Fast global orbit feedback system in PLS-II
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.
2016-12-01
The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.
Slow Orbit Feedback at the ALS Using Matlab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, G.
1999-03-25
The third generation Advanced Light Source (ALS) produces extremely bright and finely focused photon beams using undulatory, wigglers, and bend magnets. In order to position the photon beams accurately, a slow global orbit feedback system has been developed. The dominant causes of orbit motion at the ALS are temperature variation and insertion device motion. This type of motion can be removed using slow global orbit feedback with a data rate of a few Hertz. The remaining orbit motion in the ALS is only 1-3 micron rms. Slow orbit feedback does not require high computational throughput. At the ALS, the globalmore » orbit feedback algorithm, based on the singular valued decomposition method, is coded in MATLAB and runs on a control room workstation. Using the MATLAB environment to develop, test, and run the storage ring control algorithms has proven to be a fast and efficient way to operate the ALS.« less
Shao, Chenxi; Xue, Yong; Fang, Fang; Bai, Fangzhou; Yin, Peifeng; Wang, Binghong
2015-07-01
The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedback control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.
Act-and-wait time-delayed feedback control of autonomous systems
NASA Astrophysics Data System (ADS)
Pyragas, Viktoras; Pyragas, Kestutis
2018-02-01
Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.
Cardiac arrhythmias and degradation into chaotic behavior prevention using feedback control
NASA Astrophysics Data System (ADS)
Uzelac, Ilija; Sidorov, Veniamin; Wikswo, John; Gray, Richard
2012-02-01
During normal heart rhythm, cardiac cells behave as a set of oscillators with a distribution of phases but with the same frequency. The heart as a dynamical system in a phase space representation can be modeled as a set of oscillators that have closed overlapping orbits with the same period. These orbits are not stable and in the case of disruption of the cardiac rhythm, such as due to premature beats, the system will have a tendency to leave its periodic unstable orbits. If these orbits become attracted to phase singularities, their disruption may lead to chaotic behavior, which appears as a life-threating ventricular fibrillation. By using closed-loop feedback in the form of an adjustable defibrillation shock, any drift from orbits corresponding to the normal rhythm can be corrected by forcing the system to maintain its orbits. The delay through the feedback network coincides with the period of normal heart beats. To implement this approach we developed a 1 kW arbitrary waveform voltage-to-current converter with a 1 kHz bandwidth driven by a photodiode system that records an optical electrocardiogram and provides a feedback signal in real time. Our goal is to determine whether our novel method to defibrillate the heart will require much lower energies than are currently utilized in single shock defibrillators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Chenxi, E-mail: cxshao@ustc.edu.cn; Xue, Yong; Fang, Fang
2015-07-15
The self-controlling feedback control method requires an external periodic oscillator with special design, which is technically challenging. This paper proposes a chaos control method based on time series non-uniform rational B-splines (SNURBS for short) signal feedback. It first builds the chaos phase diagram or chaotic attractor with the sampled chaotic time series and any target orbit can then be explicitly chosen according to the actual demand. Second, we use the discrete timing sequence selected from the specific target orbit to build the corresponding external SNURBS chaos periodic signal, whose difference from the system current output is used as the feedbackmore » control signal. Finally, by properly adjusting the feedback weight, we can quickly lead the system to an expected status. We demonstrate both the effectiveness and efficiency of our method by applying it to two classic chaotic systems, i.e., the Van der Pol oscillator and the Lorenz chaotic system. Further, our experimental results show that compared with delayed feedback control, our method takes less time to obtain the target point or periodic orbit (from the starting point) and that its parameters can be fine-tuned more easily.« less
Optimization methodology for the global 10 Hz orbit feedback in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chuyu; Hulsart, R.; Mernick, K.
To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less
Optimization methodology for the global 10 Hz orbit feedback in RHIC
Liu, Chuyu; Hulsart, R.; Mernick, K.; ...
2018-05-08
To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less
NASA Astrophysics Data System (ADS)
Varalakshmi, M.; Chandrasekaran, V. M.; Saravanarajan, M. C.
2017-11-01
In this paper, we discuss about the steady state behaviour of M/G/1 retrial queueing system with two phases of services and immediate feedbacks under working vacation policy where the regular busy server is affected due to the arrival of negative customers. Upon arrival if the customer finds the server busy, breakdown or on working vacation it enters an orbit; otherwise the customer enters into the service area immediately. After service completion, the customer is allowed to make finite number of immediate feedback. The feedback service also consists of two phases. At the service completion epoch of a positive customer, if the orbit is empty the server goes for a working vacation. The server works at a lower service rate during working vacation (WV) period. Using the supplementary variable technique, we found out the steady state probability generating function for the system and in orbit. System performance measures and reliability measures are discussed. Finally, some numerical examples are presented to validate the analyticalresults.
Control techniques to improve Space Shuttle solid rocket booster separation
NASA Technical Reports Server (NTRS)
Tomlin, D. D.
1983-01-01
The present Space Shuttle's control system does not prevent the Orbiter's main engines from being in gimbal positions that are adverse to solid rocket booster separation. By eliminating the attitude error and attitude rate feedback just prior to solid rocket booster separation, the detrimental effects of the Orbiter's main engines can be reduced. In addition, if angular acceleration feedback is applied, the gimbal torques produced by the Orbiter's engines can reduce the detrimental effects of the aerodynamic torques. This paper develops these control techniques and compares the separation capability of the developed control systems. Currently with the worst case initial conditions and each Shuttle system dispersion aligned in the worst direction (which is more conservative than will be experienced in flight), the solid rocket booster has an interference with the Shuttle's external tank of 30 in. Elimination of the attitude error and attitude rate feedback reduces that interference to 19 in. Substitution of angular acceleration feedback reduces the interference to 6 in. The two latter interferences can be eliminated by atess conservative analysis techniques, that is, by using a root sum square of the system dispersions.
FIRST BEAM TESTS OF THE APS MBA UPGRADE ORBIT FEEDBACK CONTROLLER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sereno, N. S.; Arnold, N.; Brill, A.
The new orbit feedback system required for the APS multi-bend acromat (MBA) ring must meet challenging beam stability requirements. The AC stability requirement is to correct rms beam motion to 10 % the rms beam size at the insertion device source points from 0.01 to 1000 Hz. The vertical plane represents the biggest challenge for AC stability which is required to be 400 nm rms for a 4 micron vertical beam size. In addition long term drift over a period of 7 days is required to be 1 micron or less at insertion de- vice BPMs and 2 microns formore » arc bpms. We present test re- sults of theMBA prototype orbit feedback controller (FBC) in the APS storage ring. In this test, four insertion device BPMs were configured to send data to the FBC for process- ing into four fast corrector setpoints. The configuration of four bpms and four fast correctors creates a 4-bump and the configuration of fast correctors is similar to what will be implemented in the MBA ring. We report on performance benefits of increasing the sampling rate by a factor of 15 to 22.6 kHz over the existing APS orbit feedback system, lim- itations due to existing storage ring hardware and extrapo- lation to theMBA orbit feedback design. FBC architecture, signal flow and processing design will also be discussed.« less
NASA Astrophysics Data System (ADS)
Niranjan, S. P.; Chandrasekaran, V. M.; Indhira, K.
2017-11-01
The objective of this paper is to analyse state dependent arrival in bulk retrial queueing system with immediate Bernoulli feedback, multiple vacations, threshold and constant retrial policy. Primary customers are arriving into the system in bulk with different arrival rates λ a and λ b . If arriving customers find the server is busy then the entire batch will join to orbit. Customer from orbit request service one by one with constant retrial rate γ. On the other hand if an arrival of customers finds the server is idle then customers will be served in batches according to general bulk service rule. After service completion, customers may request service again with probability δ as feedback or leave from the system with probability 1 - δ. In the service completion epoch, if the orbit size is zero then the server leaves for multiple vacations. The server continues the vacation until the orbit size reaches the value ‘N’ (N > b). At the vacation completion, if the orbit size is ‘N’ then the server becomes ready to provide service for customers from the main pool or from the orbit. For the designed queueing model, probability generating function of the queue size at an arbitrary time will be obtained by using supplementary variable technique. Various performance measures will be derived with suitable numerical illustrations.
NASA Astrophysics Data System (ADS)
Arnot, C. S.; McInnes, C. R.; McKay, R. J.; Macdonald, M.; Biggs, J.
2018-02-01
This paper presents rich new families of relative orbits for spacecraft formation flight generated through the application of continuous thrust with only minimal intervention into the dynamics of the problem. Such simplicity facilitates implementation for small, low-cost spacecraft with only position state feedback, and yet permits interesting and novel relative orbits in both two- and three-body systems with potential future applications in space-based interferometry, hyperspectral sensing, and on-orbit inspection. Position feedback is used to modify the natural frequencies of the linearised relative dynamics through direct manipulation of the system eigenvalues, producing new families of stable relative orbits. Specifically, in the Hill-Clohessy-Wiltshire frame, simple adaptations of the linearised dynamics are used to produce a circular relative orbit, frequency-modulated out-of-plane motion, and a novel doubly periodic cylindrical relative trajectory for the purposes of on-orbit inspection. Within the circular restricted three-body problem, a similar minimal approach with position feedback is used to generate new families of stable, frequency-modulated relative orbits in the vicinity of a Lagrange point, culminating in the derivation of the gain requirements for synchronisation of the in-plane and out-of-plane frequencies to yield a singly periodic tilted elliptical relative orbit with potential use as a Lunar far-side communications relay. The Δ v requirements for the cylindrical relative orbit and singly periodic Lagrange point orbit are analysed, and it is shown that these requirements are modest and feasible for existing low-thrust propulsion technology.
A Large Motion Suspension System for Simulation of Orbital Deployment
NASA Technical Reports Server (NTRS)
Straube, T. M.; Peterson, L. D.
1994-01-01
This paper describes the design and implementation of a vertical degree of freedom suspension system which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate the on-orbit deployment of spacecraft components. A unique aspect of this system is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing breakaway friction by an order of magnitude over the passive system alone. The paper describes the development of the suspension hardware and the feedback control algorithm. Experiments were performed to verify the suspensions system's ability to provide a gravity off-load as well as its effect on the modal characteristics of a test article.
Bick, Christian; Kolodziejski, Christoph; Timme, Marc
2014-09-01
Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.
NASA Technical Reports Server (NTRS)
Straube, Timothy Milton
1993-01-01
The design and implementation of a vertical degree of freedom suspension system is described which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate orbital construction events such as docking, multiple component assembly, or structural deployment. A unique aspect of this device is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing break-away friction by a factor of twenty over the passive system alone. The thesis describes the development of the suspension hardware and the control algorithm. Experiments were performed to verify the suspensions system's effectiveness in providing a gravity off-load and simulating the motion of a structure in orbit. Additionally, a three dimensional system concept is presented as an extension of the one dimensional suspension system which was implemented.
NASA Astrophysics Data System (ADS)
Radha, J.; Indhira, K.; Chandrasekaran, V. M.
2017-11-01
A group arrival feedback retrial queue with k optional stages of service and orbital search policy is studied. Any arriving group of customer finds the server free, one from the group enters into the first stage of service and the rest of the group join into the orbit. After completion of the i th stage of service, the customer under service may have the option to choose (i+1)th stage of service with θi probability, with pI probability may join into orbit as feedback customer or may leave the system with {q}i=≤ft\\{\\begin{array}{l}1-{p}i-{θ }i,i=1,2,\\cdots k-1\\ 1-{p}i,i=k\\end{array}\\right\\} probability. Busy server may get to breakdown due to the arrival of negative customers and the service channel will fail for a short interval of time. At the completion of service or repair, the server searches for the customer in the orbit (if any) with probability α or remains idle with probability 1-α. By using the supplementary variable method, steady state probability generating function for system size, some system performance measures are discussed.
Orbit control of a stratospheric satellite with parameter uncertainties
NASA Astrophysics Data System (ADS)
Xu, Ming; Huo, Wei
2016-12-01
When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.
NASA Astrophysics Data System (ADS)
Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi
2018-06-01
As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.
Target and orbit feedback simulations of a muSR beamline at BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKay, W. W.; Fischer, W.; Blaskiewicz, M.
Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. The use of the AGS complex at BNL has been explored for a muSR facility previously. Here we report simulations of a beamline with a target inside a solenoidal field, and of an orbit feed-back system with single muon beam positioning monitors based on technology available today
Accessibility, stabilizability, and feedback control of continuous orbital transfer.
Gurfil, Pini
2004-05-01
This paper investigates the problem of low-thrust orbital transfer using orbital element feedback from a control-theoretic standpoint, concepts of controllability, feedback stabilizability, and their interaction. The Gauss variational equations (GVEs) are used to model the state-space dynamics. First, the notion of accessibility, a weaker form of controllability, is presented. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived that asymptotically steers a vehicle from an initial elliptic Keplerian orbit to any given elliptic Keplerian orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proved, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft to a parabolic escape trajectory.
Hamed, Kaveh Akbari; Gregg, Robert D
2017-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and [Formula: see text] robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to coordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and H2 robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3D autonomous bipedal robot with 9 degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:28959117
Aeroassisted orbital maneuvering using Lyapunov optimal feedback control
NASA Technical Reports Server (NTRS)
Grantham, Walter J.; Lee, Byoung-Soo
1987-01-01
A Liapunov optimal feedback controller incorporating a preferred direction of motion at each state of the system which is opposite to the gradient of a specified descent function is developed for aeroassisted orbital transfer from high-earth orbit to LEO. The performances of the Liapunov controller and a calculus-of-variations open-loop minimum-fuel controller, both of which are based on the 1962 U.S. Standard Atmosphere, are simulated using both the 1962 U.S. Standard Atmosphere and an atmosphere corresponding to the STS-6 Space Shuttle flight. In the STS-6 atmosphere, the calculus-of-variations open-loop controller fails to exit the atmosphere, while the Liapunov controller achieves the optimal minimum-fuel conditions, despite the + or - 40 percent fluctuations in the STS-6 atmosphere.
NASA Technical Reports Server (NTRS)
Powell, W. W., Sr.
1979-01-01
Two theories emerged as the cause of undesired oscillations at frequencies between 40 and 60 Hz in the Orbiter Vehicle inboard and outboard elevon actuation subsystems during hardware testing. Both the "hardover feedback" and "deadspace" theories were examined using continuous system modeling program simulation. Results did not support the "hardover feedback" theory but showed that deadspace in the torque feedback spring connections to the servospools must be considered to be a possible cause of the oscillations. Further investigation is recommended.
Hamed, Kaveh Akbari; Gregg, Robert D
2016-07-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.
Hamed, Kaveh Akbari; Gregg, Robert D.
2016-01-01
This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially stabilize periodic orbits for a class of hybrid dynamical systems arising from bipedal walking. The algorithm assumes a class of parameterized and nonlinear decentralized feedback controllers which coordinate lower-dimensional hybrid subsystems based on a common phasing variable. The exponential stabilization problem is translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities, which can be easily solved with available software packages. A set of sufficient conditions for the convergence of the iterative algorithm to a stabilizing decentralized feedback control solution is presented. The power of the algorithm is demonstrated by designing a set of local nonlinear controllers that cooperatively produce stable walking for a 3D autonomous biped with 9 degrees of freedom, 3 degrees of underactuation, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg. PMID:27990059
Telepresence work system concepts
NASA Technical Reports Server (NTRS)
Jenkins, L. M.
1985-01-01
Telepresence has been used in the context of the ultimate in remote manipulation where the operator is provided with the sensory feedback and control to perform highly dexterous tasks. The concept of a Telepresence Work Station (TWS) for operation in space is described. System requirements, concepts, and a development approach are discussed. The TWS has the potential for application on the Space Shuttle, on the Orbit Maneuver Vehicle, on an Orbit Transfer Vehicle, and on the Space Station. The TWS function is to perform satellite servicing tasks and construction and assembly operations in the buildup of large spacecraft. The basic concept is a pair of dexterous arms controlled from a remote station by an operation with feedback. It may be evolved through levels of supervisory control to a smart adaptive robotic system.
Current Status of the Beam Position Monitoring System at TLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, C. H.; Hu, K. H.; Chen, Jenny
2006-11-20
The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This reportmore » summarizes the system structure, the software environment and the preliminary beam test of the BPM system.« less
Current Status of the Beam Position Monitoring System at TLS
NASA Astrophysics Data System (ADS)
Kuo, C. H.; Hu, K. H.; Chen, Jenny; Lee, Demi; Wang, C. J.; Hsu, S. Y.; Hsu, K. T.
2006-11-01
The beam position monitoring system is an important part of a synchrotron light source that supports its routine operation and studies of beam physics. The Taiwan light source is equipped with 59 BPMs. Highly precise closed orbits are measured by multiplexing BPMs. Data are acquired using multi-channel 16-bit ADC modules. Orbit data are sampled every millisecond. Fast orbit data are shared in a reflective memory network to support fast orbit feedback. Averaged data were updated to control database at a rate of 10 Hz. A few new generation digital BPMs were tested to evaluate their performance and functionality. This report summarizes the system structure, the software environment and the preliminary beam test of the BPM system.
The role of pCO2 in astronomically-paced climate and carbon cycle variations in the Middle Miocene
NASA Astrophysics Data System (ADS)
Penman, D. E.; Hull, P. M.; Scher, H.; Kirtland Turner, S.; Ridgwell, A.
2017-12-01
The pace of Earth's background climate variability is known to be driven by the Milankovitch cycles, variations in Earth's orbital parameters and axial tilt. While the Milankovitch (orbital) theory of climate change is very nearly universally accepted, the climate system mechanisms and feedbacks responsible for amplifying orbital cycles preserved in the geologic record remain uncertain. For the late Pleistocene, the ice core-derived record of atmospheric carbon dioxide (pCO2) is strongly coupled with global temperature on orbital time scales, indicating that internal feedbacks involving the carbon cycle amplify or even cause the large changes in global temperature during orbitally driven glacial-interglacial cycles. However, for earlier time periods beyond the range of ice cores (the last 800 kyr), it is not possible to directly compare records of pCO2 to orbital climate cycles because there are no high-resolution (orbitally resolved) records of pCO2 before the Pliocene. We address this deficiency with a high-resolution ( 5-10 kyr spacing) record of planktonic foraminiferal d11B-derived surface seawater pH (as well as d13C and trace metal analyses) over a 500 kyr time window in a sedimentary record with known Milankovitch-scale climate and carbon cycle oscillations: the Middle Miocene (14.0 - 14.5 Ma) at ODP Site 926 (subtropical North Atlantic). The resulting pH record can be used to constrain atmospheric pCO2, allowing comparison of the timescale and magnitude of carbon cycle changes during a period of eccentricity-dominated variability in the response of the global climate system (the Late Pleistocene) with a period of obliquity-dominance (the middle Miocene). These new records of planktic d11B and d13C will then be used to guide simulations of astronomical climate forcing in Earth System models, resulting in refined estimates of pCO2 changes over orbital cycles and providing quantitative constraints on the mechanisms and feedbacks responsible for the Milankovitch control of climate and carbon cycling.
Integrated Orbit and Attitude Control for a Nanosatellite with Power Constraints
NASA Technical Reports Server (NTRS)
Naasz, Bo; Hall, Christopher; Berry, Matthew; Hy-Young, Kim
2003-01-01
Small satellites tend to be power-limited, so that actuators used to control the orbit and attitude must compete with each other as well as with other subsystems for limited electrical power. The Virginia Tech nanosatellite project, HokieSat, must use its limited power resources to operate pulsed-plasma thrusters for orbit control and magnetic torque coils for attitude control, while also providing power to a GPS receiver, a crosslink transceiver, and other subsystems. The orbit and attitude control strategies were developed independently. The attitude control system is based on an application of Linear Quadratic Regulator (LQR) to an averaged system of equations, whereas the orbit control is based on orbit element feedback. In this paper we describe the strategy for integrating these two control systems and present simulation results to verify the strategy.
Development of adaptive control applied to chaotic systems
NASA Astrophysics Data System (ADS)
Rhode, Martin Andreas
1997-12-01
Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
Just, Wolfram; Popovich, Svitlana; Amann, Andreas; Baba, Nilüfer; Schöll, Eckehard
2003-02-01
We investigate time-delayed feedback control schemes which are based on the unstable modes of the target state, to stabilize unstable periodic orbits. The periodic time dependence of these modes introduces an external time scale in the control process. Phase shifts that develop between these modes and the controlled periodic orbit may lead to a huge increase of the control performance. We illustrate such a feature on a nonlinear reaction diffusion system with global coupling and give a detailed investigation for the Rössler model. In addition we provide the analytical explanation for the observed control features.
Attitude estimation of earth orbiting satellites by decomposed linear recursive filters
NASA Technical Reports Server (NTRS)
Kou, S. R.
1975-01-01
Attitude estimation of earth orbiting satellites (including Large Space Telescope) subjected to environmental disturbances and noises was investigated. Modern control and estimation theory is used as a tool to design an efficient estimator for attitude estimation. Decomposed linear recursive filters for both continuous-time systems and discrete-time systems are derived. By using this accurate estimation of the attitude of spacecrafts, state variable feedback controller may be designed to achieve (or satisfy) high requirements of system performance.
Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)
NASA Technical Reports Server (NTRS)
Lee, J. H.; Brooks, W. F.
1984-01-01
The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.
Nonlinear feedback guidance law for aero-assisted orbit transfer maneuvers
NASA Technical Reports Server (NTRS)
Menon, P. K. A.
1992-01-01
Aero-assisted orbit transfer vehicles have the potential for significantly reducing the fuel requirements in certain classes of orbit transfer operations. Development of a nonlinear feedback guidance law for performing aero-assisted maneuvers that accomplish simultaneous change of all the orbital elements with least vehicle acceleration magnitude is discussed. The analysis is based on a sixth order nonlinear point-mass vehicle model with lift, bank angle, thrust and drag modulation as the control variables. The guidance law uses detailed vehicle aerodynamic and the atmosphere models in the feedback loop. Higher-order gravitational harmonics, planetary atmosphere rotation and ambient winds are included in the formulation. Due to modest computational requirements, the guidance law is implementable on-board an orbit transfer vehicle. The guidance performance is illustrated for three sets of boundary conditions.
BEAMLINE-CONTROLLED STEERING OF SOURCE-POINT ANGLE AT THE ADVANCED PHOTON SOURCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emery, L.; Fystro, G.; Shang, H.
An EPICS-based steering software system has been implemented for beamline personnel to directly steer the angle of the synchrotron radiation sources at the Advanced Photon Source. A script running on a workstation monitors "start steering" beamline EPICS records, and effects a steering given by the value of the "angle request" EPICS record. The new system makes the steering process much faster than before, although the older steering protocols can still be used. The robustness features of the original steering remain. Feedback messages are provided to the beamlines and the accelerator operators. Underpinning this new steering protocol is the recent refinementmore » of the global orbit feedback process whereby feedforward of dipole corrector set points and orbit set points are used to create a local steering bump in a rapid and seamless way.« less
Bifurcation Analysis and Chaos Control in a Modified Finance System with Delayed Feedback
NASA Astrophysics Data System (ADS)
Yang, Jihua; Zhang, Erli; Liu, Mei
2016-06-01
We investigate the effect of delayed feedback on the finance system, which describes the time variation of the interest rate, for establishing the fiscal policy. By local stability analysis, we theoretically prove the existences of Hopf bifurcation and Hopf-zero bifurcation. By using the normal form method and center manifold theory, we determine the stability and direction of a bifurcating periodic solution. Finally, we give some numerical solutions, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable equilibrium or periodic orbit.
Visual display aid for orbital maneuvering - Design considerations
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1993-01-01
This paper describes the development of an interactive proximity operations planning system that allows on-site planning of fuel-efficient multiburn maneuvers in a potential multispacecraft environment. Although this display system most directly assists planning by providing visual feedback to aid visualization of the trajectories and constraints, its most significant features include: (1) the use of an 'inverse dynamics' algorithm that removes control nonlinearities facing the operator, and (2) a trajectory planning technique that separates, through a 'geometric spreadsheet', the normally coupled complex problems of planning orbital maneuvers and allows solution by an iterative sequence of simple independent actions. The visual feedback of trajectory shapes and operational constraints, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool provides an example of operator-assisted optimization of nonlinear cost functions.
Continuous control of chaos based on the stability criterion.
Yu, Hong Jie; Liu, Yan Zhu; Peng, Jian Hua
2004-06-01
A method of chaos control based on stability criterion is proposed in the present paper. This method can stabilize chaotic systems onto a desired periodic orbit by a small time-continuous perturbation nonlinear feedback. This method does not require linearization of the system around the stabilized orbit and only an approximate location of the desired periodic orbit is required which can be automatically detected in the control process. The control can be started at any moment by choosing appropriate perturbation restriction condition. It seems that more flexibility and convenience are the main advantages of this method. The discussions on control of attitude motion of a spacecraft, Rössler system, and two coupled Duffing oscillators are given as numerical examples.
The Astronomical Forcing of Climate Change: Forcings and Feedbacks
NASA Astrophysics Data System (ADS)
Erb, M. P.; Broccoli, A. J.; Clement, A. C.
2010-12-01
Understanding the role that orbital forcing played in driving climate change over the Pleistocene has been a matter of ongoing research. While it is undeniable that variations in Earth’s orbit result in changes in the seasonal and latitudinal distribution of insolation, the specifics of how this forcing leads to the climate changes seen in the paleo record are not fully understood. To research this further, climate simulations have been conducted with the GFDL CM2.1, a coupled atmosphere-ocean GCM. Two simulations represent the extremes of obliquity during the past 600 kyr and four others show key times in the precessional cycle. All non-orbital variables are set to preindustrial levels to isolate the effects of astronomical forcing alone. It is expected that feedbacks should play a large role in dictating climate change, so to investigate this, the so-called “kernel method” is used to calculate the lapse rate, water vapor, albedo, and cloud feedbacks. Preliminary results of these experiments confirm that feedbacks are important in explaining the nature and, in places, even the sign of climate response to orbital forcing. In the case of low obliquity, for instance, a combination of climate feedbacks lead to global cooling in spite of zero global-average top of atmosphere insolation change. Feedbacks will be analyzed in the obliquity and precession experiments so that the role of feedbacks in contributing to climate change may be better understood.
STS-47 Mission Specialist (MS) Jemison conducts AFTE in SLJ module on OV-105
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Mission Specialist (MS) Mae C. Jemison, wearing autogenic feedback training system 2 suit, conducts the Autogenic Feedback Training Experiment (AFTE) in Spacelab Japan (SLJ) science module aboard Endeavour, Orbiter Vehicle (OV) 105. AFTE's objective is to teach astronauts to use biofeedback rather than drugs to combat nausea and other effects of space motion sickness. Jemison's physical responses are monitored by sensors attached to the suit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Badry, Kareem; Quataert, Eliot; Wetzel, Andrew R.
In low-mass galaxies, stellar feedback can drive gas outflows that generate non-equilibrium fluctuations in the gravitational potential. Using cosmological zoom-in baryonic simulations from the Feedback in Realistic Environments project, we investigate how these fluctuations affect stellar kinematics and the reliability of Jeans dynamical modeling in low-mass galaxies. We find that stellar velocity dispersion and anisotropy profiles fluctuate significantly over the course of galaxies’ starburst cycles. We therefore predict an observable correlation between star formation rate and stellar kinematics: dwarf galaxies with higher recent star formation rates should have systemically higher stellar velocity dispersions. This prediction provides an observational test ofmore » the role of stellar feedback in regulating both stellar and dark-matter densities in dwarf galaxies. We find that Jeans modeling, which treats galaxies as virialized systems in dynamical equilibrium, overestimates a galaxy’s dynamical mass during periods of post-starburst gas outflow and underestimates it during periods of net inflow. Short-timescale potential fluctuations lead to typical errors of ∼20% in dynamical mass estimates, even if full three-dimensional stellar kinematics—including the orbital anisotropy—are known exactly. When orbital anisotropy is not known a priori, typical mass errors arising from non-equilibrium fluctuations in the potential are larger than those arising from the mass-anisotropy degeneracy. However, Jeans modeling alone cannot reliably constrain the orbital anisotropy, and problematically, it often favors anisotropy models that do not reflect the true profile. If galaxies completely lose their gas and cease forming stars, fluctuations in the potential subside, and Jeans modeling becomes much more reliable.« less
Spacecraft stability and control using new techniques for periodic and time-delayed systems
NASA Astrophysics Data System (ADS)
NAzari, Morad
This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.
Synchronization of unidirectionally delay-coupled chaotic oscillators with memory
NASA Astrophysics Data System (ADS)
Jaimes-Reátegui, Rider; Vera-Ávila, Victor P.; Sevilla-Escoboza, Ricardo; Huerta-Cuéllar, Guillermo; Castañeda-Hernández, Carlos E.; Chiu-Zarate, Roger; Pisarchik, Alexander N.
2016-11-01
We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators' phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.
NASA Technical Reports Server (NTRS)
Wong, Hong; Kapila, Vikram
2004-01-01
In this paper, we present a method for trajectory generation and adaptive full-state feedback control to facilitate spacecraft formation flying near the Sun-Earth L2 Lagrange point. Specifically, the dynamics of a spacecraft in the neighborhood of a Halo orbit reveals that there exist quasi-periodic orbits surrounding the Halo orbit. Thus, a spacecraft formation is created by placing a leader spacecraft on a desired Halo orbit and placing follower spacecraft on desired quasi-periodic orbits. To produce a formation maintenance controller, we first develop the nonlinear dynamics of a follower spacecraft relative to the leader spacecraft. We assume that the leader spacecraft is on a desired Halo orbit trajectory and the follower spacecraft is to track a desired quasi-periodic orbit surrounding the Halo orbit. Then, we design an adaptive, full-state feedback position tracking controller for the follower spacecraft providing an adaptive compensation for the unknown mass of the follower spacecraft. The proposed control law is simulated for the case of the leader and follower spacecraft pair and is shown to yield global, asymptotic convergence of the relative position tracking errors.
Target and orbit feedback simulations of a muSR beam line at BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKay, W.; Blaskiewicz, M.; Fischer, W.
Well-polarized positive surface muons are a tool to measure the magnetic properties of materials since the precession rate of the spin can be determined from the observation of the positron directions when the muons decay. For a dc beam an ideal µSR flux for surface µ + should be about 40 kHz/mm 2. In this report we show how this flux could be achieved in a beam line using the AGS complex at BNL for a source of protons. We also determined that an orbit feedback system with a pair of thin silicon position monitors and kickers would miss themore » desired flux by at least an order of magnitude, even with perfect time resolution and no multiple scattering.« less
NASA Astrophysics Data System (ADS)
Huang, Dongmei; Xu, Wei
2017-11-01
In this paper, the combination of the cubic nonlinearity and time delay is proposed to improve the performance of a piecewise-smooth (PWS) system with negative stiffness. Dynamical properties, feedback control performance and symmetry-breaking bifurcation are mainly considered for a PWS system with negative stiffness under nonlinear position and velocity feedback control. For the free vibration system, the homoclinic-like orbits are firstly derived. Then, the amplitude-frequency response of the controlled system is obtained analytically in aspect of the Lindstedt-Poincaré method and the method of multiple scales, which is also verified through the numerical results. In this regard, a softening-type behavior, which directly leads to the multi-valued responses, is illustrated over the negative position feedback. Especially, the five-valued responses in which three branches of them are stable are found. And complex multi-valued characteristics are also observed in the force-amplitude responses. Furthermore, for explaining the effectiveness of feedback control, the equivalent damping and stiffness are also introduced. Sensitivity of the system response to the feedback gain and time delay is comprehensively considered and interesting dynamical properties are found. Relatively, from the perspective of suppressing the maximum amplitude and controlling the resonance stability, the selection of the feedback parameters is discussed. Finally, the symmetry-breaking bifurcation and chaotic motion are considered.
Joshi, Manoj M; Haberle, Robert M
2012-01-01
M stars comprise 80% of main sequence stars, so their planetary systems provide the best chance for finding habitable planets, that is, those with surface liquid water. We have modeled the broadband albedo or reflectivity of water ice and snow for simulated planetary surfaces orbiting two observed red dwarf stars (or M stars), using spectrally resolved data of Earth's cryosphere. The gradual reduction of the albedos of snow and ice at wavelengths greater than 1 μm, combined with M stars emitting a significant fraction of their radiation at these same longer wavelengths, means that the albedos of ice and snow on planets orbiting M stars are much lower than their values on Earth. Our results imply that the ice/snow albedo climate feedback is significantly weaker for planets orbiting M stars than for planets orbiting G-type stars such as the Sun. In addition, planets with significant ice and snow cover will have significantly higher surface temperatures for a given stellar flux if the spectral variation of cryospheric albedo is considered, which in turn implies that the outer edge of the habitable zone around M stars may be 10-30% farther away from the parent star than previously thought.
Fuel-efficient feedback control of orbital motion around irregular-shaped asteroids
NASA Astrophysics Data System (ADS)
Winkler, Timothy Michael
Unmanned probes are the primary technologies used when exploring celestial bodies in our solar system. As these deep space exploration missions are becoming more and more complex, there is a need for advanced autonomous operation capabilities in order to meet mission objectives. These autonomous capabilities are required as ground-based guidance and navigation commands will not be able to be issued in real time due to the large distance from the Earth. For long-duration asteroid exploration missions, this also entails how to keep the spacecraft around or on the body in order for the mission to be successfully completed. Unlike with larger bodies such as planets, though, the dynamical environment around these smaller bodies can be difficult to characterize. The weak gravitational fields are not uniform due to irregular shapes and non-homogeneous mass distribution, especially when orbiting in close-proximity to the body. On top of that, small perturbation forces such as solar radiation pressure can be strong enough to destabilize an orbit around an asteroid. The best solution for keeping a spacecraft in orbit about a small body is to implement some form of control technique. With conventional propulsion thrusters, active control algorithms tend to have a higher than acceptable propellant requirements for long-duration asteroid exploration missions, which has led to much research being devoted to finding open-loop solutions to long-term stable orbits about small bodies. These solutions can prove to be highly sensitive to the orbit's initial conditions, making them potentially unreliable in the presence of orbit injection errors. This research investigates a fuel-efficient, active control scheme to safely control a spacecraft's orbit in close-proximity to an asteroid. First, three different gravitational models capable of simulating the non-homogeneous gravity fields of asteroids are presented: the polyhedron gravity shape model, a spherical harmonics expansion, and an inertia dyadic gravity model. Then a simple feedback controller augmented by a disturbance-accommodating filter is employed to ensure orbital stability. Using these models and controller, several orbiting cases as well as body-frame hovering are investigated to test the viability and fuel-efficiency of the proposed control system. The ultimate goal is to design an active orbit control system with minimum DeltaV expenditure.
Variable structure control of nonlinear systems through simplified uncertain models
NASA Technical Reports Server (NTRS)
Sira-Ramirez, Hebertt
1986-01-01
A variable structure control approach is presented for the robust stabilization of feedback equivalent nonlinear systems whose proposed model lies in the same structural orbit of a linear system in Brunovsky's canonical form. An attempt to linearize exactly the nonlinear plant on the basis of the feedback control law derived for the available model results in a nonlinearly perturbed canonical system for the expanded class of possible equivalent control functions. Conservatism tends to grow as modeling errors become larger. In order to preserve the internal controllability structure of the plant, it is proposed that model simplification be carried out on the open-loop-transformed system. As an example, a controller is developed for a single link manipulator with an elastic joint.
Understanding of and applications for robot vision guidance at KSC
NASA Technical Reports Server (NTRS)
Shawaga, Lawrence M.
1988-01-01
The primary thrust of robotics at KSC is for the servicing of Space Shuttle remote umbilical docking functions. In order for this to occur, robots performing servicing operations must be capable of tracking a swaying Orbiter in Six Degrees of Freedom (6-DOF). Currently, in NASA KSC's Robotic Applications Development Laboratory (RADL), an ASEA IRB-90 industrial robot is being equipped with a real-time computer vision (hardware and software) system to allow it to track a simulated Orbiter interface (target) in 6-DOF. The real-time computer vision system effectively becomes the eyes for the lab robot, guiding it through a closed loop visual feedback system to move with the simulated Orbiter interface. This paper will address an understanding of this vision guidance system and how it will be applied to remote umbilical servicing at KSC. In addition, other current and future applications will be addressed.
Synchronizing movements with the metronome: nonlinear error correction and unstable periodic orbits.
Engbert, Ralf; Krampe, Ralf Th; Kurths, Jürgen; Kliegl, Reinhold
2002-02-01
The control of human hand movements is investigated in a simple synchronization task. We propose and analyze a stochastic model based on nonlinear error correction; a mechanism which implies the existence of unstable periodic orbits. This prediction is tested in an experiment with human subjects. We find that our experimental data are in good agreement with numerical simulations of our theoretical model. These results suggest that feedback control of the human motor systems shows nonlinear behavior. Copyright 2001 Elsevier Science (USA).
Self-organizing systems in planetary physics: Harmonic resonances of planet and moon orbits
NASA Astrophysics Data System (ADS)
Aschwanden, Markus J.
2018-01-01
The geometric arrangement of planet and moon orbits into a regularly spaced pattern of distances is the result of a self-organizing system. The positive feedback mechanism that operates a self-organizing system is accomplished by harmonic orbit resonances, leading to long-term stable planet and moon orbits in solar or stellar systems. The distance pattern of planets was originally described by the empirical Titius-Bode law, and by a generalized version with a constant geometric progression factor (corresponding to logarithmic spacing). We find that the orbital periods Ti and planet distances Ri from the Sun are not consistent with logarithmic spacing, but rather follow the quantized scaling (Ri + 1 /Ri) =(Ti + 1 /Ti) 2 / 3 =(Hi + 1 /Hi) 2 / 3 , where the harmonic ratios are given by five dominant resonances, namely (Hi + 1 :Hi) =(3 : 2) ,(5 : 3) ,(2 : 1) ,(5 : 2) ,(3 : 1) . We find that the orbital period ratios tend to follow the quantized harmonic ratios in increasing order. We apply this harmonic orbit resonance model to the planets and moons in our solar system, and to the exo-planets of 55 Cnc and HD 10180 planetary systems. The model allows us a prediction of missing planets in each planetary system, based on the quasi-regular self-organizing pattern of harmonic orbit resonance zones. We predict 7 (and 4) missing exo-planets around the star 55 Cnc (and HD 10180). The accuracy of the predicted planet and moon distances amounts to a few percents. All analyzed systems are found to have ≈ 10 resonant zones that can be occupied with planets (or moons) in long-term stable orbits.
flexplan: Mission Planning System for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Barnoy, Assaf; Beech, Theresa
2013-01-01
flexplan is a mission planning and scheduling (MPS) tool that uses soft algorithms to define mission scheduling rules and constraints. This allows the operator to configure the tool for any mission without the need to modify or recompile code. In addition, flexplan uses an ID system to track every output on the schedule to the input from which it was generated. This allows flexplan to receive feedback as the schedules are executed, and update the status of all activities in a Web-based client. flexplan outputs include various planning reports, stored command loads for the Lunar Reconnaissance Orbiter (LRO), ephemeris loads, and pass scripts for automation.
Why we shouldn't underestimate the impact of plant functional diversity
NASA Astrophysics Data System (ADS)
Groner, V.; Raddatz, T.; Reick, C. H.; Claussen, M.
2017-12-01
We present a series of coupled land-atmosphere simulations with different combinations of plant functional types (PFTs) from mid-Holocene to preindustrial to show how plant functional diversity affects simulated climate-vegetation interaction under changing environmental conditions in subtropical Africa. Scientists nowadays agree that the establishment of the ``green'' Sahara was triggered by external changes in the Earth's orbit and amplified by internal feedback mechanisms. The timing and abruptness of the transition to the ``desert'' state are in turn still under debate. While some previous studies indicated an abrupt collapse of vegetation implying a strong climate-vegetation feedback, others suggested a gradual vegetation decline thereby questioning the existence of a strong climate-vegetation feedback. However, none of these studies explicitly accounted for the role of plant diversity. We show that the introduction or removal of a single PFT can bring about significant impacts on the simulated climate-vegetation system response to changing orbital forcing. While simulations with the standard set of PFTs show a gradual decrease of precipitation and vegetation cover over time, the reduction of plant functional diversity can cause either an abrupt decline of both variables or an even slower response to the external forcing. PFT composition seems to be the decisive factor for the system response to external forcing, and an increase in plant functional diversity does not necessarily increase the stability of the climate-vegetation system. From this we conclude that accounting for plant functional diversity in future studies - not only on palaeo climates - could significantly improve the understanding of climate-vegetation interaction in semi-arid regions, the predictability of the vegetation response to changing climate, and respectively, of the resulting feedback on precipitation.
Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout
NASA Technical Reports Server (NTRS)
Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.
1997-01-01
The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.
Evolution of the Generic Lock System at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Bevins; Yves Roblin
2003-10-13
The Generic Lock system is a software framework that allows highly flexible feedback control of large distributed systems. It allows system operators to implement new feedback loops between arbitrary process variables quickly and with no disturbance to the underlying control system. Several different types of feedback loops are provided and more are being added. This paper describes the further evolution of the system since it was first presented at ICALEPCS 2001 and reports on two years of successful use in accelerator operations. The framework has been enhanced in several key ways. Multiple-input, multiple-output (MIMO) lock types have been added formore » accelerator orbit and energy stabilization. The general purpose Proportional-Integral-Derivative (PID) locks can now be tuned automatically. The generic lock server now makes use of the Proxy IOC (PIOC) developed at Jefferson Lab to allow the locks to be monitored from any EPICS Channel Access aware client. (Previously clients had to be Cdev aware.) The dependency on the Qt XML parser has been replaced with the freely available Xerces DOM parser from the Apache project.« less
STS-47 MS Davis trains at Payload Crew Training Complex at Marshall SFC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) N. Jan Davis, wearing the Autogenic Feedback Training System 2 suit and lightweight headset, reviews a Payload Systems Handbook in the Spacelab Japan (SLJ) mockup during training at the Payload Crew Training Complex at Marshall Space Flight Center (MSFC) in Huntsville, Alabama. View provided with alternate number 92P-137.
NASA Astrophysics Data System (ADS)
Park, Han-Earl; Park, Sang-Young; Kim, Sung-Woo; Park, Chandeok
2013-12-01
Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500-1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.
Interactive orbital proximity operations planning system
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1988-01-01
An interactive graphical proximity operations planning system was developed, which allows on-site design of efficient, complex, multiburn maneuvers in a dynamic multispacecraft environment. Maneuvering takes place in and out of the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of orbital dynamics and complex time-varying operational constraints. This difficulty is greatly overcome by visualizing the relative trajectories and the relevant constraints in an easily interpretable graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of a Space Station and co-orbiting spacecraft on the background of the Station's orbital plane. The operator has control over the two modes of operation: a viewing system mode, which enables the exporation of the spatial situation about the Space Station and thus the ability to choose and zoom in on areas of interest; and a trajectory design mode, which allows the interactive editing of a series of way points and maneuvering burns to obtain a trajectory that complies with all operational constraints. A first version of this display was completed. An experimental program is planned in which operators will carry out a series of design missions which vary in complexity and constraints.
Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.
Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179
Reconfigurable fault tolerant avionics system
NASA Astrophysics Data System (ADS)
Ibrahim, M. M.; Asami, K.; Cho, Mengu
This paper presents the design of a reconfigurable avionics system based on modern Static Random Access Memory (SRAM)-based Field Programmable Gate Array (FPGA) to be used in future generations of nano satellites. A major concern in satellite systems and especially nano satellites is to build robust systems with low-power consumption profiles. The system is designed to be flexible by providing the capability of reconfiguring itself based on its orbital position. As Single Event Upsets (SEU) do not have the same severity and intensity in all orbital locations, having the maximum at the South Atlantic Anomaly (SAA) and the polar cusps, the system does not have to be fully protected all the time in its orbit. An acceptable level of protection against high-energy cosmic rays and charged particles roaming in space is provided within the majority of the orbit through software fault tolerance. Check pointing and roll back, besides control flow assertions, is used for that level of protection. In the minority part of the orbit where severe SEUs are expected to exist, a reconfiguration for the system FPGA is initiated where the processor systems are triplicated and protection through Triple Modular Redundancy (TMR) with feedback is provided. This technique of reconfiguring the system as per the level of the threat expected from SEU-induced faults helps in reducing the average dynamic power consumption of the system to one-third of its maximum. This technique can be viewed as a smart protection through system reconfiguration. The system is built on the commercial version of the (XC5VLX50) Xilinx Virtex5 FPGA on bulk silicon with 324 IO. Simulations of orbit SEU rates were carried out using the SPENVIS web-based software package.
Interactive orbital proximity operations planning system instruction and training guide
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1994-01-01
This guide instructs users in the operation of a Proximity Operations Planning System. This system uses an interactive graphical method for planning fuel-efficient rendezvous trajectories in the multi-spacecraft environment of the space station and allows the operator to compose a multi-burn transfer trajectory between orbit initial chaser and target trajectories. The available task time (window) of the mission is predetermined and the maneuver is subject to various operational constraints, such as departure, arrival, spatial, plume impingement, and en route passage constraints. The maneuvers are described in terms of the relative motion experienced in a space station centered coordinate system. Both in-orbital plane as well as out-of-orbital plane maneuvering is considered. A number of visual optimization aids are used for assisting the operator in reaching fuel-efficient solutions. These optimization aids are based on the Primer Vector theory. The visual feedback of trajectory shapes, operational constraints, and optimization functions, provided by user-transparent and continuously active background computations, allows the operator to make fast, iterative design changes that rapidly converge to fuel-efficient solutions. The planning tool is an example of operator-assisted optimization of nonlinear cost functions.
UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br
We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsingmore » binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.« less
System Simulation by Recursive Feedback: Coupling a Set of Stand-Alone Subsystem Simulations
NASA Technical Reports Server (NTRS)
Nixon, D. D.
2001-01-01
Conventional construction of digital dynamic system simulations often involves collecting differential equations that model each subsystem, arran g them to a standard form, and obtaining their numerical gin solution as a single coupled, total-system simultaneous set. Simulation by numerical coupling of independent stand-alone subsimulations is a fundamentally different approach that is attractive because, among other things, the architecture naturally facilitates high fidelity, broad scope, and discipline independence. Recursive feedback is defined and discussed as a candidate approach to multidiscipline dynamic system simulation by numerical coupling of self-contained, single-discipline subsystem simulations. A satellite motion example containing three subsystems (orbit dynamics, attitude dynamics, and aerodynamics) has been defined and constructed using this approach. Conventional solution methods are used in the subsystem simulations. Distributed and centralized implementations of coupling have been considered. Numerical results are evaluated by direct comparison with a standard total-system, simultaneous-solution approach.
New beam-position monitor system for upgraded Photon Factory storage ring.
Haga, K; Honda, T; Tadano, M; Obina, T; Kasuga, T
1998-05-01
Accompanying the brilliance-upgrading project at the Photon Factory storage ring, the beam-position monitor (BPM) system has been renovated. The new system was designed to enable precise and fast measurements to correct the closed-orbit distortion (COD), as well as to feed back the orbit position during user runs. There are 42 BPMs newly installed, amounting to a total of 65 BPMs. All of the BPMs are calibrated on the test bench using a coaxially strung metallic wire. The measured electrical offsets are typically 200 micro m in both directions, which is 1/2-1/3 of those of the old-type BPMs. In the signal-processing system, PIN diode switches are employed in order to improve reliability. In the fastest mode, this system is capable of measuring COD within about 10 ms; this fast acquisition will allow fast suppression of the beam movement for frequencies up to 50 Hz using a global feedback system.
Mathematics and Physics Studies - Multi-Project Support
1989-09-02
measurements). A quaternion form is used to represent any finite rotation of a rigid body as a rotation through some angle about a fixed axis (Euler’s...many - contractual issues. Drs. Edmond Murad (GL/PHK) and Roger Van Tassel (GL/OPB) provided important suggestions and feedback on the data processing...Orbital Maneuvering System (OMS) and the Reaction Control System (RCS) resemble plumes produced by targets/events of interest. Measurements from the IBSS
Modeling North American Ice Sheet Response to Changes in Precession and Obliquity
NASA Astrophysics Data System (ADS)
Tabor, C.; Poulsen, C. J.; Pollard, D.
2012-12-01
Milankovitch theory proposes that changes in insolation due to orbital perturbations dictate the waxing and waning of the ice sheets (Hays et al., 1976). However, variations in solar forcing alone are insufficient to produce the glacial oscillations observed in the climate record. Non-linear feedbacks in the Earth system likely work in concert with the orbital cycles to produce a modified signal (e.g. Berger and Loutre, 1996), but the nature of these feedbacks remain poorly understood. To gain a better understand of the ice dynamics and climate feedbacks associated with changes in orbital configuration, we use a complex Earth system model consisting of the GENESIS GCM and land surface model (Pollard and Thompson, 1997), the Pennsylvania State University ice sheet model (Pollard and DeConto, 2009), and the BIOME vegetation model (Kaplan et al., 2001). We began this study by investigating ice sheet sensitivity to a range of commonly used ice sheet model parameters, including mass balance and albedo, to optimize simulations for Pleistocene orbital cycles. Our tests indicate that choice of mass balance and albedo parameterizations can lead to significant differences in ice sheet behavior and volume. For instance, use of an insolation-temperature mass balance scheme (van den Berg, 2008) allows for a larger ice sheet response to orbital changes than the commonly employed positive degree-day method. Inclusion of a large temperature dependent ice albedo, representing phenomena such as melt ponds and dirty ice, also enhances ice sheet sensitivity. Careful tuning of mass balance and albedo parameterizations can help alleviate the problem of insufficient ice sheet retreat during periods of high summer insolation (Horton and Poulsen, 2007) while still accurately replicating the modern climate. Using our optimized configuration, we conducted a series of experiments with idealized transient orbits in an asynchronous coupling scheme to investigate the influence of obliquity and precession on the Laurentide and Cordillera ice sheets of North America. Preliminary model results show that the ice sheet response to changes in obliquity are larger than for precession despite providing a smaller direct insolation variation in the Northern Hemisphere high latitudes. A combination of enhanced Northern Hemisphere mid-latitude temperature gradient and longer cycle duration allow for a larger ice sheet response to obliquity than would be expected from insolation forcing alone. Conversely, a shorter duration dampens the ice sheet response to precession. Nevertheless, the precession cycle does cause significant changes in ice volume, a feature not observed in the Early Pleistocene δ18O records (Raymo and Nisancioglu, 2003). Future work will examine the climate response to an idealized transient orbit that includes concurrent variations in obliquity, precession, and eccentricity.
NASA Astrophysics Data System (ADS)
Strathdee, A.
1985-10-01
The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.
An unreliable group arrival queue with k stages of service, retrial under variant vacation policy
NASA Astrophysics Data System (ADS)
Radha, J.; Indhira, K.; Chandrasekaran, V. M.
2017-11-01
In this research work we considered repairable retrial queue with group arrival and the server utilize the variant vacations. A server gives service in k stages. Any arriving group of units finds the server free, one from the group entering the first stage of service and the rest are joining into the orbit. After completion of the i th stage of service, the customer may have the option to choose (i+1)th stage of service with probability θi , with probability pi may join into orbit as feedback customer or may leave the system with probability {q}i=≤ft\\{\\begin{array}{l}1-{p}i-{θ }i,i=1,2,\\cdots k-1\\ 1-{p}i,i=k\\end{array}\\right\\}. If the orbit is empty at the service completion of each stage service, the server takes modified vacation until at least one customer appears in the orbit on the server returns from a vacation. Busy server may get to breakdown and the service channel will fail for a short interval of time. By using the supplementary variable method, steady state probability generating function for system size, some system performance measures are discussed.
NASA Astrophysics Data System (ADS)
Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain
2017-10-01
A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.
Experimental verification of Pyragas-Schöll-Fiedler control.
von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram
2010-09-01
We present an experimental realization of time-delayed feedback control proposed by Schöll and Fiedler. The scheme enables us to stabilize torsion-free periodic orbits in autonomous systems, and to overcome the so-called odd number limitation. The experimental control performance is in quantitative agreement with the bifurcation analysis of simple model systems. The results uncover some general features of the control scheme which are deemed to be relevant for a large class of setups.
NASA Astrophysics Data System (ADS)
Souza Lima, Rafael; Mayer, Lucio; Capelo, Pedro R.; Bellovary, Jillian M.
2017-03-01
We study the orbital decay of a pair of massive black holes (BHs) with masses 5× {10}5 and 107 {M}⊙ , using hydrodynamical simulations of circumnuclear disks (CNDs) with the alternating presence of sub-grid physics, such as radiative cooling, star formation, supernova feedback, BH accretion, and BH feedback. In the absence of such processes, the orbit of the secondary BH decays over timescales of ˜ 10 {Myr} to the center of the CND, where the primary BH resides. When strong dissipation operates in CNDs, fragmentation into massive objects the size of giant molecular clouds with densities in the range 104-107 amu cm-3 occurs, causing stochastic torques and hits that can eject the secondary BH from the midplane. Outside the plane, the low-density medium provides only weak drag, and the BH return is governed by inefficient dynamical friction. In rare cases, clump-BH interactions can lead to a faster decay. Feedback processes lead to outflows, but do not significantly change the overall density of the CND midplane. However, with a spherically distributed BH feedback, a hot bubble is generated behind the secondary, which almost shuts off dynamical friction. We dub this phenomenon “wake evacuation.” It leads to delays in the decay, possibly of ˜ 0.3 {Gyr}. We discuss the non-trivial implications on the discovery space of the eLISA telescope. Our results suggest that the largest uncertainty in predicting BH merger rates lies in the potentially wide variety of galaxy host systems, with different degrees of gas dissipation and heating, yielding decay timescales from ˜ 10 to ˜ 300 {Myr}.
Controlling Mackey-Glass chaos.
Kiss, Gábor; Röst, Gergely
2017-11-01
The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.
Controlling Mackey-Glass chaos
NASA Astrophysics Data System (ADS)
Kiss, Gábor; Röst, Gergely
2017-11-01
The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.
Interactive orbital proximity operations planning system
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Ellis, Stephen R.
1989-01-01
An interactive, graphical proximity operations planning system was developed which allows on-site design of efficient, complex, multiburn maneuvers in the dynamic multispacecraft environment about the space station. Maneuvering takes place in, as well as out of, the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of relative orbital motion trajectories and complex operational constraints, which are both time varying and highly dependent on the mission scenario. This difficulty is greatly overcome by visualizing the relative trajectories and the relative constraints in an easily interpretable, graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of the space station and co-orbiting spacecraft on the background of the station's orbital plane. The operator has control over two modes of operation: (1) a viewing system mode, which enables him or her to explore the spatial situation about the space station and thus choose and frame in on areas of interest; and (2) a trajectory design mode, which allows the interactive editing of a series of way-points and maneuvering burns to obtain a trajectory which complies with all operational constraints. Through a graphical interactive process, the operator will continue to modify the trajectory design until all operational constraints are met. The effectiveness of this display format in complex trajectory design is presently being evaluated in an ongoing experimental program.
Codimension-Two Bifurcation, Chaos and Control in a Discrete-Time Information Diffusion Model
NASA Astrophysics Data System (ADS)
Ren, Jingli; Yu, Liping
2016-12-01
In this paper, we present a discrete model to illustrate how two pieces of information interact with online social networks and investigate the dynamics of discrete-time information diffusion model in three types: reverse type, intervention type and mutualistic type. It is found that the model has orbits with period 2, 4, 6, 8, 12, 16, 20, 30, quasiperiodic orbit, and undergoes heteroclinic bifurcation near 1:2 point, a homoclinic structure near 1:3 resonance point and an invariant cycle bifurcated by period 4 orbit near 1:4 resonance point. Moreover, in order to regulate information diffusion process and information security, we give two control strategies, the hybrid control method and the feedback controller of polynomial functions, to control chaos, flip bifurcation, 1:2, 1:3 and 1:4 resonances, respectively, in the two-dimensional discrete system.
A real-time guidance algorithm for aerospace plane optimal ascent to low earth orbit
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1989-01-01
Problems of onboard trajectory optimization and synthesis of suitable guidance laws for ascent to low Earth orbit of an air-breathing, single-stage-to-orbit vehicle are addressed. A multimode propulsion system is assumed which incorporates turbojet, ramjet, Scramjet, and rocket engines. An algorithm for generating fuel-optimal climb profiles is presented. This algorithm results from the application of the minimum principle to a low-order dynamic model that includes angle-of-attack effects and the normal component of thrust. Maximum dynamic pressure and maximum aerodynamic heating rate constraints are considered. Switching conditions are derived which, under appropriate assumptions, govern optimal transition from one propulsion mode to another. A nonlinear transformation technique is employed to derived a feedback controller for tracking the computed trajectory. Numerical results illustrate the nature of the resulting fuel-optimal climb paths.
International Space Station USOS Crew Quarters On-orbit vs Design Performance Comparison
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Borrego, Melissa Ann; Bahr, Juergen F.
2008-01-01
The International Space Station (ISS) United States Operational Segment (USOS) received the first two permanent ISS Crew Quarters (CQ) on Utility Logistics Flight Two (ULF2) in November 2008. Up to four CQs can be installed into the Node 2 element to increase the ISS crewmember size to six. The CQs provide private crewmember space with enhanced acoustic noise mitigation, integrated radiation reduction material, communication equipment, redundant electrical systems, and redundant caution and warning systems. The racksized CQ is a system with multiple crewmember restraints, adjustable lighting, controllable ventilation, and interfaces that allow each crewmember to personalize their CQ workspace. The deployment and initial operational checkout during integration of the ISS CQ to the Node is described. Additionally, the comparison of on-orbit to original design performance is outlined for the following key operational parameters: interior acoustic performance, air flow rate, temperature rise, and crewmember feedback on provisioning and restraint layout.
Satellite orbit and data sampling requirements
NASA Technical Reports Server (NTRS)
Rossow, William
1993-01-01
Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.
Autonomous Space Processor for Orbital Debris (ASPOD)
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett
1992-01-01
A project in the Advanced Design Program at the University of Arizona is described. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.
Columbus Payloads Flow Rate Anomalies
NASA Technical Reports Server (NTRS)
Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.
2011-01-01
The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.
Autonomous spacecraft attitude control using magnetic torquing only
NASA Technical Reports Server (NTRS)
Musser, Keith L.; Ebert, Ward L.
1989-01-01
Magnetic torquing of spacecraft has been an important mechanism for attitude control since the earliest satellites were launched. Typically a magnetic control system has been used for precession/nutation damping for gravity-gradient stabilized satellites, momentum dumping for systems equipped with reaction wheels, or momentum-axis pointing for spinning and momentum-biased spacecraft. Although within the small satellite community there has always been interest in expensive, light-weight, and low-power attitude control systems, completely magnetic control systems have not been used for autonomous three-axis stabilized spacecraft due to the large computational requirements involved. As increasingly more powerful microprocessors have become available, this has become less of an impediment. These facts have motivated consideration of the all-magnetic attitude control system presented here. The problem of controlling spacecraft attitude using only magnetic torquing is cast into the form of the Linear Quadratic Regulator (LQR), resulting in a linear feedback control law. Since the geomagnetic field along a satellite trajectory is not constant, the system equations are time varying. As a result, the optimal feedback gains are time-varying. Orbit geometry is exploited to treat feedback gains as a function of position rather than time, making feasible the onboard solution of the optimal control problem. In simulations performed to date, the control laws have shown themselves to be fairly robust and a good candidate for an onboard attitude control system.
Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.
Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J
2012-10-01
This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett; Chinnock, Paul; Kutz, Bjoern
1992-01-01
This paper is regarding a project in the Advanced Design Program at the University of Arizona. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a NASA/Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines has allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.
Control-based continuation: Bifurcation and stability analysis for physical experiments
NASA Astrophysics Data System (ADS)
Barton, David A. W.
2017-02-01
Control-based continuation is technique for tracking the solutions and bifurcations of nonlinear experiments. The idea is to apply the method of numerical continuation to a feedback-controlled physical experiment such that the control becomes non-invasive. Since in an experiment it is not (generally) possible to set the state of the system directly, the control target becomes a proxy for the state. Control-based continuation enables the systematic investigation of the bifurcation structure of a physical system, much like if it was numerical model. However, stability information (and hence bifurcation detection and classification) is not readily available due to the presence of stabilising feedback control. This paper uses a periodic auto-regressive model with exogenous inputs (ARX) to approximate the time-varying linearisation of the experiment around a particular periodic orbit, thus providing the missing stability information. This method is demonstrated using a physical nonlinear tuned mass damper.
Kutzbach, J.-E.; Bartlein, P.J.; Foley, J.A.; Harrison, S.P.; Hosteller, S.W.; Liu, Z.; Prentice, I.C.; Webb, T.
1996-01-01
Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10-5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCM1, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100-200 km north in most sectors. Both CCM1 and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets.
Space Storms and Space Weather Hazards
2001-06-12
dashed curve is a run where the IMF was switched to northward again at t=50 min. Dipolarization at synchronous orbit sets in about 1 hour after the...years. The Modified Atmospheric Density Model revolutionized orbit tracking by applying intelligent feedback from empirical drag data for satellites in...coefficients for a set of operationally relevant satellites was improved, on average, by 200% and computational variability was greatly dampened. The orbit
Kalman Filter for Mass Property and Thrust Identification (MMS)
NASA Technical Reports Server (NTRS)
Queen, Steven
2015-01-01
The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties is necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.
Inner Super-Earths, Outer Gas Giants: How Pebble Isolation and Migration Feedback Keep Jupiters Cold
NASA Astrophysics Data System (ADS)
Fung, Jeffrey; Lee, Eve J.
2018-06-01
The majority of gas giants (planets of masses ≳102 M ⊕) are found to reside at distances beyond ∼1 au from their host stars. Within 1 au, the planetary population is dominated by super-Earths of 2–20 M ⊕. We show that this dichotomy between inner super-Earths and outer gas giants can be naturally explained should they form in nearly inviscid disks. In laminar disks, a planet can more easily repel disk gas away from its orbit. The feedback torque from the pile-up of gas inside the planet’s orbit slows down and eventually halts migration. A pressure bump outside the planet’s orbit traps pebbles and solids, starving the core. Gas giants are born cold and stay cold: more massive cores are preferentially formed at larger distances, and they barely migrate under disk feedback. We demonstrate this using two-dimensional hydrodynamical simulations of disk–planet interaction lasting up to 105 years: we track planet migration and pebble accretion until both come to an end by disk feedback. Whether cores undergo runaway gas accretion to become gas giants or not is determined by computing one-dimensional gas accretion models. Our simulations show that in an inviscid minimum mass solar nebula, gas giants do not form inside ∼0.5 au, nor can they migrate there while the disk is present. We also explore the dependence on disk mass and find that gas giants form further out in less massive disks.
Beam Stability R&D for the APS MBA Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sereno, Nicholas S.; Arnold, Ned D.; Bui, Hanh D.
2015-01-01
Beam diagnostics required for the APS Multi-bend acromat (MBA) are driven by ambitious beam stability requirements. The major AC stability challenge is to correct rms beam motion to 10% the rms beam size at the insertion device source points from0.01 to 1000 Hz. The vertical plane represents the biggest challenge forAC stability, which is required to be 400 nm rms for a 4-micron vertical beam size. In addition to AC stability, long-term drift over a period of seven days is required to be 1 micron or less. Major diagnostics R&D components include improved rf beam position processing using commercially availablemore » FPGA-based BPM processors, new X-ray beam position monitors based on hard X-ray fluorescence from copper and Compton scattering off diamond, mechanical motion sensing to detect and correct long-term vacuum chamber drift, a new feedback system featuring a tenfold increase in sampling rate, and a several-fold increase in the number of fast correctors and BPMs in the feedback algorithm. Feedback system development represents a major effort, and we are pursuing development of a novel algorithm that integrates orbit correction for both slow and fast correctors down to DC simultaneously. Finally, a new data acquisition system (DAQ) is being developed to simultaneously acquire streaming data from all diagnostics as well as the feedback processors for commissioning and fault diagnosis. Results of studies and the design effort are reported.« less
Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.
He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E
2013-02-07
According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2) concentration provided the critical feedback on global deglaciation.
Automatic Overset Grid Generation with Heuristic Feedback Control
NASA Technical Reports Server (NTRS)
Robinson, Peter I.
2001-01-01
An advancing front grid generation system for structured Overset grids is presented which automatically modifies Overset structured surface grids and control lines until user-specified grid qualities are achieved. The system is demonstrated on two examples: the first refines a space shuttle fuselage control line until global truncation error is achieved; the second advances, from control lines, the space shuttle orbiter fuselage top and fuselage side surface grids until proper overlap is achieved. Surface grids are generated in minutes for complex geometries. The system is implemented as a heuristic feedback control (HFC) expert system which iteratively modifies the input specifications for Overset control line and surface grids. It is developed as an extension of modern control theory, production rules systems and subsumption architectures. The methodology provides benefits over the full knowledge lifecycle of an expert system for knowledge acquisition, knowledge representation, and knowledge execution. The vector/matrix framework of modern control theory systematically acquires and represents expert system knowledge. Missing matrix elements imply missing expert knowledge. The execution of the expert system knowledge is performed through symbolic execution of the matrix algebra equations of modern control theory. The dot product operation of matrix algebra is generalized for heuristic symbolic terms. Constant time execution is guaranteed.
Active Debris Removal of Multiple Priority Targets
NASA Astrophysics Data System (ADS)
Braun, Vitali; Flegel, Sven Kevin; Vörsmann, Peter; Wiedemann, Carsten; Gelhaus, Johannes; Moeckel, Marek; Kebschull, Christopher
2012-07-01
Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 kilometers with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome. Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any future launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target. In this paper several systems, e.g. chemical and electrical engines are analysed with the main focus on removing multiple targets within one single mission. The service satellite has to undock from the previously de-orbited target in order to start the rendezvous and docking phase for a subsequent target. The targets are chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time and system mass shall enable the evaluation of the different concepts.
Resonant spatiotemporal learning in large random recurrent networks.
Daucé, Emmanuel; Quoy, Mathias; Doyon, Bernard
2002-09-01
Taking a global analogy with the structure of perceptual biological systems, we present a system composed of two layers of real-valued sigmoidal neurons. The primary layer receives stimulating spatiotemporal signals, and the secondary layer is a fully connected random recurrent network. This secondary layer spontaneously displays complex chaotic dynamics. All connections have a constant time delay. We use for our experiments a Hebbian (covariance) learning rule. This rule slowly modifies the weights under the influence of a periodic stimulus. The effect of learning is twofold: (i) it simplifies the secondary-layer dynamics, which eventually stabilizes to a periodic orbit; and (ii) it connects the secondary layer to the primary layer, and realizes a feedback from the secondary to the primary layer. This feedback signal is added to the incoming signal, and matches it (i.e., the secondary layer performs a one-step prediction of the forthcoming stimulus). After learning, a resonant behavior can be observed: the system resonates with familiar stimuli, which activates a feedback signal. In particular, this resonance allows the recognition and retrieval of partial signals, and dynamic maintenance of the memory of past stimuli. This resonance is highly sensitive to the temporal relationships and to the periodicity of the presented stimuli. When we present stimuli which do not match in time or space, the feedback remains silent. The number of different stimuli for which resonant behavior can be learned is analyzed. As with Hopfield networks, the capacity is proportional to the size of the second, recurrent layer. Moreover, the high capacity displayed allows the implementation of our model on real-time systems interacting with their environment. Such an implementation is reported in the case of a simple behavior-based recognition task on a mobile robot. Finally, we present some functional analogies with biological systems in terms of autonomy and dynamic binding, and present some hypotheses on the computational role of feedback connections.
Reference equations of motion for automatic rendezvous and capture
NASA Technical Reports Server (NTRS)
Henderson, David M.
1992-01-01
The analysis presented in this paper defines the reference coordinate frames, equations of motion, and control parameters necessary to model the relative motion and attitude of spacecraft in close proximity with another space system during the Automatic Rendezvous and Capture phase of an on-orbit operation. The relative docking port target position vector and the attitude control matrix are defined based upon an arbitrary spacecraft design. These translation and rotation control parameters could be used to drive the error signal input to the vehicle flight control system. Measurements for these control parameters would become the bases for an autopilot or feedback control system (FCS) design for a specific spacecraft.
Generalized Momentum Control of the Spin-Stabilized Magnetospheric Multiscale Formation
NASA Technical Reports Server (NTRS)
Queen, Steven Z.; Shah, Neerav; Benegalrao, Suyog S.; Blackman, Kathie
2015-01-01
The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories elliptically orbiting the Earth in a tetrahedron formation. The on-board attitude control system adjusts the angular momentum of the system using a generalized thruster-actuated control system that simultaneously manages precession, nutation and spin. Originally developed using Lyapunov control-theory with rate-feedback, a published algorithm has been augmented to provide a balanced attitude/rate response using a single weighting parameter. This approach overcomes an orientation sign-ambiguity in the existing formulation, and also allows for a smoothly tuned-response applicable to both a compact/agile spacecraft, as well as one with large articulating appendages.
The Puzzling Nature OF THE YOUNG MICROQUASAR CIR X-1
NASA Astrophysics Data System (ADS)
Schulz, Norbert
2016-09-01
We propose to observe Cir X-1 for 60 ks within an orbital phase window of 0.96 - 1.04 within its 16.5 day orbit using the HETGS. Cir X-1 is in its more frequent quiescent/flaring state of the late 1970s with respect to its longterm light curve. The binary has recently been identified to be a very young HMXB system with a companion likely still in its pre-main sequence state. The persistent flux has now hit about 20 mCrab, significantly up from our 2008 HETG observation. In this observation we pursue our original goals to study emissions and absorption in accretion feedback plasmas. We specifically search for radiative recombination continua as a telltale for a young HAeBe companion star wind.
NASA Technical Reports Server (NTRS)
Queen, Steven Z.
2015-01-01
The Magnetospheric Multiscale (MMS) mission consists of four identically instrumented, spin-stabilized observatories, elliptically orbiting the Earth in a tetrahedron formation. For the operational success of the mission, on-board systems must be able to deliver high-precision orbital adjustment maneuvers. On MMS, this is accomplished using feedback from on-board star sensors in tandem with accelerometers whose measurements are dynamically corrected for errors associated with a spinning platform. In order to determine the required corrections to the measured acceleration, precise estimates of attitude, rate, and mass-properties are necessary. To this end, both an on-board and ground-based Multiplicative Extended Kalman Filter (MEKF) were formulated and implemented in order to estimate the dynamic and quasi-static properties of the spacecraft.
NASA Technical Reports Server (NTRS)
Sauerwein, Timothy
1989-01-01
The human factors design process in developing a shuttle orbiter aft flight deck workstation testbed is described. In developing an operator workstation to control various laboratory telerobots, strong elements of human factors engineering and ergonomics are integrated into the design process. The integration of human factors is performed by incorporating user feedback at key stages in the project life-cycle. An operator centered design approach helps insure the system users are working with the system designer in the design and operation of the system. The design methodology is presented along with the results of the design and the solutions regarding human factors design principles.
Black Hole Foraging: Feedback Drives Feeding
NASA Astrophysics Data System (ADS)
Dehnen, Walter; King, Andrew
2013-11-01
We suggest a new picture of supermassive black hole (SMBH) growth in galaxy centers. Momentum-driven feedback from an accreting hole gives significant orbital energy, but little angular momentum to the surrounding gas. Once central accretion drops, the feedback weakens and swept-up gas falls back toward the SMBH on near-parabolic orbits. These intersect near the black hole with partially opposed specific angular momenta, causing further infall and ultimately the formation of a small-scale accretion disk. The feeding rates into the disk typically exceed Eddington by factors of a few, growing the hole on the Salpeter timescale and stimulating further feedback. Natural consequences of this picture include (1) the formation and maintenance of a roughly toroidal distribution of obscuring matter near the hole; (2) random orientations of successive accretion disk episodes; (3) the possibility of rapid SMBH growth; (4) tidal disruption of stars and close binaries formed from infalling gas, resulting in visible flares and ejection of hypervelocity stars; (5) super-solar abundances of the matter accreting on to the SMBH; and (6) a lower central dark-matter density, and hence annihilation signal, than adiabatic SMBH growth implies. We also suggest a simple subgrid recipe for implementing this process in numerical simulations.
NASA Astrophysics Data System (ADS)
Penoyre, Zephyr; Haiman, Zoltán
2018-01-01
In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.
Astronaut tool development: An orbital replaceable unit-portable handhold
NASA Technical Reports Server (NTRS)
Redmon, John W., Jr.
1989-01-01
A tool to be used during astronaut Extra-Vehicular Activity (EVA) replacement of spent or defective electrical/electronic component boxes is described. The generation of requirements and design philosophies are detailed, as well as specifics relating to mechanical development, interface verifications, testing, and astronaut feedback. Findings are presented in the form of: (1) a design which is universally applicable to spacecraft component replacement, and (2) guidelines that the designer of orbital replacement units might incorporate to enhance spacecraft on-orbit maintainability and EVA mission safety.
Dynamics and control of tethered antennas/reflectors in orbit
NASA Astrophysics Data System (ADS)
Liu, Liangdong; Bainum, Peter M.
The system linear equations for the motion of a tethered shallow spherical shell in orbit with its symmetry axis nominally following the local vertical are developed. The shell roll, yaw, tether out-of-plane swing motion and elastic vibrations are decoupled from the shell and tether in-plane pitch motions and elastic vibrations. The neutral gravity stability conditions for the special case of a constant length rigid tether are given for in-plane motion and out-of-plant motion. It is proved that the in-plane motion of the system could be asymptotically stable based on Rupp's tension control law, for a variable length tether. However, the system simulation results indicate that the transient responses can be improved significantly, especially for the damping of the tether and shell pitch motion, by an optimal feedback control law for the rigid variable length tether model. It is also seen that the system could be unstable when the effect of tether flexibility is included if the control gains are not chosen carefully. The transient responses for three different tension control laws are compared during typical station keeping operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Margaret; Chiang, Eugene, E-mail: mpan@astro.berkeley.edu
2012-01-15
'Propellers' are features in Saturn's A ring associated with moonlets that open partial gaps. They exhibit non-Keplerian motion (Tiscareno et al.); the longitude residuals of the best-observed propeller, 'Bleriot', appear consistent with a sinusoid of period {approx}4 years. Pan and Chiang proposed that propeller moonlets librate in 'frog resonances' with co-orbiting ring material. By analogy with the restricted three-body problem, they treated the co-orbital material as stationary in the rotating frame and neglected non-co-orbital material. Here we use simple numerical experiments to extend the frog model, including feedback due to the gap's motion, and drag associated with the Lindblad diskmore » torques that cause Type I migration. Because the moonlet creates the gap, we expect the gap centroid to track the moonlet, but only after a time delay t{sub delay}, the time for a ring particle to travel from conjunction with the moonlet to the end of the gap. We find that frog librations can persist only if t{sub delay} exceeds the frog libration period P{sub lib}, and if damping from Lindblad torques balances driving from co-orbital torques. If t{sub delay} << Pl{sub ib}, then the libration amplitude damps to zero. In the case of Bleriot, the frog resonance model can reproduce the observed libration period P{sub lib} {approx_equal} 4 yr. However, our simple feedback prescription suggests that Bleriot's t{sub delay} {approx} 0.01P{sub lib}, which is inconsistent with the observed libration amplitude of 260 km. We urge more accurate treatments of feedback to test the assumptions of our toy models.« less
A closed-loop photon beam control study for the Advanced Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, G.; Bengtsson, J.
1993-05-01
The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less
NASA Technical Reports Server (NTRS)
Chuang, C.-H.; Goodson, Troy D.; Ledsinger, Laura A.
1995-01-01
This report describes current work in the numerical computation of multiple burn, fuel-optimal orbit transfers and presents an analysis of the second variation for extremal multiple burn orbital transfers as well as a discussion of a guidance scheme which may be implemented for such transfers. The discussion of numerical computation focuses on the use of multivariate interpolation to aid the computation in the numerical optimization. The second variation analysis includes the development of the conditions for the examination of both fixed and free final time transfers. Evaluations for fixed final time are presented for extremal one, two, and three burn solutions of the first variation. The free final time problem is considered for an extremal two burn solution. In addition, corresponding changes of the second variation formulation over thrust arcs and coast arcs are included. The guidance scheme discussed is an implicit scheme which implements a neighboring optimal feedback guidance strategy to calculate both thrust direction and thrust on-off times.
Active debris removal of multiple priority targets
NASA Astrophysics Data System (ADS)
Braun, Vitali; Lüpken, A.; Flegel, S.; Gelhaus, J.; Möckel, M.; Kebschull, C.; Wiedemann, C.; Vörsmann, P.
2013-05-01
Today's space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.Current studies show that catastrophic collisions are not a major problem today, but will become the main process for debris generation within the SSO region in the near future, even without any further launches. In order to avoid this effect, objects with a major impact on collisional cascading have to be actively removed from the critical region after their end of life. Not having the capability to perform an end-of-life maneuver in order to transfer to a graveyard orbit or to de-orbit, many satellites and rocket bodies would have to be de-orbited within a dedicated mission. In such a mission, a service satellite would perform a de-orbit maneuver, after having docked to a specific target.In this paper, chemical and electric propulsion systems were analysed with the main focus on removing multiple targets within one single mission. The targets were chosen from a previously defined priority list in order to enhance the mission efficiency. Total mission time, ΔV and system mass were identified as key parameters to allow for an evaluation of the different concepts. It was shown that it is possible to remove up to five high priority targets per year using a chemical propulsion system, however, missions may result in too high ΔV and/or mission duration depending on the orbital distribution of the targets. When using an electric propulsion system, the required fuel mass is significantly reduced when compared to the chemical propulsion system, but it was shown that mission duration strongly depends on the mass of the selected targets. More powerful engines as well as out-of-plane thrust are thus required to achieve the defined mission goals.
International Space Station USOS Potable Water Dispenser On-Orbit Functionality vs Design
NASA Technical Reports Server (NTRS)
Toon, Katherine P.; Lovell, Randal W.
2009-01-01
The International Space Station (ISS) currently provides potable water dispensing for rehydrating crewmembers food and drinking packages with one system located in the United States On-orbit Segment (USOS) and one system in the Russian Segment. The USOS Potable Water Dispenser (PWD) was delivered to ISS on ULF2, Shuttle Mission STS-126, and was subsequently activated in November 2008. The PWD activation on ISS is capable of supporting an ISS crew of six but nominally supplies only half the crew. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to US style food packages. PWD receives iodinated water from the US Laboratory Fuel Cell Water Bus, which is fed from the Water Processing Assembly (WPA). The PWD removes the biocidal iodine to make the water potable prior to dispensing. A heater assembly contained within the unit supplies up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity supports three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. To date, the PWD on-orbit performance has been acceptable. Since activation of the PWD, there have been several differences between on-orbit functionality and expected performance of hardware design. The comparison of on-orbit functionality to performance of hardware design is outlined for the following key areas: microbiology, PWD to food package water leakage, no-dispense scenarios, under-dispense scenarios, and crewmember feedback on actual on-orbit use.
Analyzing Dynamics of Cooperating Spacecraft
NASA Technical Reports Server (NTRS)
Hughes, Stephen P.; Folta, David C.; Conway, Darrel J.
2004-01-01
A software library has been developed to enable high-fidelity computational simulation of the dynamics of multiple spacecraft distributed over a region of outer space and acting with a common purpose. All of the modeling capabilities afforded by this software are available independently in other, separate software systems, but have not previously been brought together in a single system. A user can choose among several dynamical models, many high-fidelity environment models, and several numerical-integration schemes. The user can select whether to use models that assume weak coupling between spacecraft, or strong coupling in the case of feedback control or tethering of spacecraft to each other. For weak coupling, spacecraft orbits are propagated independently, and are synchronized in time by controlling the step size of the integration. For strong coupling, the orbits are integrated simultaneously. Among the integration schemes that the user can choose are Runge-Kutta Verner, Prince-Dormand, Adams-Bashforth-Moulton, and Bulirsh- Stoer. Comparisons of performance are included for both the weak- and strongcoupling dynamical models for all of the numerical integrators.
Feedback control for stabilizing chaotic spiral waves during cardiac ventricular fibrillation
NASA Astrophysics Data System (ADS)
Uzelac, Ilija; Wikswo, John; Gray, Richard
2011-03-01
The cardiac arrhythmias that lead to ventricular fibrillation (VF) arise from electrical spiral waves (SW) rotating within the heart with a characteristic period τ . A single drifting SW can degenerate into a chaotic system of multiple SWs and VF. Hence early SW detection and termination is crucial to prevent VF. Time-delayed feedback control (TDFC) is well known approach for stabilizing unstable periodic orbits embedded in chaotic attractors. We hypothesize that cardiac SWs can be stabilized by TDFC with a time-delay of τ . Implementing this approach will require precise, closed-loop control of the charge delivered to the heart during the defibrillation process. To do this, we have developed a 2 kW arbitrary-waveform voltage-to-current converter (V2CC) with a 1 kHz bandwidth that can deliver up to 5 A at 400 V for 500 ms, and a photodiode system for recording in real time an optical electrocardiogram, OECG(t). The feedback signal driving the V2CC will be the time-difference (OECG(t) - OECG(t-T), where we hypothesize that T is τ , the period of the SW. This may dramatically decrease defibrillation voltages by using a defibrillation waveform customized to the VF event, unlike commercial capacitor defibrillators. Supported in part by NIH R01 HL58241-11 through ARRA 2009.
New CERES Data Examined for Evidence of Tropical Iris Feedback
NASA Technical Reports Server (NTRS)
Chambers, Lin H.; Lin, Bing; Young, David F.
2002-01-01
New data products are available from the CERES instrument, a part of the NASA Earth Observing System. The Single Scanner Footprint (SSF) product combines radiative fluxes with extensive information on the cloud conditions in the footprint, which are retrieved using the co-orbiting imager instrument. These data have been analyzed to more accurately define the radiative properties for the various regions of the recently-proposed adaptive infrared Iris. A variety of ways of defining the cloudy moist region were examined. According to CERES, the net radiative flux for the cloudy moist region ranges between 28 and 54 W/m2 depending on the specific definition used. This is in contrast to the value of 123 W/m2 which was somewhat subjectively assigned by LCH. This simple model may miss many feedbacks in the climate system, but it should provide a rough range of the climate variations if the physics of the Iris is correct. There is some question whether the change in cloudy moist area with cloud-weighted SST actually represents a useful quantity, and whether extrapolating it from a regional variation to a global response to warmer climate is appropriate. Regardless, the current results show that the proposed Iris feedback is very much weaker when objectively-determined radiative properties are used in the model.
Simplified adaptive control of an orbiting flexible spacecraft
NASA Astrophysics Data System (ADS)
Maganti, Ganesh B.; Singh, Sahjendra N.
2007-10-01
The paper presents the design of a new simple adaptive system for the rotational maneuver and vibration suppression of an orbiting spacecraft with flexible appendages. A moment generating device located on the central rigid body of the spacecraft is used for the attitude control. It is assumed that the system parameters are unknown and the truncated model of the spacecraft has finite but arbitrary dimension. In addition, only the pitch angle and its derivative are measured and elastic modes are not available for feedback. The control output variable is chosen as the linear combination of the pitch angle and the pitch rate. Exploiting the hyper minimum phase nature of the spacecraft, a simple adaptive control law is derived for the pitch angle control and elastic mode stabilization. The adaptation rule requires only four adjustable parameters and the structure of the control system does not depend on the order of the truncated spacecraft model. For the synthesis of control system, the measured output error and the states of a third-order command generator are used. Simulation results are presented which show that in the closed-loop system adaptive output regulation is accomplished in spite of large parameter uncertainties and disturbance input.
Advanced control techniques for teleoperation in earth orbit
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Brooks, T. L.
1980-01-01
Emerging teleoperation tasks in space invite advancements in teleoperator control technology. This paper briefly summarizes the generic issues related to earth orbital applications of teleoperators, and describes teleoperator control technology development work including visual and non-visual sensors and displays, kinesthetic feedback and computer-aided controls. Performance experiments were carried out using sensor and computer aided controls with promising results which are briefly summarized.
Controller Synthesis for Periodically Forced Chaotic Systems
NASA Astrophysics Data System (ADS)
Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo
Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.
Spin-orbital Tidal Dynamics and Tidal Heating in the TRAPPIST-1 Multiplanet System
NASA Astrophysics Data System (ADS)
Makarov, Valeri V.; Berghea, Ciprian T.; Efroimsky, Michael
2018-04-01
We perform numerical simulations of the TRAPPIST-1 system of seven exoplanets orbiting a nearby M dwarf, starting with a previously suggested stable configuration. The long-term stability of this configuration is confirmed, but the motion of planets is found to be chaotic. The eccentricity values are found to vary within finite ranges. The rates of tidal dissipation and tidal evolution of orbits are estimated, assuming an Earth-like rheology for the planets. We find that under this assumption, the planets b, d, and e were captured in the 3:2 or higher spin–orbit resonances during the initial spin-down, but slipped further down into the 1:1 resonance. Depending on its rheology, the innermost planet b may be captured in a stable pseudosynchronous rotation. Nonsynchronous rotation ensures higher levels of tidal dissipation and internal heating. The positive feedback between the viscosity and the dissipation rate—and the ensuing runaway heating—are terminated by a few self-regulation processes. When the temperature is high and the viscosity is low enough, the planet spontaneously leaves the 3:2 resonance. Further heating is stopped either by passing the peak dissipation or by the emergence of partial melt in the mantle. In the post-solidus state, the tidal dissipation is limited to the levels supported by the heat transfer efficiency. The tides on the host star are unlikely to have had a significant dynamical impact. The tides on the synchronized inner planets tend to reduce these planets’ orbital eccentricity, possibly contributing thereby to the system’s stability.
EVOLUTIONARY TRAJECTORIES OF ULTRACOMPACT 'BLACK WIDOW' PULSARS WITH VERY LOW MASS COMPANIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br
The existence of millisecond pulsars with planet-mass companions in close orbits is challenging from the stellar evolution point of view. We calculate in detail the evolution of binary systems self-consistently, including mass transfer, evaporation, and irradiation of the donor by X-ray feedback, demonstrating the existence of a new evolutionary path leading to short periods and compact donors as required by the observations of PSR J1719-1438. We also point out the alternative of an exotic nature of the companion planet-mass star.
STS-47 MS Jemison trains in SLJ module at MSFC Payload Crew Training Complex
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison, wearing Autogenic Feedback Training System 2 suit, works with the Frog Embryology Experiment in a General Purpose Workstation (GPWS) in the Spacelab Japan (SLJ) module mockup at the Payload Crew Training Complex. The experiment will study the effects of weightlessness on the development of frog eggs fertilized in space. The Payload Crew Training Complex is located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama. View provided with alternate number 92P-139.
Fast BPM data distribution for global orbit feedback using commercial gigabit ethernet technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulsart, R.; Cerniglia, P.; Michnoff, R.
2011-03-28
In order to correct beam perturbations in RHIC around 10Hz, a new fast data distribution network was required to deliver BPM position data at rates several orders of magnitude above the capability of the existing system. The urgency of the project limited the amount of custom hardware that could be developed, which dictated the use of as much commercially available equipment as possible. The selected architecture uses a custom hardware interface to the existing RHIC BPM electronics together with commercially available Gigabit Ethernet switches to distribute position data to devices located around the collider ring. Using the minimum Ethernet packetmore » size and a field programmable gate array (FPGA) based state machine logic instead of a software based driver, real-time and deterministic data delivery is possible using Ethernet. The method of adapting this protocol for low latency data delivery, bench testing of Ethernet hardware, and the logic to construct Ethernet packets using FPGA hardware will be discussed. A robust communications system using almost all commercial off-the-shelf equipment was developed in under a year which enabled retrofitting of the existing RHIC BPM system to provide 10 KHz data delivery for a global orbit feedback scheme using 72 BPMs. Total latencies from data acquisition at the BPMs to delivery at the controller modules, including very long transmission distances, were kept under 100 {micro}s, which provide very little phase error in correcting the 10 Hz oscillations. Leveraging off of the speed of Gigabit Ethernet and wide availability of Ethernet products enabled this solution to be fully implemented in a much shorter time and at lower cost than if a similar network was developed using a proprietary method.« less
Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Calhourn, Philip C.; Garrick, Joseph C.
2007-01-01
The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.
Mars channel observations 1877-90, compared with modern Orbiter data
NASA Astrophysics Data System (ADS)
Gerstbach, G.
2003-10-01
The astronomic sensation of 1877, Schiaparelli's Canali, were a main research topic for 80 years (in a way they are it now again). Up to Mariner 4 (1965) many institutes believed in melted ice and periodic vegetation along the gray or green linear structures. Mars mapping reached a 2nd summit by Antoniadi, whose map 1936 was the basis of the US Mariner program. But ~1915 the shift from linear to area drawing caused some quality losses in planetography. In the fifties the Canali were mostly interpreted as optical illusions or contrast effects. The rivers and tectonics seen by Orbiters encouraged me to special studies: 60% of Schiaparelli channels correlate with: Albedo patterns, terrace-shadow structures, broad valley systems (e.g. Valles Marineris) and rows of craters or clouds. Experienced observers know that linear structures can be "seen" even if their elements are below the resolution. Feedback of this fact to space-born Remote Sensing is recommended - for maximal use of the modern planet Orbiters and special studies of geology, dust storms and clouds.
Targetting and guidance program documentation. [a user's manual
NASA Technical Reports Server (NTRS)
Harrold, E. F.; Neyhard, J. F.
1974-01-01
A FORTRAN computer program was developed which automatically targets two and three burn rendezvous missions and performs feedback guidance using the GUIDE algorithm. The program was designed to accept a large class of orbit specifications and to automatically choose a two or three burn mission depending upon the time alignment of the vehicle and target. The orbits may be specified as any combination of circular and elliptical orbits and may be coplanar or inclined, but must be aligned coaxially with their perigees in the same direction. The program accomplishes the required targeting by repeatedly converging successively more complex missions. It solves the coplanar impulsive version of the mission, then the finite burn coplanar mission, and finally, the full plane change mission. The GUIDE algorithm is exercised in a feedback guidance mode by taking the targeted solution and moving the vehicle state step by step ahead in time, adding acceleration and navigational errors, and reconverging from the perturbed states at fixed guidance update intervals. A program overview is presented, along with a user's guide which details input, output, and the various subroutines.
On-Board Entry Trajectory Planning Expanded to Sub-orbital Flight
NASA Technical Reports Server (NTRS)
Lu, Ping; Shen, Zuojun
2003-01-01
A methodology for on-board planning of sub-orbital entry trajectories is developed. The algorithm is able to generate in a time frame consistent with on-board environment a three-degree-of-freedom (3DOF) feasible entry trajectory, given the boundary conditions and vehicle modeling. This trajectory is then tracked by feedback guidance laws which issue guidance commands. The current trajectory planning algorithm complements the recently developed method for on-board 3DOF entry trajectory generation for orbital missions, and provides full-envelope autonomous adaptive entry guidance capability. The algorithm is validated and verified by extensive high fidelity simulations using a sub-orbital reusable launch vehicle model and difficult mission scenarios including failures and aborts.
Autotracking from space - The TDRSS approach
NASA Astrophysics Data System (ADS)
Spearing, R. E.; Harper, W. R.
The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.
Autotracking from space - The TDRSS approach
NASA Technical Reports Server (NTRS)
Spearing, R. E.; Harper, W. R.
1984-01-01
The TDRSS will provide telecommunications support to near-earth orbiting satellites through the 1980s and into the 1990s. The system incorporates two operational satellites at geostationary altitude and a single ground station at White Sands, NM. Of the many tasks facing the engineering team in development of this system, one of the most challenging was K-band autotrack. An approach not previously attempted placed the error detection, processing, and feedback elements for automatic control of the TDR satellite antennas on the ground. This approach offered several advantages to the designers but posed a number of interesting questions during the development program. The autotrack system design and its test program are described with emphasis given to areas of special interest in developing a working K-band service.
Earth radiation balance and climate: Why the Moon is the wrong place to observe the Earth
NASA Astrophysics Data System (ADS)
Kandel, Robert S.
1994-06-01
Increasing 'greenhouse' gases in the Earth's atmosphere will perturb the Earth's radiation balance, forcing climate change over coming decades. Climate sensitivity depends critically on cloud-radiation feedback: its evaluation requires continual observation of changing patterns of Earth radiation balance and cloud cover. The Moon is the wrong place for such observations, with many disadvantages compared to an observation system combining platforms in low polar, intermediate-inclination and geostationary orbits. From the Moon, active observations are infeasible; thermal infrared observations require very large instruments to reach spatial resolutions obtained at much lower cost from geostationary or lower orbits. The Earth's polar zones are never well observed from the Moon; other zones are invisible more than half the time. The monthly illumination cycle leads to further bias in radiation budget determinations. The Earth will be a pretty sight from the Earth-side of the Moon, but serious Earth observations will be made elsewhere.
The development of W-PBPM at diagnostic beamline
NASA Astrophysics Data System (ADS)
Kim, Seungnam; Kim, Myeongjin; Kim, Seonghan; Shin, Hocheol; Kim, Jiwha; Lee, Chaesun
2017-12-01
The photon beam position monitor (PBPM) plays a critically important role in the accurate monitoring of the beam position. W (Wire)-PBPMs are installed at the front end and photon transfer line (PTL) of the diagnostic beamline and detect the change of position and angle of the beam orbit applied to the beamline. It provides beam stability and position data in real time, which can be used in feedback system with BPM in storage-ring. Also it provides beam profile, which makes it possible to figure out the specifications of beam. With two W-PBPMs, the angle information of beam could be acquired and the results coupled with beam profile are used with orbit correction. The W-PBPM has been designed and installed in the diagnostic beamline at Pohang Light Source. Herein the details of the design, analysis and performance for the W-PBPM will be reported.
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
Geodynamic contributions to global climatic change
NASA Technical Reports Server (NTRS)
Bills, Bruce G.
1992-01-01
Orbital and rotational variations perturb the latitudinal and seasonal pattern of incident solar radiation, producing major climatic change on time scales of 10(exp 4)-10(exp 6) years. The orbital variations are oblivious to internal structure and processes, but the rotational variations are not. A program of investigation whose objective would be to explore and quantify three aspects of orbital, rotational, and climatic interactions is described. An important premise of this investigation is the synergism between geodynamics and paleoclimate. Better geophysical models of precessional dynamics are needed in order to accurately reconstruct the radiative input to climate models. Some of the paleoclimate proxy records contain information relevant to solid Earth processes, on time scales which are difficult to constrain otherwise. Specific mechanisms which will be addressed include: (1) climatic consequences of deglacial polar motion; and (2) precessional and climatic consequences of glacially induced perturbations in the gravitational oblateness and partial decoupling of the mantle and core. The approach entails constructing theoretical models of the rotational, deformational, radiative, and climatic response of the Earth to known orbital perturbations, and comparing these with extensive records of paleoclimate proxy data. Several of the mechanisms of interest may participate in previously unrecognized feed-back loops in the climate dynamics system. A new algorithm for estimating climatically diagnostic locations and seasons from the paleoclimate time series is proposed.
Höhne, Klaus; Shirahama, Hiroyuki; Choe, Chol-Ung; Benner, Hartmut; Pyragas, Kestutis; Just, Wolfram
2007-05-25
We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize the importance of the coupling scheme for the global control performance.
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
NASA Technical Reports Server (NTRS)
Armstrong, J. C.; Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T. R.; Meadows, V. S.
2014-01-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
Effects of extreme obliquity variations on the habitability of exoplanets.
Armstrong, J C; Barnes, R; Domagal-Goldman, S; Breiner, J; Quinn, T R; Meadows, V S
2014-04-01
We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 10(8) years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes.
Space Station Freedom ECLSS: A step toward autonomous regenerative life support systems
NASA Technical Reports Server (NTRS)
Dewberry, Brandon S.
1990-01-01
The Environmental Control and Life Support System (ECLSS) is a Freedom Station distributed system with inherent applicability to extensive automation primarily due to its comparatively long control system latencies. These allow longer contemplation times in which to form a more intelligent control strategy and to prevent and diagnose faults. The regenerative nature of the Space Station Freedom ECLSS will contribute closed loop complexities never before encountered in life support systems. A study to determine ECLSS automation approaches has been completed. The ECLSS baseline software and system processes could be augmented with more advanced fault management and regenerative control systems for a more autonomous evolutionary system, as well as serving as a firm foundation for future regenerative life support systems. Emerging advanced software technology and tools can be successfully applied to fault management, but a fully automated life support system will require research and development of regenerative control systems and models. The baseline Environmental Control and Life Support System utilizes ground tests in development of batch chemical and microbial control processes. Long duration regenerative life support systems will require more active chemical and microbial feedback control systems which, in turn, will require advancements in regenerative life support models and tools. These models can be verified using ground and on orbit life support test and operational data, and used in the engineering analysis of proposed intelligent instrumentation feedback and flexible process control technologies for future autonomous regenerative life support systems, including the evolutionary Space Station Freedom ECLSS.
A proposal for climate stability on H2-greenhouse planets
NASA Astrophysics Data System (ADS)
Abbot, D. S.
2015-12-01
A terrestrial planet in an orbit far outside of the standard habitable zone could maintain surface liquid water as a result of H2-H2 collision-induced absorption by a thick H2 atmosphere. Without a stabilizing climate feedback, however, habitability would be accidental and likely brief. We propose a stabilizing climate feedback for such a planet that requires only biological production of H2 to balance net loss to space that has some optimal temperature, and operates less efficiently at higher temperatures. A stable feedback is possible on such a planet through which a perturbation increasing temperature decreases H2 production, which decreases H2 greenhouse warming and therefore temperature. The potential of such a feedback makes H2-warmed planets more attractive astrobiological targets.
NASA Technical Reports Server (NTRS)
Zahnle, Kevin; Lupu, Roxana Elena; Dubrovolskis, A. R.
2014-01-01
A reasonable initial condition on Earth after the Moonforming impact is that it begins as a hot global magma ocean1,2. We therefore begin our study with the mantle as a liquid ocean with a surface temperature on the order of 3000- 4000 K at a time some 100-1000 years after the impact, by which point we can hope that early transients have settled down. A 2nd initial condition is a substantial atmosphere, 100-1000 bars of H2O and CO2, supplemented by smaller amounts of CO, H2, N2, various sulfur-containing gases, and a suite of geochemical volatiles evaporated from the magma. Third, we start the Moon with its current mass at the relevant Roche limit. The 4th initial condition is the angular momentum of the Earth-Moon system. Canonical models hold this constant, whilst some recent models begin with considerably more angular momentum than is present today. Here we present a ruthlessly simplified model of Earth's cooling magmasphere based on a full-featured atmosphere and including tidal heating by the newborn Moon. Thermal blanketing by H2O-CO2 atmospheres slows cooling of a magma ocean. Geochemical volatiles - chiefly S, Na, and Cl - raise the opacity of the magma ocean's atmosphere and slow cooling still more. We assume a uniform mantle with a single internal (potential) temperature and a global viscosity. The important "freezing point" is the sharp rheological transition between a fluid carrying suspended crystals and a solid matrix through which fluids percolate. Most tidal heating takes place at this "freezing point" in a gel that is both pliable and viscous. Parameterized convection links the cooling rate to the temperature and heat generation inside the Earth. Tidal heating is a major effect. Tidal dissipation in the magma ocean is described by viscosity. The Moon is entwined with Earth by the negative feedback between thermal blanketing and tidal heating that comes from the temperature-dependent viscosity of the magma ocean. Because of this feedback, the rate that the Moon's orbit evolves is limited by the modest radiative cooling rate of Earth's atmosphere, which in effect tethers the Moon to the Earth. Consequently the Moon's orbit evolves orders of magnitude more slowly than in conventional models. Slow orbital evolution promotes capture by orbital resonances that may have been important in the Earth-Moon system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg
2015-02-14
We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.
Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints
NASA Astrophysics Data System (ADS)
Shahrooei, Abolfazl; Kazemi, Mohammad Hosein
2018-04-01
In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.
NASA Technical Reports Server (NTRS)
Roithmayr, Carlos; Lukashin, Constantine; Speth, Paul W.; Kopp, Gregg; Thome, Kurt; Wielicki, Bruce A.; Young, David F.
2014-01-01
The implementation of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission was recommended by the National Research Council in 2007 to provide an on-orbit intercalibration standard with accuracy of 0.3% (k = 2) for relevant Earth observing sensors. The goal of reference intercalibration, as established in the Decadal Survey, is to enable rigorous high-accuracy observations of critical climate change parameters, including reflected broadband radiation [Clouds and Earth's Radiant Energy System (CERES)], cloud properties [Visible Infrared Imaging Radiometer Suite (VIIRS)], and changes in surface albedo, including snow and ice albedo feedback. In this paper, we describe the CLARREO approach for performing intercalibration on orbit in the reflected solar (RS) wavelength domain. It is based on providing highly accurate spectral reflectance and reflected radiance measurements from the CLARREO Reflected Solar Spectrometer (RSS) to establish an on-orbit reference for existing sensors, namely, CERES and VIIRS on Joint Polar Satellite System satellites, Advanced Very High Resolution Radiometer and follow-on imagers on MetOp, Landsat imagers, and imagers on geostationary platforms. One of two fundamental CLARREO mission goals is to provide sufficient sampling of high-accuracy observations that are matched in time, space, and viewing angles with measurements made by existing instruments, to a degree that overcomes the random error sources from imperfect data matching and instrument noise. The data matching is achieved through CLARREO RSS pointing operations on orbit that align its line of sight with the intercalibrated sensor. These operations must be planned in advance; therefore, intercalibration events must be predicted by orbital modeling. If two competing opportunities are identified, one target sensor must be given priority over the other. The intercalibration method is to monitor changes in targeted sensor response function parameters: effective offset, gain, nonlinearity, optics spectral response, and sensitivity to polarization. In this paper, we use existing satellite data and orbital simulationmethods to determinemission requirements for CLARREO, its instrument pointing ability, methodology, and needed intercalibration sampling and data matching for accurate intercalibration of RS radiation sensors on orbit.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
Progress in tethered satellite system dynamics research is reported. A retrieval rate control law with no angular feedback to investigate the system's dynamic response was studied. The initial conditions for the computer code which simulates the satellite's rotational dynamics were extended to a generic orbit. The model of the satellite thrusters was modified to simulate a pulsed thrust, by making the SKYHOOK integrator suitable for dealing with delta functions without loosing computational efficiency. Tether breaks were simulated with the high resolution computer code SLACK3. Shuttle's maneuvers were tested. The electric potential around a severed conductive tether with insulator, in the case of a tether breakage at 20 km from the Shuttle, was computed. The electrodynamic hazards due to the breakage of the TSS electrodynamic tether in a plasma are evaluated.
The birth of a supermassive black hole binary
NASA Astrophysics Data System (ADS)
Pfister, Hugo; Lupi, Alessandro; Capelo, Pedro R.; Volonteri, Marta; Bellovary, Jillian M.; Dotti, Massimo
2017-11-01
We study the dynamical evolution of supermassive black holes, in the late stage of galaxy mergers, from kpc to pc scales. In particular, we capture the formation of the binary, a necessary step before the final coalescence, and trace back the main processes causing the decay of the orbit. We use hydrodynamical simulations of galaxy mergers with different resolutions, from 20 pc down to 1 pc, in order to study the effects of the resolution on our results, remove numerical effects, and assess that resolving the influence radius of the orbiting black hole is a minimum condition to fully capture the formation of the binary. Our simulations include the relevant physical processes, namely star formation, supernova feedback, accretion on to the black holes and the ensuing feedback. We find that, in these mergers, dynamical friction from the smooth stellar component of the nucleus is the main process that drives black holes from kpc to pc scales. Gas does not play a crucial role and even clumps do not induce scattering or perturb the orbits. We compare the time needed for the formation of the binary to analytical predictions and suggest how to apply such analytical formalism to obtain estimates of binary formation times in lower resolution simulations.
NASA Technical Reports Server (NTRS)
Frew, A. M.; Eisenhut, D. F.; Farrenkopf, R. L.; Gates, R. F.; Iwens, R. P.; Kirby, D. K.; Mann, R. J.; Spencer, D. J.; Tsou, H. S.; Zaremba, J. G.
1972-01-01
The precision pointing control system (PPCS) is an integrated system for precision attitude determination and orientation of gimbaled experiment platforms. The PPCS concept configures the system to perform orientation of up to six independent gimbaled experiment platforms to design goal accuracy of 0.001 degrees, and to operate in conjunction with a three-axis stabilized earth-oriented spacecraft in orbits ranging from low altitude (200-2500 n.m., sun synchronous) to 24 hour geosynchronous, with a design goal life of 3 to 5 years. The system comprises two complementary functions: (1) attitude determination where the attitude of a defined set of body-fixed reference axes is determined relative to a known set of reference axes fixed in inertial space; and (2) pointing control where gimbal orientation is controlled, open-loop (without use of payload error/feedback) with respect to a defined set of body-fixed reference axes to produce pointing to a desired target.
NASA Technical Reports Server (NTRS)
Hartley, Craig S.
1990-01-01
To augment the capabilities of the Space Transportation System, NASA has funded studies and developed programs aimed at developing reusable, remotely piloted spacecraft and satellite servicing systems capable of delivering, retrieving, and servicing payloads at altitudes and inclinations beyond the reach of the present Shuttle Orbiters. Since the mid 1970's, researchers at the Martin Marietta Astronautics Group Space Operations Simulation (SOS) Laboratory have been engaged in investigations of remotely piloted and supervised autonomous spacecraft operations. These investigations were based on high fidelity, real-time simulations and have covered a wide range of human factors issues related to controllability. Among these are: (1) mission conditions, including thruster plume impingements and signal time delays; (2) vehicle performance variables, including control authority, control harmony, minimum impulse, and cross coupling of accelerations; (3) maneuvering task requirements such as target distance and dynamics; (4) control parameters including various control modes and rate/displacement deadbands; and (5) display parameters involving camera placement and function, visual aids, and presentation of operational feedback from the spacecraft. This presentation includes a brief description of the capabilities of the SOS Lab to simulate real-time free-flyer operations using live video, advanced technology ground and on-orbit workstations, and sophisticated computer models of on-orbit spacecraft behavior. Sample results from human factors studies in the five categories cited above are provided.
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
Effects of Extreme Obliquity Variations on the Habitability of Exoplanets
Barnes, R.; Domagal-Goldman, S.; Breiner, J.; Quinn, T.R.; Meadows, V.S.
2014-01-01
Abstract We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination. We show that large-amplitude, high-frequency obliquity oscillations on Earth-like exoplanets can suppress the ice-albedo feedback, increasing the outer edge of the habitable zone. We restricted our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 larger planets. We verified that these systems are stable for 108 years with N-body simulations and calculated the obliquity variations induced by the orbital evolution of the Earth-mass planet and a torque from the host star. We ran a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface, and we calculated differences in the outer edge of the habitable zone for planets with rapid obliquity variations. For each hypothetical system, we calculated the outer edge of habitability for two conditions: (1) the full evolution of the planetary spin and orbit and (2) the eccentricity and obliquity fixed at their average values. We recovered previous results that higher values of fixed obliquity and eccentricity expand the habitable zone, but we also found that obliquity oscillations further expand habitable orbits in all cases. Terrestrial planets near the outer edge of the habitable zone may be more likely to support life in systems that induce rapid obliquity oscillations as opposed to fixed-spin planets. Such planets may be the easiest to directly characterize with space-borne telescopes. Key Words: Exoplanets—Habitable zone—Energy balance models. Astrobiology 14, 277–291. PMID:24611714
Relative attitude dynamics and control for a satellite inspection mission
NASA Astrophysics Data System (ADS)
Horri, Nadjim M.; Kristiansen, Kristian U.; Palmer, Phil; Roberts, Mark
2012-02-01
The problem of conducting an inspection mission from a chaser satellite orbiting a target spaceraft is considered. It is assumed that both satellites follow nearly circular orbits. The relative orbital motion is described by the Hill-Clohessy-Wiltshire equation. In the case of an elliptic relative orbit, it is shown that an inspection mission is feasible when the chaser is inertially pointing, provided that the camera mounted on the chaser satellite has sufficiently large field of view. The same possibility is shown when the optical axis of the chaser's camera points in, or opposite to, the tangential direction of the local vertical local horizontal frame. For an arbitrary relative orbit and arbitrary initial conditions, the concept of relative Euler angles is defined for this inspection mission. The expression of the desired relative angular velocity vector is derived as a function of Cartesian coordinates of the relative orbit. A quaternion feedback controller is then designed and shown to perform relative attitude control with admissible internal torques. Three different types of relative orbits are considered, namely the elliptic, Pogo and drifting relative orbits. Measurements of the relative orbital motion are assumed to be available from optical navigation.
NASA Technical Reports Server (NTRS)
2011-01-01
Over the past 50 years, various NASA communities have contributed significantly to maturing NASA s meteoroid and orbital debris (MMOD)1 programs to their current state. As a result of these community efforts, and to NASA s credit, NASA s MMOD programs and models are now widely used and respected by the providers and users of both government and commercial satellites, nationally as well as internationally. Satellites have been redesigned to protect critical components from MMOD damage by moving critical components from exterior surfaces to deep inside a satellite s structure. Orbits are monitored and altered to minimize the risk of collision with tracked orbital debris. MMOD shielding added to the International Space Station (ISS) protects critical components and astronauts from potentially catastrophic damage that might result from smaller, untracked debris and meteoroid impacts. The space shuttle, as it orbited Earth, and whether docked to the ISS or not, was optimally oriented to protect its fragile thermal protection and thermal radiation systems from MMOD damage. In addition, astronauts inspected its thermal protection system for MMOD damage before the shuttle reentered Earth s atmosphere; Orion, NASA s capsule to carry astronauts to low Earth orbit, includes designs to mitigate the threat of MMOD damage and provide increased safety to the crew. When a handful of reasonable assumptions are used in NASA s MMOD models, scenarios are uncovered that conclude that the current orbital debris environment has already reached a "tipping point." That is, the amount of debris - in terms of the population of large debris objects, as well as overall mass of debris in orbit - currently in orbit has reached a threshold where it will continually collide with itself, further increasing the population of orbital debris. This increase will lead to corresponding increases in spacecraft failures, which will only create more feedback into the system, increasing the debris population growth rate. The increase thus far has been most rapid in low Earth orbit (LEO), with geosynchronous Earth orbits (GEOs) potentially suffering the same fate, but over a much longer time period. The exact timing and pace of this exponential growth are uncertain, but the serious implications of such a scenario require careful attention because of the strategic importance of U.S. space operations. The Office of Science and Technology Policy and the Office of Management and Budget contracted with the National Research Council for a study to perform three tasks: review NASA s MMOD programs and efforts, recommend in which of those NASA should increase or decrease its effort or change focus, and determine whether NASA should pursue work in any new MMOD areas. The official letter requesting the study and the full statement of task for the Committee for the Assessment of NASA s Orbital Debris Programs are in Appendixes A and B, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea
During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for diskmore » formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.« less
Robust on-off pulse control of flexible space vehicles
NASA Technical Reports Server (NTRS)
Wie, Bong; Sinha, Ravi
1993-01-01
The on-off reaction jet control system is often used for attitude and orbital maneuvering of various spacecraft. Future space vehicles such as the orbital transfer vehicles, orbital maneuvering vehicles, and space station will extensively use reaction jets for orbital maneuvering and attitude stabilization. The proposed robust fuel- and time-optimal control algorithm is used for a three-mass spacing model of flexible spacecraft. A fuel-efficient on-off control logic is developed for robust rest-to-rest maneuver of a flexible vehicle with minimum excitation of structural modes. The first part of this report is concerned with the problem of selecting a proper pair of jets for practical trade-offs among the maneuvering time, fuel consumption, structural mode excitation, and performance robustness. A time-optimal control problem subject to parameter robustness constraints is formulated and solved. The second part of this report deals with obtaining parameter insensitive fuel- and time- optimal control inputs by solving a constrained optimization problem subject to robustness constraints. It is shown that sensitivity to modeling errors can be significantly reduced by the proposed, robustified open-loop control approach. The final part of this report deals with sliding mode control design for uncertain flexible structures. The benchmark problem of a flexible structure is used as an example for the feedback sliding mode controller design with bounded control inputs and robustness to parameter variations is investigated.
In and out of glacial extremes by way of dust-climate feedbacks.
Shaffer, Gary; Lambert, Fabrice
2018-02-27
Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial-interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust-climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust-climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial-interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust-climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO 2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial-interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles. Copyright © 2018 the Author(s). Published by PNAS.
In and out of glacial extremes by way of dust‑climate feedbacks
NASA Astrophysics Data System (ADS)
Shaffer, Gary; Lambert, Fabrice
2018-03-01
Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial‑interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust‑climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust‑climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial‑interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust‑climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial‑interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles.
In and out of glacial extremes by way of dust−climate feedbacks
Lambert, Fabrice
2018-01-01
Mineral dust aerosols cool Earth directly by scattering incoming solar radiation and indirectly by affecting clouds and biogeochemical cycles. Recent Earth history has featured quasi-100,000-y, glacial−interglacial climate cycles with lower/higher temperatures and greenhouse gas concentrations during glacials/interglacials. Global average, glacial maxima dust levels were more than 3 times higher than during interglacials, thereby contributing to glacial cooling. However, the timing, strength, and overall role of dust−climate feedbacks over these cycles remain unclear. Here we use dust deposition data and temperature reconstructions from ice sheet, ocean sediment, and land archives to construct dust−climate relationships. Although absolute dust deposition rates vary greatly among these archives, they all exhibit striking, nonlinear increases toward coldest glacial conditions. From these relationships and reconstructed temperature time series, we diagnose glacial−interglacial time series of dust radiative forcing and iron fertilization of ocean biota, and use these time series to force Earth system model simulations. The results of these simulations show that dust−climate feedbacks, perhaps set off by orbital forcing, push the system in and out of extreme cold conditions such as glacial maxima. Without these dust effects, glacial temperature and atmospheric CO2 concentrations would have been much more stable at higher, intermediate glacial levels. The structure of residual anomalies over the glacial−interglacial climate cycles after subtraction of dust effects provides constraints for the strength and timing of other processes governing these cycles. PMID:29440407
Experiments on vibration control of a piezoelectric laminated paraboloidal shell
NASA Astrophysics Data System (ADS)
Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen
2017-01-01
A paraboloidal shell plays a key role in aerospace and optical structural systems applied to large optical reflector, communications antenna, rocket fairing, missile radome, etc. Due to the complexity of analytical procedures, an experimental study of active vibration control of a piezoelectric laminated paraboloidal shell by positive position feedback is carried out. Sixteen PVDF patches are laminated inside and outside of the shell, in which eight of them are used as sensors and eight as actuators to control the vibration of the first two natural modes. Lower natural frequencies and vibration modes of the paraboloidal shell are obtained via the frequency response function analysis by Modal VIEW software. A mathematical model of the control system is formulated by means of parameter identification. The first shell mode is controlled as well as coupled the first and second modes based on the positive position feedback (PPF) algorithm. To minimize the control energy consumption in orbit, an adaptive modal control method is developed in this study by using the PPF in laboratory experiments. The control system collects vibration signals from the piezoelectric sensors to identify location(s) of the largest vibration amplitudes and then select the best two from eight PVDF actuators to apply control forces so that the modal vibration suppression could be accomplished adaptively and effectively.
NASA Technical Reports Server (NTRS)
2010-01-01
Topics covered include: Situational Awareness from a Low-Cost Camera System; Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation; Mercury Toolset for Spatiotemporal Metadata; Social Tagging of Mission Data; Integrating Radar Image Data with Google Maps; Demonstration of a Submillimeter-Wave HEMT Oscillator Module at 330 GHz; Flexible Peripheral Component Interconnect Input/Output Card; Interface Supports Lightweight Subsystem Routing for Flight Applications; MMIC Amplifiers and Wafer Probes for 350 to 500 GHz; Public Risk Assessment Program; Particle Swarm Optimization Toolbox; Telescience Support Center Data System Software; Update on PISCES; Ground and Space Radar Volume Matching and Comparison Software; Web-Based Interface for Command and Control of Network Sensors; Orbit Determination Toolbox; Distributed Observer Network; Computer-Automated Evolution of Spacecraft X-Band Antennas; Practical Loop-Shaping Design of Feedback Control Systems; Fully Printed High-Frequency Phased-Array Antenna on Flexible Substrate; Formula for the Removal and Remediation of Polychlorinated Biphenyls in Painted Structures; Integrated Solar Concentrator and Shielded Radiator; Water Membrane Evaporator; Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites; Catalyst for Carbon Monoxide Oxidation; Titanium Hydroxide - a Volatile Species at High Temperature; Selective Functionalization of Carbon Nanotubes: Part II; Steerable Hopping Six-Legged Robot; Launchable and Retrievable Tetherobot; Hybrid Heat Exchangers; Orbital Winch for High-Strength, Space-Survivable Tethers; Parameterized Linear Longitudinal Airship Model; and Physics of Life: A Model for Non-Newtonian Properties of Living Systems.
Human-in-the-loop evaluation of RMS Active Damping Augmentation
NASA Technical Reports Server (NTRS)
Demeo, Martha E.; Gilbert, Michael G.; Scott, Michael A.; Lepanto, Janet A.; Bains, Elizabeth M.; Jensen, Mary C.
1993-01-01
Active Damping Augmentation is the insertion of Controls-Structures Integration Technology to benefit the on-orbit performance of the Space Shuttle Remote Manipulator System. The goal is to reduce the vibration decay time of the Remote Manipulator System following normal payload maneuvers and operations. Simulation of Active Damping Augmentation was conducted in the realtime human-in-the-loop Systems Engineering Simulator at the NASA Johnson Space Center. The objective of this study was to obtain a qualitative measure of operational performance improvement from astronaut operators and to obtain supporting quantitative performance data. Sensing of vibratory motions was simulated using a three-axis accelerometer mounted at the end of the lower boom of the Remote Manipulator System. The sensed motions were used in a feedback control law to generate commands to the joint servo mechanisms which reduced the unwanted oscillations. Active damping of the Remote Manipulator System with an attached 3990 lb. payload was successfully demonstrated. Six astronaut operators examined the performance of an Active Damping Augmentation control law following single-joint and coordinated six-joint translational and rotational maneuvers. Active Damping Augmentation disturbance rejection of Orbiter thruster firings was also evaluated. Significant reductions in the dynamic response of the 3990 lb. payload were observed. Astronaut operators recommended investigation of Active Damping Augmentation benefits to heavier payloads where oscillations are a bigger problem (e.g. Space Station Freedom assembly operators).
Orbital dynamics in galaxy mergers
NASA Astrophysics Data System (ADS)
Hoffman, Loren
In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions, and 10 re-mergers of the 40% gas remnants. All simulations were run using a version of GADGET-2 [173] that included subresolution models of radiative cooling, star formation, and supernova and AGN feedback. The potential was frozen at the last snapshot of each simulation and the orbits of ~50,000 randomly chosen stars were integrated for ~100 dynamical times, and classified based on their Fourier spectra using the algorithm of [30]. The 40% gas remnants were found to be dominated by minor-axis tube orbits in their inner regions, whereas box orbits were the dominant orbit family in the inner parts of the dissipationless disk-disk and remnant-remnant systems. The phase space available to minor-axis tube orbits in even the 5% gas remnants was much larger than that in the dissipationless remnants, but the 5% gas remnants are not fast rotators because these orbits tend to be isotropically distributed at low gas fractions. Some of the remnants show significant minor axis rotation, due to large orientation twists in their outer parts (in the 40% gas remnants) and asymmetrically rotating major-axis tube orbits throughout the remnants (in the re-mergers).
Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.
2013-01-01
Abstract Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO2 in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO2 could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3–10 bar of CO2 will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO2 is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars. Key Words: Extrasolar planets—M stars—Habitable zone—Snowball Earth. Astrobiology 13, 715–739. PMID:23855332
Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D
2013-08-01
Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO(2) could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3-10 bar of CO(2) will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO(2) is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars.
Interior properties of the inner Saturnian moons from space astrometry data
NASA Astrophysics Data System (ADS)
Lainey, Valery; Noyelles, Benoît; Cooper, Nick; Murray, Carl; Park, Ryan; Rambaux, Nicolas
2018-04-01
During thirteen years in orbit around Saturn before its final plunge, the Cassini spacecraft provided more than ten thousand astrometric measurements. Such large amounts of accurate data enable the search for extremely faint signals in the orbital motion of the moons. Among those, the detection of the dynamical feedback of the rotation of the inner moons of Saturn on their respective orbits becomes possible. Using all the currently available astrometric data associated with Atlas, Prometheus, Pandora, Janus and Epimetheus, we provide a detailed analysis of the ISS data, with special emphasis on their statistical behavior and source of biases. Then, we try quantifying the physical librations of Prometheus, Pandora, Epimetheus and Janus from the monitoring of their orbits. Last, we show how introducing measurements directly derived from imaging can provide tighter constraints on these quantities.
A guidance and navigation system for continuous low thrust vehicles. M.S. Thesis
NASA Technical Reports Server (NTRS)
Tse, C. J. C.
1973-01-01
A midcourse guidance and navigation system for continuous low thrust vehicles is described. A set of orbit elements, known as the equinoctial elements, are selected as the state variables. The uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time nominal trajectory is defined and the equation of motion and the measurement equation are linearized about this nominal trajectory. An exponential cost criterion is constructed and a linear feedback guidance law is derived to control the thrusting direction of the engine. Using this guidance law, the vehicle will fly in a trajectory neighboring the nominal trajectory. The extended Kalman filter is used for state estimation. Finally a short mission using this system is simulated. The results indicate that this system is very efficient for short missions.
Two-craft Coulomb formation study about circular orbits and libration points
NASA Astrophysics Data System (ADS)
Inampudi, Ravi Kishore
This dissertation investigates the dynamics and control of a two-craft Coulomb formation in circular orbits and at libration points; it addresses relative equilibria, stability and optimal reconfigurations of such formations. The relative equilibria of a two-craft tether formation connected by line-of-sight elastic forces moving in circular orbits and at libration points are investigated. In circular Earth orbits and Earth-Moon libration points, the radial, along-track, and orbit normal great circle equilibria conditions are found. An example of modeling the tether force using Coulomb force is discussed. Furthermore, the non-great-circle equilibria conditions for a two-spacecraft tether structure in circular Earth orbit and at collinear libration points are developed. Then the linearized dynamics and stability analysis of a 2-craft Coulomb formation at Earth-Moon libration points are studied. For orbit-radial equilibrium, Coulomb forces control the relative distance between the two satellites. The gravity gradient torques on the formation due to the two planets help stabilize the formation. Similar analysis is performed for along-track and orbit-normal relative equilibrium configurations. Where necessary, the craft use a hybrid thrusting-electrostatic actuation system. The two-craft dynamics at the libration points provide a general framework with circular Earth orbit dynamics forming a special case. In the presence of differential solar drag perturbations, a Lyapunov feedback controller is designed to stabilize a radial equilibrium, two-craft Coulomb formation at collinear libration points. The second part of the thesis investigates optimal reconfigurations of two-craft Coulomb formations in circular Earth orbits by applying nonlinear optimal control techniques. The objective of these reconfigurations is to maneuver the two-craft formation between two charged equilibria configurations. The reconfiguration of spacecraft is posed as an optimization problem using the calculus of variations approach. The optimality criteria are minimum time, minimum acceleration of the separation distance, minimum Coulomb and electric propulsion fuel usage, and minimum electrical power consumption. The continuous time problem is discretized using a pseudospectral method, and the resulting finite dimensional problem is solved using a sequential quadratic programming algorithm. The software package, DIDO, implements this approach. This second part illustrates how pseudospectral methods significantly simplify the solution-finding process.
Integrated control and health management. Orbit transfer rocket engine technology program
NASA Technical Reports Server (NTRS)
Holzmann, Wilfried A.; Hayden, Warren R.
1988-01-01
To insure controllability of the baseline design for a 7500 pound thrust, 10:1 throttleable, dual expanded cycle, Hydrogen-Oxygen, orbit transfer rocket engine, an Integrated Controls and Health Monitoring concept was developed. This included: (1) Dynamic engine simulations using a TUTSIM derived computer code; (2) analysis of various control methods; (3) Failure Modes Analysis to identify critical sensors; (4) Survey of applicable sensors technology; and, (5) Study of Health Monitoring philosophies. The engine design was found to be controllable over the full throttling range by using 13 valves, including an oxygen turbine bypass valve to control mixture ratio, and a hydrogen turbine bypass valve, used in conjunction with the oxygen bypass to control thrust. Classic feedback control methods are proposed along with specific requirements for valves, sensors, and the controller. Expanding on the control system, a Health Monitoring system is proposed including suggested computing methods and the following recommended sensors: (1) Fiber optic and silicon bearing deflectometers; (2) Capacitive shaft displacement sensors; and (3) Hot spot thermocouple arrays. Further work is needed to refine and verify the dynamic simulations and control algorithms, to advance sensor capabilities, and to develop the Health Monitoring computational methods.
Tsujimoto, Satoshi; Genovesio, Aldo; Wise, Steven P.
2012-01-01
We compared neuronal activity in the dorsolateral (PFdl), orbital (PFo) and polar (PFp) prefrontal cortex as monkeys performed three tasks. In two tasks, a cue instructed one of two strategies: stay with the previous response or shift to the alternative. Visual stimuli served as cues in one of these tasks; in the other, fluid rewards did so. In the third task, visuospatial cues instructed each response. A delay period followed each cue. As reported previously, PFdl encoded strategies (stay or shift) and responses (left or right) during the cue and delay periods, while PFo encoded strategies and PFp encoded neither strategies nor responses; during the feedback period, all three areas encoded responses, not strategies. Four novel findings emerged from the present analysis. (1) The strategy encoded by PFdl and PFo cells during the cue and delay periods was modality specific. (2) The response encoded by PFdl cells was task- and modality specific during the cue period, but during the delay and feedback periods it became task- and modality general. (3) Although some PFdl and PFo cells responded to or anticipated rewards, we could rule out reward effects for most strategy-and response-related activity. (4) Immediately before feedback, only PFp signaled responses that were correct according to the cued strategy; after feedback, only PFo signaled the response that had been made, whether correct or incorrect. These signals support a role in generating responses by PFdl, assigning outcomes to choices by PFo, and assigning outcomes to cognitive processes by PFp. PMID:22875935
NASA Astrophysics Data System (ADS)
Misra, Gaurav; Izadi, Maziar; Sanyal, Amit; Scheeres, Daniel
2016-04-01
The effects of dynamical coupling between the rotational (attitude) and translational (orbital) motion of spacecraft near small Solar System bodies is investigated. This coupling arises due to the weak gravity of these bodies, as well as solar radiation pressure. The traditional approach assumes a point-mass spacecraft model to describe the translational motion of the spacecraft, while the attitude motion is considered to be completely decoupled from the translational motion. The model used here to describe the rigid-body spacecraft dynamics includes the non-uniform rotating gravity field of the small body up to second degree and order along with the attitude dependent terms, solar tide, and solar radiation pressure. This model shows that the second degree and order gravity terms due to the small body affect the dynamics of the spacecraft to the same extent as the orbit-attitude coupling due to the primary gravity (zeroth order) term. Variational integrators are used to simulate the dynamics of both the rigid spacecraft and the point mass. The small bodies considered here are modeled after Near-Earth Objects (NEO) 101955 Bennu, and 25143 Itokawa, and are assumed to be triaxial ellipsoids with uniform density. Differences in the numerically obtained trajectories of a rigid spacecraft and a point mass are then compared, to illustrate the impact of the orbit-attitude coupling on spacecraft dynamics in proximity of small bodies. Possible implications on the performance of model-based spacecraft control and on the station-keeping budget, if the orbit-attitude coupling is not accounted for in the model of the dynamics, are also discussed. An almost globally asymptotically stable motion estimation scheme based solely on visual/optical feedback that estimates the relative motion of the asteroid with respect to the spacecraft is also obtained. This estimation scheme does not require a model of the dynamics of the asteroid, which makes it perfectly suited for asteroids whose properties are not well known.
A geostationary Earth orbit satellite model using Easy Java Simulation
NASA Astrophysics Data System (ADS)
Wee, Loo Kang; Hwee Goh, Giam
2013-01-01
We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic 3D view and associated learning in the real world; (2) comparative visualization of permanent geostationary satellites; (3) examples of non-geostationary orbits of different rotation senses, periods and planes; and (4) an incorrect physics model for conceptual discourse. General feedback from the students has been relatively positive, and we hope teachers will find the computer model useful in their own classes.
Thermal Protection System Imagery Inspection Management System -TIIMS
NASA Technical Reports Server (NTRS)
Goza, Sharon; Melendrez, David L.; Henningan, Marsha; LaBasse, Daniel; Smith, Daniel J.
2011-01-01
TIIMS is used during the inspection phases of every mission to provide quick visual feedback, detailed inspection data, and determination to the mission management team. This system consists of a visual Web page interface, an SQL database, and a graphical image generator. These combine to allow a user to ascertain quickly the status of the inspection process, and current determination of any problem zones. The TIIMS system allows inspection engineers to enter their determinations into a database and to link pertinent images and video to those database entries. The database then assigns criteria to each zone and tile, and via query, sends the information to a graphical image generation program. Using the official TIPS database tile positions and sizes, the graphical image generation program creates images of the current status of the orbiter, coloring zones, and tiles based on a predefined key code. These images are then displayed on a Web page using customized JAVA scripts to display the appropriate zone of the orbiter based on the location of the user's cursor. The close-up graphic and database entry for that particular zone can then be seen by selecting the zone. This page contains links into the database to access the images used by the inspection engineer when they make the determination entered into the database. Status for the inspection zones changes as determinations are refined and shown by the appropriate color code.
Verification Challenges of Dynamic Testing of Space Flight Hardware
NASA Technical Reports Server (NTRS)
Winnitoy, Susan
2010-01-01
The Six Degree-of-Freedom Dynamic Test System (SDTS) is a test facility at the National Aeronautics and Space Administration (NASA) Johnson Space Center in Houston, Texas for performing dynamic verification of space structures and hardware. Some examples of past and current tests include the verification of on-orbit robotic inspection systems, space vehicle assembly procedures and docking/berthing systems. The facility is able to integrate a dynamic simulation of on-orbit spacecraft mating or demating using flight-like mechanical interface hardware. A force moment sensor is utilized for input to the simulation during the contact phase, thus simulating the contact dynamics. While the verification of flight hardware presents many unique challenges, one particular area of interest is with respect to the use of external measurement systems to ensure accurate feedback of dynamic contact. There are many commercial off-the-shelf (COTS) measurement systems available on the market, and the test facility measurement systems have evolved over time to include two separate COTS systems. The first system incorporates infra-red sensing cameras, while the second system employs a laser interferometer to determine position and orientation data. The specific technical challenges with the measurement systems in a large dynamic environment include changing thermal and humidity levels, operational area and measurement volume, dynamic tracking, and data synchronization. The facility is located in an expansive high-bay area that is occasionally exposed to outside temperature when large retractable doors at each end of the building are opened. The laser interferometer system, in particular, is vulnerable to the environmental changes in the building. The operational area of the test facility itself is sizeable, ranging from seven meters wide and five meters deep to as much as seven meters high. Both facility measurement systems have desirable measurement volumes and the accuracies vary within the respective volumes. In addition, because this is a dynamic facility with a moving test bed, direct line-of-sight may not be available at all times between the measurement sensors and the tracking targets. Finally, the feedback data from the active test bed along with the two external measurement systems must be synchronized to allow for data correlation. To ensure the desired accuracy and resolution of these systems, calibration of the systems must be performed regularly. New innovations in sensor technology itself are periodically incorporated into the facility s overall measurement scheme. In addressing the challenges of the measurement systems, the facility is able to provide essential position and orientation data to verify the dynamic performance of space flight hardware.
Demonstration of an Aerocapture GN and C System Through Hardware-in-the-Loop Simulations
NASA Technical Reports Server (NTRS)
Masciarelli, James; Deppen, Jennifer; Bladt, Jeff; Fleck, Jeff; Lawson, Dave
2010-01-01
Aerocapture is an orbit insertion maneuver in which a spacecraft flies through a planetary atmosphere one time using drag force to decelerate and effect a hyperbolic to elliptical orbit change. Aerocapture employs a feedback Guidance, Navigation, and Control (GN&C) system to deliver the spacecraft into a precise postatmospheric orbit despite the uncertainties inherent in planetary atmosphere knowledge, entry targeting and aerodynamic predictions. Only small amounts of propellant are required for attitude control and orbit adjustments, thereby providing mass savings of hundreds to thousands of kilograms over conventional all-propulsive techniques. The Analytic Predictor Corrector (APC) guidance algorithm has been developed to steer the vehicle through the aerocapture maneuver using bank angle control. Through funding provided by NASA's In-Space Propulsion Technology Program, the operation of an aerocapture GN&C system has been demonstrated in high-fidelity simulations that include real-time hardware in the loop, thus increasing the Technology Readiness Level (TRL) of aerocapture GN&C. First, a non-real-time (NRT), 6-DOF trajectory simulation was developed for the aerocapture trajectory. The simulation included vehicle dynamics, gravity model, atmosphere model, aerodynamics model, inertial measurement unit (IMU) model, attitude control thruster torque models, and GN&C algorithms (including the APC aerocapture guidance). The simulation used the vehicle and mission parameters from the ST-9 mission. A 2000 case Monte Carlo simulation was performed and results show an aerocapture success rate of greater than 99.7%, greater than 95% of total delta-V required for orbit insertion is provided by aerodynamic drag, and post-aerocapture orbit plane wedge angle error is less than 0.5 deg (3-sigma). Then a real-time (RT), 6-DOF simulation for the aerocapture trajectory was developed which demonstrated the guidance software executing on a flight-like computer, interfacing with a simulated IMU and simulated thrusters, with vehicle dynamics provided by an external simulator. Five cases from the NRT simulations were run in the RT simulation environment. The results compare well to those of the NRT simulation thus verifying the RT simulation configuration. The results of the above described simulations show the aerocapture maneuver using the APC algorithm can be accomplished reliably and the algorithm is now at TRL-6. Flight validation is the next step for aerocapture technology development.
Expedition 54 plaque hanging ceremony
2018-04-26
NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Astronauts Mark Vande Hei (L) and Astronaut Joe Acaba sign autographs for Kassandra Stephens
Expedition 54 plaque hanging ceremony
2018-04-26
NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Astronauts Mark Vande Hei (L) and Astronaut Joe Acaba sign autographs for Lori Meggs.
Expedition 54 plaque hanging ceremony
2018-04-26
NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Payload Operations Director Phillipia Simmons with Astronauts Joe Acaba (L) and Mark Vande Hei
Expedition 54 plaque hanging ceremony
2018-04-26
NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Astronauts Mark Vande Hei (L) and Astronaut Joe Acaba sign autographs for Samantha Gurley.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Technical Reports Server (NTRS)
Wada, Ben K. (Editor); Fanson, James L. (Editor); Miura, Koryo (Editor)
1991-01-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Joint U.S./Japan Conference on Adaptive Structures, 1st, Maui, HI, Nov. 13-15, 1990, Proceedings
NASA Astrophysics Data System (ADS)
Wada, Ben K.; Fanson, James L.; Miura, Koryo
1991-11-01
The present volume of adaptive structures discusses the development of control laws for an orbiting tethered antenna/reflector system test scale model, the sizing of active piezoelectric struts for vibration suppression on a space-based interferometer, the control design of a space station mobile transporter with multiple constraints, and optimum configuration control of an intelligent truss structure. Attention is given to the formulation of full state feedback for infinite order structural systems, robustness issues in the design of smart structures, passive piezoelectric vibration damping, shape control experiments with a functional model for large optical reflectors, and a mathematical basis for the design optimization of adaptive trusses in precision control. Topics addressed include approaches to the optimal adaptive geometries of intelligent truss structures, the design of an automated manufacturing system for tubular smart structures, the Sandia structural control experiments, and the zero-gravity dynamics of space structures in parabolic aircraft flight.
Adaptive attitude control and momentum management for large-angle spacecraft maneuvers
NASA Technical Reports Server (NTRS)
Parlos, Alexander G.; Sunkel, John W.
1992-01-01
The fully coupled equations of motion are systematically linearized around an equilibrium point of a gravity gradient stabilized spacecraft, controlled by momentum exchange devices. These equations are then used for attitude control system design of an early Space Station Freedom flight configuration, demonstrating the errors caused by the improper approximation of the spacecraft dynamics. A full state feedback controller, incorporating gain-scheduled adaptation of the attitude gains, is developed for use during spacecraft on-orbit assembly or operations characterized by significant mass properties variations. The feasibility of the gain adaptation is demonstrated via a Space Station Freedom assembly sequence case study. The attitude controller stability robustness and transient performance during gain adaptation appear satisfactory.
Online beam energy measurement of Beijing electron positron collider II linear accelerator
NASA Astrophysics Data System (ADS)
Wang, S.; Iqbal, M.; Liu, R.; Chi, Y.
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Online beam energy measurement of Beijing electron positron collider II linear accelerator.
Wang, S; Iqbal, M; Liu, R; Chi, Y
2016-02-01
This paper describes online beam energy measurement of Beijing Electron Positron Collider upgraded version II linear accelerator (linac) adequately. It presents the calculation formula, gives the error analysis in detail, discusses the realization in practice, and makes some verification. The method mentioned here measures the beam energy by acquiring the horizontal beam position with three beam position monitors (BPMs), which eliminates the effect of orbit fluctuation, and is much better than the one using the single BPM. The error analysis indicates that this online measurement has further potential usage such as a part of beam energy feedback system. The reliability of this method is also discussed and demonstrated in this paper.
Improved control of the betatron coupling in the Large Hadron Collider
NASA Astrophysics Data System (ADS)
Persson, T.; Tomás, R.
2014-05-01
The control of the betatron coupling is of importance for safe beam operation in the LHC. In this article we show recent advancements in methods and algorithms to measure and correct coupling. The benefit of using a more precise formula relating the resonance driving term f1001 to the ΔQmin is presented. The quality of the coupling measurements is increased, with about a factor 3, by selecting beam position monitor (BPM) pairs with phase advances close to π/2 and through data cleaning using singular value decomposition with an optimal number of singular values. These improvements are beneficial for the implemented automatic coupling correction, which is based on injection oscillations, presented in the article. Furthermore, a proposed coupling feedback for the LHC is presented. The system will rely on the measurements from BPMs equipped with a new type of high resolution electronics, diode orbit and oscillation, which will be operational when the LHC restarts in 2015. The feedback will combine the coupling measurements from the available BPMs in order to calculate the best correction.
Trajectory optimization and guidance law development for national aerospace plane applications
NASA Technical Reports Server (NTRS)
Calise, A. J.; Flandro, G. A.; Corban, J. E.
1988-01-01
The work completed to date is comprised of the following: a simple vehicle model representative of the aerospace plane concept in the hypersonic flight regime, fuel-optimal climb profiles for the unconstrained and dynamic pressure constrained cases generated using a reduced order dynamic model, an analytic switching condition for transition to rocket powered flight as orbital velocity is approached, simple feedback guidance laws for both the unconstrained and dynamic pressure constrained cases derived via singular perturbation theory and a nonlinear transformation technique, and numerical simulation results for ascent to orbit in the dynamic pressure constrained case.
Climate evolution on the terrestrial planets
NASA Technical Reports Server (NTRS)
Kasting, J. F.; Toon, O. B.
1989-01-01
The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy.
A coherent optical feedback system for optical information processing
NASA Technical Reports Server (NTRS)
Jablonowski, D. P.; Lee, S. H.
1975-01-01
A unique optical feedback system for coherent optical data processing is described. With the introduction of feedback, the well-known transfer function for feedback systems is obtained in two dimensions. Operational details of the optical feedback system are given. Experimental results of system applications in image restoration, contrast control and analog computation are presented.
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.
2016-09-01
The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.
Sensory feedback add-on for upper-limb prostheses.
Fallahian, Nader; Saeedi, Hassan; Mokhtarinia, Hamidreza; Tabatabai Ghomshe, Farhad
2017-06-01
Sensory feedback systems have been of great interest in upper-limb prosthetics. Despite tremendous research, there are no commercial modality-matched feedback systems. This article aims to introduce the first detachable and feedback add-on option that can be attached to in-use prostheses. A sensory feedback system was tested on a below-elbow myoelectric prosthesis. The aim was to have the amputee grasp fragile objects without crushing while other accidental feedback sources were blocked. A total of 8 successful trials (out of 10) showed that sensory feedback system decreased the amputee's visual dependency by improving awareness of his prosthesis. Sensory feedback system can be used either as post-fabrication (prosthetic add-on option) or para-fabrication (incorporated into prosthetic design). The use of these direct feedback systems can be explored with a current prosthesis before ordering new high-tech prosthesis. Clinical relevance This technical note introduces the first attach/detach-able sensory feedback system that can simply be added to in-use (myo)electric prosthesis, with no obligation to change prosthesis design or components.
Mercury - A New Software Package for Orbital Integrations
NASA Astrophysics Data System (ADS)
Chambers, J. E.; Migliorini, F.
1997-07-01
We present Mercury: a new general-purpose software package for carrying out orbital integrations for problems in solar-system dynamics. Suitable applications include studying the long-term stability of the planetary system, investigating the orbital evolution of comets, asteroids or meteoroids, and simulating planetary accretion. Mercury is designed to be versatile and easy to use, accepting initial conditions in either Cartesian coordinates or Keplerian elements in ``cometary'' or ``asteroidal'' format, with different epochs of osculation for different objects. Output from an integration consists of either osculating or averaged (``proper'') elements, written in a machine-independent compressed format, which allows the results of a calculation performed on one platform to be transferred (e.g. via FTP) and decoded on another. Mercury itself is platform independent, and can be run on machines using DEC Unix, Open VMS, HP Unix, Solaris, Linux or DOS. During an integration, Mercury monitors and records details of close encounters, sungrazing events, ejections and collisions between objects. The effects of non-gravitational forces on comets can also be modelled. Additional effects such as Poynting-Robertson drag, post-Newtonian corrections, oblateness of the primary, and the galactic potential will be incorporated in future. The package currently supports integrations using a mixed-variable symplectic routine, the Bulirsch-Stoer method, and a hybrid code for planetary accretion calculations; with Everhart's popular RADAU algorithm and a symmetric multistep routine to be added shortly. Our presentation will include a demonstration of the latest version of Mercury, with the explicit aim of getting feedback from potential users and incorporating these suggestions into a final version that will be made available to everybody.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Reddy, A. S. S. R.
1979-01-01
The equations of planar motion for a flexible beam in orbit which includes the effects of gravity gradient torques and control torques from point actuators located along the beam was developed. Two classes of theorems are applied to the linearized form of these equations to establish necessary conditions for controlability for preselected actuator configurations. The feedback gains are selected: (1) based on the decoupling of the original coordinates and to obtain proper damping, and (2) by applying the linear regulator problem to the individual model coordinates separately. The linear control laws obtained using both techniques were evaluated by numerical integration of the nonlinear system equations. Numerical examples considering pitch and various number of modes with different combination of actuator numbers and locations are presented. The independent model control concept used earlier with a discretized model of the thin beam in orbit was reviewed for the case where the number of actuators is less than the number of modes. Results indicate that although the system is controllable it is not stable about the nominal (local vertical) orientation when the control is based on modal decoupling. An alternate control law not based on modal decoupling ensures stability of all the modes.
Guidance and Control strategies for aerospace vehicles
NASA Technical Reports Server (NTRS)
Hibey, J. L.; Naidu, D. S.; Charalambous, C. D.
1989-01-01
A neighboring optimal guidance scheme was devised for a nonlinear dynamic system with stochastic inputs and perfect measurements as applicable to fuel optimal control of an aeroassisted orbital transfer vehicle. For the deterministic nonlinear dynamic system describing the atmospheric maneuver, a nominal trajectory was determined. Then, a neighboring, optimal guidance scheme was obtained for open loop and closed loop control configurations. Taking modelling uncertainties into account, a linear, stochastic, neighboring optimal guidance scheme was devised. Finally, the optimal trajectory was approximated as the sum of the deterministic nominal trajectory and the stochastic neighboring optimal solution. Numerical results are presented for a typical vehicle. A fuel-optimal control problem in aeroassisted noncoplanar orbital transfer is also addressed. The equations of motion for the atmospheric maneuver are nonlinear and the optimal (nominal) trajectory and control are obtained. In order to follow the nominal trajectory under actual conditions, a neighboring optimum guidance scheme is designed using linear quadratic regulator theory for onboard real-time implementation. One of the state variables is used as the independent variable in reference to the time. The weighting matrices in the performance index are chosen by a combination of a heuristic method and an optimal modal approach. The necessary feedback control law is obtained in order to minimize the deviations from the nominal conditions.
Learning from adaptive neural dynamic surface control of strict-feedback systems.
Wang, Min; Wang, Cong
2015-06-01
Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.
Global Change and the Earth System
NASA Astrophysics Data System (ADS)
Pollack, Henry N.
2004-08-01
The Earth system in recent years has come to mean the complex interactions of the atmosphere, biosphere, lithosphere and hydrosphere, through an intricate network of feedback loops. This system has operated over geologic time, driven principally by processes with long time scales. Over the lifetime of the solar system, the Sun has slowly become more radiant, and the geography of continents and oceans basins has evolved via plate tectonics. This geography has placed a first-order constraint on the circulation of ocean waters, and thus has strongly influenced regional and global climate. At shorter time scales, the Earth system has been influenced by Milankovitch orbital factors and occasional exogenous events such as bolide impacts. Under these influences the system chugged along for eons, until some few hundred thousand years ago, when one remarkable species evolved: Homo sapiens. As individuals, humans are of course insignificant in shaping the Earth system, but collectively the six billion human occupants of the planet now rival ``natural'' processes in modifying the Earth system. This profound human influence underlies the dubbing of the present epoch of geologic history as the ``Anthropocene.''
NASA Tech Briefs, December 2012
NASA Technical Reports Server (NTRS)
2012-01-01
The topics include: Pattern Generator for Bench Test of Digital Boards; 670-GHz Down- and Up-Converting HEMT-Based Mixers; Lidar Electro-Optic Beam Switch with a Liquid Crystal Variable Retarder; Feedback Augmented Sub-Ranging (FASR) Quantizer; Real-Time Distributed Embedded Oscillator Operating Frequency Monitoring; Software Modules for the Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol; Description and User Instructions for the Quaternion to Orbit v3 Software; AdapChem; Mars Relay Lander and Orbiter Overflight Profile Estimation; Extended Testability Analysis Tool; Interactive 3D Mars Visualization; Rapid Diagnostics of Onboard Sequences; MER Telemetry Processor; pyam: Python Implementation of YaM; Process for Patterning Indium for Bump Bonding; Archway for Radiation and Micrometeorite Occurrence Resistance; 4D Light Field Imaging System Using Programmable Aperture; Device and Container for Reheating and Sterilization; Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources; Membrane Shell Reflector Segment Antenna; High-Speed Transport of Fluid Drops and Solid Particles via Surface Acoustic Waves; Compact Autonomous Hemispheric Vision System; A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring; Wideband Single-Crystal Transducer for Bone Characterization; Numerical Simulation of Rocket Exhaust Interaction With Lunar Soil; Motion Imagery and Robotics Application (MIRA): Standards-Based Robotics; Particle Filtering for Model-Based Anomaly Detection in Sensor Networks; Ka-band Digitally Beamformed Airborne Radar Using SweepSAR Technique; Composite With In Situ Plenums; Multi-Beam Approach for Accelerating Alignment and Calibration of HyspIRI-Like Imaging Spectrometers; JWST Lifting System; Next-Generation Tumbleweed Rover; Pneumatic System for Concentration of Micrometer-Size Lunar Soil.
Kalman Orbit Optimized Loop Tracking
NASA Technical Reports Server (NTRS)
Young, Lawrence E.; Meehan, Thomas K.
2011-01-01
Under certain conditions of low signal power and/or high noise, there is insufficient signal to noise ratio (SNR) to close tracking loops with individual signals on orbiting Global Navigation Satellite System (GNSS) receivers. In addition, the processing power available from flight computers is not great enough to implement a conventional ultra-tight coupling tracking loop. This work provides a method to track GNSS signals at very low SNR without the penalty of requiring very high processor throughput to calculate the loop parameters. The Kalman Orbit-Optimized Loop (KOOL) tracking approach constitutes a filter with a dynamic model and using the aggregate of information from all tracked GNSS signals to close the tracking loop for each signal. For applications where there is not a good dynamic model, such as very low orbits where atmospheric drag models may not be adequate to achieve the required accuracy, aiding from an IMU (inertial measurement unit) or other sensor will be added. The KOOL approach is based on research JPL has done to allow signal recovery from weak and scintillating signals observed during the use of GPS signals for limb sounding of the Earth s atmosphere. That approach uses the onboard PVT (position, velocity, time) solution to generate predictions for the range, range rate, and acceleration of the low-SNR signal. The low- SNR signal data are captured by a directed open loop. KOOL builds on the previous open loop tracking by including feedback and observable generation from the weak-signal channels so that the MSR receiver will continue to track and provide PVT, range, and Doppler data, even when all channels have low SNR.
NASA Astrophysics Data System (ADS)
Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg
2017-08-01
During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.
New Transverse Bunch-by-Bunch Feedback System at TLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, K. H.; Kuo, C. H.; Hsu, S. Y.
2007-01-19
An FPGA based transverse bunch-by-bunch feedback system was implemented and commissioned to replace the existing analog transverse feedback system in order to suppress more effectively multi-bunch instabilities caused by the resistive wall of the vacuum chamber, cavity-like structures and ions related instability. This system replaces existing analog transverse feedback system to enlarge the tunability of the working point. Lower chromaticity is possible with feedback system that is very helpful for injection efficiency improvement. Top-up and high current operation is benefit for this upgrade. One feedback loop suppresses horizontal and vertical multi-bunch instabilities simultaneously. The clean and simple structure makes themore » system simple and reliable. This study also presents the preliminary result of commissioning the new transverse feedback system.« less
Evaluation of the efficiency and reliability of software generated by code generators
NASA Technical Reports Server (NTRS)
Schreur, Barbara
1994-01-01
There are numerous studies which show that CASE Tools greatly facilitate software development. As a result of these advantages, an increasing amount of software development is done with CASE Tools. As more software engineers become proficient with these tools, their experience and feedback lead to further development with the tools themselves. What has not been widely studied, however, is the reliability and efficiency of the actual code produced by the CASE Tools. This investigation considered these matters. Three segments of code generated by MATRIXx, one of many commercially available CASE Tools, were chosen for analysis: ETOFLIGHT, a portion of the Earth to Orbit Flight software, and ECLSS and PFMC, modules for Environmental Control and Life Support System and Pump Fan Motor Control, respectively.
Loop Heat Pipe Operation Using Heat Source Temperature for Set Point Control
NASA Technical Reports Server (NTRS)
Ku, Jentung; Paiva, Kleber; Mantelli, Marcia
2011-01-01
Loop heat pipes (LHPs) have been used for thermal control of several NASA and commercial orbiting spacecraft. The LHP operating temperature is governed by the saturation temperature of its compensation chamber (CC). Most LHPs use the CC temperature for feedback control of its operating temperature. There exists a thermal resistance between the heat source to be cooled by the LHP and the LHP's CC. Even if the CC set point temperature is controlled precisely, the heat source temperature will still vary with its heat output. For most applications, controlling the heat source temperature is of most interest. A logical question to ask is: "Can the heat source temperature be used for feedback control of the LHP operation?" A test program has been implemented to answer the above question. Objective is to investigate the LHP performance using the CC temperature and the heat source temperature for feedback control
Real-time optimal guidance for orbital maneuvering.
NASA Technical Reports Server (NTRS)
Cohen, A. O.; Brown, K. R.
1973-01-01
A new formulation for soft-constraint trajectory optimization is presented as a real-time optimal feedback guidance method for multiburn orbital maneuvers. Control is always chosen to minimize burn time plus a quadratic penalty for end condition errors, weighted so that early in the mission (when controllability is greatest) terminal errors are held negligible. Eventually, as controllability diminishes, the method partially relaxes but effectively still compensates perturbations in whatever subspace remains controllable. Although the soft-constraint concept is well-known in optimal control, the present formulation is novel in addressing the loss of controllability inherent in multiple burn orbital maneuvers. Moreover the necessary conditions usually obtained from a Bolza formulation are modified in this case so that the fully hard constraint formulation is a numerically well behaved subcase. As a result convergence properties have been greatly improved.
Feedback-Equivalence of Nonlinear Systems with Applications to Power System Equations.
NASA Astrophysics Data System (ADS)
Marino, Riccardo
The key concept of the dissertation is feedback equivalence among systems affine in control. Feedback equivalence to linear systems in Brunovsky canonical form and the construction of the corresponding feedback transformation are used to: (i) design a nonlinear regulator for a detailed nonlinear model of a synchronous generator connected to an infinite bus; (ii) establish which power system network structures enjoy the feedback linearizability property and design a stabilizing control law for these networks with a constraint on the control space which comes from the use of d.c. lines. It is also shown that the feedback linearizability property allows the use of state feedback to contruct a linear controllable system with a positive definite linear Hamiltonian structure for the uncontrolled part if the state space is even; a stabilizing control law is derived for such systems. Feedback linearizability property is characterized by the involutivity of certain nested distributions for strongly accessible analytic systems; if the system is defined on a manifold M diffeomorphic to the Euclidean space, it is established that the set where the property holds is a submanifold open and dense in M. If an analytic output map is defined, a set of nested involutive distributions can be always defined and that allows the introduction of an observability property which is the dual concept, in some sense, to feedback linearizability: the goal is to investigate when a nonlinear system affine in control with an analytic output map is feedback equivalent to a linear controllable and observable system. Finally a nested involutive structure of distributions is shown to guarantee the existence of a state feedback that takes a nonlinear system affine in control to a single input one, both feedback equivalent to linear controllable systems, preserving one controlled vector field.
ADRC for spacecraft attitude and position synchronization in libration point orbits
NASA Astrophysics Data System (ADS)
Gao, Chen; Yuan, Jianping; Zhao, Yakun
2018-04-01
This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.
Expedition 54 plaque hanging ceremony
2018-04-26
NASA astronauts Joe Acaba and Mark Vande Hei Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team. Chris Buckley is awarded privilege of hanging Mission 54 placque, shown here with Astronaut Mark Vande Hei (L) and Astronaut Joe Acaba
Medical student perspective: working toward specific and actionable clinical clerkship feedback.
Moss, Haley A; Derman, Peter B; Clement, R Carter
2012-01-01
Feedback on the wards is an important component of medical student education. Medical schools have incorporated formalized feedback mechanisms such as clinical encounter cards and standardized patient encounters into clinical curricula. However, the system could be further improved as medical students frequently feel uncomfortable requesting feedback, and are often dissatisfied with the quality of the feedback they receive. This article explores the shortcomings of the existing medical student feedback system and examines the relevant literature in an effort to shed light on areas in which the system can be enhanced. The discussion focuses on resident-provided feedback but is broadly applicable to delivering feedback in general. A review of the organizational psychology and business administration literature on fostering effective feedback was performed. These insights were then applied to the setting of medical education. Providing effective feedback requires training and forethought. Feedback itself should be specific and actionable. Utilizing these strategies will help medical students and educators get the most out of existing feedback systems.
Miniature Scroll Pumps Fabricated by LIGA
NASA Technical Reports Server (NTRS)
Wiberg, Dean; Shcheglov, Kirill; White, Victor; Bae, Sam
2009-01-01
Miniature scroll pumps have been proposed as roughing pumps (low - vacuum pumps) for miniature scientific instruments (e.g., portable mass spectrometers and gas analyzers) that depend on vacuum. The larger scroll pumps used as roughing pumps in some older vacuum systems are fabricated by conventional machining. Typically, such an older scroll pump includes (1) an electric motor with an eccentric shaft to generate orbital motion of a scroll and (2) conventional bearings to restrict the orbital motion to a circle. The proposed miniature scroll pumps would differ from the prior, larger ones in both design and fabrication. A miniature scroll pump would include two scrolls: one mounted on a stationary baseplate and one on a flexure stage (see figure). An electromagnetic actuator in the form of two pairs of voice coils in a push-pull configuration would make the flexure stage move in the desired circular orbit. The capacitance between the scrolls would be monitored to provide position (gap) feedback to a control system that would adjust the drive signals applied to the voice coils to maintain the circular orbit as needed for precise sealing of the scrolls. To minimize power consumption and maximize precision of control, the flexure stage would be driven at the frequency of its mechanical resonance. The miniaturization of these pumps would entail both operational and manufacturing tolerances of <1 m. Such tight tolerances cannot be achieved easily by conventional machining of high-aspect-ratio structures like those of scroll-pump components. In addition, the vibrations of conventional motors and ball bearings exceed these tight tolerances by an order of magnitude. Therefore, the proposed pumps would be fabricated by the microfabrication method known by the German acronym LIGA ( lithographie, galvanoformung, abformung, which means lithography, electroforming, molding) because LIGA has been shown to be capable of providing the required tolerances at large aspect ratios.
Sensitivity of the Eocene climate to CO2 and orbital variability
NASA Astrophysics Data System (ADS)
Keery, John S.; Holden, Philip B.; Edwards, Neil R.
2018-02-01
The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the Earth's climate system to anthropogenic fossil fuel burning. In this study, we present an ensemble of 50 Earth system model runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth's orbital parameters. Relationships between simple summary metrics of model outputs and the forcing parameters are identified by linear modelling, providing estimates of the relative magnitudes of the effects of atmospheric CO2 and each of the orbital parameters on important climatic features, including tropical-polar temperature difference, ocean-land temperature contrast, Asian, African and South (S.) American monsoon rains, and climate sensitivity. Our results indicate that although CO2 exerts a dominant control on most of the climatic features examined in this study, the orbital parameters also strongly influence important components of the ocean-atmosphere system in a greenhouse Earth. In our ensemble, atmospheric CO2 spans the range 280-3000 ppm, and this variation accounts for over 90 % of the effects on mean air temperature, southern winter high-latitude ocean-land temperature contrast and northern winter tropical-polar temperature difference. However, the variation of precession accounts for over 80 % of the influence of the forcing parameters on the Asian and African monsoon rainfall, and obliquity variation accounts for over 65 % of the effects on winter ocean-land temperature contrast in high northern latitudes and northern summer tropical-polar temperature difference. Our results indicate a bimodal climate sensitivity, with values of 4.36 and 2.54 °C, dependent on low or high states of atmospheric CO2 concentration, respectively, with a threshold at approximately 1000 ppm in this model, and due to a saturated vegetation-albedo feedback. Our method gives a quantitative ranking of the influence of each of the forcing parameters on key climatic model outputs, with additional spatial information from singular value decomposition providing insights into likely physical mechanisms. The results demonstrate the importance of orbital variation as an agent of change in climates of the past, and we demonstrate that emulators derived from our modelling output can be used as rapid and efficient surrogates of the full complexity model to provide estimates of climate conditions from any set of forcing parameters.
NASA Technical Reports Server (NTRS)
Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)
1991-01-01
Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br
We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in amore » Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.« less
NASA Astrophysics Data System (ADS)
Haule, Kristjan
2018-04-01
The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.
An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane
NASA Technical Reports Server (NTRS)
Lu, Ping
1992-01-01
The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.
Effect of vibrotactile feedback on an EMG-based proportional cursor control system.
Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang
2013-01-01
Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.
Feasibility of a computer-assisted feedback system between dispatch centre and ambulances.
Lindström, Veronica; Karlsten, Rolf; Falk, Ann-Charlotte; Castrèn, Maaret
2011-06-01
The aim of the study was to evaluate the feasibility of a newly developed computer-assisted feedback system between dispatch centre and ambulances in Stockholm, Sweden. A computer-assisted feedback system based on a Finnish model was designed to fit the Swedish emergency medical system. Feedback codes were identified and divided into three categories; assessment of patients' primary condition when ambulance arrives at scene, no transport by the ambulance and level of priority. Two ambulances and one emergency medical communication centre (EMCC) in Stockholm participated in the study. A sample of 530 feedback codes sent through the computer-assisted feedback system was reviewed. The information on the ambulance medical records was compared with the feedback codes used and 240 assignments were further analyzed. The used feedback codes sent from ambulance to EMCC were correct in 92% of the assignments. The most commonly used feedback code sent to the emergency medical dispatchers was 'agree with the dispatchers' assessment'. In addition, in 160 assignments there was a mismatch between emergency medical dispatchers and ambulance nurse assessments. Our results have shown a high agreement between medical dispatchers and ambulance nurse assessment. The feasibility of the feedback codes seems to be acceptable based on the small margin of error. The computer-assisted feedback system may, when used on a daily basis, make it possible for the medical dispatchers to receive feedback in a structural way. The EMCC organization can directly evaluate any changes in the assessment protocol by structured feedback sent from the ambulance.
Star Formation of Merging Disk Galaxies with AGN Feedback Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr
2017-08-20
Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Coxmore » et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.« less
Analytically tractable climate-carbon cycle feedbacks under 21st century anthropogenic forcing
NASA Astrophysics Data System (ADS)
Lade, Steven J.; Donges, Jonathan F.; Fetzer, Ingo; Anderies, John M.; Beer, Christian; Cornell, Sarah E.; Gasser, Thomas; Norberg, Jon; Richardson, Katherine; Rockström, Johan; Steffen, Will
2018-05-01
Changes to climate-carbon cycle feedbacks may significantly affect the Earth system's response to greenhouse gas emissions. These feedbacks are usually analysed from numerical output of complex and arguably opaque Earth system models. Here, we construct a stylised global climate-carbon cycle model, test its output against comprehensive Earth system models, and investigate the strengths of its climate-carbon cycle feedbacks analytically. The analytical expressions we obtain aid understanding of carbon cycle feedbacks and the operation of the carbon cycle. Specific results include that different feedback formalisms measure fundamentally the same climate-carbon cycle processes; temperature dependence of the solubility pump, biological pump, and CO2 solubility all contribute approximately equally to the ocean climate-carbon feedback; and concentration-carbon feedbacks may be more sensitive to future climate change than climate-carbon feedbacks. Simple models such as that developed here also provide workbenches
for simple but mechanistically based explorations of Earth system processes, such as interactions and feedbacks between the planetary boundaries, that are currently too uncertain to be included in comprehensive Earth system models.
NASA Astrophysics Data System (ADS)
Almeida, L. A.; Sana, H.; Taylor, W.; Barbá, R.; Bonanos, A. Z.; Crowther, P.; Damineli, A.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Gieles, M.; Grin, N. J.; Hénault-Brunet, V.; Langer, N.; Lennon, D.; Lockwood, S.; Maíz Apellániz, J.; Moffat, A. F. J.; Neijssel, C.; Norman, C.; Ramírez-Agudelo, O. H.; Richardson, N. D.; Schootemeijer, A.; Shenar, T.; Soszyński, I.; Tramper, F.; Vink, J. S.
2017-02-01
Context. Massive binaries play a crucial role in the Universe. Knowing the distributions of their orbital parameters is important for a wide range of topics from stellar feedback to binary evolution channels and from the distribution of supernova types to gravitational wave progenitors, yet no direct measurements exist outside the Milky Way. Aims: The Tarantula Massive Binary Monitoring project was designed to help fill this gap by obtaining multi-epoch radial velocity (RV) monitoring of 102 massive binaries in the 30 Doradus region. Methods: In this paper we analyze 32 FLAMES/GIRAFFE observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single-lined (SB1) and 31 double-lined (SB2) spectroscopic binaries. Results: Overall, the binary fraction and orbital properties across the 30 Doradus region are found to be similar to existing Galactic samples. This indicates that within these domains environmental effects are of second order in shaping the properties of massive binary systems. A small difference is found in the distribution of orbital periods, which is slightly flatter (in log space) in 30 Doradus than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, orbital periods in 30 Doradus can be as short as 1.1 d, somewhat shorter than seen in Galactic samples. Equal mass binaries (q> 0.95) in 30 Doradus are all found outside NGC 2070, the central association that surrounds R136a, the very young and massive cluster at 30 Doradus's core. Most of the differences, albeit small, are compatible with expectations from binary evolution. One outstanding exception, however, is the fact that earlier spectral types (O2-O7) tend to have shorter orbital periods than later spectral types (O9.2-O9.7). Conclusions: Our results point to a relative universality of the incidence rate of massive binaries and their orbital properties in the metallicity range from solar (Z⊙) to about half solar. This provides the first direct constraints on massive binary properties in massive star-forming galaxies at the Universe's peak of star formation at redshifts z 1 to 2 which are estimated to have Z 0.5 Z⊙. The log of observations and RV measurements for all targets are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A84
NASA Technical Reports Server (NTRS)
Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak
2013-01-01
The Mars Science Laboratory (MSL) was spin-stabilized during its cruise to Mars. We discuss the effects of spin on the radiometric data and how the orbit determination team dealt with them. Additionally, we will discuss the unplanned benefits of detailed spin modeling including attitude estimation and spacecraft clock correlation.
Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years.
Jo, Kyoung-nam; Woo, Kyung Sik; Yi, Sangheon; Yang, Dong Yoon; Lim, Hyoun Soo; Wang, Yongjin; Cheng, Hai; Edwards, R Lawrence
2014-04-17
An interhemispheric hydrologic seesaw--in which latitudinal migrations of the Intertropical Convergence Zone (ITCZ) produce simultaneous wetting (increased precipitation) in one hemisphere and drying in the other--has been discovered in some tropical and subtropical regions. For instance, Chinese and Brazilian subtropical speleothem (cave formations such as stalactites and stalagmites) records show opposite trends in time series of oxygen isotopes (a proxy for precipitation variability) at millennial to orbital timescales, suggesting that hydrologic cycles were antiphased in the northerly versus southerly subtropics. This tropical to subtropical hydrologic phenomenon is likely to be an initial and important climatic response to orbital forcing. The impacts of such an interhemispheric hydrologic seesaw on higher-latitude regions and the global climate system, however, are unknown. Here we show that the antiphasing seen in the tropical records is also present in both hemispheres of the mid-latitude western Pacific Ocean. Our results are based on a new 550,000-year record of the growth frequency of speleothems from the Korean peninsula, which we compare to Southern Hemisphere equivalents. The Korean data are discontinuous and derived from 24 separate speleothems, but still allow the identification of periods of peak speleothem growth and, thus, precipitation. The clear hemispheric antiphasing indicates that the sphere of influence of the interhemispheric hydrologic seesaw over the past 550,000 years extended at least to the mid-latitudes, such as northeast Asia, and that orbital-timescale ITCZ shifts can have serious effects on temperate climate systems. Furthermore, our result implies that insolation-driven ITCZ dynamics may provoke water vapour and vegetation feedbacks in northern mid-latitude regions and could have regulated global climate conditions throughout the late Quaternary ice age cycles.
Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years
NASA Astrophysics Data System (ADS)
Jo, Kyoung-Nam; Woo, Kyung Sik; Yi, Sangheon; Yang, Dong Yoon; Lim, Hyoun Soo; Wang, Yongjin; Cheng, Hai; Edwards, R. Lawrence
2014-04-01
An interhemispheric hydrologic seesaw--in which latitudinal migrations of the Intertropical Convergence Zone (ITCZ) produce simultaneous wetting (increased precipitation) in one hemisphere and drying in the other--has been discovered in some tropical and subtropical regions. For instance, Chinese and Brazilian subtropical speleothem (cave formations such as stalactites and stalagmites) records show opposite trends in time series of oxygen isotopes (a proxy for precipitation variability) at millennial to orbital timescales, suggesting that hydrologic cycles were antiphased in the northerly versus southerly subtropics. This tropical to subtropical hydrologic phenomenon is likely to be an initial and important climatic response to orbital forcing. The impacts of such an interhemispheric hydrologic seesaw on higher-latitude regions and the global climate system, however, are unknown. Here we show that the antiphasing seen in the tropical records is also present in both hemispheres of the mid-latitude western Pacific Ocean. Our results are based on a new 550,000-year record of the growth frequency of speleothems from the Korean peninsula, which we compare to Southern Hemisphere equivalents. The Korean data are discontinuous and derived from 24 separate speleothems, but still allow the identification of periods of peak speleothem growth and, thus, precipitation. The clear hemispheric antiphasing indicates that the sphere of influence of the interhemispheric hydrologic seesaw over the past 550,000 years extended at least to the mid-latitudes, such as northeast Asia, and that orbital-timescale ITCZ shifts can have serious effects on temperate climate systems. Furthermore, our result implies that insolation-driven ITCZ dynamics may provoke water vapour and vegetation feedbacks in northern mid-latitude regions and could have regulated global climate conditions throughout the late Quaternary ice age cycles.
Intelligent excavator control system for lunar mining system
NASA Astrophysics Data System (ADS)
Lever, Paul J. A.; Wang, Fei-Yue
1995-01-01
A major benefit of utilizing local planetary resources is that it reduces the need and cost of lifting materials from the Earth's surface into Earth orbit. The location of the moon makes it an ideal site for harvesting the materials needed to assist space activities. Here, lunar excavation will take place in the dynamic unstructured lunar environment, in which conditions are highly variable and unpredictable. Autonomous mining (excavation) machines are necessary to remove human operators from this hazardous environment. This machine must use a control system structure that can identify, plan, sense, and control real-time dynamic machine movements in the lunar environment. The solution is a vision-based hierarchical control structure. However, excavation tasks require force/torque sensor feedback to control the excavation tool after it has penetrated the surface. A fuzzy logic controller (FLC) is used to interpret the forces and torques gathered from a bucket mounted force/torque sensor during excavation. Experimental results from several excavation tests using the FLC are presented here. These results represent the first step toward an integrated sensing and control system for a lunar mining system.
Feasibility Study of Jupiter Icy Moons Orbiter Permanent Magnet Alternator Start Sequence
NASA Technical Reports Server (NTRS)
Kenny, Barbara H.; Tokars, Roger P.
2006-01-01
The Jupiter Icy Moons Orbiter (JIMO) mission was a proposed, (recently cancelled) long duration science mission to study three moons of Jupiter: Callisto, Ganymede, and Europa. One design of the JIMO spacecraft used a nuclear heat source in conjunction with a Brayton rotating machine to generate electrical power for the electric thrusters and the spacecraft bus. The basic operation of the closed cycle Brayton system was as follows. The working fluid, a heliumxenon gas mixture, first entered a compressor, then went through a recuperator and hot-side heat exchanger, then expanded across a turbine that drove an alternator, then entered the cold-side of the recuperator and heat exchanger and finally returned to the compressor. The spacecraft was to be launched with the Brayton system off-line and the nuclear reactor shut down. Once the system was started, the helium-xenon gas would be circulated into the heat exchangers as the nuclear reactors were activated. Initially, the alternator unit would operate as a motor so as to drive the turbine and compressor to get the cycle started. This report investigated the feasibility of the start up sequence of a permanent magnet (PM) machine, similar in operation to the alternator unit, without any position or speed feedback sensors ("sensorless") and with a variable load torque. It is found that the permanent magnet machine can start with sensorless control and a load torque of up to 30 percent of the rated value.
Rigorous mathematical modelling for a Fast Corrector Power Supply in TPS
NASA Astrophysics Data System (ADS)
Liu, K.-B.; Liu, C.-Y.; Chien, Y.-C.; Wang, B.-S.; Wong, Y. S.
2017-04-01
To enhance the stability of beam orbit, a Fast Orbit Feedback System (FOFB) eliminating undesired disturbances was installed and tested in the 3rd generation synchrotron light source of Taiwan Photon Source (TPS) of National Synchrotron Radiation Research Center (NSRRC). The effectiveness of the FOFB greatly depends on the output performance of Fast Corrector Power Supply (FCPS); therefore, the design and implementation of an accurate FCPS is essential. A rigorous mathematical modelling is very useful to shorten design time and improve design performance of a FCPS. A rigorous mathematical modelling derived by the state-space averaging method for a FCPS in the FOFB of TPS composed of a full-bridge topology is therefore proposed in this paper. The MATLAB/SIMULINK software is used to construct the proposed mathematical modelling and to conduct the simulations of the FCPS. Simulations for the effects of the different resolutions of ADC on the output accuracy of the FCPS are investigated. A FCPS prototype is realized to demonstrate the effectiveness of the proposed rigorous mathematical modelling for the FCPS. Simulation and experimental results show that the proposed mathematical modelling is helpful for selecting the appropriate components to meet the accuracy requirements of a FCPS.
On-Orbit Evaluation of a New Treadmill Harness for Improved Crewmember Comfort and Load Distribution
NASA Technical Reports Server (NTRS)
Perusek, G. P.; Sheehan, C. C.; Savina, M. C.; Owings, T. M.; Davis, B. L.; Ryder, J. W.
2011-01-01
The current design of the International Space Station (ISS) Treadmill Harness has been reported to cause pain and discomfort to crewmembers during exercise. The Harness Station Development Test Objective (SDTO) provided participating crewmembers (n = 6) with a new harness design, the "Glenn Harness," to evaluate for comfort and loading as compared to the current Treadmill Harness. A novel suite of load-sensing instrumentation was developed to noninvasively measure load distribution and provided a first-ever quantification of actual dynamic loads during treadmill exercise. In addition, crew debriefs provided feedback on harness preference and overall impressions. Conclusions: Post-flight analysis in returned Glenn Harnesses (n = 3) showed minimal wear and tear. Four of the six subjects found the Glenn Harness to be more comfortable in this on-orbit, side-by-side comparison as measured by the crew comfort questionnaire and crew debriefs. Specific areas for improvement have been identified, and forward recommendations will be provided to the Human Research Program. The protocol developed for the SDTO provided valuable insight into crew comfort issues, design improvements, and loading preferences for exercise harnessing, which lays the groundwork for better harnessing systems and training protocols.
Formation Flying Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Hadaegh, F. Y.; Lau, Kenneth; Wang, P. K. C.
1997-01-01
The problem of coordination and control of multiple spacecraft (MS) moving in formation is considered. Here, each MS is modeled by a rigid body with fixed center of mass. First, various schemes for generating the desired formation patterns are discussed, Then, explicit control laws for formation-keeping and relative attitude alignment based on nearest neighbor-tracking are derived. The necessary data which must be communicated between the MS to achieve effective control are examined. The time-domain behavior of the feedback-controlled MS formation for typical low-Earth orbits is studied both analytically and via computer simulation. The paper concludes with a discussion of the implementation of the derived control laws, and the integration of the MS formation coordination and control system with a proposed inter-spacecraft communication/computing network.
Observer-Based Adaptive Neural Network Control for Nonlinear Systems in Nonstrict-Feedback Form.
Chen, Bing; Zhang, Huaguang; Lin, Chong
2016-01-01
This paper focuses on the problem of adaptive neural network (NN) control for a class of nonlinear nonstrict-feedback systems via output feedback. A novel adaptive NN backstepping output-feedback control approach is first proposed for nonlinear nonstrict-feedback systems. The monotonicity of system bounding functions and the structure character of radial basis function (RBF) NNs are used to overcome the difficulties that arise from nonstrict-feedback structure. A state observer is constructed to estimate the immeasurable state variables. By combining adaptive backstepping technique with approximation capability of radial basis function NNs, an output-feedback adaptive NN controller is designed through backstepping approach. It is shown that the proposed controller guarantees semiglobal boundedness of all the signals in the closed-loop systems. Two examples are used to illustrate the effectiveness of the proposed approach.
Topography of the Lunar Poles and Application to Geodesy with the Lunar Reconnaissance Orbiter
NASA Technical Reports Server (NTRS)
Mazarico, Erwan; Neumann, Gregory A.; Rowlands, David D.; Smith, David E.; Zuber, Maria T.
2012-01-01
The Lunar Orbiter Laser Altimeter (LOLA) [1] onboard the Lunar Reconnaissance Orbiter (LRO) [2] has been operating continuously since July 2009 [3], accumulating approx.5.4 billion measurements from 2 billion on-orbit laser shots. LRO s near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, which are each sampled every 2h. With more than 10,000 orbits, high-resolution maps can be constructed [4] and studied [5]. However, this requires careful processing of the raw data, as subtle errors in the spacecraft position and pointing can lead to visible artifacts in the final map. In other locations on the Moon, ground tracks are subparallel and longitudinal separations are typically a few hundred meters. Near the poles, the track intersection angles can be large and the inter-track spacing is small (above 80 latitude, the effective resolution is better than 50m). Precision Orbit Determination (POD) of the LRO spacecraft [6] was performed to satisfy the LOLA and LRO mission requirements, which lead to a significant improvement in the orbit position knowledge over the short-release navigation products. However, with pixel resolutions of 10 to 25 meters, artifacts due to orbit reconstruction still exist. Here, we show how the complete LOLA dataset at both poles can be adjusted geometrically to produce a high-accuracy, high-resolution maps with minimal track artifacts. We also describe how those maps can then feedback to the POD work, by providing topographic base maps with which individual LOLA altimetric measurements can be contributing to orbit changes. These direct altimetry constraints improve accuracy and can be used more simply than the altimetric crossovers [6].
NASA Astrophysics Data System (ADS)
Li, Zhifu; Hu, Yueming; Li, Di
2016-08-01
For a class of linear discrete-time uncertain systems, a feedback feed-forward iterative learning control (ILC) scheme is proposed, which is comprised of an iterative learning controller and two current iteration feedback controllers. The iterative learning controller is used to improve the performance along the iteration direction and the feedback controllers are used to improve the performance along the time direction. First of all, the uncertain feedback feed-forward ILC system is presented by an uncertain two-dimensional Roesser model system. Then, two robust control schemes are proposed. One can ensure that the feedback feed-forward ILC system is bounded-input bounded-output stable along time direction, and the other can ensure that the feedback feed-forward ILC system is asymptotically stable along time direction. Both schemes can guarantee the system is robust monotonically convergent along the iteration direction. Third, the robust convergent sufficient conditions are given, which contains a linear matrix inequality (LMI). Moreover, the LMI can be used to determine the gain matrix of the feedback feed-forward iterative learning controller. Finally, the simulation results are presented to demonstrate the effectiveness of the proposed schemes.
The relative degree enhancement problem for MIMO nonlinear systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenwald, D.A.; Oezguener, Ue.
1995-07-01
The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for amore » completely decentralized feedback linearization result for at least one input-output channel.« less
ERIC Educational Resources Information Center
Lee, Cynthia; Cheung, William Kwok Wai; Wong, Kelvin Chi Kuen; Lee, Fion Sau Ling
2013-01-01
This article is an effort to add to computer-assisted language learning by extending a study on an essay critiquing system (ECS) feedback to secondary school language learners' writing. The study compared two groups of participants' performance, namely the treatment group which received both the system feedback and teacher feedback (i.e., blended…
Feedback as Real-Time Constructions
ERIC Educational Resources Information Center
Keiding, Tina Bering; Qvortrup, Ane
2014-01-01
This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…
Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Wetzel, Andrew
2018-04-01
I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.
NASA Astrophysics Data System (ADS)
Singh, Hanuman; Konishi, K.; Bhuktare, S.; Bose, A.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.
2017-12-01
In this paper we demonstrate the injection locking of a recently demonstrated spintronic feedback nano-oscillator to microwave magnetic fields at integers (n =1 , 2, 3) as well as fractional multiples (f =1 /2 , 3 /2 , and 5 /2 ) of its auto-oscillation frequency. Feedback oscillators have delay as a new "degree of freedom" which is absent for spin-transfer torque-based oscillators, which gives rise to side peaks along with a main peak. We show that it is also possible to lock the oscillator on its sideband peaks, which opens an alternative avenue to phase-locked oscillators with large frequency differences. We observe that for low driving fields, sideband locking improves the quality factor of the main peak, whereas for higher driving fields the main peak is suppressed. Further, measurements at two field angles provide some insight into the role of the symmetry of oscillation orbit in determining the fractional locking.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Milestones. (a) Licensees of geostationary orbit satellite systems other than DBS and DARS satellite systems...) Licensees of non-geostationary orbit satellite systems other than DBS and DARS satellite systems licensed on... placed in the authorized orbital location or non-geostationary orbit(s) and that in-orbit operation of...
Haptic Feedback in Robot-Assisted Minimally Invasive Surgery
Okamura, Allison M.
2009-01-01
Purpose of Review Robot-assisted minimally invasive surgery (RMIS) holds great promise for improving the accuracy and dexterity of a surgeon while minimizing trauma to the patient. However, widespread clinical success with RMIS has been marginal. It is hypothesized that the lack of haptic (force and tactile) feedback presented to the surgeon is a limiting factor. This review explains the technical challenges of creating haptic feedback for robot-assisted surgery and provides recent results that evaluate the effectiveness of haptic feedback in mock surgical tasks. Recent Findings Haptic feedback systems for RMIS are still under development and evaluation. Most provide only force feedback, with limited fidelity. The major challenge at this time is sensing forces applied to the patient. A few tactile feedback systems for RMIS have been created, but their practicality for clinical implementation needs to be shown. It is particularly difficult to sense and display spatially distributed tactile information. The cost-benefit ratio for haptic feedback in RMIS has not been established. Summary The designs of existing commercial RMIS systems are not conducive for force feedback, and creative solutions are needed to create compelling tactile feedback systems. Surgeons, engineers, and neuroscientists should work together to develop effective solutions for haptic feedback in RMIS. PMID:19057225
Graphical Understanding of Simple Feedback Systems.
ERIC Educational Resources Information Center
Janvier, Claude; Garancon, Maurice
1989-01-01
Shows that graphs can reveal much about feedback systems that formula conceal, especially as microcomputers can provide complex graphs presented as animations and allow students to interact easily with them. Describes feedback systems, evolution of the system, and phase diagram. (YP)
Observing Decadal Trends in Atmospheric Feedbacks and Climate Change with Zeus and CLARREO
NASA Astrophysics Data System (ADS)
Revercomb, H. E.; Best, F. A.; Knuteson, R. O.; Tobin, D. C.; Taylor, J. K.; Gero, P.; Adler, D. P.; Pettersen, C.; Mulligan, M.; Tobin, D. C.
2012-12-01
New technologies for observing decadal trends in atmospheric feedbacks and climate change from space have been recently demonstrated via a NASA Instrument Incubator Program (IIP) project of our group and the Anderson Group of Harvard University. Using these new technologies, a mission named Zeus has been proposed to the first NASA Earth Venture Instruments opportunity (EVI-1). Zeus would provide a low cost mechanism to initiate a new era in high spectral resolution IR climate Benchmark and Intercalibration observations, the basis for which has been established by definition of the CLARREO mission in the 2007 NRC "Decadal Survey" and by the Science Definition Team established by NASA LaRC to further the full blown CLARREO mission. Zeus EVI is a low-cost, low-risk, and high-value EVI mission that will deploy an Absolute Radiance Interferometer (ARI) instrument to measure absolute spectrally resolved infrared radiance over much of the Earth-emitted spectrum with ultra-high accuracy (<0.1 K 3-sigma brightness temperature). Zeus makes use of broad spectral coverage (3.7-50 microns) and high spectral resolution (<1 cm-1) to provide benchmark products for climate trending with much higher information content than traditional spectrally-integrated measurements. While ARI requirements for accuracy and spectral properties are demanding, the overall instrument is relatively simple and low-cost because of the limited requirements on spatial sampling (25-100 km nadir-only footprints spaced at < 250 km) and on noise performance (climate products are created by combining many samples). The orbit chosen for Zeus must provide coverage immune to time-of-day sampling errors. Because of its relatively high rate of precession, an attractive baseline option for Zeus EVI is the 51.6 degrees inclination orbit of the International Space Station (ISS). For Zeus deployment on the ISS, higher latitude climate benchmark information will be obtained from operational sounders intercalibrated by Zeus. A key aspect of the Zeus ARI instrument is the On-orbit Verification and Test System (OVTS) for verifying its accuracy by reference to International Standards (SI) and testing on orbit. The OVTS includes an On-orbit Absolute Radiance Standard (OARS), which is a high emissivity cavity blackbody that can be operated over a wide range of temperatures to verify ARI calibration. The OARS uses multiple small phase change cells to establish its fundamental temperature scale to better than 5 mK absolute and a broad-band heated-halo source for monitoring its cavity spectral emissivity throughout the mission. A Quantum Cascade Laser (QCL) is also used by the OVTS to monitor the ARI instrument spectral lineshape and the emissivity of its calibration blackbody relative to that of the OARS. The ARI radiance measurements will also be tested for other systematic errors on orbit (non-linearity, polarization effects, and stray light). Through especially careful attention to accuracy, proven on orbit, Zeus EVI will provide the first irrefutable benchmark measurements of the Earth's emitted spectral radiance with accuracy exceeding 0.1 K 3 sigma. In addition, Zeus will serve as a reference standard for operational advanced sounders and will enable fundamental improvements in our capability to document climate trends and to forecast climate and weather.
ARCSTONE: Accurate Calibration of Lunar Spectral Reflectance from space
NASA Astrophysics Data System (ADS)
Young, C. L.; Lukashin, C.; Jackson, T.; Cooney, M.; Ryan, N.; Beverly, J.; Davis, W.; Nguyen, T.; Rutherford, G.; Swanson, R.; Kehoe, M.; Kopp, G.; Smith, P.; Woodward, J.; Carvo, J.; Stone, T.
2017-12-01
Calibration accuracy and consistency are key on-orbit performance metrics for Earth observing sensors. The accuracy and consistency of measurements across multiple instruments in low Earth and geostationary orbits are directly connected to the scientific understanding of complex systems, such as Earth's weather and climate. Recent studies have demonstrated the quantitative impacts of observational accuracy on the science data products [1] and the ability to detect climate change trends for essential climate variables (e.g., Earth's radiation budget, cloud feedback, and long-term trends in cloud parameters) [2, 3]. It is common for sensors to carry references for calibration at various wavelengths onboard, but these can be subject to degradation and increase mass and risk. The Moon can be considered a natural solar diffuser in space. Establishing the Moon as an on-orbit high-accuracy calibration reference enables broad intercalibration opportunities, as the lunar reflectance is time-invariant and can be directly measured by most Earth-observing instruments. Existing approaches to calibrate sensors against the Moon can achieve stabilities of a tenth of a percent over a decade, as demonstrated by the SeaWIFS. However, the current lunar calibration quality, with 5 - 10% bias, depends on the photometric model of the Moon [4]. Significant improvements in the lunar reference are possible and are necessary for climate-level absolute calibrations using the Moon. The ARCSTONE instrument will provide a reliable reference for high-accuracy on-orbit calibration for reflected solar instruments. An orbiting spectrometer flying on a CubeSat in low Earth orbit will provide lunar spectral reflectance with accuracy < 0.5% (k = 1), sufficient to establish an SI-traceable absolute lunar calibration standard for past, current, and future Earth weather and climate sensors. The ARCSTONE team will present the instrument design status and path forward for development, building, calibration and testing. [1] Lyapustin, A. Y. et al., 2014, Atmos. Meas. Tech., 7, pp. 4353 - 4365. [2] Wielicki, B. A., et al., 2013, Bull. Amer. Meteor. Soc., 94, pp. 1519 - 1539. [3] Shea, Y. L., et al., 2017 J. of Climate. [4] Kieffer, H. H., et al., 2005, The Astronomical J., v. 129, pp. 2887 - 2901.
A view finder control system for an earth observation satellite
NASA Astrophysics Data System (ADS)
Steyn, H.
2004-11-01
A real time TV view finder is used on-board a low earth orbiting (LEO) satellite to manually select targets for imaging from a ground station within the communication footprint of the satellite. The attitude control system on the satellite is used to steer the satellite using commands from the groundstation and a television camera onboard the satellite will then downlink a television signal in real time to a monitor screen in the ground station. The operator in the feedback loop will be able to manually steer the boresight of the satellite's main imager towards interested target areas e.g. to avoid clouds or correct for any attitude pointing errors. Due to a substantial delay (in the order of a second) in the view finding feedback loop and the narrow field of view of the main imager, the operator has to be assisted by the onboard attitude control system to stabilise and track the target area visible on the monitor screen. This paper will present the extended Kalman filter used to estimate the satellite's attitude angles using quaternions and the bias vector component of the 3-axis inertial rate sensors (gyros). Absolute attitude sensors (i.e. sun, horizon and magnetic) are used to supply the measurement vectors to correct the filter states during the view finder manoeuvres. The target tracking and rate steering reaction wheel controllers to accurately point and stabilise the satellite will be presented. The reference generator for the satellite to target attitude and rate vectors as used by the reaction wheel controllers will be derived.
Study of an orbiting tethered dumbbell system having positive orbital energy
NASA Technical Reports Server (NTRS)
Arnold, David A.
1988-01-01
For very long tethered systems the sum of the kinetic and potential energy can be positive. The system remains in a circular orbit as long as the masses remain vertically aligned. The system is unstable without constant control of the alignment. If the upper mass rotates forward in the direction of the orbital motion, the system escapes out of orbit. If the upper mass rotates backward, the system falls out of orbit and the lower mass impacts the body around which the system is orbiting.
A theory of circular organization and negative feedback: defining life in a cybernetic context.
Tsokolov, Sergey
2010-12-01
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.
A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context
NASA Astrophysics Data System (ADS)
Tsokolov, Sergey
2010-12-01
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.
Tactile feedback for relief of deafferentation pain using virtual reality system: a pilot study.
Sano, Yuko; Wake, Naoki; Ichinose, Akimichi; Osumi, Michihiro; Oya, Reishi; Sumitani, Masahiko; Kumagaya, Shin-Ichiro; Kuniyoshi, Yasuo
2016-06-28
Previous studies have tried to relieve deafferentation pain (DP) by using virtual reality rehabilitation systems. However, the effectiveness of multimodal sensory feedback was not validated. The objective of this study is to relieve DP by neurorehabilitation using a virtual reality system with multimodal sensory feedback and to validate the efficacy of tactile feedback on immediate pain reduction. We have developed a virtual reality rehabilitation system with multimodal sensory feedback and applied it to seven patients with DP caused by brachial plexus avulsion or arm amputation. The patients executed a reaching task using the virtual phantom limb manipulated by their real intact limb. The reaching task was conducted under two conditions: one with tactile feedback on the intact hand and one without. The pain intensity was evaluated through a questionnaire. We found that the task with the tactile feedback reduced DP more (41.8 ± 19.8 %) than the task without the tactile feedback (28.2 ± 29.5 %), which was supported by a Wilcoxon signed-rank test result (p < 0.05). Overall, our findings indicate that the tactile feedback improves the immediate pain intensity through rehabilitation using our virtual reality system.
Feedbacks in Human-Landscape Systems
NASA Astrophysics Data System (ADS)
Chin, Anne; Florsheim, Joan L.; Wohl, Ellen; Collins, Brian D.
2014-01-01
This article identifies key questions and challenges for geomorphologists in investigating coupled feedbacks in human-landscape systems. While feedbacks occur in the absence of human influences, they are also altered by human activity. Feedbacks are a key element to understanding human-influenced geomorphic systems in ways that extend our traditional approach of considering humans as unidirectional drivers of change. Feedbacks have been increasingly identified in Earth-environmental systems, with studies of coupled human-natural systems emphasizing ecological phenomena in producing emerging concepts for social-ecological systems. Enormous gaps or uncertainties in knowledge remain with respect to understanding impact-feedback loops within geomorphic systems with significant human alterations, where the impacted geomorphic systems in turn affect humans. Geomorphology should play an important role in public policy by identifying the many diffuse and subtle feedbacks of both local- and global-scale processes. This role is urgent, while time may still be available to mitigate the impacts that limit the sustainability of human societies. Challenges for geomorphology include identification of the often weak feedbacks that occur over varied time and space scales ranging from geologic time to single isolated events and very short time periods, the lack of available data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, the varied tools and metrics needed to represent both physical and human processes, and the need to collaborate with social scientists with expertise in the human causes of geomorphic change, as well as the human responses to such change.
Bayesian versus politically motivated reasoning in human perception of climate anomalies
NASA Astrophysics Data System (ADS)
Ripberger, Joseph T.; Jenkins-Smith, Hank C.; Silva, Carol L.; Carlson, Deven E.; Gupta, Kuhika; Carlson, Nina; Dunlap, Riley E.
2017-11-01
In complex systems where humans and nature interact to produce joint outcomes, mitigation, adaptation, and resilience require that humans perceive feedback—signals of health and distress—from natural systems. In many instances, humans readily perceive feedback. In others, feedback is more difficult to perceive, so humans rely on experts, heuristics, biases, and/or identify confirming rationalities that may distort perceptions of feedback. This study explores human perception of feedback from natural systems by testing alternate conceptions about how individuals perceive climate anomalies, a form of feedback from the climate system. Results indicate that individuals generally perceive climate anomalies, especially when the anomalies are relatively extreme and persistent. Moreover, this finding is largely robust to political differences that generate predictable but small biases in feedback perception at extreme ends of the partisan spectrum. The subtlety of these biases bodes well for mitigation, adaptation, and resilience as human systems continue to interact with a changing climate system.
NASA Technical Reports Server (NTRS)
Grodsinsky, Carlos M.
1993-01-01
The low gravity environment provided by space flight has afforded the science community a unique area for the study of fundamental and technological sciences. However, the dynamic environment observed on space shuttle flights and predicted for Space Station Freedom has complicated the analysis of prior 'microgravity' experiments and prompted concern for the viability of proposed space experiments requiring long term, low gravity environments. Thus, isolation systems capable of providing significant improvements to this random environment have been developed. This dissertation deals with the design constraints imposed by acceleration sensitive, microgravity experiment payloads in the unique environment of space. A theoretical background for the inertial feedback and feedforward isolation of a payload was developed giving the basis for two experimental active inertial isolation systems developed for the demonstration of these advanced active isolation techniques. A prototype six degree of freedom digital active isolation system was designed and developed for the ground based testing of an actively isolated payload in three horizontal degrees of freedom. A second functionally equivalent system was built for the multi-dimensional testing of an active inertial isolation system in a reduced gravity environment during low gravity aircraft trajectories. These multi-input multi-output control systems are discussed in detail with estimates on acceleration noise floor performance as well as the actual performance acceleration data. The attenuation performance is also given for both systems demonstrating the advantages between inertial and non-inertial control of a payload for both the ground base environment and the low gravity aircraft acceleration environment. A future goal for this area of research is to validate the technical approaches developed to the 0.01 Hz regime by demonstrating a functional active inertial feedforward/feedback isolation system during orbital flight. A NASA IN-STEP flight experiment has been proposed to accomplish this goal, and the expected selection for the IN-STEP program has been set for Jul. of 1993.
Feedback and its effectiveness in a computer-aided personalized system of instruction course.
Martin, Toby L; Pear, Joseph J; Martin, Garry L
2002-01-01
In a computer-managed version of Keller's personalized system of instruction, students received frequent feedback from more advanced students within the course. Overall accuracy of student-provided feedback was 87%, and students complied with 61% of the feedback. PMID:12555917
NASA Astrophysics Data System (ADS)
Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.
2018-04-01
A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.
Realizing actual feedback control of complex network
NASA Astrophysics Data System (ADS)
Tu, Chengyi; Cheng, Yuhua
2014-06-01
In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.
Feedback Regulation and Its Efficiency in Biochemical Networks
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuya J.; Yokota, Ryo; Aihara, Kazuyuki
2016-03-01
Intracellular biochemical networks fluctuate dynamically due to various internal and external sources of fluctuation. Dissecting the fluctuation into biologically relevant components is important for understanding how a cell controls and harnesses noise and how information is transferred over apparently noisy intracellular networks. While substantial theoretical and experimental advancement on the decomposition of fluctuation was achieved for feedforward networks without any loop, we still lack a theoretical basis that can consistently extend such advancement to feedback networks. The main obstacle that hampers is the circulative propagation of fluctuation by feedback loops. In order to define the relevant quantity for the impact of feedback loops for fluctuation, disentanglement of the causally interlocked influences between the components is required. In addition, we also lack an approach that enables us to infer non-perturbatively the influence of the feedback to fluctuation in the same way as the dual reporter system does in the feedforward networks. In this work, we address these problems by extending the work on the fluctuation decomposition and the dual reporter system. For a single-loop feedback network with two components, we define feedback loop gain as the feedback efficiency that is consistent with the fluctuation decomposition for feedforward networks. Then, we clarify the relation of the feedback efficiency with the fluctuation propagation in an open-looped FF network. Finally, by extending the dual reporter system, we propose a conjugate feedback and feedforward system for estimating the feedback efficiency non-perturbatively only from the statistics of the system.
Renting, Nienke; Gans, Rijk O B; Borleffs, Jan C C; Van Der Wal, Martha A; Jaarsma, A Debbie C; Cohen-Schotanus, Janke
2016-07-01
Residents benefit from regular, high quality feedback on all CanMEDS roles during their training. However, feedback mostly concerns Medical Expert, leaving the other roles behind. A feedback system was developed to guide supervisors in providing feedback on CanMEDS roles. We analyzed whether feedback was provided on the intended roles and explored differences in quality of written feedback. In the feedback system, CanMEDS roles were assigned to five authentic situations: Patient Encounter, Morning Report, On-call, CAT, and Oral Presentation. Quality of feedback was operationalized as specificity and inclusion of strengths and improvement points. Differences in specificity between roles were tested with Mann-Whitney U tests with a Bonferroni correction (α = 0.003). Supervisors (n = 126) provided residents (n = 120) with feedback (591 times). Feedback was provided on the intended roles, most frequently on Scholar (78%) and Communicator (71%); least on Manager (47%), and Collaborator (56%). Strengths (78%) were mentioned more frequently than improvement points (52%), which were lacking in 40% of the feedback on Manager, Professional, and Collaborator. Feedback on Scholar was more frequently (p = 0.000) and on Reflective Professional was less frequently (p = 0.003) specific. Assigning roles to authentic situations guides supervisors in providing feedback on different CanMEDS roles. We recommend additional supervisor training on how to observe and evaluate the roles.
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
Stephanie Shelton, a payload communications manager at NASA's Ma
2018-04-19
Stephanie Shelton, a payload communications manager at NASA's Marshall Space Flight Center, joins NASA astronauts Joe Acaba and Mark Vande Hei for a call to the onboard crew of the International Space Station. Vande Hei and Acaba visited Marshall April 11 for their honorary Expedition 54 plaque hanging ceremony and to provide valuable feedback of their on-orbit science investigations with the Payload Operations and Integration Center team..
Applications of nonlinear systems theory to control design
NASA Technical Reports Server (NTRS)
Hunt, L. R.; Villarreal, Ramiro
1988-01-01
For most applications in the control area, the standard practice is to approximate a nonlinear mathematical model by a linear system. Since the feedback linearizable systems contain linear systems as a subclass, the procedure of approximating a nonlinear system by a feedback linearizable one is examined. Because many physical plants (e.g., aircraft at the NASA Ames Research Center) have mathematical models which are close to feedback linearizable systems, such approximations are certainly justified. Results and techniques are introduced for measuring the gap between the model and its truncated linearizable part. The topic of pure feedback systems is important to the study.
NASA Technical Reports Server (NTRS)
Thompson, P. M.; Stein, G.
1980-01-01
The behavior of the closed loop eigenstructure of a linear system with output feedback is analyzed as a single parameter multiplying the feedback gain is varied. An algorithm is presented that computes the asymptotically infinite eigenstructure, and it is shown how a system with high gain, feedback decouples into single input, single output systems. Then a synthesis algorithm is presented which uses full state feedback to achieve a desired asymptotic eigenstructure.
1978-11-01
R 2. GOVT A $ SION NO. 3 RIEqLPýIVT’S.;TALOG NUMBER r/ 4. TITLE (and wbiFflT, -L M4 1 , FEEDBACK SYSTEM THEORY ~r Inter in- 6. PERFORMING ORG. REPORT...ANNUAL REPORT FEEDBACK SYSTEM THEORY AFOSR GRANT NO. 76-2946B Air Force Office of Scientific Research for year ending October 31, 1978 79 02 08 L|I...re less stringent than in other synthesis techniques which cannot handle significant parameter uncertainty. _I FEEDBACK SYSTEM THEORY 1. Introduction
Improvement of the thermo-mechanical position stability of the beam position monitor in the PLS-II
NASA Astrophysics Data System (ADS)
Ha, Taekyun; Hong, Mansu; Kwon, Hyuckchae; Han, Hongsik; Park, Chongdo
2016-09-01
In the storage ring of the Pohang Light Source-II (PLS-II), we reduced the mechanical displacement of the electron-beam position monitors (e-BPMs) that is caused by heating during e-beam storage. The BPM pickup itself must be kept stable to sub-micrometer precision in order for a stable photon beam to be provided to beamlines because the orbit feedback system is programmed to make the electron beam pass through the center of the BPM. Thermal deformation of the vacuum chambers on which the BPM pickups are mounted is inevitable when the electron beam current is changed by an unintended beam abort. We reduced this deformation by improving the vacuum chamber support and by enhancing the water cooling. We report a thermo-mechanical analysis and displacement measurements for the BPM pickups after improvements.
Development of an advanced combined iodine dispenser/detector. [for spacecraft water supplies
NASA Technical Reports Server (NTRS)
Lantz, J. B.; Jensen, F. C.; Winkler, H. E.; Schubert, F. A.
1977-01-01
Injection of iodine into water is widely used to control microbial growth. An entirely automated device for I2 injection has been developed for spacecraft application. Transfer of I2 into the water from a concentrated form is controlled electrochemically via feedback from an integrated photometric I2 level detector. All components are contained within a package weighing only 1.23 kg (2.7 lb) dry, which occupies only 1213 cu cm (74 cu in) of space, and which has the capacity to iodinate 10,900 kg (24,000 lb) of water of 5 ppm. These features exceed design specifications. The device performed satisfactorily during extended testing at variable water flow rates and temperatures. Designed to meet specifications of the Shuttle Orbiter, the device will find application in the regenerative water systems of advanced spacecraft.
Implementing Audio Digital Feedback Loop Using the National Instruments RIO System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, G.; Byrd, J. M.
2006-11-20
Development of system for high precision RF distribution and laser synchronization at Berkeley Lab has been ongoing for several years. Successful operation of these systems requires multiple audio bandwidth feedback loops running at relatively high gains. Stable operation of the feedback loops requires careful design of the feedback transfer function. To allow for flexible and compact implementation, we have developed digital feedback loops on the National Instruments Reconfigurable Input/Output (RIO) platform. This platform uses an FPGA and multiple I/Os that can provide eight parallel channels running different filters. We present the design and preliminary experimental results of this system.
NASA Technical Reports Server (NTRS)
Cody, E. R.; Deats, C. L.; Derocher, W. L., Jr.; Kyrias, G. M.; Snodgrass, M. R.; Sosnay, R. D.; Spencer, R. A.; Wudell, A. E.
1975-01-01
Orbital maintenance concepts were examined in an effort to determine a cost effective orbital maintenance system compatible with the space transportation system. An on-orbit servicer maintenance system is recommended as the most cost effective system. A pivoting arm on-orbit servicer was selected and a preliminary design was prepared. It is indicated that orbital maintenance does not have any significant impact on the space transportation system.
First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring
NASA Astrophysics Data System (ADS)
Yang, Xi; Tian, Yuke; Yu, Li Hua; Smaluk, Victor
2018-04-01
To realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fast corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.
Clustering in Cell Cycle Dynamics with General Response/Signaling Feedback
Young, Todd R.; Fernandez, Bastien; Buckalew, Richard; Moses, Gregory; Boczko, Erik M.
2011-01-01
Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call Responsive/Signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behaviour of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as “uniform” solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments. PMID:22001733
NASA Astrophysics Data System (ADS)
Wilson, J. Adam; Walton, Léo M.; Tyler, Mitch; Williams, Justin
2012-08-01
This article describes a new method of providing feedback during a brain-computer interface movement task using a non-invasive, high-resolution electrotactile vision substitution system. We compared the accuracy and movement times during a center-out cursor movement task, and found that the task performance with tactile feedback was comparable to visual feedback for 11 participants. These subjects were able to modulate the chosen BCI EEG features during both feedback modalities, indicating that the type of feedback chosen does not matter provided that the task information is clearly conveyed through the chosen medium. In addition, we tested a blind subject with the tactile feedback system, and found that the training time, accuracy, and movement times were indistinguishable from results obtained from subjects using visual feedback. We believe that BCI systems with alternative feedback pathways should be explored, allowing individuals with severe motor disabilities and accompanying reduced visual and sensory capabilities to effectively use a BCI.
Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)
NASA Astrophysics Data System (ADS)
Baldauf, Brian; Conti, Alberto
2016-01-01
The "Search for Life" via imaging of exoplanets is a mission that requires extremely stable telescopes with apertures in the 10 m to 20 m range. The High Definition Space Telescope (HDST) envisioned for this mission would have an aperture >10 m, which is a larger payload than what can be delivered to space using a single launch vehicle. Building and assembling the mirror segments enabling large telescopes will likely require multiple launches and assembly in space. Space-based telescopes with large apertures will require major changes to system architectures.The Optical Telescope Assembly (OTA) for HDST is a primary mission cost driver. Enabling and affordable solutions for this next generation of large aperture space-based telescope are needed.This paper reports on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST), which demonstrates on-orbit robotic and/or astronaut assembly of a precision optical telescope in space. It will also facilitate demonstration of active correction of phase and mirror shape. MODEST is proposed to be delivered to the ISS using standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets. Post-assembly value includes space, ground, and environmental studies, and a testbed for new instruments. This demonstration program for next generation mirror technology provides significant risk reduction and demonstrates the technology in a six-mirror phased telescope. Other key features of the demonstration include the use of an active primary optical surface with wavefront feedback control that allows on-orbit optimization and demonstration of precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. It has been demonstrated that mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making these materials excellent candidates for a low cost, high performance OTA.
Teaching with a Dual-Channel Classroom Feedback System in the Digital Classroom Environment
ERIC Educational Resources Information Center
Yu, Yuan-Chih
2017-01-01
Teaching with a classroom feedback system can benefit both teaching and learning practices of interactivity. In this paper, we propose a dual-channel classroom feedback system integrated with a back-end e-Learning system. The system consists of learning agents running on the students' computers and a teaching agent running on the instructor's…
Servo control booster system for minimizing following error
Wise, William L.
1985-01-01
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
NASA Astrophysics Data System (ADS)
Guangwen, Xu; Xi, Li; Ze, Yao
2018-06-01
To solve the damping problem of water hammer wave in the modeling method of water diversion system of hydropower station, this paper introduces the feedback regulation technology from head to flow, that is: A fixed water head is taken out for flow feedback, and the following conclusions are obtained through modeling and simulation. Adjusting the feedback coefficient F of the water head to the flow rate can change the damping characteristic of the system, which can simulate the attenuation process of the water shock wave in the true water diversion pipeline. Even if a small feedback coefficient is introduced, the damping effect of the system is very obvious, but it has little effect on the amplitude of the first water shock wave after the transition process. Therefore, it is feasible and reasonable to introduce water head to flow rate feedback coefficient F in hydraulic turbine diversion system.
Earth orbit navigation study. Volume 2: System evaluation
NASA Technical Reports Server (NTRS)
1972-01-01
An overall systems evaluation was made of five candidate navigation systems in support of earth orbit missions. The five systems were horizon sensor system, unkown landmark tracking system, ground transponder system, manned space flight network, and tracking and data relay satellite system. Two reference missions were chosen: a low earth orbit mission and a transfer trajectory mission from low earth orbit to geosynchronous orbit. The specific areas addressed in the evaluation were performance, multifunction utilization, system mechanization, and cost.
Toward Harnessing User Feedback For Machine Learning
2006-10-02
machine learning systems. If this resource-the users themselves-could somehow work hand-in-hand with machine learning systems, the accuracy of learning systems could be improved and the users? understanding and trust of the system could improve as well. We conducted a think-aloud study to see how willing users were to provide feedback and to understand what kinds of feedback users could give. Users were shown explanations of machine learning predictions and asked to provide feedback to improve the predictions. We found that users
Paloski, W H; Black, F O; Reschke, M F; Calkins, D S; Shupert, C
1993-01-01
Orbital spaceflight exposes astronauts to an environment in which gravity is reduced to negligible magnitudes of 10(-3) to 10(-6) G. Upon insertion into earth orbit, the abrupt loss of the constant linear acceleration provided by gravity removes the otolith stimulus for vestibular sensation of vertical orientation constantly present on Earth. Since the central nervous system (CNS) assesses spatial orientation by simultaneously interpreting sensory inputs from the vestibular, visual, and proprioceptive systems, loss of the otolith-mediated vertical reference input results in an incorrect estimation of spatial orientation, which, in turn, causes a degradation in movement control. Over time, however, the CNS adapts to the loss of gravitational signals. Upon return to Earth, the vertical reference provided by gravitational stimulation of the otolith organ reappears. As a result, a period of CNS readaptation must occur upon return to terrestrial environment. Among the physiological changes observed during the postflight CNS readaptation period is a disruption of postural equilibrium control. Using a dynamic posturography system (modified NeuroCom EquiTest), 16 astronauts were tested at 60, 30, and 10 days preflight and retested at 1 to 5 hours, and 8 days postflight. All astronauts tested demonstrated decreased postural stability immediately upon return to Earth. The most dramatic increases in postural sway occurred during those sensory conditions in which both the visual and proprioceptive feedback information used for postural control were altered by the dynamic posturography system, requiring reliance primarily upon vestibular function for control of upright stance. Less marked but statistically significant increases in sway were observed under those conditions in which visual and foot support surface inputs alone were altered.(ABSTRACT TRUNCATED AT 250 WORDS)
Linear systems with structure group and their feedback invariants
NASA Technical Reports Server (NTRS)
Martin, C.; Hermann, R.
1977-01-01
A general method described by Hermann and Martin (1976) for the study of the feedback invariants of linear systems is considered. It is shown that this method, which makes use of ideas of topology and algebraic geometry, is very useful in the investigation of feedback problems for which the classical methods are not suitable. The transfer function as a curve in the Grassmanian is examined. The general concepts studied in the context of specific systems and applications are organized in terms of the theory of Lie groups and algebraic geometry. Attention is given to linear systems which have a structure group, linear mechanical systems, and feedback invariants. The investigation shows that Lie group techniques are powerful and useful tools for analysis of the feedback structure of linear systems.
Output transformations and separation results for feedback linearisable delay systems
NASA Astrophysics Data System (ADS)
Cacace, F.; Conte, F.; Germani, A.
2018-04-01
The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.
NASA Astrophysics Data System (ADS)
Qiu, Peng; D'Souza, Warren D.; McAvoy, Thomas J.; Liu, K. J. Ray
2007-09-01
Tumor motion induced by respiration presents a challenge to the reliable delivery of conformal radiation treatments. Real-time motion compensation represents the technologically most challenging clinical solution but has the potential to overcome the limitations of existing methods. The performance of a real-time couch-based motion compensation system is mainly dependent on two aspects: the ability to infer the internal anatomical position and the performance of the feedback control system. In this paper, we propose two novel methods for the two aspects respectively, and then combine the proposed methods into one system. To accurately estimate the internal tumor position, we present partial-least squares (PLS) regression to predict the position of the diaphragm using skin-based motion surrogates. Four radio-opaque markers were placed on the abdomen of patients who underwent fluoroscopic imaging of the diaphragm. The coordinates of the markers served as input variables and the position of the diaphragm served as the output variable. PLS resulted in lower prediction errors compared with standard multiple linear regression (MLR). The performance of the feedback control system depends on the system dynamics and dead time (delay between the initiation and execution of the control action). While the dynamics of the system can be inverted in a feedback control system, the dead time cannot be inverted. To overcome the dead time of the system, we propose a predictive feedback control system by incorporating forward prediction using least-mean-square (LMS) and recursive least square (RLS) filtering into the couch-based control system. Motion data were obtained using a skin-based marker. The proposed predictive feedback control system was benchmarked against pure feedback control (no forward prediction) and resulted in a significant performance gain. Finally, we combined the PLS inference model and the predictive feedback control to evaluate the overall performance of the feedback control system. Our results show that, with the tumor motion unknown but inferred by skin-based markers through the PLS model, the predictive feedback control system was able to effectively compensate intra-fraction motion.
Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Nahavandi, Saeid; Smith, Julian
2014-06-01
Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems. The proposed methods and studies have some shortcomings. The main focus of this research is to overcome some of these limitations and to study the effects of force feedback in palpation in a more realistic fashion. A parallel robot assisted minimally invasive surgery system (PRAMiSS) with force feedback capabilities was employed to study the effects of realistic force feedback in palpation of artificial tissue samples. PRAMiSS is capable of actually measuring the tip/tissue interaction forces directly from the surgery site. Four sets of experiments using only vision feedback, only force feedback, simultaneous force and vision feedback and direct manipulation were conducted to evaluate the role of sensory feedback from sideways tip/tissue interaction forces with a scale factor of 100% in characterising tissues of varying stiffness. Twenty human subjects were involved in the experiments for at least 1440 trials. Friedman and Wilcoxon signed-rank tests were employed to statistically analyse the experimental results. Providing realistic force feedback in robotic assisted surgery systems improves the quality of tissue characterization procedures. Force feedback capability also increases the certainty of characterizing soft tissues compared with direct palpation using the lateral sides of index fingers. The force feedback capability can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations.
NASA Astrophysics Data System (ADS)
Huybers, P. J.
2016-12-01
The coupled variations in ice volume, temperature, and atmospheric CO2 during the late Pleistocene are most often represented as involving some combination of orbital forcing, ice dynamics, and ocean circulation. Also previously argued is that changes in glaciation influence atmospheric CO2 concentrations through modifying subaerial volcanic eruptions and CO2 emissions. Building on recent evidence that ocean ridge volcanism responds to changes in sea level, a conceptual model is presented wherein ocean ridges play an important role in generating late-Pleistocene 100 ky glacial cycles on account of an inherent delay in their feedback response. If all volcanic CO2 emissions responded immediately to changes in pressure, subaerial and ocean-ridge volcanic emissions anomalies would merely oppose one another. At ocean ridges, however, the egress of CO2 from the mantle is delayed by tens-of-thousands of years, or longer, owing to ascent time. The simple model involves temperature, ice, and CO2 and is shown to oscillates at 100 ky time scales when incorporating a delayed CO2 contribution from ocean ridge volcanism, even if the feedback accounts for only a small fraction of total changes in CO2. Features of the model that are consistent with observations include that it readily become phase-locked with insolation forcing associated with changes in Earth's orbit, and that temperature variations lead changes in CO2 by several centuries during deglaciation. Under certain parameterizations, a transition from 41 ky to larger 100 ky oscillations occurs during the middle Pleistocene in response to modulations in orbital forcing. This novel description of Pleistocene glaciation should be testable through ongoing advances in understanding the circulation of carbon through the solid earth.
A robotic orbital emulator with lidar-based SLAM and AMCL for multiple entity pose estimation
NASA Astrophysics Data System (ADS)
Shen, Dan; Xiang, Xingyu; Jia, Bin; Wang, Zhonghai; Chen, Genshe; Blasch, Erik; Pham, Khanh
2018-05-01
This paper revises and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motions. The 3D motion of satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motorcontrolled- ball along a rod (robotic arm), which is attached to the robot. Lidar only measurements are used to estimate the pose information of the multiple robots. SLAM (simultaneous localization and mapping) is running on one robot to generate the map and compute the pose for the robot. Based on the SLAM map maintained by the robot, the other robots run the adaptive Monte Carlo localization (AMCL) method to estimate their poses. The controller is designed to guide the robot to follow a given orbit. The controllability is analyzed by using a feedback linearization method. Experiments are conducted to show the convergence of AMCL and the orbit tracking performance.
Reflector control technology in space laser communication
NASA Astrophysics Data System (ADS)
Xie, Meilin; Ma, Caiwen; Yao, Cheng; Huang, Wei; Lian, Xuezheng; Feng, Xubin; Jing, Feng
2017-11-01
The optical frequencies band is used as information carrier to realize laser communication between two low-orbit micro-satellites in space which equipped with inter-satellite laser communication terminals, optical switches, space routers and other payload. The laser communication terminal adopts a two-dimensional turntable with a single mirror structure. In this paper, the perturbation model of satellite platform is established in this paper. The relationship between the coupling and coordinate transformation of satellite disturbance is analyzed and the laser pointing vector is deduced. Using the tracking differentiator to speed up the circular grating angle information constitute speed loop feedback, which avoids the problem of error amplification caused by the high frequency of the conventional difference algorithm. Finally, the suppression ability of the satellite platform disturbance and the tracking accuracy of the tracking system are simulated and analyzed. The results show that the tracking accuracy of the whole system is 10μrad in the case of satellite vibration, which provides the basis for the optimization of the performance of the space-borne laser communication control system.
Accelerator diagnosis and control by Neural Nets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J.E.
1989-01-01
Neural Nets (NN) have been described as a solution looking for a problem. In the last conference, Artificial Intelligence (AI) was considered in the accelerator context. While good for local surveillance and control, its use for large complex systems (LCS) was much more restricted. By contrast, NN provide a good metaphor for LCS. It can be argued that they are logically equivalent to multi-loop feedback/forward control of faulty systems, and therefore provide an ideal adaptive control system. Thus, where AI may be good for maintaining a 'golden orbit,' NN should be good for obtaining it via a quantitative approach tomore » 'look and adjust' methods like operator tweaking which use pattern recognition to deal with hardware and software limitations, inaccuracies or errors as well as imprecise knowledge or understanding of effects like annealing and hysteresis. Further, insights from NN allow one to define feasibility conditions for LCS in terms of design constraints and tolerances. Hardware and software implications are discussed and several LCS of current interest are compared and contrasted. 15 refs., 5 figs.« less
Performance Test of the Next Generation X-Ray Beam Position Monitor System for The APS Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, B.; Lee, S.; Westferro, F.
The Advanced Photon Source is developing its next major upgrade (APS-U) based on the multi-bend achromat lattice. Improved beam stability is critical for the upgrade and will require keeping short-time beam angle change below 0.25 µrad and long-term angle drift below 0.6 µrad. A reliable white x-ray beam diagnostic system in the front end will be a key part of the planned beam stabilization system. This system includes an x-ray beam position monitor (XBPM) based on x-ray fluorescence (XRF) from two specially designed GlidCop A-15 absorbers, a second XBPM using XRF photons from the Exit Mask, and two white beammore » intensity monitors using XRF from the photon shutter and Compton-scattered photons from the front end beryllium window or a retractable diamond film in windowless front ends. We present orbit stability data for the first XBPM used in the feedback control during user operations, as well as test data from the second XBPM and the intensity monitors. They demonstrate that the XBPM system meets APS-U beam stability requirements.« less
A Measurement Feedback System (MFS) Is Necessary to Improve Mental Health Outcomes
ERIC Educational Resources Information Center
Bickman, Leonard
2008-01-01
The importance of measurement feedback system (MFS) for the improvement of mental health services for youths is discussed. As feedback obtained from clients and families is subject to distortions, a standardized MFS including clinical processes, contexts, outcomes, and feedback to clinicians and supervisors is necessary for improvement in quality…
Direct laser additive fabrication system with image feedback control
Griffith, Michelle L.; Hofmeister, William H.; Knorovsky, Gerald A.; MacCallum, Danny O.; Schlienger, M. Eric; Smugeresky, John E.
2002-01-01
A closed-loop, feedback-controlled direct laser fabrication system is disclosed. The feedback refers to the actual growth conditions obtained by real-time analysis of thermal radiation images. The resulting system can fabricate components with severalfold improvement in dimensional tolerances and surface finish.
A better understanding of ambulance personnel's attitude towards real-time resuscitation feedback.
Brinkrolf, Peter; Lukas, Roman; Harding, Ulf; Thies, Sebastian; Gerss, Joachim; Van Aken, Hugo; Lemke, Hans; Schniedermeier, Udo; Bohn, Andreas
2018-03-01
High-quality chest compressions during cardiopulmonary resuscitation (CPR) play a significant role in surviving cardiac arrest. Chest-compression quality can be measured and corrected by real-time CPR feedback devices, which are not yet commonly used. This article looks at the acceptance of such systems in comparison of equipped and unequipped personnel. Two groups of emergency medical services' (EMS) personnel were interviewed using standardized questionnaires. The survey was conducted in the German cities Dortmund and Münster. Overall, 205 persons participated in the survey: 103 paramedics and emergency physicians from the Dortmund fire service and 102 personnel from the Münster service. The staff of the Dortmund service were not equipped with real-time feedback systems. The test group of equipped personnel of the ambulance service of Münster Fire brigade uses real-time feedback systems since 2007. What is the acceptance level of real-time feedback systems? Are there differences between equipped and unequipped personnel? The total sample is receptive towards real-time feedback systems. More than 80% deem the system useful. However, this study revealed concerns and prejudices by unequipped personnel. Negative ratings are significantly lower at the Münster site that is experienced with the use of the real-time feedback system in contrast to the Dortmund site where no such experience exists-the system's use in daily routine results in better evaluation than the expectations of unequipped personnel. Real-time feedback systems receive overall positive ratings. Prejudices and concerns seem to decrease with continued use of the system.
Landis-Lewis, Zach; Brehaut, Jamie C; Hochheiser, Harry; Douglas, Gerald P; Jacobson, Rebecca S
2015-01-21
Evidence shows that clinical audit and feedback can significantly improve compliance with desired practice, but it is unclear when and how it is effective. Audit and feedback is likely to be more effective when feedback messages can influence barriers to behavior change, but barriers to change differ across individual health-care providers, stemming from differences in providers' individual characteristics. The purpose of this article is to invite debate and direct research attention towards a novel audit and feedback component that could enable interventions to adapt to barriers to behavior change for individual health-care providers: computer-supported tailoring of feedback messages. We argue that, by leveraging available clinical data, theory-informed knowledge about behavior change, and the knowledge of clinical supervisors or peers who deliver feedback messages, a software application that supports feedback message tailoring could improve feedback message relevance for barriers to behavior change, thereby increasing the effectiveness of audit and feedback interventions. We describe a prototype system that supports the provision of tailored feedback messages by generating a menu of graphical and textual messages with associated descriptions of targeted barriers to behavior change. Supervisors could use the menu to select messages based on their awareness of each feedback recipient's specific barriers to behavior change. We anticipate that such a system, if designed appropriately, could guide supervisors towards giving more effective feedback for health-care providers. A foundation of evidence and knowledge in related health research domains supports the development of feedback message tailoring systems for clinical audit and feedback. Creating and evaluating computer-supported feedback tailoring tools is a promising approach to improving the effectiveness of clinical audit and feedback.
Lehrer, Nicole; Chen, Yinpeng; Duff, Margaret; L Wolf, Steven; Rikakis, Thanassis
2011-09-08
Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time.
2011-01-01
Background Few existing interactive rehabilitation systems can effectively communicate multiple aspects of movement performance simultaneously, in a manner that appropriately adapts across various training scenarios. In order to address the need for such systems within stroke rehabilitation training, a unified approach for designing interactive systems for upper limb rehabilitation of stroke survivors has been developed and applied for the implementation of an Adaptive Mixed Reality Rehabilitation (AMRR) System. Results The AMRR system provides computational evaluation and multimedia feedback for the upper limb rehabilitation of stroke survivors. A participant's movements are tracked by motion capture technology and evaluated by computational means. The resulting data are used to generate interactive media-based feedback that communicates to the participant detailed, intuitive evaluations of his performance. This article describes how the AMRR system's interactive feedback is designed to address specific movement challenges faced by stroke survivors. Multimedia examples are provided to illustrate each feedback component. Supportive data are provided for three participants of varying impairment levels to demonstrate the system's ability to train both targeted and integrated aspects of movement. Conclusions The AMRR system supports training of multiple movement aspects together or in isolation, within adaptable sequences, through cohesive feedback that is based on formalized compositional design principles. From preliminary analysis of the data, we infer that the system's ability to train multiple foci together or in isolation in adaptable sequences, utilizing appropriately designed feedback, can lead to functional improvement. The evaluation and feedback frameworks established within the AMRR system will be applied to the development of a novel home-based system to provide an engaging yet low-cost extension of training for longer periods of time. PMID:21899779
ERIC Educational Resources Information Center
Pritchard, Robert D.; And Others
This manual is intended to assist operational managers in using feedback, goal-setting, and incentive systems. The first section presents background information on feedback, goal-setting, and incentive systems and on measuring productivity. It includes formal definitions of each system, examines the logic of why each system works, compares the…
Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac
NASA Astrophysics Data System (ADS)
Eliasson, Peder
2008-05-01
The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Finally, it is shown how the method can be used to design a feedback system that is optimized for the optics of the machine and the ground motion spectrum of the particular site. This feedback system gives an emittance growth rate that is approximately 10 times lower than that of traditional trajectory feedbacks. The robustness of the optimized feedback system is studied for a number of additional imperfections, e.g., dipole corrector imperfections and faulty knowledge about the machine optics, with promising results.
Common Neural Mechanisms Underlying Reversal Learning by Reward and Punishment
Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen
2013-01-01
Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations. PMID:24349211
Common neural mechanisms underlying reversal learning by reward and punishment.
Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen
2013-01-01
Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.
Designing Crowdcritique Systems for Formative Feedback
ERIC Educational Resources Information Center
Easterday, Matthew W.; Rees Lewis, Daniel; Gerber, Elizabeth M.
2017-01-01
Intelligent tutors based on expert systems often struggle to provide formative feedback on complex, ill-defined problems where answers are unknown. Hybrid crowdsourcing systems that combine the intelligence of multiple novices in face-to-face settings might provide an alternate approach for providing intelligent formative feedback. The purpose of…
Cloud Feedbacks in the Climate System: A Critical Review.
NASA Astrophysics Data System (ADS)
Stephens, Graeme L.
2005-01-01
This paper offers a critical review of the topic of cloud-climate feedbacks and exposes some of the underlying reasons for the inherent lack of understanding of these feedbacks and why progress might be expected on this important climate problem in the coming decade. Although many processes and related parameters come under the influence of clouds, it is argued that atmospheric processes fundamentally govern the cloud feedbacks via the relationship between the atmospheric circulations, cloudiness, and the radiative and latent heating of the atmosphere. It is also shown how perturbations to the atmospheric radiation budget that are induced by cloud changes in response to climate forcing dictate the eventual response of the global-mean hydrological cycle of the climate model to climate forcing. This suggests that cloud feedbacks are likely to control the bulk precipitation efficiency and associated responses of the planet's hydrological cycle to climate radiative forcings.The paper provides a brief overview of the effects of clouds on the radiation budget of the earth-atmosphere system and a review of cloud feedbacks as they have been defined in simple systems, one being a system in radiative-convective equilibrium (RCE) and others relating to simple feedback ideas that regulate tropical SSTs. The systems perspective is reviewed as it has served as the basis for most feedback analyses. What emerges is the importance of being clear about the definition of the system. It is shown how different assumptions about the system produce very different conclusions about the magnitude and sign of feedbacks. Much more diligence is called for in terms of defining the system and justifying assumptions. In principle, there is also neither any theoretical basis to justify the system that defines feedbacks in terms of global-time-mean changes in surface temperature nor is there any compelling empirical evidence to do so. The lack of maturity of feedback analysis methods also suggests that progress in understanding climate feedback will require development of alternative methods of analysis.It has been argued that, in view of the complex nature of the climate system, and the cumbersome problems encountered in diagnosing feedbacks, understanding cloud feedback will be gleaned neither from observations nor proved from simple theoretical argument alone. The blueprint for progress must follow a more arduous path that requires a carefully orchestrated and systematic combination of model and observations. Models provide the tool for diagnosing processes and quantifying feedbacks while observations provide the essential test of the model's credibility in representing these processes. While GCM climate and NWP models represent the most complete description of all the interactions between the processes that presumably establish the main cloud feedbacks, the weak link in the use of these models lies in the cloud parameterization imbedded in them. Aspects of these parameterizations remain worrisome, containing levels of empiricism and assumptions that are hard to evaluate with current global observations. Clearly observationally based methods for evaluating cloud parameterizations are an important element in the road map to progress.Although progress in understanding the cloud feedback problem has been slow and confused by past analysis, there are legitimate reasons outlined in the paper that give hope for real progress in the future.
Implementing a Measurement Feedback System: A Tale of Two Sites
Douglas, Susan R.; Vides De Andrade, Ana Regina; Tomlinson, Michele; Gleacher, Alissa; Olin, Serene; Hoagwood, Kimberly
2015-01-01
A randomized experiment was conducted in two outpatient clinics evaluating a measurement feedback system called contextualized feedback systems. The clinicians of 257 Youth 11–18 received feedback on progress in mental health symptoms and functioning either every 6 months or as soon as the youth’s, clinician’s or caregiver’s data were entered into the system. The ITT analysis showed that only one of the two participating clinics (Clinic R) had an enhanced outcome because of feedback, and only for the clinicians’ ratings of youth symptom severity on the SFSS. A dose–response effect was found only for Clinic R for both the client and clinician ratings. Implementation analyses showed that Clinic R had better implementation of the feedback intervention. Clinicians’ questionnaire completion rate and feedback viewing at Clinic R were 50 % higher than clinicians at Clinic U. The discussion focused on the differences in implementation at each site and how these differences may have contributed to the different outcomes of the experiment. PMID:25876736
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is lowered toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is maneuvered toward the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
Brain-computer interface: changes in performance using virtual reality techniques.
Ron-Angevin, Ricardo; Díaz-Estrella, Antonio
2009-01-09
The ability to control electroencephalographic (EEG) signals when different mental tasks are carried out would provide a method of communication for people with serious motor function problems. This system is known as a brain-computer interface (BCI). Due to the difficulty of controlling one's own EEG signals, a suitable training protocol is required to motivate subjects, as it is necessary to provide some type of visual feedback allowing subjects to see their progress. Conventional systems of feedback are based on simple visual presentations, such as a horizontal bar extension. However, virtual reality is a powerful tool with graphical possibilities to improve BCI-feedback presentation. The objective of the study is to explore the advantages of the use of feedback based on virtual reality techniques compared to conventional systems of feedback. Sixteen untrained subjects, divided into two groups, participated in the experiment. A group of subjects was trained using a BCI system, which uses conventional feedback (bar extension), and another group was trained using a BCI system, which submits subjects to a more familiar environment, such as controlling a car to avoid obstacles. The obtained results suggest that EEG behaviour can be modified via feedback presentation. Significant differences in classification error rates between both interfaces were obtained during the feedback period, confirming that an interface based on virtual reality techniques can improve the feedback control, specifically for untrained subjects.
Lin, Tzu-Yung; Green, Roger J.; O’Connor, Peter B.
2012-01-01
A novel single-transistor transimpedance preamplifier has been introduced for improving performance in Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry. A low noise junction field-effect transistor (JFET), BF862, is used as the main amplification stage of this trans-impedance preamplifier, and a T-shaped feedback network is introduced as both the feedback and the gate biasing solutions. The T feedback network has been studied using an operational amplifier (Op Amp), AD8099. Such a feedback system allows ∼100-fold less feedback resistance at a given transimpedance, hence preserving bandwidth, which is beneficial to applications demanding high gain. The single-transistor preamplifier yields a tested transimpedance of ∼104 Ω (80 dBΩ) in the frequency range between 1 kHz and 1 MHz (mass-to-charge ratio, m/z, of around 180-180k for a 12-T FT-ICR system), with a low power consumption of ∼6 mW, which implies that this preamplifier is well suited to a 12-T FT-ICR mass spectrometer. In trading noise performance for higher trans-impedance, an alternative preamplifier design, an AD8099 preamplifier with the T feedback network, has also been studied with a capability of ∼106 Ω (120 dBΩ) transimpedance in the same frequency range. The resistive components in the T feedback network reported here can be replaced by complex impedances, which allows adaptation of this feedback system to other frequency, transimpedance, and noise characteristics for applications not only in other mass spectrometers, such as Orbitrap, time-of-flight (TOF), and ion trap systems, but also in other charge/current detecting systems such as spectroscopy systems, microscopy systems, optical communication systems, or charge-coupled devices (CCDs). PMID:23020394
Lin, Tzu-Yung; Green, Roger J; O'Connor, Peter B
2012-09-01
A novel single-transistor transimpedance preamplifier has been introduced for improving performance in Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry. A low noise junction field-effect transistor (JFET), BF862, is used as the main amplification stage of this trans-impedance preamplifier, and a T-shaped feedback network is introduced as both the feedback and the gate biasing solutions. The T feedback network has been studied using an operational amplifier (Op Amp), AD8099. Such a feedback system allows ~100-fold less feedback resistance at a given transimpedance, hence preserving bandwidth, which is beneficial to applications demanding high gain. The single-transistor preamplifier yields a tested transimpedance of ~10(4) Ω (80 dBΩ) in the frequency range between 1 kHz and 1 MHz (mass-to-charge ratio, m/z, of around 180-180k for a 12-T FT-ICR system), with a low power consumption of ~6 mW, which implies that this preamplifier is well suited to a 12-T FT-ICR mass spectrometer. In trading noise performance for higher trans-impedance, an alternative preamplifier design, an AD8099 preamplifier with the T feedback network, has also been studied with a capability of ~10(6) Ω (120 dBΩ) transimpedance in the same frequency range. The resistive components in the T feedback network reported here can be replaced by complex impedances, which allows adaptation of this feedback system to other frequency, transimpedance, and noise characteristics for applications not only in other mass spectrometers, such as Orbitrap, time-of-flight (TOF), and ion trap systems, but also in other charge/current detecting systems such as spectroscopy systems, microscopy systems, optical communication systems, or charge-coupled devices (CCDs).
Drag-Free Control and Drag Force Recovery of Small Satellites
NASA Technical Reports Server (NTRS)
Nguyen, Anh N.; Conklin, John W.
2017-01-01
Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag-free control systems for passive satellites. In both cases, the test mass position, GPS tracking data, and commanded actuation, either thrust or suspension system, can be analyzed to estimate the 3-axis drag forces acting on the satellite. The data produces the most precise maps of upper atmospheric drag forces and with additional information, detailed models that describe the dynamics of the upper atmosphere and its impact on all satellites that orbit the Earth. This paper highlights the history, applications, design, laboratory technology development and highly detailed simulation results of each control system.
NASA Technical Reports Server (NTRS)
Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer
2011-01-01
Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed.
NASA Technical Reports Server (NTRS)
1973-01-01
Parametric studies and subsystem comparisons for the orbital radar mapping mission to planet Venus are presented. Launch vehicle requirements and primary orbiter propulsion system requirements are evaluated. The systems parametric analysis indicated that orbit size and orientation interrelated with almost all of the principal spacecraft systems and influenced significantly the definition of orbit insertion propulsion requirements, weight in orbit capability, radar system design, and mapping strategy.
NASA Astrophysics Data System (ADS)
Siscoe, G. L.
2012-12-01
What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.
The Effect of Computerized System Feedback Availability during Executive Function Training
ERIC Educational Resources Information Center
Yuviler-Gavish, Nirit; Krisher, Hagit
2016-01-01
Computerized training systems offer a promising new direction in the training of executive functions, in part because they can easily be designed to offer feedback to learners. Yet, feedback is a double-edged sword, serving a positive motivational role while at the same time carrying the risk that learners may become dependent on the feedback they…
ERIC Educational Resources Information Center
Nguyen, Huy; Xiong, Wenting; Litman, Diane
2017-01-01
A peer-review system that automatically evaluates and provides formative feedback on free-text feedback comments of students was iteratively designed and evaluated in college and high-school classrooms. Classroom assignments required students to write paper drafts and submit them to a peer-review system. When student peers later submitted feedback…
Feedback Systems for Use with Paper-Based Instructional Products.
ERIC Educational Resources Information Center
Strandberg, Joel E.
This survey describes 15 systems that provide feedback to students. Feedback is defined as information transfer from the instructional material to the student after a response is made by the student. The feedback is directed primarily to the student, but when a permanent record of the response occurs this information is also available to the…
The effects of driver identity on driving safety in a retrospective feedback system.
Zhao, Guozhen; Wu, Changxu
2012-03-01
Retrospective feedback that provides detailed information on a driver's performance in critical driving situations at the end of a trip enhances his/her driving behaviors and safe driving habits. Although this has been demonstrated by a previous study, retrospective feedback can be further improved and applied to non-critical driving situations, which is needed for transportation safety. To propose a new retrospective feedback system that uses driver identity (i.e., a driver's name) and to experimentally study its effects on measures of driving performance and safety in a driving simulator. We conducted a behavioral experimental study with 30 participants. "Feedback type" was a between-subject variable with three conditions: no feedback (control group), feedback without driver identity, and feedback with driver identity. We measured multiple aspects of participants' driving behavior. To control for potential confounds, factors that were significantly correlated with driving behavior (e.g., age and driving experience) were all entered as covariates into a multivariate analysis of variance. To examine the effects of speeding on collision severity in driving simulation studies, we also developed a new index - momentum of potential collision - with a set of equations. Subjects who used a feedback system with driver identity had the fewest speeding violations and central-line crossings, spent the least amount of time speeding and crossing the central line, had the lowest speeding and central-line crossing magnitude, ran the fewest red lights, and had the smallest momentum of potential collision compared to the groups with feedback without driver identity and without feedback (control group). The new retrospective feedback system with driver identity has the potential to enhance a person's driving safety (e.g., speeding, central-line crossing, momentum of potential collision), which is an indication of the valence of one's name in a feedback system design. Copyright © 2011 Elsevier Ltd. All rights reserved.
Anti-sway control of tethered satellite systems using attitude control of the main satellite
NASA Astrophysics Data System (ADS)
Yousefian, Peyman; Salarieh, Hassan
2015-06-01
In this study a new method is introduced to suppress libration of a tethered satellite system (TSS). It benefits from coupling between satellites and tether libration dynamics. The control concept uses the main satellite attitude maneuvers to suppress librational motion of the tether, and the main satellite's actuators for attitude control are used as the only actuation in the system. The study considers planar motion of a two body TSS system in a circular orbit and it is assumed that the tether's motion will not change it. Governing dynamic equations of motion are derived using the extended Lagrange method. Controllability of the system around the equilibrium state is studied and a linear LQG controller is designed to regulate libration of the system. Tether tension and satellite attitude are assumed as only measurable outputs of the system. The Extended Kalman Filter (EKF) is used to estimate states of the system to be used as feedback to the controller. The designed controller and observer are implemented to the nonlinear plant and simulations demonstrate that the controller lead to reduction of the tether libration propoerly. By the way, because the controller is linear, it is applicable only at low amplitudes in the vicinity of equilibrium point. To reach global stability, a nonlinear controller is demanded.
Feedback from incident reporting: information and action to improve patient safety.
Benn, J; Koutantji, M; Wallace, L; Spurgeon, P; Rejman, M; Healey, A; Vincent, C
2009-02-01
Effective feedback from incident reporting systems in healthcare is essential if organisations are to learn from failures in the delivery of care. Despite the wide-scale development and implementation of incident reporting in healthcare, studies in the UK suggest that information concerning system vulnerabilities could be better applied to improve operational safety within organisations. In this article, the findings and implications of research to identify forms of effective feedback from incident reporting are discussed, to promote best practices in this area. The research comprised a mixed methods review to investigate mechanisms of effective feedback for healthcare, drawing upon experience within established reporting programmes in high-risk industry and transport domains. Systematic searches of published literature were undertaken, and 23 case studies describing incident reporting programmes with feedback were identified for analysis from the international healthcare literature. Semistructured interviews were undertaken with 19 subject matter experts across a range of domains, including: civil aviation, maritime, energy, rail, offshore production and healthcare. In analysis, qualitative information from several sources was synthesised into practical requirements for developing effective feedback in healthcare. Both action and information feedback mechanisms were identified, serving safety awareness, improvement and motivational functions. The provision of actionable feedback that visibly improved systems was highlighted as important in promoting future reporting. Fifteen requirements for the design of effective feedback systems were identified, concerning: the role of leadership, the credibility and content of information, effective dissemination channels, the capacity for rapid action and the need for feedback at all levels of the organisation, among others. Above all, the safety-feedback cycle must be closed by ensuring that reporting, analysis and investigation result in timely corrective actions that effectively address vulnerabilities in existing work systems. Limited research evidence exists concerning the issue of effective forms of safety feedback within healthcare. Much valuable operational knowledge resides in safety management communities within high-risk industries. Multiple means of feeding back recommended actions and safety information may be usefully employed to promote safety awareness, improve clinical processes and promote future reporting. Further work is needed to establish best practices for feedback systems in healthcare that effectively close the safety loop.
Fast and precise technique for magnet lattice correction via sine-wave excitation of fast correctors
Yang, X.; Smaluk, V.; Yu, L. H.; ...
2017-05-02
A novel technique has been developed to improve the precision and shorten the measurement time of the LOCO (linear optics from closed orbits) method. This technique, named AC LOCO, is based on sine-wave (ac) beam excitation via fast correctors. Such fast correctors are typically installed at synchrotron light sources for the fast orbit feedback. The beam oscillations are measured by beam position monitors. The narrow band used for the beam excitation and measurement not only allows us to suppress effectively the beam position noise but also opens the opportunity for simultaneously exciting multiple correctors at different frequencies (multifrequency mode). Wemore » demonstrated at NSLS-II that AC LOCO provides better lattice corrections and works much faster than the traditional LOCO method.« less
Code of Federal Regulations, 2012 CFR
2012-10-01
... Milestones. (a) Licensees of geostationary orbit satellite systems other than DBS and DARS satellite systems.... (b) Licensees of non-geostationary orbit satellite systems other than DBS and DARS satellite systems... both non-geostationary orbit satellites and geostationary orbit satellites, other than DBS and DARS...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Milestones. (a) Licensees of geostationary orbit satellite systems other than DBS and DARS satellite systems.... (b) Licensees of non-geostationary orbit satellite systems other than DBS and DARS satellite systems... both non-geostationary orbit satellites and geostationary orbit satellites, other than DBS and DARS...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Milestones. (a) Licensees of geostationary orbit satellite systems other than DBS and DARS satellite systems.... (b) Licensees of non-geostationary orbit satellite systems other than DBS and DARS satellite systems... both non-geostationary orbit satellites and geostationary orbit satellites, other than DBS and DARS...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Milestones. (a) Licensees of geostationary orbit satellite systems other than DBS and DARS satellite systems.... (b) Licensees of non-geostationary orbit satellite systems other than DBS and DARS satellite systems... both non-geostationary orbit satellites and geostationary orbit satellites, other than DBS and DARS...
Lucock, Mike; Halstead, Jeremy; Leach, Chris; Barkham, Michael; Tucker, Samantha; Randal, Chloe; Middleton, Joanne; Khan, Wajid; Catlow, Hannah; Waters, Emma; Saxon, David
2015-01-01
Abstract Objective: To investigate the barriers and facilitators of an effective implementation of an outcome monitoring and feedback system in a UK National Health Service psychological therapy service. Method: An outcome monitoring system was introduced in two services. Enhanced feedback was given to therapists after session 4. Qualitative and quantitative methods were used, including questionnaires for therapists and patients. Thematic analysis was carried out on written and verbal feedback from therapists. Analysis of patient outcomes for 202 episodes of therapy was compared with benchmark data of 136 episodes of therapy for which feedback was not given to therapists. Results: Themes influencing the feasibility and acceptability of the feedback system were the extent to which therapists integrated the measures and feedback into the therapy, availability of administrative support, information technology, and complexity of the service. There were low levels of therapist actions resulting from the feedback, including discussing the feedback in supervision and with patients. Conclusions: The findings support the feasibility and acceptability of setting up a routine system in a complex service, but a number of challenges and barriers have to be overcome and therapist differences are apparent. More research on implementation and effectiveness is needed in diverse clinical settings. PMID:26436605
Effect of biased feedback on motor imagery learning in BCI-teleoperation system.
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2014-01-01
Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users' BCI performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects' performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects' BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects' online performance, evaluation of brain activity patterns revealed that subjects' self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects' motor imagery skills.
Servo control booster system for minimizing following error
Wise, W.L.
1979-07-26
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Push-Pull and Feedback Mechanisms Can Align Signaling System Outputs with Inputs.
Andrews, Steven S; Peria, William J; Yu, Richard C; Colman-Lerner, Alejandro; Brent, Roger
2016-11-23
Many cell signaling systems, including the yeast pheromone response system, exhibit "dose-response alignment" (DoRA), in which output of one or more downstream steps closely matches the fraction of occupied receptors. DoRA can improve the fidelity of transmitted dose information. Here, we searched systematically for biochemical network topologies that produced DoRA. Most networks, including many containing feedback and feedforward loops, could not produce DoRA. However, networks including "push-pull" mechanisms, in which the active form of a signaling species stimulates downstream activity and the nominally inactive form reduces downstream activity, enabled perfect DoRA. Networks containing feedbacks enabled DoRA, but only if they also compared feedback to input and adjusted output to match. Our results establish push-pull as a non-feedback mechanism to align output with variable input and maximize information transfer in signaling systems. They also suggest genetic approaches to determine whether particular signaling systems use feedback or push-pull control. Copyright © 2016 Elsevier Inc. All rights reserved.
Smartphones, Smart Feedback: Using Mobile Devices to Collect In-the-Moment Feedback.
Havel, Lauren Koehler; Powell, Samantha D; Cabaniss, Deborah L; Arbuckle, Melissa R
2017-02-01
The goal of this study was to streamline the collection of resident feedback in order to support faculty development and program improvement in psychiatry training. The authors developed and implemented a brief, free, mobile survey to track resident feedback and class attendance. Prior to instituting this system, resident feedback was obtained semi-annually for each course (n = 90) and not each individual class. In comparison, this new system allowed the authors to collect feedback on 477 of the 519 classes held over the 2014-15 academic year (92 %). Written comments about the curriculum increased over tenfold from 42 in 2013-14 to 541 during a comparative time period in 2014-15. One year after instituting this new system, resident participation increased to 81 % on average (compared to 64 % previously). Mobile devices may provide an inexpensive and relatively untapped mechanism for improving the process of collecting resident feedback and tracking class attendance.
NASA Astrophysics Data System (ADS)
Tian, Li-Jun; Huang, Hai-Jun; Liu, Tian-Liang
2009-07-01
We investigate the effects of four different information feedback strategies on the dynamics of traffic, travelers' route choice and the resultant system performance in a signal controlled network with overlapped routes. Simulation results given by the cellular automaton model show that the system purpose-based mean velocity feedback strategy and the congestion coefficient feedback strategy have more advantages in improving network utilization efficiency and reducing travelers' travel times. The travel time feedback strategy and the individual purposed-based mean velocity feedback strategy behave slightly better to ensure user equity.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (seen from the back) is lifted off its transporter. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers stand by as the left-hand Orbital Maneuvering System (OMS) pod is maneuvered toward the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod is lifted at an angle from the transporter below. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (top of photo) is poised behind the engine interfaces on the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers on an upper level watch as the left-hand Orbital Maneuvering System (OMS) pod is lifted high to maneuver it toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers check the lifting of the left-hand Orbital Maneuvering System (OMS) pod. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the left-hand Orbital Maneuvering System (OMS) pod (seen from the front) is lifted off its transporter. The OMS pod will be installed on the orbiter Discovery. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
2004-04-21
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a worker on an upper level watches as the left-hand Orbital Maneuvering System (OMS) pod is lifted high to maneuver it toward the orbiter Discovery for installation. The Orbital Maneuvering System provides the thrust for orbit insertion, orbit circularization, orbit transfer, rendezvous, deorbit, abort to orbit and abort once around. It can provide up to 1,000 pounds of propellant to the aft reaction control system. Each pod contains one OMS engine and the hardware needed to pressurize, store and distribute the propellants to perform the velocity maneuvers.
ERIC Educational Resources Information Center
Wang, Tzu-Hua; Wang, Wei-Lung; Wang, Kuo-Hua; Huang, Shih-Chieh
The study attempted to adapt two web tools, FFS system (Frontpage Feedback System) and WATA system (Web-based Assessment and Test Analysis System), to construct a Hi-FAME (High Feedback-Assessment-Multimedia-Environment) Model in WBI (Web-based Instruction) to facilitate pre-service teacher training. Participants were 30 junior pre-service…
Effects of empathic social responses on the emotions of the recipient.
Seehausen, Maria; Kazzer, Philipp; Bajbouj, Malek; Heekeren, Hauke R; Jacobs, Arthur M; Klann-Delius, Gisela; Menninghaus, Winfried; Prehn, Kristin
2016-03-01
Empathy is highly relevant for social behavior and can be verbally expressed by voicing sympathy and concern (emotional empathy) as well as by paraphrasing or stating that one can mentally reconstruct and understand another person's thoughts and feelings (cognitive empathy). In this study, we investigated the emotional effects and neural correlates of receiving empathic social responses after negative performance feedback and compared the effects of emotionally vs. cognitively empathic comments. 20 participants (10 male) underwent functional magnetic resonance imaging while receiving negative performance feedback for a cognitive task. Performance feedback was followed by verbal comments either expressing cognitive and emotional empathy or demonstrating a lack of empathy. Empathic comments in general led to less negative self-reported feelings and calmer breathing. At the neural level, empathic comments induced activity in regions associated with social cognition and emotion processing, specifically in right postcentral gyrus and left cerebellum (cognitively empathic comments), right precentral gyrus, the opercular part of left inferior frontal gyrus, and left middle temporal gyrus (emotionally empathic comments), as well as the orbital part of the left middle frontal gyrus and left superior parietal gyrus (emotionally empathic vs. unempathic comments). The study shows that cognitively and emotionally empathic comments appear to be processed in partially separable neural systems. Furthermore, confirming and expanding on another study on the same subject, the present results demonstrate that the social display of cognitive empathy exerts almost as positive effects on the recipient's feelings and emotions in states of distress as emotionally empathic response does. This can be relevant for professional settings in which strong negative emotions need to be de-escalated while maintaining professional impartiality, which may allow the display of cognitive but not emotional empathy. Copyright © 2015 Elsevier Inc. All rights reserved.
Accuracy requirements. [for monitoring of climate changes
NASA Technical Reports Server (NTRS)
Delgenio, Anthony
1993-01-01
Satellite and surface measurements, if they are to serve as a climate monitoring system, must be accurate enough to permit detection of changes of climate parameters on decadal time scales. The accuracy requirements are difficult to define a priori since they depend on unknown future changes of climate forcings and feedbacks. As a framework for evaluation of candidate Climsat instruments and orbits, we estimate the accuracies that would be needed to measure changes expected over two decades based on theoretical considerations including GCM simulations and on observational evidence in cases where data are available for rates of change. One major climate forcing known with reasonable accuracy is that caused by the anthropogenic homogeneously mixed greenhouse gases (CO2, CFC's, CH4 and N2O). Their net forcing since the industrial revolution began is about 2 W/sq m and it is presently increasing at a rate of about 1 W/sq m per 20 years. Thus for a competing forcing or feedback to be important, it needs to be of the order of 0.25 W/sq m or larger on this time scale. The significance of most climate feedbacks depends on their sensitivity to temperature change. Therefore we begin with an estimate of decadal temperature change. Presented are the transient temperature trends simulated by the GISS GCM when subjected to various scenarios of trace gas concentration increases. Scenario B, which represents the most plausible near-term emission rates and includes intermittent forcing by volcanic aerosols, yields a global mean surface air temperature increase Delta Ts = 0.7 degrees C over the time period 1995-2015. This is consistent with the IPCC projection of about 0.3 degrees C/decade global warming (IPCC, 1990). Several of our estimates below are based on this assumed rate of warming.
Design Of Combined Stochastic Feedforward/Feedback Control
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1989-01-01
Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.
Geometric foundations of the theory of feedback equivalence
NASA Technical Reports Server (NTRS)
Hermann, R.
1987-01-01
A description of feedback control is presented within the context of differential equations, differential geometry, and Lie theory. Work related to the integration of differential geometry with the control techniques of feedback linearization is summarized. Particular attention is given to the application of the theory of vector field systems. Feedback invariants for control systems in state space form are also addressed.
Advanced feedback control methods in EXTRAP T2R reversed field pinch
NASA Astrophysics Data System (ADS)
Yadikin, D.; Brunsell, P. R.; Paccagnella, R.
2006-07-01
Previous experiments in the EXTRAP T2R reversed field pinch device have shown the possibility of suppression of multiple resistive wall modes (RWM). A feedback system has been installed in EXTRAP T2R having 100% coverage of the toroidal surface by the active coil array. Predictions based on theory and the previous experimental results show that the number of active coils should be sufficient for independent stabilization of all unstable RWMs in the EXTRAP T2R. Experiments using different feedback schemes are performed, comparing the intelligent shell, the fake rotating shell, and the mode control with complex feedback gains. Stabilization of all unstable RWMs throughout the discharge duration of td≈10τw is seen using the intelligent shell feedback scheme. Mode rotation and the control of selected Fourier harmonics is obtained simultaneously using the mode control scheme with complex gains. Different sensor signals are studied. A feedback system with toroidal magnetic field sensors could have an advantage of lower feedback gain needed for the RWM suppression compared to the system with radial magnetic field sensors. In this study, RWM suppression is demonstrated, using also the toroidal field component as a sensor signal in the feedback system.
NASA Astrophysics Data System (ADS)
Akiba, M.
2015-09-01
A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz1/2 at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.
Akiba, M
2015-09-01
A photodetection system with an optical-feedback circuit accompanied by current amplification was fabricated to minimize the drawbacks associated with a transimpedance amplifier (TIA) with a very high resistance feedback resistor. Current amplification was implemented by extracting an output light from the same light source that emitted the feedback light. The current gain corresponds to the ratio of the photocurrent created by the output light to that created by the feedback light because the feedback current value is identical to the input photocurrent value generated by an input light to be measured. The current gain has no theoretical limit. The output light was detected by a photodiode with a TIA having a small feedback resistance. The expression for the input-referred noise current of the optical-feedback photodetection system was derived, and the trade-off between sensitivity and response, which is a characteristic of TIA, was found to considerably improve. An optical-feedback photodetection system with an InGaAs pin photodiode was fabricated. The measured noise equivalent power of the system was 1.7 fW/Hz(1/2) at 10 Hz and 1.3 μm, which is consistent with the derived expression. The time response of the system was found to deteriorate with decreasing photocurrent. The 50% rise time for a light pulse input increased from 3.1 μs at a photocurrent of 10 nA to 15 μs at photocurrents below 10 pA. The bandwidth of the input-referred noise current was 7 kHz, which is consistent with rise times below 10 pA.
A Dynamic Social Feedback System to Support Learning and Social Interaction in Higher Education
ERIC Educational Resources Information Center
Thoms, Brian
2011-01-01
In this research, we examine the design, construction, and implementation of a dynamic, easy to use, feedback mechanism for social software. The tool was integrated into an existing university's online learning community (OLC). In line with constructivist learning models and practical information systems (IS) design, the feedback system provides…
Study on real-time force feedback for a master-slave interventional surgical robotic system.
Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua
2018-04-13
In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.
The Space Shuttle orbiter payload retention systems
NASA Technical Reports Server (NTRS)
Hardee, J. H.
1982-01-01
Payloads are secured in the orbiter payload bay by the payload retention system or are equipped with their own unique retention systems. The orbiter payload retention mechanisms provide structural attachments for each payload by using four or five attachment points to secure the payload within the orbiter payload bay during all phases of the orbiter mission. The payload retention system (PRS) is an electromechanical system that provides standarized payload carrier attachment fittings to accommodate up to five payloads for each orbiter flight. The mechanisms are able to function under either l-g or zero-g conditions. Payload berthing or deberthing on orbit is accomplished by utilizing the remote manipulator system (RMS). The retention mechanisms provide the capability for either vertical or horizontal payload installation or removal. The payload support points are selected to minimize point torsional, bending, and radial loads imparted to the payloads. In addition to the remotely controlled latching system, the passive system used for nondeployable payloads performs the same function as the RMS except it provides fixed attachments to the orbiter.
Balconi, Michela; Crivelli, Davide
2010-02-01
Disruption of the sense of being effective and causally determinant in performing an action was explored in the present research by inducing an erroneous external spatial feedback in response to the subject's behaviour. ERPs were recorded from fifteen subjects when they were receiving mismatching/matching feedback information on direction. In addition, subjective sensitivity to the external cues was monitored by Behavioural Inhibition System (BIS) and Behavioural Activation System (BAS) measures, as well as Behaviour Identification process was tested by Behavior Identification Form (BIF). One negative ERP deflections of higher amplitude was revealed in concomitance to false feedback, peaking at about 210ms post-stimulus, more central-posteriorly localized. We supposed that it may represent feedback-error system of which activity might be reflected in FRN, deputed to monitor the unattended feedback furnished by an external system. Moreover, a P3b effect was also observed in great measure for false spatial feedback, more posteriorly (Pz) distributed. According to the context-updating hypothesis, the P3b may reflect the revision of the mental model of the context. BIS showed to be more sensitive to both veridical and false feedback that increased FRN, whereas higher-BAS and BAS-Reward measures revealed an increased proactive attitude to external feedback (higher P3b). Finally, low-level of action representation explained FRN amplitude more than high-level one.
NASA Astrophysics Data System (ADS)
Li, Jian; Zhang, Qingling; Ren, Junchao; Zhang, Yanhao
2017-10-01
This paper studies the problem of robust stability and stabilisation for uncertain large-scale interconnected nonlinear descriptor systems via proportional plus derivative state feedback or proportional plus derivative output feedback. The basic idea of this work is to use the well-known differential mean value theorem to deal with the nonlinear model such that the considered nonlinear descriptor systems can be transformed into linear parameter varying systems. By using a parameter-dependent Lyapunov function, a decentralised proportional plus derivative state feedback controller and decentralised proportional plus derivative output feedback controller are designed, respectively such that the closed-loop system is quadratically normal and quadratically stable. Finally, a hypersonic vehicle practical simulation example and numerical example are given to illustrate the effectiveness of the results obtained in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Badry, Kareem; Geha, Marla; Wetzel, Andrew
We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M{sub star} = 2 × 10{sup 6} − 5 × 10{sup 10} M{sub ⊙}) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the globalmore » potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M{sub star}. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M{sub star} ≈ 10{sup 7–9.6} M{sub ⊙}, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.« less
Stability of Multi-Planet Systems Orbiting in the Alpha Centauri AB System
NASA Astrophysics Data System (ADS)
Lissauer, Jack
2018-04-01
We evaluate how closely-spaced planetary orbits in multiple planet systems can be and still survive for billion-year timescales within the alpha Centauri AB system. Although individual planets on nearly circular, coplanar orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of such planets in multi-planet systems must be significantly larger than the spacing of similar systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon circumstellar planets, stable orbits with small initial eccentricities aligned with the binary orbit are possible to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to the appropriate forced eccentricity can have a much larger affect on how closely planetary orbits can be spaced, on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Cox, Thomas J.; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.; Murray, Norman
2013-04-01
We use hydrodynamic simulations with detailed, explicit models for stellar feedback to study galaxy mergers. These high-resolution (˜1 pc) simulations follow the formation and destruction of individual giant molecular clouds (GMC) and star clusters. We find that the final starburst is dominated by in situ star formation, fuelled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self-gravitating, and forms massive (≲1010 M⊙) GMC and subsequently super star clusters (with masses up to 108 M⊙). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in super-clusters which then sink to the centre of the galaxy. This is because feedback efficiently disperses GMC after they turn several per cent of their mass into stars. In other words, most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from infrared photons, extend, with no fine-tuning, over seven decades in star formation rate (SFR) to regulate star formation in the most extreme starburst systems with densities ≳104 M⊙ pc-2. This feedback also drives super-winds with large mass-loss rates; however, a significant fraction of the wind material falls back on to the discs at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. This suggests that strong active galactic nucleus feedback may be required to explain the sharp cut-offs in SFR that are observed in post-merger galaxies. We compare the results to those from simulations with no explicit resolution of GMC or feedback [`effective equation-of-state' (EOS) models]. We find that global galaxy properties are similar between EOS and resolved-feedback models. The relic structure and mass profile, and the total mass of stars formed in the nuclear starburst are quite similar, as is the morphological structure during and after mergers (tails, bridges, etc.). Disc survival in sufficiently gas rich mergers is similar in the two cases, and the new models follow the same scalings as derived for the efficiency of disc re-formation after a merger as derived from previous work with the simplified EOS models. While the global galaxy properties are similar between EOS and feedback models, subgalaxy-scale properties and the SFRs can be quite different: the more detailed models exhibit significantly higher star formation in tails and bridges (especially in shocks), and allow us to resolve the formation of super star clusters. In the new models, the star formation is more strongly time-variable and drops more sharply between close passages. The instantaneous burst enhancement can be higher or lower, depending on the details of the orbit and initial structural properties of the galaxies; first-passage bursts are more sensitive to these details than those at the final coalescence.
FSD- FLEXIBLE SPACECRAFT DYNAMICS
NASA Technical Reports Server (NTRS)
Fedor, J. V.
1994-01-01
The Flexible Spacecraft Dynamics and Control program (FSD) was developed to aid in the simulation of a large class of flexible and rigid spacecraft. FSD is extremely versatile and can be used in attitude dynamics and control analysis as well as in-orbit support of deployment and control of spacecraft. FSD has been used to analyze the in-orbit attitude performance and antenna deployment of the RAE and IMP class satellites, and the HAWKEYE, SCATHA, EXOS-B, and Dynamics Explorer flight programs. FSD is applicable to inertially-oriented spinning, earth oriented, or gravity gradient stabilized spacecraft. The spacecraft flexibility is treated in a continuous manner (instead of finite element) by employing a series of shape functions for the flexible elements. Torsion, bending, and three flexible modes can be simulated for every flexible element. FSD can handle up to ten tubular elements in an arbitrary orientation. FSD is appropriate for studies involving the active control of pointed instruments, with options for digital PID (proportional, integral, derivative) error feedback controllers and control actuators such as thrusters and momentum wheels. The input to FSD is in four parts: 1) Orbit Construction FSD calculates a Keplerian orbit with environmental effects such as drag, magnetic torque, solar pressure, thermal effects, and thruster adjustments; or the user can supply a GTDS format orbit tape for a particular satellite/time-span; 2) Control words - for options such as gravity gradient effects, control torques, and integration ranges; 3) Mathematical descriptions of spacecraft, appendages, and control systems- including element geometry, properties, attitudes, libration damping, tip mass inertia, thermal expansion, magnetic tracking, and gimbal simulation options; and 4) Desired state variables to output, i.e., geometries, bending moments, fast Fourier transform plots, gimbal rotation, filter vectors, etc. All FSD input is of free format, namelist construction. FSD is written in FORTRAN 77, PASCAL, and MACRO assembler for batch execution and has been implemented on a DEC VAX series computer operating under VMS. The PASCAL and MACRO routines (in addition to the FORTRAN program) are supplied as both source and object code, so the PASCAL compiler is not required for implementation. This program was last updated in 1985.
Chaos control by electric current in an enzymatic reaction.
Lekebusch, A; Förster, A; Schneider, F W
1996-09-01
We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.
Disrupting vagal feedback affects birdsong motor control.
Méndez, Jorge M; Dall'asén, Analía G; Goller, Franz
2010-12-15
Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback.
Disrupting vagal feedback affects birdsong motor control
Méndez, Jorge M.; Dall'Asén, Analía G.; Goller, Franz
2010-01-01
Coordination of different motor systems for sound production involves the use of feedback mechanisms. Song production in oscines is a well-established animal model for studying learned vocal behavior. Whereas the online use of auditory feedback has been studied in the songbird model, very little is known about the role of other feedback mechanisms. Auditory feedback is required for the maintenance of stereotyped adult song. In addition, the use of somatosensory feedback to maintain pressure during song has been demonstrated with experimentally induced fluctuations in air sac pressure. Feedback information mediating this response is thought to be routed to the central nervous system via afferent fibers of the vagus nerve. Here, we tested the effects of unilateral vagotomy on the peripheral motor patterns of song production and the acoustic features. Unilateral vagotomy caused a variety of disruptions and alterations to the respiratory pattern of song, some of which affected the acoustic structure of vocalizations. These changes were most pronounced a few days after nerve resection and varied between individuals. In the most extreme cases, the motor gestures of respiration were so severely disrupted that individual song syllables or the song motif were atypically terminated. Acoustic changes also suggest altered use of the two sound generators and upper vocal tract filtering, indicating that the disruption of vagal feedback caused changes to the motor program of all motor systems involved in song production and modification. This evidence for the use of vagal feedback by the song system with disruption of song during the first days after nerve cut provides a contrast to the longer-term effects of auditory feedback disruption. It suggests a significant role for somatosensory feedback that differs from that of auditory feedback. PMID:21113000
Effects of Grip-Force, Contact, and Acceleration Feedback on a Teleoperated Pick-and-Place Task.
Khurshid, Rebecca P; Fitter, Naomi T; Fedalei, Elizabeth A; Kuchenbecker, Katherine J
2017-01-01
The multifaceted human sense of touch is fundamental to direct manipulation, but technical challenges prevent most teleoperation systems from providing even a single modality of haptic feedback, such as force feedback. This paper postulates that ungrounded grip-force, fingertip-contact-and-pressure, and high-frequency acceleration haptic feedback will improve human performance of a teleoperated pick-and-place task. Thirty subjects used a teleoperation system consisting of a haptic device worn on the subject's right hand, a remote PR2 humanoid robot, and a Vicon motion capture system to move an object to a target location. Each subject completed the pick-and-place task 10 times under each of the eight haptic conditions obtained by turning on and off grip-force feedback, contact feedback, and acceleration feedback. To understand how object stiffness affects the utility of the feedback, half of the subjects completed the task with a flexible plastic cup, and the others used a rigid plastic block. The results indicate that the addition of grip-force feedback with gain switching enables subjects to hold both the flexible and rigid objects more stably, and it also allowed subjects who manipulated the rigid block to hold the object more delicately and to better control the motion of the remote robot's hand. Contact feedback improved the ability of subjects who manipulated the flexible cup to move the robot's arm in space, but it deteriorated this ability for subjects who manipulated the rigid block. Contact feedback also caused subjects to hold the flexible cup less stably, but the rigid block more securely. Finally, adding acceleration feedback slightly improved the subject's performance when setting the object down, as originally hypothesized; interestingly, it also allowed subjects to feel vibrations produced by the robot's motion, causing them to be more careful when completing the task. This study supports the utility of grip-force and high-frequency acceleration feedback in teleoperation systems and motivates further improvements to fingertip-contact-and-pressure feedback.
Intermediate-mass black holes from Population III remnants in the first galactic nuclei
NASA Astrophysics Data System (ADS)
Ryu, Taeho; Tanaka, Takamitsu L.; Perna, Rosalba; Haiman, Zoltán
2016-08-01
We report the formation of intermediate-mass black holes (IMBHs) in suites of numerical N-body simulations of Population III remnant black holes (BHs) embedded in gas-rich protogalaxies at redshifts z ≳ 10. We model the effects of gas drag on the BHs' orbits, and allow BHs to grow via gas accretion, including a mode of hyper-Eddington accretion in which photon trapping and rapid gas inflow suppress any negative radiative feedback. Most initial BH configurations lead to the formation of one (but never more than one) IMBH in the centre of the protogalaxy, reaching a mass of 103-5 M⊙ through hyper-Eddington growth. Our results suggest a viable pathway to forming the earliest massive BHs in the centres of early galaxies. We also find that the nuclear IMBH typically captures a stellar-mass BH companion, making these systems observable in gravitational waves as extreme mass-ratio inspirals with eLISA.
Adaptive guidance for an aero-assisted boost vehicle
NASA Astrophysics Data System (ADS)
Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.
An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.
TOPEX/Poseidon precision orbit determination production and expert system
NASA Technical Reports Server (NTRS)
Putney, Barbara; Zelensky, Nikita; Klosko, Steven
1993-01-01
TOPEX/Poseidon (T/P) is a joint mission between NASA and the Centre National d'Etudes Spatiales (CNES), the French Space Agency. The TOPEX/Poseidon Precision Orbit Determination Production System (PODPS) was developed at Goddard Space Flight Center (NASA/GSFC) to produce the absolute orbital reference required to support the fundamental ocean science goals of this satellite altimeter mission within NASA. The orbital trajectory for T/P is required to have a RMS accuracy of 13 centimeters in its radial component. This requirement is based on the effective use of the satellite altimetry for the isolation of absolute long-wavelength ocean topography important for monitoring global changes in the ocean circulation system. This orbit modeling requirement is at an unprecedented accuracy level for this type of satellite. In order to routinely produce and evaluate these orbits, GSFC has developed a production and supporting expert system. The PODPS is a menu driven system allowing routine importation and processing of tracking data for orbit determination, and an evaluation of the quality of the orbit so produced through a progressive series of tests. Phase 1 of the expert system grades the orbit and displays test results. Later phases undergoing implementation, will prescribe corrective actions when unsatisfactory results are seen. This paper describes the design and implementation of this orbit determination production system and the basis for its orbit accuracy assessment within the expert system.
Precision displacement reference system
Bieg, Lothar F.; Dubois, Robert R.; Strother, Jerry D.
2000-02-22
A precision displacement reference system is described, which enables real time accountability over the applied displacement feedback system to precision machine tools, positioning mechanisms, motion devices, and related operations. As independent measurements of tool location is taken by a displacement feedback system, a rotating reference disk compares feedback counts with performed motion. These measurements are compared to characterize and analyze real time mechanical and control performance during operation.
NASA Astrophysics Data System (ADS)
Phillips, Patrick J.; Rui, Xue; Georgescu, Alexandru B.; Disa, Ankit S.; Longo, Paolo; Okunishi, Eiji; Walker, Fred; Ahn, Charles H.; Ismail-Beigi, Sohrab; Klie, Robert F.
2017-05-01
Epitaxial strain, layer confinement, and inversion symmetry breaking have emerged as powerful new approaches to control the electronic and atomic-scale structural properties of complex metal oxides. Trivalent rare-earth (RE) nickelate R E NiO3 heterostructures have been shown to be exemplars since the orbital occupancy, degeneracy, and, consequently, electronic/magnetic properties can be altered as a function of epitaxial strain, layer thickness, and superlattice structure. One recent example is the tricomponent LaTiO3-LaNiO3-LaAlO3 superlattice which exhibits charge transfer and orbital polarization as the result of its interfacial dipole electric field. A crucial step towards control of these parameters for future electronic and magnetic device applications is to develop an understanding of both the magnitude and range of the octahedral network's response towards interfacial strain and electric fields. An approach that provides atomic-scale resolution and sensitivity towards the local octahedral distortions and orbital occupancy is therefore required. Here, we employ atomic-resolution imaging coupled with electron spectroscopies and first-principles theory to examine the role of interfacial charge transfer and symmetry breaking in a tricomponent nickelate superlattice system. We find that nearly complete charge transfer occurs between the LaTiO3 and LaNiO3 layers, resulting in a mixed Ni2 +/Ni3 + valence state. We further demonstrate that this charge transfer is highly localized with a range of about 1 unit cell within the LaNiO3 layers. We also show how Wannier-function-based electron counting provides a simple physical picture of the electron distribution that connects directly with formal valence charges. The results presented here provide important feedback to synthesis efforts aimed at stabilizing new electronic phases that are not accessible by conventional bulk or epitaxial film approaches.
A Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST)
NASA Astrophysics Data System (ADS)
Conti, Alberto; Arenberg, Jonathan; Baldauf, Brian
2017-01-01
The “Search for Life” (direct imaging of earth-like planets) will require extremely stable telescopes with apertures in the 10 m to 20 m range. Such apertures are larger than what can be delivered to space using current or planned future launch vehicles. Building and assembling large telescopes in space is therefore likely to require not only multiple launches but importantly assembly in spce. As a result, space-based telescopes with large apertures will require major changes to our conventional telescope design and architecture.Here we report on the concept for the Modular Orbital Demonstration of an Evolvable Space Telescope (MODEST) to demonstrates the on-orbit robotic and/or astronaut assembly of an optical telescope in space. MODEST is a proposed International Space Station (ISS demonstration that will make use of the standard Express Logistics Carriers (ELCs) and can mounted to one of a variety of ISS pallets.MODEST will provides significant risk reduction for the next generation of space observatories, and demonstrates the technology needed to assemble a six-mirror phased telescope. Key modest features include the use of an active primary optical surface with wavefront feedback control to allow on-orbit optimization, and the precise surface control to meet optical system wavefront and stability requirements.MODEST will also be used to evaluate advances in lightweight mirror and metering structure materials such as SiC or Carbon Fiber Reinforced Polymer (CFRP) that have excellent mechanical and thermal properties, e.g. high stiffness, high modulus, high thermal conductivity, and low thermal expansion. Mirrors built from these materials can be rapidly replicated in a highly cost effective manner, making them an excellent candidate for a low cost, high performance Optical Telescope Assembly paving the way for enabling affordable solutions for the next generation of large aperture space-based telescope.MODEST post-assembly value includes space, ground, and environmental studies, a testbed for new instruments, and a tool for student’s exploration of space.
Orbital Drivers of Climate Change on Earth and Mars
NASA Astrophysics Data System (ADS)
Zent, A. P.
Oscillations of orbital elements and spin axis orientation affect the climate of both Earth and Mars by redistributing solar power both latitudinally and seasonally, often resulting in secondary changes in reflected and emitted radiation (radiative forcing). Multiple feedback loops between different climatic elements operate on both planets, with the result that climate response is generally nonlinear with simple changes in solar energy. Both insolation history and geochemical climate proxies can be treated as time series data, and analyzed in terms of component frequencies. The correspondence between frequencies measured in climate proxies and orbital oscillations is the key to relating orbital cause and climatic effect. Discussions of both Earth and Mars focus on the last 5-10 m.y., because this is the period in which the orbital history and geologic record are best understood. The terrestrial climate is an extraordinarily complex system, and a vast amount of data is available for analysis. While the geologic record strongly supports the role of Milankovitch cycles as the underlying cause of glacial cycles, orbitally driven insolation changes alone cannot explain the observations in detail. Early Pleistocene glacial cycles responded linearly to the 41-k.y. oscillations in obliquity. However, over the last 1 m.y., glacial/interglacial oscillations have become more extreme as the climate has cooled. Long cooling intervals marked by an oscillating buildup of ice sheets are now followed by brief, intense periods of warming. At the same time, glacial/interglacial cycles have shifted from 41 k.y. to ~100 k.y. No such changes occurred in the solar forcing due to orbital oscillations. While orbital oscillations still appear to pace glacial cycles, their subtle interplay with ice-sheet dynamics and shifts in ocean circulation have come to dominate the late Pleistocene climate system. In contrast to Earth, the martian climate is ostensibly a much simpler system about which we have almost no quantitative data. Lacking climate proxies and chronological data, we are forced to rely on climate modeling and whatever constraints can be extracted from the predominantly remote sensing data available. Obliquity oscillations account for most of the power in historical insolation. Unfortunately, the last 5 m.y. are an anomalous period in Mars' climate history due to a secular decrease in Mars' obliquity. Subsequent to that, however, models and observations are consistent with the hypothesis that during periods of higher obliquity, enhanced polar summer insolation increases atmospheric water vapor and dust content, and ice stability shifted toward the equator. Polar caps become thermodynamically unstable, and much of the surface H2O inventory migrates from high latitudes to the tropics. As obliquity decreases, ice returns to the poles, leaving unstable ice-rich deposits in the mid latitudes that are mantled by dust. Low-obliquity periods entail — at least on occasion — collapse of the atmosphere onto the poles and high-latitude CO2 glaciers. During protracted nodes in obliquity, mid-latitude ice undergoes slow but sustained sublimation and redistribution to the poles. Because of the tremendous breadth of the subject matter, this chapter necessarily presents a high-level overview, and the reader will be compelled to investigate the copious references for a more rigorous explanation of most topics.
Two designs for an orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark
1988-01-01
The Orbital Transfer Vehicle (OTV) and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures.
Solid Propulsion De-Orbiting and Re-Orbiting
NASA Astrophysics Data System (ADS)
Schonenborg, R. A. C.; Schoyer, H. F. R.
2009-03-01
With many "innovative" de-orbit systems (e.g. tethers, aero breaking, etc.) and with natural de-orbit, the place of impact of unburned spacecraft debris on Earth can not be determined accurately. The idea that satellites burn up completely upon re-entry is a common misunderstanding. To the best of our knowledge only rocket motors are capable of delivering an impulse that is high enough, to conduct a de-orbit procedure swiftly, hence to de-orbit at a specific moment that allows to predict the impact point of unburned spacecraft debris accurately in remote areas. In addition, swift de-orbiting will reduce the on-orbit time of the 'dead' satellite, which reduces the chance of the dead satellite being hit by other dead or active satellites, while spiralling down to Earth during a slow, 25 year, or more, natural de-orbit process. Furthermore the reduced on-orbit time reduces the chance that spacecraft batteries, propellant tanks or other components blow up and also reduces the time that the object requires tracking from Earth.The use of solid propellant for the de-orbiting of spacecraft is feasible. The main advantages of a solid propellant based system are the relatively high thrust and the facts that the system can be made autonomous quite easily and that the system can be very reliable. The latter is especially desirable when one wants to de-orbit old or 'dead' satellites that might not be able to rely anymore on their primary systems. The disadvantage however, is the addition of an extra system to the spacecraft as well as a (small) mass penalty. [1]This paper describes the above mentioned system and shows as well, why such a system can also be used to re-orbit spacecraft in GEO, at the end of their life to a graveyard orbit.Additionally the system is theoretically compared to an existing system, of which performance data is available.A swift market analysis is performed as well.
The regulatory function of self-esteem: testing the epistemic and acceptance signaling systems.
Stinson, Danu Anthony; Logel, Christine; Holmes, John G; Wood, Joanne V; Forest, Amanda L; Gaucher, Danielle; Fitzsimons, Grainné M; Kath, Jennifer
2010-12-01
The authors draw on sociometer theory (e.g., Leary, 2004) and self-verification theory (e.g., Swann, 1997) to propose an expanded model of the regulatory function of self-esteem. The model suggests that people not only possess an acceptance signaling system that indicates whether relational value is high or low but also possess an epistemic signaling system that indicates whether social feedback is consistent or inconsistent with chronic perceived relational value (i.e., global self-esteem). One correlational study and 5 experiments, with diverse operationalizations of social feedback, demonstrated that the epistemic signaling system responds to self-esteem consistent or inconsistent relational-value feedback with increases or deceases in epistemic certainty. Moreover, Studies 3-6 demonstrated that the acceptance and epistemic signaling systems respond uniquely to social feedback. Finally, Studies 5 and 6 provide evidence that the epistemic signaling system is part of a broader self-regulatory system: Self-esteem inconsistent feedback caused cognitive efforts to decrease the discrepancy between self-views and feedback and caused depleted self-regulatory capacity on a subsequent self-control task. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Auditory display as feedback for a novel eye-tracking system for sterile operating room interaction.
Black, David; Unger, Michael; Fischer, Nele; Kikinis, Ron; Hahn, Horst; Neumuth, Thomas; Glaser, Bernhard
2018-01-01
The growing number of technical systems in the operating room has increased attention on developing touchless interaction methods for sterile conditions. However, touchless interaction paradigms lack the tactile feedback found in common input devices such as mice and keyboards. We propose a novel touchless eye-tracking interaction system with auditory display as a feedback method for completing typical operating room tasks. Auditory display provides feedback concerning the selected input into the eye-tracking system as well as a confirmation of the system response. An eye-tracking system with a novel auditory display using both earcons and parameter-mapping sonification was developed to allow touchless interaction for six typical scrub nurse tasks. An evaluation with novice participants compared auditory display with visual display with respect to reaction time and a series of subjective measures. When using auditory display to substitute for the lost tactile feedback during eye-tracking interaction, participants exhibit reduced reaction time compared to using visual-only display. In addition, the auditory feedback led to lower subjective workload and higher usefulness and system acceptance ratings. Due to the absence of tactile feedback for eye-tracking and other touchless interaction methods, auditory display is shown to be a useful and necessary addition to new interaction concepts for the sterile operating room, reducing reaction times while improving subjective measures, including usefulness, user satisfaction, and cognitive workload.
Martínez-Bueso, Pau; Moyà-Alcover, Biel
2014-01-01
Observation is recommended in motor rehabilitation. For this reason, the aim of this study was to experimentally test the feasibility and benefit of including mirror feedback in vision-based rehabilitation systems: we projected the user on the screen. We conducted a user study by using a previously evaluated system that improved the balance and postural control of adults with cerebral palsy. We used a within-subjects design with the two defined feedback conditions (mirror and no-mirror) with two different groups of users (8 with disabilities and 32 without disabilities) using usability measures (time-to-start (T s) and time-to-complete (T c)). A two-tailed paired samples t-test confirmed that in case of disabilities the mirror feedback facilitated the interaction in vision-based systems for rehabilitation. The measured times were significantly worse in the absence of the user's own visual feedback (T s = 7.09 (P < 0.001) and T c = 4.48 (P < 0.005)). In vision-based interaction systems, the input device is the user's own body; therefore, it makes sense that feedback should be related to the body of the user. In case of disabilities the mirror feedback mechanisms facilitated the interaction in vision-based systems for rehabilitation. Results recommends developers and researchers use this improvement in vision-based motor rehabilitation interactive systems. PMID:25295310
ERIC Educational Resources Information Center
Cutumisu, Maria; Blair, Kristen P.; Chin, Doris B.; Schwartz, Daniel L.
2017-01-01
We introduce a choice-based assessment strategy that measures students' choices to seek constructive feedback and to revise their work. We present the feedback system of a game we designed to assess whether students choose positive or negative feedback and choose to revise their posters in the context of a poster design task, where they learn…
Guidance of a Solar Sail Spacecraft to the Sun - L(2) Point.
NASA Astrophysics Data System (ADS)
Hur, Sun Hae
The guidance of a solar sail spacecraft along a minimum-time path from an Earth orbit to a region near the Sun-Earth L_2 libration point is investigated. Possible missions to this point include a spacecraft "listening" for possible extra-terrestrial electromagnetic signals and a science payload to study the geomagnetic tail. A key advantage of the solar sail is that it requires no fuel. The control variables are the sail angles relative to the Sun-Earth line. The thrust is very small, on the order of 1 mm/s^2, and its magnitude and direction are highly coupled. Despite this limited controllability, the "free" thrust can be used for a wide variety of terminal conditions including halo orbits. If the Moon's mass is lumped with the Earth, there are quasi-equilibrium points near L_2. However, they are unstable so that some form of station keeping is required, and the sail can provide this without any fuel usage. In the two-dimensional case, regulating about a nominal orbit is shown to require less control and result in smaller amplitude error response than regulating about a quasi-equilibrium point. In the three-dimensional halo orbit case, station keeping using periodically varying gains is demonstrated. To compute the minimum-time path, the trajectory is divided into two segments: the spiral segment and the transition segment. The spiral segment is computed using a control law that maximizes the rate of energy increase at each time. The transition segment is computed as the solution of the time-optimal control problem from the endpoint of the spiral to the terminal point. It is shown that the path resulting from this approximate strategy is very close to the exact optimal path. For the guidance problem, the approximate strategy in the spiral segment already gives a nonlinear full-state feedback law. However, for large perturbations, follower guidance using an auxiliary propulsion is used for part of the spiral. In the transition segment, neighboring extremal feedback guidance using the solar sail, with feedforward control only near the terminal point, is used to correct perturbations in the initial conditions.
El Saadawi, Gilan M; Azevedo, Roger; Castine, Melissa; Payne, Velma; Medvedeva, Olga; Tseytlin, Eugene; Legowski, Elizabeth; Jukic, Drazen; Crowley, Rebecca S
2010-03-01
Previous studies in our laboratory have shown the benefits of immediate feedback on cognitive performance for pathology residents using an intelligent tutoring system (ITS) in pathology. In this study, we examined the effect of immediate feedback on metacognitive performance, and investigated whether other metacognitive scaffolds will support metacognitive gains when immediate feedback is faded. Twenty-three participants were randomized into intervention and control groups. For both groups, periods working with the ITS under varying conditions were alternated with independent computer-based assessments. On day 1, a within-subjects design was used to evaluate the effect of immediate feedback on cognitive and metacognitive performance. On day 2, a between-subjects design was used to compare the use of other metacognitive scaffolds (intervention group) against no metacognitive scaffolds (control group) on cognitive and metacognitive performance, as immediate feedback was faded. Measurements included learning gains (a measure of cognitive performance), as well as several measures of metacognitive performance, including Goodman-Kruskal gamma correlation (G), bias, and discrimination. For the intervention group, we also computed metacognitive measures during tutoring sessions. Results showed that immediate feedback in an intelligent tutoring system had a statistically significant positive effect on learning gains, G and discrimination. Removal of immediate feedback was associated with decreasing metacognitive performance, and this decline was not prevented when students used a version of the tutoring system that provided other metacognitive scaffolds. Results obtained directly from the ITS suggest that other metacognitive scaffolds do have a positive effect on G and discrimination, as immediate feedback is faded. We conclude that immediate feedback had a positive effect on both metacognitive and cognitive gains in a medical tutoring system. Other metacognitive scaffolds were not sufficient to replace immediate feedback in this study. However, results obtained directly from the tutoring system are not consistent with results obtained from assessments. In order to facilitate transfer to real-world tasks, further research will be needed to determine the optimum methods for supporting metacognition as immediate feedback is faded.
El Saadawi, Gilan M.; Azevedo, Roger; Castine, Melissa; Payne, Velma; Medvedeva, Olga; Tseytlin, Eugene; Legowski, Elizabeth; Jukic, Drazen; Crowley, Rebecca S.
2009-01-01
Objective Previous studies in our laboratory have shown the benefits of immediate feedback on cognitive performance for pathology residents using an Intelligent Tutoring System in Pathology. In this study, we examined the effect of immediate feedback on metacognitive performance, and investigated whether other metacognitive scaffolds will support metacognitive gains when immediate feedback is faded. Methods Twenty-three (23) participants were randomized into intervention and control groups. For both groups, periods working with the ITS under varying conditions were alternated with independent computer-based assessments. On day 1, a within-subjects design was used to evaluate the effect of immediate feedback on cognitive and metacognitive performance. On day 2, a between-subjects design was used to compare the use of other metacognitive scaffolds (intervention group) against no metacognitive scaffolds (control group) on cognitive and metacognitive performance, as immediate feedback was faded. Measurements included learning gains (a measure of cognitive performance), as well as several measures of metacognitive performance, including Goodman-Kruskal Gamma correlation (G), Bias, and Discrimination. For the intervention group, we also computed metacognitive measures during tutoring sessions. Results Results showed that immediate feedback in an intelligent tutoring system had a statistically significant positive effect on learning gains, G and discrimination. Removal of immediate feedback was associated with decreasing metacognitive performance, and this decline was not prevented when students used a version of the tutoring system that provided other metacognitive scaffolds. Results obtained directly from the ITS suggest that other metacognitive scaffolds do have a positive effect on G and Discrimination, as immediate feedback is faded. Conclusions Immediate feedback had a positive effect on both metacognitive and cognitive gains in a medical tutoring system. Other metacognitive scaffolds were not sufficient to replace immediate feedback in this study. However, results obtained directly from the tutoring system are not consistent with results obtained from assessments. In order to facilitate transfer to real-world tasks, further research will be needed to determine the optimum methods for supporting metacognition as immediate feedback is faded. PMID:19434508
Satellite Relative Motion Control for MIT’s SPHERES Program
2012-03-01
rates of the SPHERES position and velocity are modeled. Section 2.5.2 illustrates how to deter- mine the quaternions and the angular rates to...velocity components are determined following the process described in Section 2.4.5. Once the feedback gains are deter- mined the switch line of the bang...Using Lasers in Space: Laser Orbital Debris Removal and Asteroid Deflection,” 2000. 17. Rogers, M. E., “Lasers in Space: Technological Options for
An investigation of the astronomical theory of the ice ages using a simple climate-ice sheet model
NASA Technical Reports Server (NTRS)
Pollard, D.
1978-01-01
The astronomical theory of the Quaternary ice ages is incorporated into a simple climate model for global weather; important features of the model include the albedo feedback, topography and dynamics of the ice sheets. For various parameterizations of the orbital elements, the model yields realistic assessments of the northern ice sheet. Lack of a land-sea heat capacity contrast represents one of the chief difficulties of the model.
Long-lived Dust Asymmetries at Dead Zone Edges in Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Ryan; Li, Hui; Li, Shengtai
A number of transition disks exhibit significant azimuthal asymmetries in thermal dust emission. One possible origin for these asymmetries is dust trapping in vortices formed at the edges of dead zones. We carry out high-resolution, two-dimensional hydrodynamic simulations of this scenario, including the effects of dust feedback. We find that, although feedback weakens the vortices and slows down the process of dust accumulation, the dust distribution in the disk can nonetheless remain asymmetric for many thousands of orbits. We show that even after 10{sup 4} orbits, or 2.5 Myr when scaled to the parameters of Oph IRS 48 (a significantmore » fraction of its age), the dust is not dispersed into an axisymmetric ring, in contrast to the case of a vortex formed by a planet. This is because accumulation of mass at the dead zone edge constantly replenishes the vortex, preventing it from being fully destroyed. We produce synthetic dust emission images using our simulation results. We find that multiple small clumps of dust may be distributed azimuthally. These clumps, if not resolved from one another, appear as a single large feature. A defining characteristic of a disk with a dead zone edge is that an asymmetric feature is accompanied by a ring of dust located about twice as far from the central star.« less
The predicted CLARREO sampling error of the inter-annual SW variability
NASA Astrophysics Data System (ADS)
Doelling, D. R.; Keyes, D. F.; Nguyen, C.; Macdonnell, D.; Young, D. F.
2009-12-01
The NRC Decadal Survey has called for SI traceability of long-term hyper-spectral flux measurements in order to monitor climate variability. This mission is called the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and is currently defining its mission requirements. The requirements are focused on the ability to measure decadal change of key climate variables at very high accuracy. The accuracy goals are set using anticipated climate change magnitudes, but the accuracy achieved for any given climate variable must take into account the temporal and spatial sampling errors based on satellite orbits and calibration accuracy. The time period to detect a significant trend in the CLARREO record depends on the magnitude of the sampling calibration errors relative to the current inter-annual variability. The largest uncertainty in climate feedbacks remains the effect of changing clouds on planetary energy balance. Some regions on earth have strong diurnal cycles, such as maritime stratus and afternoon land convection; other regions have strong seasonal cycles, such as the monsoon. However, when monitoring inter-annual variability these cycles are only important if the strength of these cycles vary on decadal time scales. This study will attempt to determine the best satellite constellations to reduce sampling error and to compare the error with the current inter-annual variability signal to ensure the viability of the mission. The study will incorporate Clouds and the Earth's Radiant Energy System (CERES) (Monthly TOA/Surface Averages) SRBAVG product TOA LW and SW climate quality fluxes. The fluxes are derived by combining Terra (10:30 local equator crossing time) CERES fluxes with 3-hourly 5-geostationary satellite estimated broadband fluxes, which are normalized using the CERES fluxes, to complete the diurnal cycle. These fluxes were saved hourly during processing and considered the truth dataset. 90°, 83° and 74° inclination precessionary orbits as well as sun-synchronous orbits will be evaluated. This study will focus on the SW radiance, since these low earth orbits are only in daylight for half the orbit. The precessionary orbits were designed to cycle through all solar zenith angles over the course of a year. The inter-annual variability sampling error will be stratified globally/zonally and annually/seasonally and compared with the corresponding truth anomalies.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
NASA Astrophysics Data System (ADS)
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2007-09-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this non-conservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot.
Asymmetric interjoint feedback contributes to postural control of redundant multi-link systems
Bunderson, Nathan E.; Ting, Lena H.; Burkholder, Thomas J.
2008-01-01
Maintaining the postural configuration of a limb such as an arm or leg is a fundamental neural control task that involves the coordination of multiple linked body segments. Biological systems are known to use a complex network of inter- and intra-joint feedback mechanisms arising from muscles, spinal reflexes, and higher neuronal structures to stabilize the limbs. While previous work has shown that a small amount of asymmetric heterogenic feedback contributes to the behavior of these systems, a satisfactory functional explanation for this nonconservative feedback structure has not been put forth. We hypothesized that an asymmetric multi-joint control strategy would confer both an energetic and stability advantage in maintaining endpoint position of a kinematically redundant system. We tested this hypothesis by using optimal control models incorporating symmetric versus asymmetric feedback with the goal of maintaining the endpoint location of a kinematically redundant, planar limb. Asymmetric feedback improved endpoint control performance of the limb by 16%, reduced energetic cost by 21% and increased interjoint coordination by 40% compared to the symmetric feedback system. The overall effect of the asymmetry was that proximal joint motion resulted in greater torque generation at distal joints than vice versa. The asymmetric organization is consistent with heterogenic stretch reflex gains measured experimentally. We conclude that asymmetric feedback has a functionally relevant role in coordinating redundant degrees of freedom to maintain the position of the hand or foot. PMID:17873426
Role of combined tactile and kinesthetic feedback in minimally invasive surgery.
Lim, Soo-Chul; Lee, Hyung-Kew; Park, Joonah
2014-10-18
Haptic feedback is of critical importance in surgical tasks. However, conventional surgical robots do not provide haptic feedback to surgeons during surgery. Thus, in this study, a combined tactile and kinesthetic feedback system was developed to provide haptic feedback to surgeons during robotic surgery. To assess haptic feasibility, the effects of two types of haptic feedback were examined empirically - kinesthetic and tactile feedback - to measure object-pulling force with a telesurgery robotics system at two desired pulling forces (1 N and 2 N). Participants answered a set of questionnaires after experiments. The experimental results reveal reductions in force error (39.1% and 40.9%) when using haptic feedback during 1 N and 2 N pulling tasks. Moreover, survey analyses show the effectiveness of the haptic feedback during teleoperation. The combined tactile and kinesthetic feedback of the master device in robotic surgery improves the surgeon's ability to control the interaction force applied to the tissue. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Examining a Web-Based Peer Feedback System in an Introductory Computer Literacy Course
ERIC Educational Resources Information Center
Adiguzel, Tufan; Varank, Ilhan; Erkoç, Mehmet Fatih; Buyukimdat, Meryem Koskeroglu
2017-01-01
This study focused on formative use of peer feedback in an online system that was used in basic computer literacy for word processing assignment-related purposes. Specifically, the effect of quantity, modality and satisfaction of peer feedback provided through the online system on students' performance, self-efficacy, and technology acceptance was…
NASA Astrophysics Data System (ADS)
Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun
2015-12-01
This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.
Dynamic Data-Driven UAV Network for Plume Characterization
2016-05-23
data collection where simulations and measurements become a symbiotic feedback control system where simulations inform measurement locations and the...and measurements become a symbiotic feedback control system where simulations inform measurement locations and the measured data augments simulations...data analysis techniques with mobile sensor data collection where simulations and measurements become a symbiotic feedback control system where
Real-time optical signal processors employing optical feedback: amplitude and phase control.
Gallagher, N C
1976-04-01
The development of real-time coherent optical signal processors has increased the appeal of optical computing techniques in signal processing applications. A major limitation of these real-time systems is the. fact that the optical processing material is generally of a phase-only type. The result is that the spatial filters synthesized with these systems must be either phase-only filters or amplitude-only filters. The main concern of this paper is the application of optical feedback techniques to obtain simultaneous and independent amplitude and phase control of the light passing through the system. It is shown that optical feedback techniques may be employed with phase-only spatial filters to obtain this amplitude and phase control. The feedback system with phase-only filters is compared with other feedback systems that employ combinations of phase-only and amplitude-only filters; it is found that the phase-only system is substantially more flexible than the other two systems investigated.
Instruction, Feedback and Biometrics: The User Interface for Fingerprint Authentication Systems
NASA Astrophysics Data System (ADS)
Riley, Chris; Johnson, Graham; McCracken, Heather; Al-Saffar, Ahmed
Biometric authentication is the process of establishing an individual’s identity through measurable characteristics of their behaviour, anatomy or physiology. Biometric technologies, such as fingerprint systems, are increasingly being used in a diverse range of contexts from immigration control, to banking and personal computing. As is often the case with emerging technologies, the usability aspects of system design have received less attention than technical aspects. Fingerprint systems pose a number of challenges for users and past research has identified issues with correct finger placement, system feedback and instruction. This paper describes the development of an interface for fingerprint systems using an iterative, participative design approach. During this process, several different methods for the presentation of instruction and feedback were identified. The different types of instruction and feedback were tested in a study involving 82 participants. The results showed that feedback had a statistically significant effect on overall system performance, but instruction did not. The design recommendations emerging from this study, and the use of participatory design in this context, are discussed.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching LO
1993-01-01
This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.
Pleistocene tropical Pacific temperature sensitivity to radiative greenhouse gas forcing
NASA Astrophysics Data System (ADS)
Dyck, K. A.; Ravelo, A. C.
2011-12-01
How high will Earth's global average surface temperature ultimately rise as greenhouse gas concentrations increase in the future? One way to tackle this question is to compare contemporaneous temperature and greenhouse gas concentration data from paleoclimate records, while considering that other radiative forcing mechanisms (e.g. changes in the amount and distribution of incoming solar radiation associated with changes in the Earth's orbital configuration) also contribute to surface temperature change. Since the sensitivity of surface temperature varies with location and latitude, here we choose a central location representative of the west Pacific warm pool, far from upwelling regions or surface temperature gradients in order to minimize climate feedbacks associated with high-latitude regions or oceanic dynamics. The 'steady-state' or long-term temperature change associated with greenhouse gas radiative forcing is often labeled as equilibrium (or 'Earth system') climate sensitivity to the doubling of atmospheric greenhouse gas concentration. Climate models suggest that Earth system sensitivity does not change dramatically over times when CO2 was lower or higher than the modern atmospheric value. Thus, in our investigation of the changes in tropical SST, from the glacial to interglacial states when greenhouse gas forcing nearly doubled, we use Late Pleistocene paleoclimate records to constrain earth system sensitivity for the tropics. Here we use Mg/Ca-paleothermometry using the foraminifera G. ruber from ODP Site 871 from the past 500 kyr in the western Pacific warm pool to estimate tropical Pacific equilibrium climate sensitivity to a doubling of greenhouse gas concentrations to be ~4°C. This tropical SST sensitivity to greenhouse gas forcing is ~1-2°C higher than that predicted by climate models of past glacial periods or future warming for the tropical Pacific. Equatorial Pacific SST sensitivity may be higher than predicted by models for a number of reasons. First, models may not be adequately representing long-term deep ocean feedbacks. Second, models may incorrectly parameterize tropical cloud (or other short-term) feedback processes. Lastly, either paleo-temperature or radiative forcing may have been incorrectly estimated (e.g. through calibration of paleoclimate evidence for temperature change). Since theory suggests that surface temperature in the high latitudes is more sensitive to radiative forcing changes than surface temperature in the tropics, the results of this study also imply that globally averaged Earth system sensitivity to greenhouse gas concentrations may be higher than most climate models predict.
Feedbacks in human-landscape systems
NASA Astrophysics Data System (ADS)
Chin, Anne
2015-04-01
As human interactions with Earth systems intensify in the "Anthropocene", understanding the complex relationships among human activity, landscape change, and societal responses to those changes is increasingly important. Interdisciplinary research centered on the theme of "feedbacks" in human-landscape systems serves as a promising focus for unraveling these interactions. Deciphering interacting human-landscape feedbacks extends our traditional approach of considering humans as unidirectional drivers of change. Enormous challenges exist, however, in quantifying impact-feedback loops in landscapes with significant human alterations. This paper illustrates an example of human-landscape interactions following a wildfire in Colorado (USA) that elicited feedback responses. After the 2012 Waldo Canyon Fire, concerns for heightened flood potential and debris flows associated with post-fire hydrologic changes prompted local landowners to construct tall fences at the base of a burned watershed. These actions changed the sediment transport regime and promoted further landscape change and human responses in a positive feedback cycle. The interactions ultimately increase flood and sediment hazards, rather than dampening the effects of fire. A simple agent-based model, capable of integrating social and hydro-geomorphological data, demonstrates how such interacting impacts and feedbacks could be simulated. Challenges for fully capturing human-landscape feedback interactions include the identification of diffuse and subtle feedbacks at a range of scales, the availability of data linking impact with response, the identification of multiple thresholds that trigger feedback mechanisms, and the varied metrics and data needed to represent both the physical and human systems. By collaborating with social scientists with expertise in the human causes of landscape change, as well as the human responses to those changes, geoscientists could more fully recognize and anticipate the coupled human-landscape interactions that will drive the evolution of Earth systems into the future.
Feedback: A Systems Approach to Evaluation and Course Design. Working Papers No. 21.
ERIC Educational Resources Information Center
Holmes, John
Two types of feedback are examined, and their use in controlling the processes of instructional development and improvement are discussed. Closed-loop feedback, the most direct, uses immediate feedback about a process or product to make immediate adjustments in it. Open-loop feedback, in which input cannot be changed immediately, uses feedback to…
Stabilization of model-based networked control systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miranda, Francisco; Instituto Politécnico de Viana do Castelo, Viana do Castelo; Abreu, Carlos
2016-06-08
A class of networked control systems called Model-Based Networked Control Systems (MB-NCSs) is considered. Stabilization of MB-NCSs is studied using feedback controls and simulation of stabilization for different feedbacks is made with the purpose to reduce the network trafic. The feedback control input is applied in a compensated model of the plant that approximates the plant dynamics and stabilizes the plant even under slow network conditions. Conditions for global exponential stabilizability and for the choosing of a feedback control input for a given constant time between the information moments of the network are derived. An optimal control problem to obtainmore » an optimal feedback control is also presented.« less
Feedback to semi-professional counselors in treating child aggression.
Shechtman, Zipora; Tutian, Rony
2017-05-01
To investigate the impact of outcome feedback provided to semi-professional counselors of children and adolescents at risk for aggressive behavior, following group treatment. Participants included 230 aggressive children and adolescents and 64 educators in a quasi-experimental design of 3 conditions: experimental group with feedback, experimental group without feedback, and control group (no treatment). The current study employed a feedback system based on self-report aggression scores measured after each session, provided to teachers, including an alert system and weekly follow-up group support. Outcomes were more favorable for the treatment children than the control group, but feedback had no impact on the results. Outcome feedback provided to group therapists does not have an effect on children and adolescents' reduction of aggression. Further research is needed to identify possible reasons for failure to show feedback effect.
Pfordresher, Peter Q; Mantell, James T
2012-01-01
We report an experiment that tested whether effects of altered auditory feedback (AAF) during piano performance differ from its effects during singing. These effector systems differ with respect to the mapping between motor gestures and pitch content of auditory feedback. Whereas this action-effect mapping is highly reliable during phonation in any vocal motor task (singing or speaking), mapping between finger movements and pitch occurs only in limited situations, such as piano playing. Effects of AAF in both tasks replicated results previously found for keyboard performance (Pfordresher, 2003), in that asynchronous (delayed) feedback slowed timing whereas alterations to feedback pitch increased error rates, and the effect of asynchronous feedback was similar in magnitude across tasks. However, manipulations of feedback pitch had larger effects on singing than on keyboard production, suggesting effector-specific differences in sensitivity to action-effect mapping with respect to feedback content. These results support the view that disruption from AAF is based on abstract, effector independent, response-effect associations but that the strength of associations differs across effector systems. Copyright © 2011. Published by Elsevier B.V.
Use of Virtual Reality for Space Flight
NASA Technical Reports Server (NTRS)
Harm, Deborah; Taylor, L. C.; Reschke, M. F.
2011-01-01
Virtual environments offer unique training opportunities, particularly for training astronauts and preadapting them to the novel sensory conditions of microgravity. Two unresolved human factors issues in virtual reality (VR) systems are: 1) potential "cybersickness", and 2) maladaptive sensorimotor performance following exposure to VR systems. Interestingly, these aftereffects are often quite similar to adaptive sensorimotor responses observed in astronauts during and/or following space flight. Active exploratory behavior in a new environment, with resulting feedback and the formation of new associations between sensory inputs and response outputs, promotes appropriate perception and motor control in the new environment. Thus, people adapt to consistent, sustained alterations of sensory input such as those produced by microgravity. Our research examining the effects of repeated exposures to a full field of view dome VR system showed that motion sickness and initial decrements in eye movement and postural control were greatly diminished following three exposures. These results suggest that repeated transitions between VR and the normal environment preflight might be a useful countermeasure for neurosensory and sensorimotor effects of space flight. The range of VR applications is enormous, extending from ground-based VR training for extravehicular activities at NASA, to medical and educational uses. It seems reasonable to suggest that other space related uses of VR should be investigated. For example, 1) use of head-mounted VR on orbit to rehearse/practice upcoming operational activities, and 2) ground-based VR training for emergency egress procedures. We propose that by combining VR designed for operational activities preflight, along with an appropriate schedule to facilitate sensorimotor adaptation and improve spatial orientation would potentially accomplish two important goals for astronauts and cosmonauts, preflight sensorimotor adaption and enhanced operational training at the same time. Such efforts could support both improved health and performance on orbit and improved operational training in the most efficient manner.
Analytical investigations in aircraft and spacecraft trajectory optimization and optimal guidance
NASA Technical Reports Server (NTRS)
Markopoulos, Nikos; Calise, Anthony J.
1995-01-01
A collection of analytical studies is presented related to unconstrained and constrained aircraft (a/c) energy-state modeling and to spacecraft (s/c) motion under continuous thrust. With regard to a/c unconstrained energy-state modeling, the physical origin of the singular perturbation parameter that accounts for the observed 2-time-scale behavior of a/c during energy climbs is identified and explained. With regard to the constrained energy-state modeling, optimal control problems are studied involving active state-variable inequality constraints. Departing from the practical deficiencies of the control programs for such problems that result from the traditional formulations, a complete reformulation is proposed for these problems which, in contrast to the old formulation, will presumably lead to practically useful controllers that can track an inequality constraint boundary asymptotically, and even in the presence of 2-sided perturbations about it. Finally, with regard to s/c motion under continuous thrust, a thrust program is proposed for which the equations of 2-dimensional motion of a space vehicle in orbit, viewed as a point mass, afford an exact analytic solution. The thrust program arises under the assumption of tangential thrust from the costate system corresponding to minimum-fuel, power-limited, coplanar transfers between two arbitrary conics. The thrust program can be used not only with power-limited propulsion systems, but also with any propulsion system capable of generating continuous thrust of controllable magnitude, and, for propulsion types and classes of transfers for which it is sufficiently optimal the results of this report suggest a method of maneuvering during planetocentric or heliocentric orbital operations, requiring a minimum amount of computation; thus uniquely suitable for real-time feedback guidance implementations.
Distributed force feedback in the spinal cord and the regulation of limb mechanics.
Nichols, T Richard
2018-03-01
This review is an update on the role of force feedback from Golgi tendon organs in the regulation of limb mechanics during voluntary movement. Current ideas about the role of force feedback are based on modular circuits linking idealized systems of agonists, synergists, and antagonistic muscles. In contrast, force feedback is widely distributed across the muscles of a limb and cannot be understood based on these circuit motifs. Similarly, muscle architecture cannot be understood in terms of idealized systems, since muscles cross multiple joints and axes of rotation and further influence remote joints through inertial coupling. It is hypothesized that distributed force feedback better represents the complex mechanical interactions of muscles, including the stresses in the musculoskeletal network born by muscle articulations, myofascial force transmission, and inertial coupling. Together with the strains of muscle fascicles measured by length feedback from muscle spindle receptors, this integrated proprioceptive feedback represents the mechanical state of the musculoskeletal system. Within the spinal cord, force feedback has excitatory and inhibitory components that coexist in various combinations based on motor task and integrated with length feedback at the premotoneuronal and motoneuronal levels. It is concluded that, in agreement with other investigators, autogenic, excitatory force feedback contributes to propulsion and weight support. It is further concluded that coexistent inhibitory force feedback, together with length feedback, functions to manage interjoint coordination and the mechanical properties of the limb in the face of destabilizing inertial forces and positive force feedback, as required by the accelerations and changing directions of both predator and prey.
NASA Astrophysics Data System (ADS)
Quarles, B.; Lissauer, Jack J.
2018-03-01
We perform long-term simulations, up to ten billion years, of closely spaced configurations of 2–6 planets, each as massive as the Earth, traveling on nested orbits about either stellar component in α Centauri AB. The innermost planet initially orbits at either the inner edge of its star’s empirical habitable zone (HZ) or the inner edge of its star’s conservative HZ. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the HZs of both stars, perturbations from the companion star require that the minimum spacing of planets in multi-planet systems within the HZs of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. The binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star. Planets on appropriately phased circumstellar orbits with initial eccentricities equal to their forced eccentricities can survive on more closely spaced orbits than those with initially circular orbits, although the required spacing remains higher than for planets orbiting single stars. A total of up to nine planets on nested prograde orbits can survive for the current age of the system within the empirical HZs of the two stars, with five of these orbiting α Centauri B and four orbiting α Centauri A.
The BGC Feedbacks Scientific Focus Area 2016 Annual Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M.; Riley, William J.; Randerson, James T.
2016-06-01
The BGC Feedbacks Project will identify and quantify the feedbacks between biogeochemical cycles and the climate system, and quantify and reduce the uncertainties in Earth System Models (ESMs) associated with those feedbacks. The BGC Feedbacks Project will contribute to the integration of the experimental and modeling science communities, providing researchers with new tools to compare measurements and models, thereby enabling DOE to contribute more effectively to future climate assessments by the U.S. Global Change Research Program (USGCRP) and the Intergovernmental Panel on Climate Change (IPCC).
Forster, Hannah; Walsh, Marianne C; O'Donovan, Clare B; Woolhead, Clara; McGirr, Caroline; Daly, E J; O'Riordan, Richard; Celis-Morales, Carlos; Fallaize, Rosalind; Macready, Anna L; Marsaux, Cyril F M; Navas-Carretero, Santiago; San-Cristobal, Rodrigo; Kolossa, Silvia; Hartwig, Kai; Mavrogianni, Christina; Tsirigoti, Lydia; Lambrinou, Christina P; Godlewska, Magdalena; Surwiłło, Agnieszka; Gjelstad, Ingrid Merethe Fange; Drevon, Christian A; Manios, Yannis; Traczyk, Iwona; Martinez, J Alfredo; Saris, Wim H M; Daniel, Hannelore; Lovegrove, Julie A; Mathers, John C; Gibney, Michael J; Gibney, Eileen R; Brennan, Lorraine
2016-06-30
Despite numerous healthy eating campaigns, the prevalence of diets high in saturated fatty acids, sugar, and salt and low in fiber, fruit, and vegetables remains high. With more people than ever accessing the Internet, Web-based dietary assessment instruments have the potential to promote healthier dietary behaviors via personalized dietary advice. The objectives of this study were to develop a dietary feedback system for the delivery of consistent personalized dietary advice in a multicenter study and to examine the impact of automating the advice system. The development of the dietary feedback system included 4 components: (1) designing a system for categorizing nutritional intakes; (2) creating a method for prioritizing 3 nutrient-related goals for subsequent targeted dietary advice; (3) constructing decision tree algorithms linking data on nutritional intake to feedback messages; and (4) developing personal feedback reports. The system was used manually by researchers to provide personalized nutrition advice based on dietary assessment to 369 participants during the Food4Me randomized controlled trial, with an automated version developed on completion of the study. Saturated fatty acid, salt, and dietary fiber were most frequently selected as nutrient-related goals across the 7 centers. Average agreement between the manual and automated systems, in selecting 3 nutrient-related goals for personalized dietary advice across the centers, was highest for nutrient-related goals 1 and 2 and lower for goal 3, averaging at 92%, 87%, and 63%, respectively. Complete agreement between the 2 systems for feedback advice message selection averaged at 87% across the centers. The dietary feedback system was used to deliver personalized dietary advice within a multi-country study. Overall, there was good agreement between the manual and automated feedback systems, giving promise to the use of automated systems for personalizing dietary advice. Clinicaltrials.gov NCT01530139; https://clinicaltrials.gov/ct2/show/NCT01530139 (Archived by WebCite at http://www.webcitation.org/6ht5Dgj8I).
Generalized fast feedback system in the SLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, L.; Allison, S.; Gromme, T.
A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLCmore » and have proven to be invaluable in stabilizing the machine.« less
Space Shuttle Orbiter auxiliary power unit status
NASA Technical Reports Server (NTRS)
Reck, M.; Loken, G.; Horton, J.; Lukens, W.; Scott, W.; Baughman, J.; Bauch, T.
1991-01-01
An overview of the United States Space Shuttle Orbiter APU, which provides power to the Orbiter vehicle hydraulic system, is presented. Three complete APU systems, each with its own separate fuel system, supply power to three dedicated hydraulic systems. These in turn provide power to all Orbiter vehicle critical flight functions including launch, orbit, reentry, and landing. The basic APU logic diagram is presented. The APU includes a hydrazine-powered turbine that drives a hydraulic pump and various accessories through a high-speed gearbox. The APU also features a sophisticated thermal management system designed to ensure safe and reliable operation in the various launch, orbit, reentry, and landing environments.
Gao, Fangzheng; Wu, Yuqiang; Zhang, Zhongcai
2015-11-01
This paper investigates the problem of finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is a feedforward-like rather than feedback-like system. This renders the existing control methods inapplicable to the control problems of the systems. A constructive design procedure for output feedback control is given. The designed controller renders that the states of closed-loop system are regulated to zero in a finite time. Two simulation examples are provided to illustrate the effectiveness of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Building sector feedbacks lead to increased energy demands
NASA Astrophysics Data System (ADS)
Hartin, C.; Link, R. P.; Patel, P.; Horowitz, R.; Clarke, L.; Mundra, A.
2017-12-01
Typically in human-earth system modeling studies, feedbacks between the earth and human systems are analyzed by passing information between independent models, leading to data errors and poor reproducibility. In this study we explore the two-way feedbacks between the human and earth systems in the building sector of GCAM, an integrated assessment model and, its fully-integrated climate component, Hector. While there is a general agreement in the literature that increasing temperatures will increase cooling energy demands and decrease heating energy demands, there has been no fully-coupled analysis of this dynamic that would, for example, account for the feedbacks on hydrofluorocarbons from increased cooling demands. Using a statistical relationship between global mean temperature change and heating and cooling degree days, we find that the feedbacks on hydrofluorocarbons lead to an increase in global mean temperature of between 0.16 to 0.27 °C in 2100. Demands for electricity increase by about 10% in Africa, while demands decrease in Canada by about 3.0% when taking into account these feedbacks. While the feedbacks between building energy demand and global mean temperature are modest by themselves, this study prompts future research on coupled human-earth system feedbacks, in particular in regards to land, water, and other energy infrastructure.
NASA Astrophysics Data System (ADS)
Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas
2018-03-01
Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.
NASA Astrophysics Data System (ADS)
Zhu, Wei; Chen, Qianghua; Wang, Yanghong; Luo, Huifu; Wu, Huan; Ma, Binwu
2018-06-01
In the laser self-mixing interference vibration measurement system, the self mixing interference signal is usually weak so that it can be hardly distinguished from the environmental noise. In order to solve this problem, we present a self-mixing interference optical path with a pre-feedback mirror, a pre-feedback mirror is added between the object and the collimator lens, corresponding feedback light enters into the inner cavity of the laser and the interference by the pre-feedback mirror occurs. The pre-feedback system is established after that. The self-mixing interference theoretical model with a pre-feedback based on the F-P model is derived. The theoretical analysis shows that the amplitude of the intensity of the interference signal can be improved by 2-4 times. The influence factors of system are also discussed. The experiment results show that the amplitude of the signal is greatly improved, which agrees with the theoretical analysis.
NASA Astrophysics Data System (ADS)
Yadikin, D.; Brunsell, P. R.; Drake, J. R.
2006-01-01
An active feedback system is required for long pulse operation of the reversed field pinch (RFP) device to suppress resistive wall modes (RWMs). A general feature of a feedback system using a discrete active coil array is a coupling effect which arises when a set of side band modes determined by the number of active coils is produced. Recent results obtained on the EXTRAP T2R RFP demonstrated the suppression of independent m = 1 RWMs using an active feedback system with a two-dimensional array of discrete active coils in the poloidal and toroidal directions. One of the feedback algorithms used is the intelligent shell feedback scheme. Active feedback systems having different number of active coils in the poloidal (Mc) and toroidal (Nc) directions (Mc × Nc = 2 × 32 and Mc × Nc = 4 × 16) are studied. Different side band effects are seen for these configurations. A significant prolongation of the plasma discharge is achieved for the intelligent shell feedback scheme using the 2 × 32 active coil configuration. This is attributed to the side band sets including only one of the dominant unstable RWMs and avoiding coupling to resonant modes. Analog proportional-integral-derivative controllers are used in the feedback system. Regimes with different values of the proportional gain are studied. The requirement of the proportional-integral control for low proportional gain and proportional-derivative control for high proportional gain is seen in the experiments.
Communications satellites in non-geostationary orbits
NASA Technical Reports Server (NTRS)
Price, Kent M.; Doong, Wen; Nguyen, Tuan Q.; Turner, Andrew E.; Weyandt, Charles
1988-01-01
The design of a satellite communications system in an orbit lower than GEO is described. Two sun-synchronous orbits which lie in the equatorial plane have been selected: (1) the apogee at constant time-of-day equatorial orbit, a highly eccentric orbit with five revolutions per day, which allows 77-135 percent more satellite mass to be placed in orbit than for GEO; and (2) the sun-synchronous 12-hour equatorial orbit, a circular orbit with two revolutions per day, which allows 23-29 percent more mass. The results of a life cycle economic analysis illustrate that nongeostationary satellite systems could be competitive with geostationary satellite systems.
A radiation hardened digital fluxgate magnetometer for space applications
NASA Astrophysics Data System (ADS)
Miles, D. M.; Bennest, J. R.; Mann, I. R.; Millling, D. K.
2013-09-01
Space-based measurements of Earth's magnetic field are required to understand the plasma processes responsible for energising particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency's (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback from two cascaded pulse-width modulators combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT/√Hz at 1 Hz. This performance is comparable with other recent digital fluxgates for space applications, most of which use some form of sigma-delta (ΣΔ) modulation for feedback and omit analog temperature compensation. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory.
NASA Astrophysics Data System (ADS)
Noda, S.; Kodera, K.; Deushi, M.; Kitoh, A.; Mizuta, R.; Yoshida, K.; Murakami, S.; Adachi, Y.; Yoden, S.
2017-12-01
A series of numerical simulations of the Last Glacial Maximum (21 kyr B.P.) climate are performed by using an Earth System Model of the Meteorological Research Institute of the Japan Meteorological Agency to investigate the impact of stratospheric ozone profile on the surface climate with decreased CO2 condition and different orbital parameters. The contribution of the interactive ozone chemistry reveals a significant anomaly of +0.5 K (approximately 20 %) in the tropics and up to +1.5 K in high-latitudes for the annual mean zonal mean surface air temperature compared with those of the corresponding experiments with a prescribed ozone profile for preindustrial simulation of the fifth Coupled Model Intercomparison Project (CMIP5). In the tropics, this mitigation of global cooling is related to longwave radiative feedbacks associated with circulation-driven increases in lower stratospheric ozone and related increase in stratospheric water vapor and related decrease in cirrus cloud. The relations are opposite signs to and consistent with those of a global warming simulation. In high-latitudes, the polar amplification of mitigation of cooling associated with the change of sea ice area that is the same sign to and consistent with our previous paleoclimate simulation in the mid-Holocene (6 kyr B.P.). We recommend that climate models include sea ice and ozone profile that are consistent with CO2 concentration.
Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments
NASA Astrophysics Data System (ADS)
Vaquero Escribano, Tatiana Mar
Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems. In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is also examined. To add versatility to the proposed design method, a system translation technique enables the straightforward transition of solutions from the Earth-Moon system to any Sun-planet or planet-moon three-body system. The circular restricted three-body problem serves as a basis to quickly generate solutions that meet specific requirements, but candidate transfer trajectories are then transitioned to an ephemeris model for validation.
Feedback in Action--The Mechanism of the Iris.
ERIC Educational Resources Information Center
Pingnet, B.; And Others
1988-01-01
Describes two demonstration experiments. Outlines a demonstration of the general principle of positive and negative feedback and the influence of time delays in feedback circuits. Elucidates the principle of negative feedback with a model of the iris of the eye. Emphasizes the importance of feedback in biological systems. (CW)
ERIC Educational Resources Information Center
Son, Jiseong; Kim, Jeong-Dong; Na, Hong-Seok; Baik, Doo-Kwon
2016-01-01
In this research, we propose a Social Learning Management System (SLMS) enabling real-time and reliable feedback for incorrect answers by learners using a social network service (SNS). The proposed system increases the accuracy of learners' assessment results by using a confidence scale and a variety of social feedback that is created and shared…
First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring
Yang, Xi; Tian, Yuke; Yu, Li Hua; ...
2018-04-01
In order to realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fastmore » corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.« less
First demonstration of the fast-to-slow corrector current shift in the NSLS-II storage ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Tian, Yuke; Yu, Li Hua
In order to realize the full benefits of the high brightness and ultra-small beam sizes of NSLS-II, it is essential that the photon beams are exceedingly stable. In the circumstances of implementing local bumps, changing ID gaps, and long term drifting, the fast orbit feedback (FOFB) requires shifting the fast corrector strengths to the slow correctors to prevent the fast corrector saturation and to make the beam orbit stable in the sub-micron level. As the result, a reliable and precise technique of fast-to-slow corrector strength shift has been developed and tested at NSLS-II. This technique is based on the fastmore » corrector response to the slow corrector change when the FOFB is on. In this article, the shift technique is described and the result of proof-of-principle experiment carried out at NSLS-II is presented. The maximum fast corrector current was reduced from greater than 0.45 A to less than 0.04 A with the orbit perturbation within ±1 μm.« less
Design study of a feedback control system for the Multicyclic Flap System rotor (MFS)
NASA Technical Reports Server (NTRS)
Weisbrich, R.; Perley, R.; Howes, H.
1977-01-01
The feasibility of automatically providing higher harmonic control to a deflectable control flap at the tip of a helicopter rotor blade through feedback of selected independent parameter was investigated. Control parameters were selected for input to the feedback system. A preliminary circuit was designed to condition the selected parameters, weigh limiting factors, and provide a proper output signal to the multi-cyclic control actuators. Results indicate that feedback control for the higher harmonic is feasible; however, design for a flight system requires an extension of the present analysis which was done for one flight condition - 120 kts, 11,500 lbs gross weight and level flight.
A hybrid approach to near-optimal launch vehicle guidance
NASA Technical Reports Server (NTRS)
Leung, Martin S. K.; Calise, Anthony J.
1992-01-01
This paper evaluates a proposed hybrid analytical/numerical approach to launch-vehicle guidance for ascent to orbit injection. The feedback-guidance approach is based on a piecewise nearly analytic zero-order solution evaluated using a collocation method. The zero-order solution is then improved through a regular perturbation analysis, wherein the neglected dynamics are corrected in the first-order term. For real-time implementation, the guidance approach requires solving a set of small dimension nonlinear algebraic equations and performing quadrature. Assessment of performance and reliability are carried out through closed-loop simulation for a vertically launched 2-stage heavy-lift capacity vehicle to a low earth orbit. The solutions are compared with optimal solutions generated from a multiple shooting code. In the example the guidance approach delivers over 99.9 percent of optimal performance and terminal constraint accuracy.
Karim, Azad S; Sternbach, Joel M; Bender, Edward M; Zwischenberger, Joseph B; Meyerson, Shari L
Residents frequently report inadequate feedback both in quantity and quality. The study evaluates the quality of faculty feedback about operative performance given using an app-based system. Residents requested operative performance evaluation from faculty on a real-time basis using the "Zwisch Me!!" mobile application which allows faculty to provide brief written feedback. Qualitative analysis of feedback was performed using grounded theory. The 7 academic medical centers with thoracic surgery training programs. Volunteer thoracic surgery residents in both integrated and traditional training pathways and their affiliated cardiothoracic faculty. Residents (n = 33) at 7 institutions submitted a total of 596 evaluations to faculty (n = 48). Faculty acknowledged the evaluation request in 476 cases (80%) and in 350 cases (74%) provided written feedback. Initial open coding generated 12 categories of feedback type. We identified 3 overarching themes. The first theme was the tone of the feedback. Encouraging elements were identified in 162 comments (46%) and corrective elements in 230 (65%). The second theme was the topic of the feedback. Surgical technique was the most common category at 148 comments (42.2%) followed by preparation for case (n = 69, 19.7%). The final theme was the specificity of the feedback. Just over half of comments (n = 190, 54.3%) contained specific feedback, which could be applied to future cases. However, 51 comments (14.6%) contained no useful information for the learners. An app-based system resulted in thoracic surgery residents receiving identifiable feedback in a high proportion of cases. In over half of comments the feedback was specific enough to allow improvement. Feedback was better quality when addressing error prevention and surgical technique but was less useful when addressing communication, flow of the case, and assisting. Faculty development around feedback should focus on making feedback specific and actionable, avoiding case descriptions, or simple platitudes. Copyright © 2017. Published by Elsevier Inc.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator.
González Ochoa, Héctor O; Perales, Gualberto Solís; Epstein, Irving R; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator
NASA Astrophysics Data System (ADS)
González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
NASA Astrophysics Data System (ADS)
Brovkin, V.; Lorenz, S.; Raddatz, T.; Claussen, M.; Dallmeyer, A.
2017-12-01
One of the interesting periods to investigate a climatic role of terrestrial biosphere is the Holocene, when, despite of the relatively steady global climate, the atmospheric CO2 grew by about 20 ppm from 7 kyr BP to pre-industrial. We use a new setup of the Max Planck Institute Earth System Model MPI-ESM1 consisting of the latest version of the atmospheric model ECHAM6, including the land surface model JSBACH3 with carbon cycle and vegetation dynamics, coupled to the ocean circulation model MPI-OM, which includes the HAMOCC model of ocean biogeochemistry. The model has been run for several simulations over the Holocene period of the last 8000 years under the forcing data sets of orbital insolation, atmospheric greenhouse gases, volcanic aerosols, solar irradiance and stratospheric ozone, as well as land-use changes. In response to this forcing, the land carbon storage increased by about 60 PgC between 8 and 4 kyr BP, stayed relatively constant until 2 kyr BP, and decreased by about 90 PgC by 1850 AD due to land use changes. At 8 kyr BP, vegetation cover was much denser in Africa, mainly due to increased rainfall in response to the orbital forcing. Boreal forests moved northward in both, North America and Eurasia. The boreal forest expansion in North America is much less pronounced than in Eurasia. Simulated physical ocean fields, including surface temperatures and meridional overturning, do not change substantially in the Holocene. Carbonate ion concentration in deep ocean decreases in both, prescribed and interactive CO2simulations. Comparison with available proxies for terrestrial vegetation and for the ocean carbonate chemistry will be presented. Vegetation and soil carbon changes significantly affected atmospheric CO2 during the periods of strong volcanic eruptions. In response to the eruption-caused cooling, the land initially stores more carbon as respiration decreases, but then it releases even more carbon die to productivity decrease. This decadal-scale variability helps to quantify the vegetation and land carbon feedbacks during the past periods when the temporal resolution of the ice-core CO2 record is not sufficient to capture fast CO2 variations. From a set of Holocene simulations with prescribed or interactive atmospheric CO2, we get estimates of climate-carbon feedback useful for future climate studies.
Lehrer, Paul; Eddie, David
2013-06-01
Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.
Adaptive feedback synchronization of a unified chaotic system
NASA Astrophysics Data System (ADS)
Lu, Junan; Wu, Xiaoqun; Han, Xiuping; Lü, Jinhu
2004-08-01
This Letter further improves and extends the work of Wang et al. [Phys. Lett. A 312 (2003) 34]. In detailed, the linear feedback synchronization and adaptive feedback synchronization with only one controller for a unified chaotic system are discussed here. It is noticed that this unified system contains the noted Lorenz and Chen systems. Two chaotic synchronization theorems are attained. Also, numerical simulations are given to show the effectiveness of these methods.
2001-07-01
Specifically, it gives leaders an azimuth check in their self-awareness, Evaluating feedback systems by civil service employees 16 gives feedback to assist ...constructive feedback and that managers needed to be taught how to communicate with employees . Currently, DOE has run this program since 1996 and...providing employees with developmental information. Information that would be used to assist leaders in improving in both their managerial and
The Solar Poynting-Robertson Effect On Particles Orbiting Solar System Bodies: Circular Orbits
NASA Technical Reports Server (NTRS)
Rubincam, David P.
2013-01-01
The Poynting-Robertson effect from sunlight impinging directly on a particle which orbits a Solar System body (planet, asteroid, comet) is considered from the Sun's rest frame. There appear to be no significant first-order terms in V(sub b)/c for circular orbits, where V(sub b) is the body's speed in its orbit about the Sun and c is the speed of light, when the particle's orbital semimajor axis is much smaller than the body's orbital semimajor axis about the Sun as is mainly the case in the Solar System.
Understanding the role of ecohydrological feedbacks in ecosystem state change in drylands
Turnbull, L.; Wilcox, B.P.; Belnap, J.; Ravi, S.; D'Odorico, P.; Childers, D.; Gwenzi, W.; Okin, G.; Wainwright, J.; Caylor, K.K.; Sankey, T.
2012-01-01
Ecohydrological feedbacks are likely to be critical for understanding the mechanisms by which changes in exogenous forces result in ecosystem state change. We propose that in drylands, the dynamics of ecosystem state change are determined by changes in the type (stabilizing vs amplifying) and strength of ecohydrological feedbacks following a change in exogenous forces. Using a selection of five case studies from drylands, we explore the characteristics of ecohydrological feedbacks and resulting dynamics of ecosystem state change. We surmise that stabilizing feedbacks are critical for the provision of plant-essential resources in drylands. Exogenous forces that break these stabilizing feedbacks can alter the state of the system, although such changes are potentially reversible if strong amplifying ecohydrological feedbacks do not develop. The case studies indicate that if amplifying ecohydrological feedbacks do develop, they are typically associated with abiotic processes such as runoff, erosion (by wind and water), and fire. These amplifying ecohydrological feedbacks progressively modify the system in ways that are long-lasting and possibly irreversible on human timescales.
Astronomically Forced Hydrology of the Late Cretaceous Sub-tropical Potosí Basin, Bolivia
NASA Astrophysics Data System (ADS)
Tasistro-Hart, A.; Maloof, A. C.; Schoene, B.; Eddy, M. P.
2017-12-01
Orbital forcings paced the ice ages of the Pleistocene, demonstrating that periodic variations in the latitudinal distribution of insolation amplified by ice-albedo feedbacks can guide global climate. How these forcings operate in the hot-houses that span most of the planet's history, however, is unknown. The lacustrine El Molino formation of the late Cretaceous-early Paleogene Potosí Basin in present-day Bolivia contains carbonate-mud parasequences that record fluctuating hydrological conditions from 73 to 63 Ma. This study presents the first cyclostratigraphic analysis using high-resolution drone-derived imagery and 3D elevation models, combined with conventional stratigraphic measurements and magnetic susceptibility data. The drone-derived data are integrated over the entire outcrop at two field areas using a novel application of stratigraphic potential field modeling that increases signal-to-noise ratios prior to spectral analysis. We demonstrate that these parasequences exhibit significant periodicities consistent with eccentricity (400 and 100 kyr), obliquity (50 kyr, 40 kyr, and 29 kyr), precession (17-23 kyr), and semi-precession (9-11 kyr). New U-Pb ID-TIMS zircon ages from intercalacted ash beds corroborate the interpreted sedimentation rates at two sites, indicating that the Potosí Basin contains evidence for hot-house astronomical forcing of sub-tropical lacustrine hydrology. Global climate simulations of late Cretaceous orbital end-member configurations demonstrate precessional-eccentricity and obliquity driven modulation of basin hydrology. In model simulations, the forcings drive long-term shifts in the location of the intertropical convergence zone, changing precipitation along the northern extent of the Potosí Basin's catchment area. This study is the first to demonstrate orbital forcing of a lacustrine system during the Maastrichtian and could ultimately contribute to a precise age for the Cretaceous-Paleogene boundary.
Effects of Immediate Instructor Feedback on Group Discussion Participants.
ERIC Educational Resources Information Center
Jurma, William E.; Froelich, Deidre L.
1984-01-01
Investigated the effects of immediate instructor feedback, via a video display system (ComET system), on the performance of group discussion participants. Found that receivers of immediate feedback were more satisfied with their performances, participated in discussions of higher quality, and were no more anxious than individuals not receiving…
Li, Guanglei; Wang, Junbo; Chen, Deyong; Chen, Lianhong; Xu, Chao
2017-01-01
Electrochemical seismic sensors are key components in monitoring ground vibration, which are featured with high performances in the low-frequency domain. However, conventional electrochemical seismic sensors suffer from low repeatability due to limitations in fabrication and limited bandwidth. This paper presents a micro-fabricated electrochemical seismic sensor with a force-balanced negative feedback system, mainly composed of a sensing unit including porous sensing micro electrodes immersed in an electrolyte solution and a feedback unit including a feedback circuit and a feedback magnet. In this study, devices were designed, fabricated, and characterized, producing comparable performances among individual devices. In addition, bandwidths and total harmonic distortions of the proposed devices with and without a negative feedback system were quantified and compared as 0.005–20 (feedback) Hz vs. 0.3–7 Hz (without feedback), 4.34 ± 0.38% (without feedback) vs. 1.81 ± 0.31% (feedback)@1 Hz@1 mm/s and 3.21 ± 0.25% (without feedback) vs. 1.13 ± 0.19% (feedback)@5 Hz@1 mm/s (ndevice = 6, n represents the number of the tested devices), respectively. In addition, the performances of the proposed MEMS electrochemical seismometers with feedback were compared to a commercial electrochemical seismic sensor (CME 6011), producing higher bandwidth (0.005–20 Hz vs. 0.016–30 Hz) and lower self-noise levels (−165.1 ± 6.1 dB vs. −137.7 dB at 0.1 Hz, −151.9 ± 7.5 dB vs. −117.8 dB at 0.02 Hz (ndevice = 6)) in the low-frequency domain. Thus, the proposed device may function as an enabling electrochemical seismometer in the fields requesting seismic monitoring at the ultra-low frequency domain. PMID:28902150
The role of auditory and kinaesthetic feedback mechanisms on phonatory stability in children.
Rathna Kumar, S B; Azeem, Suhail; Choudhary, Abhishek Kumar; Prakash, S G R
2013-12-01
Auditory feedback plays an important role in phonatory control. When auditory feedback is disrupted, various changes are observed in vocal motor control. Vocal intensity and fundamental frequency (F0) levels tend to increase in response to auditory masking. Because of the close reflexive links between the auditory and phonatory systems, it is likely that phonatory stability may be disrupted when auditory feedback is disrupted or altered. However, studies on phonatory stability under auditory masking condition in adult subjects showed that most of the subjects maintained normal levels of phonatory stability. The authors in the earlier investigations suggested that auditory feedback is not the sole contributor to vocal motor control and phonatory stability, a complex neuromuscular reflex system known as kinaesthetic feedback may play a role in controlling phonatory stability when auditory feedback is disrupted or lacking. This proposes the need to further investigate this phenomenon as to whether children show similar patterns of phonatory stability under auditory masking since their neuromotor systems are still at developmental stage, less mature and are less resistant to altered auditory feedback than adults. A total of 40 normal hearing and speaking children (20 male and 20 female) between the age group of 6 and 8 years participated as subjects. The acoustic parameters such as shimmer, jitter and harmonic-to-noise ratio (HNR) were measures and compared between no masking condition (0 dB ML) and masking condition (90 dB ML). Despite the neuromotor systems being less mature in children and less resistant than adults to altered auditory feedback, most of the children in the study demonstrated increased phonatory stability which was reflected by reduced shimmer, jitter and increased HNR values. This study implicates that most of the children demonstrate well established patterns of kinaesthetic feedback, which might have allowed them to maintain normal levels of vocal motor control even in the presence of disturbed auditory feedback. Hence, it can be concluded that children also exhibit kinaesthetic feedback mechanism to control phonatory stability when auditory feedback is disrupted which in turn highlights the importance of kinaesthetic feedback to be included in the therapeutic/intervention approaches for children with hearing and neurogenic speech deficits.
Analysis of Feedback in after Action Reviews
1987-06-01
CONNTSM Page INTRODUCTIUN . . . . . . . . . . . . . . . . . . . A Perspective on Feedback. . ....... • • ..... • 1 Overviev of %,•urrent Research...part of their training program . The AAR is in marked contrast to the critique method of feedback which is often used in military training. The AAR...feedback is task-inherent feedback. Task-inherent feedback refers to human-machine interacting systems, e.g., computers , where in a visual tracking task
Effects of Web-Based Feedback on Students' Learning
ERIC Educational Resources Information Center
van Kol, Simone; Rietz, Christian
2016-01-01
Feedback plays an important role in supporting students' learning process. Nonetheless, providing feedback is still rather unusual in higher education. Moreover, research on the design of ideal feedback as well as its effects is rare. In order to contribute to the development of this field, a web-based feedback system was implemented in a lecture…
ERIC Educational Resources Information Center
Harbusch, Karin; Cameran, Christel-Joy; Härtel, Johannes
2014-01-01
We present a new feedback strategy implemented in a natural language generation-based e-learning system for German as a second language (L2). Although the system recognizes a large proportion of the grammar errors in learner-produced written sentences, its automatically generated feedback only addresses errors against rules that are relevant at…
Localization of dysfunction in major depressive disorder: Prefrontal cortex and amygdala
Murray, Elisabeth A.; Wise, Steven P.; Drevets, Wayne C.
2010-01-01
Despite considerable effort, the localization of dysfunction in major depressive disorder (MDD) remains poorly understood. We present a hypothesis about its localization that builds on recent findings from primate neuropsychology. The hypothesis has four key components: a deficit in the valuation of ‘self’ underlies the core disorder in MDD; the medial frontal cortex represents ‘self’; interactions between the amygdala and cortical representations update their valuation; and inefficiency in using positive feedback by orbital prefrontal cortex contributes to MDD. PMID:21111403
NASA Technical Reports Server (NTRS)
Garzia, M. R.; Loparo, K. A.; Martin, C. F.
1982-01-01
This paper looks at the structure of the solution of a matrix Riccati differential equation under a predefined group of transformations. The group of transformations used is an expanded form of the feedback group. It is shown that this group of transformations is a subgroup of the symplectic group. The orbits of the Riccati differential equation under the action of this group are studied and it is seen how these techniques apply to a decentralized optimal control problem.
RemoveDEBRIS: An in-orbit active debris removal demonstration mission
NASA Astrophysics Data System (ADS)
Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.
2016-10-01
Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.
Propulsion Options for the Global Precipitation Measurement Core Satellite
NASA Technical Reports Server (NTRS)
Cardiff, Eric H.; Davis, Gary T.; Folta, David C.
2003-01-01
This study was conducted to evaluate several propulsion system options for the Global Precipitation Measurement (GPM) core satellite. Orbital simulations showed clear benefits for the scientific data to be obtained at a constant orbital altitude rather than with a decay/reboost approach. An orbital analysis estimated the drag force on the satellite will be 1 to 12 mN during the five-year mission. Four electric propulsion systems were identified that are able to compensate for these drag forces and maintain a circular orbit. The four systems were the UK-10/TS and the NASA 8 cm ion engines, and the ESA RMT and RITl0 EVO radio-frequency ion engines. The mass, cost, and power requirements were examined for these four systems. The systems were also evaluated for the transfer time from the initial orbit of 400 x 650 km altitude orbit to a circular 400 km orbit. The transfer times were excessive, and as a consequence a dual system concept (with a hydrazine monopropellant system for the orbit transfer and electric propulsion for drag compensation) was examined. Clear mass benefits were obtained with the dual system, but cost remains an issue because of the larger power system required for the electric propulsion system. An electrodynamic tether was also evaluated in this trade study.
High spin systems with orbital degeneracy.
Shen, Shun-Qing; Xie, X C; Zhang, F C
2002-01-14
High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighboring bonds interact antiferromagnetically. Possible relevance to the transition metal oxides is discussed.
Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?
NASA Astrophysics Data System (ADS)
Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.
2018-01-01
Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.
Connection stiffness and dynamical docking process of flux pinned spacecraft modules
NASA Astrophysics Data System (ADS)
Lu, Yong; Zhang, Mingliang; Gao, Dong
2014-02-01
This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improved image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.
Connection stiffness and dynamical docking process of flux pinned spacecraft modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Yong; Zhang, Mingliang, E-mail: niudun12@126.com; Gao, Dong
2014-02-14
This paper describes a novel kind of potential flux pinned docking system that consists of guidance navigation and control system, the traditional extrusion type propulsion system, and a flux pinned docking interface. Because of characteristics of passive stability of flux pinning, the docking control strategy of flux pinned docking system only needs a series of sequential control rather than necessary active feedback control, as well as avoidance of hazardous collision accident. The flux pinned force between YBaCuO (YBCO) high temperature superconductor bulk and permanent magnet is able to be given vent based on the identical current loop model and improvedmore » image dipole model, which can be validated experimentally. Thus, the connection stiffness between two flux pinned spacecraft modules can be calculated based on Hooke's law. This connection stiffness matrix at the equilibrium position has the positive definite performance, which can validate the passively stable connection of two flux pinned spacecraft modules theoretically. Furthermore, the relative orbital dynamical equation of two flux pinned spacecraft modules can be established based on Clohessy-Wiltshire's equations and improved image dipole model. The dynamical docking process between two flux pinned spacecraft modules can be obtained by way of numerical simulation, which suggests the feasibility of flux pinned docking system.« less
Solar Sail Attitude Control Performance Comparison
NASA Technical Reports Server (NTRS)
Bladt, Jeff J.; Lawrence, Dale A.
2005-01-01
Performance of two solar sail attitude control implementations is evaluated. One implementation employs four articulated reflective vanes located at the periphery of the sail assembly to generate control torque about all three axes. A second attitude control configuration uses mass on a gimbaled boom to alter the center-of-mass location relative to the center-of-pressure producing roll and pitch torque along with a pair of articulated control vanes for yaw control. Command generation algorithms employ linearized dynamics with a feedback inversion loop to map desired vehicle attitude control torque into vane and/or gimbal articulation angle commands. We investigate the impact on actuator deflection angle behavior due to variations in how the Jacobian matrix is incorporated into the feedback inversion loop. Additionally, we compare how well each implementation tracks a commanded thrust profile, which has been generated to follow an orbit trajectory from the sun-earth L1 point to a sub-L1 station.
Burn Control Mechanisms in Tokamaks
NASA Astrophysics Data System (ADS)
Hill, M. A.; Stacey, W. M.
2015-11-01
Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.
The Dependence of the Ice-Albedo Feedback on Atmospheric Properties
Selsis, F.; Kitzmann, D.; Rauer, H.
2013-01-01
Abstract Ice-albedo feedback is a potentially important destabilizing effect for the climate of terrestrial planets. It is based on the positive feedback between decreasing surface temperatures, an increase of snow and ice cover, and an associated increase in planetary albedo, which then further decreases surface temperature. A recent study shows that for M stars, the strength of the ice-albedo feedback is reduced due to the strong spectral dependence of stellar radiation and snow/ice albedos; that is, M stars primarily emit in the near IR, where the snow and ice albedo is low, and less in the visible, where the snow/ice albedo is high. This study investigates the influence of the atmosphere (in terms of surface pressure and atmospheric composition) on this feedback, since an atmosphere was neglected in previous studies. A plane-parallel radiative transfer model was used for the calculation of planetary albedos. We varied CO2 partial pressures as well as the H2O, CH4, and O3 content in the atmosphere for planets orbiting Sun-like and M type stars. Results suggest that, for planets around M stars, the ice-albedo effect is significantly reduced, compared to planets around Sun-like stars. Including the effects of an atmosphere further suppresses the sensitivity to the ice-albedo effect. Atmospheric key properties such as surface pressure, but also the abundance of radiative trace gases, can considerably change the strength of the ice-albedo feedback. For dense CO2 atmospheres of the order of a few to tens of bar, atmospheric rather than surface properties begin to dominate the planetary radiation budget. At high CO2 pressures, the ice-albedo feedback is strongly reduced for planets around M stars. The presence of trace amounts of H2O and CH4 in the atmosphere also weakens the ice-albedo effect for both stellar types considered. For planets around Sun-like stars, O3 could also lead to a very strong decrease of the ice-albedo feedback at high CO2 pressures. Key Words: Atmospheric compositions—Extrasolar terrestrial planets—Snowball Earth—Planetary atmospheres—Radiative transfer. Astrobiology 13, 899–909. PMID:24111995
Xu, Junkai; Bao, Tian; Lee, Ung Hee; Kinnaird, Catherine; Carender, Wendy; Huang, Yangjian; Sienko, Kathleen H; Shull, Peter B
2017-10-11
Postural balance and gait training is important for treating persons with functional impairments, however current systems are generally not portable and are unable to train different types of movements. This paper describes a proof-of-concept design of a configurable, wearable sensing and feedback system for real-time postural balance and gait training targeted for home-based treatments and other portable usage. Sensing and vibrotactile feedback are performed via eight distributed, wireless nodes or "Dots" (size: 22.5 × 20.5 × 15.0 mm, weight: 12.0 g) that can each be configured for sensing and/or feedback according to movement training requirements. In the first experiment, four healthy older adults were trained to reduce medial-lateral (M/L) trunk tilt while performing balance exercises. When trunk tilt deviated too far from vertical (estimated via a sensing Dot on the lower spine), vibrotactile feedback (via feedback Dots placed on the left and right sides of the lower torso) cued participants to move away from the vibration and back toward the vertical no feedback zone to correct their posture. A second experiment was conducted with the same wearable system to train six healthy older adults to alter their foot progression angle in real-time by internally or externally rotating their feet while walking. Foot progression angle was estimated via a sensing Dot adhered to the dorsal side of the foot, and vibrotactile feedback was provided via feedback Dots placed on the medial and lateral sides of the mid-shank cued participants to internally or externally rotate their foot away from vibration. In the first experiment, the wearable system enabled participants to significantly reduce trunk tilt and increase the amount of time inside the no feedback zone. In the second experiment, all participants were able to adopt new gait patterns of internal and external foot rotation within two minutes of real-time training with the wearable system. These results suggest that the configurable, wearable sensing and feedback system is portable and effective for different types of real-time human movement training and thus may be suitable for home-based or clinic-based rehabilitation applications.
Inverse free steering law for small satellite attitude control and power tracking with VSCMGs
NASA Astrophysics Data System (ADS)
Malik, M. S. I.; Asghar, Sajjad
2014-01-01
Recent developments in integrated power and attitude control systems (IPACSs) for small satellite, has opened a new dimension to more complex and demanding space missions. This paper presents a new inverse free steering approach for integrated power and attitude control systems using variable-speed single gimbal control moment gyroscope. The proposed inverse free steering law computes the VSCMG steering commands (gimbal rates and wheel accelerations) such that error signal (difference in command and output) in feedback loop is driven to zero. H∞ norm optimization approach is employed to synthesize the static matrix elements of steering law for a static state of VSCMG. Later these matrix elements are suitably made dynamic in order for the adaptation. In order to improve the performance of proposed steering law while passing through a singular state of CMG cluster (no torque output), the matrix element of steering law is suitably modified. Therefore, this steering law is capable of escaping internal singularities and using the full momentum capacity of CMG cluster. Finally, two numerical examples for a satellite in a low earth orbit are simulated to test the proposed steering law.
General view of the Orbiter Discovery in the Orbiter Processing ...
General view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center showing the payload bay doors open exposing the heat-dissipating radiator panels located on the inside of the payload bay doors. Also in the view is the boom portion of the boom sensor system deployed as part of the return to flight procedures after STS-107 to inspect the orbiter's thermal protection system. The Remote Manipulator System, the "Canadarm", and the airlock are seen in the background of the image. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Stability of Multi-Planet Systems in the Alpha Centauri System
NASA Technical Reports Server (NTRS)
Lissauer, Jack J.
2017-01-01
We evaluate the extent of the regions within the alpha Centauri AB star system where small planets are able to orbit for billion-year timescales (Quarles & Lissauer 2016, Astron. J. 151, 111), as well as how closely-spaced planetary orbits can be within those regions in which individual planets can survive. Although individual planets on low inclination, low eccentricity, orbits can survive throughout the habitable zones of both stars, perturbations from the companion star imply that the spacing of planets in multi-planet systems within the habitable zones of each star must be significantly larger than the spacing of similar multi-planet systems orbiting single stars in order to be long-lived. Because the binary companion induces a forced eccentricity upon the orbits of planets in orbit around either star, appropriately-aligned circumstellar orbits with small initial eccentricities are stable to slightly larger initial semimajor axes than are initially circular orbits. Initial eccentricities close to forced eccentricities can have a much larger affect on how closely planetary orbits can be spaced, and therefore on how many planets may remain in the habitable zones, although the required spacing remains significantly higher than for planets orbiting single stars.
Cosmological simulations of dwarf galaxies with cosmic ray feedback
NASA Astrophysics Data System (ADS)
Chen, Jingjing; Bryan, Greg L.; Salem, Munier
2016-08-01
We perform zoom-in cosmological simulations of a suite of dwarf galaxies, examining the impact of cosmic rays (CRs) generated by supernovae, including the effect of diffusion. We first look at the effect of varying the uncertain CR parameters by repeatedly simulating a single galaxy. Then we fix the comic ray model and simulate five dwarf systems with virial masses range from 8 to 30 × 1010 M⊙. We find that including CR feedback (with diffusion) consistently leads to disc-dominated systems with relatively flat rotation curves and constant star formation rates. In contrast, our purely thermal feedback case results in a hot stellar system and bursty star formation. The CR simulations very well match the observed baryonic Tully-Fisher relation, but have a lower gas fraction than in real systems. We also find that the dark matter cores of the CR feedback galaxies are cuspy, while the purely thermal feedback case results in a substantial core.
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
NASA Technical Reports Server (NTRS)
Ostroff, A. J.
1973-01-01
Some of the major difficulties associated with large orbiting astronomical telescopes are the cost of manufacturing the primary mirror to precise tolerances and the maintaining of diffraction-limited tolerances while in orbit. One successfully demonstrated approach for minimizing these problem areas is the technique of actively deforming the primary mirror by applying discrete forces to the rear of the mirror. A modal control technique, as applied to active optics, has previously been developed and analyzed. The modal control technique represents the plant to be controlled in terms of its eigenvalues and eigenfunctions which are estimated via numerical approximation techniques. The report includes an extension of previous work using the modal control technique and also describes an optimal feedback controller. The equations for both control laws are developed in state-space differential form and include such considerations as stability, controllability, and observability. These equations are general and allow the incorporation of various mode-analyzer designs; two design approaches are presented. The report also includes a technique for placing actuator and sensor locations at points on the mirror based upon the flexibility matrix of the uncontrolled or unobserved modes of the structure. The locations selected by this technique are used in the computer runs which are described. The results are based upon three different initial error distributions, two mode-analyzer designs, and both the modal and optimal control laws.
Thrust control system design of ducted rockets
NASA Astrophysics Data System (ADS)
Chang, Juntao; Li, Bin; Bao, Wen; Niu, Wenyu; Yu, Daren
2011-07-01
The investigation of the thrust control system is aroused by the need for propulsion system of ducted rockets. Firstly the dynamic mathematical models of gas flow regulating system, pneumatic servo system and ducted rocket engine were established and analyzed. Then, to conquer the discussed problems of thrust control, the idea of information fusion was proposed to construct a new feedback variable. With this fused feedback variable, the thrust control system was designed. According to the simulation results, the introduction of the new fused feedback variable is valid in eliminating the contradiction between rapid response and stability for the thrust control system of ducted rockets.
ERIC Educational Resources Information Center
Burrows, Steven; Shortis, Mark
2011-01-01
Online marking and feedback systems are critical for providing timely and accurate feedback to students and maintaining the integrity of results in large class teaching. Previous investigations have involved much in-house development and more consideration is needed for deploying or customising off the shelf solutions. Furthermore, keeping up to…
ERIC Educational Resources Information Center
Case, Stephen
2007-01-01
A reconfigured and realigned system of assessment feedback was implemented with undergraduates taking criminology modules at Swansea University. The reformulated system integrated explicit engagement with assessment criteria in feedback given on an electronic template form with the use of a statement bank and the offer of follow-up, feedback…
Detail view of the "underside" of the Orbiter Maneuvering/Reaction Control ...
Detail view of the "underside" of the Orbiter Maneuvering/Reaction Control Systems pod looking at the two spherical propellant tanks for the Reaction Control System, and the elongated propellant tanks for the Orbiter Maneuvering System. This view was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
2007-11-01
Control Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E... Theory Perspective of Effects-Based Thinking and Operations Modelling “Operations” as a Feedback Control System Philip S. E. Farrell...Abstract This paper explores operations that involve effects-based thinking (EBT) using Control Theory techniques in order to highlight the concept’s
Lehrer, Paul; Eddie, David
2013-01-01
Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244
NASA Astrophysics Data System (ADS)
Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge
2017-08-01
A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.
Disposal strategy for the geosynchronous orbits of the Beidou Navigation Satellite System
NASA Astrophysics Data System (ADS)
Tang, Jingshi; Liu, Lin
Beidou Navigation Satellite System (BDS) is China's navigation satelite system. It is now operational for navigation service in China and Asia-Pacific region and is due to be fully operational as a global navigation system by 2020. Unlike other navigation satellite systems, BDS consists of both 12-hour medium Earth orbit and 24-hour geosynchronous orbit. To sustain a safe environment for the navigation satellites, the end-of-life satellites must be disposed appropriately so they do not pose potential dangers to the operational satellites. There are currently two strategies for the disposal orbit. One is to put the disposed satellite in a graveyard orbit that has a safe distance from the operational satellites. It is often applied in geosynchronous orbits and such graveyard orbit can always maintain a safe distance even for a few centuries. This strategy is also currently adopted by GPS, yet recent researches show a re-entry orbit can sometimes be a better alternative. The interaction of Earth oblateness and lunisolar gravitation can lead to a rapid increase in the orbit eccentricity such that by proper design the disposed GPS satellite can be cleared out by re-entry into the atmosphere. In this work we focus on the disposal strategy for BDS geosynchronous orbit, which consists of the equatorial stationary orbit (GEO) and the inclined orbit (IGSO). We show that these two orbits are essentially in two different dynamical environments and evolve quite distinctly over a long period of time. Taking advantage of the dynamic nature, we apply the graveyard orbit and the re-entry orbit to GEO and IGSO respectively and propose appropriate disposal strategies accordingly.
Negative feedback system reduces pump oscillations
NASA Technical Reports Server (NTRS)
Rosenmann, W.
1967-01-01
External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.
Minimal-Inversion Feedforward-And-Feedback Control System
NASA Technical Reports Server (NTRS)
Seraji, Homayoun
1990-01-01
Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.
Forster, Hannah; Walsh, Marianne C; O'Donovan, Clare B; Woolhead, Clara; McGirr, Caroline; Daly, E.J; O'Riordan, Richard; Celis-Morales, Carlos; Fallaize, Rosalind; Macready, Anna L; Marsaux, Cyril F M; Navas-Carretero, Santiago; San-Cristobal, Rodrigo; Kolossa, Silvia; Hartwig, Kai; Mavrogianni, Christina; Tsirigoti, Lydia; Lambrinou, Christina P; Godlewska, Magdalena; Surwiłło, Agnieszka; Gjelstad, Ingrid Merethe Fange; Drevon, Christian A; Manios, Yannis; Traczyk, Iwona; Martinez, J Alfredo; Saris, Wim H M; Daniel, Hannelore; Lovegrove, Julie A; Mathers, John C; Gibney, Michael J; Gibney, Eileen R
2016-01-01
Background Despite numerous healthy eating campaigns, the prevalence of diets high in saturated fatty acids, sugar, and salt and low in fiber, fruit, and vegetables remains high. With more people than ever accessing the Internet, Web-based dietary assessment instruments have the potential to promote healthier dietary behaviors via personalized dietary advice. Objective The objectives of this study were to develop a dietary feedback system for the delivery of consistent personalized dietary advice in a multicenter study and to examine the impact of automating the advice system. Methods The development of the dietary feedback system included 4 components: (1) designing a system for categorizing nutritional intakes; (2) creating a method for prioritizing 3 nutrient-related goals for subsequent targeted dietary advice; (3) constructing decision tree algorithms linking data on nutritional intake to feedback messages; and (4) developing personal feedback reports. The system was used manually by researchers to provide personalized nutrition advice based on dietary assessment to 369 participants during the Food4Me randomized controlled trial, with an automated version developed on completion of the study. Results Saturated fatty acid, salt, and dietary fiber were most frequently selected as nutrient-related goals across the 7 centers. Average agreement between the manual and automated systems, in selecting 3 nutrient-related goals for personalized dietary advice across the centers, was highest for nutrient-related goals 1 and 2 and lower for goal 3, averaging at 92%, 87%, and 63%, respectively. Complete agreement between the 2 systems for feedback advice message selection averaged at 87% across the centers. Conclusions The dietary feedback system was used to deliver personalized dietary advice within a multi-country study. Overall, there was good agreement between the manual and automated feedback systems, giving promise to the use of automated systems for personalizing dietary advice. Trial Registration Clinicaltrials.gov NCT01530139; https://clinicaltrials.gov/ct2/show/NCT01530139 (Archived by WebCite at http://www.webcitation.org/6ht5Dgj8I) PMID:27363307
The FONT5 Bunch-by-Bunch Position and Angle Feedback System at ATF2
NASA Astrophysics Data System (ADS)
Apsimon, R. J.; Bett, D. R.; Burrows, P. N.; Christian, G. B.; Constance, B.; Davis, M. R.; Gerbershagen, A.; Perry, C.; Resta-Lopez, J.
The FONT5 upstream beam-based feedback system at ATF2 is designed to correct the position and angle jitter at the entrance to the ATF2 final-focus system, and also to demonstrate a prototype intra-train feedback system for the International Linear Collider interaction point. We discuss the hardware, from stripline BPMs to kickers, and RF and digital signal processing, as well as presenting results from the latest beam tests at ATF2.
Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
Hu, Zhenkai; Yoon, Chae-Hyun; Park, Samuel Byeongjun; Jo, Yung-Ho
2016-07-01
We propose a portable haptic device providing grasp (kinesthetic) and push-pull (cutaneous) sensations for optical-motion-capture master interfaces. Although optical-motion-capture master interfaces for surgical robot systems can overcome the stiffness, friction, and coupling problems of mechanical master interfaces, it is difficult to add haptic feedback to an optical-motion-capture master interface without constraining the free motion of the operator's hands. Therefore, we utilized a Bowden cable-driven mechanism to provide the grasp and push-pull sensation while retaining the free hand motion of the optical-motion capture master interface. To evaluate the haptic device, we construct a 2-DOF force sensing/force feedback system. We compare the sensed force and the reproduced force of the haptic device. Finally, a needle insertion test was done to evaluate the performance of the haptic interface in the master-slave system. The results demonstrate that both the grasp force feedback and the push-pull force feedback provided by the haptic interface closely matched with the sensed forces of the slave robot. We successfully apply our haptic interface in the optical-motion-capture master-slave system. The results of the needle insertion test showed that our haptic feedback can provide more safety than merely visual observation. We develop a suitable haptic device to produce both kinesthetic grasp force feedback and cutaneous push-pull force feedback. Our future research will include further objective performance evaluations of the optical-motion-capture master-slave robot system with our haptic interface in surgical scenarios.
Variance decomposition shows the importance of human-climate feedbacks in the Earth system
NASA Astrophysics Data System (ADS)
Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.
2017-12-01
The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.
Numerical Simulation of the Oscillations in a Mixer: An Internal Aeroacoustic Feedback System
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Loh, Ching Y.
2004-01-01
The space-time conservation element and solution element method is employed to numerically study the acoustic feedback system in a high temperature, high speed wind tunnel mixer. The computation captures the self-sustained feedback loop between reflecting Mach waves and the shear layer. This feedback loop results in violent instabilities that are suspected of causing damage to some tunnel components. The computed frequency is in good agreement with the available experimental data. The physical phenomena are explained based on the numerical results.
NASA Astrophysics Data System (ADS)
Amphawan, Angela; Ghazi, Alaan; Al-dawoodi, Aras
2017-11-01
A free-space optics mode-wavelength division multiplexing (MWDM) system using Laguerre-Gaussian (LG) modes is designed using decision feedback equalization for controlling mode coupling and combating inter symbol interference so as to increase channel diversity. In this paper, a data rate of 24 Gbps is achieved for a FSO MWDM channel of 2.6 km in length using feedback equalization. Simulation results show significant improvement in eye diagrams and bit-error rates before and after decision feedback equalization.
Time-delayed feedback control of coherence resonance chimeras
NASA Astrophysics Data System (ADS)
Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard
2017-11-01
Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.
V/STOL tilt rotor aircraft study. Volume 7: Tilt rotor flight control program feedback studies
NASA Technical Reports Server (NTRS)
Alexander, H. R.; Eason, W.; Gillmore, K.; Morris, J.; Spittle, R.
1973-01-01
An exploratory study has been made of the use of feedback control in tilt rotor aircraft. This has included the use of swashplate cyclic and collective controls and direct lift control. Various sensor and feedback systems are evaluated in relation to blade loads alleviation, improvement in flying qualities, and modal suppression. Recommendations are made regarding additional analytical and wind tunnel investigations and development of feedback systems in the full scale flight vehicle. Estimated costs and schedules are given.
Infrared Spectroscopy of Symbiotic Stars. II. Orbits for Five S-Type Systems with Two-Year Periods
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Hinkle, Kenneth H.; Joyce, Richard R.; Skrutskie, Michael F.
2000-12-01
Infrared radial velocities have been used to determine orbital elements for the cool giants of five well-known symbiotic systems, Z And, AG Dra, V443 Her, AX Per, and FG Ser, all of which have orbital periods near the two-year mean period for S-type symbiotics. The new orbits are in general agreement with previous orbits derived from optical velocities. From the combined optical and infrared velocities, improved orbital elements for the five systems have been determined. Each of the orbital periods has been determined solely from the radial-velocity data. The orbits are circular and have quite small mass functions of 0.001-0.03 Msolar. The infrared velocities of AG Dra do not show the large orbital velocity residuals found for its optical radial velocities.
Utility of an app-based system to improve feedback following workplace-based assessment.
Lefroy, Janet; Roberts, Nicola; Molyneux, Adrian; Bartlett, Maggie; Gay, Simon; McKinley, Robert
2017-05-31
To determine whether an app-based software system to support production and storage of assessment feedback summaries makes workplace-based assessment easier for clinical tutors and enhances the educational impact on medical students. We monitored our workplace assessor app's usage by Year 3 to 5 medical students in 2014-15 and conducted focus groups with Year 4 medical students and interviews with clinical tutors who had used the apps. Analysis was by constant comparison using a framework based on elements of van der Vleuten's utility index. The app may enhance the content of feedback for students. Using a screen may be distracting if the app is used during feedback discussions. Educational impact was reduced by students' perceptions that an easy-to-produce feedback summary is less valuable than one requiring more tutor time and effort. Tutors' typing, dictation skills and their familiarity with mobile devices varied. This influenced their willingness to use the assessment and feedback mobile app rather than the equivalent web app. Electronic feedback summaries had more real and perceived uses than anticipated both for tutors and students including perceptions that they were for the school rather than the student. Electronic workplace-based assessment systems can be acceptable to tutors and can make giving detailed written feedback more practical but can interrupt the social interaction required for the feedback conversation. Tutor training and flexible systems will be required to minimise unwanted consequences. The educational impact on both tutors and students of providing pre-formulated advice within the app is worth further study.
Utility of an app-based system to improve feedback following workplace-based assessment
Roberts, Nicola; Molyneux, Adrian; Bartlett, Maggie; Gay, Simon; McKinley, Robert
2017-01-01
Objectives To determine whether an app-based software system to support production and storage of assessment feedback summaries makes workplace-based assessment easier for clinical tutors and enhances the educational impact on medical students. Methods We monitored our workplace assessor app’s usage by Year 3 to 5 medical students in 2014-15 and conducted focus groups with Year 4 medical students and interviews with clinical tutors who had used the apps. Analysis was by constant comparison using a framework based on elements of van der Vleuten’s utility index. Results The app may enhance the content of feedback for students. Using a screen may be distracting if the app is used during feedback discussions. Educational impact was reduced by students’ perceptions that an easy-to-produce feedback summary is less valuable than one requiring more tutor time and effort. Tutors’ typing, dictation skills and their familiarity with mobile devices varied. This influenced their willingness to use the assessment and feedback mobile app rather than the equivalent web app. Electronic feedback summaries had more real and perceived uses than anticipated both for tutors and students including perceptions that they were for the school rather than the student. Conclusions Electronic workplace-based assessment systems can be acceptable to tutors and can make giving detailed written feedback more practical but can interrupt the social interaction required for the feedback conversation. Tutor training and flexible systems will be required to minimise unwanted consequences. The educational impact on both tutors and students of providing pre-formulated advice within the app is worth further study. PMID:28578320
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning
McGregor, Heather R.; Mohatarem, Ayman
2017-01-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634
Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.
Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L
2017-07-01
It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.
A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems
Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.
2016-01-01
It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202
NASA Technical Reports Server (NTRS)
Oza, D. H.; Jones, T. L.; Hodjatzadeh, M.; Samii, M. V.; Doll, C. E.; Hart, R. C.; Mistretta, G. D.
1991-01-01
The development of the Real-Time Orbit Determination/Enhanced (RTOD/E) system as a prototype system for sequential orbit determination on a Disk Operating System (DOS) based Personal Computer (PC) is addressed. The results of a study to compare the orbit determination accuracy of a Tracking and Data Relay Satellite System (TDRSS) user spacecraft obtained using RTOD/E with the accuracy of an established batch least squares system, the Goddard Trajectory Determination System (GTDS), is addressed. Independent assessments were made to examine the consistencies of results obtained by the batch and sequential methods. Comparisons were made between the forward filtered RTOD/E orbit solutions and definitive GTDS orbit solutions for the Earth Radiation Budget Satellite (ERBS); the maximum solution differences were less than 25 m after the filter had reached steady state.
Hamid, Yasir; Mahmood, Sajid
2010-03-01
This review highlights the need in the Pakistani medical education system for teachers and students to be able to: define constructive feedback; provide constructive feedback; identify standards for constructive feedback; identify a suitable model for the provision of constructive feedback and evaluate the use of constructive feedback. For the purpose of literature review we had defined the key word glossary as: feedback, constructive feedback, teaching constructive feedback, models for feedback, models for constructive feedback and giving and receiving feedback. The data bases for the search include: Medline (EBSCO), Web of Knowledge, SCOPUS, TRIP, ScienceDirect, Pubmed, U.K. Pubmed Central, ZETOC, University of Dundee Library catalogue, SCIRUS (Elsevier) and Google Scholar. This article states that the Pakistani medical schools do not reflect on or use the benefits of the constructive feedback process. The discussion about constructive feedback suggests that in the context of Pakistan, constructive feedback will facilitate the teaching and learning activities.
Highly sensitive vacuum ion pump current measurement system
Hansknecht, John Christopher [Williamsburg, VA
2006-02-21
A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.
Preliminary orbital parallax catalog
NASA Technical Reports Server (NTRS)
Halliwell, M.
1981-01-01
The study is undertaken to calibrate the more reliable parallaxes derived from a comparison of visual and spectroscopic orbits and to encourage observational studies of other promising binaries. The methodological techniques used in computing orbital parallaxes are analyzed. Tables summarizing orbital data and derived system properties are then given. Also given is a series of detailed discussions of the 71 individual systems included in the tables. Data are listed for 57 other systems which are considered promising candidates for eventual orbital parallax determination.
A multi-sensor approach to the retrieval and model validation of global cloudiness
NASA Astrophysics Data System (ADS)
Miller, Steven D.
2000-11-01
The ephemeral clouds have represented a daunting challenge to the atmospheric modeling community from the very beginning. Our inability to resolve them by means of traditional passive sensors to the level of detail required for characterizing their complicated role in the climate feedback system has lead us to explore other resources at our disposal. This research seeks to illustrate and, where applicable, quantify the ways in which active (e.g., radar and lidar) remote sensing devices on existing and proposed platforms can serve to improve our current understanding of cloud and cloud processes in terms of (1)their role in the improvement of cloud property retrievals and (2)their application to the validation/development of clouds in numerical weather prediction models. A new retrieval technique which employs active sensors to constrain cloud boundaries in the vertical is shown to decrease the parameter uncertainties with respect to traditional passive methods in excess of 20% for effective particle radius, and 10-20% for optical depth when considering night-time retrievals of cirrus. These results are brought together with detailed cloud profile sampling from the Lidar In-space Technology Experiment (LITE) to conduct the first global-scale active sensor validation of ECMWF short-range forecasts. The comparisons display remarkable agreement in cloud spatial distribution. A weighted statistical analysis yields hit rates between 75-90%, threat scores 45-75%, probabilities of detection ~80%, and false alarm rates 10-45%. The results suggest that, given the level of realism displayed currently by the ECMWF prognostic cloud scheme forecasts, the reanalysis data may be considered as a new resource for global cloud information. A practical application of these findings has been outlined in the context of defining Cloud-Sat instrument requirements based on virtual orbital observations created from ECMWF global cloud distributions of liquid and ice water contents. This research gives cause for new hope in capturing the complex radiative, convective, and dynamical feedback mechanisms associated with clouds in the climate feedback system. Further, it appeals to the need for an improved collaborative rapport between the now largely disjoint modeling and measurement communities.
NASA Astrophysics Data System (ADS)
Foley, B. J.; Driscoll, P. E.
2015-12-01
Many factors have conspired to make Earth a home to complex life. Earth has abundant water due to a combination of factors, including orbital distance and the climate regulating feedbacks of the long-term carbon cycle. Earth has plate tectonics, which is crucial for maintaining long-term carbon cycling and may have been an important energy source for the origin of life in seafloor hydrothermal systems. Earth also has a strong magnetic field that shields the atmosphere from the solar wind and the surface from high-energy particles. Synthesizing recent work on these topics shows that water, a temperate climate, plate tectonics, and a strong magnetic field are linked together through a series of negative feedbacks that stabilize the system over geologic timescales. Although the physical mechanism behind plate tectonics on Earth is still poorly understood, climate is thought to be important. In particular, temperate surface temperatures are likely necessary for plate tectonics because they allow for liquid water that may be capable of significantly lowering lithospheric strength, increase convective stresses in the lithosphere, and enhance the effectiveness of "damage" processes such as grainsize reduction. Likewise, plate tectonics is probably crucial for maintaining a temperate climate on Earth through its role in facilitating the long-term carbon cycle, which regulates atmospheric CO2 levels. Therefore, the coupling between plate tectonics and climate is a feedback that is likely of first order importance for the evolution of rocky planets. Finally, plate tectonics is thought to be important for driving the geodynamo. Plate tectonics efficiently cools the mantle, leading to vigorous thermo-chemical convection in the outer core and dynamo action; without plate tectonics inefficient mantle cooling beneath a stagnant lid may prevent a long-lived magnetic field. As the magnetic field shields a planet's atmosphere from the solar wind, the magnetic field may be important for preserving hydrogen, and therefore water, on the surface. Thus whole planet coupling between the magnetic field, atmosphere, mantle, and core is possible. We lay out the basic physics governing whole planet coupling, and discuss the implications this coupling has for the evolution of rocky planets and their prospects for hosting life.
NASA Technical Reports Server (NTRS)
Hudson, Jennifer; Martinez, Andres; Petro, Andrew
2015-01-01
The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.
Closeup view of the payload bay side of the aft ...
Close-up view of the payload bay side of the aft fuselage bulkhead of the Orbiter Discovery. This image has a detailed portions of the Remote Manipulator System and the Orbiter Maneuvering System/Reaction Control System Pods. This photograph wa taken in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
NASA Technical Reports Server (NTRS)
Wong, P. K.
1975-01-01
The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.
Climate Sensitivity in the Anthropocene
NASA Technical Reports Server (NTRS)
Previdi, M.; Liepert, B. G.; Peteet, Dorothy M.; Hansen, J.; Beerling, D. J.; Broccoli, A. J.; Frolking, S.; Galloway, J. N.; Heimann, M.; LeQuere, C.;
2014-01-01
Climate sensitivity in its most basic form is defined as the equilibrium change in global surface temperature that occurs in response to a climate forcing, or externally imposed perturbation of the planetary energy balance. Within this general definition, several specific forms of climate sensitivity exist that differ in terms of the types of climate feedbacks they include. Based on evidence from Earth's history, we suggest here that the relevant form of climate sensitivity in the Anthropocene (e.g. from which to base future greenhouse gas (GHG) stabilization targets) is the Earth system sensitivity including fast feedbacks from changes in water vapour, natural aerosols, clouds and sea ice, slower surface albedo feedbacks from changes in continental ice sheets and vegetation, and climate-GHG feedbacks from changes in natural (land and ocean) carbon sinks. Traditionally, only fast feedbacks have been considered (with the other feedbacks either ignored or treated as forcing), which has led to estimates of the climate sensitivity for doubled CO2 concentrations of about 3 C. The 2×CO2 Earth system sensitivity is higher than this, being approx. 4-6 C if the ice sheet/vegetation albedo feedback is included in addition to the fast feedbacks, and higher still if climate-GHG feedbacks are also included. The inclusion of climate-GHG feedbacks due to changes in the natural carbon sinks has the advantage of more directly linking anthropogenic GHG emissions with the ensuing global temperature increase, thus providing a truer indication of the climate sensitivity to human perturbations. The Earth system climate sensitivity is difficult to quantify due to the lack of palaeo-analogues for the present-day anthropogenic forcing, and the fact that ice sheet and climate-GHG feedbacks have yet to become globally significant in the Anthropocene. Furthermore, current models are unable to adequately simulate the physics of ice sheet decay and certain aspects of the natural carbon and nitrogen cycles. Obtaining quantitative estimates of the Earth system sensitivity is therefore a high priority for future work.
Guidance Scheme for Modulation of Drag Devices to Enable Return from Low Earth Orbit
NASA Technical Reports Server (NTRS)
Dutta, Soumyo; Bowes, Angela L.; Cianciolo, Alicia D.; Glass, Christopher E.; Powell, Richard W.
2017-01-01
Passive drag devices provide opportunities to return payloads from low Earth orbits quickly without using onboard propulsive systems to de-orbit the spacecraft. However, one potential disadvantage of such systems has been the lack of landing accuracy. Drag modulation or changing the shape of the drag device during flight offer a way to control the de-orbit trajectory and target a specific landing location. This paper discusses a candidate passive drag based system, called Exo-brake, as well as efforts to model the dynamics of the vehicle as it de-orbits and guidance schemes used to control the trajectory. Such systems can enable quick return of payloads from low Earth orbit assets like the International Space Station without the use of large re-entry cargo capsules or propulsive systems.
NASA Astrophysics Data System (ADS)
Wu, Lifu; Qiu, Xiaojun; Burnett, Ian S.; Guo, Yecai
2015-08-01
Hybrid feedforward and feedback structures are useful for active noise control (ANC) applications where the noise can only be partially obtained with reference sensors. The traditional method uses the secondary signals of both the feedforward and feedback structures to synthesize a reference signal for the feedback structure in the hybrid structure. However, this approach introduces coupling between the feedforward and feedback structures and parameter changes in one structure affect the other during adaptation such that the feedforward and feedback structures must be optimized simultaneously in practical ANC system design. Two methods are investigated in this paper to remove such coupling effects. One is a simplified method, which uses the error signal directly as the reference signal in the feedback structure, and the second method generates the reference signal for the feedback structure by using only the secondary signal from the feedback structure and utilizes the generated reference signal as the error signal of the feedforward structure. Because the two decoupling methods can optimize the feedforward and feedback structures separately, they provide more flexibility in the design and optimization of the adaptive filters in practical ANC applications.
1982-11-01
D- R136 495 RETURN DIFFERENCE FEEDBACK DESIGN FOR ROBUSTj/ UNCERTAINTY TOLERANCE IN STO..(U) UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES DEPT OF...State and ZIP Code) 7. b6 ADORESS (City. Staft and ZIP Code) Department of Electrical Engineering -’M Directorate of Mathematical & Information Systems ...13. SUBJECT TERMS Continur on rverse ineeesaty and identify by block nmber) FIELD GROUP SUE. GR. Systems theory; control; feedback; automatic control
Finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems
NASA Astrophysics Data System (ADS)
Xie, Xue-Jun; Zhang, Xing-Hui; Zhang, Kemei
2016-07-01
This paper studies the finite-time state feedback stabilisation of stochastic high-order nonlinear feedforward systems. Based on the stochastic Lyapunov theorem on finite-time stability, by using the homogeneous domination method, the adding one power integrator and sign function method, constructing a ? Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed-loop system finite-time stable in probability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentile, Ann C.; Brandt, James M.; Tucker, Thomas
2011-09-01
This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the facemore » of the ever increasing size and complexity of HPC systems.« less
Robust Frequency-Domain Constrained Feedback Design via a Two-Stage Heuristic Approach.
Li, Xianwei; Gao, Huijun
2015-10-01
Based on a two-stage heuristic method, this paper is concerned with the design of robust feedback controllers with restricted frequency-domain specifications (RFDSs) for uncertain linear discrete-time systems. Polytopic uncertainties are assumed to enter all the system matrices, while RFDSs are motivated by the fact that practical design specifications are often described in restricted finite frequency ranges. Dilated multipliers are first introduced to relax the generalized Kalman-Yakubovich-Popov lemma for output feedback controller synthesis and robust performance analysis. Then a two-stage approach to output feedback controller synthesis is proposed: at the first stage, a robust full-information (FI) controller is designed, which is used to construct a required output feedback controller at the second stage. To improve the solvability of the synthesis method, heuristic iterative algorithms are further formulated for exploring the feedback gain and optimizing the initial FI controller at the individual stage. The effectiveness of the proposed design method is finally demonstrated by the application to active control of suspension systems.
Brown, Jennifer; Pan, Wei-Xing; Dudman, Joshua Tate
2014-01-01
Dysfunction of the basal ganglia produces severe deficits in the timing, initiation, and vigor of movement. These diverse impairments suggest a control system gone awry. In engineered systems, feedback is critical for control. By contrast, models of the basal ganglia highlight feedforward circuitry and ignore intrinsic feedback circuits. In this study, we show that feedback via axon collaterals of substantia nigra projection neurons control the gain of the basal ganglia output. Through a combination of physiology, optogenetics, anatomy, and circuit mapping, we elaborate a general circuit mechanism for gain control in a microcircuit lacking interneurons. Our data suggest that diverse tonic firing rates, weak unitary connections and a spatially diffuse collateral circuit with distinct topography and kinetics from feedforward input is sufficient to implement divisive feedback inhibition. The importance of feedback for engineered systems implies that the intranigral microcircuit, despite its absence from canonical models, could be essential to basal ganglia function. DOI: http://dx.doi.org/10.7554/eLife.02397.001 PMID:24849626
Augmented reality and haptic interfaces for robot-assisted surgery.
Yamamoto, Tomonori; Abolhassani, Niki; Jung, Sung; Okamura, Allison M; Judkins, Timothy N
2012-03-01
Current teleoperated robot-assisted minimally invasive surgical systems do not take full advantage of the potential performance enhancements offered by various forms of haptic feedback to the surgeon. Direct and graphical haptic feedback systems can be integrated with vision and robot control systems in order to provide haptic feedback to improve safety and tissue mechanical property identification. An interoperable interface for teleoperated robot-assisted minimally invasive surgery was developed to provide haptic feedback and augmented visual feedback using three-dimensional (3D) graphical overlays. The software framework consists of control and command software, robot plug-ins, image processing plug-ins and 3D surface reconstructions. The feasibility of the interface was demonstrated in two tasks performed with artificial tissue: palpation to detect hard lumps and surface tracing, using vision-based forbidden-region virtual fixtures to prevent the patient-side manipulator from entering unwanted regions of the workspace. The interoperable interface enables fast development and successful implementation of effective haptic feedback methods in teleoperation. Copyright © 2011 John Wiley & Sons, Ltd.
The port side view of the Orbiter Discovery while mounted ...
The port side view of the Orbiter Discovery while mounted atop the 76-wheeled orbiter transfer system as it is being rolled from the Orbiter Processing Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
The starboard side view of the Orbiter Discovery while mounted ...
The starboard side view of the Orbiter Discovery while mounted atop the 76-wheeled orbiter transfer system as it is being rolled from the Orbiter Processing Facility to the Vehicle Assembly Building at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
ERIC Educational Resources Information Center
El Saadawi, Gilan M.; Azevedo, Roger; Castine, Melissa; Payne, Velma; Medvedeva, Olga; Tseytlin, Eugene; Legowski, Elizabeth; Jukic, Drazen; Crowley, Rebecca S.
2010-01-01
Previous studies in our laboratory have shown the benefits of immediate feedback on cognitive performance for pathology residents using an intelligent tutoring system (ITS) in pathology. In this study, we examined the effect of immediate feedback on metacognitive performance, and investigated whether other metacognitive scaffolds will support…
Learning Intercultural Communication Skills with Virtual Humans: Feedback and Fidelity
ERIC Educational Resources Information Center
Lane, H. Chad; Hays, Matthew Jensen; Core, Mark G.; Auerbach, Daniel
2013-01-01
In the context of practicing intercultural communication skills, we investigated the role of fidelity in a game-based, virtual learning environment as well as the role of feedback delivered by an intelligent tutoring system. In 2 experiments, we compared variations on the game interface, use of the tutoring system, and the form of the feedback.…
Feedforward and Feedback Control in Apraxia of Speech: Effects of Noise Masking on Vowel Production
ERIC Educational Resources Information Center
Maas, Edwin; Mailend, Marja-Liisa; Guenther, Frank H.
2015-01-01
Purpose: This study was designed to test two hypotheses about apraxia of speech (AOS) derived from the Directions Into Velocities of Articulators (DIVA) model (Guenther et al., 2006): the feedforward system deficit hypothesis and the feedback system deficit hypothesis. Method: The authors used noise masking to minimize auditory feedback during…
An Automated Individual Feedback and Marking System: An Empirical Study
ERIC Educational Resources Information Center
Barker, Trevor
2011-01-01
The recent National Students Survey showed that feedback to students was an ongoing problem in Higher Education. This paper reports on the extension of our past research into the provision of automated feedback for objective testing. In the research presented here, the system has been further developed for marking practical and essay questions and…
Using Instant Feedback System and Micro Exams to Enhance Active Learning
ERIC Educational Resources Information Center
Sabag, N.; Kosolapov, S.
2012-01-01
This paper presents the outcomes of the preliminary survey in which the method of IFS was used to integrate motivating questions into the lecture presentations in order to increase the students' involvement. Instant Feedback System (IFS) enables the educators to improve their own teaching by getting instant and real-time feedback about how clear…
Computing Rydberg Electron Transport Rates Using Periodic Orbits
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Mitchel, Kevin
2017-04-01
Electron transport rates in chaotic atomic systems are computable from classical periodic orbits. This technique allows for replacing a Monte Carlo simulation launching millions of orbits with a sum over tens or hundreds of properly chosen periodic orbits using a formula called the spectral determiant. A firm grasp of the structure of the periodic orbits is required to obtain accurate transport rates. We apply a technique called homotopic lobe dynamics (HLD) to understand the structure of periodic orbits to compute the ionization rate in a classically chaotic atomic system, namely the hydrogen atom in strong parallel electric and magnetic fields. HLD uses information encoded in the intersections of stable and unstable manifolds of a few orbits to compute relevant periodic orbits in the system. All unstable periodic orbits are computed up to a given period, and the ionization rate computed from periodic orbits converges exponentially to the true value as a function of the period used. Using periodic orbit continuation, the ionization rate is computed over a range of electron energy and magnetic field values. The future goal of this work is to semiclassically compute quantum resonances using periodic orbits.
Mission analysis data for inclined geosynchronous orbits, part 1
NASA Technical Reports Server (NTRS)
Graf, O. F., Jr.; Wang, K. C.
1980-01-01
Data needed for preliminary design of inclined geosynchronous missions are provided. The inertial and Earth fixed coordinate systems are described, as well as orbit parameters and elements. The complete family of geosynchronous orbits is discussed. It is shown that circular inclined geosynchronous orbits comprise only one set in this family. The major orbit perturbation and their separate effects on the geosynchronous orbit are discussed. Detailed information on the orbit perturbation of inclined circular geosynchronous orbits is given, with emphasis on time history data of certain orbital elements. Orbit maintenance delta velocity (V) requirements to counteract the major orbit perturbations are determined in order to provide order of magnitude estimates and to show the effects of orbit inclination on delta V. Some of the considerations in mission design for a multisatellite system, such as a halo orbit constellation, are discussed.
Cluster flight control for fractionated spacecraft on an elliptic orbit
NASA Astrophysics Data System (ADS)
Xu, Ming; Liang, Yuying; Tan, Tian; Wei, Lixin
2016-08-01
This paper deals with the stabilization of cluster flight on an elliptic reference orbit by the Hamiltonian structure-preserving control using the relative position measurement only. The linearized Melton's relative equation is utilized to derive the controller and then the full nonlinear relative dynamics are employed to numerically evaluate the controller's performance. In this paper, the hyperbolic and elliptic eigenvalues and their manifolds are treated without distinction notations. This new treatment not only contributes to solving the difficulty in feedback of the unfixed-dimensional manifolds, but also allows more opportunities to set the controlled frequencies of foundational motions or to optimize control gains. Any initial condition can be stabilized on a Kolmogorov-Arnold-Moser torus near a controlled elliptic equilibrium. The motions are stabilized around the natural relative trajectories rather than track a reference relative configuration. In addition, the bounded quasi-periodic trajectories generated by the controller have advantages in rapid reconfiguration and unpredictable evolution.
Direct measurement of a nonequilibrium system entropy using a feedback trap
NASA Astrophysics Data System (ADS)
Gavrilov, Momčilo; Bechhoefer, John
2017-08-01
Feedback traps are tools for trapping single charged objects in solution. They periodically measure an object's position and apply a feedback force to counteract Brownian motion. The feedback force can be calculated as a gradient of a potential function, effectively creating a "virtual potential." Its flexibility regarding the choice of form of the potential gives an opportunity to explore various fundamental questions in stochastic thermodynamics. Here, we review the theory behind feedback traps and apply it to measuring the average work required to erase a fraction of a bit of information. The results agree with predictions based on the nonequilibrium system entropy. With this example, we also show how a feedback trap can easily implement the complex erasure protocols required to reach ultimate thermodynamic limits.
A temporal bone surgery simulator with real-time feedback for surgical training.
Wijewickrema, Sudanthi; Ioannou, Ioanna; Zhou, Yun; Piromchai, Patorn; Bailey, James; Kennedy, Gregor; O'Leary, Stephen
2014-01-01
Timely feedback on surgical technique is an important aspect of surgical skill training in any learning environment, be it virtual or otherwise. Feedback on technique should be provided in real-time to allow trainees to recognize and amend their errors as they occur. Expert surgeons have typically carried out this task, but they have limited time available to spend with trainees. Virtual reality surgical simulators offer effective, repeatable training at relatively low cost, but their benefits may not be fully realized while they still require the presence of experts to provide feedback. We attempt to overcome this limitation by introducing a real-time feedback system for surgical technique within a temporal bone surgical simulator. Our evaluation study shows that this feedback system performs exceptionally well with respect to accuracy and effectiveness.
Role of measurement in feedback-controlled quantum engines
NASA Astrophysics Data System (ADS)
Yi, Juyeon; Kim, Yong Woon
2018-01-01
In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.
Tube dynamics and low energy Earth-Moon transfers in the 4-body system
NASA Astrophysics Data System (ADS)
Onozaki, Kaori; Yoshimura, Hiroaki; Ross, Shane D.
2017-11-01
In this paper, we show a low energy Earth-Moon transfer in the context of the Sun-Earth-Moon-spacecraft 4-body system. We consider the 4-body system as the coupled system of the Sun-Earth-spacecraft 3-body system perturbed by the Moon (which we call the Moon-perturbed system) and the Earth-Moon-spacecraft 3-body system perturbed by the Sun (which we call the Sun-perturbed system). In both perturbed systems, analogs of the stable and unstable manifolds are computed numerically by using the notion of Lagrangian coherent structures, wherein the stable and unstable manifolds play the role of separating orbits into transit and non-transit orbits. We obtain a family of non-transit orbits departing from a low Earth orbit in the Moon-perturbed system, and a family of transit orbits arriving into a low lunar orbit in the Sun-perturbed system. Finally, we show that we can construct a low energy transfer from the Earth to the Moon by choosing appropriate trajectories from both families and patching these trajectories with a maneuver.
Closeup view of the aft fuselage of the Orbiter Discovery ...
Close-up view of the aft fuselage of the Orbiter Discovery on the starboard side looking forward. This view is of the attach surface for the Orbiter Maneuvering System/Reaction Control System (OMS/RCS) Pod. The OMS/RCS pods are removed for processing and reconditioning at another facility. This view was taken from a service platform in the Orbiter Processing Facility at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Port side view of the Orbiter Discovery from an elevated ...
Port side view of the Orbiter Discovery from an elevated platform in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the ground support hardware known as Strongbacks attached to the payload bay doors, the crew access hatch below the name Discovery on the forward section of the Orbiter and the removed Orbiter Maneuvering System/Reaction Control System pod from the aft (tai) section. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view of the aft section of the Orbiter Discovery ...
General view of the aft section of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the main engines and Orbiter Maneuvering System/Reaction Control System pods are removed in this photo. The flexible hoses protruding from the starboard aft section are to control temperature, humidity and pressure in the orbiter's void spaces during its down time. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
General view of the aft, starboard section of the Orbiter ...
General view of the aft, starboard section of the Orbiter Discovery in the Vehicle Assembly Building at NASA's Kennedy Space Center. Note the main engines and Orbiter Maneuvering System/Reaction Control System pods are removed in this photo. The flexible hoses protruding from the starboard aft section are to control temperature, humidity and pressure in the orbiter's void spaces during its down time. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX
Consistency properties of chaotic systems driven by time-delayed feedback
NASA Astrophysics Data System (ADS)
Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.
2018-04-01
Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.
NASA Astrophysics Data System (ADS)
Ren, Xia; Yang, Yuanxi; Zhu, Jun; Xu, Tianhe
2017-11-01
Intersatellite Link (ISL) technology helps to realize the auto update of broadcast ephemeris and clock error parameters for Global Navigation Satellite System (GNSS). ISL constitutes an important approach with which to both improve the observation geometry and extend the tracking coverage of China's Beidou Navigation Satellite System (BDS). However, ISL-only orbit determination might lead to the constellation drift, rotation, and even lead to the divergence in orbit determination. Fortunately, predicted orbits with good precision can be used as a priori information with which to constrain the estimated satellite orbit parameters. Therefore, the precision of satellite autonomous orbit determination can be improved by consideration of a priori orbit information, and vice versa. However, the errors of rotation and translation in a priori orbit will remain in the ultimate result. This paper proposes a constrained precise orbit determination (POD) method for a sub-constellation of the new Beidou satellite constellation with only a few ISLs. The observation model of dual one-way measurements eliminating satellite clock errors is presented, and the orbit determination precision is analyzed with different data processing backgrounds. The conclusions are as follows. (1) With ISLs, the estimated parameters are strongly correlated, especially the positions and velocities of satellites. (2) The performance of determined BDS orbits will be improved by the constraints with more precise priori orbits. The POD precision is better than 45 m with a priori orbit constrain of 100 m precision (e.g., predicted orbits by telemetry tracking and control system), and is better than 6 m with precise priori orbit constraints of 10 m precision (e.g., predicted orbits by international GNSS monitoring & Assessment System (iGMAS)). (3) The POD precision is improved by additional ISLs. Constrained by a priori iGMAS orbits, the POD precision with two, three, and four ISLs is better than 6, 3, and 2 m, respectively. (4) The in-plane link and out-of-plane link have different contributions to observation configuration and system observability. The POD with weak observation configuration (e.g., one in-plane link and one out-of-plane link) should be tightly constrained with a priori orbits.
Environmentally friendly driving feedback systems research and development for heavy duty trucks.
DOT National Transportation Integrated Search
2016-03-31
In this research project, the research team developed an environmentally-friendly driving feedback system for heavy-duty trucks, which was : adapted from a similar system previously developed for light-duty cars. The system consists of: 1) Eco-Routin...
Performance Characteristics For The Orbiter Camera Payload System's Large Format Camera (LFC)
NASA Astrophysics Data System (ADS)
MoIIberg, Bernard H.
1981-11-01
The Orbiter Camera Payload System, the OCPS, is an integrated photographic system which is carried into Earth orbit as a payload in the Shuttle Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC) which is a precision wide-angle cartographic instrument that is capable of produc-ing high resolution stereophotography of great geometric fidelity in multiple base to height ratios. The primary design objective for the LFC was to maximize all system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment.