41 and 2012 DA14. For the sake of brevity, we call the method based on the orbit with third-order tangency as Algorithm A1 and the method based on the orbit with fourth-order tangency -- as Algorithm A2. The results of the calculations are compared with the results of the calculations by the version of the methods mentioned that allows us to construct the unperturbed Keplerian orbit. We call this version of the methods as Algorithm A. The observational data were simulated using the nominal trajectories of the selected asteroids. These trajectories were obtained by the numerical integration of the differential equations of motion subject to the perturbations from the eight major planets, Pluto, and the Moon. The integration was carried out with the help of the 15-order Everhart procedure [3]. The main results of the calculations are the following. When the reference time interval is shortened by half (for small sizes of this interval), the errors in the compared algorithms A, A1, A2 decrease approximately by the factors 4, 16, 64 in coordinates and by the factors 2, 8, 16 in velocities, respectively. Such behavior of the errors is most clearly seen with the asteroids 2007 DN41 and 2012 DA14. This leads to a significant increase in the accuracy of the real motion approximation by the intermediate orbits constructed using the A1 and A2 algorithms (2-4 orders of magnitude in coordinates and 4-7 orders of magnitude in velocities higher) compared to the accuracy of the approximation by Keplerian orbits with decreasing the reference arc of the trajectory. Here, the higher is the efficiency of the algorithms A1 and A2, the smaller are the values of the topocentric distances, i.e., the greater are the perturbations caused by the Earth's gravitation. The advantage of Algorithm A2 over Algorithm A1 in accuracy extends approximately one order of magnitude. The minimal methodic errors of the position vector by using the A1 and A2 algorithms range from several meters in the case of the asteroid Apophis to several millimeters in the case of the asteroid 2012 DA14. Hence, the numerical examples analyzed in this work lead us to conclude that the proposed in [1, 2] methods for determination of an intermediate perturbed orbit from range and range rate measurements at three time points allow for significantly raising the accuracy of the calculation of the initial asteroid orbits in comparison with the algorithm based on the finding the unperturbed Keplerian orbit. The shorter is the orbital arc specified by the extreme time points, the greater is the advantage of the algorithms suggested over the algorithms of the traditional approach in the accuracy. The advantage of the algorithms suggested in the accuracy increases with raising the perturbations too, which is especially important for calculation of the initial trajectories of the space objects detected in the Earth's neighbourhood. The work was supported by the Ministry of Education and Science of the Russian Federation, project no. 2014/223(1567).

  4. Orbit determination error analysis and comparison of station-keeping costs for Lissajous and halo-type libration point orbits and sensitivity analysis using experimental design techniques

    NASA Technical Reports Server (NTRS)

    Gordon, Steven C.

    1993-01-01

    Spacecraft in orbit near libration point L1 in the Sun-Earth system are excellent platforms for research concerning solar effects on the terrestrial environment. One spacecraft mission launched in 1978 used an L1 orbit for nearly 4 years, and future L1 orbital missions are also being planned. Orbit determination and station-keeping are, however, required for these orbits. In particular, orbit determination error analysis may be used to compute the state uncertainty after a predetermined tracking period; the predicted state uncertainty levels then will impact the control costs computed in station-keeping simulations. Error sources, such as solar radiation pressure and planetary mass uncertainties, are also incorporated. For future missions, there may be some flexibility in the type and size of the spacecraft's nominal trajectory, but different orbits may produce varying error analysis and station-keeping results. The nominal path, for instance, can be (nearly) periodic or distinctly quasi-periodic. A periodic 'halo' orbit may be constructed to be significantly larger than a quasi-periodic 'Lissajous' path; both may meet mission requirements, but perhaps the required control costs for these orbits are probably different. Also for this spacecraft tracking and control simulation problem, experimental design methods can be used to determine the most significant uncertainties. That is, these methods can determine the error sources in the tracking and control problem that most impact the control cost (output); it also produces an equation that gives the approximate functional relationship between the error inputs and the output.

  5. Astrodynamics. Volume 1 - Orbit determination, space navigation, celestial mechanics.

    NASA Technical Reports Server (NTRS)

    Herrick, S.

    1971-01-01

    Essential navigational, physical, and mathematical problems of space exploration are covered. The introductory chapters dealing with conic sections, orientation, and the integration of the two-body problem are followed by an introduction to orbit determination and design. Systems of units and constants, as well as ephemerides, representations, reference systems, and data are then dealt with. A detailed attention is given to rendezvous problems and to differential processes in observational orbit correction, and in rendezvous or guidance correction. Finally, the Laplacian methods for determining preliminary orbits, and the orbit methods of Lagrange, Gauss, and Gibbs are reviewed.

  6. Application of the Constrained Admissible Region Multiple Hypothesis Filter to Initial Orbit Determination of a Break-up

    NASA Astrophysics Data System (ADS)

    Kelecy, Tom; Shoemaker, Michael; Jah, Moriba

    2013-08-01

    A break-up in Low Earth Orbit (LEO) is simulated for 10 objects having area-to-mass ratios (AMR's) ranging from 0.1-10.0 m2/kg. The Constrained Admissible Region Multiple Hypothesis Filter (CAR-MHF) is applied to determining and characterizing the orbit and atmospheric drag parameters (CdA/m) simultaneously for each of the 10 objects with no a priori orbit or drag information. The results indicate that CAR-MHF shows promise for accurate, unambiguous and autonomous determination of the orbit and drag states.

  7. Force and moment tests to determine the interaction effects of the reaction control system jet plumes on the space shuttle Orbiter aerodynamics at Mach Number 6 (Test OA352)

    NASA Technical Reports Server (NTRS)

    Cayse, Robert W.

    1987-01-01

    The purpose of this test was to expand the existing Space Shuttle aerodynamics and Reaction Control System (RCS) data base to support the Glide Return to Launch Site (GRTLS) abort trajectory and the new Digital Autopilot. An existing model of the orbiter was used to investigate the aerodynamic effects of several combinations of RCS thrusters and thruster momentum ratios at Mach number 6. Two separate model installations were used to achieve an angle-of-attack range of -11 to 46 deg. The test was conducted at a unit Reynolds number of 0.8 x 10 to the 6th per foot.

  8. Detecting Atmospheric Biosignatures of Transiting Exoplanets in the Mid-IR

    NASA Astrophysics Data System (ADS)

    Stevenson, Kevin

    2018-01-01

    For the first time in human history, our generation will have the technology needed to answer one of the longest-standing questions: "Are we alone?'' Only recently have planet-hunting programs (such as TRAPPIST, MEarth, and Kepler) confirmed the first Earth analogues orbiting M dwarfs. However, it is unknown whether planets orbiting the most ubiquitous stars in our galaxy can support life. I will discuss the challenges and opportunities of looking for biosignatures in transiting exoplanet atmospheres at mid-infrared wavelengths and argue that the only way to ascertain the truth is to make a measurement. I will also present how a survey of nearby mid-to-late M dwarfs could empirically determine the fraction of habitable-zone planets that develop life.

  9. Future exploration of Venus (post-Pioneer Venus 1978)

    NASA Technical Reports Server (NTRS)

    Colin, L.; Evans, L. C.; Greeley, R.; Quaide, W. L.; Schaupp, R. W.; Seiff, A.; Young, R. E.

    1976-01-01

    A comprehensive study was performed to determine the major scientific unknowns about the planet Venus to be expected in the post-Pioneer Venus 1978 time frame. Based on those results the desirability of future orbiters, atmospheric entry probes, balloons, and landers as vehicles to address the remaining scientific questions were studied. The recommended mission scenario includes a high resolution surface mapping radar orbiter mission for the 1981 launch opportunity, a multiple-lander mission for 1985 and either an atmospheric entry probe or balloon mission in 1988. All the proposed missions can be performed using proposed space shuttle upper stage boosters. Significant amounts of long-lead time supporting research and technology developments are required to be initiated in the near future to permit the recommended launch dates.

  10. The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...

    2016-05-31

    The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less

  11. Development of the NASA MCAT Auxiliary Telescope for Orbital Debris Research

    NASA Technical Reports Server (NTRS)

    Frith, James; Lederer, Sue; Cowardin, Heather; Buckalew, Brent; Hickson, Paul; Anz-Meador, Phillip

    2016-01-01

    The National Aeronautical Space Administration has deployed the Meter Class Autonomous Telescope (MCAT) to Ascension Island with plans for it to become fully operational by summer 2016. This telescope will be providing data in support of research being conducted by the Orbital Debris Program Office at the Johnson Space Center. In addition to the main observatory, a smaller, auxiliary telescope is being deployed to the same location to augment and support observations generated by MCAT. It will provide near-simultaneous photometry and astrometry of debris objects, independent measurements of the seeing conditions, and offload low priority targets from MCAT's observing queue. Its hardware and software designs are presented here The National Aeronautical and Space Administration (NASA) has recently deployed the Meter Class Autonomous Telescope (MCAT) to Ascension Island. MCAT will provide NASA with a dedicated optical sensor for observations of orbital debris with the goal of statistically sampling the orbital and photometric characteristics of the population from low Earth to Geosynchronous orbits. Additionally, a small auxiliary telescope, co-located with MCAT, is being deployed to augment its observations by providing near-simultaneous photometry and astrometry, as well as offloading low priority targets from MCAT's observing queue. It will also serve to provide an independent measurement of the seeing conditions to help monitor the quality of the data being produced by the larger telescope. Comprised of off-the-shelf-components, the MCAT Auxiliary Telescope will have a 16-inch optical tube assembly, Sloan g'r'i'z' and Johnson/Cousins BVRI filters, and a fast tracking mount to help facilitate the tracking of objects in low Earth orbit. Tracking modes and tasking will be similar to MCAT except an emphasis will be placed on observations that provide more accurate initial orbit determination for the objects detected by MCAT. The near-simultaneous observations will also provide the opportunity for multi-filter color information of the debris objects to be obtained. Color information can further distinguish the individual objects within the population and provide insight into the reflectance properties of their surface material. The specific hardware, software, and tasking methodology of the MCAT Auxiliary Telescope is presented here..

  12. A Modernized Approach to Meet Diversified Earth Observing System (EOS) AM-1 Mission Requirements

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.

    1998-01-01

    From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, "lights out" operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(trademark) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result. In addition, the fuzzy logic engine .enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.

  13. A modernized approach to meet diversified earth observing system (EOS) AM-1 mission requirements

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Hametz, Mark E.; Conway, Darrel J.

    1998-01-01

    From a flight dynamics perspective, the EOS AM-1 mission design and maneuver operations present a number of interesting challenges. The mission design itself is relatively complex for a low Earth mission, requiring a frozen, Sun-synchronous, polar orbit with a repeating ground track. Beyond the need to design an orbit that meets these requirements, the recent focus on low-cost, 'lights out' operations has encouraged a shift to more automated ground support. Flight dynamics activities previously performed in special facilities created solely for that purpose and staffed by personnel with years of design experience are now being shifted to the mission operations centers (MOCs) staffed by flight operations team (FOT) operators. These operators' responsibilities include flight dynamics as a small subset of their work; therefore, FOT personnel often do not have the experience to make critical maneuver design decisions. Thus, streamlining the analysis and planning work required for such a complicated orbit design and preparing FOT personnel to take on the routine operation of such a spacecraft both necessitated increasing the automation level of the flight dynamics functionality. The FreeFlyer(TM) software developed by AI Solutions provides a means to achieve both of these goals. The graphic interface enables users to interactively perform analyses that previously required many parametric studies and much data reduction to achieve the same result In addition, the fuzzy logic engine enables the simultaneous evaluation of multiple conflicting constraints, removing the analyst from the loop and allowing the FOT to perform more of the operations without much background in orbit design. Modernized techniques were implemented for EOS AM-1 flight dynamics support in several areas, including launch window determination, orbit maintenance maneuver control strategies, and maneuver design and calibration automation. The benefits of implementing these techniques include increased fuel available for on-orbit maneuvering, a simplified orbit maintenance process to minimize science data downtime, and an automated routine maneuver planning process. This paper provides an examination of the modernized techniques implemented for EOS AM-1 to achieve these benefits.

  14. Method of determining the orbits of the small bodies in the solar system based on an exhaustive search of orbital planes

    NASA Astrophysics Data System (ADS)

    Bondarenko, Yu. S.; Vavilov, D. E.; Medvedev, Yu. D.

    2014-05-01

    A universal method of determining the orbits of newly discovered small bodies in the Solar System using their positional observations has been developed. The proposed method suggests determining geocentric distances of a small body by means of an exhaustive search for heliocentric orbital planes and subsequent determination of the distance between the observer and the points at which the chosen plane intersects with the vectors pointing to the object. Further, the remaining orbital elements are determined using the classical Gauss method after eliminating those heliocentric distances that have a fortiori low probabilities. The obtained sets of elements are used to determine the rms between the observed and calculated positions. The sets of elements with the least rms are considered to be most probable for newly discovered small bodies. Afterwards, these elements are improved using the differential method.

  15. The GEOS-3 orbit determination investigation

    NASA Technical Reports Server (NTRS)

    Pisacane, V. L.; Eisner, A.; Yionoulis, S. M.; Mcconahy, R. J.; Black, H. D.; Pryor, L. L.

    1978-01-01

    The nature and improvement in satellite orbit determination when precise altimetric height data are used in combination with conventional tracking data was determined. A digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, Doppler range difference, and altimetric height data. Two intervals were selected and used in a preliminary evaluation of the altimeter data. With the data available, it was possible to determine the semimajor axis and eccentricity to within several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either C-band or laser range data, it was shown that altimeter data can improve the orbit solution.

  16. Estimating maneuvers for precise relative orbit determination using GPS

    NASA Astrophysics Data System (ADS)

    Allende-Alba, Gerardo; Montenbruck, Oliver; Ardaens, Jean-Sébastien; Wermuth, Martin; Hugentobler, Urs

    2017-01-01

    Precise relative orbit determination is an essential element for the generation of science products from distributed instrumentation of formation flying satellites in low Earth orbit. According to the mission profile, the required formation is typically maintained and/or controlled by executing maneuvers. In order to generate consistent and precise orbit products, a strategy for maneuver handling is mandatory in order to avoid discontinuities or precision degradation before, after and during maneuver execution. Precise orbit determination offers the possibility of maneuver estimation in an adjustment of single-satellite trajectories using GPS measurements. However, a consistent formulation of a precise relative orbit determination scheme requires the implementation of a maneuver estimation strategy which can be used, in addition, to improve the precision of maneuver estimates by drawing upon the use of differential GPS measurements. The present study introduces a method for precise relative orbit determination based on a reduced-dynamic batch processing of differential GPS pseudorange and carrier phase measurements, which includes maneuver estimation as part of the relative orbit adjustment. The proposed method has been validated using flight data from space missions with different rates of maneuvering activity, including the GRACE, TanDEM-X and PRISMA missions. The results show the feasibility of obtaining precise relative orbits without degradation in the vicinity of maneuvers as well as improved maneuver estimates that can be used for better maneuver planning in flight dynamics operations.

  17. Orbiter Auxiliary Power Unit Flight Support Plan

    NASA Technical Reports Server (NTRS)

    Guirl, Robert; Munroe, James; Scott, Walter

    1990-01-01

    This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.

  18. Tracking and data system support for the Mariner Mars 1971 mission. Volume 2: First trajectory correction maneuver through orbit insertion

    NASA Technical Reports Server (NTRS)

    Textor, G. P.; Kelly, L. B.; Kelly, M.

    1972-01-01

    The Deep Space Tracking and Data System activities in support of the Mariner Mars 1971 project from the first trajectory correction maneuver on 4 June 1971 through cruise and orbit insertion on 14 November 1971 are presented. Changes and updates to the TDS requirements and to the plan and configuration plus detailed information on the TDS flight support performance evaluation and the preorbital testing and training are included. With the loss of Mariner 8 at launch, a few changes to the Mariner Mars 1971 requirements, plan, and configuration were necessitated. Mariner 9 is now assuming the former mission plan of Mariner 8, including the TV mapping cycles and a 12-hr orbital period. A second trajectory correction maneuver was not required because of the accuracy of the first maneuver. All testing and training for orbital operations were completed satisfactorily and on schedule. The orbit insertion was accomplished with excellent results.

  19. OrbitMaster: An Online Tool for Investigating Solar System Dynamics and Visualizing Orbital Uncertainties in the Undergraduate Classroom

    NASA Astrophysics Data System (ADS)

    Puckett, Andrew W.; Rector, Travis A.; Baalke, Ron; Ajiki, Osamu

    2016-01-01

    OrbitMaster is a 3-D orbit visualization tool designed for the undergraduate astronomy classroom. It has been adapted from AstroArts' interactive OrbitViewer applet under the GNU General Public License, as part of the Research-Based Science Education for Undergraduates (RBSEU) curriculum. New features allow the user to alter an asteroid's orbital parameters using slider controls, and to monitor its changing position and speed relative to both Sun and Earth. It detects close approaches and collisions with Earth, and calculates revised distances and impact speeds due to Earth's gravitational attraction. It can also display many asteroid orbits at once, with direct application to visualizing the uncertainty in a single asteroid's orbital parameters. When paired with Project Pluto's Find_Orb orbit determination software and a source of asteroid astrometry, this enables monitoring of changes in orbital uncertainties with time and/or additional observational data. See http://facstaff.columbusstate.edu/puckett_andrew/orbitmaster.html.A series of undergraduate labs using the OrbitMaster applet are available as part of the RBSEU curriculum. In the first lab, students gain hands-on experience with the mechanics of asteroid orbits and confirm Kepler's laws of planetary motion. In the second, they study the orbits of Potentially Hazardous Asteroids as they build their own "Killer Asteroids" and investigate the minimum and maximum speed limits that apply to Earth-impacting objects. In the third and fourth labs, they discover the kinetic energy-crater size relationship, engage in their own Crater Scene Investigation (C.S.I.) to estimate impactor size, and understand the regional consequences of impacts. These labs may be used separately, or in support of a further seven-week sequence culminating in an authentic research project in which students submit measurements to the Minor Planet Center to refine a real asteroid's orbit. As with all RBSE projects, the overarching goal is for students to learn science by actually doing science, and to retain knowledge learned in-context. For more information, see http://rbseu.uaa.alaska.edu.

  20. Method of resolving radio phase ambiguity in satellite orbit determination

    NASA Technical Reports Server (NTRS)

    Councelman, Charles C., III; Abbot, Richard I.

    1989-01-01

    For satellite orbit determination, the most accurate observable available today is microwave radio phase, which can be differenced between observing stations and between satellites to cancel both transmitter- and receiver-related errors. For maximum accuracy, the integer cycle ambiguities of the doubly differenced observations must be resolved. To perform this ambiguity resolution, a bootstrapping strategy is proposed. This strategy requires the tracking stations to have a wide ranging progression of spacings. By conventional 'integrated Doppler' processing of the observations from the most widely spaced stations, the orbits are determined well enough to permit resolution of the ambiguities for the most closely spaced stations. The resolution of these ambiguities reduces the uncertainty of the orbit determination enough to enable ambiguity resolution for more widely spaced stations, which further reduces the orbital uncertainty. In a test of this strategy with six tracking stations, both the formal and the true errors of determining Global Positioning System satellite orbits were reduced by a factor of 2.

  1. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Miller, Mark A. (Inventor); Bar-Sever, Yoaz E. (Inventor); Miller, Kevin J. (Inventor); Romans, Larry J. (Inventor); Dorsey, Angela R. (Inventor); Sibthorpe, Anthony J. (Inventor); Weiss, Jan P. (Inventor); Bertiger, William I. (Inventor); hide

    2015-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  2. Real-Time and Post-Processed Orbit Determination and Positioning

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz E. (Inventor); Romans, Larry J. (Inventor); Weiss, Jan P. (Inventor); Gross, Jason (Inventor); Harvey, Nathaniel E. (Inventor); Lu, Wenwen (Inventor); Dorsey, Angela R. (Inventor); Miller, Mark A. (Inventor); Sibthorpe, Anthony J. (Inventor); Bertiger, William I. (Inventor); hide

    2016-01-01

    Novel methods and systems for the accurate and efficient processing of real-time and latent global navigation satellite systems (GNSS) data are described. Such methods and systems can perform orbit determination of GNSS satellites, orbit determination of satellites carrying GNSS receivers, positioning of GNSS receivers, and environmental monitoring with GNSS data.

  3. Impact of GNSS orbit modeling on LEO orbit and gravity field determination

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Meyer, Ulrich; Sušnik, Andreja; Dach, Rolf; Jäggi, Adrian

    2017-04-01

    On January 4, 2015 the Center for Orbit Determination in Europe (CODE) changed the solar radiation pressure modeling for GNSS satellites to an updated version of the empirical CODE orbit model (ECOM). Furthermore, since September 2012 CODE operationally computes satellite clock corrections not only for the 3-day long-arc solutions, but also for the non-overlapping 1-day GNSS orbits. This provides different sets of GNSS products for Precise Point Positioning, as employed, e.g., in the GNSS-based precise orbit determination of low Earth orbiters (LEOs) and the subsequent Earth gravity field recovery from kinematic LEO orbits. While the impact of the mentioned changes in orbit modeling and solution strategy on the GNSS orbits and geophysical parameters was studied in detail, their implications on the LEO orbits were not yet analyzed. We discuss the impact of the update of the ECOM and the influence of 1-day and 3-day GNSS orbit solutions on zero-difference LEO orbit and gravity field determination, where the GNSS orbits and clock corrections, as well as the Earth rotation parameters are introduced as fixed external products. Several years of kinematic and reduced-dynamic orbits for the two GRACE LEOs are computed with GNSS products based on both the old and the updated ECOM, as well as with 1- and 3-day GNSS products. The GRACE orbits are compared by means of standard validation measures. Furthermore, monthly and long-term GPS-only and combined GPS/K-band gravity field solutions are derived from the different sets of kinematic LEO orbits. GPS-only fields are validated by comparison to combined GPS/K-band solutions, while the combined solutions are validated by analysis of the formal errors, as well as by comparing them to the combined GRACE solutions of the European Gravity Service for Improved Emergency Management (EGSIEM) project.

  4. Achieving and Validating the 1-centimeter Orbit: JASON-1 Precision Orbit Determination Using GPS, SLR, DORIS and Altimeter data

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Zelensky, Nikita P.; Rowlands, David D.; Lemoine, Frank G.; Williams, Teresa A.

    2003-01-01

    Jason-1, launched on December 7, 2001, is continuing the time series of centimeter level ocean topography observations as the follow-on to the highly successful TOPEX/POSEIDON (T/P) radar altimeter satellite. The precision orbit determination (POD) is a critical component to meeting the ocean topography goals of the mission. Jason-1 is no exception and has set a 1 cm radial orbit accuracy goal, which represents a factor of two improvement over what is currently being achieved for T/P. The challenge to precision orbit determination (POD) is both achieving the 1 cm radial orbit accuracy and evaluating and validating the performance of the 1 cm orbit. Fortunately, Jason-1 POD can rely on four independent tracking data types including near continuous tracking data from the dual frequency codeless BlackJack GPS receiver. In addition, to the enhanced GPS receiver, Jason-1 carries significantly improved SLR and DORIS tracking systems along with the altimeter itself. We demonstrate the 1 cm radial orbit accuracy goal has been achieved using GPS data alone in a reduced dynamic solution. It is also shown that adding SLR data to the GPS-based solutions improves the orbits even further. In order to assess the performance of these orbits it is necessary to process all of the available tracking data (GPS, SLR, DORIS and altimeter crossover differences) as either dependent or independent of the orbit solutions. It was also necessary to compute orbit solutions using various combinations of the four available tracking data in order to independently assess the orbit performance. Towards this end, we have greatly improved orbits determined solely from SLR+DORIS data by applying the reduced dynamic solution strategy. In addition, we have computed reduced dynamic orbits based on SLR, DORIS and crossover data that are a significant improvement over the SLR and DORIS based dynamic solutions. These solutions provide the best performing orbits for independent validation of the GPS-based reduced dynamic orbits.

  5. A preliminary structural analysis of space-base living quarters modules to verify a weight-estimating technique

    NASA Technical Reports Server (NTRS)

    Grissom, D. S.; Schneider, W. C.

    1971-01-01

    The determination of a base line (minimum weight) design for the primary structure of the living quarters modules in an earth-orbiting space base was investigated. Although the design is preliminary in nature, the supporting analysis is sufficiently thorough to provide a reasonably accurate weight estimate of the major components that are considered to comprise the structural weight of the space base.

  6. Alternate concepts study extension. Volume 2: Part 4: Avionics

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A recommended baseline system is presented along with alternate avionics systems, Mark 2 avionics, booster avionics, and a cost summary. Analyses and discussions are included on the Mark 1 orbiter avionics subsystems, electrical ground support equipment, and the computer programs. Results indicate a need to define all subsystems of the baseline system, an installation study to determine the impact on the crew station, and a study on access for maintenance.

  7. Data Sorting and Orbit Determination of Tethered Satellite Systems

    DTIC Science & Technology

    2004-03-01

    9 March 04 Dr. Steven Tragesser (Cha irman) date //signed// 9 March 04 Dr. William...appreciation to my faculty advisor, Dr. Steven Tragesser , for his guidance and support throughout the course of this thesis effort. The insight and experience...applied to a TSS, under the right conditions it may appear as if one of the end masses is on a suborbital trajectory with the Earth ( Lovell et al., 2000:1

  8. A distributed computing approach to mission operations support. [for spacecraft

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1975-01-01

    Computing mission operation support includes orbit determination, attitude processing, maneuver computation, resource scheduling, etc. The large-scale third-generation distributed computer network discussed is capable of fulfilling these dynamic requirements. It is shown that distribution of resources and control leads to increased reliability, and exhibits potential for incremental growth. Through functional specialization, a distributed system may be tuned to very specific operational requirements. Fundamental to the approach is the notion of process-to-process communication, which is effected through a high-bandwidth communications network. Both resource-sharing and load-sharing may be realized in the system.

  9. A Self-Tuning Kalman Filter for Autonomous Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, Son H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS (Global Positioning Systems) data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  10. A Self-Tuning Kalman Filter for Autonomous Navigation using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.

    1999-01-01

    Most navigation systems currently operated by NASA are ground-based, and require extensive support to produce accurate results. Recently developed systems that use Kalman filter and GPS data for orbit determination greatly reduce dependency on ground support, and have potential to provide significant economies for NASA spacecraft navigation. These systems, however, still rely on manual tuning from analysts. A sophisticated neuro-fuzzy component fully integrated with the flight navigation system can perform the self-tuning capability for the Kalman filter and help the navigation system recover from estimation errors in real time.

  11. Advanced systems data for mapping Emperor Penguin habitats in Antarctica

    USGS Publications Warehouse

    Sanchez, Richard D.; Kooyman, Gerald L.

    2004-01-01

    Commercial orbital sensor systems combined with other resource data from the U.S. Geological Survey National Civil Applications Program (NCAP) may offer an effective way of mapping Emperor penguin habitats and their response to regional climate change in Antarctica. This project examined these resources to determine their applicability for mapping Emperor penguin habitats to support the National Science Foundation. This work is especially significant to investigate satellite-based imaging as an alternative to intrusive in-the-field enumeration of Emperor penguins and the potential of applying these procedures to support The National Map (TNP).

  12. International Space Station Environmental Control and Life Support System On-Orbit Station Development Test Objective Status

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Lewis, John F.; Gentry, Gregory

    2003-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the ECLS System On-Orbit Station Development Test Objective (SDTO) status from the start of assembly until the end of February 2003.

  13. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    NASA Astrophysics Data System (ADS)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  14. Ongoing Recovery Basic Information Tool (ORBIT)

    NASA Technical Reports Server (NTRS)

    Oberg, Donald

    1993-01-01

    The Federal Drug Free Work Place Program (DFWP) has now matured to the point of being able to return employees to sensitive testing designated positions (TDP) after completion of treatment of their addiction. The known tendency of addicted individuals to suffer multiple relapses prior to their final recovery has resulted in several positive urine tests (relapses) occurring among those Federal employees who have already completed treatment and who have been returned to TDP's. The very real potential for further relapses occurring after additional employees return to TDP's will be a critical factor in the ultimate success of the DFWP and in the public's impression of the program's effectiveness. In response to this concern, NASA has begun development of its Ongoing Recovery Basic Information Tool (ORBIT) instrument. The aim of the NASA ORBIT is to provide Employee Assistance Program (EAP) professionals with an advanced clinical tool which will be helpful in supporting recovery from substance abuse and which will allow more accurate determinations of when clients may be successfully returned to sensitive positions.

  15. A study of radar cross section measurement techniques

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1986-01-01

    Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.

  16. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits

    NASA Astrophysics Data System (ADS)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.

    2018-02-01

    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  17. Two designs for an orbital transfer vehicle

    NASA Technical Reports Server (NTRS)

    Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark

    1988-01-01

    The Orbital Transfer Vehicle (OTV) and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures.

  18. TDRSS-user orbit determination using batch least-squares and sequential methods

    NASA Astrophysics Data System (ADS)

    Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, Mina V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-02-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), and operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were less than 40 meters after the filter had reached steady state.

  19. TDRSS-user orbit determination using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, Mina V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), and operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were less than 40 meters after the filter had reached steady state.

  20. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  1. Supporting the Copernicus POD Service

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Springer, Tim; Otten, Michiel; Fernandez, Jaime; Escobar, Diego; Femenias, Pierre

    2015-12-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus PDGS (Payload Data Ground Segment) of the Sentinel missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. As part of the consortium PosiTim is responsible for implementing and testing software and model updates thoroughly before integrating them in the operational chain of the Copernicus POD Service. The NAPEOS (Navigation Package for Earth Observation Satellites) software is used for the generation of the orbit products within the Copernicus POD Service. The test procedures and results obtained for a recent software and model update to IERS 2010 Conventions are presented. It has been tested as well that the arc length of 72 hours for the non-time critical (NTC) orbit solutions might be shorten to 48 hours without losing accuracy. Orbit comparisons to external solutions help to validate the different orbit solutions. GPS antenna phase centre variations (PCVs) are one of the largest systematic error sources in POD. Since the satellite body may cause signal multipath a ground calibration of the GPS antenna without taking into account the satellite body might not be sufficient to quantify the PCVs. The PCVs are therefore obtained by an in-flight calibration. A first map for the PCVs determined from a limited amount of data at the beginning of the mission has shown significant multipath signals in parts of the antenna for code and carrier phase measurements. Since the satellite has moving parts it has been checked carefully if these multipath regions are moving as well or if they are antenna-fixed. Normally the correction maps are only applied for the carrier phase measurements. Since significant multipath has been spotted for the code measurements as well investigations are performed to study the impact of additionally applying code correction maps in the POD process.

  2. ICE navigation support

    NASA Astrophysics Data System (ADS)

    Efron, L.; Muellerschoen, R. J.; Premkumar, R. I.

    1986-08-01

    The International Cometary Explorer (ICE) encounter with Comet Giacobini-Zinner took place 7 years after the spacecraft's original launch on 12 August 1978 as the International Sun Earth Explorer 3 (ISEE-3), part of a three-spacecraft project to study the interaction between the solar wind and the Earth's magnetosphere. Transfer to an interplanetary trajectory was performed via a 119-km-altitute, gravity-assist, lunar swingby on December 1983. Navigation support during interplanetary cruise and comet encounter was provided by orbit determination utilizing radio metric data from the DSN 64-meter antennas in Goldstone, California and Madrid, Spain. Orbit solutions yielding predictions of 50-km geocentric delivery accuracy in the target aim plane were achieved during interplanetary cruise and at comet encounter using 6-to-12-week data arcs between periodic attitude-change maneuvers. One-sigma two-way range and range rate residuals were consistently 40 meters and 0.2 mm/s or better, respectively. Non-gravitational forces affected the comet's motion during late August and early September 1985 and caused a 2300-km shift in the orbit of the comet relative to the spacecraft. This necessitated a final ICE orbit trim maneuver 3 days prior to encounter. Near-real-time assessment of two-way 2-GHz (S-band) Doppler pseudo-residuals during the June and July 1985 trajectory change maneuvers aided in calibration of the spacecraft's thrusters in preparation for this final critical maneuver. Post-flight analysis indicates tail centerline passage was achieved within 10 seconds of the predicted time and geocentric position uncertainty at encounter was less than 40 km.

  3. Determination of Eros Physical Parameters for Near Earth Asteroid Rendezvous Orbit Phase Navigation

    NASA Technical Reports Server (NTRS)

    Miller, J. K.; Antreasian, P. J.; Georgini, J.; Owen, W. M.; Williams, B. G.; Yeomans, D. K.

    1995-01-01

    Navigation of the orbit phase of the Near Earth steroid Rendezvous (NEAR) mission will re,quire determination of certain physical parameters describing the size, shape, gravity field, attitude and inertial properties of Eros. Prior to launch, little was known about Eros except for its orbit which could be determined with high precision from ground based telescope observations. Radar bounce and light curve data provided a rough estimate of Eros shape and a fairly good estimate of the pole, prime meridian and spin rate. However, the determination of the NEAR spacecraft orbit requires a high precision model of Eros's physical parameters and the ground based data provides only marginal a priori information. Eros is the principal source of perturbations of the spacecraft's trajectory and the principal source of data for determining the orbit. The initial orbit determination strategy is therefore concerned with developing a precise model of Eros. The original plan for Eros orbital operations was to execute a series of rendezvous burns beginning on December 20,1998 and insert into a close Eros orbit in January 1999. As a result of an unplanned termination of the rendezvous burn on December 20, 1998, the NEAR spacecraft continued on its high velocity approach trajectory and passed within 3900 km of Eros on December 23, 1998. The planned rendezvous burn was delayed until January 3, 1999 which resulted in the spacecraft being placed on a trajectory that slowly returns to Eros with a subsequent delay of close Eros orbital operations until February 2001. The flyby of Eros provided a brief glimpse and allowed for a crude estimate of the pole, prime meridian and mass of Eros. More importantly for navigation, orbit determination software was executed in the landmark tracking mode to determine the spacecraft orbit and a preliminary shape and landmark data base has been obtained. The flyby also provided an opportunity to test orbit determination operational procedures that will be used in February of 2001. The initial attitude and spin rate of Eros, as well as estimates of reference landmark locations, are obtained from images of the asteroid. These initial estimates are used as a priori values for a more precise refinement of these parameters by the orbit determination software which combines optical measurements with Doppler tracking data to obtain solutions for the required parameters. As the spacecraft is maneuvered; closer to the asteroid, estimates of spacecraft state, asteroid attitude, solar pressure, landmark locations and Eros physical parameters including mass, moments of inertia and gravity harmonics are determined with increasing precision. The determination of the elements of the inertia tensor of the asteroid is critical to spacecraft orbit determination and prediction of the asteroid attitude. The moments of inertia about the principal axes are also of scientific interest since they provide some insight into the internal mass distribution. Determination of the principal axes moments of inertia will depend on observing free precession in the asteroid's attitude dynamics. Gravity harmonics are in themselves of interest to science. When compared with the asteroid shape, some insight may be obtained into Eros' internal structure. The location of the center of mass derived from the first degree harmonic coefficients give a direct indication of overall mass distribution. The second degree harmonic coefficients relate to the radial distribution of mass. Higher degree harmonics may be compared with surface features to gain additional insight into mass distribution. In this paper, estimates of Eros physical parameters obtained from the December 23,1998 flyby will be presented. This new knowledge will be applied to simplification of Eros orbital operations in February of 2001. The resulting revision to the orbit determination strategy will also be discussed.

  4. Localized and Spectroscopic Orbitals: Squirrel Ears on Water.

    ERIC Educational Resources Information Center

    Martin, R. Bruce

    1988-01-01

    Reexamines the electronic structure of water considering divergent views. Discusses several aspects of molecular orbital theory using spectroscopic molecular orbitals and localized molecular orbitals. Gives examples for determining lowest energy spectroscopic orbitals. (ML)

  5. A simplex method for the orbit determination of maneuvering satellites

    NASA Astrophysics Data System (ADS)

    Chen, JianRong; Li, JunFeng; Wang, XiJing; Zhu, Jun; Wang, DanNa

    2018-02-01

    A simplex method of orbit determination (SMOD) is presented to solve the problem of orbit determination for maneuvering satellites subject to small and continuous thrust. The objective function is established as the sum of the nth powers of the observation errors based on global positioning satellite (GPS) data. The convergence behavior of the proposed method is analyzed using a range of initial orbital parameter errors and n values to ensure the rapid and accurate convergence of the SMOD. For an uncontrolled satellite, the orbit obtained by the SMOD provides a position error compared with GPS data that is commensurate with that obtained by the least squares technique. For low Earth orbit satellite control, the precision of the acceleration produced by a small pulse thrust is less than 0.1% compared with the calibrated value. The orbit obtained by the SMOD is also compared with weak GPS data for a geostationary Earth orbit satellite over several days. The results show that the position accuracy is within 12.0 m. The working efficiency of the electric propulsion is about 67% compared with the designed value. The analyses provide the guidance for subsequent satellite control. The method is suitable for orbit determination of maneuvering satellites subject to small and continuous thrust.

  6. Sentinel-1A - First precise orbit determination results

    NASA Astrophysics Data System (ADS)

    Peter, H.; Jäggi, A.; Fernández, J.; Escobar, D.; Ayuga, F.; Arnold, D.; Wermuth, M.; Hackel, S.; Otten, M.; Simons, W.; Visser, P.; Hugentobler, U.; Féménias, P.

    2017-09-01

    Sentinel-1A is the first satellite of the European Copernicus programme. Equipped with a Synthetic Aperture Radar (SAR) instrument the satellite was launched on April 3, 2014. Operational since October 2014 the satellite delivers valuable data for more than two years. The orbit accuracy requirements are given as 5 cm in 3D. In order to fulfill this stringent requirement the precise orbit determination (POD) is based on the dual-frequency GPS observations delivered by an eight-channel GPS receiver. The Copernicus POD (CPOD) Service is in charge of providing the orbital and auxiliary products required by the PDGS (Payload Data Ground Segment). External orbit validation is regularly performed by comparing the CPOD Service orbits to orbit solutions provided by POD expert members of the Copernicus POD Quality Working Group (QWG). The orbit comparisons revealed systematic orbit offsets mainly in radial direction (approx. 3 cm). Although no independent observation technique (e.g. DORIS, SLR) is available to validate the GPS-derived orbit solutions, comparisons between the different antenna phase center variations and different reduced-dynamic orbit determination approaches used in the various software packages helped to detect the cause of the systematic offset. An error in the given geometry information about the satellite has been found. After correction of the geometry the orbit validation shows a significant reduction of the radial offset to below 5 mm. The 5 cm orbit accuracy requirement in 3D is fulfilled according to the results of the orbit comparisons between the different orbit solutions from the QWG.

  7. A New Light Curve and Analysis of the Long Period Eclipsing Binary BF Draconis

    NASA Astrophysics Data System (ADS)

    Wolf, G. W.; Craig, L. E.; Caffey, J. F.

    1999-01-01

    The star BF Draconis was found to be an eclipsing binary by Strohmeier, Knigge and Ott (1962) and originally thought to be an Algol-type system with a period of 5.6 days. A spectrographic study by Imbert (1985) showed that the period was actually double this value and that the system consisted of two well-separated, almost-equal F-type stars in elliptical orbit. Diethelm, Wolf and Agerer (1993) later published a preliminary light curve of this system showing minima of unequal depth and width with a displaced secondary, confirming the elliptical orbit but disagreeing with Imbert on the specific orbital parameters. As a part of our long-term program of obtaining improved light curves of double-lined spectroscopic and eclipsing binaries, we have observed BF Draconis for the past four years using the 0.4 meter telescope at the Baker Observatory of Southwest Missouri State University. Complete light curves in the Cousins BVRI passbands have been obtained with our Photometrics CCD system, and a new model and orbital parameters for the binary have been determined using the Wilson-Devinney program. This research has been supported by NSF Grants AST-9315061 and AST-9605822 and NASA Grant NGT5-40060.

  8. Solar Dynamics Observatory Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R., Jr.; Kristin, D.; Bourkland, L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; Morgenstern, Wendy M.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed.

  9. Analysis of the multiple system with chemically peculiar component φ Draconis

    NASA Astrophysics Data System (ADS)

    Liška, J.

    2016-09-01

    The star ϕ Dra comprises a spectroscopic binary and a third star that together form a visual triple system. It is one of the brightest chemically peculiar stars of the upper main sequence. Despite these facts, no comprehensive study of its multiplicity has been performed yet. In this work, we present a detailed analysis of the triple system based on available measurements. We use radial velocities taken from four sources in the literature in a re-analysis of the inner spectroscopic binary (Aab). An incorrect value of the orbital period of the inner system Aab about 27 d was accepted in literature more than 40 yr. A new solution of orbit with the 128-d period was determined. Relative position measurements of the outer visual binary system (AB) from Washington Double Star Catalog were compared with known orbital models. Furthermore, it was shown that astrometric motion in system AB is well described by the model of Andrade with a 308-yr orbital period. Parameters of A and B components were utilized to estimate individual brightness for all components and their masses from evolutionary tracks. Although we found several facts which support the gravitational bond between them, unbound solution cannot be fully excluded yet.

  10. Mars Relays Satellite Orbit Design Considerations for Global Support of Robotic Surface Missions

    NASA Technical Reports Server (NTRS)

    Hastrup, Rolf; Cesarone, Robert; Cook, Richard; Knocke, Phillip; McOmber, Robert

    1993-01-01

    This paper discusses orbit design considerations for Mars relay satellite (MRS)support of globally distributed robotic surface missions. The orbit results reported in this paper are derived from studies of MRS support for two types of Mars robotic surface missions: 1) the mars Environmental Survey (MESUR) mission, which in its current definition would deploy a global network of up to 16 small landers, and 2)a Small Mars Sample Return (SMSR) mission, which included four globally distributed landers, each with a return stage and one or two rovers, and up to four additional sets of lander/rover elements in an extended mission phase.

  11. Effects of perturbations on space debris in supersynchronous storage orbits

    NASA Astrophysics Data System (ADS)

    Luu, Khanh Kim

    1998-12-01

    Accumulation of space debris in the geosynchronous region (GEO) has raised attention among spacefaring nations. The current mitigation measure supported is to boost satellites into supersynchronous orbits in the time before station-keeping fuel is expected to be exhausted. Because this solution does not remove mass from space, debris generation by fragmentation events remains a possibility. The collision hazard between inactive satellites in the supersynchronous region raises questions about the consequences of collisions in this regime and possible interaction with GEO. In considering the use of supersynchronous orbits for satellite disposal, the first concern is to determine the minimum safe distance above GEO such that objects in the disposal orbits will not interfere with the GEO population in the future. This involves defining the useful GEO area and studying the perturbation effects on objects in supersynchronous orbits. Thus far, research has focused on propagating the orbits of intact objects. However, in the aftermath of a collision, pieces of varying sizes and shapes can be found in orbits quite different from the parent objects' orbits. This document summarizes background information on debris in the GEO region, sources and management strategies, and then addresses the problem: Will orbits of fragments from a collision in a storage orbit occupy GEO altitudes at some time after the collision? If so, at what altitude should the storage orbit occupy such that collision fragments will not interfere with the GEO population? The methods and tools by which the effects of collisions in the supersynchronous region can be analyzed are discussed. A low-velocity collision model is employed to provide delta-velocities imparted to the fragments. An analytical study of perturbation effects, including solar and lunar third body gravitation, Earth oblateness through degree and order four, and solar radiation pressure, follows in order to evaluate the magnitude of these disturbing forces on the fragmentation debris. Validation of these results by numerical analysis using proven numerical and semianalytical orbit propagators is discussed. The results show that currently practiced reorbiting distances above GEO do not isolate debris from GEO after the occurrence of collisions in the storage orbit.

  12. Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt

    NASA Technical Reports Server (NTRS)

    Akim, E. L.; Stepanyants, V. A.; Tuchin, A. G.; Shishov, V. A.

    2007-01-01

    The SC "Phobos-Grunt" flight is planned to 2009 in Russia with the purpose to deliver to the Earth the soil samples of the Mars satellite Phobos. The mission will pass under the following scheme [1-4]: the SC flight from the Earth to the Mars, the SC transit on the Mars satellite orbit, the motion round the Mars on the observation orbit and on the quasi-synchronous one [5], landing on Phobos, taking of a ground and start in the direction to the Earth. The implementation of complicated dynamical operations in the Phobos vicinity is foreseen by the project. The SC will be in a disturbance sphere of gravitational fields from the Sun, the Mars and the Phobos. The SC orbit determination is carried out on a totality of trajectory measurements executed from ground tracking stations and measurements of autonomous systems onboard space vehicle relatively the Phobos. As ground measurements the radio engineering measurements of range and range rate are used. There are possible as onboard optical observations of the Phobos by a television system and ranges from the SC up to the Phobos surface by laser locator. As soon as the Phobos orbit accuracy is insufficient for a solution of a problem of landing its orbit determination will be carried out together with determination of the SC orbit. Therefore the algorithms for joint improving of initial conditions of the SC and the Phobos are necessary to determine parameters of the SC relative the Phobos motion within a single dynamical motion model. After putting on the martial satellite orbit, on the Phobos observation orbit, on the quasi-synchronous orbit in the Phobos vicinity the equipment guidance and the following process of the SC orbit determination relatively Phobos requires a priori knowledge of the Phobos orbit parameters with sufficiently high precision. These parameters should be obtained beforehand using both all modern observations and historical ones.

  13. Discovery of orbital decay in SMC X-1

    NASA Technical Reports Server (NTRS)

    Levine, A.; Rappaport, S.; Boynton, P.; Deeter, J.; Nagase, F.

    1992-01-01

    The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system.

  14. Accuracy of Satellite Optical Observations and Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Shakun, L.; Koshkin, N.; Korobeynikova, E.; Strakhova, S.; Dragomiretsky, V.; Ryabov, A.; Melikyants, S.; Golubovskaya, T.; Terpan, S.

    The monitoring of low-orbit space objects (LEO-objects) is performed in the Astronomical Observatory of Odessa I.I. Mechnikov National University (Ukraine) for many years. Decades-long archives of these observations are accessible within Ukrainian network of optical observers (UMOS). In this work, we give an example of orbit determination for the satellite with the 1500-km height of orbit based on angular observations in our observatory (Int. No. 086). For estimation of the measurement accuracy and accuracy of determination and propagation of satellite position, we analyze the observations of Ajisai satellite with the well-determined orbit. This allows making justified conclusions not only about random errors of separate measurements, but also to analyze the presence of systematic errors, including external ones to the measurement process. We have shown that the accuracy of one measurement has the standard deviation about 1 arcsec across the track and 1.4 arcsec along the track and systematical shifts in measurements of one track do not exceed 0.45 arcsec. Ajisai position in the interval of the orbit fitting is predicted with accuracy better than 30 m along the orbit and better than 10 m across the orbit for any its point.

  15. Application of Numerical Integration and Data Fusion in Unit Vector Method

    NASA Astrophysics Data System (ADS)

    Zhang, J.

    2012-01-01

    The Unit Vector Method (UVM) is a series of orbit determination methods which are designed by Purple Mountain Observatory (PMO) and have been applied extensively. It gets the conditional equations for different kinds of data by projecting the basic equation to different unit vectors, and it suits for weighted process for different kinds of data. The high-precision data can play a major role in orbit determination, and accuracy of orbit determination is improved obviously. The improved UVM (PUVM2) promoted the UVM from initial orbit determination to orbit improvement, and unified the initial orbit determination and orbit improvement dynamically. The precision and efficiency are improved further. In this thesis, further research work has been done based on the UVM: Firstly, for the improvement of methods and techniques for observation, the types and decision of the observational data are improved substantially, it is also asked to improve the decision of orbit determination. The analytical perturbation can not meet the requirement. So, the numerical integration for calculating the perturbation has been introduced into the UVM. The accuracy of dynamical model suits for the accuracy of the real data, and the condition equations of UVM are modified accordingly. The accuracy of orbit determination is improved further. Secondly, data fusion method has been introduced into the UVM. The convergence mechanism and the defect of weighted strategy have been made clear in original UVM. The problem has been solved in this method, the calculation of approximate state transition matrix is simplified and the weighted strategy has been improved for the data with different dimension and different precision. Results of orbit determination of simulation and real data show that the work of this thesis is effective: (1) After the numerical integration has been introduced into the UVM, the accuracy of orbit determination is improved obviously, and it suits for the high-accuracy data of available observation apparatus. Compare with the classical differential improvement with the numerical integration, its calculation speed is also improved obviously. (2) After data fusion method has been introduced into the UVM, weighted distribution accords rationally with the accuracy of different kinds of data, all data are fully used and the new method is also good at numerical stability and rational weighted distribution.

  16. Attitude Ground System (AGS) for the Magnetospheric Multi-Scale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Raymond, Juan C.; Sedlak, Joseph E.; Vint, Babak

    2015-01-01

    MMS Overview Recall from Conrads presentation earlier today MMS launch: March 13, 2015 on an Atlas V from Space Launch Complex 40, Cape Canaveral, Florida MMS Observatory Separation: five minute intervals spinning at 3 rpm approximately 1.5 hours after launch MMS Science Goals: study magnetospheric plasma physics and understand the processes that cause power grids, communication disruptions and Aurora formation Mission: 4 identical spacecraft in tetrahedral formation with variable size1.2 x 12 RE in Phase 1, with apogee on dayside to observe bow shock1.2 x 25 RE in Phase 2, with apogee on night side to observe magneto tail Challenges Tight attitude control box, orbit and formation maintenance requirements Maneuvers on thrusters every two weeks Delta-H Spin axis direction and spin rate maintenance Delta-V Orbit and Formation maintenance Mission phase transitions AGS support Smart targeting prediction of Spin-Axis attitude in the presence of environmental torques to stay within the science attitude Determination of the spacecraft attitude and spin rate (sensitive to knowledge of inertia tensor)Calibrations to improve attitude determination results and improve orbit maneuvers Mass properties (Center of Mass, and inertia tensor for nutation and coning) Accelerometer bias (sensitive to the accuracy of the rate estimates) Sensor alignments.

  17. Modular reflector concept study

    NASA Technical Reports Server (NTRS)

    Vaughan, D. H.

    1981-01-01

    A study was conducted to evaluate the feasibility of space erecting a 100 meter paraboloidal radio frequency reflector by joining a number of individually deployed structural modules. Three module design concepts were considered: (1) the deployable cell module (DCM); (2) the modular paraboloidal erectable truss antenna (Mod-PETA); and (3) the modular erectable truss antenna (META). With the space shuttle (STS) as the launch system, the methodology of packaging and stowing in the orbiter, and of dispensing, deploying and joining, in orbit, were studied and the necessary support equipment identified. The structural performance of the completed reflectors was evaluated and their overall operational capability and feasibility were evaluated and compared. The potential of the three concepts to maintain stable shape in the space environment was determined. Their ability to operate at radio frequencies of 1 GHz and higher was assessed assuming the reflector surface to consist of a number of flat, hexagonal facets. A parametric study was performed to determine figure degradation as a function of reflector size, flat facet size, and f/D ratio.

  18. ATTDES: An Expert System for Satellite Attitude Determination and Control. 2

    NASA Technical Reports Server (NTRS)

    Mackison, Donald L.; Gifford, Kevin

    1996-01-01

    The design, analysis, and flight operations of satellite attitude determintion and attitude control systems require extensive mathematical formulations, optimization studies, and computer simulation. This is best done by an analyst with extensive education and experience. The development of programs such as ATTDES permit the use of advanced techniques by those with less experience. Typical tasks include the mission analysis to select stabilization and damping schemes, attitude determination sensors and algorithms, and control system designs to meet program requirements. ATTDES is a system that includes all of these activities, including high fidelity orbit environment models that can be used for preliminary analysis, parameter selection, stabilization schemes, the development of estimators covariance analyses, and optimization, and can support ongoing orbit activities. The modification of existing simulations to model new configurations for these purposes can be an expensive, time consuming activity that becomes a pacing item in the development and operation of such new systems. The use of an integrated tool such as ATTDES significantly reduces the effort and time required for these tasks.

  19. Orbital Characteristics of the Subdwarf-B and F V Star Binary EC 20117-4014 (=V4640 Sgr)

    NASA Astrophysics Data System (ADS)

    Otani, T.; Oswalt, T. D.; Lynas-Gray, A. E.; Kilkenny, D.; Koen, C.; Amaral, M.; Jordan, R.

    2018-06-01

    Among the competing evolution theories for subdwarf-B (sdB) stars is the binary evolution scenario. EC 20117-4014 (=V4640 Sgr) is a spectroscopic binary system consisting of a pulsating sdB star and a late F main-sequence companion; however, the period and the orbit semimajor axes have not been precisely determined. This paper presents orbital characteristics of the EC 20117-4014 binary system using 20 years of photometric data. Periodic observed minus calculated (O–C) variations were detected in the two highest-amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating the binary system’s precise orbital period (P = 792.3 days) and the light-travel-time amplitude (A = 468.9 s). This binary shows no significant orbital eccentricity, and the upper limit of the eccentricity is 0.025 (using 3σ as an upper limit). This upper limit of the eccentricity is the lowest among all wide sdB binaries with known orbital parameters. This analysis indicated that the sdB is likely to have lost its hydrogen envelope through stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB stars. In addition to those results, the underlying pulsation period change obtained from the photometric data was \\dot{P} = 5.4 (±0.7) × 10‑14 d d‑1, which shows that the sdB is just before the end of the core helium-burning phase.

  20. IUS/TUG orbital operations and mission support study. Volume 4: Project planning data

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.

  1. Shuttle program: OFT ascent/descent ancillary data requirements document

    NASA Technical Reports Server (NTRS)

    Bond, A. C., Jr.; Knoedler, J.

    1980-01-01

    Requirements are presented for the ascent/descent (A/D) navigation and attitude-dependent ancillary data products to be generated for the space shuttle orbiter in support of the orbital flight test (OFT) flight test requirements, MPAD guidance and navigation performance assessment, and the mission evaluation team. The A/D ancillary data support for OFT mission evaluation activities is confined to providing postflight position, velocity, attitude, and associated navigation and attitude derived parameters for the Orbiter over particular flight phases and time intervals.

  2. Orbital selective spin-texture in a topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Bahadur, E-mail: bahadursingh24@gmail.com; Prasad, R.

    Three-dimensional topological insulators support a metallic non-trivial surface state with unique spin texture, where spin and momentum are locked perpendicular to each other. In this work, we investigate the orbital selective spin-texture associated with the topological surface states in Sb2Te{sub 3}, using the first principles calculations. Sb2Te{sub 3} is a strong topological insulator with a p-p type bulk band inversion at the Γ-point and supports a single topological metallic surface state with upper (lower) Dirac-cone has left (right) handed spin-texture. Here, we show that the topological surface state has an additional locking between the spin and orbitals, leading to anmore » orbital selective spin-texture. The out-of-plane orbitals (p{sub z} orbitals) have an isotropic orbital texture for both the Dirac cones with an associated left and right handed spin-texture for the upper and lower Dirac cones, respectively. In contrast, the in-planar orbital texture (p{sub x} and p{sub y} projections) is tangential for the upper Dirac-cone and is radial for the lower Dirac-cone surface state. The dominant in-planar orbital texture in both the Dirac cones lead to a right handed orbital-selective spin-texture.« less

  3. Study of space shuttle EVA/IVA support requirements. Volume 1: Technical summary report

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.; Wood, P. W., Jr.; Cox, R. L.

    1973-01-01

    Results are summarized which were obtained for equipment requirements for the space shuttle EVA/IVA pressure suit, life support system, mobility aids, vehicle support provisions, and energy 4 support. An initial study of tasks, guidelines, and constraints and a special task on the impact of a 10 psia orbiter cabin atmosphere are included. Supporting studies not related exclusively to any one group of equipment requirements are also summarized. Representative EVA/IVA task scenarios were defined based on an evaluation of missions and payloads. Analysis of the scenarios resulted in a total of 788 EVA/IVA's in the 1979-1990 time frame, for an average of 1.3 per shuttle flight. Duration was estimated to be under 4 hours on 98% of the EVA/IVA's, and distance from the airlock was determined to be 70 feet or less 96% of the time. Payload water vapor sensitivity was estimated to be significant on 9%-17% of the flights. Further analysis of the scenarios was carried out to determine specific equipment characteristics, such as suit cycle and mobility requirements.

  4. Quasi-Tangency Points on the Orbits of a Small Body and a Planet at the Low-Velocity Encounter

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2018-03-01

    We propose a method for selecting a low-velocity encounter of a small body with a planet from the evolution of the orbital elements. Polar orbital coordinates of the quasi-tangency point on the orbit of a small body are determined. Rectangular heliocentric coordinates of the quasi-tangency point on the orbit of a planet are determined. An algorithm to search for low-velocity encounters in the evolution of the orbital elements of small bodies is described. The low-velocity encounter of comet 39P/Oterma with Jupiter is considered as an example.

  5. Spacecraft Materials in the Space Flight Environment: International Space Station - May 2002 to May 2007

    NASA Technical Reports Server (NTRS)

    Golden, John; Lorenz, Mary J.; Alred, John; Koontz, Steven L.; Pedley, Michael

    2008-01-01

    The performance of ISS spacecraft materials and systems on prolonged exposure to the low-Earth orbit (LEO) space flight is reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are presented. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions in the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6o) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1-4). The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations (5, 6). The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth (1-4). The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays (1-4) than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the geomagnetic field (1-4). As a result, ISS exposure to many environmental factors can vary dramatically along a particular orbital ground track, and from one ground track to the next, during any 24-hour period.

  6. Flight Mechanics/Estimation Theory Symposium. [with application to autonomous navigation and attitude/orbit determination

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J. (Editor)

    1979-01-01

    Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.

  7. PCVs Estimation and their Impacts on Precise Orbit Determination of LEOs

    NASA Astrophysics Data System (ADS)

    Chunmei, Z.; WANG, X.

    2017-12-01

    In the last decade the precise orbit determination (POD) based on GNSS, such as GPS, has been considered as one of the efficient methods to derive orbits of Low Earth Orbiters (LEOs) that demand accuracy requirements. The Earth gravity field recovery and its related researches require precise dynamic orbits of LEOs. With the improvements of GNSS satellites' orbit and clock accuracy, the algorithm optimization and the refinement of perturbation force models, the antenna phase-center variations (PCVs) of space-borne GNSS receiver have become an increasingly important factor that affects POD accuracy. A series of LEOs such as HY-2, ZY-3 and FY-3 with homebred space-borne GNSS receivers have been launched in the past several years in China. Some of these LEOs load dual-mode GNSS receivers of GPS and BDS signals. The reliable performance of these space-borne receivers has been establishing an important foundation for the future launches of China gravity satellites. Therefore, we first evaluate the data quality of on-board GNSS measurement by examining integrity, multipath error, cycle slip ratio and other quality indices. Then we determine the orbits of several LEOs at different altitudes by the reduced dynamic orbit determination method. The corresponding ionosphere-free carrier phase post-fit residual time series are obtained. And then we establish the PCVs model by the ionosphere-free residual approach and analyze the effects of antenna phase-center variation on orbits. It is shown that orbit accuracy of LEO satellites is greatly improved after in-flight PCV calibration. Finally, focus on the dual-mode receiver of FY-3 satellite we analyze the quality of onboard BDS data and then evaluate the accuracy of the FY-3 orbit determined using only BDS measurement onboard. The accuracy of LEO satellites orbit based on BDS would be well improved with the global completion of BDS by 2020.

  8. Many-core computing for space-based stereoscopic imaging

    NASA Astrophysics Data System (ADS)

    McCall, Paul; Torres, Gildo; LeGrand, Keith; Adjouadi, Malek; Liu, Chen; Darling, Jacob; Pernicka, Henry

    The potential benefits of using parallel computing in real-time visual-based satellite proximity operations missions are investigated. Improvements in performance and relative navigation solutions over single thread systems can be achieved through multi- and many-core computing. Stochastic relative orbit determination methods benefit from the higher measurement frequencies, allowing them to more accurately determine the associated statistical properties of the relative orbital elements. More accurate orbit determination can lead to reduced fuel consumption and extended mission capabilities and duration. Inherent to the process of stereoscopic image processing is the difficulty of loading, managing, parsing, and evaluating large amounts of data efficiently, which may result in delays or highly time consuming processes for single (or few) processor systems or platforms. In this research we utilize the Single-Chip Cloud Computer (SCC), a fully programmable 48-core experimental processor, created by Intel Labs as a platform for many-core software research, provided with a high-speed on-chip network for sharing information along with advanced power management technologies and support for message-passing. The results from utilizing the SCC platform for the stereoscopic image processing application are presented in the form of Performance, Power, Energy, and Energy-Delay-Product (EDP) metrics. Also, a comparison between the SCC results and those obtained from executing the same application on a commercial PC are presented, showing the potential benefits of utilizing the SCC in particular, and any many-core platforms in general for real-time processing of visual-based satellite proximity operations missions.

  9. Determination of celestial bodies orbits and probabilities of their collisions with the Earth

    NASA Astrophysics Data System (ADS)

    Medvedev, Yuri; Vavilov, Dmitrii

    In this work we have developed a universal method to determine the small bodies orbits in the Solar System. In the method we consider different planes of body’s motion and pick up which is the most appropriate. Given an orbit plane we can calculate geocentric distances at time of observations and consequence determinate all orbital elements. Another technique that we propose here addresses the problem of estimation probability of collisions celestial bodies with the Earth. This technique uses the coordinate system associated with the nominal osculating orbit. We have compared proposed technique with the Monte-Carlo simulation. Results of these methods exhibit satisfactory agreement, whereas, proposed method is advantageous in time performance.

  10. Proceedings of the 1997 Space Control Conference, Volume 2

    DTIC Science & Technology

    1997-03-27

    of attitude information are used in our orbit determination. The attitude history buffer on MSX holds quaternions and time tags at 100-second...being able to use the attitude quaternions , DYNAMO can also compute the park-mode attitude of MSX if, for example, some of the raw on-board attitude ... used to aid the target discrimination process. THE MSX SPACECRAFT The SBV sensor was launched on the BMDO supported MSX spacecraft on 24 April

  11. Summary of materials and hardware performance on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Pippin, Gary; Teichman, Lou

    1993-01-01

    A wide variety of materials and experiment support hardware were flown on the Long Duration Exposure Facility (LDEF). Postflight testing has determined the effects of the almost 6 years of low-earth orbit (LEO) exposure on this hardware. An overview of the results are presented. Hardware discussed includes adhesives, fasteners, lubricants, data storage systems, solar cells, seals, and the LDEF structure. Lessons learned from the testing and analysis of LDEF hardware is also presented.

  12. STS-57 MS4 Voss, wearing goggles, handles SCG equipment on OV-105's middeck

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Mission Specialist 4 (MS4) Janice E. Voss, wearing goggles, handles plastic-wrapped Support of Crystal Growth (SCG) experiment equipment on the middeck of Endeavour, Orbiter Vehicle (OV) 105. Holding the SCG equipment over a portable light fixture, Voss determines the proper autoclave mixing protocols for the zeolite crystal growth experiment. The lighting fixture bracket is attached to the open airlock hatch in the foreground.

  13. CELSS Transportation Analysis

    NASA Technical Reports Server (NTRS)

    Olson, R. L.; Gustan, E. A.; Vinopal, T. J.

    1985-01-01

    Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.

  14. Orbit determination modelling analysis using GPS including perturbations due to geopotential coefficients of high degree and order, solar radiation pressure and luni-solar attraction

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Cristiane Pardal, Paula; Koiti Kuga, Helio

    The problem of orbit determination consists essentially of estimating parameter values that completely specify the body trajectory in the space, processing a set of information (measure-ments) from this body. Such observations can be collected through a conventional tracking network on Earth or through sensors like GPS. The Global Positioning System (GPS) is a powerful and low cost way to allow the computation of orbits for artificial Earth satellites. The Topex/Poseidon satellite is normally used as a reference for analyzing this system for space positioning. The orbit determination of artificial satellites is a nonlinear problem in which the disturbing forces are not easily modeled, like geopotential and direct solar radiation pressure. Through an onboard GPS receiver it is possible to obtain measurements (pseudo-range and phase) that can be used to estimate the state of the orbit. One intends to analyze the modeling of the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms as a method of estimation, with the aim of analyzing the performance of the orbit estimation process. Accuracy is not the main goal; one pursues to verify how differences of modeling can affect the final accuracy of the orbit determination. To accomplish that, the following effects were considered: perturbations up to high degree and order for the geopoten-tial coefficients; direct solar radiation pressure, Sun attraction, and Moon attraction. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. Although not presenting the ultimate accuracy, pseudo-range measurements corrected from ionospheric effects were considered enough to such analysis. The measurements were used to feed the batch least squares orbit determination process, in order to yield conclusive results about the orbit modeling issue. An application has been done, using such GPS data, for orbit determination of the Topex/Poseidon satellite, whose accurate ephemerides are freely available at Internet. It is shown that from a poor but acceptable modeling up to all effects included, the accuracy can vary from about 30m to 8m. Test results for short period (2 hours) and for long period (24 hours) are also shown.

  15. Coronas-F Orbit Monitoring and Re-Entry Prediction

    NASA Technical Reports Server (NTRS)

    Ivanov, N. M.; Kolyuka, Yu. F.; Afanasieva, T. I.; Gridchina, T. A.

    2007-01-01

    Russian scientific satellite CORONAS-F was launched on July, 31, 2001. The object was inserted in near-circular orbit with the inclination 82.5deg and a mean altitude approx. 520 km. Due to the upper atmosphere drag CORONAS-F was permanently descended and as a result on December, 6, 2005 it has finished the earth-orbital flight, having lifetime in space approx. 4.5 years. The satellite structural features and its flight attitude control led to the significant variations of its ballistic coefficient during the flight. It was a cause of some specific difficulties in the fulfillment of the ballistic and navigation support of this space vehicle flight. Besides the main mission objective CORONAS-F also has been selected by the Inter-Agency Space Debris Coordination Committee (IADC) as a target object for the next regular international re-entry test campaign on a program of surveillance and re-entry prediction for the hazard space objects within their de-orbiting phases. Spacecraft (S/C) CORONAS-F kept its working state right up to the end of the flight - down to the atmosphere entry. This fact enabled to realization of the additional research experiments, concerning with an estimation of the atmospheric density within the low earth orbits (LEO) of the artificial satellites, and made possible to continue track the S/C during final phase of its flight by means of Russian regular command & tracking system, used for it control. Thus there appeared a unique possibility of using for tracking S/C at its de-orbiting phase not only passive radar facilities, belonging to the space surveillance systems and traditionally used for support of the IADC re-entry test campaigns, but also more precise active trajectory radio-tracking facilities from the ground control complex (GCC) applied for this object. Under the corresponding decision of the Russian side such capability of additional high-precise tracking control of the CORONAS-F flight in this period of time has been implemented. The organizing of the CORONAS-F ballistic and navigational support (BNS) and solving its main tasks (such as S/C orbit determination (OD) and its motion prediction and connected with them) both for regular mission stage and for additional flight program were realized by the group of specialists from the Mission Control Center (MCC). MCC was also assigned as a principal organization from the Russian side for participation in the 7th IADC re-entry test campaign on CORONAS-F. The CORONAS-F flight features and space environments circumstances during its flight as well as a methodology and technology of spacecraft ballistic and navigational support are given below. The BNS results for different phases of S/C flight, including the results of its re-entry predictions, obtained during the realization of the 7th IADC test campaign are submitted. The accuracy of space vehicle re-entry prediction and its dependence on various factors are analyzed in more details.

  16. Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite

    NASA Astrophysics Data System (ADS)

    Shprits, Y. Y.; Angelopoulos, V.; Russell, C. T.; Strangeway, R. J.; Runov, A.; Turner, D.; Caron, R.; Cruce, P.; Leneman, D.; Michaelis, I.; Petrov, V.; Panasyuk, M.; Yashin, I.; Drozdov, A.; Russell, C. L.; Kalegaev, V.; Nazarkov, I.; Clemmons, J. H.

    2018-02-01

    The objective of the Electron Losses and Fields INvestigation on board the Lomonosov satellite (ELFIN-L) project is to determine the energy spectrum of precipitating energetic electrons and ions and, together with other polar-orbiting and equatorial missions, to better understand the mechanisms responsible for scattering these particles into the atmosphere. This mission will provide detailed measurements of the radiation environment at low altitudes. The 400-500 km sun-synchronous orbit of Lomonosov is ideal for observing electrons and ions precipitating into the atmosphere. This mission provides a unique opportunity to test the instruments. Similar suite of instruments will be flown in the future NSF- and NASA-supported spinning CubeSat ELFIN satellites which will augment current measurements by providing detailed information on pitch-angle distributions of precipitating and trapped particles.

  17. International Space Station Major Constituent Analyzer On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Gardner, Ben D.; Erwin, Phillip M.; Thoresen, Souzan; Granahan, John; Matty, Chris

    2012-01-01

    The Major Constituent Analyzer is a mass spectrometer based system that measures the major atmospheric constituents on the International Space Station. A number of limited-life components require periodic changeout, including the ORU 02 analyzer and the ORU 08 Verification Gas Assembly. Over the past two years, two ORU 02 analyzer assemblies have operated nominally while two others have experienced premature on-orbit failures. These failures as well as nominal performances demonstrate that ORU 02 performance remains a key determinant of MCA performance and logistical support. It can be shown that monitoring several key parameters can maximize the capacity to monitor ORU health and properly anticipate end of life. Improvements to ion pump operation and ion source tuning are expected to improve lifetime performance of the current ORU 02 design.

  18. Theoretical and experimental studies of the molecular orbital bonding coefficients for Cu{sup 2+} ion in cesium hydrogen oxalate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin

    2016-03-25

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less

  19. Stable habitable zones of single Jovian planet systems

    NASA Astrophysics Data System (ADS)

    Agnew, Matthew T.; Maddison, Sarah T.; Thilliez, Elodie; Horner, Jonathan

    2017-11-01

    With continued improvement in telescope sensitivity and observational techniques, the search for rocky planets in stellar habitable zones is entering an exciting era. With so many exoplanetary systems available for follow-up observations to find potentially habitable planets, one needs to prioritize the ever-growing list of candidates. We aim to determine which of the known planetary systems are dynamically capable of hosting rocky planets in their habitable zones, with the goal of helping to focus future planet search programmes. We perform an extensive suite of numerical simulations to identify regions in the habitable zones of single Jovian planet systems where Earth-mass planets could maintain stable orbits, specifically focusing on the systems in the Catalog of Earth-like Exoplanet Survey Targets (CELESTA). We find that small, Earth-mass planets can maintain stable orbits in cases where the habitable zone is largely, or partially, unperturbed by a nearby Jovian, and that mutual gravitational interactions and resonant mechanisms are capable of producing stable orbits even in habitable zones that are significantly or completely disrupted by a Jovian. Our results yield a list of 13 single Jovian planet systems in CELESTA that are not only capable of supporting an Earth-mass planet on stable orbits in their habitable zone, but for which we are also able to constrain the orbits of the Earth-mass planet such that the induced radial velocity signals would be detectable with next generation instruments.

  20. Satellite orbit determination from an airborne platform

    NASA Astrophysics Data System (ADS)

    Shepard, M. M.; Foshee, J. J.

    This paper describes the requirements, approach, and problems associated with autonomous satellite orbit determination from an airborne platform. The ability to perform orbit determination from an airborne platform removes the reliance on ground control facilities. Aircraft orbit determination offers a more robust system in that it is less susceptible to direct attack, sabotage, or nuclear disaster. Ranging on a satellite and the processing of range/range-rate data along with INS inputs to produce a set of orbital parameters to be transmitted to user terminals are discussed. Several algorithms that could be utilized by the user terminal to recover the satellite position/velocity data from the transmitted message are presented. The ability to compress the ephemeris message to a small size while remaining autonomous for a long period of time, as would be needed in future military communication satellites, is discussed.

  1. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  2. Earth orbital operations supporting manned interplanetary missions

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  3. Earth orbital operations supporting manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; Buddington, Patricia A.; Whittaker, William L.

    1989-01-01

    The orbital operations required to accumulate, assemble, test, verify, maintain, and launch complex manned space systems on interplanetary missions from earth orbit are as vital as the flight hardware itself. Vast numbers of orbital crew are neither necessary nor desirable for accomplishing the required tasks. A suite of robotic techniques under human supervisory control, relying on sensors, software and manipulators either currently emergent or already applied in terrestrial settings, can make the job tractable. The mission vehicle becomes largely self-assembling, using its own rigid aerobrake as a work platform. The Space Station, having been used as a laboratory testbed and to house an assembly crew of four, is not dominated by the process. A feasible development schedule, if begun soon, could emplace orbital support technologies for exploration missions in time for a 2004 first interplanetary launch.

  4. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  5. Comparison of Selected Geopotential Models in Terms of the GOCE Orbit Determination Using Simulated GPS Observations

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej

    2016-12-01

    This work contains a comparative study of the performance of six geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, such models as ULUX_CHAMP2013S, ITG-GRACE 2010S, EIGEN-51C, EIGEN5S, EGM2008, EGM96, were adopted. Different sets of pseudo-range simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. The solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the solutions was slightly enhanced. Different arc lengths were taken for the computation.

  6. Orbit-product representation and correction of Gaussian belief propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K; Chertkov, Michael; Chernyak, Vladimir

    We present a new interpretation of Gaussian belief propagation (GaBP) based on the 'zeta function' representation of the determinant as a product over orbits of a graph. We show that GaBP captures back-tracking orbits of the graph and consider how to correct this estimate by accounting for non-backtracking orbits. We show that the product over non-backtracking orbits may be interpreted as the determinant of the non-backtracking adjacency matrix of the graph with edge weights based on the solution of GaBP. An efficient method is proposed to compute a truncated correction factor including all non-backtracking orbits up to a specified length.

  7. Precise orbit determination of the Lunar Reconnaissance Orbiter and first gravity field results

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2014-05-01

    The Lunar Reconnaissance Orbiter (LRO) was launched in 2009 and is expected to orbit the Moon until the end of 2014. Among other instruments, LRO has a highly precise altimeter on board demanding an orbit accuracy of one meter in the radial component. Precise orbit determination (POD) is achieved with radiometric observations (Doppler range rates, ranges) on the one hand, and optical laser ranges on the other hand. LRO is the first satellite at a distance of approximately 360 000 to 400 000 km from the Earth that is routinely tracked with optical laser ranges. This measurement type was introduced to achieve orbits of higher precision than it would be possible with radiometric observations only. In this contribution we investigate the strength of each measurement type (radiometric range rates, radiometric ranges, optical laser ranges) based on single-technique orbit estimation. In a next step all measurement types are combined in a joined analysis. In addition to POD results, preliminary gravity field coefficients are presented being a subsequent product of the orbit determination process. POD and gravity field estimation was accomplished with the NASA/GSFC software packages GEODYN and SOLVE.

  8. Computer processing of Mars Odyssey THEMIS IR imaging, MGS MOLA altimetry and Mars Express stereo imaging to locate Airy-0, the Mars prime meridian reference

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Neukum, Gerhard; Smith, David E.; Christensen, Philip; Neumann, Gregory; Albee, Arden; Caplinger, Michael; Seregina, N. V.; Kirk, Randolph L.

    The small crater Airy-0 was selected from Mariner 9 images to be the reference for the Mars prime meridian. Initial analyses were made in year 2000 to tie Viking Orbiter and Mars Orbiter Camera images of Airy-0 to the evolving Mars Orbiter Laser Altimeter global digital terrain model to improve the location accuracy of Airy-0. Based upon this tie and radiometric tracking of landers / rovers from earth, new expressions for the Mars spin axis direction, spin rate and prime meridian epoch value were produced to define the orientation of the Martian surface in inertial space over time. Now that the Mars Global Surveyor mission and the Mars Orbiter Laser Altimeter global digital terrain model are complete, a more exhaustive study has been performed to determine the location of Airy-0 relative to the global terrain grid. THEMIS IR image cubes of the Airy and Gale crater regions were tied to the global terrain grid using precision stereo photogrammetric image processing techniques. The Airy-0 location was determined to be within 50 meters of the currently defined IAU prime meridian, with this offset at the limiting absolute accuracy of the global terrain grid. Additional outputs of this study were a controlled multi-band photomosaic of Airy, precision alignment and geometric models of the ten THEMIS IR bands and a controlled multi-band photomosaic of Gale crater used to validate the Mars Surface Laboratory operational map products supporting their successful landing on Mars.

  9. MSFC Skylab Orbital Workshop, volume 4. [design and development of life support systems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of specific systems on the Skylab Orbital Laboratory are discussed. The subjects considered are: (1) pressure garment conditioning system, (2) stowage system, (3) ground support equipment systems, and (4) marking systems illustrations of the system components are provided. Results of performance tests are discussed.

  10. Space station utilization and commonality

    NASA Technical Reports Server (NTRS)

    Butler, John

    1986-01-01

    Several potential ways of utilizing the space station, including utilization of learning experiences (such as operations), utilization of specific elements of hardware which can be largely common between the SS and Mars programs, and utilization of the on-orbit SS for transportation node functions were identified and discussed. The probability of using the SS in all of these areas seems very good. Three different ways are discussed of utilizing the then existing Low Earth Orbit (LEO) SS for operational support during assembly and checkout of the Mars Space Vehicle (SV): attaching the SV to the SS; allowing the SV to co-orbit near the SS; and a hybrid of the first 2 ways. Discussion of each of these approaches is provided, and the conclusion is reached that either the co-orbiting or hybrid approach might be preferable. Artists' conception of the modes are provided, and sketches of an assembly system concept (truss structure and subsystems derivable from the SS) which could be used for co-orbiting on-orbit assembly support are provided.

  11. Component-Level Electronic-Assembly Repair (CLEAR) Analysis of the Problem Reporting and Corrective Action (PRACA) Database of the International Space Station On-Orbit Electrical Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.

    2011-01-01

    The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing dependency on Earth-supplied logistics for future Constellation Program missions.

  12. Precise positioning with sparse radio tracking: How LRO-LOLA and GRAIL enable future lunar exploration

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Goossens, S. J.; Barker, M. K.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2017-12-01

    Two recent NASA missions to the Moon, the Lunar Reconnaissance Orbiter (LRO) and the Gravity Recovery and Interior Laboratory (GRAIL), have obtained highly accurate information about the lunar shape and gravity field. These global geodetic datasets resolve long-standing issues with mission planning; the tidal lock of the Moon long prevented collection of accurate gravity measurements over the farside, and deteriorated precise positioning of topographic data. We describe key datasets and results from the LRO and GRAIL mission that are directly relevant to future lunar missions. SmallSat and CubeSat missions especially would benefit from these recent improvements, as they are typically more resource-constrained. Even with limited radio tracking data, accurate knowledge of topography and gravity enables precise orbit determination (OD) (e.g., limiting the scope of geolocation and co-registration tasks) and long-term predictions of altitude (e.g., dramatically reducing uncertainties in impact time). With one S-band tracking pass per day, LRO OD now routinely achieves total position knowledge better than 10 meters and radial position knowledge around 0.5 meter. Other tracking data, such as Laser Ranging from Earth-based SLR stations, can further support OD. We also show how altimetry can be used to substantially improve orbit reconstruction with the accurate topographic maps now available from Lunar Orbiter Laser Altimeter (LOLA) data. We present new results with SELENE extended mission and LRO orbits processed with direct altimetry measurements. With even a simple laser altimeter onboard, high-quality OD can be achieved for future missions because of the datasets acquired by LRO and GRAIL, without the need for regular radio contact. Onboard processing of altimetric ranges would bring high-quality real-time position knowledge to support autonomous operation. We also describe why optical ranging transponders are ideal payloads for future lunar missions, as they can address both communication and navigation needs with little resources.

  13. Computer program determines thermal environment and temperature history of lunar orbiting space vehicles

    NASA Technical Reports Server (NTRS)

    Head, D. E.; Mitchell, K. L.

    1967-01-01

    Program computes the thermal environment of a spacecraft in a lunar orbit. The quantities determined include the incident flux /solar and lunar emitted radiation/, total radiation absorbed by a surface, and the resulting surface temperature as a function of time and orbital position.

  14. Earth orbit navigation study. Volume 2: System evaluation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.

  15. An innovative exercise method to simulate orbital EVA work - Applications to PLSS automatic controls

    NASA Technical Reports Server (NTRS)

    Lantz, Renee; Vykukal, H.; Webbon, Bruce

    1987-01-01

    An exercise method has been proposed which may satisfy the current need for a laboratory simulation representative of muscular, cardiovascular, respiratory, and thermoregulatory responses to work during orbital extravehicular activity (EVA). The simulation incorporates arm crank ergometry with a unique body support mechanism that allows all body position stabilization forces to be reacted at the feet. By instituting this exercise method in laboratory experimentation, an advanced portable life support system (PLSS) thermoregulatory control system can be designed to more accurately reflect the specific work requirements of orbital EVA.

  16. Real-time on-board orbit determination with DORIS

    NASA Technical Reports Server (NTRS)

    Berthias, J.-P.; Jayles, C.; Pradines, D.

    1993-01-01

    A spaceborne orbit determination system is being developed by the French Space Agency (CNES) for the SPOT 4 satellite. It processes DORIS measurements to produce an orbit with an accuracy of about 50O meters rms. In order to evaluate the reliability of the software, it was combined with the MERCATOR man/machine interface and used to process the TOPEX/Poseidon DORIS data in near real time during the validation phase of the instrument, at JPL and at CNES. This paper gives an overview of the orbit determination system and presents the results of the TOPEX/Poseidon experiment.

  17. Geosynchronous Orbit Determination Using Space Surveillance Network Observations and Improved Radiative Force Modeling

    DTIC Science & Technology

    2004-06-01

    equinoctial elements , because both sets of orbital elements reference the equinoctial coordinate system. In fact, to...spacecraft position and velocity vectors, or an element set , which represents the orbit using scalar quantities and angle measurements called orbital ...common element sets used to describe elliptical orbits (including circular orbits ) are Keplerian elements , also called classical orbital

  18. Dynamic mass exchange in doubly degenerate binaries. I - 0.9 and 1.2 solar mass stars

    NASA Technical Reports Server (NTRS)

    Benz, W.; Cameron, A. G. W.; Press, W. H.; Bowers, R. L.

    1990-01-01

    The dynamic mass exchange process in doubly degenerate binaries was investigated using a three-dimensional numerical simulation of the evolution of a doubly degenerate binary system in which the primary is a 1.2-solar-mass white dwarf and the Roche lobe filling secondary is a 0.9-solar-mass dwarf. The results show that, in a little more than two orbital periods, the secondary is completely destroyed and transformed into a thick disk orbiting about the primary. Since only a very small fraction of the mass (0.0063 solar mass) escapes the system, the evolution of the binary results in the formation of a massive object. This object is composed of three parts, the initial white dwarf primary, a very hot pressure-supported spherical envelope, and a rotationally supported outer disk. The evolution of the system can be understood in terms of a simple analytical model where it is shown that the angular momentum carried by the mass during the transfer and stored in the disk determines the evolution of the system.

  19. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  20. Implementing a 50x50 Gravity Field Model in an Orbit Determination System

    DTIC Science & Technology

    1993-06-01

    orbital element set , sometimes better known as the Keplerian orbital element set . Another set is the equinoctial element set , which removes singularity...Conference. San Diego, California. August 1976. [8] Cefola, Paul. Equinoctial Orbit Elements - Application to Artificial Satellite Orbits . AIAA Paper...251 A.2 Classical Orbital Elements ......................................................... 251 A.3

  1. The Exploration of Mars Launch and Assembly Simulation

    NASA Technical Reports Server (NTRS)

    Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce

    2016-01-01

    Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.

  2. An intermediate orbit calculated from three position vectors: accuracy of approximation of a perturbed motion. (Russian Title: Промежуточная орбита, вычисленная по трем векторам положения: точность аппроксимации возмущенного движения)

    NASA Astrophysics Data System (ADS)

    Shefer, V. A.

    2015-12-01

    We examine intermediate perturbed orbit proposed by the author previously, defined from the three position vectors of a small celestial body. It is shown theoretically, that at a small reference time interval covering the body positions the approximation accuracy of real motion by this orbit corresponds approximately to the fourth order of tangency. The smaller reference interval of time, the better this correspondence. Laws of variation of the methodical errors in constructing intermediate orbit subject to the length of reference time interval are deduced. According to these laws, the convergence rate of the method to the exact solution (upon reducing the reference interval of time) in the general case is higher by three orders of magnitude than in the case of conventional methods using Keplerian unperturbed orbit. The considered orbit is among the most accurate in set of orbits of their class determined by the order of tangency. The theoretical results are validated by numerical examples. The work was supported by the Ministry of Education and Science of the Russian Federation, project no. 2014/223(1567).

  3. Algorithms for Autonomous GPS Orbit Determination and Formation Flying: Investigation of Initialization Approaches and Orbit Determination for HEO

    NASA Technical Reports Server (NTRS)

    Axelrad, Penina; Speed, Eden; Leitner, Jesse A. (Technical Monitor)

    2002-01-01

    This report summarizes the efforts to date in processing GPS measurements in High Earth Orbit (HEO) applications by the Colorado Center for Astrodynamics Research (CCAR). Two specific projects were conducted; initialization of the orbit propagation software, GEODE, using nominal orbital elements for the IMEX orbit, and processing of actual and simulated GPS data from the AMSAT satellite using a Doppler-only batch filter. CCAR has investigated a number of approaches for initialization of the GEODE orbit estimator with little a priori information. This document describes a batch solution approach that uses pseudorange or Doppler measurements collected over an orbital arc to compute an epoch state estimate. The algorithm is based on limited orbital element knowledge from which a coarse estimate of satellite position and velocity can be determined and used to initialize GEODE. This algorithm assumes knowledge of nominal orbital elements, (a, e, i, omega, omega) and uses a search on time of perigee passage (tau(sub p)) to estimate the host satellite position within the orbit and the approximate receiver clock bias. Results of the method are shown for a simulation including large orbital uncertainties and measurement errors. In addition, CCAR has attempted to process GPS data from the AMSAT satellite to obtain an initial estimation of the orbit. Limited GPS data have been received to date, with few satellites tracked and no computed point solutions. Unknown variables in the received data have made computations of a precise orbit using the recovered pseudorange difficult. This document describes the Doppler-only batch approach used to compute the AMSAT orbit. Both actual flight data from AMSAT, and simulated data generated using the Satellite Tool Kit and Goddard Space Flight Center's Flight Simulator, were processed. Results for each case and conclusion are presented.

  4. Support requirements for remote sensor systems on unmanned planetary missions. Appendix A: Support requirement summary tables, phase 3

    NASA Technical Reports Server (NTRS)

    1971-01-01

    An appendix containing one page summary tables of sensor observation objectives, measurement capabilities, support requirments, and worth values is presented. Tables are arranged according to (1) sensor type number, (2) flyby mission number, (3) for multi-planet missions, in order of increasing distance from the sun, (4) for orbiter mission, by planets in order of increasing distance from the sun, and (5) by orbit number.

  5. Improved solution accuracy for Landsat-4 (TDRSS-user) orbit determination

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Niklewski, D. J.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1994-01-01

    This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using a Prototype Filter Smoother (PFS), with the accuracy of an established batch-least-squares system, the Goddard Trajectory Determination System (GTDS). The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and convariances for the sequential case) of solutions produced by the batch and sequential methods. The filtered and smoothed PFS orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 15 meters.

  6. Astrodynamics 1991; Proceedings of the AAS/AIAA Astrodynamics Conference, Durango, CO, Aug. 19-22, 1991. Pts. 1, 2, and 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufman, B.; Alfriend, K.T.; Roehrich, R.L.

    1992-01-01

    The present conference on astrodynamics and advances in the astronautical sciences encompasses orbit determination, orbital debris, flexible-body dynamics and control, attitude dynamics and control, and topics related to the projects of the European space program. Specific issues addressed include a numerical approach to the angles-only initial orbit determination problem, precise orbit determination of the SPOT platform with DORIS, space-debris measurement and modeling, H(infinity)-optimized broadband compensator for wave-absorbing control, and the application of linear actuators for for telescope pointing control. Also addressed are attitude determination and dynamical performance in free drift for the Space Station Freedom, a Kalman filter for amore » gravity-gradient satellite, the positioning of the Eutelsat II satellite from supersynchronous transfer orbit to reduce satellite velocity-correction requirements, and trajectory analysis and issues.« less

  7. Autonomous orbital navigation using Kepler's equation

    NASA Technical Reports Server (NTRS)

    Boltz, F. W.

    1974-01-01

    A simple method of determining the six elements of elliptic satellite orbits has been developed for use aboard manned and unmanned spacecraft orbiting the earth, moon, or any planet. The system requires the use of a horizon sensor or other device for determining the local vertical, a precision clock or timing device, and Apollo-type navigation equipment including an inertial measurement unit (IMU), a digital computer, and a coupling data unit. The three elements defining the in-plane motion are obtained from simultaneous measurements of central angle traversed around the planet and elapsed flight time using a linearization of Kepler's equation about a reference orbit. It is shown how Kalman filter theory may also be used to determine the in-plane orbital elements. The three elements defining the orbit orientation are obtained from position angles in celestial coordinates derived from the IMU with the spacecraft vertically oriented after alignment of the IMU to a known inertial coordinate frame.

  8. Orbit Determination and Navigation Software Testing for the Mars Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Pini, Alex

    2011-01-01

    During the extended science phase of the Mars Reconnaissance Orbiter's lifecycle, the operational duties pertaining to navigation primarily involve orbit determination. The orbit determination process utilizes radiometric tracking data and is used for the prediction and reconstruction of MRO's trajectories. Predictions are done twice per week for ephemeris updates on-board the spacecraft and for planning purposes. Orbit Trim Maneuvers (OTM-s) are also designed using the predicted trajectory. Reconstructions, which incorporate a batch estimator, provide precise information about the spacecraft state to be synchronized with scientific measurements. These tasks were conducted regularly to validate the results obtained by the MRO Navigation Team. Additionally, the team is in the process of converting to newer versions of the navigation software and operating system. The capability to model multiple densities in the Martian atmosphere is also being implemented. However, testing outputs among these different configurations was necessary to ensure compliance to a satisfactory degree.

  9. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    NASA Technical Reports Server (NTRS)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  10. Selected Gravity Models in Terms of the fit to the GOCE Kinematic Orbit in the Dynamic Orbit Determination Process

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej; Drożyner, Andrzej; Rzepecka, Zofia

    2017-04-01

    The work includes the comparison of performance of selected geopotential models in the dynamic orbit estimation of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. This was realized by fitting estimated orbital arcs to the official centimeter-accuracy GOCE kinematic orbit which is provided by the European Space Agency. The Cartesian coordinates of kinematic orbit were treated as observations in the orbit estimation. The initial satellite state vector components were corrected in an iterative process with respect to the J2000.0 inertial reference frame using the given geopotential model, the models describing the remaining gravitational perturbations and the solar radiation pressure. Taking the obtained solutions into account, the RMS values of orbital residuals were computed. These residuals result from the difference between the determined orbit and the reference one - the GOCE kinematic orbit. The performance of selected gravity models was also determined using various orbital arc lengths. Additionally, the RMS fit values were obtained for some gravity models truncated at given degree and order of spherical harmonic coefficients. The advantage of using the kinematic orbit is its independence from any a priori dynamical models. For the research such GOCE-independent gravity models as HUST-Grace2016s, ITU_GRACE16, ITSG-Grace2014s, ITSG-Grace2014k, GGM05S, Tongji-GRACE01, ULUX_CHAMP2013S, ITG-GRACE2010S, EIGEN-51C, EIGEN5S, EGM2008 and EGM96 were adopted.

  11. A demonstration of high precision GPS orbit determination for geodetic applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.; Border, J. S.

    1987-01-01

    High precision orbit determination of Global Positioning System (GPS) satellites is a key requirement for GPS-based precise geodetic measurements and precise low-earth orbiter tracking, currently under study at JPL. Different strategies for orbit determination have been explored at JPL with data from a 1985 GPS field experiment. The most successful strategy uses multi-day arcs for orbit determination and includes fine tuning of spacecraft solar pressure coefficients and station zenith tropospheric delays using the GPS data. Average rms orbit repeatability values for 5 of the GPS satellites are 1.0, 1.2, and 1.7 m in altitude, cross-track, and down-track componenets when two independent 5-day fits are compared. Orbit predictions up to 24 hours outside the multi-day arcs agree within 4 m of independent solutions obtained with well tracked satellites in the prediction interval. Baseline repeatability improves with multi-day as compared to single-day arc orbit solutions. When tropospheric delay fluctuations are modeled with process noise, significant additional improvement in baseline repeatability is achieved. For a 246-km baseline, with 6-day arc solutions for GPS orbits, baseline repeatability is 2 parts in 100 million (0.4-0.6 cm) for east, north, and length components and 8 parts in 100 million for the vertical component. For 1314 and 1509 km baselines with the same orbits, baseline repeatability is 2 parts in 100 million for the north components (2-3 cm) and 4 parts in 100 million or better for east, length, and vertical components.

  12. Lunar Gravity Field Determination Using SELENE Same-Beam Differential VLBI Tracking Data

    NASA Technical Reports Server (NTRS)

    Goossens, S.; Matsumoto, K.; Liu, Q.; Kikuchi, F.; Sato, K.; Hanada, H.; Ishihara, Y.; Noda, H.; Kawano, N.; Namiki, N.; hide

    2010-01-01

    A lunar gravity field model up to degree and order 100 in spherical harmonics, named SGM 100i, has been determined from SELENE and historical tracking data, with an emphasis on using same-beam S-band differential VLBI data obtained in the SELENE mission between January 2008 and February 2009. Orbit consistency throughout the entire mission period of SELENE as determined from orbit overlaps for the two sub-satellites of SELENE involved in the VLBI tracking improved consistently from several hundreds of metres to several tens of metres by including differential VLBI data. Through orbits that are better determined, the gravity field model is also improved by including these data. Orbit determination performance for the new model shows improvements over earlier 100th degree and order models, especially for edge-on orbits over the deep far side. Lunar Prospector orbit determination shows an improvement of orbit consistency from I-day predictions for 2-day arcs of 6 m in a total sense, with most improvement in the along and cross-track directions. Data fit for the types and satellites involved is also improved. Formal errors for the lower degrees are smaller, and the new model also shows increased correlations with topography over the far side. The estimated value for the lunar GM for this model equals 4902.80080 +/- 0.0009 cu km/sq s (10 sigma). The lunar degree 2 potential Love number k2 was also estimated, and has a value of 0.0255 +/- 0.0016 (10 sigma as well).

  13. An overview of aeroelasticity studies for the National Aero-Space Plane

    NASA Technical Reports Server (NTRS)

    Ricketts, Rodney H.; Noll, Thomas E.; Whitlow, Woodrow, Jr.; Huttsell, Lawrence J.

    1993-01-01

    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by the NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  14. Diagrams for comprehensive molecular orbital-based chemical reaction analyses: reactive orbital energy diagrams.

    PubMed

    Tsuneda, Takao; Singh, Raman Kumar; Chattaraj, Pratim Kumar

    2018-05-15

    Reactive orbital energy diagrams are presented as a tool for comprehensively performing orbital-based reaction analyses. The diagrams rest on the reactive orbital energy theory, which is the expansion of conceptual density functional theory (DFT) to an orbital energy-based theory. The orbital energies on the intrinsic reaction coordinates of fundamental reactions are calculated by long-range corrected DFT, which is confirmed to provide accurate orbital energies of small molecules, combining with a van der Waals (vdW) correlation functional, in order to examine the vdW effect on the orbital energies. By analysing the reactions based on the reactive orbital energy theory using these accurate orbital energies, it is found that vdW interactions significantly affect the orbital energies in the initial reaction processes and that more than 70% of reactions are determined to be initially driven by charge transfer, while the remaining structural deformation (dynamics)-driven reactions are classified into identity, cyclization and ring-opening, unimolecular dissociation, and H2 reactions. The reactive orbital energy diagrams, which are constructed using these results, reveal that reactions progress so as to delocalize the occupied reactive orbitals, which are determined as contributing orbitals and are usually not HOMOs, by hybridizing the unoccupied reactive orbitals, which are usually not LUMOs. These diagrams also raise questions about conventional orbital-based diagrams such as frontier molecular orbital diagrams, even for the well-established interpretation of Diels-Alder reactions.

  15. Constraints on the Efficiency of Radial Migration in Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Daniel, Kathryne J.; Wyse, Rosemary F. G.

    2015-01-01

    A transient spiral arm can permanently rearrange the orbital angular momentum of the stellar disk without inducing kinematic heating. This phenomenon is called radial migration because a star's orbital angular momentum determines its mean orbital radius. Should radial migration be an efficient process it could cause a large fraction of disk stars to experience significant changes in their individual orbital angular momenta on dynamically short timescales. Such scenarios have strong implications for the chemical, structural and kinematic evolution of disk galaxies. We have undertaken an investigation into the physical dependencies of the efficiency of radial migration on stellar kinematics and spiral structure. In order for a disk star to migrate radially, it must first be 'trapped' in a particular family of orbits, called horseshoe orbits, that occur near the radius of corotation with a spiral pattern. Thus far, the only analytic criterion for horseshoe orbits has been for stars with zero random orbital energy. We present our analytically derived 'capture criterion' for stars with some finite random orbital energy in a disk with a given rotation curve. Our capture criterion predict that trapping in a horseshoe orbit is primarily determined by whether or not the position of a star's mean orbital radius (determined by its orbital angular momentum) is within the 'capture region', the location and shape of which can be derived from the capture criterion. We visualize and confirm this prediction via numerically integrated orbits. We then apply our capture criterion to snap shot models of disk galaxies to determine (1) the radial distribution of the fraction of stars initially trapped in horseshoe orbits, and (2) the dependence of the total fraction of captured stars in the disk on the radial component of the stellar velocity dispersion (σR) and the amplitude of the spiral perturbation to the underlying potential at corotation. We here present a model of an exponential disk with a flat rotation curve where the initial fraction of stars trapped in horseshoe orbits falls with increasing velocity dispersion as exp[-σR^2].

  16. Shuttle Return To Flight Experimental Results: Cavity Effects on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Horvath, Thomas J.; Berry, Scott A.

    2006-01-01

    The effect of an isolated rectangular cavity on hypersonic boundary layer transition of the windward surface of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental study was initiated to provide a cavity effects database for developing hypersonic transition criteria to support on-orbit decisions to repair a damaged thermal protection system. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth. The database contained within this report will be used to formulate cavity-induced transition correlations using predicted boundary layer edge parameters.

  17. Current Status of the Beam Position Monitoring System at TLS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny

    2006-11-20

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This reportmore » summarizes the system structure, the software environment and the preliminary beam test of the BPM system.« less

  18. Current Status of the Beam Position Monitoring System at TLS

    NASA Astrophysics Data System (ADS)

    Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.

    2006-11-01

    The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.

  19. Vegetable Production System (Veggie)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.

    2016-01-01

    The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.

  20. Geometric Restraint Drives On- and Off-pathway Catalysis by the Escherichia coli Menaquinol:Fumarate Reductase*

    PubMed Central

    Tomasiak, Thomas M.; Archuleta, Tara L.; Andréll, Juni; Luna-Chávez, César; Davis, Tyler A.; Sarwar, Maruf; Ham, Amy J.; McDonald, W. Hayes; Yankovskaya, Victoria; Stern, Harry A.; Johnston, Jeffrey N.; Maklashina, Elena; Cecchini, Gary; Iverson, Tina M.

    2011-01-01

    Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of the C2–C3 double bond of activated fumarate parallel to the C(4a)–N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR. PMID:21098488

  1. Geometric Restraint Drives On- and Off-pathway Catalysis by the Escherichia coli Menaquinol:Fumarate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasiak, Thomas M.; Archuleta, Tara L.; Andréll, Juni

    2012-01-05

    Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of themore » C2-C3 double bond of activated fumarate parallel to the C(4a)-N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR.« less

  2. Orbits in elementary, power-law galaxy bars - 1. Occurrence and role of single loops

    NASA Astrophysics Data System (ADS)

    Struck, Curtis

    2018-05-01

    Orbits in galaxy bars are generally complex, but simple closed loop orbits play an important role in our conceptual understanding of bars. Such orbits are found in some well-studied potentials, provide a simple model of the bar in themselves, and may generate complex orbit families. The precessing, power ellipse (p-ellipse) orbit approximation provides accurate analytic orbit fits in symmetric galaxy potentials. It remains useful for finding and fitting simple loop orbits in the frame of a rotating bar with bar-like and symmetric power-law potentials. Second-order perturbation theory yields two or fewer simple loop solutions in these potentials. Numerical integrations in the parameter space neighbourhood of perturbation solutions reveal zero or one actual loops in a range of such potentials with rising rotation curves. These loops are embedded in a small parameter region of similar, but librating orbits, which have a subharmonic frequency superimposed on the basic loop. These loops and their librating companions support annular bars. Solid bars can be produced in more complex potentials, as shown by an example with power-law indices varying with radius. The power-law potentials can be viewed as the elementary constituents of more complex potentials. Numerical integrations also reveal interesting classes of orbits with multiple loops. In two-dimensional, self-gravitating bars, with power-law potentials, single-loop orbits are very rare. This result suggests that gas bars or oval distortions are unlikely to be long-lived, and that complex orbits or three-dimensional structure must support self-gravitating stellar bars.

  3. Port side view of the Orbiter Discovery from an elevated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Port side view of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the ground support hardware known as Strongbacks attached to the payload bay doors, the crew access hatch below the name Discovery on the forward section of the Orbiter and the removed Orbiter Maneuvering System/Reaction Control System pod from the aft (tai) section. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  4. Space Transportation Infrastructure Supported By Propellant Depots

    NASA Technical Reports Server (NTRS)

    Smitherman, David; Woodcock, Gordon

    2011-01-01

    A space transportation infrastructure is described that utilizes propellant depots to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicles such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to a Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing, and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. A Mars Orbital Depot is also described to support ongoing Mars missions. New concepts for vehicle designs are presented that can be launched on current 5-meter diameter expendable launch vehicles. These new reusable vehicle concepts include a LEO Depot, L1 Depot, and Mars Orbital Depot based on International Space Station (ISS) heritage hardware. The high-energy depots at L1 and Mars orbit are compatible with, but do not require, electric propulsion tug use for propellant and/or cargo delivery. New reusable in-space crew transportation vehicles include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot and the L1 Depot, a new reusable Lunar Lander for crew transportation between the L1 Depot and the lunar surface, and a Deep Space Habitat (DSH) to support crew missions from the L1 Depot to ESL2, Asteroid, and Mars destinations. A 6 meter diameter Mars lander concept is presented that can be launched without a fairing based on the Delta IV heavy Payload Planners Guide, which indicates feasibility of a 6.5 meter fairing. This lander would evolve to re-usable operations when propellant production is established on Mars. Figure 1 provides a summary of the possible missions this infrastructure can support. Summary mission profiles are presented for each primary mission capability. These profiles are the basis for propellant loads, numbers of vehicles/stages and launches for each mission capability. Data includes the number of launches required for each mission utilizing current expendable launch vehicle systems, and concluding remarks include ideas for reducing the number of launches through incorporation of heavy-lift launch vehicles, solar electric propulsion, and other transportation support concepts.

  5. Goddard Brouwer Orbit Bulletin

    NASA Technical Reports Server (NTRS)

    Morgan, D. B.; Gordon, R. A.

    1971-01-01

    The bulletin provides operational support for earth space research and technological missions by producing a tape containing pertinent spacecraft orbital information which is provided to a number of cities around the world in support of individual missions. A program description of the main and associated subroutines, and a complete description of the input, output and requirements of the bulletin program are presented.

  6. Study of a homotopy continuation method for early orbit determination with the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Huang, C.

    1986-01-01

    A recent mathematical technique for solving systems of equations is applied in a very general way to the orbit determination problem. The study of this technique, the homotopy continuation method, was motivated by the possible need to perform early orbit determination with the Tracking and Data Relay Satellite System (TDRSS), using range and Doppler tracking alone. Basically, a set of six tracking observations is continuously transformed from a set with known solution to the given set of observations with unknown solutions, and the corresponding orbit state vector is followed from the a priori estimate to the solutions. A numerical algorithm for following the state vector is developed and described in detail. Numerical examples using both real and simulated TDRSS tracking are given. A prototype early orbit determination algorithm for possible use in TDRSS orbit operations was extensively tested, and the results are described. Preliminary studies of two extensions of the method are discussed: generalization to a least-squares formulation and generalization to an exhaustive global method.

  7. Applicability of meteor radiant determination methods depending on orbit type. II. Low-eccentric orbits

    NASA Astrophysics Data System (ADS)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1994-08-01

    All known parent bodies of meteor showers belong to bodies moving in high-eccentricity orbits (e => 0.5). Recently, asteroids in low-eccentricity orbits (e < 0.5) approaching the Earth's orbit, were suggested as another population of possible parent bodies of meteor streams. This paper deals with the problem of calculation of meteor radiants connected with the bodies in low-eccentricity orbits from the point of view of optimal results depending on the method applied. The paper is a continuation of our previous analysis of high-eccentricity orbits (Svoren, J., Neslusan, L., Porubcan, V.: 1993, Contrib. Astron. Obs. Skalnate Pleso 23, 23). Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys. 7, 261) was applied. D <= 0.1 indicates a very good fit of orbits, 0.1 < D <= 0.2 is considered for a good fit and D > 0.2 means that the fit is rather poor and the change of orbit unrealistic. The optimal method, i.e. the one which results in the smallest D values for the population of low-eccentricity orbits, is that of adjusting the orbit by varying both the eccentricity and perihelion distance. A comparison of theoretical radiants obtained by various methods was made for typical representatives from each group of the NEA (near-Earth asteroids) objects.

  8. Solaris: Orbital station: Automatic laboratory for outer space rendezvous and operations

    NASA Technical Reports Server (NTRS)

    Runavot, J. J.

    1981-01-01

    The preliminary design for a modular orbital space station (unmanned) is outlined. The three main components are a support module, an experiment module, and an orbital transport vehicle. The major types of missions (assembly, materials processing, and Earth observation) that could be performed are discussed.

  9. Spaceflight mechanics 1992; Proceedings of the 2nd AAS/AIAA Meeting, Colorado Springs, CO, Feb. 24-26, 1992. Pts. 1 & 2

    NASA Astrophysics Data System (ADS)

    Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.

    The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.

  10. Spaceflight mechanics 1992; Proceedings of the 2nd AAS/AIAA Meeting, Colorado Springs, CO, Feb. 24-26, 1992. Pts. 1 & 2

    NASA Technical Reports Server (NTRS)

    Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)

    1992-01-01

    The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.

  11. Precise orbit determination based on raw GPS measurements

    NASA Astrophysics Data System (ADS)

    Zehentner, Norbert; Mayer-Gürr, Torsten

    2016-03-01

    Precise orbit determination is an essential part of the most scientific satellite missions. Highly accurate knowledge of the satellite position is used to geolocate measurements of the onboard sensors. For applications in the field of gravity field research, the position itself can be used as observation. In this context, kinematic orbits of low earth orbiters (LEO) are widely used, because they do not include a priori information about the gravity field. The limiting factor for the achievable accuracy of the gravity field through LEO positions is the orbit accuracy. We make use of raw global positioning system (GPS) observations to estimate the kinematic satellite positions. The method is based on the principles of precise point positioning. Systematic influences are reduced by modeling and correcting for all known error sources. Remaining effects such as the ionospheric influence on the signal propagation are either unknown or not known to a sufficient level of accuracy. These effects are modeled as unknown parameters in the estimation process. The redundancy in the adjustment is reduced; however, an improvement in orbit accuracy leads to a better gravity field estimation. This paper describes our orbit determination approach and its mathematical background. Some examples of real data applications highlight the feasibility of the orbit determination method based on raw GPS measurements. Its suitability for gravity field estimation is presented in a second step.

  12. KOI2138 -- a Spin-Orbit Aligned Intermediate Period Super-Earth

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.

    2015-11-01

    A planet's formation and evolution are encoded in spin-orbit alignment -- the planet's inclination relative to its star's equatorial plane. While the solar system's spin-orbit aligned planets indicate our own relatively quiescent history, many close-in giant planets show significant misalignment. Some planets even orbit retrograde! Hot Jupiters, then, have experienced fundamentally different histories than we experienced here in the solar system. In this presentation, I will show a new determination of the spin-orbit alignment of 2.1 REarth exoplanet candidate KOI2138. KOI2138 shows a gravity-darkened transit lightcurve that is consistent with spin-orbit alignment. This measurement is important because the only other super-Earth with an alignment determination (55 Cnc e, orbit period 0.74 days) is misaligned. With an orbital period of 23.55 days, KOI2138 is far enough from its star to avoid tidal orbit evolution. Therefore its orbit is likely primordial, and hence it may represent the tip of an iceberg of terrestrial, spin-orbit aligned planets that have histories that more closely resemble that of the solar system's terrestrial planets.

  13. Mission Design for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Beckman, Mark

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) will be the first mission under NASA's Vision for Space Exploration. LRO will fly in a low 50 km mean altitude lunar polar orbit. LRO will utilize a direct minimum energy lunar transfer and have a launch window of three days every two weeks. The launch window is defined by lunar orbit beta angle at times of extreme lighting conditions. This paper will define the LRO launch window and the science and engineering constraints that drive it. After lunar orbit insertion, LRO will be placed into a commissioning orbit for up to 60 days. This commissioning orbit will be a low altitude quasi-frozen orbit that minimizes stationkeeping costs during commissioning phase. LRO will use a repeating stationkeeping cycle with a pair of maneuvers every lunar sidereal period. The stationkeeping algorithm will bound LRO altitude, maintain ground station contact during maneuvers, and equally distribute periselene between northern and southern hemispheres. Orbit determination for LRO will be at the 50 m level with updated lunar gravity models. This paper will address the quasi-frozen orbit design, stationkeeping algorithms and low lunar orbit determination.

  14. Implementation of Altimetry Data in the GIPSY POD Software Package

    NASA Technical Reports Server (NTRS)

    Stauch, Jason R.; Gold, Kenn; Born, George H.

    2001-01-01

    Altimetry data has been used extensively to acquire data about characteristics of the Earth, the Moon, and Mars. More recently, the idea of using altimetry for orbit determination has also been explored. This report discusses modifications to JPL's GIPSY/OASIS II software to include altimetry data as an observation type for precise orbit determination. The mathematical foundation of using altimetry for the purpose of orbit determination is presented, along with results.

  15. Comparison of simulated heat transport in NSTX via high frequency Alfvén eigenmode-induced electron orbit modification with TRANSP power balance modeling

    NASA Astrophysics Data System (ADS)

    Crocker, N. A.; Tritz, K.; White, R. B.; Fredrickson, E. D.; Gorelenkov, N. N.; NSTX-U Team

    2016-10-01

    Compressional (CAE) and global (GAE) AEs have been hypothesized to cause an anomalously high electron thermal diffusivity (χe) routinely inferred via TRANSP power balance modeling in the core (r / a < 0.3) of NSTX beam heated plasmas. New simulations with the guiding-center code ORBIT test a leading proposed transport mechanism: electron orbit stochastization by multiple modes. Simulations with a set of modes identified as GAEs in a high performance, beam heated plasma-using experimentally determined amplitudes, frequencies and wave numbers-yield a χe insufficient to match TRANSP. To produce a comparable χe, the amplitudes must be increased by a factor of 10, which is outside the bounds of measurement uncertainty. Many observed modes, identified as CAEs, could not be included without modifications to ORBIT. These are in progress. However, given the uncertainties in identification, it is informative to calculate χe assuming all the observed modes are GAEs. This leads to substantially higher χe, although an amplitude increase by a factor > 3 is still necessary to match TRANSP. Supported by US DOE Contracts DE-SC0011810, DE-FG02-99ER54527 and DE-AC02-09CH11466.

  16. Relay Telecommunications for the Coming Decade of Mars Exploration

    NASA Technical Reports Server (NTRS)

    Edwards, C.; DePaula, R.

    2010-01-01

    Over the past decade, an evolving network of relay-equipped orbiters has advanced our capabilities for Mars exploration. NASA's Mars Global Surveyor, 2001 Mars Odyssey, and Mars Reconnaissance Orbiter (MRO), as well as ESA's Mars Express Orbiter, have provided telecommunications relay services to the 2003 Mars Exploration Rovers, Spirit and Opportunity, and to the 2007 Phoenix Lander. Based on these successes, a roadmap for continued Mars relay services is in place for the coming decade. MRO and Odyssey will provide key relay support to the 2011 Mars Science Laboratory (MSL) mission, including capture of critical event telemetry during entry, descent, and landing, as well as support for command and telemetry during surface operations, utilizing new capabilities of the Electra relay payload on MRO and the Electra-Lite payload on MSL to allow significant increase in data return relative to earlier missions. Over the remainder of the decade a number of additional orbiter and lander missions are planned, representing new orbital relay service providers and new landed relay users. In this paper we will outline this Mars relay roadmap, quantifying relay performance over time, illustrating planned support scenarios, and identifying key challenges and technology infusion opportunities.

  17. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report. Version 1.0

    NASA Technical Reports Server (NTRS)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S.; Kramer White, Julie; Labbe, Steve G.; Rotter, Hank A.

    2005-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments, and real-time on-orbit assessments. The tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  18. Flight Test Results from Real-Time Relative Global Positioning System Flight Experiment on STS-69

    NASA Technical Reports Server (NTRS)

    Park, Young W.; Brazzel, Jack P., Jr.; Carpenter, J. Russell; Hinkel, Heather D.; Newman, James H.

    1996-01-01

    A real-time global positioning system (GPS) Kalman filter has been developed to support automated rendezvous with the International Space Station (ISS). The filter is integrated with existing Shuttle rendezvous software running on a 486 laptop computer under Windows. In this work, we present real-time and postflight results achieved with the filter on STS-69. The experiment used GPS data from an Osborne/Jet propulsion Laboratory TurboRouge receiver carried on the Wake Shield Facility (WSF) free flyer and a Rockwell Collins 3M receiver carried on the Orbiter. Real time filter results, processed onboard the Shuttle and replayed in near-time on the ground, are based on single vehicle mode operation and on 5 to 20 minute snapshots of telemetry provided by WSF for dual-vehicle mode operation. The Orbiter and WSF state vectors calculated using our filter compare favorably with precise reference orbits determined by the University of Texas Center for Space Research. The lessons learned from this experiment will be used in conjunction with future experiments to mitigate the technology risk posed by automated rendezvous and docking to the ISS.

  19. Modification of an impulse-factoring orbital transfer technique to account for orbit determination and maneuver execution errors

    NASA Technical Reports Server (NTRS)

    Kibler, J. F.; Green, R. N.; Young, G. R.; Kelly, M. G.

    1974-01-01

    A method has previously been developed to satisfy terminal rendezvous and intermediate timing constraints for planetary missions involving orbital operations. The method uses impulse factoring in which a two-impulse transfer is divided into three or four impulses which add one or two intermediate orbits. The periods of the intermediate orbits and the number of revolutions in each orbit are varied to satisfy timing constraints. Techniques are developed to retarget the orbital transfer in the presence of orbit-determination and maneuver-execution errors. Sample results indicate that the nominal transfer can be retargeted with little change in either the magnitude (Delta V) or location of the individual impulses. Additonally, the total Delta V required for the retargeted transfer is little different from that required for the nominal transfer. A digital computer program developed to implement the techniques is described.

  20. MW-Class Electric Propulsion System Designs for Mars Cargo Transport

    NASA Technical Reports Server (NTRS)

    Gilland, James H.; LaPointe, Michael R.; Oleson, Steven; Mercer, Carolyn; Pencil, Eric; Maosn, Lee

    2011-01-01

    Multi-kilowatt electric propulsion systems are well developed and have been used on commercial and military satellites in Earth orbit for several years. Ion and Hall thrusters have also propelled robotic spacecraft to encounters with asteroids, the Moon, and minor planetary bodies within the solar system. High power electric propulsion systems are currently being considered to support piloted missions to near earth asteroids, as cargo transport for sustained lunar or Mars exploration, and for very high-power piloted missions to Mars and the outer planets. Using NASA Mars Design Architecture 5.0 as a reference, a preliminary parametric analysis was performed to determine the suitability of a nuclear powered, MW-class electric propulsion system for Mars cargo transport. For this initial analysis, high power 100-kW Hall thrusters and 250-kW VASIMR engines were separately evaluated to determine optimum vehicle architecture and estimated performance. The DRA 5.0 cargo mission closed for both propulsion options, delivering a 100 t payload to Mars orbit and reducing the number of heavy lift launch vehicles from five in the baseline DRA 5.0 architecture to two using electric propulsion. Under an imposed single engine-out mission success criteria, the VASIMR system took longer to reach Mars than did the Hall system, arising from the need to operate the VASIMR thrusters in pairs during the spiral out from low Earth orbit.

  1. Astrometry, radial velocity, and photometry: the HD 128311 system remixed with data from HST, HET, and APT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McArthur, Barbara E.; Benedict, G. Fritz.; Cochran, William D.

    We have used high-cadence radial velocity measurements from the Hobby-Eberly Telescope with published velocities from the Lick 3 m Shane Telescope, combined with astrometric data from the Hubble Space Telescope (HST) Fine Guidance Sensors to refine the orbital parameters of the HD 128311 system, and determine an inclination of 55.°95 ± 14.°55 and true mass of 3.789 {sub −0.432}{sup +0.924} M {sub JUP} for HD 128311 c. The combined radial velocity data also reveal a short period signal which could indicate a third planet in the system with an Msin i of 0.133 ± 0.005 M {sub JUP} or stellarmore » phenomena. Photometry from the T12 0.8 m automatic photometric telescope at the Fairborn Observatory and HST are used to determine a photometric period close to, but not within the errors of the radial velocity signal. We performed a cross-correlation bisector analysis of the radial velocity data to look for correlations with the photometric period and found none. Dynamical integrations of the proposed system show long-term stability with the new orbital parameters of over 10 million years. Our new orbital elements do not support the claims of HD 128311 b and c being in mean motion resonance.« less

  2. The Ocean Surface Topography Sentinel-6/Jason-CS Mission

    NASA Astrophysics Data System (ADS)

    Giulicchi, L.; Cullen, R.; Donlon, C.; Vuilleumier@esa int, P.

    2016-12-01

    The Sentinel-6/Jason-CS mission consists of two identical satellites flying in sequence and designed to provide operational measurements of sea surface height significant wave high and wind speed to support operational oceanography and climate monitoring. The mission will be the latest in a series of ocean surface topography missions that will span nearly three decades. They follow the altimeters on- board TOPEX/Poseidon through to Jason-3 (launched in January 2016). Jason-CS will continue to fulfil objectives of the reference series whilst introducing a major enhancement in capability providing the operational and science oceanographic community with the state of the art in terms of spacecraft, measurement instrumentation design thus securing optimal operational and science data return. As a secondary objective the mission will also include Radio Occultation user services. Each satellite will be launched sequentially into the Jason orbit (up to 66 latitude) respectively in 2020 and 2025. The principle payload instrument is a high precision Ku/C band radar altimeter with retrieval of geophysical parameters (surface elevation, wind speed and SWH) from the altimeter data require supporting measurements: a DORIS receiver for Precise Orbit Determination; The Climate Quality Advanced Microwave Radiometer (AMR-C) for high stability path delay correction. Orbit tracking data are also provided by GPS & LRA. An additional GPS receiver will be dedicated to radio-occultation measurements. The programme is a part of the European Community Copernicus initiative, whose objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. The Sentinel-6/Jason-CS in particular is a cooperative mission with contributions from NASA, NOAA, EUMETSAT, ESA, CNES and the European Union.

  3. Orbital service module systems analysis study documentation. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Potentially feasible system concepts for providing additional power, thermal control, and attitude to the baseline orbiter were investigated in order to support a greater variety of space missions and to extend the orbiter's ability to remain in orbit. Results of these analyses include an incremental growth plan that offers the flexibility of adding capability as, and when, it is needed in order to satisfy emerging user requirements.

  4. The Importance of Semi-Major Axis Knowledge in the Determination of Near-Circular Orbits

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Schiesser, Emil R.

    1998-01-01

    Modem orbit determination has mostly been accomplished using Cartesian coordinates. This usage has carried over in recent years to the use of GPS for satellite orbit determination. The unprecedented positioning accuracy of GPS has tended to focus attention more on the system's capability to locate the spacecraft's location at a particular epoch than on its accuracy in determination of the orbit, per se. As is well-known, the latter depends on a coordinated knowledge of position, velocity, and the correlation between their errors. Failure to determine a properly coordinated position/velocity state vector at a given epoch can lead to an epoch state that does not propagate well, and/or may not be usable for the execution of orbit adjustment maneuvers. For the quite common case of near-circular orbits, the degree to which position and velocity estimates are properly coordinated is largely captured by the error in semi-major axis (SMA) they jointly produce. Figure 1 depicts the relationships among radius error, speed error, and their correlation which exist for a typical low altitude Earth orbit. Two familiar consequences are the relationship Figure 1 shows are the following: (1) downrange position error grows at the per orbit rate of 3(pi) times the SMA error; (2) a velocity change imparted to the orbit will have an error of (pi) divided by the orbit period times the SMA error. A less familiar consequence occurs in the problem of initializing the covariance matrix for a sequential orbit determination filter. An initial covariance consistent with orbital dynamics should be used if the covariance is to propagate well. Properly accounting for the SMA error of the initial state in the construction of the initial covariance accomplishes half of this objective, by specifying the partition of the covariance corresponding to down-track position and radial velocity errors. The remainder of the in-plane covariance partition may be specified in terms of the flight path angle error of the initial state. Figure 2 illustrates the effect of properly and not properly initializing a covariance. This figure was produced by propagating the covariance shown on the plot, without process noise, in a circular low Earth orbit whose period is 5828.5 seconds. The upper subplot, in which the proper relationships among position, velocity, and their correlation has been used, shows overall error growth, in terms of the standard deviations of the inertial position coordinates, of about half of the lower subplot, whose initial covariance was based on other considerations.

  5. Current Status of Programs and Research within the NASA Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Bacon, Jack

    2016-01-01

    The NASA Orbital Debris Program Office (ODPO) is the world's longest-standing orbital debris research organization. It supports all aspects of international and US national policy-making related to the orbital environment and to spacecraft life cycle requirements. Representing more than just NASA projects, it is the United States' center of expertise in the field. The office continues to advance research in all aspects of orbital debris, including its measurement, modeling, and risk assessment for both orbital and ground safety concerns. This presentation will highlight current activities and recent progress in all aspects of the ODPO's mission.

  6. Closeup view of the nose and landing gear on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the nose and landing gear on the forward section of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The Orbiter is being supported by jack stands in the left and right portion of the view. The jack stands attach to the Orbiter at the four hoist attach points, two located on the forward fuselage and two on the aft fuselage. Note the access platforms that surround and nearly touch the orbiter. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  7. On-orbit flight control algorithm description

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Algorithms are presented for rotational and translational control of the space shuttle orbiter in the orbital mission phases, which are external tank separation, orbit insertion, on-orbit and de-orbit. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. Software functional requirements are described using block diagrams where feasible, and input--output tables, and the software implementation of each function is presented in equations and structured flow charts. Included are a glossary of all symbols used to define the requirements, and an appendix of supportive material.

  8. Independent Orbiter Assessment (IOA): Assessment of the life support and airlock support systems, volume 2

    NASA Technical Reports Server (NTRS)

    Barickman, K.

    1988-01-01

    The McDonnell Douglas Astronautics Company (MDAC) was selected in June 1986 to perform an Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL). The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. Volume 2 continues the presentation of IOA worksheets and contains the critical items list and NASA FMEA to IOA worksheet cross reference and recommendations.

  9. Extended mission life support systems

    NASA Technical Reports Server (NTRS)

    Quattrone, P. D.

    1985-01-01

    Extended manned space missions which include interplanetary missions require regenerative life support systems. Manned mission life support considerations are placed in perspective and previous manned space life support system technology, activities and accomplishments in current supporting research and technology (SR&T) programs are reviewed. The life support subsystem/system technologies required for an enhanced duration orbiter (EDO) and a space operations center (SOC), regenerative life support functions and technology required for manned interplanetary flight vehicles, and future development requirements are outlined. The Space Shuttle Orbiters (space transportation system) is space cabin atmosphere is maintained at Earth ambient pressure of 14.7 psia (20% O2 and 80% N2). The early Shuttle flights will be seven-day flights, and the life support system flight hardware will still utilize expendables.

  10. Infrared Spectroscopy of Symbiotic Stars. XI. Orbits for Southern S-type Systems: Hen 3-461, SY Mus, Hen 3-828, AND AR Pav

    NASA Astrophysics Data System (ADS)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Wood, Peter R.

    2017-01-01

    Employing new infrared radial velocities, we have computed spectroscopic orbits of the cool giants in four southern S-type symbiotic systems. The orbits for two of the systems, Hen 3-461 and Hen 3-828, have been determined for the first time, while orbits of the other two, SY Mus and AR Pav, have previously been determined. For the latter two systems, we compare our results with those in the literature. The low mass of the secondary of SY Mus suggests that it has gone through a common envelope phase. Hen 3-461 has an orbital period of 2271 days, one of the longest currently known for S-type symbiotic systems. That period is very different from the orbital period proposed previously from its photometric variations. The other three binaries have periods between 600 and 700 day, values that are typical for S-type symbiotic orbits. Basic properties of the M giant components and the distance to each system are determined.

  11. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. XI. ORBITS FOR SOUTHERN S-TYPE SYSTEMS: HEN 3-461, SY MUS, HEN 3-828, AND AR PAV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.

    Employing new infrared radial velocities, we have computed spectroscopic orbits of the cool giants in four southern S-type symbiotic systems. The orbits for two of the systems, Hen 3-461 and Hen 3-828, have been determined for the first time, while orbits of the other two, SY Mus and AR Pav, have previously been determined. For the latter two systems, we compare our results with those in the literature. The low mass of the secondary of SY Mus suggests that it has gone through a common envelope phase. Hen 3-461 has an orbital period of 2271 days, one of the longest currently known for S-type symbiotic systems.more » That period is very different from the orbital period proposed previously from its photometric variations. The other three binaries have periods between 600 and 700 day, values that are typical for S-type symbiotic orbits. Basic properties of the M giant components and the distance to each system are determined.« less

  12. Phase change paint tests on Rockwell orbiter/tank and orbiter alone configurations (OH3A/OH3B)

    NASA Technical Reports Server (NTRS)

    Quan, M.; Craig, C.

    1974-01-01

    Wind tunnel tests were conducted on scale models of the space shuttle orbiter and external tank. The tests were designed to determine the basic heating rate and interference effects on the orbiter-tank configuration and to analyze the effectiveness of the thermal protective system on the reentry vehicle. The phase change paint techniques were used to determine areodynamic heating rates. Oil flow and schlieren photographs were used for flow visualization.

  13. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  14. Highlights of Recent Research Activities at the NASA Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Liou, J - C.

    2017-01-01

    The NASA Orbital Debris Program Office (ODPO) was established at the NASA Johnson Space Center in 1979. The ODPO has initiated and led major orbital debris research activities over the past 38 years, including developing the first set of the NASA orbital debris mitigation requirements in 1995 and supporting the establishment of the U.S. Government Orbital Debris Mitigation Standard Practices in 2001. This paper is an overview of the recent ODPO research activities, ranging from ground-based and in-situ measurements, to laboratory tests, and to engineering and long-term orbital debris environment modeling. These activities highlight the ODPO's commitment to continuously improve the orbital debris environment definition to better protect current and future space missions from the low Earth orbit to the geosynchronous Earth orbit regions.

  15. Manned Orbital Transfer Vehicle (MOTV). Volume 6: Five year program plan

    NASA Technical Reports Server (NTRS)

    Boyland, R. E.; Sherman, S. W.; Morfin, H. W.

    1979-01-01

    The five year program plan for the manned orbit transfer vehicle (MOTV) is presented. The planning, schedules, cost estimates, and supporting data (objectives, constraints, assumptions, etc.) associated with the development of the MOTV are discussed. The plan, in addition to the above material, identifies the supporting research and technology required to resolve issues critical to MOTV development.

  16. Orbital operations study. Volume 2: Interfacing activities analysis. Part 4: Support operations activity group

    NASA Technical Reports Server (NTRS)

    Steinwachs, W. L.; Patrick, J. W.; Galvin, D. M.; Turkel, S. H.

    1972-01-01

    The findings of the support operations activity group of the orbital operations study are presented. Element interfaces, alternate approaches, design concepts, operational procedures, functional requirements, design influences, and approach selection are presented. The following areas are considered: (1) crew transfer, (2) cargo transfer, (3) propellant transfer, (4) attached element operations, and (5) attached element transport.

  17. IDS plot tools for time series of DORIS station positions and orbit residuals

    NASA Astrophysics Data System (ADS)

    Soudarin, L.; Ferrage, P.; Moreaux, G.; Mezerette, A.

    2012-12-01

    DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) is a Doppler satellite tracking system developed for precise orbit determination and precise ground location. It is onboard the Cryosat-2, Jason-1, Jason-2 and HY-2A altimetric satellites and the remote sensing satellites SPOT-4 and SPOT-5. It also flew with SPOT-2, SPOT-3, TOPEX/POSEIDON and ENVISAT. Since 1994 and thanks to its worldwide distributed network of more than fifty permanent stations, DORIS contributes to the realization and maintenance of the ITRS (International Terrestrial Reference System). 3D positions and velocities of the reference sites at a cm and mm/yr accuracy lead to scientific studies in geodesy and geophysics. The primary objective of the International DORIS Service (IDS) is to provide a support, through DORIS data and products, to research and operational activities. In order to promote the use of the DORIS products, the IDS has made available on its web site (ids-doris.org) a new set of tools, called Plot tools, to interactively build and display graphs of DORIS station coordinates time series and orbit residuals. These web tools are STCDtool providing station coordinates time series (North, East, Up position evolution) from the IDS Analysis Centers, and POEtool providing statistics time series (orbit residuals and number of measurements for the DORIS stations) from CNES (the French Space Agency) Precise Orbit Determination processing. Complementary data about station and satellites events can also be displayed (e.g. antenna changes, system failures, degraded data...). Information about earthquakes obtained from USGS survey service can also be superimposed on the position time series. All these events can help in interpreting the discontinuities in the time series. The purpose of this presentation is to show the functionalities of these tools and their interest for the monitoring of the crustal deformation at DORIS sites.

  18. HEARTBEAT STARS: SPECTROSCOPIC ORBITAL SOLUTIONS FOR SIX ECCENTRIC BINARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smullen, Rachel A.; Kobulnicky, Henry A., E-mail: rsmullen@email.arizona.edu

    2015-08-01

    We present multi-epoch spectroscopy of “heartbeat stars,” eccentric binaries with dynamic tidal distortions and tidally induced pulsations originally discovered with the Kepler satellite. Optical spectra of six known heartbeat stars using the Wyoming Infrared Observatory 2.3 m telescope allow measurement of stellar effective temperatures and radial velocities from which we determine orbital parameters including the periods, eccentricities, approximate mass ratios, and component masses. These spectroscopic solutions confirm that the stars are members of eccentric binary systems with eccentricities e > 0.34 and periods P = 7–20 days, strengthening conclusions from prior works that utilized purely photometric methods. Heartbeat stars inmore » this sample have A- or F-type primary components. Constraints on orbital inclinations indicate that four of the six systems have minimum mass ratios q = 0.3–0.5, implying that most secondaries are probable M dwarfs or earlier. One system is an eclipsing, double-lined spectroscopic binary with roughly equal-mass mid-A components (q = 0.95), while another shows double-lined behavior only near periastron, indicating that the F0V primary has a G1V secondary (q = 0.65). This work constitutes the first measurements of the masses of secondaries in a statistical sample of heartbeat stars. The good agreement between our spectroscopic orbital elements and those derived using a photometric model support the idea that photometric data are sufficient to derive reliable orbital parameters for heartbeat stars.« less

  19. Spaceport aurora: An orbiting transportation node

    NASA Technical Reports Server (NTRS)

    1990-01-01

    With recent announcements of the development of permanently staffed facilities on the Moon and Mars, the national space plan is in need of an infrastructure system for transportation and maintenance. A project team at the University of Houston College of Architecture and the Sasakawa International Center for Space Architecture, recently examined components for a low Earth orbit (LEO) transportation node that supports a lunar build-up scenario. Areas of investigation included identifying transportation node functions, identifying existing space systems and subsystems, analyzing variable orbits, determining logistics strategies for maintenance, and investigating assured crew return systems. The information resulted in a requirements definition document, from which the team then addressed conceptual designs for a LEO transportation node. The primary design drivers included: orbital stability, maximizing human performance and safety, vehicle maintainability, and modularity within existing space infrastructure. For orbital stability, the power tower configuration provides a gravity gradient stabilized facility and serves as the backbone for the various facility components. To maximize human performance, human comfort is stressed through zoning of living and working activities, maintaining a consistent local vertical orientation, providing crew interaction and viewing areas and providing crew return vehicles. Vehicle maintainability is accomplished through dual hangars, dual work cupolas, work modules, telerobotics and a fuel depot. Modularity is incorporated using Space Station Freedom module diameter, Space Station Freedom standard racks, and interchangeable interior partitions. It is intended that the final design be flexible and adaptable to provide a facility prototype that can service multiple mission profiles using modular space systems.

  20. Determining characteristics of artificial near-Earth objects using observability analysis

    NASA Astrophysics Data System (ADS)

    Friedman, Alex M.; Frueh, Carolin

    2018-03-01

    Observability analysis is a method for determining whether a chosen state of a system can be determined from the output or measurements. Knowledge of state information availability resulting from observability analysis leads to improved sensor tasking for observation of orbital debris and better control of active spacecraft. This research performs numerical observability analysis of artificial near-Earth objects. Analysis of linearization methods and state transition matrices is performed to determine the viability of applying linear observability methods to the nonlinear orbit problem. Furthermore, pre-whitening is implemented to reformulate classical observability analysis. In addition, the state in observability analysis is typically composed of position and velocity; however, including object characteristics beyond position and velocity can be crucial for precise orbit propagation. For example, solar radiation pressure has a significant impact on the orbit of high area-to-mass ratio objects in geosynchronous orbit. Therefore, determining the time required for solar radiation pressure parameters to become observable is important for understanding debris objects. In order to compare observability analysis results with and without measurement noise and an extended state, quantitative measures of observability are investigated and implemented.

  1. Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Satellite attitude determination and control, orbit determination, and onboard and ground attitude determination procedures are among the topics discussed. Other topics covered include: effect of atmosphere on Venus orbiter navigation; satellite-to-satellite tracking; and satellite onboard navigation using global positioning system data.

  2. Russian Countermeasure Systems for Adverse Effects of Microgravity on Long-Duration ISS Flights.

    PubMed

    Kozlovskaya, Inessa B; Yarmanova, E N; Yegorov, A D; Stepantsov, V I; Fomina, E V; Tomilovaskaya, E S

    2015-12-01

    The system of countermeasures for the adverse effects of microgravity developed in the USSR supported the successful implementation of long-duration spaceflight (LDS) programs on the Salyut and Mir orbital stations and was subsequently adapted for flights on the International Space Station (ISS). From 2000 through 2010, crews completed 26 ISS flight increments ranging in duration from 140 to 216 d, with the participation of 27 Russian cosmonauts. These flights have made it possible to more precisely determine a crew-member's level of conditioning, better assess the advantages and disadvantages of training processes, and determine prospects for future developments.

  3. Mission Control Center (MCC) System Specification for the Shuttle Orbital Flight Test (OFT) Timeframe

    NASA Technical Reports Server (NTRS)

    1976-01-01

    System specifications to be used by the mission control center (MCC) for the shuttle orbital flight test (OFT) time frame were described. The three support systems discussed are the communication interface system (CIS), the data computation complex (DCC), and the display and control system (DCS), all of which may interfere with, and share processing facilities with other applications processing supporting current MCC programs. The MCC shall provide centralized control of the space shuttle OFT from launch through orbital flight, entry, and landing until the Orbiter comes to a stop on the runway. This control shall include the functions of vehicle management in the area of hardware configuration (verification), flight planning, communication and instrumentation configuration management, trajectory, software and consumables, payloads management, flight safety, and verification of test conditions/environment.

  4. Gateway: An earth orbiting transportation node

    NASA Technical Reports Server (NTRS)

    1988-01-01

    University of Texas Mission Design (UTMD) has outlined the components that a space based transportation facility must include in order to support the first decade of Lunar base buildup. After studying anticipated traffic flow to and from the hub, and taking into account crew manhour considerations, propellant storage, orbital transfer vehicle maintenance requirements, and orbital mechanics, UTMD arrived at a design for the facility. The amount of activity directly related to supporting Lunar base traffic is too high to allow the transportation hub to be part of the NASA Space Station. Instead, a separate structure should be constructed and dedicated to handling all transportation-related duties. UTMD found that the structure (named Gateway) would need a permanent crew of four to perform maintenance tasks on the orbital transfer and orbital maneuvering vehicles and to transfer payload from launch vehicles to the orbital transfer vehicles. In addition, quarters for 4 more persons should be allocated for temporary accommodation of Lunar base crew passing through Gateway. UTMD was careful to recommend an expendable structure that can adapt to meet the growing needs of the American space program.

  5. 1-Pentamethylbenzyl-3-(n)buthylbenzimidazolesilver(I)bromide complex: synthesis, characterization and DFT calculations.

    PubMed

    Kunduracıoğlu, Ahmet; Tamer, Ömer; Avcı, Davut; Kani, Ibrahim; Atalay, Yusuf; Cetinkaya, Bekir

    2014-01-01

    A novel NHC complex of silver(I) ion, 1-pentamethylbenzyl-3-(n)buthylbenzimidazolesilver(I)bromide, was prepared and fully characterized by single crystal X-ray structure determination. FT-IR, NMR and UV-vis spectroscopies were employed to investigate the electronic transition behaviors of the complex. Additionally, the molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) (1)H and (13)C chemical shift and electronic transition values of silver(I) complex were calculated by using density functional theory levels (B3LYP and PBE1PBE) with LANL2DZ basis set. Also, the vibrational frequencies were supported on the basis of the potential energy distribution (PED) analysis calculated for PBE1PBE level. We were also investigated total static dipole moment (μ), the mean polarizability (〈α〉), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (〈β〉) of the title complex. Natural bond orbital (NBO) analysis was performed to determine the presence of hyperconjugative interactions, and charge distributions. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System †

    PubMed Central

    Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei

    2017-01-01

    Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event. PMID:28556802

  7. FORTE Compact Intra-cloud Discharge Detection parameterized by Peak Current

    NASA Astrophysics Data System (ADS)

    Heavner, M. J.; Suszcynsky, D. M.; Jacobson, A. R.; Heavner, B. D.; Smith, D. A.

    2002-12-01

    The Los Alamos Sferic Array (EDOT) has recorded over 3.7 million lightning-related fast electric field change data records during April 1 - August 31, 2001 and 2002. The events were detected by three or more stations, allowing for differential-time-of-arrival location determination. The waveforms are characterized with estimated peak currents as well as by event type. Narrow Bipolar Events (NBEs), the VLF/LF signature of Compact Intra-cloud Discharges (CIDs), are generally isolated pulses with identifiable ionospheric reflections, permitting determination of event source altitudes. We briefly review the EDOT characterization of events. The FORTE satellite observes Trans-Ionospheric Pulse Pairs (TIPPs, the VHF satellite signature of CIDs). The subset of coincident EDOT and FORTE CID observations are compared with the total EDOT CID database to characterize the VHF detection efficiency of CIDs. The NBE polarity and altitude are also examined in the context of FORTE TIPP detection. The parameter-dependent detection efficiencies are extrapolated from FORTE orbit to GPS orbit in support of the V-GLASS effort (GPS based global detection of lightning).

  8. Multi-Site Simultaneous Time-Resolved Photometry with a Low Cost Electro-Optics System.

    PubMed

    Gasdia, Forrest; Barjatya, Aroh; Bilardi, Sergei

    2017-05-30

    Sunlight reflected off of resident space objects can be used as an optical signal for astrometric orbit determination and for deducing geometric information about the object. With the increasing population of small satellites and debris in low Earth orbit, photometry is a powerful tool in operational support of space missions, whether for anomaly resolution or object identification. To accurately determine size, shape, spin rate, status of deployables, or attitude information of an unresolved resident space object, multi-hertz sample rate photometry is required to capture the relatively rapid changes in brightness that these objects can exhibit. OSCOM, which stands for Optical tracking and Spectral characterization of CubeSats for Operational Missions, is a low cost and portable telescope system capable of time-resolved small satellite photometry, and is field deployable on short notice for simultaneous observation from multiple sites. We present the electro-optical design principles behind OSCOM and light curves of the 1.5 U DICE-2 CubeSat and simultaneous observations of the main body of the ASTRO-H satellite after its fragmentation event.

  9. The Compositions, Particle Sizes, and Distributions of Ice Aerosols in the Mars Mesosphere from 2009-2016 CRISM Visible-NearIR Limb Spectra

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Smith, M. D.; Wolff, M. J.; Toigo, A. D.; Seelos, K. D.; Murchie, S. L.

    2016-12-01

    Since 2009, the CRISM visible-nearIR imaging spectrometer onboard the Mars Reconnaissance Orbiter (MRO) has returned over 70 orbits of Mars limb image scans over the 0-130 km altitude range. Pole-to-pole latitudinal coverage is obtained from the near-polar, sun-synchronous (LT 3pm) MRO orbit for a limited set of surface longitudes centered on Tharsis, Valles Mariners, Meridioni, and Hellas regions. Seasonal coverage extends over the full seasonal range (Ls=0-360°), as accumulated over 2009-2016 (MY 29-33), supporting a range of aerosol and airglow studies (Smith et al., 2013; Clancy et al., 2012, 2013). The 0.4-4.0 μm wavelength range of these CRISM limb observations proves particularly suitable to characterizing aerosol composition and particle sizes, particularly for the Mars mesosphere (z=50-100 km), which has only recently been observed with any dedication by MCS (Sefton-Nash et al, 2013) and CRISM limb measurements. Dust and H2O, CO2 ice aerosols are clearly distinguished by their distinct scattering and absorption behaviors over the key 2-4 μm wavelength region, and their particle sizes are well determined by the 0.4-3 μm wavelength region. Several key attributes are determined for Mars mesospheric aerosols. Dust aerosols are largely undetected, and are apparently injected to such heights only during global dust storms (Clancy et al, 2010). Ice clouds are generally common at 55-75 km altitudes, although in separate halves of the Mars year. CO2 and H2O ice clouds are most prominent during the aphelion and perihelion portions of the Mars orbit, respectively. CO2 ice clouds, which occur at low latitudes over specific surface longitudes, present distinct particle size populations ranging from 0.5 to 1.5 μm (Reff). Mesospheric H2O ice clouds exhibit somewhat smaller particle sizes (Reff=0.3-1 μm) and extend over low to mid latitudes. This orbital dependence for mesospheric ice aerosol composition indicates extreme annual (orbital) variation in mesospheric water vapor.

  10. Genetic Algorithm for Initial Orbit Determination with Too Short Arc (Continued)

    NASA Astrophysics Data System (ADS)

    Li, Xin-ran; Wang, Xin

    2017-04-01

    When the genetic algorithm is used to solve the problem of too short-arc (TSA) orbit determination, due to the difference of computing process between the genetic algorithm and the classical method, the original method for outlier deletion is no longer applicable. In the genetic algorithm, the robust estimation is realized by introducing different loss functions for the fitness function, then the outlier problem of the TSA orbit determination is solved. Compared with the classical method, the genetic algorithm is greatly simplified by introducing in different loss functions. Through the comparison on the calculations of multiple loss functions, it is found that the least median square (LMS) estimation and least trimmed square (LTS) estimation can greatly improve the robustness of the TSA orbit determination, and have a high breakdown point.

  11. Precise Orbit Determination Of Low Earth Satellites At AIUB Using GPS And SLR Data

    NASA Astrophysics Data System (ADS)

    Jaggi, A.; Bock, H.; Thaller, D.; Sosnica, K.; Meyer, U.; Baumann, C.; Dach, R.

    2013-12-01

    An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Institute of the University of Bern (AIUB) LEO precise orbit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numerical integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to efficiently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circulation Explorer (GOCE).

  12. Decrease in the orbital period of Hercules X-1

    NASA Technical Reports Server (NTRS)

    Deeter, John E.; Boynton, Paul E.; Miyamoto, Sigenori; Kitamoto, Shunji; Nagase, Fumiaki; Kawai, Nobuyuki

    1991-01-01

    From a pulse-timing analysis of Ginga observations of the binary X-ray pulsar Her X-1 obtained during the interval 1989 April-June local orbital parameters are determined for a short high state. An orbital epoch is also determined in the adjacent main high state. By comparing these orbital solutions with previously published results, a decrease is detected in the orbital period for Her X-1 over the interval 1971-1989. The value is substantially larger than the value predicted from current estimates of the mass-transfer rate, and motivates consideration of other mechanisms of mass transfer and/or mass loss. A second result from these observations is a close agreement between orbital parameters determined separately in main high and short high states. This agreement places strong constraints on the obliquity of the stellar companion, HZ Her, if undergoing forced precession with a 35-day period. As a consequence further doubt is placed on the slaved-disk model as the underlying cause of the 35-day cycle in Her X-1.

  13. Summary of the orbit determination of NOZOMI spacecraft for all the mission period

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Makoto; Kawaguchi, Jun'Ichiro; Yamakawa, Hiroshi; Kato, Takaji; Ichikawa, Tsutomu; Ohnishi, Takafumi; Ishibashi, Shiro

    2005-07-01

    Japanese first Mars explorer NOZOMI, which was launched in July 1998, suffered several problems during the operation period of more than five years. It could have reached near Mars at the end of 2003, but it was not put into the orbit around Mars. Although NOZOMI was not able to execute its main mission, it provided us a lot of good experiences from the point of the orbit determination of spacecraft. One of the most difficult works was the orbit determination for the period without the telemetry. In this period, for the most of the time the high gain antenna did not point to the earth because of a constraint of the attitude. Therefore, the quality of the tracking data was not good, and for some period it was impossible to get the tracking data at all. Under such critical condition, we managed to get the solution of the orbit, and in a near-miraculous way, we were able to control NOZOMI and execute two earth swingbys successfully. Other issues related to the orbit determination are the spin modulation, the solar radiation pressure, the small force related to the attitude change, and the solar conjunction. We tried to solve these issues by the conventional way using range and Doppler data. However, we also tried the new method, that is the orbit determination by using the Delta-VLBI method (VLBI: Very Long Baseline Interferometry). In addition to this, we tried optical observations of NOZOMI at the earth swingbys.

  14. STS-49 Astronaut By Mission Peculiar Equipment Support Structure (MPESS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49, the first flight of the Space Shuttle Orbiter Endeavour, lifted off from launch pad 39B on May 7, 1992 at 6:40 pm CDT. The STS-49 mission was the first U.S. orbital flight to feature 4 extravehicular activities (EVAs), and the first flight to involve 3 crew members working simultaneously outside of the spacecraft. The primary objective was the capture and redeployment of the INTELSAT VI (F-3), a communication satellite for the International Telecommunication Satellite organization, which was stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. In this onboard photo, astronaut Thomas Akers is positioned near the Mission Peculiar Equipment Support Structure (MPESS) in the cargo bay. The MPESS, developed by Marshall Space Flight Center, was used to support experiments.

  15. Spin-orbit-torque-induced skyrmion dynamics for different types of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Kim, Kyoung-Whan; Lee, Hyun-Woo; Lee, Kyung-Jin

    2018-06-01

    We investigate current-induced skyrmion dynamics in the presence of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque corresponding to various types of spin-orbit coupling. We determine the symmetries of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque based on linear spin-orbit coupling model. We find that like interfacial Dzyaloshinskii-Moriya interaction (Rashba spin-orbit coupling) and bulk Dzyaloshinskii-Moriya interaction (Weyl spin-orbit coupling), Dresselhaus spin-orbit coupling also has a possibility for stabilizing skyrmion and current-induced skyrmion dynamics.

  16. Source Determination for Substorm-Related Ion Injections

    NASA Technical Reports Server (NTRS)

    Strangeway, Robert J.; Evans, David (Technical Monitor)

    2001-01-01

    The grant supported an effort to restore and analyze data from the Spacecraft Charging at High Altitude (SCATHA) spacecraft. This spacecraft, which was originally an Air Force mission, was launched into a near geo-synchronous orbit in early 1979 to, investigate the inner magnetosphere at altitudes where it was known that spacecraft can undergo significant charging events. SCATHA included an ion composition experiment (designated SC8) and in many ways was a precursor to other missions, such as the AMPTE Charge Composition Explorer.

  17. The spinning artificial gravity environment: A design project

    NASA Technical Reports Server (NTRS)

    Pignataro, Robert; Crymes, Jeff; Marzec, Tom; Seibert, Joe; Walker, Gary

    1987-01-01

    The SAGE, or Spinning Artificial Gravity Environment, design was carried out to develop an artificial gravity space station which could be used as a platform for the performance of medical research to determine the benefits of various, fractional gravity levels for astronauts normally subject to zero gravity. Desirable both for its medical research mission and a mission for the study of closed loop life-support and other factors in prolonged space flight, SAGE was designed as a low Earth orbiting, solar powered, manned space station.

  18. On-orbit spacecraft/stage servicing during STS life cycle

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A comprehensive and repesentative set of shuttle payloads was identified for shuttle and space station servicing missions. The classes of servicing functions were determined and the general servicing support required for the set of referenced spacecraft was allocated. A candidtate strawman space station was depicted from a synthesis of space station concepts derived from NASA space station architecture studies done by eight contractors. The shuttle servicing hardware and kits were identified and their applicability in transitioning servicing capability to the space station was evaluated.

  19. Orbiting quarantine facility. The Antaeus report

    NASA Technical Reports Server (NTRS)

    Devincenzi, D. L. (Editor); Bagby, J. R. (Editor)

    1981-01-01

    A mission plan for the Orbiting Quarantine Facility (OQF) is presented. Coverage includes system overview, quarantine and protocol, the laboratory, support systems, cost analysis and possible additional uses of the OQF.

  20. The History of Orbiter Corrosion Control (1981 - 2011)

    NASA Technical Reports Server (NTRS)

    Russell, Richard W.

    2014-01-01

    After 135 missions and 30 years the Orbiter fleet was retired in 2011. Working with Orbiter project management and a world class engineering team the CCRB was successful in providing successful sustaining engineering support for approximately 20 years. Lessons learned from the Orbiter program have aided NASA and contractor engineers in the design and manufacture of new spacecraft so that exploration of space can continue. The Orbiters are proudly being displayed for all the public to see in New York City, Washington D.C., Los Angeles, and at the Kennedy Space Center in Florida.

  1. A Class of Selenocentric Retrograde Orbits With Innovative Applications to Human Lunar Operations

    NASA Technical Reports Server (NTRS)

    Adamo, Daniel R.; Lester, Daniel F.; Thronson, Harley A.; Barbee, Brent

    2014-01-01

    Selenocentric distant retrograde orbits with radii from approx. 12,500 km to approx. 25,000 km are assessed for stability and for suitability as crewed command and control infrastructure locations in support of telerobotic lunar surface operations and interplanetary human transport. Such orbits enable consistent transits to and from Earth at virtually any time if they are coplanar with the Moon's geocentric orbit. They possess multiple attributes and applications distinct from NASA's proposed destination orbit for a redirected asteroid about 70,000 km from the Moon.

  2. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis

    NASA Astrophysics Data System (ADS)

    Mariappan, G.; Sundaraganesan, N.; Manoharan, S.

    2012-09-01

    The FT-Raman and FT-Infrared spectra of solid Apigenin sample were measured in order to elucidate the spectroscopic properties of title molecule in the spectral range of 3500-50 cm-1 and 4000-400 cm-1, respectively. The recorded FT-IR and FT-Raman spectral measurements favor the calculated (by B3LYP/6-31G(d,p) method) structural parameters which are further supported by spectral simulation. Additional support is given by the collected 1H and 13C NMR spectra recorded with the sample dissolved in DMSO. The predicted chemical shifts at the B3LYP/6-31G(d) level obtained using the Gauge-Invariant Atomic Orbitals (GIAO) method with and without inclusion of solvent using the Polarizable Continuum Model (PCM). By using TD-DFT method, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental one is determined. The UV-visible absorption spectra of the compound that dissolved in Ethanol, Methanol and DMSO were recorded in the range of 800-200 nm. The formation of hydrogen bond and the most possible interaction are explained using natural bond orbital (NBO) analysis. In addition, the molecular electrostatic potential (MEP), frontier molecular orbitals (FMO) analysis and atomic charges of the title compound were investigated using theoretical calculations. The results are discussed herein and compared with similar molecules whenever appropriate.

  3. Orbiter/External Tank Mate 3-D Solid Modeling

    NASA Technical Reports Server (NTRS)

    Godfrey, G. S.; Brandt, B.; Rorden, D.; Kapr, F.

    2004-01-01

    This research and development project presents an overview of the work completed while attending a summer 2004 American Society of Engineering Education/National Aeronautics and Space Administration (ASEE/NASA) Faculty Fellowship. This fellowship was completed at the Kennedy Space Center, Florida. The scope of the project was to complete parts, assemblies, and drawings that could be used by Ground Support Equipment (GSE) personnel to simulate situations and scenarios commonplace to the space shuttle Orbiter/External Tank (ET) Mate (50004). This mate takes place in the Vehicle Assembly Building (VAB). These simulations could then be used by NASA engineers as decision-making tools. During the summer of 2004, parts were created that defined the Orbiter/ET structural interfaces. Emphasis was placed upon assemblies that included the Orbiter/ET forward attachment (EO-1), aft left thrust strut (EO-2), aft right tripod support structure (EO-3), and crossbeam and aft feedline/umbilical supports. These assemblies are used to attach the Orbiter to the ET. The Orbiter/ET Mate assembly was then used to compare and analyze clearance distances using different Orbiter hang angles. It was found that a 30-minute arc angle change in Orbiter hang angle affected distance at the bipod strut to Orbiter yoke fitting 8.11 inches. A 3-D solid model library was established as a result of this project. This library contains parts, assemblies, and drawings translated into several formats. This library contains a collection of the following files: sti for sterolithography, stp for neutral file work, shrinkwrap for compression. tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. This library was made available to NASA engineers so that they could access its contents to make angle, load, and clearance analysis studies. These decision-making tools may be used by Pro/Engineer users and non-users.

  4. Improving Fermi Orbit Determination and Prediction in an Uncertain Atmospheric Drag Environment

    NASA Technical Reports Server (NTRS)

    Vavrina, Matthew A.; Newman, Clark P.; Slojkowski, Steven E.; Carpenter, J. Russell

    2014-01-01

    Orbit determination and prediction of the Fermi Gamma-ray Space Telescope trajectory is strongly impacted by the unpredictability and variability of atmospheric density and the spacecraft's ballistic coefficient. Operationally, Global Positioning System point solutions are processed with an extended Kalman filter for orbit determination, and predictions are generated for conjunction assessment with secondary objects. When these predictions are compared to Joint Space Operations Center radar-based solutions, the close approach distance between the two predictions can greatly differ ahead of the conjunction. This work explores strategies for improving prediction accuracy and helps to explain the prediction disparities. Namely, a tuning analysis is performed to determine atmospheric drag modeling and filter parameters that can improve orbit determination as well as prediction accuracy. A 45% improvement in three-day prediction accuracy is realized by tuning the ballistic coefficient and atmospheric density stochastic models, measurement frequency, and other modeling and filter parameters.

  5. A time-efficient implementation of Extended Kalman Filter for sequential orbit determination and a case study for onboard application

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Wang, Haihong; Chen, Qiuli; Chen, Zhonggui; Zheng, Jinjun; Cheng, Haowen; Liu, Lin

    2018-07-01

    Onboard orbit determination (OD) is often used in space missions, with which mission support can be partially accomplished autonomously, with less dependency on ground stations. In major Global Navigation Satellite Systems (GNSS), inter-satellite link is also an essential upgrade in the future generations. To serve for autonomous operation, sequential OD method is crucial to provide real-time or near real-time solutions. The Extended Kalman Filter (EKF) is an effective and convenient sequential estimator that is widely used in onboard application. The filter requires the solutions of state transition matrix (STM) and the process noise transition matrix, which are always obtained by numerical integration. However, numerically integrating the differential equations is a CPU intensive process and consumes a large portion of the time in EKF procedures. In this paper, we present an implementation that uses the analytical solutions of these transition matrices to replace the numerical calculations. This analytical implementation is demonstrated and verified using a fictitious constellation based on selected medium Earth orbit (MEO) and inclined Geosynchronous orbit (IGSO) satellites. We show that this implementation performs effectively and converges quickly, steadily and accurately in the presence of considerable errors in the initial values, measurements and force models. The filter is able to converge within 2-4 h of flight time in our simulation. The observation residual is consistent with simulated measurement error, which is about a few centimeters in our scenarios. Compared to results implemented with numerically integrated STM, the analytical implementation shows results with consistent accuracy, while it takes only about half the CPU time to filter a 10-day measurement series. The future possible extensions are also discussed to fit in various missions.

  6. Space Network IP Services (SNIS): An Architecture for Supporting Low Earth Orbiting IP Satellite Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.

    2005-01-01

    The NASA Space Network (SN) supports a variety of missions using the Tracking and Data Relay Satellite System (TDRSS), which includes ground stations in White Sands, New Mexico and Guam. A Space Network IP Services (SNIS) architecture is being developed to support future users with requirements for end-to-end Internet Protocol (IP) communications. This architecture will support all IP protocols, including Mobile IP, over TDRSS Single Access, Multiple Access, and Demand Access Radio Frequency (RF) links. This paper will describe this architecture and how it can enable Low Earth Orbiting IP satellite missions.

  7. Determination of Precise Satellite Orbital Position Using Multi-Band GNSS Signals

    DTIC Science & Technology

    2017-10-16

    AFRL-AFOSR-JP-TR-2018-0002 Determination of Precise Satellite Orbital Position Using Multi -Band GNSS Signals Erry Gunawan NANYANG TECHNOLOGICAL...Position Using Multi -Band GNSS Signals 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-15-1-4041 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Erry...Grant FA2386-15-1-4041 “Determination of Precise orbital position using multi -band GNSS signals” October 13, 2017 Name of Principal Investigators

  8. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James

    2015-01-01

    Orbit determination (OD) analysis results are presented for the Lunar Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, Analytical Graphics' Orbit Determination Tool Kit (ODTK). Process noise models for lunar gravity and solar radiation pressure (SRP) are described and OD results employing the models are presented. Definitive accuracy using ODTK meets mission requirements and is better than that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System (GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of antenna motion on range-rate tracking considerably improves residuals and filter-smoother consistency. Inclusion of off-axis SRP process noise and generalized process noise improves filter performance for both definitive and predicted accuracy. Definitive accuracy from the smoother is better than achieved using GTDS and is close to that achieved by precision OD methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area model with ODTK's force model plugin capability provides additional improvements in predicted accuracy.

  9. Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hill, Nicole M.

    2009-01-01

    There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.

  10. Applicability of meteor radiant determination methods depending on orbit type. I. High-eccentric orbits

    NASA Astrophysics Data System (ADS)

    Svoren, J.; Neslusan, L.; Porubcan, V.

    1993-07-01

    It is evident that there is no uniform method of calculating meteor radiants which would yield reliable results for all types of cometary orbits. In the present paper an analysis of this problem is presented, together with recommended methods for various types of orbits. Some additional methods resulting from mathematical modelling are presented and discussed together with Porter's, Steel-Baggaley's and Hasegawa's methods. In order to be able to compare how suitable the application of the individual radiant determination methods is, it is necessary to determine the accuracy with which they approximate real meteor orbits. To verify the accuracy with which the orbit of a meteoroid with at least one node at 1 AU fits the original orbit of the parent body, we applied the Southworth-Hawkins D-criterion (Southworth, R.B., Hawkins, G.S.: 1963, Smithson. Contr. Astrophys 7, 261). D<=0.1 indicates a very good fit of orbits, 0.10.2 the fit is rather poor and the change of orbit unrealistic. The optimal methods with the smallest values of D for given types of orbits are shown in two series of six plots. The new method of rotation around the line of apsides we propose is very appropriate in the region of small inclinations. There is no doubt that Hasegawa's omega-adjustment method (Hasegawa, I.: 1990, Publ. Astron. Soc. Japan 42, 175) has the widest application. A comparison of the theoretical radiants with the observed radiants of seven known meteor showers is also presented.

  11. Application of Semi-analytical Satellite Theory orbit propagator to orbit determination for space object catalog maintenance

    NASA Astrophysics Data System (ADS)

    Setty, Srinivas J.; Cefola, Paul J.; Montenbruck, Oliver; Fiedler, Hauke

    2016-05-01

    Catalog maintenance for Space Situational Awareness (SSA) demands an accurate and computationally lean orbit propagation and orbit determination technique to cope with the ever increasing number of observed space objects. As an alternative to established numerical and analytical methods, we investigate the accuracy and computational load of the Draper Semi-analytical Satellite Theory (DSST). The standalone version of the DSST was enhanced with additional perturbation models to improve its recovery of short periodic motion. The accuracy of DSST is, for the first time, compared to a numerical propagator with fidelity force models for a comprehensive grid of low, medium, and high altitude orbits with varying eccentricity and different inclinations. Furthermore, the run-time of both propagators is compared as a function of propagation arc, output step size and gravity field order to assess its performance for a full range of relevant use cases. For use in orbit determination, a robust performance of DSST is demonstrated even in the case of sparse observations, which is most sensitive to mismodeled short periodic perturbations. Overall, DSST is shown to exhibit adequate accuracy at favorable computational speed for the full set of orbits that need to be considered in space surveillance. Along with the inherent benefits of a semi-analytical orbit representation, DSST provides an attractive alternative to the more common numerical orbit propagation techniques.

  12. Testing of Selected Geopotential Models in Terms of GOCE Satellite Orbit Determination Using Simulated GPS Observations

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2016-04-01

    This work contains a comparative study of performance of twenty geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, among others, such models as JYY_GOCE02S, ITG-GOCE02, ULUX_CHAMP2013S, GOGRA02S, ITG-GRACE2010S, EIGEN-51C, EGM2008, EGM96, JGM3, OSU91a, OSU86F were adopted. A special software package, called the Orbital Computation System (OCS), based on the classical method of least squares was used. In the frame of OCS, initial satellite state vector components are corrected in an iterative process, using the given geopotential model and the models describing the remaining gravitational perturbations. An important part of the OCS package is the 8th order Cowell numerical integration procedure, which enables a satellite orbit computation. Different sets of pseudorange simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System (GPS) satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. However, the solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the orbit estimated was slightly enhanced. The obtained solutions refer to the orbital arcs with the lengths of 90-minute and 1-day.

  13. Tracking and Data Relay Satellite System (TDRSS) Support of User Spacecraft without TDRSS Transponders

    NASA Technical Reports Server (NTRS)

    Jackson, James A.; Marr, Greg C.; Maher, Michael J.

    1995-01-01

    NASA GSFC VNS TSG personnel have proposed the use of TDRSS to obtain telemetry and/or S-band one-way return Doppler tracking data for spacecraft which do not have TDRSS-compatible transponders and therefore were never considered candidates for TDRSS support. For spacecraft with less stable local oscillators (LO), one-way return Doppler tracking data is typically of poor quality. It has been demonstrated using UARS, WIND, and NOAA-J tracking data that the simultaneous use of two TDRSS spacecraft can yield differenced one-way return Doppler data of high quality which is usable for orbit determination by differencing away the effects of oscillator instability.

  14. Post-Shuttle EVA Operations on ISS

    NASA Technical Reports Server (NTRS)

    West, William; Witt, Vincent; Chullen, Cinda

    2010-01-01

    The expected retirement of the NASA Space Transportation System (also known as the Space Shuttle ) by 2011 will pose a significant challenge to Extra-Vehicular Activities (EVA) on-board the International Space Station (ISS). The EVA hardware currently used to assemble and maintain the ISS was designed assuming that it would be returned to Earth on the Space Shuttle for refurbishment, or if necessary for failure investigation. With the retirement of the Space Shuttle, a new concept of operations was developed to enable EVA hardware (Extra-vehicular Mobility Unit (EMU), Airlock Systems, EVA tools, and associated support hardware and consumables) to perform ISS EVAs until 2015, and possibly beyond to 2020. Shortly after the decision to retire the Space Shuttle was announced, the EVA 2010 Project was jointly initiated by NASA and the One EVA contractor team. The challenges addressed were to extend the operating life and certification of EVA hardware, to secure the capability to launch EVA hardware safely on alternate launch vehicles, to protect for EMU hardware operability on-orbit, and to determine the source of high water purity to support recharge of PLSSs (no longer available via Shuttle). EVA 2010 Project includes the following tasks: the development of a launch fixture that would allow the EMU Portable Life Support System (PLSS) to be launched on-board alternate vehicles; extension of the EMU hardware maintenance interval from 3 years (current certification) to a minimum of 6 years (to extend to 2015); testing of recycled ISS Water Processor Assembly (WPA) water for use in the EMU cooling system in lieu of water resupplied by International Partner (IP) vehicles; development of techniques to remove & replace critical components in the PLSS on-orbit (not routine); extension of on-orbit certification of EVA tools; and development of an EVA hardware logistical plan to support the ISS without the Space Shuttle. Assumptions for the EVA 2010 Project included no more than 8 EVAs per year for ISS EVA operations in the Post-Shuttle environment and limited availability of cargo upmass on IP launch vehicles. From 2010 forward, EVA operations on-board the ISS without the Space Shuttle will be a paradigm shift in safely operating EVA hardware on orbit and the EVA 2010 effort was initiated to accommodate this significant change in EVA evolutionary history. 1

  15. GPS-Based Precision Orbit Determination for a New Era of Altimeter Satellites: Jason-1 and ICESat

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, David D.; Lemoine, Frank G.; Zelensky, Nikita P.; Williams, Teresa A.

    2003-01-01

    Accurate positioning of the satellite center of mass is necessary in meeting an altimeter mission's science goals. The fundamental science observation is an altimetric derived topographic height. Errors in positioning the satellite's center of mass directly impact this fundamental observation. Therefore, orbit error is a critical Component in the error budget of altimeter satellites. With the launch of the Jason-1 radar altimeter (Dec. 2001) and the ICESat laser altimeter (Jan. 2003) a new era of satellite altimetry has begun. Both missions pose several challenges for precision orbit determination (POD). The Jason-1 radial orbit accuracy goal is 1 cm, while ICESat (600 km) at a much lower altitude than Jason-1 (1300 km), has a radial orbit accuracy requirement of less than 5 cm. Fortunately, Jason-1 and ICESat POD can rely on near continuous tracking data from the dual frequency codeless BlackJack GPS receiver and Satellite Laser Ranging. Analysis of current GPS-based solution performance indicates the l-cm radial orbit accuracy goal is being met for Jason-1, while radial orbit accuracy for ICESat is well below the 54x1 mission requirement. A brief overview of the GPS precision orbit determination methodology and results for both Jason-1 and ICESat are presented.

  16. Application of GPS tracking techniques to orbit determination for TDRS

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S. C.

    1993-01-01

    In this paper, we evaluate two fundamentally different approaches to TDRS orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRSS spacecraft. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRSS spacecraft broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and TDRSS satellites from a small ground network. Both strategies can be designed to meet future operational requirements for TDRS-2 orbit determination.

  17. A review of GPS-based tracking techniques for TDRS orbit determination

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S.-C.

    1993-01-01

    This article evaluates two fundamentally different approaches to the Tracking and Data Relay Satellite (TDRS) orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRS. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRS's broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and Tracking and Data Relay Satellite System satellites by ground receivers. Both strategies can be designed to meet future operational requirements for TDRS-II orbit determination.

  18. Introduction to Orbital Sciences Corporation

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A general overview of the Orbital Sciences Corporation (OSC) is presented. The following topics are covered: (1) manpower, facilities, and financial growth; (2) organization and management team; (3) the Space Data Division organization; (4) the Chandler facility; (5) Space Data-Products and Services; (6) space transportation systems; (7) spacecraft and space support systems; (8) turn-key suborbital launch services and support systems; and (9) OSC suborbital booster performance.

  19. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  20. Conceptual study of on orbit production of cryogenic propellants by water electrolysis

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.

    1991-01-01

    The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.

  1. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All Space Shuttle flights were suspended, including logistics support for the International Space Station. NASA Langley Research Center s (LaRC) Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by Johnson Space Center (JSC). At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net-gravity alone.

  2. Vacuum/Zero Net-Gravity Application for On-Orbit TPS Tile Repair

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Humes, Donald H.; Siochi, Emilie J.

    2004-01-01

    The Orbiter Columbia catastrophically failed during reentry February 1, 2003. All space Shuttle flights were suspended, including logistics support for the International Space Station. NASA LaRC s Structures and Materials Competency is performing characterizations of candidate materials for on-orbit repair of orbiter Thermal Protection System (TPS) tiles to support Return-to-Flight activities led by JSC. At least ten materials properties or attributes (adhesion to damage site, thermal protection, char/ash strength, thermal expansion, blistering, flaming, mixing ease, application in vacuum and zero gravity, cure time, shelf or storage life, and short-term outgassing and foaming) of candidate materials are of interest for on-orbit repair. This paper reports application in vacuum and zero net-gravity (for viscous flow repair materials). A description of the test apparatus and preliminary results of several candidate materials are presented. The filling of damage cavities is different for some candidate repair materials in combined vacuum and zero net-gravity than in either vacuum or zero net- gravity alone.

  3. Flight Mechanics/Estimation Theory Symposium

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J. (Editor)

    1980-01-01

    Methods of determining satellite orbit and attitude parameters are considered. The Goddard Trajectory Determination System, the Global Positioning System, and the Tracking and Data Relay Satellites are among the satellite navigation systems discussed. Satellite perturbation theory, orbit/attitude determination using landmark data, and star measurements are also covered.

  4. The Outer Solar System Origin Survey full data release orbit catalog and characterization.

    NASA Astrophysics Data System (ADS)

    Kavelaars, J. J.; Bannister, Michele T.; Gladman, Brett; Petit, Jean-Marc; Gwyn, Stephen; Alexandersen, Mike; Chen, Ying-Tung; Volk, Kathryn; OSSOS Collaboration.

    2017-10-01

    The Outer Solar System Origin Survey (OSSOS) completed main data acquisition in February 2017. Here we report the release of our full orbit sample, which include 836 TNOs with high precision orbit determination and classification. We combine the OSSOS orbit sample with previously release Canada-France Ecliptic Plane Survey (CFEPS) and a precursor survey to OSSOS by Alexandersen et al. to provide a sample of over 1100 TNO orbits with high precision classified orbits and precisely determined discovery and tracking circumstances (characterization). We are releasing the full sample and characterization to the world community, along with software for conducting ‘Survey Simulations’, so that this sample of orbits can be used to test models of the formation of our outer solar system against the observed sample. Here I will present the characteristics of the data set and present a parametric model for the structure of the classical Kuiper belt.

  5. Information services platforms at geosynchronous earth orbit: A requirements analysis

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The potential user requirements for Information Services Platforms at geosynchronous orbits were investigated. A rationale for identifying the corollary system requirements and supporting research and technology needs was provided.

  6. On Directional Measurement Representation in Orbit Determination

    DTIC Science & Technology

    2016-09-13

    representations. The three techniques are then compared experimentally for a geostationary and a low Earth orbit satellite using simulated data to evaluate their...Earth Orbit (LEO) and a Geostationary Earth Orbit (GEO) satellite. Section IV discusses the results from the numerical simulations and finally Section V... Geostationary Earth Orbit (GEO) satellite with the initial orbital parameters shown in Table 1. Different ground sites are used for the LEO and ahttps

  7. NanoSat Constellation Mission Design

    NASA Technical Reports Server (NTRS)

    Concha, Marco; DeFazio, Robert

    1998-01-01

    The NanoSat constellation concept mission proposes simultaneous operation of multiple swarms of as many as 22 identical 10 kg spacecraft per swarm. The various orbits in a NanoSat swarm vary from 3x12 to 3x42 R(sub e) in geometry. In this report the unique flight dynamics issues of this constellation satellite mission design are addressed. Studies include orbit design, orbit determination, and error analysis. A preliminary survey determined the orbital parameters that would limit the maximum shadow condition while providing adequate ground station access for three ground stations.

  8. Developing a Model Component

    NASA Technical Reports Server (NTRS)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is,. responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) is a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The purpose of the UCTS is to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems s:luring their development. As an intern at KSC, my assignment was to develop a model component for the UCTS. I was given a fluid component (drier) to model in Matlab. The drier was a Catch All replaceable core type filter-drier. The filter-drier provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-drier also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. I completed training for UNIX and Simulink to help aid in my assignment. The filter-drier was modeled by determining affects it has on the pressure, velocity and temperature of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my model filter-drier in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements.

  9. General view of the middeck of the Orbiter Discovery while ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the mid-deck of the Orbiter Discovery while in the Orbiter Processing Facility at Kennedy Space Center. The view is looking through the air lock and into the payload bay. In the foreground note the ladders and access hatches to the flight deck and the ground support panels used to protect the floors. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control

    NASA Technical Reports Server (NTRS)

    ONeill, John; Shalin, Valerie L.

    2000-01-01

    The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.

  11. Integrated Simulation Design Challenges to Support TPS Repair Operations

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Crues, Edwin Z.; Huynh, An; Nguyen, Hung T.; MacLean, John

    2005-01-01

    During the Orbiter Repair Maneuver (ORM) operations planned for Return to Flight (RTF), the Shuttle Remote Manipulator System (SRMS) must grapple the International Space Station (ISS), undock the Orbiter, maneuver it through a long duration trajectory, and orient it to an EVA crewman poised at the end of the Space Station Remote Manipulator System (SSRMS) to facilitate the repair of the Thermal Protection System (TPS). Once repair has been completed and confirmed, then the SRMS proceeds back through the trajectory to dock the Orbiter to the Orbiter Docking System. In order to support analysis of the complex dynamic interactions of the integrated system formed by the Orbiter, ISS, SRMS, and SSRMS during the ORM, simulation tools used for previous 'nominal' mission support required substantial enhancements. These upgrades were necessary to provide analysts with the capabilities needed to study integrated system performance. This paper discusses the simulation design challenges encountered while developing simulation capabilities to mirror the ORM operations. The paper also describes the incremental build approach that was utilized, starting with the subsystem simulation elements and integration into increasing more complex simulations until the resulting ORM worksite dynamics simulation had been assembled. Furthermore, the paper presents an overall integrated simulation V&V methodology based upon a subsystem level testing, integrated comparisons, and phased checkout.

  12. Kalman filtering applied to real-time monitoring of apogee maneuvers

    NASA Technical Reports Server (NTRS)

    Deboer, Frederic; Barbier, Christian

    1993-01-01

    Part of the Space Mathematics Division in CNES, the Flight Dynamics Center provides attitude and orbit determinations and maneuvers during the Launch and Early Operation Phase (LEOP) of geostationary satellites. Orbit determination is based on a Kalman filter method; when the 2 GHz CNES/NASA network is used, Doppler measurements are available and allow orbit determination during the apogee maneuvers. This method was used for TELE-X and TDF 2 LEOP (3-axis controlled satellites) and also for TELECOM 2 and HISPASAT (spun satellites): it enables us to follow the evolution of the maneuver and gives out a quite accurate estimation of the reached orbit. In this paper, we briefly describe the dynamic models of the orbit evolution in both cases, '3-axis' and 'inertial' thrust. Then, we present the results obtained for each case. Afterwards, we present some cases to show the robustness of the filter.

  13. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  14. Dealing with Uncertainties in Initial Orbit Determination

    NASA Technical Reports Server (NTRS)

    Armellin, Roberto; Di Lizia, Pierluigi; Zanetti, Renato

    2015-01-01

    A method to deal with uncertainties in initial orbit determination (IOD) is presented. This is based on the use of Taylor differential algebra (DA) to nonlinearly map the observation uncertainties from the observation space to the state space. When a minimum set of observations is available DA is used to expand the solution of the IOD problem in Taylor series with respect to measurement errors. When more observations are available high order inversion tools are exploited to obtain full state pseudo-observations at a common epoch. The mean and covariance of these pseudo-observations are nonlinearly computed by evaluating the expectation of high order Taylor polynomials. Finally, a linear scheme is employed to update the current knowledge of the orbit. Angles-only observations are considered and simplified Keplerian dynamics adopted to ease the explanation. Three test cases of orbit determination of artificial satellites in different orbital regimes are presented to discuss the feature and performances of the proposed methodology.

  15. Orbit determination based on meteor observations using numerical integration of equations of motion

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovka, V.; Gritsevich, M.

    2014-07-01

    We review the definitions and approaches to orbital-characteristics analysis applied to photographic or video ground-based observations of meteors. A number of camera networks dedicated to meteors registration were established all over the word, including USA, Canada, Central Europe, Australia, Spain, Finland and Poland. Many of these networks are currently operational. The meteor observations are conducted from different locations hosting the network stations. Each station is equipped with at least one camera for continuous monitoring of the firmament (except possible weather restrictions). For registered multi-station meteors, it is possible to accurately determine the direction and absolute value for the meteor velocity and thus obtain the topocentric radiant. Based on topocentric radiant one further determines the heliocentric meteor orbit. We aim to reduce total uncertainty in our orbit-determination technique, keeping it even less than the accuracy of observations. The additional corrections for the zenith attraction are widely in use and are implemented, for example, here [1]. We propose a technique for meteor-orbit determination with higher accuracy. We transform the topocentric radiant in inertial (J2000) coordinate system using the model recommended by IAU [2]. The main difference if compared to the existing orbit-determination techniques is integration of ordinary differential equations of motion instead of addition correction in visible velocity for zenith attraction. The attraction of the central body (the Sun), the perturbations by Earth, Moon and other planets of the Solar System, the Earth's flattening (important in the initial moment of integration, i.e. at the moment when a meteoroid enters the atmosphere), atmospheric drag may be optionally included in the equations. In addition, reverse integration of the same equations can be performed to analyze orbital evolution preceding to meteoroid's collision with Earth. To demonstrate the developed technique, we provide calculated orbits for several cases, including well-known meteorite-producing fireballs. A comparison of our estimates with previously published ones is also provided.

  16. GOCE Precise Science Orbits for the Entire Mission and their Use for Gravity Field Recovery

    NASA Astrophysics Data System (ADS)

    Jäggi, Adrian; Bock, Heike; Meyer, Ulrich; Weigelt, Matthias

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE), ESA's first Earth Explorer Core Mission, was launched on March 17, 2009 into a sun-synchronous dusk-dawn orbit and re-entered into the Earth's atmosphere on November 11, 2013. It was equipped with a three-axis gravity gradiometer for high-resolution recovery of the Earth's gravity field, as well as with a 12-channel, dual-frequency Global Positioning System (GPS) receiver for precise orbit determination (POD), instrument time-tagging, and the determination of the long wavelength part of the Earth’s gravity field. A precise science orbit (PSO) product was provided during the entire mission by the GOCE High-level Processing Facility (HPF) from the GPS high-low Satellite-to-Satellite Tracking (hl-SST) data. We present the reduced-dynamic and kinematic PSO results for the entire mission period. Orbit comparisons and validations with independent Satellite Laser Ranging (SLR) measurements demonstrate the high quality of both orbit products being close to 2 cm 1-D RMS, but also reveal a correlation between solar activity, GPS data availability, and the quality of the orbits. We use the 1-sec kinematic positions of the GOCE PSO product for gravity field determination and present GPS-only solutions covering the entire mission period. The generated gravity field solutions reveal severe systematic errors centered along the geomagnetic equator, which may be traced back to the GPS carrier phase observations used for the kinematic orbit determination. The nature of the systematic errors is further investigated and reprocessed orbits free of systematic errors along the geomagnetic equator are derived. Eventually, the potential of recovering time variable signals from GOCE kinematic positions is assessed.

  17. Shuttle orbiter - IUS/DSP satellite interface contamination study

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Strange, D. A.

    1978-01-01

    The results of a contamination analysis on the Defense Support Program (DSP) satellite during launch and deployment by the Space Transportation System (STS) are presented. Predicted contaminant deposition was also included on critical DSP surfaces during the period soon after launch when the DSP is in the shuttle orbiter bay with the doors closed, the bay doors open, and during initial deployment. Additionally, a six sided box was placed at the spacecraft position to obtain directional contaminant flux information for a general payload while in the bay and during deployment. The analysis included contamination sources from the shuttle orbiter, IUS and cradle, the DSP sensor and the DSP support package.

  18. Orbit targeting specialist function: Level C formulation requirements

    NASA Technical Reports Server (NTRS)

    Dupont, A.; Mcadoo, S.; Jones, H.; Jones, A. K.; Pearson, D.

    1978-01-01

    A definition of the level C requirements for onboard maneuver targeting software is provided. Included are revisions of the level C software requirements delineated in JSC IN 78-FM-27, Proximity Operations Software; Level C Requirements, dated May 1978. The software supports the terminal phase midcourse (TPM) maneuver, braking and close-in operations as well as supporting computation of the rendezvous corrective combination maneuver (NCC), and the terminal phase initiation (TPI). Specific formulation is contained here for the orbit targeting specialist function including the processing logic, linkage, and data base definitions for all modules. The crew interface with the software is through the keyboard and the ORBIT-TGT display.

  19. Design, development, and fabrication of extravehicular activity tools for support of the transfer orbit stage

    NASA Technical Reports Server (NTRS)

    Albritton, L. M.; Redmon, J. W.; Tyler, T. R.

    1993-01-01

    Seven extravehicular activity (EVA) tools and a tool carrier have been designed and developed by MSFC in order to provide a two fault tolerant system for the transfer orbit stage (TOS) shuttle mission. The TOS is an upper stage booster for delivering payloads to orbits higher than the shuttle can achieve. Payloads are required not to endanger the shuttle even after two failures have occurred. The Airborne Support Equipment (ASE), used in restraining and deploying TOS, does not meet this criteria. The seven EVA tools designed will provide the required redundancy with no impact to the TOS hardware.

  20. STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment

    NASA Image and Video Library

    1988-09-29

    During STS-26, inertial upper stage (IUS) with the tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is raised into deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). ASE aft frame tilt actuator (AFTA) table supports the IUS as it is positioned in the PLB and the ASE umbilical boom drifts away from IUS toward ASE forward cradle. TDRS-C solar array panels (in stowed configuration) are visible on top of the IUS. In the background are the orbital maneuvering system (OMS) pods and the Earth's limb.

Top