Sample records for orbit overlap differences

  1. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    NASA Technical Reports Server (NTRS)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  2. Seasonal trends of ACSPO VIIRS SST product characterized by the differences in orbital overlaps for various water types

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermeulen, Ryan; Ignatov, Alexander; Cayula, Jean François

    2015-05-01

    The uncertainty of the Advanced Clear-Sky Processor for Oceans (ACSPO) Sea Surface Temperature (SST) products from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite is examined using consecutive orbital overlaps in coastal waters of the Gulf of Mexico. The overlapping region on the left and right side of the VIIRS swath at 23-35 degree latitude covers approximately 500 pixels, which occur within 100 minutes and can provide a total of 4 SST products (2 day and 2 night) per day. By assuming the ocean SST should be similar on each side of the swath in this short time period, diel changes are examined and the uncertainty of SST retrieval is determined by comparing with buoy-derived SST. The VIIRS ACSPO product from NOAA STAR was used to determine the difference in SST within the overlapping regions. These SST changes are evaluated between consecutive orbits to validate the accuracy of SST algorithms on each side of the swath at high sensor angles. The SST product differences across the swath can result from surface glint, sensor angular impacts and sensor characteristics such as half angle mirror side (HAM) and calibration. The absolute diurnal SST changes that can occur within 100 minutes are evaluated with the buoy and VIIRS-derived SST. Sensitivity of the SST to water types is evaluated by measuring diurnal differences for open ocean, shelf and coastal waters. The 100 minute VIIRS SST overlap shows the capability to monitor the diurnal ocean heating and cooling which are associated with water mass optical absorption. The seasonal trends of the difference in SST at the overlaps for these water masses were tracked on a monthly basis. The unique capability of using the same VIIRS sensor for self-characterization can provide a method to define the uncertainty of ocean products and characterize the diurnal changes for different water types.

  3. Shake for Sigma, Pray for Pi: Classroom Orbital Overlap Analogies

    ERIC Educational Resources Information Center

    Dicks, Andrew P.

    2011-01-01

    An introductory organic classroom demonstration is discussed where analogies are made between common societal hand contact and covalent bond formation. A handshake signifies creation of a [sigma] bond ("head-on" orbital overlap), whereas the action of praying illustrates "sideways" overlap and generation of a [pi] bond. The nature of orbital and…

  4. Relative Stabilities and Reactivities of Isolated Versus Conjugated Alkenes: Reconciliation Via a Molecular Orbital Approach

    NASA Astrophysics Data System (ADS)

    Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas

    1996-04-01

    The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.

  5. Landsat-4 (TDRSS-user) orbit determination using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1992-01-01

    TDRSS user orbit determination is analyzed using a batch least-squares method and a sequential estimation method. It was found that in the batch least-squares method analysis, the orbit determination consistency for Landsat-4, which was heavily tracked by TDRSS during January 1991, was about 4 meters in the rms overlap comparisons and about 6 meters in the maximum position differences in overlap comparisons. The consistency was about 10 to 30 meters in the 3 sigma state error covariance function in the sequential method analysis. As a measure of consistency, the first residual of each pass was within the 3 sigma bound in the residual space.

  6. Orbit determination and gravity field recovery from Doppler tracking data to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2016-03-01

    We present results for Precise Orbit Determination (POD) of the Lunar Reconnaissance Orbiter (LRO) based on two-way Doppler range-rates over a time span of ~13 months (January 3, 2011 to February 9, 2012). Different orbital arc lengths and various sets of empirical parameters were tested to seek optimal parametrization. An overlap analysis covering three months of Doppler data shows that the most precise orbits are obtained using an arc length of 2.5 days and estimating arc-wise constant empirical accelerations in along track direction. The overlap analysis over the entire investigated time span of 13 months indicates an orbital precision of 13.79 m, 14.17 m, and 1.28 m in along track, cross track, and radial direction, respectively, with 21.32 m in total position. We compare our orbits to the official science orbits released by the US National Aeronautics and Space Administration (NASA). The differences amount to 9.50 m, 6.98 m, and 1.50 m in along track, cross track, and radial direction, respectively, as well as 12.71 m in total position. Based on the reconstructed LRO orbits, we estimated lunar gravity field coefficients up to spherical harmonic degree and order 60. The results are compared to gravity field solutions derived from data collected by other lunar missions.

  7. FORMOSAT-3/COSMIC POD Data Processing and Initial Results

    NASA Astrophysics Data System (ADS)

    Tang, C.

    2006-12-01

    The six satellites of the collaborative Taiwan-U.S. FORMOSAT-3/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) space program were successfully launched from Vandenberg, U.S.A. on April 15, 2006. As of September 7, 2006, one satellite (FM5) has already been transferred to the 800-km final orbit, while the other five satellites (FM1-4 and FM6) are currently waiting in the ~520-km parking orbit for subsequent orbit raising deployment. There are two GPS antennas with different orientation onboard each satellite whose measurements are used specifically for precise orbit determination (POD). The received GPS signals by the POD antennas were rather sparse and unstable in the initial 5 weeks. Since then, the available GPS measurements have gradually increased from 10-20% in the early stage to almost 90% in 11 weeks after the launch. For the two POD antennas (POD+X and POD-X), one antenna can perform normally and record observations from up to 9 GPS satellites in view; however, the other antenna is programmed to track up to 4 GPS satellites due to onboard memory limitation. For this reason, we first performed orbit computation using zero-difference GPS phases collected by the normal antenna. For each day's orbit computation, we designed a 6-hr (25%) overlap for inner orbital accuracy assessment, and overlap analysis shows that the achievable 3D RMS was around 19 cm, or 11 cm per axis. In a separate effort, orbit computation based on the lesser antenna was also performed. The orbital difference between the results obtained from the two antennas was significant, with a 3D RMS value of 64 cm. The early results indicate that more work is needed in order to incorporate GPS data from both antennas into a unified solution.

  8. Quantum Calculations of Electron Tunneling in Respiratory Complex III.

    PubMed

    Hagras, Muhammad A; Hayashi, Tomoyuki; Stuchebrukhov, Alexei A

    2015-11-19

    The most detailed and comprehensive to date study of electron transfer reactions in the respiratory complex III of aerobic cells, also known as bc1 complex, is reported. In the framework of the tunneling current theory, electron tunneling rates and atomistic tunneling pathways between different redox centers were investigated for all electron transfer reactions comprising different stages of the proton-motive Q-cycle. The calculations reveal that complex III is a smart nanomachine, which under certain conditions undergoes conformational changes gating electron transfer, or channeling electrons to specific pathways. One-electron tunneling approximation was adopted in the tunneling calculations, which were performed using hybrid Broken-Symmetry (BS) unrestricted DFT/ZINDO levels of theory. The tunneling orbitals were determined using an exact biorthogonalization scheme that uniquely separates pairs of tunneling orbitals with small overlaps out of the remaining Franck-Condon orbitals with significant overlap. Electron transfer rates in different redox pairs show exponential distance dependence, in agreement with the reported experimental data; some reactions involve coupled proton transfer. Proper treatment of a concerted two-electron bifurcated tunneling reaction at the Q(o) site is given.

  9. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate

    NASA Astrophysics Data System (ADS)

    Toyoura, Kazuaki; Ohta, Masataka; Nakamura, Atsutomo; Matsunaga, Katsuyuki

    2015-08-01

    The phase transitions and ferroelectricity of LiNbO3 and LiTaO3 have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency between Nb4d-O2p and Ta5d-O2p orbitals, particularly dxz-px/dyz-py orbitals (π orbitals), from the electronic point of view.

  10. The Energy of Substituted Ethanes. Asymmetry Orbitals

    PubMed Central

    Salem, Lionel; Hoffmann, Roald; Otto, Peter

    1973-01-01

    The leading terms in the energy of a general substituted ethane are derived in explicit form as a function of the torsional angle θ, the substituent electronegativities, and their mutual overlaps. The energy is found to be the sum of all four overlaps between pairs of asymmetry orbitals, and satisfies the requisite symmetry properties. PMID:16592060

  11. First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyoura, Kazuaki, E-mail: toyoura@numse.nagoya-u.ac.jp; Ohta, Masataka; Nakamura, Atsutomo

    2015-08-14

    The phase transitions and ferroelectricity of LiNbO{sub 3} and LiTaO{sub 3} have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency betweenmore » Nb4d-O2p and Ta5d-O2p orbitals, particularly d{sub xz}-p{sub x}/d{sub yz}-p{sub y} orbitals (π orbitals), from the electronic point of view.« less

  12. A line fiducial method for geometric calibration of cone-beam CT systems with diverse scan trajectories

    NASA Astrophysics Data System (ADS)

    Jacobson, M. W.; Ketcha, M. D.; Capostagno, S.; Martin, A.; Uneri, A.; Goerres, J.; De Silva, T.; Reaungamornrat, S.; Han, R.; Manbachi, A.; Stayman, J. W.; Vogt, S.; Kleinszig, G.; Siewerdsen, J. H.

    2018-01-01

    Modern cone-beam CT systems, especially C-arms, are capable of diverse source-detector orbits. However, geometric calibration of these systems using conventional configurations of spherical fiducials (BBs) may be challenged for novel source-detector orbits and system geometries. In part, this is because the BB configurations are designed with careful forethought regarding the intended orbit so that BB marker projections do not overlap in projection views. Examples include helical arrangements of BBs (Rougee et al 1993 Proc. SPIE 1897 161-9) such that markers do not overlap in projections acquired from a circular orbit and circular arrangements of BBs (Cho et al 2005 Med. Phys. 32 968-83). As a more general alternative, this work proposes a calibration method based on an array of line-shaped, radio-opaque wire segments. With this method, geometric parameter estimation is accomplished by relating the 3D line equations representing the wires to the 2D line equations of their projections. The use of line fiducials simplifies many challenges with fiducial recognition and extraction in an orbit-independent manner. For example, their projections can overlap only mildly, for any gantry pose, as long as the wires are mutually non-coplanar in 3D. The method was tested in application to circular and non-circular trajectories in simulation and in real orbits executed using a mobile C-arm prototype for cone-beam CT. Results indicated high calibration accuracy, as measured by forward and backprojection/triangulation error metrics. Triangulation errors on the order of microns and backprojected ray deviations uniformly less than 0.2 mm were observed in both real and simulated orbits. Mean forward projection errors less than 0.1 mm were observed in a comprehensive sweep of different C-arm gantry angulations. Finally, successful integration of the method into a CT imaging chain was demonstrated in head phantom scans.

  13. Evaluation of semiempirical atmospheric density models for orbit determination applications

    NASA Technical Reports Server (NTRS)

    Cox, C. M.; Feiertag, R. J.; Oza, D. H.; Doll, C. E.

    1994-01-01

    This paper presents the results of an investigation of the orbit determination performance of the Jacchia-Roberts (JR), mass spectrometer incoherent scatter 1986 (MSIS-86), and drag temperature model (DTM) atmospheric density models. Evaluation of the models was performed to assess the modeling of the total atmospheric density. This study was made generic by using six spacecraft and selecting time periods of study representative of all portions of the 11-year cycle. Performance of the models was measured for multiple spacecraft, representing a selection of orbit geometries from near-equatorial to polar inclinations and altitudes from 400 kilometers to 900 kilometers. The orbit geometries represent typical low earth-orbiting spacecraft supported by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The best available modeling and orbit determination techniques using the Goddard Trajectory Determination System (GTDS) were employed to minimize the effects of modeling errors. The latest geopotential model available during the analysis, the Goddard earth model-T3 (GEM-T3), was employed to minimize geopotential model error effects on the drag estimation. Improved-accuracy techniques identified for TOPEX/Poseidon orbit determination analysis were used to improve the Tracking and Data Relay Satellite System (TDRSS)-based orbit determination used for most of the spacecraft chosen for this analysis. This paper shows that during periods of relatively quiet solar flux and geomagnetic activity near the solar minimum, the choice of atmospheric density model used for orbit determination is relatively inconsequential. During typical solar flux conditions near the solar maximum, the differences between the JR, DTM, and MSIS-86 models begin to become apparent. Time periods of extreme solar activity, those in which the daily and 81-day mean solar flux are high and change rapidly, result in significant differences between the models. During periods of high geomagnetic activity, the standard JR model was outperformed by DTM. Modification of the JR model to use a geomagnetic heating delay of 3 hours, as used in DTM, instead of the 6.7-hour delay produced results comparable to or better than the DTM performance, reducing definitive orbit solution ephermeris overlap differences by 30 to 50 percent. The reduction in the overlap differences would be useful for mitigating the impact of geomagnetic storms on orbit prediction.

  14. Is There a Need to Discuss Atomic Orbital Overlap When Teaching Hydrogen-Halide Bond Strength and Acidity Trends in Organic Chemistry?

    ERIC Educational Resources Information Center

    Devarajan, Deepa; Gustafson, Samantha J.; Bickelhaupt, F. Matthias; Ess, Daniel H.

    2015-01-01

    Undergraduate organic chemistry textbooks and Internet websites use a variety of approaches for presenting and explaining the impact of halogen atom size on trends in bond strengths and/or acidity of hydrogen halides. In particular, several textbooks and Internet websites explain these trends by invoking decreasing orbital overlap between the…

  15. Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.

    PubMed

    Plasser, Felix; Ruckenbauer, Matthias; Mai, Sebastian; Oppel, Markus; Marquetand, Philipp; González, Leticia

    2016-03-08

    A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented.

  16. NASA's Great Observatories Paper Model Kits.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Education Dept.

    The Hubble Space Telescope, the most complex and sensitive optical telescope ever made, was built to study the cosmos from low-Earth orbit for 10 to 15 years or more. The Compton Gamma Ray Observatory is a complex spacecraft fitted with four different gamma ray detectors, each of which concentrates on different but overlapping energy range and was…

  17. Tight-binding model for borophene and borophane

    NASA Astrophysics Data System (ADS)

    Nakhaee, M.; Ketabi, S. A.; Peeters, F. M.

    2018-03-01

    Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.

  18. SCF-Xα-SW electron densities with the overlapping sphere approximation

    NASA Astrophysics Data System (ADS)

    McMaster, Blair N.; Smith, Vedene H., Jr.; Salahub, Dennis R.

    Self consistent field-Xα-scattered wave (SCF-Xα-SW) calculations have been performed for a series of eight first and second row homonuclear diatomic molecules using both the touching (TS) and 25 per cent overlapping sphere (OS) versions. The OS deformation density maps exhibit much better quantitative agreement with those from other Xα methods, which do not employ the spherical muffin-tin (MT) potential approximation, than do the TS maps. The OS version thus compensates very effectively for the errors involved in the MT approximation in computing electron densities. A detailed comparison between the TS- and OS-Xα-SW orbitals reveals that the reasons for this improvement are surprisingly specific. The dominant effect of the OS approximation is to increase substantially the electron density near the midpoint of bonding σ orbitals, with a consequent reduction of the density behind the atoms. A similar effect occurs for the bonding π orbitals but is less pronounced. These effects are due to a change in hybridization of the orbitals, with the OS approximation increasing the proportion of the subdominant partial waves and hence changing the shapes of the orbitals. It is this increased orbital polarization which so effectively compensates for the lack of (non-spherically symmetric) polarization components in the MT potential, when overlapping spheres are used.

  19. Precise orbit determination of BeiDou constellation based on BETS and MGEX network.

    PubMed

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-04-15

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved.

  20. VizieR Online Data Catalog: Properties of the known Galactic classical novae (Pagnotta+, 2014)

    NASA Astrophysics Data System (ADS)

    Pagnotta, A.; Schaefer, B. E.

    2017-07-01

    RNe and CNe have substantial overlap in the observed distributions of their properties. Indeed, this is expected, since many CNe are really RNe. Nevertheless, a variety of properties are greatly different between the CNe and the RNe. For example, most RNe have orbital periods longer than 0.6 days, while most CNe have orbital periods shorter than 0.3 days. Such properties can be used as indicators for recognizing RNe among the CNe. Due to the overlapping distribution of properties, no one property (other than multiple observed nova eruptions) can be used to definitively identify the CN or RN nature of any system. We never prove that a system is an RN by any means other than finding multiple eruptions. The presence of multiple positive indicators, however, especially if none are contrary, can make a strong case for the RN nature of a system. (2 data files).

  1. Deep Space Navigation with Noncoherent Tracking Data

    NASA Technical Reports Server (NTRS)

    Ellis, J.

    1983-01-01

    Navigation capabilities of noncoherent tracking data are evaluated for interplanetary cruise phase and planetary (Venus) flyby orbit determination. Results of a formal covariance analysis are presented which show that a combination of one-way Doppler and delta DOR yields orbit accuracies comparable to conventional two-way Doppler tracking. For the interplanetary cruise phase, a tracking cycle consisting of a 3-hour Doppler pass and delta DOR (differential one-way range) from two baselines (one observation per overlap) acquired 3 times a month results in 100-km orbit determination accuracy. For reconstruction of a Venus flyby orbit, 10 days tracking at encounter consisting of continuous one-way Doppler and delta DOR sampled at one observation per overlap is sufficient to satisfy the accuracy requirements.

  2. The role of the 5f valence orbitals of early actinides in chemical bonding

    PubMed Central

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-01-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/ϕ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements. PMID:28681848

  3. The role of the 5f valence orbitals of early actinides in chemical bonding

    NASA Astrophysics Data System (ADS)

    Vitova, T.; Pidchenko, I.; Fellhauer, D.; Bagus, P. S.; Joly, Y.; Pruessmann, T.; Bahl, S.; Gonzalez-Robles, E.; Rothe, J.; Altmaier, M.; Denecke, M. A.; Geckeis, H.

    2017-07-01

    One of the long standing debates in actinide chemistry is the level of localization and participation of the actinide 5f valence orbitals in covalent bonds across the actinide series. Here we illuminate the role of the 5f valence orbitals of uranium, neptunium and plutonium in chemical bonding using advanced spectroscopies: actinide M4,5 HR-XANES and 3d4f RIXS. Results reveal that the 5f orbitals are active in the chemical bonding for uranium and neptunium, shown by significant variations in the level of their localization evidenced in the spectra. In contrast, the 5f orbitals of plutonium appear localized and surprisingly insensitive to different bonding environments. We envisage that this report of using relative energy differences between the 5fδ/φ and 5fπ*/5fσ* orbitals as a qualitative measure of overlap-driven actinyl bond covalency will spark activity, and extend to numerous applications of RIXS and HR-XANES to gain new insights into the electronic structures of the actinide elements.

  4. A Scalable O(N) Algorithm for Large-Scale Parallel First-Principles Molecular Dynamics Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-01

    Traditional algorithms for first-principles molecular dynamics (FPMD) simulations only gain a modest capability increase from current petascale computers, due to their O(N 3) complexity and their heavy use of global communications. To address this issue, we are developing a truly scalable O(N) complexity FPMD algorithm, based on density functional theory (DFT), which avoids global communications. The computational model uses a general nonorthogonal orbital formulation for the DFT energy functional, which requires knowledge of selected elements of the inverse of the associated overlap matrix. We present a scalable algorithm for approximately computing selected entries of the inverse of the overlap matrix,more » based on an approximate inverse technique, by inverting local blocks corresponding to principal submatrices of the global overlap matrix. The new FPMD algorithm exploits sparsity and uses nearest neighbor communication to provide a computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic orbitals are confined, and a cutoff beyond which the entries of the overlap matrix can be omitted when computing selected entries of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to O(100K) atoms on O(100K) processors, with a wall-clock time of O(1) minute per molecular dynamics time step.« less

  5. An extension to artifact-free projection overlaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jianyu, E-mail: jianyulin@hotmail.com

    2015-05-15

    Purpose: In multipinhole single photon emission computed tomography, the overlapping of projections has been used to increase sensitivity. Avoiding artifacts in the reconstructed image associated with projection overlaps (multiplexing) is a critical issue. In our previous report, two types of artifact-free projection overlaps, i.e., projection overlaps that do not lead to artifacts in the reconstructed image, were formally defined and proved, and were validated via simulations. In this work, a new proposition is introduced to extend the previously defined type-II artifact-free projection overlaps so that a broader range of artifact-free overlaps is accommodated. One practical purpose of the new extensionmore » is to design a baffle window multipinhole system with artifact-free projection overlaps. Methods: First, the extended type-II artifact-free overlap was theoretically defined and proved. The new proposition accommodates the situation where the extended type-II artifact-free projection overlaps can be produced with incorrectly reconstructed portions in the reconstructed image. Next, to validate the theory, the extended-type-II artifact-free overlaps were employed in designing the multiplexing multipinhole spiral orbit imaging systems with a baffle window. Numerical validations were performed via simulations, where the corresponding 1-pinhole nonmultiplexing reconstruction results were used as the benchmark for artifact-free reconstructions. The mean square error (MSE) was the metric used for comparisons of noise-free reconstructed images. Noisy reconstructions were also performed as part of the validations. Results: Simulation results show that for noise-free reconstructions, the MSEs of the reconstructed images of the artifact-free multiplexing systems are very similar to those of the corresponding 1-pinhole systems. No artifacts were observed in the reconstructed images. Therefore, the testing results for artifact-free multiplexing systems designed using the extended type-II artifact-free overlaps numerically validated the developed theory. Conclusions: First, the extension itself is of theoretical importance because it broadens the selection range for optimizing multiplexing multipinhole designs. Second, the extension has an immediate application: using a baffle window to design a special spiral orbit multipinhole imaging system with projection overlaps in the orbit axial direction. Such an artifact-free baffle window design makes it possible for us to image any axial portion of interest of a long object with projection overlaps to increase sensitivity.« less

  6. Density Functional Theory Study of Leaching Performance of Different Acids on Pyrochlore (100) Surface

    NASA Astrophysics Data System (ADS)

    Yang, Xiuli; Fang, Qing; Ouyang, Hui

    2018-04-01

    Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.

  7. Density Functional Theory Study of Leaching Performance of Different Acids on Pyrochlore (100) Surface

    NASA Astrophysics Data System (ADS)

    Yang, Xiuli; Fang, Qing; Ouyang, Hui

    2018-06-01

    Pyrochlore leaching using hydrofluoric, sulfuric, and hydrochloric acids has been studied via experimental methods for years, but the interactions between niobium atoms on the pyrochlore surface and different acids have not been investigated. In this work, first-principles calculations based on density functional theory were used to elucidate the leaching performance of these three acids from the viewpoint of geometrical and electronic structures. The calculation results indicate that sulfate, chloride, and fluoride anions influence the geometric structure of pyrochlore (100) to different extents, decreasing in the order: sulfate, fluoride, chloride. Orbitals of O1 and O2 atoms of sulfate hybridized with those of surface niobium atom. Fluorine orbitals hybridized with those of surface niobium atoms. However, no obvious overlap exists between any orbitals of chlorine and surface niobium, revealing that chlorine does not interact chemically with surface niobium atoms.

  8. Precise orbit determination of BeiDou constellation based on BETS and MGEX network

    PubMed Central

    Lou, Yidong; Liu, Yang; Shi, Chuang; Yao, Xiuguang; Zheng, Fu

    2014-01-01

    Chinese BeiDou Navigation Satellite System is officially operational as a regional constellation with five Geostationary Earth Orbit (GEO) satellites, five Inclined Geosynchronous Satellite Orbit (IGSO) satellites and four Medium Earth Orbit (MEO) satellites. Observations from the BeiDou Experimental Tracking Stations (BETS) and the IGS Multi-GNSS Experiment (MGEX) network from 1 January to 31 March 2013 are processed for orbit determination of the BeiDou constellation. Various arc lengths and solar radiation pressure parameters are investigated. The reduced set of ECOM five-parameter model produces better performance than the full set of ECOM nine-parameter model for BeiDou IGSO and MEO. The orbit overlap for the middle days of 3-day arc solutions is better than 20 cm and 14 cm for IGSO and MEO in RMS, respectively. Satellite laser ranging residuals are better than 10 cm for both IGSO and MEO. For BeiDou GEO, the orbit overlap of several meters and satellite laser ranging residuals of several decimetres can be achieved. PMID:24733025

  9. Improved solution accuracy for Landsat-4 (TDRSS-user) orbit determination

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Niklewski, D. J.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1994-01-01

    This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using a Prototype Filter Smoother (PFS), with the accuracy of an established batch-least-squares system, the Goddard Trajectory Determination System (GTDS). The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and convariances for the sequential case) of solutions produced by the batch and sequential methods. The filtered and smoothed PFS orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 15 meters.

  10. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  11. Ecomorphology of orbit orientation and the adaptive significance of binocular vision in primates and other mammals.

    PubMed

    Heesy, Christopher P

    2008-01-01

    Primates are characterized by forward-facing, or convergent, orbits and associated binocular field overlap. Hypotheses explaining the adaptive significance of these traits often relate to ecological factors, such as arboreality, nocturnal visual predation, or saltatory locomotion in a complex nocturnal, arboreal environment. This study re-examines the ecological factors that are associated with high orbit convergence in mammals. Orbit orientation data were collected for 321 extant taxa from sixteen orders of metatherian (marsupial) and eutherian mammals. These taxa were coded for activity pattern, degree of faunivory, and substrate preference. Results demonstrate that nocturnal and cathemeral mammals have significantly more convergent orbits than diurnal taxa, both within and across orders. Faunivorous eutherians (both nocturnal and diurnal) have higher mean orbit convergence than opportunistically foraging or non-faunivorous taxa. However, substrate preference is not associated with higher orbit convergence and, by extension, greater binocular visual field overlap. These results are consistent with the hypothesis that mammalian predators evolved higher orbit convergence, binocular vision, and stereopsis to counter camouflage in prey inhabiting a nocturnal environment. Strepsirhine primates have a range of orbit convergence values similar to nocturnal or cathemeral predatory non-primate mammals. These data are entirely consistent with the nocturnal visual predation hypothesis of primate origins. (c) 2007 S. Karger AG, Basel.

  12. Effect of phosphorus on the electronic and optical properties of naphthoxaphospholes: theoretical investigation

    NASA Astrophysics Data System (ADS)

    Moon, Jiwon; Kim, Minbi; Lim, Jeong Sik; Kim, Joonghan

    2018-06-01

    Density functional theory (DFT) and time-dependent DFT calculations were performed to elucidate the electronic and optical properties of 2-R-naphthol[2,3-d]oxaphospholes (R-NOPs). On the basis of the calculated results, the poor π overlap between the 3pz orbital of P atom and the 2pz orbitals of other atoms and increasing polarity of P atom result in a reduced energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital. When these two effects are considered simultaneously, the absorption energies obtained for the S1 state can be below 3.00 eV according to replace the P atom of oxaphosphole ring by As atom (increasing the poor π overlap) and change the functional groups (increasing polarity). The origin of these two effects is the inherent size of the 3p orbital of P atom. The role of P atom in the control of the electronic and optical properties of R-NOPs is clearly elucidated.

  13. A Detailed Derivation of Gaussian Orbital-Based Matrix Elements in Electron Structure Calculations

    ERIC Educational Resources Information Center

    Petersson, T.; Hellsing, B.

    2010-01-01

    A detailed derivation of analytic solutions is presented for overlap, kinetic, nuclear attraction and electron repulsion integrals involving Cartesian Gaussian-type orbitals. It is demonstrated how s-type orbitals can be used to evaluate integrals with higher angular momentum via the properties of Hermite polynomials and differentiation with…

  14. LROC Stereo Observations

    NASA Astrophysics Data System (ADS)

    Beyer, Ross A.; Archinal, B.; Li, R.; Mattson, S.; Moratto, Z.; McEwen, A.; Oberst, J.; Robinson, M.

    2009-09-01

    The Lunar Reconnaissance Orbiter Camera (LROC) will obtain two types of multiple overlapping coverage to derive terrain models of the lunar surface. LROC has two Narrow Angle Cameras (NACs), working jointly to provide a wider (in the cross-track direction) field of view, as well as a Wide Angle Camera (WAC). LRO's orbit precesses, and the same target can be viewed at different solar azimuth and incidence angles providing the opportunity to acquire `photometric stereo' in addition to traditional `geometric stereo' data. Geometric stereo refers to images acquired by LROC with two observations at different times. They must have different emission angles to provide a stereo convergence angle such that the resultant images have enough parallax for a reasonable stereo solution. The lighting at the target must not be radically different. If shadows move substantially between observations, it is very difficult to correlate the images. The majority of NAC geometric stereo will be acquired with one nadir and one off-pointed image (20 degree roll). Alternatively, pairs can be obtained with two spacecraft rolls (one to the left and one to the right) providing a stereo convergence angle up to 40 degrees. Overlapping WAC images from adjacent orbits can be used to generate topography of near-global coverage at kilometer-scale effective spatial resolution. Photometric stereo refers to multiple-look observations of the same target under different lighting conditions. LROC will acquire at least three (ideally five) observations of a target. These observations should have near identical emission angles, but with varying solar azimuth and incidence angles. These types of images can be processed via various methods to derive single pixel resolution topography and surface albedo. The LROC team will produce some topographic models, but stereo data collection is focused on acquiring the highest quality data so that such models can be generated later.

  15. Initial results of centralized autonomous orbit determination of the new-generation BDS satellites with inter-satellite link measurements

    NASA Astrophysics Data System (ADS)

    Tang, Chengpan; Hu, Xiaogong; Zhou, Shanshi; Liu, Li; Pan, Junyang; Chen, Liucheng; Guo, Rui; Zhu, Lingfeng; Hu, Guangming; Li, Xiaojie; He, Feng; Chang, Zhiqiao

    2018-01-01

    Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time-frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that "observes" the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate that the radial overlap differences between the autonomous orbits are less than 15.0 cm for the inclined geosynchronous orbit (IGSO) satellites and less than 10.0 cm for the MEO satellites. The SLR residuals are approximately 15.0 cm for the IGSO satellites and approximately 10.0 cm for the MEO satellites, representing an improvement over the L-band orbits.

  16. The structure of the blue luminescent delta-phase of tris(8-hydroxyquinoline)aluminium(III) (Alq3).

    PubMed

    Cölle, Michael; Dinnebier, Robert E; Brütting, Wolfgang

    2002-12-07

    The existence of the facial isomer in the delta-phase of Alq3 is proven by X-ray structural analysis, revealing that both the different molecular structure and the weaker overlap of the pi-orbitals of hydroxyquinoline ligands belonging to neighboring Alq3 molecules as compared to other phases (alpha, beta) are likely to be the origin of the significantly different optical properties of delta-Alq3.

  17. Diurnal changes in ocean color sensed in satellite imagery

    NASA Astrophysics Data System (ADS)

    Arnone, Robert; Vandermuelen, Ryan; Soto, Inia; Ladner, Sherwin; Ondrusek, Michael; Yang, Haoping

    2017-07-01

    Measurements of diurnal changes in ocean color in turbid coastal regions in the Gulf of Mexico were characterized using above water spectral radiometry from a National Aeronautics and Space Administration (aerosol robotic network-WaveCIS CSI-06) site that can provide 8 to 10 observations per day. Satellite capability to detect diurnal changes in ocean color was characterized using hourly overlapping afternoon orbits of the visual infrared imaging radiometer suite (VIIRS) Suomi National Polar-orbiting Partnership ocean color sensor and validated with in situ observations. The monthly cycle of diurnal changes was investigated for different water masses using VIIRS overlaps. Results showed the capability of satellite observations to monitor hourly color changes in coastal regions that can be impacted by vertical movement of optical layers, in response to tides, resuspension, and river plume dispersion. The spatial variability of VIIRS diurnal changes showed the occurrence and displacement of phytoplankton blooming and decaying processes. The diurnal change in ocean color was above 20%, which represents a 30% change in chlorophyll-a. Seasonal changes in diurnal ocean color for different water masses suggest differences in summer and winter responses to surface processes. The diurnal changes observed using satellite ocean color can be used to define the following: surface processes associated with biological activity, vertical changes in optical depth, and advection of water masses.

  18. New type of bonding formed from an overlap between pi aromatic and pi C=O molecular orbitals stabilizes the coexistence in one molecule of the ionic and neutral meso-ionic forms of imidazopyridine.

    PubMed

    Hoffmann, Marcin; Plutecka, Agnieszka; Rychlewska, Urszula; Kucybala, Zdzislaw; Paczkowski, Jerzy; Pyszka, Ilona

    2005-05-26

    New bis(imidazo)pyridine dye has been synthesized and tested as a potential photoinitaitor for free-radical polymerization induced with the visible emission of an argon ion laser. The X-ray analysis based on data collected at 170 and 130 K, as well as density functional theory (DFT) calculations, revealed the presence of two different forms of imidazopyridine rings within the same molecule. These two forms of the same moiety had not only different geometries but different electronic structures as well. One of the imidazopyridine rings was in the ionic form, while the other was in the meso-ionic form. DFT calculations provided an explanation for such an observed phenomena. The averaging of ionic and meso-ionic forms of imidazopyridine rings within the same molecule is hindered because of an attractive interaction between them. Analysis of electronic density revealed that, indeed, a new type of bonding is formed as the result of an overlap between pi aromatic and pi C=O molecular orbitals. This bonding, like the hydrogen bond, is primarily of electrostatic character, and its energy was estimated at 3.5 kcal/mol.

  19. Impact of GNSS orbit modeling on LEO orbit and gravity field determination

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Meyer, Ulrich; Sušnik, Andreja; Dach, Rolf; Jäggi, Adrian

    2017-04-01

    On January 4, 2015 the Center for Orbit Determination in Europe (CODE) changed the solar radiation pressure modeling for GNSS satellites to an updated version of the empirical CODE orbit model (ECOM). Furthermore, since September 2012 CODE operationally computes satellite clock corrections not only for the 3-day long-arc solutions, but also for the non-overlapping 1-day GNSS orbits. This provides different sets of GNSS products for Precise Point Positioning, as employed, e.g., in the GNSS-based precise orbit determination of low Earth orbiters (LEOs) and the subsequent Earth gravity field recovery from kinematic LEO orbits. While the impact of the mentioned changes in orbit modeling and solution strategy on the GNSS orbits and geophysical parameters was studied in detail, their implications on the LEO orbits were not yet analyzed. We discuss the impact of the update of the ECOM and the influence of 1-day and 3-day GNSS orbit solutions on zero-difference LEO orbit and gravity field determination, where the GNSS orbits and clock corrections, as well as the Earth rotation parameters are introduced as fixed external products. Several years of kinematic and reduced-dynamic orbits for the two GRACE LEOs are computed with GNSS products based on both the old and the updated ECOM, as well as with 1- and 3-day GNSS products. The GRACE orbits are compared by means of standard validation measures. Furthermore, monthly and long-term GPS-only and combined GPS/K-band gravity field solutions are derived from the different sets of kinematic LEO orbits. GPS-only fields are validated by comparison to combined GPS/K-band solutions, while the combined solutions are validated by analysis of the formal errors, as well as by comparing them to the combined GRACE solutions of the European Gravity Service for Improved Emergency Management (EGSIEM) project.

  20. Near-nadir scan overlap in Earth observations from VIIRS and MODIS

    NASA Astrophysics Data System (ADS)

    Blonski, Slawomir; Cao, Changyong

    2017-09-01

    Satellite multi-detector cross-track scanners, such as MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible-Infrared Imaging Radiometer Suite), require synchronization of optical and orbital characteristics to avoid gaps in Earth coverage between scans. Prelaunch tests have revealed that such scan-to-scan gaps will occur near nadir in VIIRS observations from the future JPSS-1 (Joint Polar Satellite System) and JPSS-2 satellites. Our analysis of VIIRS geolocation products shows that the gaps do not occur for the instrument currently on orbit onboard the S-NPP (Suomi National Polar-orbiting Partnership) spacecraft. When the same analysis is applied to the MODIS data products, it reveals that small, near-nadir gaps exist in MODIS observations from both Aqua and Terra satellites. Although magnitude of the MODIS scan overlap gaps (up to 100 m for Terra and 25/175 m for Aqua) is quite small in comparison to the 1-km pixels, it is rather significant for the bands with the 250-m and 500-m pixels. Despite the size of the gaps, it appears that their effects on scientific analyses (e.g., NDVI) have not been reported since launch of the MODIS instruments. Because the gaps currently predicted for the JPSS-1 and -2 VIIRS are similar in size to the ones occurring for MODIS, one can expect that their effects on science data will be similarly negligible. A model that uses S-NPP orbit data as well as the S-NPP VIIRS telescope's focal length and scan rate predicts the overlap that agrees very well with the analysis of the geolocation data. For JPSS-1/-2 VIIRS focal length and scan rate, the model predicts scan overlap gaps of more than 100 m. With a shorter focal length and a faster scan rate than for the JPSS-1/-2 VIIRS, the scan overlap gaps are expected to be avoided altogether for VIIRS on the future JPSS-3 and -4 satellites.

  1. Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks

    NASA Astrophysics Data System (ADS)

    Li, Xingxing; Yuan, Yongqiang; Zhu, Yiting; Huang, Jiande; Wu, Jiaqi; Xiong, Yun; Zhang, Xiaohong; Li, Xin

    2018-04-01

    In this contribution, we focus on the precise orbit determination (POD) for BDS3 experimental satellites with the international GNSS Monitoring and Assessment System (iGMAS) and Multi-GNSS Experiment (MGEX) tracking networks. The datasets of DOY (day of year) 001-230 in 2017 are analyzed with different processing strategies. By comparing receiver clock biases and receiver B1I-B3I DCBs, it is confirmed that there is no obvious systematic bias between experimental BDS3 and BDS2 in the common B1I and B3I signals, which indicates that experimental BDS3 and BDS2 can be treated as one system when performing combined POD. With iGMAS-only BDS3 stations, the 24-h overlap RMS of BDS3 + BDS2 + GPS combined POD is 24.3, 16.1 and 8.4 cm in along-track, cross-track and radial components, which is better than BDS3-only POD by 80-90% and better than BDS3+BDS2 combined POD by about 10%. With more stations (totally 20 stations from both iGMAS and MGEX) and the proper ambiguity resolution strategy (GEO ambiguities are float and BDS3 ambiguities are fixed), the performance of BDS3 POD can be further improved to 14.6, 7.9 and 3.7 cm, respectively, in along-track, cross-track and radial components, which is comparable to the performance of BDS2 POD. The 230-day SLR validations of C32, C33 and C34 show that the mean differences of - 3.48 , 7.81 and 8.19 cm can be achieved, while the STD is 13.35, 13.46 and 13.11 cm, respectively. Furthermore, the 230-day overlap comparisons reveal that C31 most likely still uses an orbit-normal mode and exhibits similar orbit modeling problems in orbit-normal periods as found in most of the BDS2 satellites.

  2. Spectroscopic Binaries: Towards the 100-Year Time Domain

    NASA Astrophysics Data System (ADS)

    Griffin, R. F.

    2012-04-01

    Good measurements of visual binary stars (position angle and angular separation) have been made for nearly 200 years. Radial-velocity observers have exhibited less patience; when the orbital periods of late-type stars in the catalogue published in 1978 are sorted into bins half a logarithmic unit wide, the modal bin is the one with periods between 3 and 10 days. The same treatment of the writer's orbits shows the modal bin to be the one between 1000 and 3000 days. Of course the spectroscopists cannot quickly catch up the 200 years that the visual observers have been going, but many spectroscopic orbits with periods of decades, and a few of the order of a century, have been published. Technical developments have also been made in `visual' orbit determination, and orbits with periods of only a few days have been determined for certain `visual' binaries. In principle, therefore, the time domains of visual and spectroscopic binaries now largely overlap. Overlap is essential, as it is only by combining both techniques that orbits can be determined in three dimensions, as is necessary for the important objective of determining stellar masses accurately. Nevertheless the actual overlap-objects with accurate measurements by both techniques-remains disappointingly small. There have, however, been unforeseen benefits from the observation of spectroscopic binaries that have unconventionally long orbital periods, not a few of which have proved to be interesting and significant objects in their own right. It has also been shown that binary membership is more common than was once thought (orbits have even been determined for some of the IAU standard radial-velocity stars!); a recent study of the radial velocities of K giants that had been monitored for 45 years found a binary incidence of 30%, whereas a figure of 13.7% was given as recently as 2005 for a similar group.

  3. Empirical p-n interactions, the synchronized filling of Nilsson orbitals, and emergent collectivity

    NASA Astrophysics Data System (ADS)

    Cakirli, R. B.

    2014-09-01

    The onset of collectivity and deformation, changes to the single particle energies and magic numbers and so on are strongly influenced by, for example, proton (p) and neutron (n) interactions inside atomic nuclei. Experimentally, using binding energies (or masses), one can extract an average p-n interaction between the last two protons and the last two neutrons, called δVpn. We have studied δVpn values using calculations of spatial overlaps between p and n Nilsson orbitals, considering different deformations, for the Z= 50-82, N= 82-126 shells, and comparison of these theoretical results with experimental δVpn values. Our results show that enhanced valence p-n interactions are closely correlated with the development of collectivity, shape changes, and the saturation of deformation in nuclei. We note that the difference of the Nilsson quantum numbers of the last filled Nilsson p and n orbitals, has a special relation, 0[110], in which they differ by only a single quantum in the z-direction, for those nuclei where δVpn is largest for each Z in medium mass and heavy nuclei. The synchronised filling of such orbital pairs correlates with the emergence of collectivity.

  4. Comparison of TOPEX/Poseidon orbit determination solutions obtained by the Goddard Space Flight Center Flight Dynamics Division and Precision Orbit Determination Teams

    NASA Technical Reports Server (NTRS)

    Doll, C.; Mistretta, G.; Hart, R.; Oza, D.; Cox, C.; Nemesure, M.; Bolvin, D.; Samii, Mina V.

    1993-01-01

    Orbit determination results are obtained by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) using the Goddard Trajectory Determination System (GTDS) and a real-time extended Kalman filter estimation system to process Tracking Data and Relay Satellite (TDRS) System (TDRSS) measurements in support of the Ocean Topography Experiment (TOPEX)/Poseidon spacecraft navigation and health and safety operations. GTDS is the operational orbit determination system used by the FDD, and the extended Kalman fliter was implemented in an analysis prototype system, the Real-Time Orbit Determination System/Enhanced (RTOD/E). The Precision Orbit Determination (POD) team within the GSFC Space Geodesy Branch generates an independent set of high-accuracy trajectories to support the TOPEX/Poseidon scientific data. These latter solutions use the Geodynamics (GEODYN) orbit determination system with laser ranging tracking data. The TOPEX/Poseidon trajectories were estimated for the October 22 - November 1, 1992, timeframe, for which the latest preliminary POD results were available. Independent assessments were made of the consistencies of solutions produced by the batch and sequential methods. The batch cases were assessed using overlap comparisons, while the sequential cases were assessed with covariances and the first measurement residuals. The batch least-squares and forward-filtered RTOD/E orbit solutions were compared with the definitive POD orbit solutions. The solution differences were generally less than 10 meters (m) for the batch least squares and less than 18 m for the sequential estimation solutions. The differences among the POD, GTDS, and RTOD/E solutions can be traced to differences in modeling and tracking data types, which are being analyzed in detail.

  5. Factors affecting frequency and orbit utilization by high power transmission satellite systems.

    NASA Technical Reports Server (NTRS)

    Kuhns, P. W.; Miller, E. F.; O'Malley, T. A.

    1972-01-01

    The factors affecting the sharing of the geostationary orbit by high power (primarily television) satellite systems having the same or adjacent coverage areas and by satellites occupying the same orbit segment are examined and examples using the results of computer computations are given. The factors considered include: required protection ratio, receiver antenna patterns, relative transmitter power, transmitter antenna patterns, satellite grouping, and coverage pattern overlap. The results presented indicate the limits of system characteristics and orbit deployment which can result from mixing systems.

  6. Factors affecting frequency and orbit utilization by high power transmission satellite systems

    NASA Technical Reports Server (NTRS)

    Kuhns, P. W.; Miller, E. F.; Malley, T. A.

    1972-01-01

    The factors affecting the sharing of the geostationary orbit by high power (primarily television) satellite systems having the same or adjacent coverage areas and by satellites occupying the same orbit segment are examined and examples using the results of computer computations are given. The factors considered include: required protection ratio, receiver antenna patterns, relative transmitter power, transmitter antenna patterns, satellite grouping, and coverage pattern overlap. The results presented indicated the limits of system characteristics and orbit deployment which can result from mixing systems.

  7. Orbit determination performances using single- and double-differenced methods: SAC-C and KOMPSAT-2

    NASA Astrophysics Data System (ADS)

    Hwang, Yoola; Lee, Byoung-Sun; Kim, Haedong; Kim, Jaehoon

    2011-01-01

    In this paper, Global Positioning System-based (GPS) Orbit Determination (OD) for the KOrea-Multi-Purpose-SATellite (KOMPSAT)-2 using single- and double-differenced methods is studied. The requirement of KOMPSAT-2 orbit accuracy is to allow 1 m positioning error to generate 1-m panchromatic images. KOMPSAT-2 OD is computed using real on-board GPS data. However, the local time of the KOMPSAT-2 GPS receiver is not synchronized with the zero fractional seconds of the GPS time internally, and it continuously drifts according to the pseudorange epochs. In order to resolve this problem, an OD based on single-differenced GPS data from the KOMPSAT-2 uses the tagged time of the GPS receiver, and the accuracy of the OD result is assessed using the overlapping orbit solution between two adjacent days. The clock error of the GPS satellites in the KOMPSAT-2 single-differenced method is corrected using International GNSS Service (IGS) clock information at 5-min intervals. KOMPSAT-2 OD using both double- and single-differenced methods satisfies the requirement of 1-m accuracy in overlapping three dimensional orbit solutions. The results of the SAC-C OD compared with JPL’s POE (Precise Orbit Ephemeris) are also illustrated to demonstrate the implementation of the single- and double-differenced methods using a satellite that has independent orbit information available for validation.

  8. Orbit Tomography: A Method for Determining the Population of Individual Fast-ion Orbits from Experimental Measurements

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-10-01

    Due to the complicated nature of the fast-ion distribution function, diagnostic velocity-space weight functions are used to analyze experimental data. In a technique known as Velocity-space Tomography (VST), velocity-space weight functions are combined with experimental measurements to create a system of linear equations that can be solved. However, VST (which by definition ignores spatial dependencies) is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostics. In this work we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e. Orbit Tomography. Examples of orbit weights functions for different diagnostics and reconstructions of fast-ion distributions are shown for DIII-D experiments. This work was supported by the U.S. Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  9. Estimating the Value of the Inclination Angle of the Lunar Plane to the Ecliptic Plane

    ERIC Educational Resources Information Center

    Isildak, R. Suat; Isik, Hakan; Küçüközer, H. Asuman

    2018-01-01

    Sky appears to our students as a vast volume surrounding the Earth. The most striking astronomical events that they can witness in the sky are lunar phases and eclipses. However, eclipses do not occur as often as full and new phases of the Moon. This difference is due to the fact that the orbital planes of the Moon and the Earth do not overlap.…

  10. An Evaluation of Recent Gravity Models wrt. Altimeter Satellite Missions

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, N. P.; Luthcke, S. B.; Beckley, B. D.; Chinn, D. S.; Rowlands, D. D.

    2003-01-01

    With the launch of CHAMP and GRACE, we have entered a new phase in the history of satellite geodesy. For the first time, geopotential models are now available based almost exclusively on satellite-satellite tracking either with GPS in the case of the CHAMP-based geopotential models, or co-orbital intersatellite ultra-precise ranging in the case of GRACE. Different groups have analyzed these data, and produced a series of geopotential models (e.g., EIGENlS, EIGEN2, GGM0lS, GGMOlC) that incorporate the new data. We will compare the performance of these "newer" geopotential models with the standard models now used for computations, (e.g., JGM-3, BGM-96, PGS7727, and GRIMS-C1) for TOPEX, JASON, Geosat-Follow-On (GFO), and Envisat using standard metrics such as SLR RMS of fit, altimeter crossovers, and orbit overlaps. Where covariances are available we can evaluate the predicted geographically correlated orbit error. These predicted results can be compared with the Earth-fixed differences between dynamic and reduced-dynamic orbits to test the predictive accuracy of the covariances, as well as to calibrate the error of the solutions.

  11. Cemento-ossifying Fibroma Of Paranasal Sinus Presenting Acutely As Orbital Cellulitis.

    PubMed

    Khanna, Maneesh; Buddhavarapu, Shanker Rao; Hussain, Sheik Akbar; Amir, Emran

    2009-01-01

    Fibro-osseous lesions of the face and paranasal sinuses are relatively uncommon. These lesions have overlapping clinical, radiologic and pathologic features causing difficulty in diagnosis. Neoplastic fibro-osseous paranasal sinus lesions can be benign or malignant. The benign fibro-osseous lesions described are: ossifying fibroma (and its histologic variants) and fibrous dysplasia. The variants of ossifying fibroma differ in the nature of calcified material (i.e. cementum versus bone), in the location of the lesion (oral versus paranasal sinus or orbital), other morphologic variations (presence of psammomatoid concretions) and biologic behavior (aggressive versus stable). Presence of cementum or bone classifies the lesion as cementifying fibroma or ossifying fibroma respectively while lesions with mixture of both cementum and bone are called cemento-ossifying fibroma. We describe a case of a young adult male with cemento-ossifying fibroma of paranasal sinus presenting acutely as left orbital cellulitis with proptosis.

  12. Cemento-ossifying Fibroma Of Paranasal Sinus Presenting Acutely As Orbital Cellulitis

    PubMed Central

    Khanna, Maneesh; Buddhavarapu, Shanker Rao; Hussain, Sheik Akbar; Amir, Emran

    2009-01-01

    Fibro-osseous lesions of the face and paranasal sinuses are relatively uncommon. These lesions have overlapping clinical, radiologic and pathologic features causing difficulty in diagnosis. Neoplastic fibro-osseous paranasal sinus lesions can be benign or malignant. The benign fibro-osseous lesions described are: ossifying fibroma (and its histologic variants) and fibrous dysplasia. The variants of ossifying fibroma differ in the nature of calcified material (i.e. cementum versus bone), in the location of the lesion (oral versus paranasal sinus or orbital), other morphologic variations (presence of psammomatoid concretions) and biologic behavior (aggressive versus stable). Presence of cementum or bone classifies the lesion as cementifying fibroma or ossifying fibroma respectively while lesions with mixture of both cementum and bone are called cemento-ossifying fibroma. We describe a case of a young adult male with cemento-ossifying fibroma of paranasal sinus presenting acutely as left orbital cellulitis with proptosis. PMID:22470655

  13. Ab-initio atomic level stress and role of d-orbitals in CuZr, CuZn and CuY

    NASA Astrophysics Data System (ADS)

    Ojha, Madhusudan; Nicholson, Don M.; Egami, Takeshi

    2015-03-01

    Atomic level stress offers a new tool to characterize materials within the local approximation to density functional theory (DFT). Ab-initio atomic level stresses in B2 structures of CuZr, CuZn and CuY are calculated and results are explained on the basis of d-orbital contributions to Density of States (DOS). The overlap of d-orbital DOS plays an important role in the relative magnitude of atomic level stresses in these structures. The trends in atomic level stresses that we observed in these simple B2 structures are also seen in complex structures such as liquids, glasses and solid solutions. The stresses are however modified by the different coordination and relaxed separation distances in these complex structures. We used the Locally Self-Consistent Multiple Scattering (LSMS) code and Vienna Ab-initio Simulation Package (VASP) for ab-initio calculations.

  14. Gauge Physics of Spin Hall Effect

    PubMed Central

    Tan, Seng Ghee; Jalil, Mansoor B. A.; Ho, Cong Son; Siu, Zhuobin; Murakami, Shuichi

    2015-01-01

    Spin Hall effect (SHE) has been discussed in the context of Kubo formulation, geometric physics, spin orbit force, and numerous semi-classical treatments. It can be confusing if the different pictures have partial or overlapping claims of contribution to the SHE. In this article, we present a gauge-theoretic, time-momentum elucidation, which provides a general SHE equation of motion, that unifies under one theoretical framework, all contributions of SHE conductivity due to the kinetic, the spin orbit force (Yang-Mills), and the geometric (Murakami-Fujita) effects. Our work puts right an ambiguity surrounding previously partial treatments involving the Kubo, semiclassical, Berry curvatures, or the spin orbit force. Our full treatment shows the Rashba 2DEG SHE conductivity to be instead of −, and Rashba heavy hole instead of −. This renewed treatment suggests a need to re-derive and re-calculate previously studied SHE conductivity. PMID:26689260

  15. Towards a global model of spin-orbit coupling in the halocarbenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyambo, Silver; Karshenas, Cyrus; Reid, Scott A., E-mail: scott.reid@marquette.edu, E-mail: dawesr@mst.edu

    We report a global analysis of spin-orbit coupling in the mono-halocarbenes, CH(D)X, where X = Cl, Br, and I. These are model systems for examining carbene singlet-triplet energy gaps and spin-orbit coupling. Over the past decade, rich data sets collected using single vibronic level emission spectroscopy and stimulated emission pumping spectroscopy have yielded much information on the ground vibrational level structure and clearly demonstrated the presence of perturbations involving the low-lying triplet state. To model these interactions globally, we compare two approaches. First, we employ a diabatic treatment of the spin-orbit coupling, where the coupling matrix elements are written inmore » terms of a purely electronic spin-orbit matrix element which is independent of nuclear coordinates, and an integral representing the overlap of the singlet and triplet vibrational wavefunctions. In this way, the structures, harmonic frequencies, and normal mode displacements from ab initio calculations were used to calculate the vibrational overlaps of the singlet and triplet state levels, including the full effects of Duschinsky mixing. These calculations have allowed many new assignments to be made, particularly for CHI, and provided spin-orbit coupling parameters and values for the singlet-triplet gaps. In a second approach, we have computed and fit full geometry dependent spin-orbit coupling surfaces and used them to compute matrix elements without the product form approximation. Those matrix elements were used in similar fits varying the anharmonic constants and singlet-triplet gap to reproduce the experimental levels. The derived spin-orbit parameters for carbenes CHX (X = Cl, Br, and I) show an excellent linear correlation with the atomic spin-orbit constant of the corresponding halogen, indicating that the spin-orbit coupling in the carbenes is consistently around 14% of the atomic value.« less

  16. Chaos in the Solar System

    NASA Technical Reports Server (NTRS)

    Lecar, Myron; Franklin, Fred A.; Holman, Matthew J.; Murray, Norman J.

    2001-01-01

    The physical basis of chaos in the solar system is now better understood: In all cases investigated so far, chaotic orbits result from overlapping resonances. Perhaps the clearest examples are found in the asteroid belt. Overlapping resonances account for its kirkwood gaps and were used to predict and find evidence for very narrow gaps in the outer belt. Further afield, about one new "short-peroid" comet is discovered each year. They are believed to come from the "Kuiper Belt" (at 40 AU or more) via chaotic orbits produced by mean-motion and secular resonances with Neptune. Finally, the planetary system itself is not immune from chaos. In the inner solar system, overlapping secular resonances have been identified as the possible source of chaos. For example, Mercury in 1012 years, may suffer a close encounter with Venus or plunge into the Sun. In the outer solar system, three-body resonances have been identified as a source of chaos, but on an even longer time scale of 109 times the age of the solar system. On the human time scale, the planets do follow their orbits in a stately procession, and we can predict their trajectories for hundreds of thousands of years. That is because the mavericks, with shorter instability times, have long since been ejected. The solar system is not stable; it is just old!

  17. TDRSS-user orbit determination using batch least-squares and sequential methods

    NASA Astrophysics Data System (ADS)

    Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, Mina V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-02-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), and operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were less than 40 meters after the filter had reached steady state.

  18. TDRSS-user orbit determination using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Hakimi, M.; Samii, Mina V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), and operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the January 17-23, 1991, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were less than 40 meters after the filter had reached steady state.

  19. Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.

    2018-06-01

    Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.

  20. Supramolecular Packing Controls H 2 Photocatalysis in Chromophore Amphiphile Hydrogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.

    2015-11-21

    Light harvesting supramolecular assemblies are potentially useful structures as components of solar-to-fuel conversion materials. The development of these functional constructs requires an understanding of optimal packing modes for chromophores. We investigated here assembly in water and the photocatalytic function of perylene monoimide chromophore amphiphiles with different alkyl linker lengths separating their hydrophobic core and the hydrophilic carboxylate headgroup. We found that these chromophore amphiphiles (CAs) self-assemble into charged nanostructures of increasing aspect ratio as the linker length is increased. The addition of salt to screen the charged nanostructures induced the formation of hydrogels and led to internal crystallization within somemore » of the nanostructures. For linker lengths up to seven methylenes, the CAs were found to pack into 2D crystalline unit cells within ribbon-shaped nanostructures, whereas the nine methylene CAs assembled into long nanofibers without crystalline molecular packing. At the same time, the different molecular packing arrangements after charge screening led to different absorbance spectra, despite the identical electronic properties of all PMI amphiphiles. While the crystalline CAs formed electronically coupled H-aggregates, only CAs with intermediate linker lengths showed evidence of high intermolecular orbital overlap. Photocatalytic hydrogen production using a nickel-based catalyst was observed in all hydrogels, with the highest turnovers observed for CA gels having intermediate linker lengths. We conclude that the improved photocatalytic performance of the hydrogels formed by supramolecular assemblies of the intermediate linker CA molecules likely arises from improved exciton splitting efficiencies due to their higher orbital overlap.« less

  1. Modified empirical Solar Radiation Pressure model for IRNSS constellation

    NASA Astrophysics Data System (ADS)

    Rajaiah, K.; Manamohan, K.; Nirmala, S.; Ratnakara, S. C.

    2017-11-01

    Navigation with Indian Constellation (NAVIC) also known as Indian Regional Navigation Satellite System (IRNSS) is India's regional navigation system designed to provide position accuracy better than 20 m over India and the region extending to 1500 km around India. The reduced dynamic precise orbit estimation is utilized to determine the orbit broadcast parameters for IRNSS constellation. The estimation is mainly affected by the parameterization of dynamic models especially Solar Radiation Pressure (SRP) model which is a non-gravitational force depending on shape and attitude dynamics of the spacecraft. An empirical nine parameter solar radiation pressure model is developed for IRNSS constellation, using two-way range measurements from IRNSS C-band ranging system. The paper addresses the development of modified SRP empirical model for IRNSS (IRNSS SRP Empirical Model, ISEM). The performance of the ISEM was assessed based on overlap consistency, long term prediction, Satellite Laser Ranging (SLR) residuals and compared with ECOM9, ECOM5 and new-ECOM9 models developed by Center for Orbit Determination in Europe (CODE). For IRNSS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites, ISEM has shown promising results with overlap RMS error better than 5.3 m and 3.5 m respectively. Long term orbit prediction using numerical integration has improved with error better than 80%, 26% and 7.8% in comparison to ECOM9, ECOM5 and new-ECOM9 respectively. Further, SLR based orbit determination with ISEM shows 70%, 47% and 39% improvement over 10 days orbit prediction in comparison to ECOM9, ECOM5 and new-ECOM9 respectively and also highlights the importance of wide baseline tracking network.

  2. Can orbital angle morphology distinguish dogs from wolves?

    PubMed

    Janssens, Luc; Spanoghe, Inge; Miller, Rebecca; Van Dongen, Stefan

    For more than a century, the orbital angle has been studied by many authors to distinguish dog skulls from their progenitor, the wolf. In early studies, the angle was reported to be different between dogs (49°-55°) and wolves (39°-46°). This clear difference was, however, questioned in a more recent Scandinavian study that shows some overlap. It is clear that in all studies several methodological issues were unexplored or unclear and that group sizes and the variety of breeds and wolf subspecies were small. Archaeological dog skulls had also not been studied. Our goal was to test larger and more varied groups and add archaeological samples as they are an evolutionary stage between wolves and modern dogs. We also tested the influence of measuring methods, intra- and inter-reliability, angle symmetry, the influence of variations in skull position and the possibility of measuring and comparing this angle on 3D CT scan images. Our results indicate that there is about 50 % overlap between the angle range in wolves and modern dogs. However, skulls with a very narrow orbital angle were only found in wolves and those with a very wide angle only in dogs. Archaeological dogs have a mean angle very close to the one of the wolves. Symmetry is highest in wolves and lowest in archaeological dogs. The measuring method is very reliable, for both inter- and intra-reliability (0.99-0.97), and most skull position changes have no statistical influence on the angle measured. Three-dimensional CT scan images can be used to measure OA, but the angles differ from direct measuring and cannot be used for comparison. Evolutionary changes in dog skulls responsible for the wider OA compared to wolf skulls are mainly the lateralisation of the zygomatic process of the frontal bone. Our conclusion is that the orbital angle can be used as an additional morphological measuring method to discern wolves from recent and archaeological dogs. Angles above 60° are certainly from recent dogs. Angles under 35° are certainly of wolves.

  3. Bulk and interface quantum states of electrons in multi-layer heterostructures with topological materials

    NASA Astrophysics Data System (ADS)

    Nikolic, Aleksandar; Zhang, Kexin; Barnes, C. H. W.

    2018-06-01

    In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material’s ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb2Te3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.

  4. Bulk and interface quantum states of electrons in multi-layer heterostructures with topological materials.

    PubMed

    Nikolic, Aleksandar; Zhang, Kexin; Barnes, C H W

    2018-06-13

    In this article we describe the bulk and interface quantum states of electrons in multi-layer heterostructures in one dimension, consisting of topological insulators (TIs) and topologically trivial materials. We use and extend an effective four-band continuum Hamiltonian by introducing position dependence to the eight material parameters of the Hamiltonian. We are able to demonstrate complete conduction-valence band mixing in the interface states. We find evidence for topological features of bulk states of multi-layer TI heterostructures, as well as demonstrating both complete and incomplete conduction-valence band inversion at different bulk state energies. We show that the linear k z terms in the low-energy Hamiltonian, arising from overlap of p z orbitals between different atomic layers in the case of chalcogenides, control the amount of tunneling from TIs to trivial insulators. Finally, we show that the same linear k z terms in the low-energy Hamiltonian affect the material's ability to form the localised interface state, and we demonstrate that due to this effect the spin and probability density localisation in a thin film of Sb 2 Te 3 is incomplete. We show that changing the parameter that controls the magnitude of the overlap of p z orbitals affects the transport characteristics of the topologically conducting states, with incomplete topological state localisation resulting in increased backscattering.

  5. A Resonance Overlap Criterion for the Onset of Chaos in Systems of Two Eccentric Planets

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Lithwick, Yoram

    2018-04-01

    I will desrcribe a new analytic criterion to predict the onset of chaos in systems consisting of two massive, eccentric planets. Given a planet pair's spacing and masses, the criterion predicts the eccentricities at which the onset of large-scale chaos occurs. The onset of chaos is predicted based on overlap of mean motion resonances as in Wisdom (1980)'s pioneering work. Whereas Wisdom's work was limited to the overlap of first-order resonance and therefore to nearly circular planets, we account for resonances of all orders. This allows us to consider resonance overlap for planets with arbitrary eccentricities (up to orbit-crossing). Our results show excellent agreement with numerical simulations.

  6. An Efficient Method to Evaluate Intermolecular Interaction Energies in Large Systems Using Overlapping Multicenter ONIOM and the Fragment Molecular Orbital Method

    PubMed Central

    Asada, Naoya; Fedorov, Dmitri G.; Kitaura, Kazuo; Nakanishi, Isao; Merz, Kenneth M.

    2012-01-01

    We propose an approach based on the overlapping multicenter ONIOM to evaluate intermolecular interaction energies in large systems and demonstrate its accuracy on several representative systems in the complete basis set limit at the MP2 and CCSD(T) level of theory. In the application to the intermolecular interaction energy between insulin dimer and 4′-hydroxyacetanilide at the MP2/CBS level, we use the fragment molecular orbital method for the calculation of the entire complex assigned to the lowest layer in three-layer ONIOM. The developed method is shown to be efficient and accurate in the evaluation of the protein-ligand interaction energies. PMID:23050059

  7. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    NASA Astrophysics Data System (ADS)

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.

  8. Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals

    PubMed Central

    Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei

    2016-01-01

    High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240

  9. New-Generation BeiDou (BDS-3) Experimental Satellite Precise Orbit Determination with an Improved Cycle-Slip Detection and Repair Algorithm

    PubMed Central

    Hu, Chao; Wang, Qianxin; Wang, Zhongyuan; Hernández Moraleda, Alberto

    2018-01-01

    Currently, five new-generation BeiDou (BDS-3) experimental satellites are working in orbit and broadcast B1I, B3I, and other new signals. Precise satellite orbit determination of the BDS-3 is essential for the future global services of the BeiDou system. However, BDS-3 experimental satellites are mainly tracked by the international GNSS Monitoring and Assessment Service (iGMAS) network. Under the current constraints of the limited data sources and poor data quality of iGMAS, this study proposes an improved cycle-slip detection and repair algorithm, which is based on a polynomial prediction of ionospheric delays. The improved algorithm takes the correlation of ionospheric delays into consideration to accurately estimate and repair cycle slips in the iGMAS data. Moreover, two methods of BDS-3 experimental satellite orbit determination, namely, normal equation stacking (NES) and step-by-step (SS), are designed to strengthen orbit estimations and to make full use of the BeiDou observations in different tracking networks. In addition, a method to improve computational efficiency based on a matrix eigenvalue decomposition algorithm is derived in the NES. Then, one-year of BDS-3 experimental satellite precise orbit determinations were conducted based on iGMAS and Multi-GNSS Experiment (MGEX) networks. Furthermore, the orbit accuracies were analyzed from the discrepancy of overlapping arcs and satellite laser range (SLR) residuals. The results showed that the average three-dimensional root-mean-square error (3D RMS) of one-day overlapping arcs for BDS-3 experimental satellites (C31, C32, C33, and C34) acquired by NES and SS are 31.0, 36.0, 40.3, and 50.1 cm, and 34.6, 39.4, 43.4, and 55.5 cm, respectively; the RMS of SLR residuals are 55.1, 49.6, 61.5, and 70.9 cm and 60.5, 53.6, 65.8, and 73.9 cm, respectively. Finally, one month of observations were used in four schemes of BDS-3 experimental satellite orbit determination to further investigate the reliability and advantages of the improved methods. It was suggested that the scheme with improved cycle-slip detection and repair algorithm based on NES was optimal, which improved the accuracy of BDS-3 experimental satellite orbits by 34.07%, 41.05%, 72.29%, and 74.33%, respectively, compared with the widely-used strategy. Therefore, improved methods for the BDS-3 experimental satellites proposed in this study are very beneficial for the determination of new-generation BeiDou satellite precise orbits. PMID:29724062

  10. Translation and integration of numerical atomic orbitals in linear molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heinäsmäki, Sami, E-mail: sami.heinasmaki@gmail.com

    2014-02-14

    We present algorithms for translation and integration of atomic orbitals for LCAO calculations in linear molecules. The method applies to arbitrary radial functions given on a numerical mesh. The algorithms are based on pseudospectral differentiation matrices in two dimensions and the corresponding two-dimensional Gaussian quadratures. As a result, multicenter overlap and Coulomb integrals can be evaluated effectively.

  11. Evaluation of Landsat-4 orbit determination accuracy using batch least-squares and sequential methods

    NASA Astrophysics Data System (ADS)

    Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the May 18-24, 1992, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. During this period, there were two separate orbit-adjust maneuvers on one of the TDRSS spacecraft (TDRS-East) and one small orbit-adjust maneuver for Landsat-4. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 30 meters after the filter had reached steady state.

  12. Evaluation of Landsat-4 orbit determination accuracy using batch least-squares and sequential methods

    NASA Technical Reports Server (NTRS)

    Oza, D. H.; Jones, T. L.; Feiertag, R.; Samii, M. V.; Doll, C. E.; Mistretta, G. D.; Hart, R. C.

    1993-01-01

    The Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) commissioned Applied Technology Associates, Incorporated, to develop the Real-Time Orbit Determination/Enhanced (RTOD/E) system on a Disk Operating System (DOS)-based personal computer (PC) as a prototype system for sequential orbit determination of spacecraft. This paper presents the results of a study to compare the orbit determination accuracy for a Tracking and Data Relay Satellite (TDRS) System (TDRSS) user spacecraft, Landsat-4, obtained using RTOD/E, operating on a PC, with the accuracy of an established batch least-squares system, the Goddard Trajectory Determination System (GTDS), operating on a mainframe computer. The results of Landsat-4 orbit determination will provide useful experience for the Earth Observing System (EOS) series of satellites. The Landsat-4 ephemerides were estimated for the May 18-24, 1992, timeframe, during which intensive TDRSS tracking data for Landsat-4 were available. During this period, there were two separate orbit-adjust maneuvers on one of the TDRSS spacecraft (TDRS-East) and one small orbit-adjust maneuver for Landsat-4. Independent assessments were made of the consistencies (overlap comparisons for the batch case and covariances and the first measurement residuals for the sequential case) of solutions produced by the batch and sequential methods. The forward-filtered RTOD/E orbit solutions were compared with the definitive GTDS orbit solutions for Landsat-4; the solution differences were generally less than 30 meters after the filter had reached steady state.

  13. Ancillary ligand effects upon dithiolene redox noninnocence in tungsten bis(dithiolene) complexes.

    PubMed

    Yan, Yong; Keating, Christopher; Chandrasekaran, Perumalreddy; Jayarathne, Upul; Mague, Joel T; DeBeer, Serena; Lancaster, Kyle M; Sproules, Stephen; Rubtsov, Igor V; Donahue, James P

    2013-06-03

    An expanded set of compounds of the type [W(S2C2Me2)2L1L2](n) (n = 0: L1 = L2 = CO, 1; L1 = L2 = CN(t)Bu, 2; L1 = CO, L2 = carbene, 3; L1 = CO, L2 = phosphine, 4; L1 = L2 = phosphine, 5. n = 2-: L1 = L2 = CN(-), [6](2-)) has been synthesized and characterized. Despite isoelectronic formulations, the compound set reveals gradations in the dithiolene ligand redox level as revealed by intraligand bond lengths, υ(CCchelate), and rising edge energies in the sulfur K-edge X-ray absorption spectra (XAS). Differences among the terminal series members, 1 and [6](2-), are comparable to differences seen in homoleptic dithiolene complexes related by full electron transfer to/from a dithiolene-based MO. The key feature governing these differences is the favorable energy of the CO π* orbitals, which are suitably positioned to overlap with tungsten d orbitals and exert an oxidizing effect on both metal and dithiolene ligand via π-backbonding. The CN(-) π* orbitals are too high in energy to mix effectively with tungsten and thus leave the filled dithiolene π* orbitals unperturbed. This work shows how, and the degree to which, the redox level of a noninnocent ligand can be modulated by the choice of ancillary ligands(s).

  14. AMD-stability in the presence of first-order mean motion resonances

    NASA Astrophysics Data System (ADS)

    Petit, A. C.; Laskar, J.; Boué, G.

    2017-11-01

    The angular momentum deficit (AMD)-stability criterion allows to discriminate between a priori stable planetary systems and systems for which the stability is not granted and needs further investigations. AMD-stability is based on the conservation of the AMD in the averaged system at all orders of averaging. While the AMD criterion is rigorous, the conservation of the AMD is only granted in absence of mean-motion resonances (MMR). Here we extend the AMD-stability criterion to take into account mean-motion resonances, and more specifically the overlap of first-order MMR. If the MMR islands overlap, the system will experience generalized chaos leading to instability. The Hamiltonian of two massive planets on coplanar quasi-circular orbits can be reduced to an integrable one degree of freedom problem for period ratios close to a first-order MMR. We use the reduced Hamiltonian to derive a new overlap criterion for first-order MMR. This stability criterion unifies the previous criteria proposed in the literature and admits the criteria obtained for initially circular and eccentric orbits as limit cases. We then improve the definition of AMD-stability to take into account the short term chaos generated by MMR overlap. We analyze the outcome of this improved definition of AMD-stability on selected multi-planet systems from the Extrasolar Planets Encyclopædia.

  15. Periodic three-body orbits with vanishing angular momentum in the Jacobi-Poincaré ‘strong’ potential

    NASA Astrophysics Data System (ADS)

    Dmitrašinović, V.; Petrović, Luka V.; Šuvakov, Milovan

    2017-10-01

    Moore (1993 Phys. Rev. Lett. 70 3675) and Montgomery (2005 Ergod. Theor. Dynam. Syst. 25 921-947) have argued that planar periodic orbits of three bodies moving in the Jacobi-Poincaré, or the ‘strong’ pairwise potential \\sumi>j\\frac{-1}{rij^2} , can have all possible topologies. Here we search systematically for such orbits with vanishing angular momentum and find 24 topologically distinct orbits, 22 of which are new, in a small section of the allowed phase space, with a tendency to overcrowd, due to overlapping initial conditions. The topologies of these 24 orbits belong to three algebraic sequences defined as functions of integer n=0, 1, 2, \\ldots . Each sequence extends to n \\to ∞ , but the separation of initial conditions for orbits with n ≥slant 10 becomes practically impossible with a numerical precision of 16 decimal places. Nevertheless, even with a precision of 16 decimals, it is clear that in each sequence both the orbit’s initial angle φn and its period T n approach finite values in the asymptotic limit (n \\to ∞ ). Two of three sequences are overlapping in the sense that their initial angles ϕ occupy the same segment on the circle and their asymptotic values φ∞ are (very) close to each other. The actions of these orbits rise linearly with the index n that describes the orbit’s topology, which is in agreement with the Newtonian case. We show that this behaviour is consistent with the assumption of analyticity of the action as a function of period.

  16. A new empirical solar radiation pressure model for BeiDou GEO satellites

    NASA Astrophysics Data System (ADS)

    Liu, Junhong; Gu, Defeng; Ju, Bing; Shen, Zhen; Lai, Yuwang; Yi, Dongyun

    2016-01-01

    Two classic empirical solar radiation pressure (SRP) models, the Extended Center for Orbit Determination in Europe (CODE) Orbit Model ECOM 5 and ECOM 9 have been widely used for Global Positioning System (GPS) Medium Earth Orbit (MEO) satellites precise orbit determination (POD). However, these two models are not suitable for BeiDou Geostationary Earth Orbit (GEO) satellites due to their special attitude control mode. With the experimental design method this paper proposes a new empirical SRP model for BeiDou GEO satellites, which is featured by three constant terms in DYX directions, two sine terms in DX directions and one cosine term in the Y direction. It is the first time to reveal that the periodic terms in the D direction are more important than those in YX directions for BeiDou GEO satellites. Compared with ECOM 5 and ECOM 9, the BeiDou GEO satellite orbits are significantly stabilized with the new SRP force model. The average orbit overlapping root mean square (RMS) achieved by the proposed model is 7.5 cm in the radial component, which is evidently improved over those of 37.4 and 13.2 cm for ECOM 5 and ECOM 9, respectively. In addition, the correlation coefficients between GEO orbit overlaps precision and the elevation angle of the Sun have been decreased to -0.12, 0.21, and -0.03 in radial, along-track and cross-track components by using the proposed model, while they are -0.94, -0.79 and -0.29 for ECOM 5 and -0.70, 0.21 and 0.10 for ECOM 9. Moreover, the standard deviation (STD) of Satellite Laser Ranging (SLR) data residuals for the GEO satellite C01 is reduced by 37.4% and 16.1% compared with those of ECOM 5 and ECOM 9 SRP models.

  17. Orbit and clock determination of BDS regional navigation satellite system based on IGS M-GEX and WHU BETS tracking network

    NASA Astrophysics Data System (ADS)

    GENG, T.; Zhao, Q.; Shi, C.; Shum, C.; Guo, J.; Su, X.

    2013-12-01

    BeiDou Navigation Satellite System (BDS) began to provide the regional open service on December 27th 2012 and will provide the global open service by the end of 2020. Compared to GPS, the space segment of BDS Regional System consists of 5 Geostationary Earth Orbit satellites (GEO), 5 Inclined Geosynchronous Orbit satellites (IGSO) and 4 Medium Earth orbit (MEO) satellites. Since 2011, IGS Multiple-GNSS Experiment (M-GEX) focuses on tracking the newly available GNSS signals. This includes all signals from the modernized satellites of the GPS and GLONASS systems, as well as signals of the BDS, Galileo and QZSS systems. Up to now, BDS satellites are tracked by around 25 stations with a variety of different antennas and receivers from different GNSS manufacture communities in M-GEX network. Meanwhile, there are 17 stations with Unicore Communications Incorporation's GPS/BDS receivers in BeiDou Experimental Tracking Stations (BETS) network by Wuhan University. In addition, 5 BDS satellites have been tracking by the International Laser Ranging Service (ILRS). BDS performance is expected to be further studied by the GNSS communities. Following an introduction of the BDS system and above different tracking network, this paper discusses the achieved BDS characterization and performance assessment. Firstly, the BDS signal and measurement quality are analyzed with different antennas and receivers in detail compared to GPS. This includes depth of coverage for satellite observation, carrier-to-noise-density ratios, code noise and multipath, carrier phase errors. Secondly, BDS Precise Orbit Determination (POD) is processed. Different arc lengths and sets of orbit parameters are tested using Position And Navigation Data Analysis software (PANDA) which is developed at the Wuhan University. GEO, IGSO and MEO satellites orbit quality will be assessed using overlap comparison, 2-day orbit fit and external validations with Satellite Laser Range (SLR). Then BDS satellites are equipped with Rubidium clocks and clocks performance are also presented. Finally, benefits of BDS processing strategies and further developments are concluded.

  18. Orbital Exponent Optimization in Elementary VB Calculations of the Chemical Bond in the Ground State of Simple Molecular Systems

    ERIC Educational Resources Information Center

    Magnasco, Valerio

    2008-01-01

    Orbital exponent optimization in the elementary ab-initio VB calculation of the ground states of H[subscript 2][superscript +], H[subscript 2], He[subscript 2][superscript +], He[subscript 2] gives a fair description of the exchange-overlap component of the interatomic interaction that is important in the bond region. Correct bond lengths and…

  19. Supramolecular Packing Controls H 2 Photocatalysis in Chromophore Amphiphile Hydrogels

    DOE PAGES

    Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.; ...

    2015-11-21

    Light harvesting supramolecular assemblies are potentially useful structures as components of solar-to-fuel conversion materials. The development of these functional constructs requires an understanding of optimal packing modes for chromophores. Here, we investigated assembly in water and the photocatalytic function of perylene monoimide chromophore amphiphiles with different alkyl linker lengths separating their hydrophobic core and the hydrophilic carboxylate headgroup. We found that these chromophore amphiphiles (CAs) self-assemble into charged nanostructures of increasing aspect ratio as the linker length is increased. The addition of salt to screen the charged nanostructures induced the formation of hydrogels and led to internal crystallization within somemore » of the nanostructures. For linker lengths up to seven methylenes, the CAs were found to pack into 2D crystalline unit cells within ribbon-shaped nanostructures, whereas the nine methylene CAs assembled into long nanofibers without crystalline molecular packing. At the same time, the different molecular packing arrangements after charge screening led to different absorbance spectra, despite the identical electronic properties of all PMI amphiphiles. While the crystalline CAs formed electronically coupled H-aggregates, only CAs with intermediate linker lengths showed evidence of high intermolecular orbital overlap. Photocatalytic hydrogen production using a nickel-based catalyst was observed in all hydrogels, with the highest turnovers observed for CA gels having intermediate linker lengths. Lastly, we conclude that the improved photocatalytic performance of the hydrogels formed by supramolecular assemblies of the intermediate linker CA molecules likely arises from improved exciton splitting efficiencies due to their higher orbital overlap.« less

  20. An orbital localization criterion based on the theory of "fuzzy" atoms.

    PubMed

    Alcoba, Diego R; Lain, Luis; Torre, Alicia; Bochicchio, Roberto C

    2006-04-15

    This work proposes a new procedure for localizing molecular and natural orbitals. The localization criterion presented here is based on the partitioning of the overlap matrix into atomic contributions within the theory of "fuzzy" atoms. Our approach has several advantages over other schemes: it is computationally inexpensive, preserves the sigma/pi-separability in planar systems and provides a straightforward interpretation of the resulting orbitals in terms of their localization indices and atomic occupancies. The corresponding algorithm has been implemented and its efficiency tested on selected molecular systems. (c) 2006 Wiley Periodicals, Inc.

  1. Earth Observatory Satellite system definition study. Report no. 1: Orbit/launch vehicle tradeoff studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study was conducted to determine the recommended orbit for the Earth Observatory Satellite (EOS) Land Resources Mission. It was determined that a promising sun synchronous orbit is 366 nautical miles when using an instrument with a 100 nautical mile swath width. The orbit has a 17 day repeat cycle and a 14 nautical mile swath overlap. Payloads were developed for each mission, EOS A through F. For each mission, the lowest cost booster that was capable of lifting the payload to the EOS orbit was selected. The launch vehicles selected for the missions are identified on the basis of tradeoff studies and recommendations. The reliability aspects of the launch vehicles are analyzed.

  2. Action-angle formulation of generalized, orbit-based, fast-ion diagnostic weight functions

    NASA Astrophysics Data System (ADS)

    Stagner, L.; Heidbrink, W. W.

    2017-09-01

    Due to the usually complicated and anisotropic nature of the fast-ion distribution function, diagnostic velocity-space weight functions, which indicate the sensitivity of a diagnostic to different fast-ion velocities, are used to facilitate the analysis of experimental data. Additionally, when velocity-space weight functions are discretized, a linear equation relating the fast-ion density and the expected diagnostic signal is formed. In a technique known as velocity-space tomography, many measurements can be combined to create an ill-conditioned system of linear equations that can be solved using various computational methods. However, when velocity-space weight functions (which by definition ignore spatial dependencies) are used, velocity-space tomography is restricted, both by the accuracy of its forward model and also by the availability of spatially overlapping diagnostic measurements. In this work, we extend velocity-space weight functions to a full 6D generalized coordinate system and then show how to reduce them to a 3D orbit-space without loss of generality using an action-angle formulation. Furthermore, we show how diagnostic orbit-weight functions can be used to infer the full fast-ion distribution function, i.e., orbit tomography. In depth derivations of orbit weight functions for the neutron, neutral particle analyzer, and fast-ion D-α diagnostics are also shown.

  3. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions.

    PubMed

    West, Aaron C; Schmidt, Michael W; Gordon, Mark S; Ruedenberg, Klaus

    2017-02-09

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the juxtaposed nonbonded quasi-atoms and a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions, and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. The theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.

  4. Vanishing-Overhead Linear-Scaling Random Phase Approximation by Cholesky Decomposition and an Attenuated Coulomb-Metric.

    PubMed

    Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian

    2017-04-11

    A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.

  5. A complete active space valence bond method with nonorthogonal orbitals

    NASA Astrophysics Data System (ADS)

    Hirao, Kimihiko; Nakano, Haruyuki; Nakayama, Kenichi

    1997-12-01

    A complete active space self-consistent field (SCF) wave function is transformed into a valence bond type representation built from nonorthogonal orbitals, each strongly localized on a single atom. Nonorthogonal complete active space SCF orbitals are constructed by Ruedenberg's projected localization procedure so that they have maximal overlaps with the corresponding minimum basis set of atomic orbitals of the free-atoms. The valence bond structures which are composed of such nonorthogonal quasiatomic orbitals constitute the wave function closest to the concept of the oldest and most simple valence bond method. The method is applied to benzene, butadiene, hydrogen, and methane molecules and compared to the previously proposed complete active space valence bond approach with orthogonal orbitals. The results demonstrate the validity of the method as a powerful tool for describing the electronic structure of various molecules.

  6. Role of orbital overlap in atomic manipulation

    NASA Astrophysics Data System (ADS)

    Jarvis, Sam; Sweetman, Adam; Bamidele, Joseph; Kantorovich, Lev; Moriarty, Philip

    2012-06-01

    We conduct ab initio simulations illustrating that the ability to achieve atomic manipulation using a dynamic force microscope depends on the precise orientation of the dangling bond(s) at the tip apex and their charge density with respect to those of surface atoms. Using the Si(100)-c(4×2) surface as a prototype, we demonstrate that it is possible to select tip apices capable of performing atomic manipulation tasks which are unachievable using another choice of apex. Specific tip apices can be identified via examination of F(z) curves taken at different lateral positions.

  7. Theoretical studies of radiation effects in composite materials for space use. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Chang, C. K.; Kamaratos, E.

    1982-01-01

    Tetraglycidyl 4,4'-diamino diphenyl methane epoxy cured with diamino diphenyl sulfone was used as a model compound. Computer programs were developed to calculate (1) energy deposition coefficients of protons and electrons of various energies at different depths of the material; (2) ranges of protons and electrons of various energies in the material; and (3) cumulative doses received by the composite in different geometric shapes placed in orbits of various altitudes and inclination. A preliminary study on accelerated testing was conducted and it was found that an elliptical equitorial orbit of 300 km perigee by 2750 km apogee can accumulate, in 2 years or less, enough radiation dose comparable to geosynchronous environment for 30 years. The local plasma model calculated the mean excitation energies for covalent and ionic compounds. Longitudinal and lateral distributions of excited species by electron and proton impact as well as the probability of overlapping of two tracks due to two charged particles within various time intervals were studied.

  8. Alkali Metal Cation versus Proton and Methyl Cation Affinities: Structure and Bonding Mechanism

    PubMed Central

    Boughlala, Zakaria; Fonseca Guerra, Célia

    2016-01-01

    Abstract We have analyzed the structure and bonding of gas‐phase Cl−X and [HCl−X]+ complexes for X+= H+, CH3 +, Li+, and Na+, using relativistic density functional theory (DFT). We wish to establish a quantitative trend in affinities of the anionic and neutral Lewis bases Cl− and HCl for the various cations. The Cl−X bond becomes longer and weaker along X+ = H+, CH3 +, Li+, and Na+. Our main purpose is to understand the heterolytic bonding mechanism behind the intrinsic (i.e., in the absence of solvent) alkali metal cation affinities (AMCA) and how this compares with and differs from those of the proton affinity (PA) and methyl cation affinity (MCA). Our analyses are based on Kohn–Sham molecular orbital (KS‐MO) theory in combination with a quantitative energy decomposition analysis (EDA) that pinpoints the importance of the different features in the bonding mechanism. Orbital overlap appears to play an important role in determining the trend in cation affinities. PMID:27551660

  9. Two mechanisms of resonance overlapping in excitation of azimuthal surface waves by rotating relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Girka, Igor O.; Pavlenko, Ivan V.; Thumm, Manfred

    2018-05-01

    Azimuthal surface waves are electromagnetic eigenwaves of cylindrical plasma-filled metallic waveguides with a stationary axial magnetic field. These waves with extraordinary polarization can effectively interact with relativistic electron beams rotating along large Larmor orbits in the gap, which separates the plasma column from the waveguide wall. Both widening the layer and increasing the beam particle density are demonstrated to cause resonance overlapping seen from the perspective of the growth rate dependence on the effective wave number.

  10. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  11. The three principal secular resonances nu(5), nu(6), and nu(16) in the asteroidal belt

    NASA Astrophysics Data System (ADS)

    Froeschle, Ch.; Scholl, H.

    1989-09-01

    Theoretical and numerical results obtained for secular resonant motion in the asteroidal belt are reviewed. William's (1969) theory yields the locations of the principal secular resonances nu(5), Nu(6), and nu(16) in the asteroidal belt. Theories by Nakai and Kinoshita (1985) and by Yoshikawa (1987) make it possible to model the basic features of orbital evolution at the secular resonances nu(16) and nu(6), respectively. No theory is available for the secular resonance nu(5). Numerical experiments by Froeschle and Scholl yield quantitative and new qualitative results for orbital evolutions at the three principal secular resonances nu(5), nu(6), and nu(16). These experiments indicate possible chaotic motion due to overlapping resonances. A secular resonance may overlap with another secular resonance or with a mean motion resonance. The role of the secular resonances as possible sources of meteorites is discussed.

  12. Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data

    NASA Technical Reports Server (NTRS)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny

    2010-01-01

    Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.

  13. Accuracy assessment of BDS precision orbit determination and the influence analysis of site distribution

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Guo, Jiming; Li, Zhicai; Zhang, Peng; Wu, Junli; Song, Weiwei

    2017-04-01

    BDS precision orbit determination is a key content of the BDS application, but the inadequate ground stations and the poor distribution of the network are the main reasons for the low accuracy of BDS precise orbit determination. In this paper, the BDS precise orbit determination results are obtained by using the IGS MGEX stations and the Chinese national reference stations,the accuracy of orbit determination of GEO, IGSO and MEO is 10.3cm, 2.8cm and 3.2cm, and the radial accuracy is 1.6cm,1.9cm and 1.5cm.The influence of ground reference stations distribution on BDS precise orbit determination is studied. The results show that the Chinese national reference stations contribute significantly to the BDS orbit determination, the overlap precision of GEO/IGSO/MEO satellites were improved by 15.5%, 57.5% and 5.3% respectively after adding the Chinese stations.Finally, the results of ODOP(orbit distribution of precision) and SLR are verified. Key words: BDS precise orbit determination; accuracy assessment;Chinese national reference stations;reference stations distribution;orbit distribution of precision

  14. Suppression of the overlap between Majorana fermions by orbital magnetic effects in semiconducting-superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Dmytruk, Olesia; Klinovaja, Jelena

    2018-04-01

    We study both analytically and numerically the role of orbital effects caused by a magnetic field applied along the axis of a semiconducting Rashba nanowire in the topological regime hosting Majorana fermions. We demonstrate that the orbital effects can be effectively taken into account in a one-dimensional model by shifting the chemical potential and thus modifying the topological criterion. We focus on the energy splitting between two Majorana fermions in a finite nanowire and find a striking interplay between orbital and Zeeman effects on this splitting. In the limit of strong spin-orbit interaction, we find regimes where the amplitude of the oscillating splitting stays constant or even decays with increasing the magnetic field, in stark contrast to the commonly studied case where orbital effects of the magnetic field are neglected. The period of these oscillations is found to be almost constant in many parameter regimes.

  15. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory.

    PubMed

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; Scheinost, Andreas; Moisy, Philippe; Petit, Sébastien; Shuh, David K; Tyliszczak, Tolek; Den Auwer, Christophe

    2016-01-28

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

  16. The nature of chemical bonding in actinide and lanthanide ferrocyanides determined by X-ray absorption spectroscopy and density functional theory

    DOE PAGES

    Dumas, Thomas; Guillaumont, Dominique; Fillaux, Clara; ...

    2016-01-01

    The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide bettermore » resolution than actinide L 3 -edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L 2,3 -edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K 4 Fe II (CN) 6 , thorium hexacyanoferrate Th IV Fe II (CN) 6 , and neodymium hexacyanoferrate KNd III Fe II (CN) 6 . The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe II (CN) 6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K 4 Fe II (CN) 6 ), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.« less

  17. Plane-Wave Implementation and Performance of à-la-Carte Coulomb-Attenuated Exchange-Correlation Functionals for Predicting Optical Excitation Energies in Some Notorious Cases.

    PubMed

    Bircher, Martin P; Rothlisberger, Ursula

    2018-06-12

    Linear-response time-dependent density functional theory (LR-TD-DFT) has become a valuable tool in the calculation of excited states of molecules of various sizes. However, standard generalized-gradient approximation and hybrid exchange-correlation (xc) functionals often fail to correctly predict charge-transfer (CT) excitations with low orbital overlap, thus limiting the scope of the method. The Coulomb-attenuation method (CAM) in the form of the CAM-B3LYP functional has been shown to reliably remedy this problem in many CT systems, making accurate predictions possible. However, in spite of a rather consistent performance across different orbital overlap regimes, some pitfalls remain. Here, we present a fully flexible and adaptable implementation of the CAM for Γ-point calculations within the plane-wave pseudopotential molecular dynamics package CPMD and explore how customized xc functionals can improve the optical spectra of some notorious cases. We find that results obtained using plane waves agree well with those from all-electron calculations employing atom-centered bases, and that it is possible to construct a new Coulomb-attenuated xc functional based on simple considerations. We show that such a functional is able to outperform CAM-B3LYP in some cases, while retaining similar accuracy in systems where CAM-B3LYP performs well.

  18. Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles

    NASA Astrophysics Data System (ADS)

    Takács, Ádám; Kocsis, Bence

    2018-04-01

    The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes’ distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.

  19. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less

  20. Intrinsic Resolution of Molecular Electronic Wave Functions and Energies in Terms of Quasi-atoms and Their Interactions

    DOE PAGES

    West, Aaron C.; Schmidt, Michael W.; Gordon, Mark S.; ...

    2017-01-30

    A general intrinsic energy resolution has been formulated for strongly correlated wave functions in the full molecular valence space and its subspaces. The information regarding the quasi-atomic organization of the molecular electronic structure is extracted from the molecular wave function without introducing any additional postulated model state wave functions. To this end, the molecular wave function is expressed in terms of quasi-atomic molecular orbitals, which maximize the overlap between subspaces of the molecular orbital space and the free-atom orbital spaces. As a result, the molecular wave function becomes the superposition of a wave function representing the non-bonded juxtaposed quasi-atoms andmore » a wave function describing the interatomic electron migrations that create bonds through electron sharing. The juxtaposed nonbonded quasi-atoms are shown to consist of entangled quasi-atomic states from different atoms. The binding energy is resolved as a sum of contributions that are due to quasi-atom formation, quasiclassical electrostatic interactions and interatomic interferences caused by electron sharing. The contributions are further resolved according to orbital interactions. The various transformations that generate the analysis are determined by criteria that are independent of the working orbital basis used for calculating the molecular wave function. Lastly, the theoretical formulation of the resolution is quantitatively validated by an application to the C 2 molecule.« less

  1. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM

    PubMed Central

    Tan, Bingfeng; Yuan, Yunbin; Zhang, Baocheng; Hsu, Hou Ze; Ou, Jikun

    2016-01-01

    An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20–25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution. PMID:27595795

  2. A new analytical solar radiation pressure model for current BeiDou satellites: IGGBSPM.

    PubMed

    Tan, Bingfeng; Yuan, Yunbin; Zhang, Baocheng; Hsu, Hou Ze; Ou, Jikun

    2016-09-06

    An analytical solar radiation pressure (SRP) model, IGGBSPM (an abbreviation for Institute of Geodesy and Geophysics BeiDou Solar Pressure Model), has been developed for three BeiDou satellite types, namely, geostationary orbit (GEO), inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO), based on a ray-tracing method. The performance of IGGBSPM was assessed based on numerical integration, SLR residuals and analyses of empirical SRP parameters (except overlap computations). The numerical results show that the integrated orbit resulting from IGGBSPM differs from the precise ephemerides by approximately 5 m and 2 m for GEO and non-GEO satellites, respectively. Moreover, when IGGBSPM is used as an a priori model to enhance the ECOM (5-parameter) model with stochastic pulses, named ECOM + APR, for precise orbit determination, the SLR RMS residual improves by approximately 20-25 percent over the ECOM-only solution during the yaw-steering period and by approximately 40 percent during the yaw-fixed period. For the BeiDou GEO01 satellite, improvements of 18 and 32 percent can be achieved during the out-of-eclipse season and during the eclipse season, respectively. An investigation of the estimated ECOM D0 parameters indicated that the β-angle dependence that is evident in the ECOM-only solution is no longer present in the ECOM + APR solution.

  3. Space Shuttle orbit determination using empirical force modeling of attitude maneuvers for the German MOMS-02/D2 mission

    NASA Technical Reports Server (NTRS)

    Vonbraun, C.; Reigber, Christoph

    1994-01-01

    In the spring of 1993, the MOMS-02 (modular Optoelectronic Multispectral Scanner) camera, as part of the second German Spacelab mission aboard STS-55, successfully took digital threefold stereo images of the surface of the Earth. While the mission is experimental in nature, its primary goals are to produce high quality maps and three-dimensional digital terrain models of the Earth's surface. Considerable improvement in the quality of the terrain model can be attained if information about the position and attitude of the camera is included during the adjustment of the image data. One of the primary sources of error in the Shuttle's position is due to the significant attitude maneuvers conducted during the course of the mission. Various arcs, using actual Tracking and Data Relay Satellite (TDRSS) Doppler data of STS-55, were processed to determine how effectively empirical force modeling could be used to solve for the radial, transverse, and normal components of the orbit perturbations caused by these routine maneuvers. Results are presented in terms of overlap-orbit differences in the three components. Comparisons of these differences, before and after the maneuvers are estimated, show that the quality of an orbit can be greatly enhanced with this technique, even if several maneuvers are present. Finally, a discussion is made of some of the difficulties encountered with this approach, and some ideas for future studies are presented.

  4. Quantum chemical calculations for polymers and organic compounds

    NASA Technical Reports Server (NTRS)

    Lopez, J.; Yang, C.

    1982-01-01

    The relativistic effects of the orbiting electrons on a model compound were calculated. The computational method used was based on 'Modified Neglect of Differential Overlap' (MNDO). The compound tetracyanoplatinate was used since empirical measurement and calculations along "classical" lines had yielded many known properties. The purpose was to show that for large molecules relativity effects could not be ignored and that these effects could be calculated and yield data in closer agreement to empirical measurements. Both the energy band structure and molecular orbitals are depicted.

  5. Valence-band structure of organic radical p-CF3PNN investigated by angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Anzai, Hiroaki; Takakura, Ryosuke; Ono, Yusuke; Ishihara, Suzuna; Sato, Hitoshi; Namatame, Hirofumi; Taniguchi, Masaki; Matsui, Toshiyuki; Noguchi, Satoru; Hosokoshi, Yuko

    2018-05-01

    We study the electronic structure of p-trifluoromethylphenyl nitronyl nitroxide (p-CF3PNN), which forms a one-dimensional alternating antiferromagnetic chain of molecules, using angle-resolved photoemission spectroscopy. A singly occupied molecular orbital (SOMO) is observed clearly at ∼ 2 eV in the valence-band spectra. The small band gap and the overlap between the SOMO orbitals in the NO groups are associated with the antiferromagnetic interaction between neighboring spins.

  6. Evaluation and Improvement of Earth Radiation Budget Data Sets

    NASA Technical Reports Server (NTRS)

    Haeffelin, Martial P. A.

    2001-01-01

    The tasks performed during this grant are as follows: (1) Advanced scan patterns for enhanced spatial and angular sampling of ground targets; (2) Inter-calibration of polar orbiter in low Earth orbits (LEO) and geostationary (GEO) broadband radiance measurements; (3) Synergism between CERES on TRMM and Terra; (4) Improved surface solar irradiance measurements; (5) SW flux observations from Ultra Long Duration Balloons at 35 km altitude; (6) Nighttime cloud property retrieval algorithm; (7) Retrievals of overlapped and mixed-phase clouds.

  7. Electron and positron states in HgBa2CuO4

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Jarlborg, T.

    1994-08-01

    Local-density-calculations of the electronic structure of HgBa2CuO4 have been performed with the self-consistent linear muffin-tin orbital method. The positron-density distribution and its sensitivity due to different potentials are calculated. The annihilation rates are computed in order to study the chemical bonding and to predict the Fermi-surface signal. Comparisons are made with previous calculations on other high-Tc copper oxides concerning the Fermi-surface properties and electron-positron overlap. We discuss the possibility of observing the Fermi surface associated with the Cu-O planes in positron-annihilation experiments.

  8. Chaos in navigation satellite orbits caused by the perturbed motion of the Moon

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron J.; Alessi, Elisa Maria; Rossi, Alessandro; Valsecchi, Giovanni B.

    2015-06-01

    Numerical simulations carried out over the past decade suggest that the orbits of the Global Navigation Satellite Systems are unstable, resulting in an apparent chaotic growth of the eccentricity. Here, we show that the irregular and haphazard character of these orbits reflects a similar irregularity in the orbits of many celestial bodies in our Solar system. We find that secular resonances, involving linear combinations of the frequencies of nodal and apsidal precession and the rate of regression of lunar nodes, occur in profusion so that the phase space is threaded by a devious stochastic web. As in all cases in the Solar system, chaos ensues where resonances overlap. These results may be significant for the analysis of disposal strategies for the four constellations in this precarious region of space.

  9. Spacecraft servicing demonstration plan

    NASA Technical Reports Server (NTRS)

    Bergonz, F. H.; Bulboaca, M. A.; Derocher, W. L., Jr.

    1984-01-01

    A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus.

  10. Precise orbit determination of the Fengyun-3C satellite using onboard GPS and BDS observations

    NASA Astrophysics Data System (ADS)

    Li, Min; Li, Wenwen; Shi, Chuang; Jiang, Kecai; Guo, Xiang; Dai, Xiaolei; Meng, Xiangguang; Yang, Zhongdong; Yang, Guanglin; Liao, Mi

    2017-11-01

    The GNSS Occultation Sounder instrument onboard the Chinese meteorological satellite Fengyun-3C (FY-3C) tracks both GPS and BDS signals for orbit determination. One month's worth of the onboard dual-frequency GPS and BDS data during March 2015 from the FY-3C satellite is analyzed in this study. The onboard BDS and GPS measurement quality is evaluated in terms of data quantity as well as code multipath error. Severe multipath errors for BDS code ranges are observed especially for high elevations for BDS medium earth orbit satellites (MEOs). The code multipath errors are estimated as piecewise linear model in 2{°}× 2{°} grid and applied in precise orbit determination (POD) calculations. POD of FY-3C is firstly performed with GPS data, which shows orbit consistency of approximate 2.7 cm in 3D RMS (root mean square) by overlap comparisons; the estimated orbits are then used as reference orbits for evaluating the orbit precision of GPS and BDS combined POD as well as BDS-based POD. It is indicated that inclusion of BDS geosynchronous orbit satellites (GEOs) could degrade POD precision seriously. The precisions of orbit estimates by combined POD and BDS-based POD are 3.4 and 30.1 cm in 3D RMS when GEOs are involved, respectively. However, if BDS GEOs are excluded, the combined POD can reach similar precision with respect to GPS POD, showing orbit differences about 0.8 cm, while the orbit precision of BDS-based POD can be improved to 8.4 cm. These results indicate that the POD performance with onboard BDS data alone can reach precision better than 10 cm with only five BDS inclined geosynchronous satellite orbit satellites and three MEOs. As the GNOS receiver can only track six BDS satellites for orbit positioning at its maximum channel, it can be expected that the performance of POD with onboard BDS data can be further improved if more observations are generated without such restrictions.

  11. Jason-2 systematic error analysis in the GPS derived orbits

    NASA Astrophysics Data System (ADS)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Chinn, D. S.

    2011-12-01

    Several results related to global or regional sea level changes still too often rely on the assumption that orbit errors coming from station coordinates adoption can be neglected in the total error budget (Ceri et al. 2010). In particular Instantaneous crust-fixed coordinates are obtained by adding to the linear ITRF model the geophysical high-frequency variations. In principle, geocenter motion should also be included in this computation, in order to reference these coordinates to the center of mass of the whole Earth. This correction is currently not applied when computing GDR orbits. Cerri et al. (2010) performed an analysis of systematic errors common to all coordinates along the North/South direction, as this type of bias, also known as Z-shift, has a clear impact on MSL estimates due to the unequal distribution of continental surface in the northern and southern hemispheres. The goal of this paper is to specifically study the main source of errors which comes from the current imprecision in the Z-axis realization of the frame. We focus here on the time variability of this Z-shift, which we can decompose in a drift and a periodic component due to the presumably omitted geocenter motion. A series of Jason-2 GPS-only orbits have been computed at NASA GSFC, using both IGS05 and IGS08. These orbits have been shown to agree radially at less than 1 cm RMS vs our SLR/DORIS std0905 and std1007 reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Melachroinos et al. 2011). Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR-crossover residuals provide the best performance indicator for independent validation of the NASA/GSFC GPS-only reduced dynamic orbits. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. At first, we quantify the effect of a North/South displacement of the tracking reference points for each of the three techniques. We then compare these results to the study of Morel and Willis (2005) and Ceri et al. (2010). We extend the analysis to the most recent Jason-2 cycles. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN.

  12. Creativity and borderline personality disorder: evidence from a voxel-based morphometry study.

    PubMed

    Leutgeb, Verena; Ille, Rottraut; Wabnegger, Albert; Schienle, Anne; Schöggl, Helmut; Weber, Bernhard; Papousek, Ilona; Weiss, Elisabeth M; Fink, Andreas

    2016-05-01

    Throughout the history, various examples of eminent creative people suffering from mental disorders along with some empirical research reports strengthened the idea of a potential link between creativity and psychopathology. This study investigated different facets of psychometrically determined creativity in 20 females diagnosed with borderline personality disorder (BPD) relative to 19 healthy female controls. In addition, group differences in grey matter (GM) were examined. Behavioural findings revealed no significant differences between the BPD group and healthy controls with respect to verbal and figural-graphic creative task performance and creativity-related personality characteristics. Whole-brain voxel-based morphometry analyses revealed a distinct pattern of GM reductions in the BPD group (relative to controls) in a network of brain regions closely associated with various cognitive and emotional functions (including the bilateral orbital inferior frontal gyri and the left superior temporal gyrus), partly overlapping with creativity-related brain regions. Correlation analyses moreover revealed that in the BPD group GM reductions in the orbital parts of the inferior and middle frontal gyri were associated with lower levels of creativity. This study provides no indications in favour of the putative link between creativity and psychopathology, as sometimes reported in the literature.

  13. Electron Density Distribution Changes of Magnesiowüstite With Pressure

    NASA Astrophysics Data System (ADS)

    Diamond, M. R.; Popov, D.; Shen, G.; Jeanloz, R.

    2017-12-01

    Magnesiowüstite is one of the dominant minerals in the earth's lower mantle; its density and elasticity, substantially altered by its spin crossover, have direct consequence to interpreting deep-earth geophysical data. High-resolution single-crystal x-ray diffraction data can portray the 3-dimensional distribution of electron density through the Fourier transform of measured form factors. Here we present experimentally measured changes in electron density distribution of single-crystal (Mg.85,Fe.15)O as it goes through its iron(II) high-spin to low-spin electronic transition between about 40 and 60 GPa [Lin and Tsuchiya, 2008], in a diamond-anvil cell. As (Mg,Fe)O undergoes a pressure induced spin crossover (from high spin at low pressure to low spin at high pressure) due to overlap of its eg orbitals, the t2g orbitals become more pronounced to due a higher population of electrons, while the eg orbitals diminish. The spin splitting energy becomes increasingly unfavorable compared to the spin orbital pairing energy. By looking at the population of electrons at different directions in real space, we directly observe these changes in orbital occupation leading up to and during the spin crossover. Since high-Mg magnesiowüstite has a high symmetry structure at these pressure conditions, detecting relative changes in electron density distribution (comparing subsequent pressure steps) is feasible by collecting high resolution data offered by high-energy X rays and wide opening-angle diamond-anvil cells.

  14. The effect and influence of cis-ligands on the electronic and oxidizing properties of nonheme oxoiron biomimetics. A density functional study.

    PubMed

    de Visser, Sam P; Nam, Wonwoo

    2008-12-18

    Density functional theory studies on the nature of the cis effect and cis influence of ligands on oxoiron nonheme complexes have been performed. A detailed analysis of the electronic and oxidizing properties of [Fe(IV)O(TPA)L](+) with L = F(-), Cl(-), and Br(-) and TPA = tris-(2-pyridylmethyl)amine are presented and compared with [Fe(IV)O(TPA)NCCH(3)](2+). The calculations show that the electronic cis effect is determined by favorable orbital overlap between first-row elements with the metal, which are missing between the metal and second- and third-row elements. As a consequence, the metal 3d block is split into a one-below-two set of orbitals with L = Cl(-) and Br(-), and the HOMO/LUMO energy gap is widened with respect to the system with L = F(-). However, this larger HOMO/LUMO gap does not lead to large differences in electron affinities of the complexes. Moreover, a quantum mechanical analysis of the binding of the ligand shows that it is built up from a large electric field effect of the ligand on the oxoiron species and a much smaller quantum mechanical effect due to orbital overlap. These contributions are of similar strength for the three tested halogen cis ligands and result in similar reactivity patterns with substrates. The calculations show that [Fe(IV)O(TPA)L](+) with L = F(-), Cl(-), and Br(-) have closely lying triplet and quintet spin states, but only the quintet spin state is reactive with substrates. Therefore, the efficiency of the oxidant will be determined by the triplet-quintet spin state crossing of the reaction. The reaction of styrene with a doubly charged reactant, that is, [Fe(V)O(TPA)L](2+) with L = F(-), Cl(-), and Br(-) or [Fe(V)O(TPA)NCCH(3)](3+), leads to an initial electron transfer from the substrate to the metal followed by a highly exothermic epoxidation mechanism. These reactivity differences are mainly determined by the overall charge of the system rather than the nature of the cis ligand.

  15. ORBITAL STABILITY OF MULTI-PLANET SYSTEMS: BEHAVIOR AT HIGH MASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Sarah J.; Kratter, Kaitlin M., E-mail: morrison@lpl.arizona.edu, E-mail: kkratter@email.arizona.edu

    2016-06-01

    In the coming years, high-contrast imaging surveys are expected to reveal the characteristics of the population of wide-orbit, massive, exoplanets. To date, a handful of wide planetary mass companions are known, but only one such multi-planet system has been discovered: HR 8799. For low mass planetary systems, multi-planet interactions play an important role in setting system architecture. In this paper, we explore the stability of these high mass, multi-planet systems. While empirical relationships exist that predict how system stability scales with planet spacing at low masses, we show that extrapolating to super-Jupiter masses can lead to up to an ordermore » of magnitude overestimate of stability for massive, tightly packed systems. We show that at both low and high planet masses, overlapping mean-motion resonances trigger chaotic orbital evolution, which leads to system instability. We attribute some of the difference in behavior as a function of mass to the increasing importance of second order resonances at high planet–star mass ratios. We use our tailored high mass planet results to estimate the maximum number of planets that might reside in double component debris disk systems, whose gaps may indicate the presence of massive bodies.« less

  16. Precise Orbit Determination of BeiDou Navigation Satellite System

    NASA Astrophysics Data System (ADS)

    He, Lina; Ge, Maorong; Wang, Jiexian; Wickert, Jens; Schuh, Harald

    2013-04-01

    China has been developing its own independent satellite navigation system since decades. Now the COMPASS system, also known as BeiDou, is emerging and gaining more and more interest and attention in the worldwide GNSS communities. The current regional BeiDou system is ready for its operational service around the end of 2012 with a constellation including five Geostationary Earth Orbit satellites (GEO), five Inclined Geosynchronous Orbit satellites (IGSO) and four Medium Earth orbit (MEO) satellites in operation. Besides the open service with positioning accuracy of around 10m which is free to civilian users, both precise relative positioning, and precise point positioning are demonstrated as well. In order to enhance the BeiDou precise positioning service, Precise Orbit Determination (POD) which is essential of any satellite navigation system has been investigated and studied thoroughly. To further improving the orbits of different types of satellites, we study the impact of network coverage on POD data products by comparing results from tracking networks over the Chinese territory, Asian-Pacific, Asian and of global scale. Furthermore, we concentrate on the improvement of involving MEOs on the orbit quality of GEOs and IGSOs. POD with and without MEOs are undertaken and results are analyzed. Finally, integer ambiguity resolution which brings highly improvement on orbits and positions with GPS data is also carried out and its effect on POD data products is assessed and discussed in detail. Seven weeks of BeiDou data from a ground tracking network, deployed by Wuhan University is employed in this study. The test constellation includes four GEO, five IGSO and two MEO satellites in operation. The three-day solution approach is employed to enhance its strength due to the limited coverage of the tracking network and the small movement of most of the satellites. A number of tracking scenarios and processing schemas are identified and processed and overlapping orbit differences are utilized to qualify the estimated orbits and clocks. The results show that GEO orbits, especially the along-track component, can be significantly improved by extending the tracking network in China along longitude direction, whereas IGSOs gain more improvement if the tracking network extends in latitude. For the current tracking network, deploying tracking stations on the eastern side, for example in New Zealand and/or in Hawaii, will significantly reduce along-track biases of GEOs on the same side. The involvement of MEOs and ambiguity-fixing also make the orbits better but rather moderate. Key words: BeiDou, precise orbit determination (POD), tracking network, ambiguity-fixing

  17. Uncovering the Origin of Divergence in the CsM(CrO 4) 2 (M = La, Pr, Nd, Sm, Eu; Am) Family through Examination of the Chemical Bonding in a Molecular Cluster and by Band Structure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galley, Shane S.; Arico, Alexandra A.; Lee, Tsung-Han

    A series of f-block chromates, CsM(CrO 4) 2 (M = La, Pr, Nd, Sm, Eu; Am), were prepared revealing notable differences between the Am III derivatives and their lanthanide analogs. While all compounds form similar layered structures, the americium compound exhibits polymorphism and adopts both a structure isomorphous with the early lanthanides as well as one that possesses lower symmetry. Both polymorphs are dark red and possess band gaps that are smaller than the Ln III compounds. In order to probe the origin of these differences, the electronic structure of α-CsSm(CrO 4) 2, α-CsEu(CrO 4) 2, and α-CsAm(CrO 4) 2more » were studied using both a molecular cluster approach featuring hybrid density functional theory and QTAIM analysis and by the periodic LDA+GA and LDA+DMFT methods. Notably, the covalent contributions to bonding by the f orbitals were found to be more than twice as large in the Am III chromate than in the Sm III and Eu III compounds, and even larger in magnitude than the Am-5f spin–orbit splitting in this system. Our analysis indicates also that the Am–O covalency in α-CsAm(CrO 4) 2 is driven by the degeneracy of the 5f and 2p orbitals, and not by orbital overlap.« less

  18. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    PubMed

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  19. Uncovering the Origin of Divergence in the CsM(CrO 4) 2 (M = La, Pr, Nd, Sm, Eu; Am) Family through Examination of the Chemical Bonding in a Molecular Cluster and by Band Structure Analysis

    DOE PAGES

    Galley, Shane S.; Arico, Alexandra A.; Lee, Tsung-Han; ...

    2018-01-10

    A series of f-block chromates, CsM(CrO 4) 2 (M = La, Pr, Nd, Sm, Eu; Am), were prepared revealing notable differences between the Am III derivatives and their lanthanide analogs. While all compounds form similar layered structures, the americium compound exhibits polymorphism and adopts both a structure isomorphous with the early lanthanides as well as one that possesses lower symmetry. Both polymorphs are dark red and possess band gaps that are smaller than the Ln III compounds. In order to probe the origin of these differences, the electronic structure of α-CsSm(CrO 4) 2, α-CsEu(CrO 4) 2, and α-CsAm(CrO 4) 2more » were studied using both a molecular cluster approach featuring hybrid density functional theory and QTAIM analysis and by the periodic LDA+GA and LDA+DMFT methods. Notably, the covalent contributions to bonding by the f orbitals were found to be more than twice as large in the Am III chromate than in the Sm III and Eu III compounds, and even larger in magnitude than the Am-5f spin–orbit splitting in this system. Our analysis indicates also that the Am–O covalency in α-CsAm(CrO 4) 2 is driven by the degeneracy of the 5f and 2p orbitals, and not by orbital overlap.« less

  20. Effect of horizontal molecular orientation on triplet-exciton diffusion in amorphous organic films

    NASA Astrophysics Data System (ADS)

    Sawabe, T.; Takasu, I.; Yonehara, T.; Ono, T.; Yoshida, J.; Enomoto, S.; Amemiya, I.; Adachi, C.

    2012-09-01

    Triplet harvesting is a candidate technology for highly efficient and long-life white OLEDs, where green or red phosphorescent emitters are activated by the triplet-excitons diffused from blue fluorescent emitters. We examined two oxadiazole-based electron transport materials with different horizontal molecular orientation as a triplet-exciton diffusion layer (TDL) in triplet-harvesting OLEDs. The device characteristics and the transient electroluminescent analyses of the red phosphorescent emitter showed that the triplet-exciton diffusion was more effective in the highly oriented TDL. The results are ascribed to the strong orbital overlap between the oriented molecules, which provides rapid electron exchange (Dexter energy transfer) in the TDL.

  1. Understanding the Control of Singlet-Triplet Splitting for Organic Exciton Manipulating: A Combined Theoretical and Experimental Approach

    PubMed Central

    Chen, Ting; Zheng, Lei; Yuan, Jie; An, Zhongfu; Chen, Runfeng; Tao, Ye; Li, Huanhuan; Xie, Xiaoji; Huang, Wei

    2015-01-01

    Developing organic optoelectronic materials with desired photophysical properties has always been at the forefront of organic electronics. The variation of singlet-triplet splitting (ΔEST) can provide useful means in modulating organic excitons for diversified photophysical phenomena, but controlling ΔEST in a desired manner within a large tuning scope remains a daunting challenge. Here, we demonstrate a convenient and quantitative approach to relate ΔEST to the frontier orbital overlap and separation distance via a set of newly developed parameters using natural transition orbital analysis to consider whole pictures of electron transitions for both the lowest singlet (S1) and triplet (T1) excited states. These critical parameters revealed that both separated S1 and T1 states leads to ultralow ΔEST; separated S1 and overlapped T1 states results in small ΔEST; and both overlapped S1 and T1 states induces large ΔEST. Importantly, we realized a widely-tuned ΔEST in a range from ultralow (0.0003 eV) to extra-large (1.47 eV) via a subtle symmetric control of triazine molecules, based on time-dependent density functional theory calculations combined with experimental explorations. These findings provide keen insights into ΔEST control for feasible excited state tuning, offering valuable guidelines for the construction of molecules with desired optoelectronic properties. PMID:26161684

  2. Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.

    PubMed

    Korshoj, Lee E; Afsari, Sepideh; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant

    2017-03-01

    Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Proton - Neutron Interactions and The New Atomic Masses

    NASA Astrophysics Data System (ADS)

    Cakirli, R. B.; Casten, R. F.; Brenner, D. S.; Millman, E. A.

    2005-04-01

    Proton - neutron interactions determine structural evolution with N and Z including the onset of collectivity, deformation, and phase transitions. We have extracted the interaction of the last proton and the last neutron, called δVpn, from a specific double difference of binding energies using the new mass tabulation [1]. Striking variations are seen near closed shells. In the Pb region, these are interpreted using overlaps of shell model orbits, which are large when both protons and neutrons are in similar orbits, and small when they are not. Further, we used the idea that shell filling follows a typical systematic pattern to look at the correlation of δVpn values to the fractions of the proton and neutron shells that are filled. These results provide useful signatures of structure in exotic nuclei.This work was supported by US DOE Grant Nos. DE-FG02-91ER40609 and DE-FG02-88ER-40417. [1] G. Audi, A.H. Wapstra and C. Thibault, Nucl. Phys.A729, 337 (2003).

  4. The Spectroscopy and Photophysics of Aniline, 2-AMINOPYRIDINE, and 3-AMINOPYRIDINE

    NASA Astrophysics Data System (ADS)

    Kim, Byungjoo

    1995-01-01

    Two-photon ionization photoelectron spectroscopic techniques have been employed in concert with a picosecond laser system and molecular beam machine to study the vibrational structure of molecular ions and the intramolecular dynamics of optically prepared intermediate states. From photoelectron spectra of 2-aminopyridine via various S_1 vibronic resonances, the frequencies of several vibrations in the ionic state are assigned. The ionization potential of the molecule is found to be 8.099 +/- 0.003 eV. Using two-color ionization techniques, the electronic overlap effects in the photoionization of excited molecules have been studied, on the example of 2-aminopyridine, 3-aminopyridine, and aniline. The molecules are excited to their S_1 states, and ionized by a 200 nm laser pulse within 50 ps. The spectra of the aminopyridines show a striking absence of transitions to excited electronic states of the ions, indicating small electronic overlap factors in the ionization transitions and very little configuration interaction in the S _1 states. The spectra of aniline show the vibrationally resolved first excited electronic state band of the ion, which is very weak compared to the ground electronic state band, indicating a small amount of orbital mixing in the S_1 state. The vibrational peaks in the band were assigned by comparison of the spectra via two different vibronic resonances. The observations demonstrate that electronic overlap effects play a very general role in the ionization of polyatomic molecules in electronically excited states, and that orbital mixing patterns of the excited electronic states may become observable by projecting molecular electronic wavefunctions onto the ion states. In the time-delayed experiments for these molecules, all spectra reveal only one product of the nonradiative relaxation process. Careful considerations of electronic and vibrational overlap propensity rules for the ionization step lead to the conclusion that the dominant nonradiative decay mechanism in these molecules is the intersystem crossing to excited vibrational states of the T_1 state. This technique has been applied to study the predissociation process of CS_2 in the S_3 vibronic levels near 200 nm. The spectra show extensive vibrational structure, with unusual activity in the antisymmetric vibrations, indicating the possibility of level mixing in the intermediate state by the IVR couplings.

  5. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE PAGES

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina; ...

    2017-01-17

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  6. Probing Transient Valence Orbital Changes with Picosecond Valence-to-Core X-ray Emission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March, Anne Marie; Assefa, Tadesse A.; Boemer, Christina

    Here we probe the dynamics of valence electrons in photoexcited [Fe(terpy) 2] 2+ in solution to gain deeper insight into the Fe-ligand bond changes. We use hard X-ray emission spectroscopy (XES), which combines element specificity and high penetration with sensitivity to orbital structure, making it a powerful technique for molecular studies in a wide variety of environments. A picosecond-time-resolved measurement of the complete Is X-ray emission spectrum captures the transient photoinduced changes and includes the weak valence-to-core (vtc) emission lines that correspond to transitions from occupied valence orbitals to the nascent core-hole. Vtc-XES offers particular insight into the molecular orbitalsmore » directly involved in the light-driven dynamics; a change in the metal-ligand orbital overlap results in an intensity reduction and a blue energy shift in agreement with our theoretical calculations and more subtle features at the highest energies reflect changes in the frontier orbital populations.« less

  7. Separated Fringe Packet Observations with the CHARA Array. I. Methods and New Orbits for χ Draconis, HD 184467, and HD 198084

    NASA Astrophysics Data System (ADS)

    Farrington, C. D.; ten Brummelaar, T. A.; Mason, B. D.; Hartkopf, W. I.; McAlister, H. A.; Raghavan, D.; Turner, N. H.; Sturmann, L.; Sturmann, J.; Ridgway, S. T.

    2010-06-01

    We present the modification of the orbits of χ Draconis and HD 184467, and a completely new orbit for HD 198084, including data taken at the Center for High Angular Resolution Astronomy (CHARA) Array. These data were obtained using a modification of the technique of separated fringe packets (SFPs). The accuracy of the SFP data surpasses that of data taken by speckle, but the technique is much more time and labor intensive. Additionally, using SFPs with the CHARA Array, it is possible to obtain separations below the detection range of speckle interferometry (>=30 mas) above the range in "classic" long-baseline interferometry where fringes from a binary overlap are no longer separated (<=10 mas). Using spectroscopic binary systems with published speckle orbits, we are able to test our new measurements against their ephemerides to calibrate the method as well as produce entirely new orbits for systems with no current astrometric observations.

  8. A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)

    NASA Technical Reports Server (NTRS)

    Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.

    1993-01-01

    The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).

  9. Generating precise and homogeneous orbits for Jason-1 and Jason-2

    NASA Astrophysics Data System (ADS)

    Flohrer, Claudia; Otten, Michiel; Springer, Tim; Dow, John M.

    Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are needed. Satellite altimetry missions meanwhile span over three decades, in which our understanding of the Earth has increased significantly. As also the models used for precise orbit determination (POD) have improved, the satellite orbits of the altimetry satellites are not available in an uniform reference system. Homogeneously determined orbits referring to the same global reference system are, however, needed to improve our understanding of the Earth system. With the launch of the TOPEX/Poseidon (T/P) mission in 1992 a still ongoing time series of high-altimetry measurements of ocean topography started. In 2001 the altimetry mission Jason-1 took over and in 2009 the follow-on program Jason-2/OSTM started. All three satellites follow the same ground-track by flying in the same orbit, thus ensuring a continuous time-series of centimetre-level ocean topography observations. Therefore a reprocessing of the orbit determination for these altimetry satellites would be highly beneficial for altimetry applications. The Navigation Support Office at ESA/ESOC has enhanced the GNSS processing capabilities of its NAPEOS software. Thus it is now in the unique position to do orbit determination by combining different types of data, and by using one single software system for different satellite types, including the most recent improvements in orbit and observation modelling and IERS conventions. Our presentation focuses on the re-processing efforts carried out by ESA/ESOC for the gener-ation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. At the same time ESOC carried out a re-processing of the com-bined GPS/GLONASS IGS solution from 2002-2009 for the generation of 30 second satellite clocks, which enabled us to use 30 second-sampled GPS observations in our POD process. Data of all three tracking instruments on-board the satellites, i.e. GPS, DORIS, and SLR measure-ments, were used in a combined data analysis. About 8 years of Jason-1 data and about 2 years of Jason-2 data were processed. We present the orbit determination results, focusing on the benefits when adding the 30 second-sampled GPS data (used together with DORIS and SLR measurements) to the solution. We evaluate the orbit accuracy by analysing post-fit residuals, orbit overlap errors, and orbit differences between our orbits and external orbits generated by other analysis centres. The consistency between our solutions and external orbits is below the 1 cm level in the radial direction, the most crucial component for altimetry height measurements. In the cross-track component we observe a clear improvement when adding GPS data to the POD process. The use of GPS data also seems to improve the DORIS data processing, as the DORIS post-fit residuals clearly benefit.

  10. Electron-positron momentum density in Tl 2Ba 2CuO 6

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Gauthier, M.; Hoffmann, L.; Jarlborg, T.; Manuel, A. A.; Massidda, S.; Peter, M.; Triscone, G.

    1994-08-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor Tl 2Ba 2CuO 6, together with some preliminary two-dimensional angular correlation of the annihilation radiation (2D-ACAR) measurements. The calculations are based on the first-principles electronic structure obtained using the full-potential linearized augmented plane wave (FLAPW) and the linear muffin-tin orbital (LMTO) methods. We also use a linear combination of the atomic orbitals-molecular orbital method (LCAO-MO) to discuss orbital contributions to the anisotropies. Some agreement between calculated and measured 2D-ACAR anisotropies encourage sample improvement for further Fermi surface investigations. Indeed, our results indicate a non-negligle overlap of the positron wave function with the CuOo 2 plane electrons. Therefore, this compound may be well suited for investigating the relevant CuO 2 Fermi surface by 2D-ACAR.

  11. Performance Analysis of Beidou-2/Beidou-3e Combined Solution with Emphasis on Precise Orbit Determination and Precise Point Positioning

    PubMed Central

    Xu, Xiaolong; Li, Min; Li, Wenwen; Liu, Jingnan

    2018-01-01

    In 2015, the plan for global coverage by the Chinese BeiDou Navigation Satellite System was launched. Five global BeiDou experimental satellites (BeiDou-3e) are in orbit for testing. To analyze the performances of precise orbit determination (POD) and precise point positioning (PPP) of onboard BeiDou satellites, about two months of data from 24 tracking stations were used. According to quality analysis of BeiDou-2/BeiDou-3e data, there is no satellite-induced code bias in BeiDou-3e satellites, which has been found in BeiDou-2 satellites. This phenomenon indicates that the quality issues of pseudorange data in BeiDou satellites have been solved well. POD results indicate that the BeiDou-3e orbit precision is comparable to that of BeiDou-2 satellites. The ambiguity fixed solution improved the orbit consistency of inclined geosynchronous orbit satellites in along-track and cross-track directions, but had little effect in the radial direction. Satellite laser ranging of BeiDou-3e medium Earth orbit satellites (MEOs) achieved a standard deviation of about 4 cm. Differences in clock offset series after the removal of reference clock in overlapping arcs were used to assess clock quality, and standard deviation of clock offset could reach 0.18 ns on average, which was in agreement with the orbit precision. For static PPP, when BeiDou-3e satellites were included, the positioning performance for horizontal components was improved slightly. For kinematic PPP, when global positioning satellites (GPS) were combined with BeiDou-2 and BeiDou-3e satellites, the convergence time was 13.5 min with a precision of 2–3 cm for horizontal components, and 3–4 cm for the vertical component. PMID:29304000

  12. Impact of Multi-GNSS Observations on Precise Orbit Determination and Precise Point Positioning Solutions

    NASA Astrophysics Data System (ADS)

    Amiri, N.; Bertiger, W. I.; Lu, W.; Miller, M. A.; David, M. W.; Ries, P.; Romans, L.; Sibois, A. E.; Sibthorpe, A.; Sakumura, C.

    2017-12-01

    Impact of Multi-GNSS Observations on Precise Orbit Determination and Precise Point Positioning Solutions Authors: Nikta Amiri, Willy Bertiger, Wenwen Lu, Mark Miller, David Murphy, Paul Ries, Larry Romans, Carly Sakumura, Aurore Sibois, Anthony Sibthorpe All at the Jet Propulsion Laboratory, California Institute of Technology Multiple Global Navigation Satellite Systems (GNSS) are now in various stages of completion. The four current constellations (GPS, GLONASS, BeiDou, Galileo) comprise more than 80 satellites as of July 2017, with 120 satellites expected to be available when all four constellations become fully operational. We investigate the impact of simultaneous observations to these four constellations on global network precise orbit determination (POD) solutions, and compare them to available sets of orbit and clock products submitted to the Multi-GNSS Experiment (MGEX). Using JPL's GipsyX software, we generate orbit and clock products for the four constellations. The resulting solutions are evaluated based on a number of metrics including day-to-day internal and external orbit and/or clock overlaps and estimated constellation biases. Additionally, we examine estimated station positions obtained from precise point positioning (PPP) solutions by comparing results generated from multi-GNSS and GPS-only orbit and clock products.

  13. Electron transport in graphene/graphene side-contact junction by plane-wave multiple-scattering method

    DOE PAGES

    Li, Xiang-Guo; Chu, Iek-Heng; Zhang, X. -G.; ...

    2015-05-28

    Electron transport in graphene is along the sheet but junction devices are often made by stacking different sheets together in a “side-contact” geometry which causes the current to flow perpendicular to the sheets within the device. Such geometry presents a challenge to first-principles transport methods. We solve this problem by implementing a plane-wave-based multiple-scattering theory for electron transport. In this study, this implementation improves the computational efficiency over the existing plane-wave transport code, scales better for parallelization over large number of nodes, and does not require the current direction to be along a lattice axis. As a first application, wemore » calculate the tunneling current through a side-contact graphene junction formed by two separate graphene sheets with the edges overlapping each other. We find that transport properties of this junction depend strongly on the AA or AB stacking within the overlapping region as well as the vacuum gap between two graphene sheets. Finally, such transport behaviors are explained in terms of carbon orbital orientation, hybridization, and delocalization as the geometry is varied.« less

  14. Where Boron? Mars Rover Detects It

    NASA Image and Video Library

    2016-12-13

    This map shows the route driven by NASA's Curiosity Mars rover (blue line) and locations where the rover's Chemistry and Camera (ChemCam) instrument detected the element boron (dots, colored by abundance of boron according to the key at right). The main map shows the traverse from landing day (Sol 0) in August 2012 to the rover's location in September 2016, with boron detections through September 2015. The inset at upper left shows a magnified version of the most recent portion of that traverse, with boron detections during that portion. Overlapping dots represent cases when boron was detected in multiple ChemCam observation points in the same target and non-overlapping dots represent cases where two different targets in the same location have boron. Most of the mission's detections of boron have been made in the most recent seven months (about 200 sols) of the rover's uphill traverse. The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is up. The scale bar at lower right represents one kilometer (0.62 mile). http://photojournal.jpl.nasa.gov/catalog/PIA21150

  15. On the role of spatial position of bridged oxygen atoms as surface passivants on the ground-state gap and photo-absorption spectrum of silicon nano-crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nazemi, Sanaz; Soleimani, Ebrahim Asl; Pourfath, Mahdi, E-mail: pourfath@ut.ac.ir, E-mail: pourfath@iue.tuwien.ac.at

    2015-11-28

    Silicon nano-crystals (NCs) are potential candidates for enhancing and tuning optical properties of silicon for optoelectronic and photo-voltaic applications. Due to the high surface-to-volume ratio, however, optical properties of NC result from the interplay of quantum confinement and surface effects. In this work, we show that both the spatial position of surface terminants and their relative positions have strong effects on NC properties as well. This is accomplished by investigating the ground-state HOMO-LUMO band-gap, the photo-absorption spectra, and the localization and overlap of HOMO and LUMO orbital densities for prototype ∼1.2 nm Si{sub 32–x}H{sub 42–2x}O{sub x} hydrogenated silicon NC with bridgedmore » oxygen atoms as surface terminations. It is demonstrated that the surface passivation geometry significantly alters the localization center and thus the overlap of frontier molecular orbitals, which correspondingly modifies the electronic and optical properties of NC.« less

  16. Local spin density functional investigations of a manganite with perovskite-type derived structures

    NASA Astrophysics Data System (ADS)

    Matar, S. F.; Studer, F.; Siberchicot, B.; Subramanian, M. A.; Demazeau, G.; Etourneau, J.

    1998-11-01

    The electronic and magnetic structures of the perovskite CaMnO3 are self-consistently calculated assuming two crystal structures at the same formula unit volume within the local spin density functional theory and the augmented spherical wave (ASW) method. From the comparisons of energy differences between the different magnetic states the ground state configuration is an insulator with G-type ordering. This result together with the magnitudes of the magnetic moments are in agreement with experiment. The influence of mixing between Mn and O is found spin dependent from the analysis of the crystal orbital overlap population (COOP) which enable to describe the chemical bond. The calculations underline a feature of a half metallic ferromagnet which could be connected with the colossal magnetoresistance (CMR) property of related compounds.

  17. Biobjective planning of an active debris removal mission

    NASA Astrophysics Data System (ADS)

    Madakat, Dalal; Morio, Jérôme; Vanderpooten, Daniel

    2013-03-01

    The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.

  18. Precise orbits of the Lunar Reconnaissance Orbiter from radiometric tracking data

    NASA Astrophysics Data System (ADS)

    Löcher, Anno; Kusche, Jürgen

    2018-02-01

    Since 2009, the Lunar Reconnaissance Orbiter (LRO) acquires images and altimetric profiles of the lunar surface. Assembling these data to maps and terrain models requires the precise knowledge of the spacecraft trajectory. In this contribution, we present 5 years of LRO orbits from radiometric data processed with a software tailored to this mission. The presented orbits are the first independent validation of the LRO science orbits from NASA and are available for public use. A key feature of our processing is the elaborate treatment of model and observation errors by empirical parameters and an adaptive data weighting by variance component estimation. The quality of the resulting orbits is assessed by analyzing overlapping arcs. For our solution based on arcs of 2.5 days, such analysis yields a mean error of 2.81 m in total position and 0.11 m in radial direction. It is shown that this result greatly benefits from the adaptive data weighting, reducing the error by 2.54 and 0.13 m, respectively. Unfortunately, the precision achieved varies strongly, dependent on the view onto the orbital ellipse which changes with the lunar cycle. To mitigate this dependency, the arc length was extended in steps up to 10.5 days, leading in the best case to a further improvement of 0.80 m.

  19. Investigation of plasma contactors for use with orbiting wires

    NASA Technical Reports Server (NTRS)

    Estes, Robert D.; Grossi, Mario D.; Hohlfeld, Robert

    1987-01-01

    The proposed Shuttle-based short tether experiments with hollow cathodes have the potential for providing important data that will not be obtained in long tether experiments. A critical property for hollow cathode effectiveness as a plasma contactor is the cross magnetic field conductivity of the emitted plasma. The different effects of hollow cathode cloud overlap in the cases of motion-driven and battery-driven operation are emphasized. The calculations presented on the size and shape of the hollow cathode cloud improve the qualitative picture of hollow cathodes in low Earth orbit and provide estimates of time constants for establishing the fully-expanded cloud. The magnetic boundary value problem calculations indicate the way in which the magnetic field will effect the shape of the cloud by resisting expansion in the direction perpendicular to the field. The large-scale interactions of the system were also considered. It was concluded that recent plasma chamber experiments by Stenzel and Urrutia do not model an electrodynamic tether well enough to apply the results to tethered system behavior. Orbiting short tether experiments on hollow cathodes will provide critical information on hollow cathode performance and the underlying physics that cannot be obtained any other way. Experiments should be conducted as soon as funding and a suitable space vehicle are available.

  20. The onset of dynamical instability and chaos in navigation satellite orbits

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron Jay; Daquin, Jérôme; Alessi, Elisa Maria; Valsecchi, Giovanni B.; Rossi, Alessandro; Deleflie, Florent

    2015-05-01

    Orbital resonances are ubiquitous in the Solar System and are harbingers for the onset of dynamical instability and chaos. It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Here we will show that the same underlying physical mechanism, the overlapping of secular resonances, responsible for the eventual destabilization of Mercury and recently proposed to explain the orbital architecture of extrasolar planetary systems (Lithwick Y., Wu Y., 2014, PNAS; Batygin K., Morbidelli A., Holman M.J., 2015, ApJ) is at the heart of the orbital instabilities of seemingly more mundane celestial bodies---the Earth's navigation satellites. We will demonstrate that the occurrence and nature of the secular resonances driving these dynamics depend chiefly on one aspect of the Moon's perturbed motion, the regression of the line of nodes. This talk will present analytical models that accurately reflect the true nature of the resonant interactions, and will show how chaotic diffusion is mediated by the web-like structure of secular resonances. We will also present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. The obtained results have remarkable practical applications for space debris mitigation and for satellite technology, and are both of essential dynamical and theoretical importance, with broad implications for planetary science.

  1. A partitioned correlation function interaction approach for describing electron correlation in atoms

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Rynkun, P.; Jönsson, P.; Gaigalas, G.; Froese Fischer, C.; Godefroid, M.

    2013-04-01

    The traditional multiconfiguration Hartree-Fock (MCHF) and configuration interaction (CI) methods are based on a single orthonormal orbital basis. For atoms with many closed core shells, or complicated shell structures, a large orbital basis is needed to saturate the different electron correlation effects such as valence, core-valence and correlation within the core shells. The large orbital basis leads to massive configuration state function (CSF) expansions that are difficult to handle, even on large computer systems. We show that it is possible to relax the orthonormality restriction on the orbital basis and break down the originally very large calculations into a series of smaller calculations that can be run in parallel. Each calculation determines a partitioned correlation function (PCF) that accounts for a specific correlation effect. The PCFs are built on optimally localized orbital sets and are added to a zero-order multireference (MR) function to form a total wave function. The expansion coefficients of the PCFs are determined from a low dimensional generalized eigenvalue problem. The interaction and overlap matrices are computed using a biorthonormal transformation technique (Verdebout et al 2010 J. Phys. B: At. Mol. Phys. 43 074017). The new method, called partitioned correlation function interaction (PCFI), converges rapidly with respect to the orbital basis and gives total energies that are lower than the ones from ordinary MCHF and CI calculations. The PCFI method is also very flexible when it comes to targeting different electron correlation effects. Focusing our attention on neutral lithium, we show that by dedicating a PCF to the single excitations from the core, spin- and orbital-polarization effects can be captured very efficiently, leading to highly improved convergence patterns for hyperfine parameters compared with MCHF calculations based on a single orthogonal radial orbital basis. By collecting separately optimized PCFs to correct the MR function, the variational degrees of freedom in the relative mixing coefficients of the CSFs building the PCFs are inhibited. The constraints on the mixing coefficients lead to small off-sets in computed properties such as hyperfine structure, isotope shift and transition rates, with respect to the correct values. By (partially) deconstraining the mixing coefficients one converges to the correct limits and keeps the tremendous advantage of improved convergence rates that comes from the use of several orbital sets. Reducing ultimately each PCF to a single CSF with its own orbital basis leads to a non-orthogonal CI approach. Various perspectives of the new method are given.

  2. In-flight performance analysis of MEMS GPS receiver and its application to precise orbit determination of APOD-A satellite

    NASA Astrophysics Data System (ADS)

    Gu, Defeng; Liu, Ye; Yi, Bin; Cao, Jianfeng; Li, Xie

    2017-12-01

    An experimental satellite mission termed atmospheric density detection and precise orbit determination (APOD) was developed by China and launched on 20 September 2015. The micro-electro-mechanical system (MEMS) GPS receiver provides the basis for precise orbit determination (POD) within the range of a few decimetres. The in-flight performance of the MEMS GPS receiver was assessed. The average number of tracked GPS satellites is 10.7. However, only 5.1 GPS satellites are available for dual-frequency navigation because of the loss of many L2 observations at low elevations. The variations in the multipath error for C1 and P2 were estimated, and the maximum multipath error could reach up to 0.8 m. The average code noises are 0.28 m (C1) and 0.69 m (P2). Using the MEMS GPS receiver, the orbit of the APOD nanosatellite (APOD-A) was precisely determined. Two types of orbit solutions are proposed: a dual-frequency solution and a single-frequency solution. The antenna phase center variations (PCVs) and code residual variations (CRVs) were estimated, and the maximum value of the PCVs is 4.0 cm. After correcting the antenna PCVs and CRVs, the final orbit precision for the dual-frequency and single-frequency solutions were 7.71 cm and 12.91 cm, respectively, validated using the satellite laser ranging (SLR) data, which were significantly improved by 3.35 cm and 25.25 cm. The average RMS of the 6-h overlap differences in the dual-frequency solution between two consecutive days in three dimensions (3D) is 4.59 cm. The MEMS GPS receiver is the Chinese indigenous onboard receiver, which was successfully used in the POD of a nanosatellite. This study has important reference value for improving the MEMS GPS receiver and its application in other low Earth orbit (LEO) nanosatellites.

  3. VLBI observations to the APOD satellite

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Tang, Geshi; Shu, Fengchun; Li, Xie; Liu, Shushi; Cao, Jianfeng; Hellerschmied, Andreas; Böhm, Johannes; McCallum, Lucia; McCallum, Jamie; Lovell, Jim; Haas, Rüdiger; Neidhardt, Alexander; Lu, Weitao; Han, Songtao; Ren, Tianpeng; Chen, Lue; Wang, Mei; Ping, Jinsong

    2018-02-01

    The APOD (Atmospheric density detection and Precise Orbit Determination) is the first LEO (Low Earth Orbit) satellite in orbit co-located with a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI X/S dual band beacon. From the overlap statistics between consecutive solution arcs and the independent validation by SLR measurements, the orbit position deviation was below 10 cm before the on-board GNSS receiver got partially operational. In this paper, the focus is on the VLBI observations to the LEO satellite from multiple geodetic VLBI radio telescopes, since this is the first implementation of a dedicated VLBI transmitter in low Earth orbit. The practical problems of tracking a fast moving spacecraft with current VLBI ground infrastructure were solved and strong interferometric fringes were obtained by cross-correlation of APOD carrier and DOR (Differential One-way Ranging) signals. The precision in X-band time delay derived from 0.1 s integration time of the correlator output is on the level of 0.1 ns. The APOD observations demonstrate encouraging prospects of co-location of multiple space geodetic techniques in space, as a first prototype.

  4. Imaging of the outer valence orbitals of CO by electron momentum spectroscopy — Comparison with high level MRSD-CI and DFT calculations

    NASA Astrophysics Data System (ADS)

    Fan, X. W.; Chen, X. J.; Zhou, S. J.; Zheng, Y.; Brion, C. E.; Frey, R.; Davidson, E. R.

    1997-09-01

    A newly constructed energy dispersive multichannel electron momentum spectrometer has been used to image the electron density of the outer valence orbitals of CO with high precision. Binding energy spectra are obtained at a coincidence energy resolution of 1.2 eV fwhm. The measured electron density profiles in momentum space for the outer valence orbitals of CO are compared with cross sections calculated using SCF wavefunctions with basis sets of varying complexity up to near-Hartree-Fock limit in quality. The effects of correlation and electronic relaxation on the calculated momentum profiles are investigated using large MRSD-CI calculations of the full ion-neutral overlap distributions, as well as large basis set DFT calculations with local and non-local (gradient corrected) functionals.

  5. Direct Imaging Of Long Period Radial Velocity Targets With NICI

    NASA Astrophysics Data System (ADS)

    Salter, Graeme S.; Tinney, Chris G.; Wittenmyer, Robert A.; Jenkins, James S.; Jones, Hugh R. A.; O'Toole, Simon J.

    2014-01-01

    We are finally entering an era where radial velocity and direct imaging parameter spaces are starting to overlap. Radial velocity measurements provide us with a minimum mass for an orbiting companion (the mass as a function of the inclination of the system). By following up these long period radial velocity detections with direct imaging we can determine whether a trend seen is due to an orbiting planet at low inclination or an orbiting brown dwarf at high inclination. In the event of a non-detection we are still able to put a limit on the maximum mass of the orbiting body. The Anglo-Australian Planet Search is one of the longest baseline radial velocity planet searches in existence, amongst its targets are many that show long period trends in the data. Here we present our direct imaging survey of these objects with our results to date. ADI Observations have been made using NICI (Near Infrared Coronagraphic Imager) on Gemini South and analysed using an in house, LOCI-like, post processing.

  6. A combined experimental and DFT investigation of disazo dye having pyrazole skeleton

    NASA Astrophysics Data System (ADS)

    Şener, Nesrin; Bayrakdar, Alpaslan; Kart, Hasan Hüseyin; Şener, İzzet

    2017-02-01

    Disazo dye containing pyrazole skeleton has been synthesized. The structure of the dye has been confirmed by using FT-IR, 1H NMR, 13C NMR, HRMS spectral technique and elemental analysis. The molecular geometry and infrared spectrum are also calculated by the Density Functional Theory (DFT) employing B3LYP level with 6-311G (d,p) basis set. The chemical shifts calculation for 1H NMR of the title molecule is done by using by Gauge-Invariant Atomic Orbital (GIAO) method by utilizing the same basis sets. The total density of state, the partial density of state and the overlap population density of state diagram analysis are done via Gauss Sum 3.0 program. Frontier molecular orbitals such as highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and molecular electrostatic potential surface on the title molecule are predicted for various intramolecular interactions that are responsible for the stabilization of the molecule. The experimental results and theoretical values have been compared.

  7. Study on the prediction of visible absorption maxima of azobenzene compounds

    PubMed Central

    Liu, Jun-na; Chen, Zhi-rong; Yuan, Shen-feng

    2005-01-01

    The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWF π-π=−8.1537+6.5638BL N-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules’ orbital geometry indicates that their visible absorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital). PMID:15909349

  8. Electronic [UV-Visible] and vibrational [FT-IR, FT-Raman] investigation and NMR-mass spectroscopic analysis of terephthalic acid using quantum Gaussian calculations.

    PubMed

    Karthikeyan, N; Prince, J Joseph; Ramalingam, S; Periandy, S

    2015-03-15

    In this research work, the vibrational IR, polarization Raman, NMR and mass spectra of terephthalic acid (TA) were recorded. The observed fundamental peaks (IR, Raman) were assigned according to their distinctiveness region. The hybrid computational calculations were carried out for calculating geometrical and vibrational parameters by DFT (B3LYP and B3PW91) methods with 6-31++G(d,p) and 6-311++G(d,p) basis sets and the corresponding results were tabulated. The molecular mass spectral data related to base molecule and substitutional group of the compound was analyzed. The modification of the chemical property by the reaction mechanism of the injection of dicarboxylic group in the base molecule was investigated. The (13)C and (1)H NMR spectra were simulated by using the gauge independent atomic orbital (GIAO) method and the absolute chemical shifts related to TMS were compared with experimental spectra. The study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies, were performed by hybrid Gaussian calculation methods. The orbital energies of different levels of HOMO and LUMO were calculated and the molecular orbital lobe overlapping showed the inter charge transformation between the base molecule and ligand group. From the frontier molecular orbitals (FMO), the possibility of electrophilic and nucleophilic hit also analyzed. The NLO activity of the title compound related to Polarizability and hyperpolarizability were also discussed. The present molecule was fragmented with respect to atomic mass and the mass variation depends on the substitutions have also been studied. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  9. Kerr black holes with scalar hair.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2014-06-06

    We present a family of solutions of Einstein's gravity minimally coupled to a complex, massive scalar field, describing asymptotically flat, spinning black holes with scalar hair and a regular horizon. These hairy black holes (HBHs) are supported by rotation and have no static limit. Besides mass M and angular momentum J, they carry a conserved, continuous Noether charge Q measuring the scalar hair. HBHs branch off from the Kerr metric at the threshold of the superradiant instability and reduce to spinning boson stars in the limit of vanishing horizon area. They overlap with Kerr black holes for a set of (M, J) values. A single Killing vector field preserves the solutions, tangent to the null geodesic generators of the event horizon. HBHs can exhibit sharp physical differences when compared to the Kerr solution, such as J/M^{2}>1, a quadrupole moment larger than J^{2}/M, and a larger orbital angular velocity at the innermost stable circular orbit. Families of HBHs connected to the Kerr geometry should exist in scalar (and other) models with more general self-interactions.

  10. The detection of ultra-relativistic electrons in low Earth orbit

    NASA Astrophysics Data System (ADS)

    Katsiyannis, Athanassios C.; Dominique, Marie; Pierrard, Viviane; Rosson, Graciela Lopez; Keyser, Johan De; Berghmans, David; Kruglanski, Michel; Dammasch, Ingolf E.; Donder, Erwin De

    2018-01-01

    Aims: To better understand the radiation environment in low Earth orbit (LEO), the analysis of in-situ observations of a variety of particles, at different atmospheric heights, and in a wide range of energies, is needed. Methods: We present an analysis of energetic particles, indirectly detected by the large yield radiometer (LYRA) instrument on board ESA's project for on-board autonomy 2 (PROBA2) satellite as background signal. Combining energetic particle telescope (EPT) observations with LYRA data for an overlapping period of time, we identified these particles as electrons with an energy range of 2 to 8 MeV. Results: The observed events are strongly correlated to geo-magnetic activity and appear even during modest disturbances. They are also well confined geographically within the L = 4-6 McIlwain zone, which makes it possible to identify their source. Conclusions: Although highly energetic particles are commonly perturbing data acquisition of space instruments, we show in this work that ultra-relativistic electrons with energies in the range of 2-8 MeV are detected only at high latitudes, while not present in the South Atlantic Anomaly region.

  11. Restricted Closed Shell Hartree Fock Roothaan Matrix Method Applied to Helium Atom Using Mathematica

    ERIC Educational Resources Information Center

    Acosta, César R.; Tapia, J. Alejandro; Cab, César

    2014-01-01

    Slater type orbitals were used to construct the overlap and the Hamiltonian core matrices; we also found the values of the bi-electron repulsion integrals. The Hartree Fock Roothaan approximation process starts with setting an initial guess value for the elements of the density matrix; with these matrices we constructed the initial Fock matrix.…

  12. Precise orbit determination of Multi-GNSS constellation including GPS GLONASS BDS and GALIEO

    NASA Astrophysics Data System (ADS)

    Dai, Xiaolei

    2014-05-01

    In addition to the existing American global positioning system (GPS) and the Russian global navigation satellite system (GLONASS), the new generation of GNSS is emerging and developing, such as the Chinese BeiDou satellite navigation system (BDS) and the European GALILEO system. Multi-constellation is expected to contribute to more accurate and reliable positioning and navigation service. However, the application of multi-constellation challenges the traditional precise orbit determination (POD) strategy that was designed usually for single constellation. In this contribution, we exploit a more rigorous multi-constellation POD strategy for the ongoing IGS multi-GNSS experiment (MGEX) where the common parameters are identical for each system, and the frequency- and system-specified parameters are employed to account for the inter-frequency and inter-system biases. Since the authorized BDS attitude model is not yet released, different BDS attitude model are implemented and their impact on orbit accuracy are studied. The proposed POD strategy was implemented in the PANDA (Position and Navigation Data Analyst) software and can process observations from GPS, GLONASS, BDS and GALILEO together. The strategy is evaluated with the multi-constellation observations from about 90 MGEX stations and BDS observations from the BeiDou experimental tracking network (BETN) of Wuhan University (WHU). Of all the MGEX stations, 28 stations record BDS observation, and about 80 stations record GALILEO observations. All these data were processed together in our software, resulting in the multi-constellation POD solutions. We assessed the orbit accuracy for GPS and GLONASS by comparing our solutions with the IGS final orbit, and for BDS and GALILEO by overlapping our daily orbit solution. The stability of inter-frequency bias of GLONASS and inter-system biases w.r.t. GPS for GLONASS, BDS and GALILEO were investigated. At last, we carried out precise point positioning (PPP) using the multi-constellation POD orbit and clock products, and analyzed the contribution of these POD products to PPP. Keywords: Multi-GNSS, Precise Orbit Determination, Inter-frequency bias, Inter-system bias, Precise Point Positioning

  13. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.

    PubMed

    Harris, Frank E

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators.

  14. APOD Mission Status and Observations by VLBI

    NASA Astrophysics Data System (ADS)

    Tang, Geshi; Sun, Jing; Li, Xie; Liu, Shushi; Chen, Guangming; Ren, Tianpeng; Wang, Guangli

    2016-12-01

    On September 20, 2015, 20 satellites were successfully launched from the TaiYuan Satellite Launch Center by a Chinese CZ-6 test rocket and are, since then, operated in a circular, near-polar orbit at an altitude of 520 km. Among these satellites, a set of four CubSats, named APOD (Atmospheric density detection and Precise Orbit Determination), are intended for atmospheric density in-situ detection and derivation via precise orbit. The APOD satellites, manufactured by DFH Co., carry a number of instruments including a density detector, a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI S/X beacon. The APOD mission aims at detecting the atmospheric density below 520 km. The ground segment is controlled by BACC (Beijing Aerospace Control Center) including payload operation as well as science data receiving, processing, archiving, and distribution. Currently, the in-orbit test of the nano-satellites and their payloads are completed, and preliminary results show that the precision of the orbit determination is about 10 cm derived from both an overlap comparison and an SLR observation validation. The in-situ detected density calibrated by orbit-derived density demonstrates that the accuracy of atmospheric mass density is approximately 4.191×10^{-14} kgm^{-3}, about 5.5% of the measurement value. Since three space-geodetic techniques (i.e., GNSS, SLR, and VLBI) are co-located on the APOD nano-satellites, the observations can be used for combination and validation in order to detect systematic differences. Furthermore, the observations of the APOD satellites by VLBI radio telescopes can be used in an ideal fashion to link the dynamical reference frames of the satellite with the terrestrial and, most importantly, with the celestial reference frame as defined by the positions of quasars. The possibility of observing the APOD satellites by IVS VLBI radio telescopes will be analyzed, considering continental-size VLBI observing networks and the small telescopes with sufficient speed.

  15. A Comparison between High-Energy Radiation Background Models and SPENVIS Trapped-Particle Radiation Models

    NASA Technical Reports Server (NTRS)

    Krizmanic, John F.

    2013-01-01

    We have been assessing the effects of background radiation in low-Earth orbit for the next generation of X-ray and Cosmic-ray experiments, in particular for International Space Station orbit. Outside the areas of high fluxes of trapped radiation, we have been using parameterizations developed by the Fermi team to quantify the high-energy induced background. For the low-energy background, we have been using the AE8 and AP8 SPENVIS models to determine the orbit fractions where the fluxes of trapped particles are too high to allow for useful operation of the experiment. One area we are investigating is how the fluxes of SPENVIS predictions at higher energies match the fluxes at the low-energy end of our parameterizations. I will summarize our methodology for background determination from the various sources of cosmogenic and terrestrial radiation and how these compare to SPENVIS predictions in overlapping energy ranges.

  16. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  17. Precursor anion states in dissociative electron attachment to chlorophenol isomers.

    PubMed

    Kossoski, F; Varella, M T do N

    2016-07-28

    We report a theoretical study on low-energy (<10 eV) elastic electron scattering from chlorophenol isomers, namely, para-chlorophenol (pCP), meta-chlorophenol (mCP), and ortho-chlorophenol (oCP). The calculations were performed with the Schwinger multichannel method with pseudopotentials, and analysis of the computed integral cross sections and virtual orbitals revealed one σCCl (∗), one σOH (∗), and three π(∗) shape resonances. We show that electron capture into the two lower lying π(∗) orbitals initiates dissociative processes that lead to the elimination of the chloride ion, accounting for the two overlapping peaks where this fragment was observed. Despite the relatively small differences on the energetics of the π(∗) resonances, a major isomeric effect was found on their corresponding autodetachment lifetimes, which accounts for the observed increasing cross sections in the progression pCP < mCP < oCP. In particular, dissociation from the π1 (∗) anion of pCP is largely suppressed because of the unfavorable mixing with the σCCl (∗) state. We found the intramolecular hydrogen bond present in oCP to have the opposite effects of stabilizing the σCCl (∗) resonance and destabilizing the σOH (∗) resonance. We also suggest that the hydrogen abstraction observed in chlorophenols and phenol actually takes place by a mechanism in which the incoming electron is directly attached to the dissociative σOH (∗) orbital.

  18. Precursor anion states in dissociative electron attachment to chlorophenol isomers

    NASA Astrophysics Data System (ADS)

    Kossoski, F.; Varella, M. T. do N.

    2016-07-01

    We report a theoretical study on low-energy (<10 eV) elastic electron scattering from chlorophenol isomers, namely, para-chlorophenol (pCP), meta-chlorophenol (mCP), and ortho-chlorophenol (oCP). The calculations were performed with the Schwinger multichannel method with pseudopotentials, and analysis of the computed integral cross sections and virtual orbitals revealed one σCCl ∗ , one σOH ∗ , and three π∗ shape resonances. We show that electron capture into the two lower lying π∗ orbitals initiates dissociative processes that lead to the elimination of the chloride ion, accounting for the two overlapping peaks where this fragment was observed. Despite the relatively small differences on the energetics of the π∗ resonances, a major isomeric effect was found on their corresponding autodetachment lifetimes, which accounts for the observed increasing cross sections in the progression pCP < mCP < oCP. In particular, dissociation from the π1 ∗ anion of pCP is largely suppressed because of the unfavorable mixing with the σCCl ∗ state. We found the intramolecular hydrogen bond present in oCP to have the opposite effects of stabilizing the σCCl ∗ resonance and destabilizing the σOH ∗ resonance. We also suggest that the hydrogen abstraction observed in chlorophenols and phenol actually takes place by a mechanism in which the incoming electron is directly attached to the dissociative σOH ∗ orbital.

  19. Phonological and Orthographic Overlap Effects in Fast and Masked Priming

    PubMed Central

    Frisson, Steven; Bélanger, Nathalie N.; Rayner, Keith

    2014-01-01

    We investigated how orthographic and phonological information is activated during reading, using a fast priming task, and during single word recognition, using masked priming. Specifically, different types of overlap between prime and target were contrasted: high orthographic and high phonological overlap (track-crack), high orthographic and low phonological overlap (bear-gear), or low orthographic and high phonological overlap (fruit-chute). In addition, we examined whether (orthographic) beginning overlap (swoop-swoon) yielded the same priming pattern as end (rhyme) overlap (track-crack). Prime durations were 32 and 50ms in the fast priming version, and 50ms in the masked priming version, and mode of presentation (prime and target in lower case) was identical. The fast priming experiment showed facilitatory priming effects when both orthography and phonology overlapped, with no apparent differences between beginning and end overlap pairs. Facilitation was also found when prime and target only overlapped orthographically. In contrast, the masked priming experiment showed inhibition for both types of end overlap pairs (with and without phonological overlap), and no difference for begin overlap items. When prime and target only shared principally phonological information, facilitation was only found with a long prime duration in the fast priming experiment, while no differences were found in the masked priming version. These contrasting results suggest that fast priming and masked priming do not necessarily tap into the same type of processing. PMID:24365065

  20. The N2O activation by Rh5 clusters. A quantum chemistry study.

    PubMed

    Olvera-Neria, Oscar; Avilés, Roberto; Francisco-Rodríguez, Héctor; Bertin, Virineya; García-Cruz, Raúl; González-Torres, Julio César; Poulain, Enrique

    2015-04-01

    Nitrous oxide (N2O) is a by-product of exhaust pipe gases treatment produced by motor vehicles. Therefore, the N2O reduction to N2 is necessary to meet the actual environmental legislation. The N2O adsorption and dissociation assisted by the square-based pyramidal Rh5 cluster was investigated using the density functional theory and the zero-order regular approximation (ZORA). The Rh5 sextet ground state is the most active in N2O dissociation, though the quartet and octet states are also active because they are degenerate. The Rh5 cluster spontaneously activates the N2─O cleavage, and the reaction is highly exothermic ca. -75 kcal mol(-1). The N2─O breaking is obtained for the geometrical arrangement that maximizes the overlap and electron transfers between the N2O and Rh5 frontier orbitals. The Rh5 high activity is due to the Rh 3d orbitals are located between the N2O HOMO and LUMO orbitals, which makes possible the interactions between them. In particular, the O 2p states strongly interact with Rh 3d orbitals, which finally weaken the N2─O bond. The electron transfer is from the Rh5 HOMO orbital to the N2O antibonding orbital.

  1. Chemical bonding in aqueous hexacyano cobaltate from photon- and electron-detection perspectives

    PubMed Central

    Lalithambika, Sreeju Sreekantan Nair; Atak, Kaan; Seidel, Robert; Neubauer, Antje; Brandenburg, Tim; Xiao, Jie; Winter, Bernd; Aziz, Emad F.

    2017-01-01

    The electronic structure of the [Co(CN)6]3− complex dissolved in water is studied using X-ray spectroscopy techniques. By combining electron and photon detection methods from the solutions ionized or excited by soft X-rays we experimentally identify chemical bonding between the metal center and the CN ligand. Non-resonant photoelectron spectroscopy provides solute electron binding energies, and nitrogen 1 s and cobalt 2p resonant core-level photoelectron spectroscopy identifies overlap between metal and ligand orbitals. By probing resonances we are able to qualitatively determine the ligand versus metal character of the respective occupied and non-occupied orbitals, purely by experiment. For the same excitations we also detect the emitted X-rays, yielding the complementary resonant inelastic X-ray scattering spectra. For a quantitative interpretation of the spectra, we perform theoretical electronic-structure calculations. The latter provide both orbital energies and orbital character which are found to be in good agreement with experimental energies and with experimentally inferred orbital mixing. We also report calculated X-ray absorption spectra, which in conjunction with our orbital-structure analysis, enables us to quantify various bonding interactions with a particular focus on the water-solvent – ligand interaction and the strength of π-backbonding between metal and ligand. PMID:28098216

  2. Cardiac arrhythmias and degradation into chaotic behavior prevention using feedback control

    NASA Astrophysics Data System (ADS)

    Uzelac, Ilija; Sidorov, Veniamin; Wikswo, John; Gray, Richard

    2012-02-01

    During normal heart rhythm, cardiac cells behave as a set of oscillators with a distribution of phases but with the same frequency. The heart as a dynamical system in a phase space representation can be modeled as a set of oscillators that have closed overlapping orbits with the same period. These orbits are not stable and in the case of disruption of the cardiac rhythm, such as due to premature beats, the system will have a tendency to leave its periodic unstable orbits. If these orbits become attracted to phase singularities, their disruption may lead to chaotic behavior, which appears as a life-threating ventricular fibrillation. By using closed-loop feedback in the form of an adjustable defibrillation shock, any drift from orbits corresponding to the normal rhythm can be corrected by forcing the system to maintain its orbits. The delay through the feedback network coincides with the period of normal heart beats. To implement this approach we developed a 1 kW arbitrary waveform voltage-to-current converter with a 1 kHz bandwidth driven by a photodiode system that records an optical electrocardiogram and provides a feedback signal in real time. Our goal is to determine whether our novel method to defibrillate the heart will require much lower energies than are currently utilized in single shock defibrillators.

  3. Low-crosstalk orbital angular momentum fiber coupler design.

    PubMed

    Zhang, Zhishen; Gan, Jiulin; Heng, Xiaobo; Li, Muqiao; Li, Jiong; Xu, Shanhui; Yang, Zhongmin

    2017-05-15

    A fiber coupler for low-crosstalk orbital angular momentum mode beam splitter is proposed with the structure of two separate and parallel microfibers. By properly setting the center-to-center distance between microfibers, the crosstalk is less than -20 dB, which means that the purity of the needed OAM mode in output port is higher than 99%. For a fixed overlapping length, high coupling efficiency (>97%) is achieved in 1545-1560 nm. The operating wavelength is tuned to the whole C-band by using the thermosensitive liquid. So the designed coupler can achieve the tunable coupling ratio over the whole C-band, which is a prospective component for the further OAM fiber system.

  4. Urey prize lecture: On the diversity of plausible planetary systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.

    1995-01-01

    Models of planet formation and of the orbital stability of planetary systems are used to predict the variety of planetary and satellite systems that may be present within our galaxy. A new approximate global criterion for orbital stability of planetary systems based on an extension of the local resonance overlap criterion is proposed. This criterion implies that at least some of Uranus' small inner moons are significantly less massive than predicted by estimates based on Voyager volumes and densities assumed to equal that of Miranda. Simple calculations (neglecting planetary gravity) suggest that giant planets which acrete substantial amounts of gas while their envelopes are extremely distended ultimately rotate rapidly in the prgrade direction.

  5. Chaotic dynamics outside Saturn’s main rings: The case of Atlas

    NASA Astrophysics Data System (ADS)

    Renner, Stéfan; Cooper, Nicholas J.; El Moutamid, Maryame; Evans, Mike W.; Murray, Carl D.; Sicardy, Bruno

    2014-11-01

    We revisit in detail the dynamics of Atlas. From a fit to new Cassini ISS astrometric observations spanning February 2004 to August 2013, we estimate GM_Atlas=0.384+/-0.001 x 10^(-3)km^3s^(-2), a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. Our numerically-derived orbit shows that Atlas is currently librating in both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. We demonstrate that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. The interactions between the two resonances is investigated using the CoraLin analytical model (El Moutamid et al., 2014), showing that the chaotic zone fills almost all the corotation site occupied by the satellite’s orbit. Four 70 :67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect on Atlas.We estimate the capture probabilities of Atlas into resonances with Prometheus as the orbits expand through tidal effects, and discuss the implications for the orbital evolution.

  6. Pseudopotential plane-wave calculation of the structural properties of yttrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Chou, M.Y.

    1991-11-01

    The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less

  7. Sensor and computing resource management for a small satellite

    NASA Astrophysics Data System (ADS)

    Bhatia, Abhilasha; Goehner, Kyle; Sand, John; Straub, Jeremy; Mohammad, Atif; Korvald, Christoffer; Nervold, Anders Kose

    A small satellite in a low-Earth orbit (e.g., approximately a 300 to 400 km altitude) has an orbital velocity in the range of 8.5 km/s and completes an orbit approximately every 90 minutes. For a satellite with minimal attitude control, this presents a significant challenge in obtaining multiple images of a target region. Presuming an inclination in the range of 50 to 65 degrees, a limited number of opportunities to image a given target or communicate with a given ground station are available, over the course of a 24-hour period. For imaging needs (where solar illumination is required), the number of opportunities is further reduced. Given these short windows of opportunity for imaging, data transfer, and sending commands, scheduling must be optimized. In addition to the high-level scheduling performed for spacecraft operations, payload-level scheduling is also required. The mission requires that images be post-processed to maximize spatial resolution and minimize data transfer (through removing overlapping regions). The payload unit includes GPS and inertial measurement unit (IMU) hardware to aid in image alignment for the aforementioned. The payload scheduler must, thus, split its energy and computing-cycle budgets between determining an imaging sequence (required to capture the highly-overlapping data required for super-resolution and adjacent areas required for mosaicking), processing the imagery (to perform the super-resolution and mosaicking) and preparing the data for transmission (compressing it, etc.). This paper presents an approach for satellite control, scheduling and operations that allows the cameras, GPS and IMU to be used in conjunction to acquire higher-resolution imagery of a target region.

  8. Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps.

    PubMed

    Ren, Jiliang; Yuan, Ying; Wu, Yingwei; Tao, Xiaofeng

    2018-05-02

    The overlap of morphological feature and mean ADC value restricted clinical application of MRI in the differential diagnosis of orbital lymphoma and idiopathic orbital inflammatory pseudotumor (IOIP). In this paper, we aimed to retrospectively evaluate the combined diagnostic value of conventional magnetic resonance imaging (MRI) and whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in the differentiation of the two lesions. In total, 18 patients with orbital lymphoma and 22 patients with IOIP were included, who underwent both conventional MRI and diffusion weighted imaging before treatment. Conventional MRI features and histogram parameters derived from ADC maps, including mean ADC (ADC mean ), median ADC (ADC median ), skewness, kurtosis, 10th, 25th, 75th and 90th percentiles of ADC (ADC 10 , ADC 25 , ADC 75 , ADC 90 ) were evaluated and compared between orbital lymphoma and IOIP. Multivariate logistic regression analysis was used to identify the most valuable variables for discriminating. Differential model was built upon the selected variables and receiver operating characteristic (ROC) analysis was also performed to determine the differential ability of the model. Multivariate logistic regression showed ADC 10 (P = 0.023) and involvement of orbit preseptal space (P = 0.029) were the most promising indexes in the discrimination of orbital lymphoma and IOIP. The logistic model defined by ADC 10 and involvement of orbit preseptal space was built, which achieved an AUC of 0.939, with sensitivity of 77.30% and specificity of 94.40%. Conventional MRI feature of involvement of orbit preseptal space and ADC histogram parameter of ADC 10 are valuable in differential diagnosis of orbital lymphoma and IOIP.

  9. Working aboard the Mir space station.

    PubMed

    Reiter, T

    1996-11-01

    For more than ten years, the Mir station has been the World's only permanently manned laboratory in low earth orbit. With an orbital inclination of 51.6 degrees, its ground track covers more than 85% of the Earth's surface, where approximately 95% of the population lives. For the transfer of up to three crew members per trip to and from Mir, the 6.9 t Soyuz spacecraft is used. In general, the station's crew is changed every six months, with an overlap during the exchange of between one and two weeks. A Progress spacecraft (an unmanned derivative of the Soyuz vehicle) visits the station every three months to resupply it, with up to 2.1 t of payload, and to reboost it to maintain its nominal orbital altitude. The station's core module, injected into orbit in February 1986, contains the central control post for most onboard systems, the computer for attitude control, and the telemetry and communications system. It also contains the station's largest work space, which is 7.0 m long and varies in width between 1.5 and 2.5 m.

  10. The processing of the Viking Orbiter range data and its contribution to Mars gravity solutions

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rosborough, George W.; Smith, David E.

    1992-01-01

    The processing of Doppler data has been the primary method for deriving models of the Mars gravity field. Since the Mariner 9 and Viking spacecraft were placed in orbit about Mars, many models from degree and order 6 to degree and order 50 have been developed. However, during the Viking mission, some 26,000 range measurements to the two Viking Orbiters were also obtained. These data have not previously been used in the derivation of Mars gravity models. A portion of these range data have been processed simultaneously with the Doppler data. Normal equations were generated for both sets of data and were used to create two solutions complete to degree and order 30: a nominal solution including both the range and the Doppler data (MGM-R100), and another solution including only the Doppler data (MGM-R101). Tests with the covariances of these solutions, as well as with orbit overlap tests indicate that the interplanetary range data can be used to improve the modeling of the Mars gravity field.

  11. Reduction of variance in spectral estimates for correction of ultrasonic aberration.

    PubMed

    Astheimer, Jeffrey P; Pilkington, Wayne C; Waag, Robert C

    2006-01-01

    A variance reduction factor is defined to describe the rate of convergence and accuracy of spectra estimated from overlapping ultrasonic scattering volumes when the scattering is from a spatially uncorrelated medium. Assuming that the individual volumes are localized by a spherically symmetric Gaussian window and that centers of the volumes are located on orbits of an icosahedral rotation group, the factor is minimized by adjusting the weight and radius of each orbit. Conditions necessary for the application of the variance reduction method, particularly for statistical estimation of aberration, are examined. The smallest possible value of the factor is found by allowing an unlimited number of centers constrained only to be within a ball rather than on icosahedral orbits. Computations using orbits formed by icosahedral vertices, face centers, and edge midpoints with a constraint radius limited to a small multiple of the Gaussian width show that a significant reduction of variance can be achieved from a small number of centers in the confined volume and that this reduction is nearly the maximum obtainable from an unlimited number of centers in the same volume.

  12. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (0 0 1) surface: A first-principles calculations

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Li, Xianhai; Mao, Song; Li, Longjiang; Ke, Baolin; Zhang, Qin

    2018-06-01

    Effects of carbon chain length, carbon chain isomerism, Cdbnd C double bonds number on fatty acid adsorption on FAP (0 0 1) surface have been investigated based on DFT. The results revealed that fatty acid collector can form stable adsorption configuration at Ca1 (surf) site. Chemical adsorption was formed between O (mole) of fatty acid collector and the Ca1 (surf) of fluorapatite (0 0 1) surface; hydrogen bond adsorption was formed between the H (mole) of fatty acid and the O (surf) of-[PO4]- of FAP (0 0 1) surface. Fatty acid collectors and FAP (0 0 1) surface are bonding by means of the hybridization of O (mole) 2p and Ca (surf) 4d orbitals, H (mole) 1s and O (surf) 2p orbital. The analysis of adsorption energy, DOS, electron density, Mulliken charge population and Mulliken bond population revealed that with the carbon chain growing within certain limits, the absolute value of the adsorption energy and the overlapping area between the DOS curve of O (mole) and Ca (surf) was greater, while that of H (mole) 1s and O (surf) 2p basically remained unchanged. As Cdbnd C double bonds of fatty acids increased within certain limits, the adsorption energy and the overlapping area between the state density curve of O (mole) and Ca (surf), H (mole) and O (surf) basically remained unchanged. The substituent groups of fatty acid changed, the absolute value of the adsorption energy and the overlapping area between the state density curve had a major change. The influence of fatty acids adsorption on FAP (0 0 1) surface depends mainly on the interaction between O (mole) and Ca (surf).

  13. Researches on the Orbit Determination and Positioning of the Chinese Lunar Exploration Program

    NASA Astrophysics Data System (ADS)

    Li, P. J.

    2015-07-01

    This dissertation studies the precise orbit determination (POD) and positioning of the Chinese lunar exploration spacecraft, emphasizing the variety of VLBI (very long baseline interferometry) technologies applied for the deep-space exploration, and their contributions to the methods and accuracies of the precise orbit determination and positioning. In summary, the main contents are as following: In this work, using the real-time data measured by the CE-2 (Chang'E-2) detector, the accuracy of orbit determination is analyzed for the domestic lunar probe under the present condition, and the role played by the VLBI tracking data is particularly reassessed through the precision orbit determination experiments for CE-2. The experiments of the short-arc orbit determination for the lunar probe show that the combination of the ranging and VLBI data with the arc of 15 minutes is able to improve the accuracy by 1-1.5 order of magnitude, compared to the cases for only using the ranging data with the arc of 3 hours. The orbital accuracy is assessed through the orbital overlapping analysis, and the results show that the VLBI data is able to contribute to the CE-2's long-arc POD especially in the along-track and orbital normal directions. For the CE-2's 100 km× 100 km lunar orbit, the position errors are better than 30 meters, and for the CE-2's 15 km× 100 km orbit, the position errors are better than 45 meters. The observational data with the delta differential one-way ranging (Δ DOR) from the CE-2's X-band monitoring and control system experimental are analyzed. It is concluded that the accuracy of Δ DOR delay is dramatically improved with the noise level better than 0.1 ns, and the systematic errors are well calibrated. Although it is unable to support the development of an independent lunar gravity model, the tracking data of CE-2 provided the evaluations of different lunar gravity models through POD, and the accuracies are examined in terms of orbit-to-orbit solution differences for several gravity models. It is found that for the 100 km× 100 km lunar orbit, with a degree and order expansion up to 165, the JPL's gravity model LP165P does not show noticeable improvement over Japan's SGM series models (100× 100), but for the 15 km× 100 km lunar orbit, a higher degree-order model can significantly improve the orbit accuracy. After accomplished its nominal mission, CE-2 launched its extended missions, which involving the L2 mission and the 4179 Toutatis mission. During the flight of the extended missions, the regime offers very little dynamics thus requires an extensive amount of time and tracking data in order to attain a solution. The overlap errors are computed, and it is indicated that the use of VLBI measurements is able to increase the accuracy and reduce the total amount of tracking time. An orbit determination method based on the polynomial fitting is proposed for the CE-3's planned lunar soft landing mission. In this method, spacecraft's dynamic modeling is not necessary, and its noise reduction is expected to be better than that of the point positioning method by making full use of all-arc observational data. The simulation experiments and real data processing showed that the optimal description of the CE-1's free-fall landing trajectory is a set of five-order polynomial functions for each of the position components as well as velocity components in J2000.0. The combination of the VLBI delay, the delay rate data, and the USB (united S-band) ranging data significantly improved the accuracy than the use of USB data alone. In order to determine the position for the CE-3's Lunar Lander, a kinematic statistical method is proposed. This method uses both ranging and VLBI measurements to the lander for a continuous arc, combing with precise knowledge about the motion of the moon as provided by planetary ephemeris, to estimate the lander's position on the lunar surface with high accuracy. Application of the lunar digital elevation model (DEM) as constraints in the lander positioning is helpful. The positioning method for the traverse of lunar rover is also investigated. The integration of delay-rate method is able to achieve higher precise positioning results than the point positioning method. This method provides a wide application of the VLBI data. In the automated sample return mission, the lunar orbit rendezvous and docking are involved. Precise orbit determination using the same-beam VLBI (SBI) measurement for two spacecraft at the same time is analyzed. The simulation results showed that the SBI data is able to improve the absolute and relative orbit accuracy for two targets by 1-2 orders of magnitude. In order to verify the simulation results and test the two-target POD software developed by SHAO (Shanghai Astronomical Observatory), the real SBI data of the SELENE (Selenological and Engineering Explorer) are processed. The POD results for the Rstar and the Vstar showed that the combination of SBI data could significantly improve the accuracy for the two spacecraft, especially for the Vstar with less ranging data, and the POD accuracy is improved by approximate one order of magnitude to the POD accuracy of the Rstar.

  14. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, Frank E., E-mail: harris@qtp.ufl.edu

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance r{sub ij}. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validatedmore » by showing that they yield correct results for a large number of integrals published by other investigators.« less

  15. Wigner crystalline edges in ν<~1 quantum dots

    NASA Astrophysics Data System (ADS)

    Goldmann, Eyal; Renn, Scot R.

    1999-12-01

    We investigate the edge reconstruction phenomenon believed to occur in quantum dots in the quantum Hall regime when the filling fraction is ν<~1. Our approach involves the examination of large dots (<= 40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wave functions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction.

  16. Theoretical insights into the origin of magnetic exchange and magnetic anisotropy in {Re(IV)-M(II)} (M = Mn, Fe, Co, Ni and Cu) single chain magnets.

    PubMed

    Singh, Saurabh Kumar; Vignesh, Kuduva R; Archana, Velloth; Rajaraman, Gopalan

    2016-05-10

    Density functional calculations have been performed on a series of {Re(IV)-M(II)} (M = Mn(), Fe(), Co(), Ni(), Cu()) complexes to compute the magnetic exchange interaction between the Re(IV) and M(II) ions, and understand the mechanism of magnetic coupling in this series. DFT calculations yield J values of -5.54 cm(-1), +0.44 cm(-1), +10.5 cm(-1), +4.54 cm(-1) and +19 cm(-1) for complexes respectively, and these estimates are in general agreement with the experimental reports. Using molecular orbital (MO) and overlap integral analysis, we have established a mechanism of coupling for a {3d-5d} pair and the proposed mechanism rationalises both the sign and the magnitude of J values observed in this series. Our proposed mechanism of coupling has five contributing factors: (i) (Re)dyz-dyz(3d) overlap, (ii) (Re)dxz-dxz(3d) overlap, (iii) (Re)dxy-dxy(3d) overlap, (iv) (Re)eg-t2g(3d) overlaps and (v) (Re)eg-eg(3d) overlaps. Here, the first two terms are found to contribute to the antiferromagnetic part of the exchange, while the other three contribute to the ferromagnetic part. The last two terms correspond to the cross-interactions and also contribute to the ferromagnetic part of the exchange. A record high ferromagnetic J value observed for the {Re(IV)-Cu(II)} pair in complex is found to be due to a significant cross interaction between the dz(2) orbital of the Re(IV) ion and the dx(2)-y(2) orbital of the Cu(ii) ion. Magneto-structural correlations are developed for Re-C and M-N bond lengths and Re-C-N and M-N-C bond angles. Among the developed correlations, the M-N-C bond angle is found to be the most sensitive parameter which influences the sign and strength of J values in this series. The J values are found to be more positive (or less negative) as the angle increases, indicating stronger ferromagnetic coupling at linear M-N-C angles. Apart from the magnetic exchange interaction, we have also estimated the magnetic anisotropy of [ReCl4(CN)2](2-) and [(DMF)4(CN)M(II)(CN)] (M(II)-Fe(II), Co(II) and Ni(II)) units using the state-of-the-art ab initio CASSCF/PT2/RASSI-SO/SINGLE_ANISO approach. The calculated D and E values for these building units are found to be in agreement with the available experimental results. Particularly a large positive D computed for the [ReCl4(CN)2](2-) unit was found to arise from dxz/dyz → dxy excitations corresponding to the low-lying doublet states. Similarly, a very large positive D value computed for Fe(II) and Co(II) units are also rationalised based on the corresponding ground state electronic configurations computed. The non-collinearity of the Re(IV) ion and the M(II) ion axial anisotropy (DZZ) axis are found to diminish the anisotropy of the building unit, leading to the observation of moderate relaxation barriers for these molecules.

  17. Asynchronous partial contact motion due to internal resonance in multiple degree-of-freedom rotordynamics

    NASA Astrophysics Data System (ADS)

    Shaw, A. D.; Champneys, A. R.; Friswell, M. I.

    2016-08-01

    Sudden onset of violent chattering or whirling rotor-stator contact motion in rotational machines can cause significant damage in many industrial applications. It is shown that internal resonance can lead to the onset of bouncing-type partial contact motion away from primary resonances. These partial contact limit cycles can involve any two modes of an arbitrarily high degree-of-freedom system, and can be seen as an extension of a synchronization condition previously reported for a single disc system. The synchronization formula predicts multiple drivespeeds, corresponding to different forms of mode-locked bouncing orbits. These results are backed up by a brute-force bifurcation analysis which reveals numerical existence of the corresponding family of bouncing orbits at supercritical drivespeeds, provided the damping is sufficiently low. The numerics reveal many overlapping families of solutions, which leads to significant multi-stability of the response at given drive speeds. Further, secondary bifurcations can also occur within each family, altering the nature of the response and ultimately leading to chaos. It is illustrated how stiffness and damping of the stator have a large effect on the number and nature of the partial contact solutions, illustrating the extreme sensitivity that would be observed in practice.

  18. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.

    PubMed

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-11

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  19. The origin of the ligand-controlled regioselectivity in Rh-catalyzed [(2 + 2) + 2] carbocyclizations: steric vs. stereoelectronic effects.

    PubMed

    Crandell, Douglas W; Mazumder, Shivnath; Evans, P Andrew; Baik, Mu-Hyun

    2015-12-01

    Density functional theory calculations demonstrate that the reversal of regiochemical outcome of the addition for substituted methyl propiolates in the rhodium-catalyzed [(2 + 2) + 2] carbocyclization with PPh 3 and ( S )-xyl-binap as ligands is both electronically and sterically controlled. For example, the ester functionality polarizes the alkyne π* orbital to favor overlap of the methyl-substituted terminus of the alkyne with the p π -orbital of the alkenyl fragment of the rhodacycle during alkyne insertion with PPh 3 as the ligand. In contrast, the sterically demanding xyl-binap ligand cannot accommodate the analogous alkyne orientation, thereby forcing insertion to occur at the sterically preferred ester terminus, overriding the electronically preferred orientation for alkyne insertion.

  20. Opportunities for Coordinated Observations of CO2 with the Orbiting Carbon Observatory (OCO) and Greenhouse Gases Observing Satellite (GOSAT)

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2008-01-01

    The Orbiting Carbon Observatory (OCO) and the Greenhouse Gases Observing Satellite (GOSAT) are the first two satellites designed to make global measurements of atmospheric carbon dioxide (CO2) with the precision and sampling needed identify and monitor surface sources and sinks of this important greenhouse gas. Because the operational phases of the OCO and GOSAT missions overlap in time, there are numerous opportunities for comparing and combining the data from these two satellites to improve our understanding of the natural processes and human activities that control the atmospheric CO2 and it variability over time. Opportunities for cross-calibration, cross-validation, and coordinated observations that are currently under consideration are summarized here.

  1. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  2. Intermediate-band photosensitive device with quantum dots having tunneling barrier embedded in organic matrix

    DOEpatents

    Forrest, Stephen R.

    2008-08-19

    A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.

  3. Astronomical component estimation (ACE v.1) by time-variant sinusoidal modeling

    NASA Astrophysics Data System (ADS)

    Sinnesael, Matthias; Zivanovic, Miroslav; De Vleeschouwer, David; Claeys, Philippe; Schoukens, Johan

    2016-09-01

    Accurately deciphering periodic variations in paleoclimate proxy signals is essential for cyclostratigraphy. Classical spectral analysis often relies on methods based on (fast) Fourier transformation. This technique has no unique solution separating variations in amplitude and frequency. This characteristic can make it difficult to correctly interpret a proxy's power spectrum or to accurately evaluate simultaneous changes in amplitude and frequency in evolutionary analyses. This drawback is circumvented by using a polynomial approach to estimate instantaneous amplitude and frequency in orbital components. This approach was proven useful to characterize audio signals (music and speech), which are non-stationary in nature. Paleoclimate proxy signals and audio signals share similar dynamics; the only difference is the frequency relationship between the different components. A harmonic-frequency relationship exists in audio signals, whereas this relation is non-harmonic in paleoclimate signals. However, this difference is irrelevant for the problem of separating simultaneous changes in amplitude and frequency. Using an approach with overlapping analysis frames, the model (Astronomical Component Estimation, version 1: ACE v.1) captures time variations of an orbital component by modulating a stationary sinusoid centered at its mean frequency, with a single polynomial. Hence, the parameters that determine the model are the mean frequency of the orbital component and the polynomial coefficients. The first parameter depends on geologic interpretations, whereas the latter are estimated by means of linear least-squares. As output, the model provides the orbital component waveform, either in the depth or time domain. Uncertainty analyses of the model estimates are performed using Monte Carlo simulations. Furthermore, it allows for a unique decomposition of the signal into its instantaneous amplitude and frequency. Frequency modulation patterns reconstruct changes in accumulation rate, whereas amplitude modulation identifies eccentricity-modulated precession. The functioning of the time-variant sinusoidal model is illustrated and validated using a synthetic insolation signal. The new modeling approach is tested on two case studies: (1) a Pliocene-Pleistocene benthic δ18O record from Ocean Drilling Program (ODP) Site 846 and (2) a Danian magnetic susceptibility record from the Contessa Highway section, Gubbio, Italy.

  4. Chironomidae larvae (Diptera) of Neotropical floodplain: overlap niche in different habitats.

    PubMed

    Butakka, C M M; Ragonha, F H; Takeda, A M

    2014-05-01

    The niche overlap between trophic groups of Chironomidae larvae in different habitats was observed between trophic groups and between different environments in Neotropical floodplain. For the evaluation we used the index of niche overlap (CXY) and analysis of trophic networks, both from the types and amount of food items identified in the larval alimentary canal. In all environments, the larvae fed on mainly organic matter such as plants fragments and algae, but there were many omnivore larvae. Species that have high values of food items occurred in diverse environments as generalists with great overlap niche and those with a low amount of food items with less overlap niche were classified as specialists. The largest number of trophic niche overlap was observed among collector-gatherers in connected floodplain lakes. The lower values of index niche overlap were predators. The similarity in the diet of different taxa in the same niche does not necessarily imply competition between them, but coexistence when the food resource is not scarce in the environment even in partially overlapping niches.

  5. Lunar Gravity Field Determination Using SELENE Same-Beam Differential VLBI Tracking Data

    NASA Technical Reports Server (NTRS)

    Goossens, S.; Matsumoto, K.; Liu, Q.; Kikuchi, F.; Sato, K.; Hanada, H.; Ishihara, Y.; Noda, H.; Kawano, N.; Namiki, N.; hide

    2010-01-01

    A lunar gravity field model up to degree and order 100 in spherical harmonics, named SGM 100i, has been determined from SELENE and historical tracking data, with an emphasis on using same-beam S-band differential VLBI data obtained in the SELENE mission between January 2008 and February 2009. Orbit consistency throughout the entire mission period of SELENE as determined from orbit overlaps for the two sub-satellites of SELENE involved in the VLBI tracking improved consistently from several hundreds of metres to several tens of metres by including differential VLBI data. Through orbits that are better determined, the gravity field model is also improved by including these data. Orbit determination performance for the new model shows improvements over earlier 100th degree and order models, especially for edge-on orbits over the deep far side. Lunar Prospector orbit determination shows an improvement of orbit consistency from I-day predictions for 2-day arcs of 6 m in a total sense, with most improvement in the along and cross-track directions. Data fit for the types and satellites involved is also improved. Formal errors for the lower degrees are smaller, and the new model also shows increased correlations with topography over the far side. The estimated value for the lunar GM for this model equals 4902.80080 +/- 0.0009 cu km/sq s (10 sigma). The lunar degree 2 potential Love number k2 was also estimated, and has a value of 0.0255 +/- 0.0016 (10 sigma as well).

  6. HMB-45 negative angiomyolipoma of the orbit: a case report and review of the literature.

    PubMed

    Lin, Che-Yu; Tsai, Chieh-Chih; Kau, Hui-Chuan; Yu, Wei-Kuang; Kao, Shu-Ching; Liu, Catherine Jui-Ling

    2016-01-11

    Angiomyolipoma is a benign mesenchymal tumor composed of variable amounts of smooth muscle, adipose tissue and thick-walled blood vessels, and usually named PEComas (perivascular epithelioid cell tumors). PEComas share overlapping histopathological features with epithelioid cells along a perivascular distribution and characteristic immunohistochemistry with coexpression of myoid and melanocytic markers (HMB-45 /or Melan-A). We report the first case of primary orbital angiomyolipoma with negative melanocytic marker. An 80-year-old Asian woman had a 2-year history of progressive swelling in the left upper eyelid. External examination revealed 3 cm of relative proptosis of the left eye and a palpable mass in the left superonasal orbit. Computed tomographic scan demonstrated a circumscribed, heterogeneous orbital mass. Excision biopsy was done and the histological finding demonstrated the orbital mass was composed of mature adipocytes, intermingled with spindle or oval-shaped cells, and accompanied by thick-walled blood vessels. Immunohistochemically, tumor cells were positive for CD34 and HHF-35, but negative for cytokeratin, HMB-45 and Melan-A. The diagnosis of angiomyolipoma was made. No recurrence was noted at 2-year follow-up. In our case, the HMB-45 negativity may be explained by the rarity of the epithelioid cells, and the HMB-45 positivity is often weaker or absent in spindle cells. Angiomyolipoma, although rare, should be added to the differential diagnosis of space-occupying orbital lesion.

  7. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk

    2016-08-14

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less

  8. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    NASA Astrophysics Data System (ADS)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  9. The dynamical structure of the MEO region: long-term stability, chaos, and transport

    NASA Astrophysics Data System (ADS)

    Daquin, Jérôme; Rosengren, Aaron J.; Alessi, Elisa Maria; Deleflie, Florent; Valsecchi, Giovanni B.; Rossi, Alessandro

    2016-04-01

    It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Recent studies have shown that the occurrence and nature of the resonances driving these dynamics depend chiefly on the frequencies of nodal and apsidal precession and the rate of regression of the Moon's nodes. Woven throughout the inclination and eccentricity phase space is an exceedingly complicated web-like structure of lunisolar secular resonances, which become particularly dense near the inclinations of the navigation satellite orbits. A clear picture of the physical significance of these resonances is of considerable practical interest for the design of disposal strategies for the four constellations. Here we present analytical and semi-analytical models that accurately reflect the true nature of the resonant interactions, and trace the topological organization of the manifolds on which the chaotic motions take place. We present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. As the semi-major axis of the satellite is receding, we observe a transition from stable Nekhoroshev-like structures at three Earth radii, where regular orbits dominate, to a Chirikov regime where resonances overlap at five Earth radii. From a numerical estimation of the Lyapunov times, we find that many of the inclined, nearly circular orbits of the navigation satellites are strongly chaotic and that their dynamics are unpredictable on decadal timescales.

  10. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer.

    PubMed

    Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin

    2013-02-28

    The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.

  11. Photometric Investigation and Possible Light-Time Effect in the Orbital Period of a Marginal Contact System, CW Cassiopeiae

    NASA Astrophysics Data System (ADS)

    Jiang, Tian-Yu; Li, Li-Fang; Han, Zhan-Wen; Jiang, Deng-Kai

    2010-04-01

    The first complete charge-coupled device (CCD) light curves in B and V passbands of a neglected contact binary system, CW Cassiopeiae (CW Cas), are presented. They were analyzed simultaneously by using the Wilson and Devinney (WD) code (1971, ApJ, 166, 605). The photometric solution indicates that CW Cas is a W-type W UMa system with a mass ratio of m2/m1 2.234, and that it is in a marginal contact state with a contact degree of ˜6.5% and a relatively large temperature difference of ˜327K between its two components. Based on the minimum times collected from the literature, together with the new ones obtained in this study, the orbital period changes of CW Cas were investigated in detail. It was found that a periodical variation overlaps with a secular period decrease in its orbital period. The long-term period decrease with a rate of dP/dt = -3.44 × 10-8d yr-1 can be interpreted either by mass transfer from the more-massive component to the less-massive with a rate of dm2/dt = -3.6 × 10-8M⊙ yr-1, or by mass and angular-momentum losses through magnetic braking due to a magnetic stellar wind. A low-amplitude cyclic variation with a period of T = 63.7 yr might be caused by the light-time effect due to the presence of a third body.

  12. Measuring atmospheric density using GPS-LEO tracking data

    NASA Astrophysics Data System (ADS)

    Kuang, D.; Desai, S.; Sibthorpe, A.; Pi, X.

    2014-01-01

    We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001-2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.

  13. Common Neural Mechanisms Underlying Reversal Learning by Reward and Punishment

    PubMed Central

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations. PMID:24349211

  14. Common neural mechanisms underlying reversal learning by reward and punishment.

    PubMed

    Xue, Gui; Xue, Feng; Droutman, Vita; Lu, Zhong-Lin; Bechara, Antoine; Read, Stephen

    2013-01-01

    Impairments in flexible goal-directed decisions, often examined by reversal learning, are associated with behavioral abnormalities characterized by impulsiveness and disinhibition. Although the lateral orbital frontal cortex (OFC) has been consistently implicated in reversal learning, it is still unclear whether this region is involved in negative feedback processing, behavioral control, or both, and whether reward and punishment might have different effects on lateral OFC involvement. Using a relatively large sample (N = 47), and a categorical learning task with either monetary reward or moderate electric shock as feedback, we found overlapping activations in the right lateral OFC (and adjacent insula) for reward and punishment reversal learning when comparing correct reversal trials with correct acquisition trials, whereas we found overlapping activations in the right dorsolateral prefrontal cortex (DLPFC) when negative feedback signaled contingency change. The right lateral OFC and DLPFC also showed greater sensitivity to punishment than did their left homologues, indicating an asymmetry in how punishment is processed. We propose that the right lateral OFC and anterior insula are important for transforming affective feedback to behavioral adjustment, whereas the right DLPFC is involved in higher level attention control. These results provide insight into the neural mechanisms of reversal learning and behavioral flexibility, which can be leveraged to understand risky behaviors among vulnerable populations.

  15. Orbital electron capture by the nucleus

    NASA Technical Reports Server (NTRS)

    Bambynek, W.; Behrens, H.; Chen, M. H.; Crasemann, B.; Fitzpatrick, M. L.; Ledingham, K. W. D.; Genz, H.; Mutterer, M.; Intemann, R. L.

    1976-01-01

    The theory of nuclear electron capture is reviewed in the light of current understanding of weak interactions. Experimental methods and results regarding capture probabilities, capture ratios, and EC/Beta(+) ratios are summarized. Radiative electron capture is discussed, including both theory and experiment. Atomic wave function overlap and electron exchange effects are covered, as are atomic transitions that accompany nuclear electron capture. Tables are provided to assist the reader in determining quantities of interest for specific cases.

  16. ILLUMINATING BLACK HOLE BINARY FORMATION CHANNELS WITH SPINS IN ADVANCED LIGO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Carl L.; Zevin, Michael; Pankow, Chris

    The recent detections of the binary black hole mergers GW150914 and GW151226 have inaugurated the field of gravitational-wave astronomy. For the two main formation channels that have been proposed for these sources, isolated binary evolution in galactic fields and dynamical formation in dense star clusters, the predicted masses and merger rates overlap significantly, complicating any astrophysical claims that rely on measured masses alone. Here, we examine the distribution of spin–orbit misalignments expected for binaries from the field and from dense star clusters. Under standard assumptions for black hole natal kicks, we find that black hole binaries similar to GW150914 couldmore » be formed with significant spin–orbit misalignment only through dynamical processes. In particular, these heavy-black hole binaries can only form with a significant spin–orbit anti -alignment in the dynamical channel. Our results suggest that future detections of merging black hole binaries with measurable spins will allow us to identify the main formation channel for these systems.« less

  17. Transport and equilibrium in field-reversed mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.K.

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less

  18. Characterizing the GOES-R (GOES-16) Geostationary Lightning Mapper (GLM) On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Rudlosky, Scott D.; Goodman, Steven J.; Koshak, William J.; Blakeslee, Richard J.; Buechler, Dennis E.; Mach, Douglas M.; Bateman, Monte

    2017-01-01

    Two overlapping efforts help to characterize the GLM performance, the Post Launch Test (PLT) phase to validate the predicted pre-launch instrument performance and the Post Launch Product Test (PLPT) phase to validate the lightning detection product used in forecast and warning decision-making. This paper documents the calibration and validation plans and activities for the first 6 months of GLM on-orbit testing and validation commencing with first light on 4 January 2017. The PLT phase addresses image quality, on-orbit calibration, RTEP threshold tuning, image navigation, noise filtering, and solar intrusion assessment, resulting in a GLM calibration parameter file. The PLPT includes four main activities, the Reference Data Comparisons (RDC), Algorithm Testing (AT), Instrument Navigation and Registration Testing (INRT), and Long Term Baseline Testing (LTBT). Field campaigns are also designed to contribute valuable insights into the GLM performance capabilities. The PLPT tests each contribute to the beta, provisional, and fully validated GLM data.

  19. IGR J170626143 is an Accreting Millisecond X-Ray Pulsar

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Keek, Laurens

    2017-01-01

    We present the discovery of 163.65 Hz X-ray pulsations from IGR J17062-6143 in the only observation obtained from the source with the Rossi X-ray Timing Explorer. This detection makes IGR J17062-6143 the lowest frequency accreting millisecond X-ray pulsar presently known. The pulsations are detected in the 2-12 keV band with an overall significance of 4.3sigma and an observed pulsed amplitude of 5.54% +/-0.67% (in this band). Both dynamic power spectral and coherent phase timing analysis indicate that the pulsation frequency is decreasing during the approx. =1.2 ks observation in a manner consistent with orbital motion of the neutron star. Because the observation interval is short, we cannot precisely measure the orbital period; however, periods shorter than 17 minutes are excluded at 90% confidence. For the range of acceptable circular orbits the inferred binary mass function substantially overlaps the observed range for the AMXP population as a whole.

  20. Study of the urban evolution of Brasilia with the use of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Deoliveira, M. D. N. (Principal Investigator); Foresti, C.; Niero, M.; Parreiras, E. M. D. F.

    1984-01-01

    The urban growth of Brasilia within the last ten years is analyzed with special emphasis on the utilization of remote sensing orbital data and automatic image processing. The urban spatial structure and the monitoring of its temporal changes were focused in a whole and dynamic way by the utilization of MSS-LANDSAT images for June 1973, 1978 and 1983. In order to aid data interpretation, a registration algorithm implemented at the Interactive Multispectral Image Analysis System (IMAGE-100) was utilized aiming at the overlap of multitemporal images. The utilization of suitable digital filters, combined with the images overlap, allowed a rapid identification of areas of possible urban growth and oriented the field work. The results obtained permitted an evaluation of the urban growth of Brasilia, taking as reference the proposed stated for the construction of the city.

  1. Operational surface UV radiation product from GOME-2 and AVHRR/3 data

    NASA Astrophysics Data System (ADS)

    Kujanpää, J.; Kalakoski, N.

    2015-05-01

    The surface ultraviolet (UV) radiation product, version 1.20, generated operationally in the framework of the Satellite Application Facility on Ozone and Atmospheric Chemistry Monitoring (O3M SAF) of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) is described. The product is based on the total ozone column derived from the measurements of the second Global Ozone Monitoring Experiment (GOME-2) instrument aboard EUMETSAT's polar orbiting meteorological operational (Metop) satellites. The input total ozone product is generated by the German Aerospace Center (DLR) also within the O3M SAF framework. Polar orbiting satellites provide global coverage but infrequent sampling of the diurnal cloud cover. The diurnal variation of the surface UV radiation is extremely strong due to modulation by solar elevation and rapidly changing cloud cover. At the minimum, one sample of the cloud cover in the morning and another in the afternoon are needed to derive daily maximum and daily integrated surface UV radiation quantities. This is achieved by retrieving cloud optical depth from the channel 1 reflectance of the third Advanced Very High Resolution Radiometer (AVHRR/3) instrument aboard both Metop in the morning orbit (daytime descending node around 09:30 LT) and Polar Orbiting Environmental Satellites (POES) of the National Oceanic and Atmospheric Administration (NOAA) in the afternoon orbit (daytime ascending node around 14:30 LT). In addition, more overpasses are used at high latitudes where the swaths of consecutive orbits overlap. The input satellite data are received from EUMETSAT's Multicast Distribution System (EUMETCast) using commercial telecommunication satellites for broadcasting the data to the user community. The surface UV product includes daily maximum dose rates and integrated daily doses with different biological weighting functions, integrated UVB and UVA radiation, solar noon UV Index and daily maximum photolysis frequencies of ozone and nitrogen dioxide at the surface level. The quantities are computed in a 0.5° × 0.5° regular latitude-longitude grid and stored as daily files in the hierarchical data format (HDF5) within two weeks from sensing. The product files are archived in the O3M SAF distributed archive and can be ordered via the EUMETSAT Data Centre.

  2. DFT study of ethyl xanthate interaction with sphalerite (1 1 0) surface in the absence and presence of copper

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wen, Shuming; Deng, Jiushuai; Chen, Xiumin; Feng, Qicheng

    2014-08-01

    The interaction among sphalerite (1 1 0) surface, copper and ethyl xanthate (EX) was simulated using the density functional theory (DFT). The results of DFT indicate that four types of stable interaction models exist among sphalerite surface, copper and EX, i.e., EX interacts with the Cu substituted for Zn, Cu adsorbed on the top site of S, Cu adsorbed on the bridge site of S and Cu(OH)2 adsorbed on the sphalerite surface. The four interaction models can result in the activation flotation of sphalerite. Density of states (DOS) analysis shows that the energy level discrepancy of the Zn 3d orbital in ZnS and the bonding S 3p orbital in EX results in the weak adsorption of EX on un-activated sphalerite surface. However, after copper activation, the Cu 3d orbital peak and bonding S 3p orbital peak are just maximally overlapped nearby the Fermi level. This study provides an insight into the nature that sphalerite responds not well to EX and also a comprehensive understanding on the possible interaction cases existing among sphalerite surface, copper and EX.

  3. Development of the Kiel sensors for the EPD instrument on-board Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Martin, Cesar; Wimmer-Schweingruber, Robert F.; Kulkarni, Shrinivasrao R.; Tammen, Jan; Terasa, Christoph; Yu, Jia; Boden, Sebastian; Steinhagen, Jan; Panitzsch, Lauri; Ravanbakhsh, Ali; Boettcher, Stephan; Hamann, Christian; Seimetz, Lars; Rodriguez-Pacheco, Javier

    2015-04-01

    Solar Orbiter is ESA's next solar and heliospheric mission, planned for launch in January 2017 and approaching the Sun as close as 0.28 AU. One of the Solar Orbiter's scientific questions is "How do the solar eruptions produce energetic particle radiation that fills the heliosphere?". The Energetic Particle Detector (EPD) will provide key measurements for this and the other Solar Orbiter science objectives. The EPD suite consists of four sensors measuring electrons, protons, and ions from helium to iron, and operating at partly overlapping energy ranges from 2 keV/n up to 200 MeV/n. The EPD sensors are: SupraThermal Electrons and Protons(STEP), Suprathermal Ion Spectrograph (SIS), Electron Proton Telescope (EPT) and High Energy Telescope (HET). Besides, the EPD sensors share the Instrument Control Unit (ICU). The University of Kiel in Germany is responsible for developing the EPT-HET, STEP and SIS sensors. Here we present the development status of the EPT-HET and STEP sensors focusing on the activities planned for the current phase C. Those activities include results of the integration and EMC tests on the EPT-HET and STEP Engineering Model (EM) and the assembly of the Proto Qualification Model (PQM).

  4. Development of the Kiel sensors for the EPD instrument on-board Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Martin, Cesar; Wimmer-Schweingruber, Robert F.; Kulkarni, Shrinivasrao R.; Tammen, Jan; Terasa, Christoph; Yu, Jia; Boden, Sebastian; Steinhagen, Jan; Panitzsch, Lauri; Ravanbakhsh, Ali; Boettcher, Stephan; Hamann, Christian; Seimetz, Lars; Rodriguez-Pacheco, Javier

    2014-05-01

    Solar Orbiter is ESA's next solar and heliospheric mission, planned for launch in January 2017 and approaching the Sun as close as 0.28 AU. One of the Solar Orbiter's scientific questions is "How do the solar eruptions produce energetic particle radiation that fills the heliosphere?". The Energetic Particle Detector (EPD) will provide key measurements for this and the other Solar Orbiter science objectives. The EPD suite consists of four sensors measuring electrons, protons, and ions from helium to iron, and operating at partly overlapping energy ranges from 2 keV/n up to 200 MeV/n. The EPD sensors are: SupraThermal Electrons and Protons(STEP), Suprathermal Ion Spectrograph (SIS), Electron Proton Telescope (EPT) and High Energy Telescope (HET). Besides, the EPD sensors share the Instrument Control Unit (ICU). The University of Kiel in Germany is responsible for developing the EPT-HET, STEP and SIS sensors. Here we present the development status of the EPT-HET and STEP sensors focusing on the activities planned for the current phase C. Those activities include results of the environmental tests on the EPT-HET Structural Thermal Model (STM) and the assembly of the Engineering Model (EM).

  5. Hydrogen bonding in ionic liquids.

    PubMed

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak through to very strong H-bonds.

  6. Carbon Fibers Conductivity Studies

    NASA Technical Reports Server (NTRS)

    Yang, C. Y.; Butkus, A. M.

    1980-01-01

    In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.

  7. Communication: A new class of non-empirical explicit density functionals on the third rung of Jacob's ladder

    NASA Astrophysics Data System (ADS)

    de Silva, Piotr; Corminboeuf, Clémence

    2015-09-01

    We construct an orbital-free non-empirical meta-generalized gradient approximation (GGA) functional, which depends explicitly on density through the density overlap regions indicator [P. de Silva and C. Corminboeuf, J. Chem. Theory Comput. 10, 3745 (2014)]. The functional does not depend on either the kinetic energy density or the density Laplacian; therefore, it opens a new class of meta-GGA functionals. By construction, our meta-GGA yields exact exchange and correlation energy for the hydrogen atom and recovers the second order gradient expansion for exchange in the slowly varying limit. We show that for molecular systems, overall performance is better than non-empirical GGAs. For atomization energies, performance is on par with revTPSS, without any dependence on Kohn-Sham orbitals.

  8. The Orbital Space Environment and Space Situational Awareness Domain Ontology - Toward an International Information System for Space Data

    NASA Astrophysics Data System (ADS)

    Rovetto, R.

    2016-09-01

    The orbital space environment is home to natural and artificial satellites, debris, and space weather phenomena. As the population of orbital objects grows so do the potential hazards to astronauts, space infrastructure and spaceflight capability. Orbital debris, in particular, is a universal concern. This and other hazards can be minimized by improving global space situational awareness (SSA). By sharing more data and increasing observational coverage of the space environment we stand to achieve that goal, thereby making spaceflight safer and expanding our knowledge of near-Earth space. To facilitate data-sharing interoperability among distinct orbital debris and space object catalogs, and SSA information systems, I proposed ontology in (Rovetto, 2015) and (Rovetto and Kelso, 2016). I continue this effort toward formal representations and models of the overall domain that may serve to improve peaceful SSA and increase our scientific knowledge. This paper explains the project concept introduced in those publications, summarizing efforts to date as well as the research field of ontology development and engineering. I describe concepts for an ontological framework for the orbital space environment, near-Earth space environment and SSA domain. An ontological framework is conceived as a part of a potential international information system. The purpose of such a system is to consolidate, analyze and reason over various sources and types of orbital and SSA data toward the mutually beneficial goals of safer space navigation and scientific research. Recent internationals findings on the limitations of orbital data, in addition to existing publications on collaborative SSA, demonstrate both the overlap with this project and the need for datasharing and integration.

  9. Density functional theory calculations on transition metal atoms adsorbed on graphene monolayers

    NASA Astrophysics Data System (ADS)

    Dimakis, Nicholas; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin

    2017-11-01

    Transition metal atom adsorption on graphene monolayers has been elucidated using periodic density functional theory under hybrid and generalized gradient approximation functionals. More specifically, we examined the adsorption of Cu, Fe, Zn, Ru, and Os on graphene monolayers by calculating, among others, the electronic density-of-states spectra of the adatom-graphene system and the overlap populations of the adatom with the nearest adsorbing graphene carbon atoms. These calculations reveal that Cu form primarily covalent bonds with graphene atoms via strong hybridization between the adatom orbitals and the sp band of the graphene substrate, whereas the interaction of the Ru and Os with graphene also contain ionic parts. Although the interaction of Fe with graphene atoms is mostly covalent, some charge transfer to graphene is also observed. The interaction of Zn with graphene is weak. Mulliken population analysis and charge contour maps are used to elucidate charge transfers between the adatom and the substrate. The adsorption strength is correlated with the metal adsorption energy and the height of the metal adatom from the graphene plane for the geometrically optimized adatom-graphene system. Our analysis shows that show that metal adsorption strength follows the adatom trend Ru ≈ Os > Fe > Cu > Zn, as verified by corresponding changes in the adsorption energies. The increased metal-carbon orbital overlap for the Ru relative to Os adatom is attributed to hybridization defects.

  10. Theoretical Study on the Photoelectron Spectra of Ln(COT)2-: Lanthanide Dependence of the Metal-Ligand Interaction.

    PubMed

    Nakajo, Erika; Masuda, Tomohide; Yabushita, Satoshi

    2016-12-08

    We have performed a theoretical analysis of the recently reported photoelectron (PE) spectra of the series of sandwich complex anions Ln(COT) 2 - (Ln = La-Lu, COT = 1,3,5,7-cyclooctatetraene), focusing on the Ln dependence of the vertical detachment energies. For most Ln, the π molecular orbitals, largely localized on the COT ligands, have the energy order of e 1g < e 1u < e 2g < e 2u as in the actinide analogues, reflecting the substantial orbital interaction with the Ln 5d and 5p orbitals. Thus, it would be expected that the lanthanide contraction would increase the orbital interaction so that the overlaps between the COT π and Ln atomic orbitals tend to increase across the series. However, the PE spectra and theoretical calculations were not consistent with this expectation, and the details have been clarified in this study. Furthermore, the energy level splitting patterns of the anion and neutral complexes have been studied by multireference ab initio methods, and the X peak splittings observed in the PE spectra only for the middle-range Ln complexes were found to be due to the specific interaction between the Ln 4f and ligand π orbitals of the neutral complexes in e 2u symmetry. Because the magnitude of this 4f-ligand interaction depends critically on the final state 4f electron configuration and the spin state, a significant Ln dependence in the PE spectra is explained.

  11. Study of the modes of adsorption and electronic structure of hydrogen peroxide and ethanol over TiO2 rutile (110) surface within the context of water splitting

    NASA Astrophysics Data System (ADS)

    Alghamdi, H.; Idriss, H.

    2018-03-01

    While photocatalytic water splitting over many materials is favourable thermodynamically the kinetic of the reaction is very slow. One of the proposed reasons linked to the slow oxidation reaction rate is H2O2 formation as a reaction intermediate. Using Density Functional Theory (DFT) H2O2 is investigated on TiO2 rutile (110) surface to determine its most stable adsorption modes: molecular, (H)O(H)O - (a), partially dissociated, (H)OO - (a), and fully dissociated (a) - OO - (a). We then compare H2O2 interaction to that of a fast hole scavenger molecule, ethanol. Geometry, electronic structure, charge density difference and work function determination of both adsorbates are presented and compared using DFT with different functionals (PBE, PBE-D, PBE-U, and HSE + D). H2O2 is found to be strongly adsorbed on TiO2 rutile (110) surface with adsorption energies reaching 0.95 eV, comparable to that of ethanol (0.89 eV); using GGA PBE. The negative changes in the work function upon adsorption were found to be highest for molecular adsorption ( - 1.23 eV) and lowest for the fully dissociated mode ( - 0.54 eV) of H2O2. This may indicate that electrons flow from the surface to the adsorbate in order to make O(s)-H partially offset the overall magnitude of the oxygen lone pair interaction (of H2O2) with Ti4+ cations. Examination of the electronic structure through density of states (DOS) at the PBE level of computation, indicates that the H2O2 highest occupied molecular orbital (HOMO) level is not overlapping with oxygen atoms of TiO2 surface at any of its adsorption modes and at any of the computation methods. Some overlap is seen using the HSE + D computational method. On the other hand the dissociated mode of ethanol (ethoxides) does overlap with all computational methods used. The high adsorption energy and the absence of overlapping of the HOMO level of H2O2 with TiO2 rutile (110) surface may explain why water splitting is slow.

  12. Temperature dependence of magnetoresistance in copper single crystals

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  13. Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory

    PubMed Central

    Ross, Robert S.; LoPresti, Matthew L.; Schon, Karin; Stern, Chantal E.

    2013-01-01

    Human social interactions are complex behaviors requiring the concerted effort of multiple neural systems to track and monitor the individuals around us. Cognitively, adjusting our behavior based on changing social cues such as facial expressions relies on working memory and the ability to disambiguate, or separate, representations of overlapping stimuli resulting from viewing the same individual with different facial expressions. We conducted an fMRI experiment examining brain regions contributing to the encoding, maintenance and retrieval of overlapping identity information during working memory using a delayed match-to-sample (DMS) task. In the overlapping condition, two faces from the same individual with different facial expressions were presented at sample. In the non-overlapping condition, the two sample faces were from two different individuals with different expressions. fMRI activity was assessed by contrasting the overlapping and non-overlapping condition at sample, delay, and test. The lateral orbitofrontal cortex showed increased fMRI signal in the overlapping condition in all three phases of the DMS task and increased functional connectivity with the hippocampus when encoding overlapping stimuli. The hippocampus showed increased fMRI signal at test. These data suggest lateral orbitofrontal cortex helps encode and maintain representations of overlapping stimuli in working memory while the orbitofrontal cortex and hippocampus contribute to the successful retrieval of overlapping stimuli. We suggest the lateral orbitofrontal cortex and hippocampus play a role in encoding, maintaining, and retrieving social cues, especially when multiple interactions with an individual need to be disambiguated in a rapidly changing social context in order to make appropriate social responses. PMID:23640112

  14. Outward Migration of Giant Planets in Orbital Resonance

    NASA Astrophysics Data System (ADS)

    D'Angelo, G.; Marzari, F.

    2013-05-01

    A pair of giant planets interacting with a gaseous disk may be subject to convergent orbital migration and become locked into a mean motion resonance. If the orbits are close enough, the tidal gaps produced by the planets in the disk may overlap. This represents a necessary condition to activate the outward migration of the pair. However, a number of other conditions must also be realized in order for this mechanism to operate. We have studied how disk properties, such as turbulence viscosity, temperature, surface density gradient, mass, and age, may affect the outcome of the outward migration process. We have also investigated the implications on this mechanism of the planets' gas accretion. If the pair resembles Jupiter and Saturn, the 3:2 orbital resonance may drive them outward until they reach stalling radii for migration, which are within ~10 AU of the star for disks representative of the early proto-solar nebula. However, planet post-formation conditions in the disk indicate that such planets become typically locked in the 1:2 orbital resonance, which does not lead to outward migration. Planet growth via gas accretion tends to alter the planets' mass-ratio and/or the disk accretion rate toward the star, reducing or inhibiting outward migration. Support from NASA Outer Planets Research Program and NASA Origins of Solar Systems Program is gratefully acknowledged.

  15. VizieR Online Data Catalog: UBVR photometry of the T Tauri binary DQ Tau (Tofflemire+, 2017)

    NASA Astrophysics Data System (ADS)

    Tofflemire, B. M.; Mathieu, R. D.; Ardila, D. R.; Akeson, R. L.; Ciardi, D. R.; Johns-Krull, C.; Herczeg, G. J.; Quijano-Vodniza, A.

    2017-08-01

    The Las Cumbres Observatories Global Telescope (LCOGT) 1m network consists of nine 1m telescopes spread across four international sites: McDonald Observatory (USA), CTIO (Chile), SAAO (South Africa), and Siding Springs Observatory (Australia). Over the 2014-2015 winter observing season, our program requested queued "visits" of DQ Tau 20 times per orbital cycle for 10 continuous orbital periods. Given the orbital period of DQ Tau, the visit cadence corresponded to ~20hr. Each visit consisted of three observations in each of the broadband UBVRIY and narrowband Hα and Hβ filters, requiring ~20 minutes. In this work we present only the UBVR observations, which overlap with our high-cadence observations. Indeed, two eight-night observing runs centered on separate periastron passages of DQ Tau (orbital cycles 3 and 5 in Figure 1) were obtained from the WIYN 0.9m telescope located at the Kitt Peak National Observatory. In addition to our two eight-night observing runs, a synoptic observation program was also in place at the WIYN 0.9m that provided approximately weekly observations of DQ Tau in UBVR during the 2014-B semester. Also, using Apache Point Observatory's ARCSAT 0.5m telescope, we performed observing runs of seven and ten nights centered on two separate periastron passaged of DQ Tau (orbital cycles 2 and 7 in Figure 1). (1 data file).

  16. Application of LANDSAT data to the study of urban development in Brasilia

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deoliveira, M. D. L. N.; Foresti, C.; Niero, M.; Parreira, E. M. D. M. F.

    1984-01-01

    The urban growth of Brasilia within the last ten years is analyzed with special emphasis on the utilization of remote sensing orbital data and automatic image processing. The urban spatial structure and the monitoring of its temporal changes were examined in a whole and dynamic way by the utilization of MSS-LANDSAT images for June (1973, 1978 and 1983). In order to aid data interpretation, a registration algorithm implemented in the Interactive Multispectral Image Analysis System (IMAGE-100) was utilized aiming at the overlap of multitemporal images. The utilization of suitable digital filters, combined with the images overlap, allowed a rapid identification of areas of possible urban growth and oriented the field work. The results obtained in this work permitted an evaluation of the urban growth of Brasilia, taking as reference the proposal stated for the construction of the city in the Pilot Plan elaborated by Lucio Costa.

  17. Ordered defects in Fe1-xS generate additional magnetic anisotropy symmetries

    NASA Astrophysics Data System (ADS)

    Koulialias, D.; Charilaou, M.; Schäublin, R.; Mensing, C.; Weidler, P. G.; Löffler, J. F.; Gehring, A. U.

    2018-01-01

    Non-stoichiometric monoclinic 4C pyrrhotite (Fe7S8), a ferrimagnetic monosulfide that has been intensively used as a remanence carrier to infer the magnetization of the Earth's crust and extraterrestrial materials, exhibits a characteristic low-temperature transition accompanied by complex modifications in anisotropy and magnetization. We demonstrate that the magnetic rotational symmetry of the 4C pyrrhotite is critically affected by the order of the defective Fe-sites, and this in turn is a key to decipher the physics behind the low-temperature transition. Our torque experiments and numerical simulations show an emergent four-fold rotational symmetry in the c-plane of the 4C pyrrhotite at T < 30 K. This symmetry breaking associated with the transition is caused by the competitive interaction of two inherently hexagonal systems generated by two groups of Fe-sites with different local anisotropy fields that stem from the vacancy arrangement in the 4C stacking sequence, and it is triggered by changes in the spin orbit coupling due to the overlap of Fe-Fe electron orbitals at low-temperature. This mechanism provides a new explanation for the magnetic transition in 4C pyrrhotite at low temperature and could also cast light on non-trivial magnetic phenomena in defective systems.

  18. Strain effect on the adsorption, diffusion, and molecular dissociation of hydrogen on Mg (0001) surface

    NASA Astrophysics Data System (ADS)

    Lei, Huaping; Wang, Caizhuang; Yao, Yongxin; Wang, Yangang; Hupalo, Myron; McDougall, Dan; Tringides, Michael; Ho, Kaiming

    2013-12-01

    The adsorption, diffusion, and molecular dissociation of hydrogen on the biaxially strained Mg (0001) surface have been systematically investigated by the first principle calculations based on density functional theory. When the strain changes from the compressive to tensile state, the adsorption energy of H atom linearly increases while its diffusion barrier linearly decreases oppositely. The dissociation barrier of H2 molecule linearly reduces in the tensile strain region. Through the chemical bonding analysis including the charge density difference, the projected density of states and the Mulliken population, the mechanism of the strain effect on the adsorption of H atom and the dissociation of H2 molecule has been elucidated by an s-p charge transfer model. With the reduction of the orbital overlap between the surface Mg atoms upon the lattice expansion, the charge transfers from p to s states of Mg atoms, which enhances the hybridization of H s and Mg s orbitals. Therefore, the bonding interaction of H with Mg surface is strengthened and then the atomic diffusion and molecular dissociation barriers of hydrogen decrease accordingly. Our works will be helpful to understand and to estimate the influence of the lattice deformation on the performance of Mg-containing hydrogen storage materials.

  19. Efficient modulation of optical and electrical properties of X-shaped thermally activated delayed fluorescence emitters by substitution.

    PubMed

    Fan, Jianzhong; Wang, Xin; Lin, Lili; Wang, Chuankui

    2016-08-01

    A series of X-shaped thermally activated delayed fluorescence (TADF) emitters are systematically studied by first-principles calculations. Effects of the cyano group adding to the acceptor unit and the hydroxyl group adding to the donor part on the optical and electrical properties are analyzed. It is found that both kinds of groups can efficiently increase the emission wavelength to realize full-color emission. Although they play different roles in modulating the energy level of frontier orbitals, the S-T energy gap, the reorganization energy and transfer integral for different molecules, they can efficiently increase the charge transfer rate and reduce the difference of electron transfer rate and hole transfer rate. These results indicate that these designed strategies are efficient to achieve balanced charge transfer rates and modulate emission colors. By analyzing the energy matching between the TADF emitters and three kinds of hosts, the emission spectra of the 3,5-bis(N-carbazolyl)benzene (mcp) and the absorption spectra of most TADF emitters have a large overlap, which provides helpful information in application of these TADF molecules.

  20. Exploring one-particle orbitals in large many-body localized systems

    NASA Astrophysics Data System (ADS)

    Villalonga, Benjamin; Yu, Xiongjie; Luitz, David J.; Clark, Bryan K.

    2018-03-01

    Strong disorder in interacting quantum systems can give rise to the phenomenon of many-body localization (MBL), which defies thermalization due to the formation of an extensive number of quasilocal integrals of motion. The one-particle operator content of these integrals of motion is related to the one-particle orbitals (OPOs) of the one-particle density matrix and shows a strong signature across the MBL transition as recently pointed out by Bera et al. [Phys. Rev. Lett. 115, 046603 (2015), 10.1103/PhysRevLett.115.046603; Ann. Phys. 529, 1600356 (2017), 10.1002/andp.201600356]. We study the properties of the OPOs of many-body eigenstates of an MBL system in one dimension. Using shift-and-invert MPS, a matrix product state method to target highly excited many-body eigenstates introduced previously [Phys. Rev. Lett. 118, 017201 (2017), 10.1103/PhysRevLett.118.017201], we are able to obtain accurate results for large systems of sizes up to L =64 . We find that the OPOs drawn from eigenstates at different energy densities have high overlap and their occupations are correlated with the energy of the eigenstates. Moreover, the standard deviation of the inverse participation ratio of these orbitals is maximal at the nose of the mobility edge. Also, the OPOs decay exponentially in real space, with a correlation length that increases at low disorder. In addition, we find that the probability distribution of the strength of the large-range coupling constants of the number operators generated by the OPOs approach a log-uniform distribution at strong disorder.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granados, Carlos; Weiss, Christian

    The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(M π)] and could be observed in form factor measurements at low momentum transfer.

  2. Controlling the Electronic Structure of Graphene Using Surface-Adsorbate Interactions

    DTIC Science & Technology

    2015-07-21

    after adsorption of Na the propensity of graphene bonding to Ni is much lower due to reduced overlap of atomic orbitals, which results from n- doping of...subse- quent intercalation of the Na underneath graphene. The ability to partially decouple graphene from a Ni substrate via n- doping (with or without...interactions with the substrate or adsorbates, which can modify the energy of the Dirac cone through doping , or cause a band gap to open at the K

  3. Influence of gate overlap engineering on ambipolar and high frequency characteristics of tunnel-CNTFET

    NASA Astrophysics Data System (ADS)

    Shaker, Ahmed; Ossaimee, Mahmoud; Zekry, A.; Abouelatta, Mohamed

    2015-10-01

    In this paper, we have investigated the effect of gate overlapping-on-drain on the ambipolar behavior and high frequency performance of tunnel CNTFET (T-CNTFET). It is found that gate overlapping-on-drain suppresses the ambipolar behavior and improves OFF-state current. The simulation results show that there is an optimum choice for the overlapped length. On the other hand, this overlap deteriorates the high frequency performance. The high frequency figure of merit is analyzed in terms of the unit-gain cutoff frequency (fT). Further, we propose two different approaches to improve the high frequency performance of the overlapped T-CNTFET. The first one is based on inserting a high-dielectric constant material below the overlapped part of the gate and the second is based on depositing a different work function gate metal for the overlapped region. The two solutions show very good improvement in the high frequency performance with maintaining the suppression of the ambipolar characteristics.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikara, Shalinee; Haskel, Daniel; Sim, Jae-Hoon

    In a combined experimental and theoretical study, we investigate the properties of Sr2Ir1-xRhxO4. From the branching ratios of the L-edge isotropic X-ray absorption spectra, we determine that the spin-orbit coupling is remarkably independent of x for both iridium and rhodium sites. DFT+U calculations show that the doping is close to isoelectronic and introduces impurity bands of predominantly rhodium character close to the lower Hubbard band. Overlap of these two bands leads to metallic behavior. Since the low-energy states for x < 0.5 have predominantly jeff = 1/2 character, we suggest that the electronic properties of this material can be describedmore » by an inhomogeneous Hubbard model, where the on-site energies change due to local variations in the spin-orbit interaction strength combined with additional changes in binding energy.« less

  5. Strong quantum scarring by local impurities

    PubMed Central

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-01-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications. PMID:27892510

  6. Strong quantum scarring by local impurities

    NASA Astrophysics Data System (ADS)

    Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa

    2016-11-01

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  7. Strong quantum scarring by local impurities.

    PubMed

    Luukko, Perttu J J; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J; Räsänen, Esa

    2016-11-28

    We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.

  8. Influence of slice overlap on positron emission tomography image quality

    NASA Astrophysics Data System (ADS)

    McKeown, Clare; Gillen, Gerry; Dempsey, Mary Frances; Findlay, Caroline

    2016-02-01

    PET scans use overlapping acquisition beds to correct for reduced sensitivity at bed edges. The optimum overlap size for the General Electric (GE) Discovery 690 has not been established. This study assesses how image quality is affected by slice overlap. Efficacy of 23% overlaps (recommended by GE) and 49% overlaps (maximum possible overlap) were specifically assessed. European Association of Nuclear Medicine (EANM) guidelines for calculating minimum injected activities based on overlap size were also reviewed. A uniform flood phantom was used to assess noise (coefficient of variation, (COV)) and voxel accuracy (activity concentrations, Bq ml-1). A NEMA (National Electrical Manufacturers Association) body phantom with hot/cold spheres in a background activity was used to assess contrast recovery coefficients (CRCs) and signal to noise ratios (SNR). Different overlap sizes and sphere-to-background ratios were assessed. COVs for 49% and 23% overlaps were 9% and 13% respectively. This increased noise was difficult to visualise on the 23% overlap images. Mean voxel activity concentrations were not affected by overlap size. No clinically significant differences in CRCs were observed. However, visibility and SNR of small, low contrast spheres (⩽13 mm diameter, 2:1 sphere to background ratio) may be affected by overlap size in low count studies if they are located in the overlap area. There was minimal detectable influence on image quality in terms of noise, mean activity concentrations or mean CRCs when comparing 23% overlap with 49% overlap. Detectability of small, low contrast lesions may be affected in low count studies—however, this is a worst-case scenario. The marginal benefits of increasing overlap from 23% to 49% are likely to be offset by increased patient scan times. A 23% overlap is therefore appropriate for clinical use. An amendment to EANM guidelines for calculating injected activities is also proposed which better reflects the effect overlap size has on image noise.

  9. A comparison of OCO-2 XCO2 Observations to GOSAT and Models

    NASA Astrophysics Data System (ADS)

    O'Dell, C.; Eldering, A.; Crisp, D.; Gunson, M. R.; Fisher, B.; Mandrake, L.; McDuffie, J. L.; Baker, D. F.; Wennberg, P. O.

    2016-12-01

    With their high spatial resolution and dense sampling density, observations of atmospheric carbon dioxide (CO2) from space-based sensors such as the Orbiting Carbon Observatory-2 (OCO-2) have the potential to revolutionize our understanding of carbon sources and sinks. To achieve this goal, however, requires the observations to have sub-ppm systematic errors; the large data density of OCO-2 generally reduces the importance of random errors in the retrieval of of regional scale fluxes. In this work, the Atmospheric Carbon Observations from Space (ACOS) algorithm has been applied to both OCO-2 and GOSAT observations, which overlap for the period spanning Sept 2014 to present (2+ years). Previous activities utilizing TCCON and aircraft data have shown the ACOS/GOSAT B3.5 product to be quite accurate (1-2 ppm) over both land and ocean. In this work, we apply nearly identical versions of the ACOS retrieval algorithm to both OCO-2 and GOSAT to enable comparisons during the period of overlap, and to minimize algorithm-induced differences. GOSAT/OCO-2 comparisons are used to explore potential biases in the OCO-2 data, and to better understand the nature of the bias correction required for each product. Finally, each product is compared to an ensemble of models in order to evaluate their relative consistency, a critical activity before both can be used simultaneously in carbon flux inversions with confidence.

  10. Near Real Time Integration of Satellite and Radar Data for Probabilistic Nearcasting of Severe Weather

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2014-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  11. Data Visualization Challenges and Opportunities in User-Oriented Application Development

    NASA Astrophysics Data System (ADS)

    Pilone, D.; Quinn, P.; Mitchell, A. E.; Baynes, K.; Shum, D.

    2015-12-01

    This talk introduces the audience to some of the very real challenges associated with visualizing data from disparate data sources as encountered during the development of real world applications. In addition to the fundamental challenges of dealing with the data and imagery, this talk discusses usability problems encountered while trying to provide interactive and user-friendly visualization tools. At the end of this talk the audience will be aware of some of the pitfalls of data visualization along with tools and techniques to help mitigate them. There are many sources of variable resolution visualizations of science data available to application developers including NASA's Global Imagery Browse Services (GIBS), however integrating and leveraging visualizations in modern applications faces a number of challenges, including: - Varying visualized Earth "tile sizes" resulting in challenges merging disparate sources - Multiple visualization frameworks and toolkits with varying strengths and weaknesses - Global composite imagery vs. imagery matching EOSDIS granule distribution - Challenges visualizing geographically overlapping data with different temporal bounds - User interaction with overlapping or collocated data - Complex data boundaries and shapes combined with multi-orbit data and polar projections - Discovering the availability of visualizations and the specific parameters, color palettes, and configurations used to produce them In addition to discussing the challenges and approaches involved in visualizing disparate data, we will discuss solutions and components we'll be making available as open source to encourage reuse and accelerate application development.

  12. Rescue and Calibration of NIMBUS 1-4 IR Film Products, 1964 TO 1972

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Campbell, G. G.

    2017-12-01

    Digital data exists from the high resolution infrared instruments on Nimbus 1 to 4 for about 1/4 of the possible orbits for parts of 1964, 1966, 1969 and 1970. We are now digitizing and navigating 35 mm film products from those instruments into digital files. Some of those orbits overlap with the digital data so we can "calibrate" the gray scale pictures into temperatures by comparison. Then that calibration can be extended to orbits with no digital data. This greatly improves the coverage of the night time IR view of the earth. Ultimately these data will be inserted into the NASA archive for general use. We will review our progress on this project and discuss an error estimate for the calibration of the HRIR (High Resolution Infrared Radiometer) data from Nimbus 1, 2 and 3 as well as the THIR (Thermal Infrared Radiometer) data on Nimbus 4. These more complete Infrared views of the Earth provide the opportunity to better understand the weather in this period. Comparisons will be made with pre-satellite era reanalysis products.

  13. Generation and analysis of correlated pairs of photons on board a nanosatellite

    NASA Astrophysics Data System (ADS)

    Chandrasekara, R.; Tang, Z.; Tan, Y. C.; Cheng, C.; Sha, L.; Hiang, G. C.; Oi, D.; Ling, A.

    2016-10-01

    Progress in quantum computers and their threat to conventional public key infrastructure is driving new forms of encryption. Quantum Key Distribution (QKD) using entangled photons is a promising approach. A global QKD network can be achieved using satellites equipped with optical links. Despite numerous proposals, actual experimental work demonstrating relevant entanglement technology in space is limited due to the prohibitive cost of traditional satellite development. To make progress, we have designed a photon pair source that can operate on modular spacecraft called CubeSats. We report the in-orbit operation of the photon pair source on board an orbiting CubeSat and demonstrate pair generation and polarisation correlation under space conditions. The in-orbit polarisation correlations are compatible with ground-based tests, validating our design. This successful demonstration is a major experimental milestone towards a space-based quantum network. Our approach provides a cost-effective method for proving the space-worthiness of critical components used in entangled photon technology. We expect that it will also accelerate efforts to probe the overlap between quantum and relativistic models of physics.

  14. Analysis of Spatial and Temporal Coverage of Multi-Instrument Optical Images for Change Detection Research on the Mars South Polar Residual Cap

    NASA Astrophysics Data System (ADS)

    Putri, Alfiah Rizky Diana; Sidiropoulos, Panagiotis; Muller, Jan-Peter; iMars Team

    2016-10-01

    Interest in Mars' surface started in 1965 with Mariner 4. Since then cameras on other fly-by satellites, such as the NASA Mariner 6 (1965), Mariner 7(1971), Mariner 9 (1972) and then orbiting satellites from Viking 1 and 2 (1975-1980), MGS MOC-NA and MOC-WA (1997-2006), Mars Odyssey THEMIS-VIS (2001-present), ESA Mars Express HRSC and SRC (2003-present), NASA MRO HiRISE and CTX (2006-present) and the latest ExoMars TGO CaSSIS launched in March 2016. Both poles of Mars are very fascinating because of their seasonal changes, such as Carbon Dioxide ice layers staying even in summer on South Polar Residual Cap (SPRC). On which features like so-called Swiss Cheese Terrain, spiders, polar dune flow and dust deposition under layers of ice have been identified. To detect changes between images, we need two or more co-registered images of the same area, and from different time periods, for seasonal features. We have studied the spatial and temporal coverage of images over SPRC. Using a single instrument, full SPRC spatial coverage is available for Viking, HRSC, and CTX images. Images from 25cm HiRISE and ≤10m MOC-NA however, are necessary to detect changes at sufficiently high resolution. The longest period for images from one instrument is 5 MY (for CTX and HiRISE, from MY 28-32). Combining multi-instrument images, we can lengthen the period to 10 MY (from MY 23-32, N.B. we are in MY 33 as present). We can compare the surface images over the 10 MY with the surface from MY 12 from Viking Orbiters. Using multi-instrument images we can increase the number of overlapping images over an area. Overlap information for a single instrument is important to obtain stereo-pairs to be used in DTM production. Overlap information from HRSC images and its DTMs can be used to map changes not only horizontally, but also vertically. We will demonstrate in this study the areas which can be most fruitfully employed for change detection research. The research leading to these results has received funding from the EU's FP7 Programme under iMars 607379. Partial support is also provided from the STFC Grant ST/K000977/1.. The first author is supported by the Indonesian Endowment Fund for Education, Ministry of Finance, Republic of Indonesia.

  15. GLGM-3: A Degree-ISO Lunar Gravity Model from the Historical Tracking Data of NASA Moon Orbiters

    NASA Technical Reports Server (NTRS)

    Mazarico, E.; Lemoine, F. G.; Han, Shin-Chan; Smith, D. E.

    2010-01-01

    In preparation for the radio science experiment of the Lunar Reconnaissance Orbiter (LRO) mission, we analyzed the available radio tracking data of previous NASA lunar orbiters. Our goal was to use these historical observations in combination with the new low-altitude data to be obtained by LRO. We performed Precision Orbit Determination on trajectory arcs from Lunar Orbiter 1 in 1966 to Lunar Prospector in 1998, using the GEODYN II program developed at NASA Goddard Space Flight Center. We then created a set of normal equations and solved for the coefficients of a spherical harmonics expansion of the lunar gravity potential up to degree and order 150. The GLGM-3 solution obtained with a global Kaula constraint (2.5 x 10(exp -4)/sq l) shows good agreement with model LP150Q from the Jet Propulsion Laboratory, especially over the nearside. The levels of data fit with both gravity models are very similar (Doppler RMS of approx.0.2 and approx. 1-2 mm/s in the nominal and extended phases, respectiVely). Orbit overlaps and uncertainties estimated from the covariance matrix also agree well. GLGM-3 shows better correlation with lunar topography and admittance over the nearside at high degrees of expansion (l > 100), particularly near the poles. We also present three companion solutions, obtained with the same data set but using alternate inversion strategies that modify the power law constraint and expectation of the individual spherical harmonics coefficients. We give a detailed discussion of the performance of this family of gravity field solutions in terms of observation fit, orbit quality, and geophysical consistency.

  16. Graphene-induced band gap renormalization in polythiophene: a many-body perturbation study

    NASA Astrophysics Data System (ADS)

    Marsusi, F.; Fedorov, I. A.; Gerivani, S.

    2018-01-01

    Density functional theory and many-body perturbation theory at the G0W0 level are employed to study the electronic properties of polythiophene (PT) adsorbed on the graphene surface. Analysis of the charge density difference shows that substrate-adsorbate interaction leads to a strong physisorption and interfacial electric dipole moment formation. The electrostatic potential displays a  -0.19 eV shift in the graphene work function from its initial value of 4.53 eV, as the result of the interaction. The LDA band gap of the polymer does not show any change. However, the band structure exhibits weak orbital hybridizations resulting from slight overlapping between the polymer and graphene states wave functions. The interfacial polarization effects on the band gap and levels alignment are investigated at the G0W0 level and show a notable reduction of PT band gap compared to that of the isolated chain.

  17. QSAR for cholinesterase inhibition by organophosphorus esters and CNDO/2 calculations for organophosphorus ester hydrolysis. [quantitative structure-activity relationship, complete neglect of differential overlap

    NASA Technical Reports Server (NTRS)

    Johnson, H.; Kenley, R. A.; Rynard, C.; Golub, M. A.

    1985-01-01

    Quantitative structure-activity relationships were derived for acetyl- and butyrylcholinesterase inhibition by various organophosphorus esters. Bimolecular inhibition rate constants correlate well with hydrophobic substituent constants, and with the presence or absence of cationic groups on the inhibitor, but not with steric substituent constants. CNDO/2 calculations were performed on a separate set of organophosphorus esters, RR-primeP(O)X, where R and R-prime are alkyl and/or alkoxy groups and X is fluorine, chlorine or a phenoxy group. For each subset with the same X, the CNDO-derived net atomic charge at the central phosphorus atom in the ester correlates well with the alkaline hydrolysis rate constant. For the whole set of esters with different X, two equations were derived that relate either charge and leaving group steric bulk, or orbital energy and bond order to the hydrolysis rate constant.

  18. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398

  19. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    PubMed

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  20. Imaging molecular interaction of NO on Cu(110) with a scanning tunneling microscope.

    PubMed

    Okuyama, Hiroshi

    2014-10-01

    Molecular interaction on metal surfaces is one of the central issues of surface science for the microscopic understanding of heterogeneous catalysis. In this Personal Account, I review the recent studies on NO/Cu(110) employing a scanning tunneling microscope (STM) to probe and control the molecule-molecule interaction on the surface. An individual NO molecule was observed as a characteristic dumbbell-shaped protrusion, visualizing the 2π* orbital. By manipulating the intermolecular distance with the STM, the overlap of the 2π* orbital between two NO molecules was controlled. The interaction causes the formation of the bonding and antibonding orbitals below and above the Fermi level, respectively, as a function of the intermolecular distance. The 2π* orbital also plays a role in the reaction of NO with water molecules. A water molecule donates a H-bond to NO, giving rise to the down-shift of the 2π* level below the Fermi level. This causes electron transfer from the substrate to NO, weakening, and eventually rupturing, the N-O bond. The facile bond cleavage by water molecules has implications for the catalytic reduction of NO under ambient conditions. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nodal bilayer-splitting controlled by spin-orbit interactions in underdoped high-T c cuprates

    DOE PAGES

    Harrison, N.; Ramshaw, B. J.; Shekhter, A.

    2015-06-03

    The highest superconducting transition temperatures in the cuprates are achieved in bilayer and trilayer systems, highlighting the importance of interlayer interactions for high T c. It has been argued that interlayer hybridization vanishes along the nodal directions by way of a specific pattern of orbital overlap. Recent quantum oscillation measurements in bilayer cuprates have provided evidence for a residual bilayer-splitting at the nodes that is sufficiently small to enable magnetic breakdown tunneling at the nodes. Here we show that several key features of the experimental data can be understood in terms of weak spin-orbit interactions naturally present in bilayer systems,more » whose primary effect is to cause the magnetic breakdown to be accompanied by a spin flip. These features can now be understood to include the equidistant set of three quantum oscillation frequencies, the asymmetry of the quantum oscillation amplitudes in c-axis transport compared to ab-plane transport, and the anomalous magnetic field angle dependence of the amplitude of the side frequencies suggestive of small effective g-factors. We suggest that spin-orbit interactions in bilayer systems can further affect the structure of the nodal quasiparticle spectrum in the superconducting phase. PACS numbers: 71.45.Lr, 71.20.Ps, 71.18.+y« less

  2. Returning an Entire Near-Earth Asteroid in Support of Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Friedman, Louis

    2012-01-01

    This paper describes the results of a study into the feasibility of identifying, robotically capturing, and returning an entire Near-Earth Asteroid (NEA) to the vicinity of the Earth by the middle of the next decade. The feasibility of such an asteroid retrieval mission hinges on finding an overlap between the smallest NEAs that could be reasonably discovered and characterized and the largest NEAs that could be captured and transported in a reasonable flight time. This overlap appears to be centered on NEAs roughly 7 m in diameter corresponding to masses in the range of 250,000 kg to 1,000,000 kg. The study concluded that it would be possible to return a approx.500,000-kg NEA to high lunar orbit by around 2025. The feasibility is enabled by three key developments: the ability to discover and characterize an adequate number of sufficiently small near-Earth asteroids for capture and return; the ability to implement sufficiently powerful solar electric propulsion systems to enable transportation of the captured NEA; and the proposed human presence in cislunar space in the 2020s enabling exploration and exploitation of the returned NEA. Placing a 500-t asteroid in high lunar orbit would provide a unique, meaningful, and affordable destination for astronaut crews in the next decade. This disruptive capability would have a positive impact on a wide range of the nation's human space exploration interests. It would provide a high-value target in cislunar space that would require a human presence to take full advantage of this new resource. It would offer an affordable path to providing operational experience with astronauts working around and with a NEA that could feed forward to much longer duration human missions to larger NEAs in deep space. It represents a new synergy between robotic and human missions in which robotic spacecraft would retrieve significant quantities of valuable resources for exploitation by astronaut crews to enable human exploration farther out into the solar system. The capture, transportation, examination, and dissection of an entire NEA would provide valuable information for planetary defense activities that may someday have to deflect a much larger near-Earth object. Transportation of the NEA to lunar orbit with a total flight time of 6 to 10 years would be enabled by a 40-kW solar electric propulsion system with a specific impulse of 3,000 s. The flight system could be launched to low-Earth orbit (LEO) on a single Atlas V-class launch vehicle, and return to lunar orbit a NEA with at least 28 times the mass launched to LEO. Longer flight times, higher power SEP systems, or a target asteroid in a particularly favorable orbit could increase the mass amplification factor from 28-to-1 to 70-to-1 or greater. The NASA GRC COMPASS team estimated the full life-cycle cost of an asteroid capture and return mission at approx.$2.6B.

  3. Understanding COPD-overlap syndromes.

    PubMed

    Poh, Tuang Yeow; Mac Aogáin, Micheál; Chan, Adrian Kwok Wai; Yii, Anthony Chau Ang; Yong, Valerie Fei Lee; Tiew, Pei Yee; Koh, Mariko Siyue; Chotirmall, Sanjay Haresh

    2017-04-01

    Chronic obstructive pulmonary disease accounts for a large burden of lung disease. It can 'overlap' with other respiratory diseases including bronchiectasis, fibrosis and obstructive sleep apnea (OSA). While COPD alone confers morbidity and mortality, common features with contrasting clinical outcomes can occur in COPD 'overlap syndromes'. Areas covered: Given the large degree of heterogeneity in COPD, individual variation to treatment is adopted based on its observed phenotype, which in turn overlaps with features of other respiratory disease states such as asthma. This is coined asthma-COPD overlap syndrome ('ACOS'). Other examples of such overlapping clinical states include bronchiectasis-COPD ('BCOS'), fibrosis-COPD ('FCOS') and OSA-COPD ('OCOS'). The objective of this review is to highlight similarities and differences between the COPD-overlap syndromes in terms of risk factors, pathophysiology, diagnosis and potential treatment differences. Expert commentary: As a consequence of COPD overlap syndromes, a transition from the traditional 'one size fits all' treatment approach is necessary. Greater treatment stratification according to clinical phenotype using a precision medicine approach is now required. In this light, it is important to recognize and differentiate COPD overlap syndromes as distinct disease states compared to individual diseases such as asthma, COPD, fibrosis or bronchiectasis.

  4. Exploring biorthonormal transformations of pair-correlation functions in atomic structure variational calculations

    NASA Astrophysics Data System (ADS)

    Verdebout, S.; Jönsson, P.; Gaigalas, G.; Godefroid, M.; Froese Fischer, C.

    2010-04-01

    Multiconfiguration expansions frequently target valence correlation and correlation between valence electrons and the outermost core electrons. Correlation within the core is often neglected. A large orbital basis is needed to saturate both the valence and core-valence correlation effects. This in turn leads to huge numbers of configuration state functions (CSFs), many of which are unimportant. To avoid the problems inherent to the use of a single common orthonormal orbital basis for all correlation effects in the multiconfiguration Hartree-Fock (MCHF) method, we propose to optimize independent MCHF pair-correlation functions (PCFs), bringing their own orthonormal one-electron basis. Each PCF is generated by allowing single- and double-excitations from a multireference (MR) function. This computational scheme has the advantage of using targeted and optimally localized orbital sets for each PCF. These pair-correlation functions are coupled together and with each component of the MR space through a low dimension generalized eigenvalue problem. Nonorthogonal orbital sets being involved, the interaction and overlap matrices are built using biorthonormal transformation of the coupled basis sets followed by a counter-transformation of the PCF expansions. Applied to the ground state of beryllium, the new method gives total energies that are lower than the ones from traditional complete active space (CAS)-MCHF calculations using large orbital active sets. It is fair to say that we now have the possibility to account for, in a balanced way, correlation deep down in the atomic core in variational calculations.

  5. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    NASA Technical Reports Server (NTRS)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against monthly averaged diagnostics obtained from hourly samplings over the entire globe. Results show that differences between irregularly (satellite) and regularly (true) sampled diagnostics of the longwave net radiative budgets are the greatest at the surface and the smallest in the atmosphere and at the top-of-the-atmosphere, under both cloud-free and cloudy conditions. In contrast, differences between the satellite and the true diagnostics of the longwave cloud radiative forcings are the largest in the atmosphere and at the top-of-the-atmosphere, and the smallest at the surface. A poorer diurnal sampling of the surface temperature in the satellite simulations relative to the true simulation contributes a major part to sampling biases in the longwave net radiative budgets, while a poorer diurnal sampling of cloudiness and its optical properties directly affects diagnostics of the longwave cloud radiative forcings. A factor of 8 difference in the number of satellite overpasses between PICA705 and PICA485 and ICESAT leads to a systematic factor of 3 difference in the spatial standard deviations of all radiative and cloudiness diagnostics.

  6. Tracker implementation for the orbiter Ku-band communications antenna

    NASA Technical Reports Server (NTRS)

    Rudnicki, J. F.; Lindsey, J. F.

    1976-01-01

    Possible implementations and recommendations for the Space Shuttle Ku-Band integrated communications/radar antenna tracking system were evaluated. Communication aspects involving the Tracking Data Relay Satellite (TDRS)/Orbiter Ku-Band link are emphasized. Detailed analysis of antenna sizes, gains and signal-to-noise ratios shows the desirability of using maximum size 36-inch diameter dish and a triple channel monopulse. The use of the original baselined 20 inch dish is found to result in excessive acquisition time since the despread signal would be used in the tracking loop. An evaluation of scan procedures which includes vehicle dynamics, designation error, time for acquisition and probability of acquisition shows that the conical scan is preferred since the time for lock-on for relatively slow look angle rates will be significantly shorter than the raster scan. Significant improvement in spherical coverage may be obtained by reorienting the antenna gimbal to obtain maximum blockage overlap.

  7. Recent advances at NASA in calculating the electronic spectra of diatomic molecules

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.; Paterson, John A.

    1988-01-01

    Advanced entry vehicles, such as the proposed Aero-assisted Orbital Transfer Vehicle, provide new and challenging problems for spectroscopy. Large portions of the flow field about such vehicles will be characterized by chemical and thermal nonequilibrium. Only by considering the actual overlap of the atomic and rotational lines emitted by the species present can the impact of radiative transport within the flow field be assessed correctly. To help make such an assessment, a new computer program is described that can generate high-resolution, line-by-line spectra for any spin-allowed transitions in diatomic molecules. The program includes the matrix elements for the rotational energy and distortion to the fourth order; the spin-orbit, spin-spin, and spin-rotation interactions to first order; and the lambda splitting by a perturbation calculation. An overview of the Computational Chemistry Branch at Ames Research Center is also presented.

  8. Overview of aerothermodynamic loads definition study

    NASA Technical Reports Server (NTRS)

    Gaugler, Raymond E.

    1989-01-01

    Over the years, NASA has been conducting the Advanced Earth-to-Orbit (AETO) Propulsion Technology Program to provide the knowledge, understanding, and design methodology that will allow the development of advanced Earth-to-orbit propulsion systems with high performance, extended service life, automated operations, and diagnostics for in-flight health monitoring. The objective of the Aerothermodynamic Loads Definition Study is to develop methods to more accurately predict the operating environment in AETO propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. The approach taken consists of 2 parts: to modify, apply, and disseminate existing computational fluid dynamics tools in response to current needs and to develop new technology that will enable more accurate computation of the time averaged and unsteady aerothermodynamic loads in the SSME powerhead. The software tools are detailed. Significant progress was made in the area of turbomachinery, where there is an overlap between the AETO efforts and research in the aeronautical gas turbine field.

  9. Sr2Ir1 -xRhxO4(x <0.5 ) : An inhomogeneous jeff=1/2 Hubbard system

    NASA Astrophysics Data System (ADS)

    Chikara, Shalinee; Haskel, Daniel; Sim, Jae-Hoon; Kim, Heung-Sik; Chen, Cheng-Chien; Fabbris, G.; Veiga, L. S. I.; Souza-Neto, N. M.; Terzic, J.; Butrouna, K.; Cao, G.; Han, Myung Joon; van Veenendaal, Michel

    2015-08-01

    In a combined experimental and theoretical study, we investigate the properties of Sr2Ir1 -xRhxO4 . From the branching ratios of the L -edge isotropic x-ray absorption spectra, we determine that the spin-orbit coupling is remarkably independent of x for both iridium and rhodium sites. DFT+U calculations show that the doping is close to isoelectronic and introduces impurity bands of predominantly rhodium character close to the lower Hubbard band. Overlap of these two bands leads to metallic behavior. Since the low-energy states for x <0.5 have predominantly jeff=1/2 character, we suggest that the electronic properties of this material can be described by an inhomogeneous Hubbard model, where the on-site energies change due to local variations in the spin-orbit interaction strength combined with additional changes in binding energy.

  10. Strongly contracted canonical transformation theory

    NASA Astrophysics Data System (ADS)

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2010-01-01

    Canonical transformation (CT) theory describes dynamic correlation in multireference systems with large active spaces. Here we discuss CT theory's intruder state problem and why our previous approach of overlap matrix truncation becomes infeasible for sufficiently large active spaces. We propose the use of strongly and weakly contracted excitation operators as alternatives for dealing with intruder states in CT theory. The performance of these operators is evaluated for the H2O, N2, and NiO molecules, with comparisons made to complete active space second order perturbation theory and Davidson-corrected multireference configuration interaction theory. Finally, using a combination of strongly contracted CT theory and orbital-optimized density matrix renormalization group theory, we evaluate the singlet-triplet gap of free base porphin using an active space containing all 24 out-of-plane 2p orbitals. Modeling dynamic correlation with an active space of this size is currently only possible using CT theory.

  11. Thinking Like a Chemist: Intuition in Thermoelectric Materials.

    PubMed

    Zeier, Wolfgang G; Zevalkink, Alex; Gibbs, Zachary M; Hautier, Geoffroy; Kanatzidis, Mercouri G; Snyder, G Jeffrey

    2016-06-06

    The coupled transport properties required to create an efficient thermoelectric material necessitates a thorough understanding of the relationship between the chemistry and physics in a solid. We approach thermoelectric material design using the chemical intuition provided by molecular orbital diagrams, tight binding theory, and a classic understanding of bond strength. Concepts such as electronegativity, band width, orbital overlap, bond energy, and bond length are used to explain trends in electronic properties such as the magnitude and temperature dependence of band gap, carrier effective mass, and band degeneracy and convergence. The lattice thermal conductivity is discussed in relation to the crystal structure and bond strength, with emphasis on the importance of bond length. We provide an overview of how symmetry and bonding strength affect electron and phonon transport in solids, and how altering these properties may be used in strategies to improve thermoelectric performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Separation and sequence detection of overlapped fingerprints: experiments and first results

    NASA Astrophysics Data System (ADS)

    Kärgel, Rainer; Giebel, Sascha; Leich, Marcus; Dittmann, Jana

    2011-11-01

    Latent fingerprints provide vital information in modern crime scene investigation. On frequently touched surfaces the fingerprints may overlap which poses a major problem for forensic analysis. In order to make such overlapping fingerprints available for analysis, they have to be separated. An additional evaluation of the sequence in which the fingerprints were brought onto the surface can help to reconstruct the progression of events. Advances in both tasks can considerably aid crime investigation agencies and are the subject of this work. Here, a statistical approach, initially devised for the separation of overlapping text patterns by Tonazzini et al.,1 is employed to separate overlapping fingerprints. The method involves a maximum a posteriori estimation of the single fingerprints and the mixing coefficients, computed by an expectation-maximization algorithm. A fingerprint age determination feature based on corrosion is evaluated for sequence estimation. The approaches are evaluated using 30 samples of overlapping latent fingerprints on two different substrates. The fingerprint images are acquired with a non-destructive chromatic white light surface measurement device, each sample containing exactly two fingerprints that overlap in the center of the image. Since forensic investigations rely on manual assessment of acquired fingerprints by forensics experts, a subjective scale ranging from 0 to 8 is used to rate the separation results. Our results indicate that the chosen method can separate overlapped fingerprints which exhibit strong differences in contrast, since results gradually improve with the growing contrast difference of the overlapping fingerprints. Investigating the effects of corrosion leads to a reliable determination of the fingerprints' sequence as the timespan between their leaving increases.

  13. Skull osteology of the Eocene amphisbaenian Spathorhynchus fossorium (Reptilia, Squamata) suggests convergent evolution and reversals of fossorial adaptations in worm lizards.

    PubMed

    Müller, Johannes; Hipsley, Christy A; Maisano, Jessica A

    2016-11-01

    The fossorial amphisbaenians, or worm lizards, are characterized by a suite of specialized characters in the skull and postcranium, however fossil evidence suggests that at least some of these shared derived traits evolved convergently. Unfortunately the lack of detailed knowledge of many fossil taxa has rendered a more precise interpretation difficult. Here we describe the cranial anatomy of the oldest-known well-preserved amphisbaenian, Spathorhynchus fossorium, from the Eocene Green River Formation, Wyoming, USA, using high-resolution X-ray computed tomography (HRXCT). This taxon possesses one of the most strongly reinforced crania known among amphisbaenians, with many dermal bones overlapping each other internally. In contrast to modern taxa, S. fossorium has a paired orbitosphenoid, lacks a true compound bone in the mandible, and possesses a fully enclosed orbital rim. The last feature represents a highly derived structure in that the jugal establishes contact with the frontal internally, reinforcing the posterior orbital margin. S. fossorium also possesses a strongly modified Vidian canal with a previously unknown connection to the ventral surface of the parabasisphenoid. Comparison with the closely related fossil taxon Dyticonastis rensbergeri reveals that these derived traits are also shared by the latter species and potentially represent synapopmorphies of an extinct Paleogene clade of amphisbaenians. The presence of a reinforced orbital rim suggests selection against the loss of a functional eye and indicates an ecology potentially different from modern taxa. Given the currently accepted phylogenetic position of Spathorhynchus and Dyticonastis, we predict that supposedly 'unique' cranial traits traditionally linked to fossoriality such as a fused orbitosphenoid and the reduction of the eye show a more complex character history than previously assumed, including both parallel evolution and reversals to superficially primitive conditions. © 2016 Anatomical Society.

  14. Comparative analysis of use of porous orbital implant with mucus membrane graft and dermis fat graft as a primary procedure in reconstruction of severely contracted socket

    PubMed Central

    Bhattacharjee, Kasturi; Bhattacharjee, Harsha; Kuri, Ganesh; Das, Jayanta Kr; Dey, Debleena

    2014-01-01

    Purpose: The purpose of our study is to present a surgical technique of primary porous orbital ball implantation with overlying mucus membrane graft (MMG) for reconstruction of severely contracted socket and to evaluate prosthesis retention and motility in comparison to dermis fat graft (DFG). Study Design: Prospective comparative study. Materials and Methods: A total of 24 patients of severe socket contracture (Grade 2-4 Krishna's classification) were subdivided into two groups, 12 patients in each group. In Group I, DFG have been used for reconstruction. In Group II, porous polyethylene implant with MMG has been used as a primary procedure for socket reconstruction. In Group I DFG was carried out in usual procedure. In case of Group II, vascularized scar tissues were separated 360° and were fashioned into four strips. A scleral capped porous polyethylene implant was placed in the intraconal space and four strips of scar tissue were secured to the scleral cap and extended part overlapped the implant to make a twofold barrier between the implant and MMG. Patients were followed-up as per prefixed proforma. Prosthesis motility and retention between the two groups were measured. Results: In Group I, four patients had recurrence of contracture with fall out of prosthesis. In Group II stable reconstruction was achieved in all the patients. In terms of prosthesis motility, maximum in Group I was 39.2% and Group II, was 59.3%. The difference in prosthesis retention (P = 0.001) and motility (P = 0.004) between the two groups was significant. Conclusion: Primary socket reconstruction with porous orbital implant and MMG for severe socket contracture is an effective method in terms of prosthesis motility and prosthesis retention. PMID:24618485

  15. Theoretical study of the regioselectivity of the interaction of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone with Lewis acids.

    PubMed

    Kasende, Okuma Emile; Muya, Jules Tshishimbi; Broeckaert, Lies; Maes, Guido; Geerlings, Paul

    2012-08-23

    A density functional theory (DFT) study is performed to determine the stability of the complexes formed between either the N or O site of 3-methyl-4-pyrimidone and 1-methyl-2-pyrimidone molecules and different ligands. The studied ligands are boron and alkali Lewis acids, namely, B(CH(3))(3), HB(CH(3))(2), H(2)B(CH(3)), BH(3), H(2)BF, HBF(2), BF(3), Li(+), Na(+), and K(+). The acids are divided into two groups according to their hardness. The reactivity predictions, according to the molecular electrostatic potential (MEP) map and the natural bond orbital (NBO) analysis, are in agreement with the calculated relative stabilities. Our findings reveal a strong regioselectivity with borane and its derivatives preferring the nitrogen site in both pyrimidone isomers, while a preference for oxygen is observed for the alkali acids in the 3-methyl-4-pyrimidone molecule. The complexation of 1-methyl-2-pyrimidone with these hard alkali acids does not show any discrimination between the two sites due to the presence of a continuous delocalized density region between the nitrogen and the oxygen atoms. The preference of boron Lewis acids toward the N site is due to the stronger B-N bond as compared to the B-O bond. The influence of fluorine or methyl substitution on the boron atom is discussed through natural orbital analysis (NBO) concentrating on the overlap of the boron empty p-orbital with the F lone pairs and methyl hyperconjugation, respectively. The electrophilicity of the boron acids gives a good overall picture of the interaction capabilities with the Lewis base.

  16. Transition probability functions for applications of inelastic electron scattering

    PubMed Central

    Löffler, Stefan; Schattschneider, Peter

    2012-01-01

    In this work, the transition matrix elements for inelastic electron scattering are investigated which are the central quantity for interpreting experiments. The angular part is given by spherical harmonics. For the weighted radial wave function overlap, analytic expressions are derived in the Slater-type and the hydrogen-like orbital models. These expressions are shown to be composed of a finite sum of polynomials and elementary trigonometric functions. Hence, they are easy to use, require little computation time, and are significantly more accurate than commonly used approximations. PMID:22560709

  17. .pi.-conjugated heavy-metal polymers for organic white-light-emitting diodes

    DOEpatents

    Vardeny, Zeev Valentine; Wojcik, Leonard; Drori, Tomer

    2016-09-13

    A polymer mixture emits a broad spectrum of visible light that appears white or near-white in the aggregate. The polymer mixture comprises two (or more) components in the active layer. A heavy atom, such as platinum and/or iridium, present in the backbone of the mixture acts via a spin-orbit coupling mechanism to cause the ratio of fluorescent to phosphorescent light emission bands to be of approximately equal strength. These two broad emissions overlap, resulting in an emission spectrum that appears to the eye to be white.

  18. Collar grids for intersecting geometric components within the Chimera overlapped grid scheme

    NASA Technical Reports Server (NTRS)

    Parks, Steven J.; Buning, Pieter G.; Chan, William M.; Steger, Joseph L.

    1991-01-01

    A method for overcoming problems with using the Chimera overset grid scheme in the region of intersecting geometry components is presented. A 'collar grid' resolves the intersection region and provides communication between the component grids. This approach is validated by comparing computed and experimental data for a flow about a wing/body configuration. Application of the collar grid scheme to the Orbiter fuselage and vertical tail intersection in a computation of the full Space Shuttle launch vehicle demonstrates its usefulness for simulation of flow about complex aerospace vehicles.

  19. Steven's orbital reduction factor in ionic clusters

    NASA Astrophysics Data System (ADS)

    Gajek, Z.; Mulak, J.

    1985-11-01

    General expressions for reduction coefficients of matrix elements of angular momentum operator in ionic clusters or molecular systems have been derived. The reduction in this approach results from overlap and covalency effects and plays an important role in the reconciling of magnetic and spectroscopic experimental data. The formulated expressions make possible a phenomenological description of the effect with two independent parameters for typical equidistant clusters. Some detailed calculations also suggest the possibility of a one-parameter description. The results of these calculations for some ionic uranium compounds are presented as an example.

  20. Combined VSWIR/TIR Products Overview: Issues and Examples

    NASA Technical Reports Server (NTRS)

    Knox, Robert G.

    2010-01-01

    The presentation provides a summary of VSWIR data collected at 19-day intervals for most areas. TIR data was collected both day and night on a 5-day cycle (more frequently at higher latitudes), the TIR swath is four times as wide as VSWIR, and the 5-day orbit repeat is approximate. Topics include nested swath geometry for reference point design and coverage simulations for sample FLUXNET tower sites. Other points examined include variation in latitude for revisit frequency, overpass times, and TIR overlap geometry and timing between VSWIR data collections.

  1. Overlapping double potential wells in a single optical microtube cavity with vernier-scale-like tuning effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madani, A.; Schmidt, O. G.; Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Str. 70, 09107 Chemnitz

    2016-04-25

    Spatially and temporally overlapping double potential wells are realized in a hybrid optical microtube cavity due to the coexistence of an aggregate of luminescent quantum dots embedded in the tube wall and the cone-shaped tube's geometry. The double potential wells produce two independent sets of optical modes with different sets of mode numbers, indicating phase velocity separation for the modes overlapping at the same frequency. The overlapping mode position can be tuned by modifying the tube cavity, where these mode sets shift with different magnitudes, allowing for a vernier-scale-like tuning effect.

  2. VITMO: A Case Study in Virtual Observatories as Data Portals and Development of Web Services as Search Tools

    NASA Astrophysics Data System (ADS)

    Smith, D.; Barnes, R. J.; Morrison, D.; Talaat, E. R.; Potter, M.; Patrone, D.; Weiss, M.; Sarris, T.

    2013-12-01

    Virtual Observatories are more than data portals that span multiple missions and data sets. They need to provide a system that is useable by a broad swath of people with different backgrounds. The great promise of Virtual Observatories is the ability to perform complex search operations on a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) is unique in having many diverse datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time and/or space. We are developing a series of light-weight web services that will provide a new data search capability for VITMO and other VxOs. The services will consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that will map in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. Each service on their own provides a useful new capability for virtual observatories; operating together they will provide a powerful new search tool. The ephemerides service is being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov/naif/index.html) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels or two-line element sets (TLE). An instrument kernel (IK) file will be used to describe the observational geometry of the instrument (e.g., Field-of-view size, shape, and orientation). The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow 'near misses' to be found. The magnetic field tracing service will feature a database of pre-calculated field line tracings of ground stations but will also allow dynamic tracing of arbitrary coordinates. These services will allow the non-specialist user of VITMO to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and making it much easier for future students who come into the field.

  3. Trigonal Mn3 and Co3 Clusters Supported by Weak-Field Ligands: A Structural, Spectroscopic, Magnetic, and Computational Investigation into the Correlation of Molecular and Electronic Structure

    PubMed Central

    Fout, Alison R.; Xiao, Dianne J.; Zhao, Qinliang; Harris, T. David; King, Evan R.; Eames, Emily V.; Zheng, Shao-Liang; Betley, Theodore A.

    2012-01-01

    Transamination of divalent transition metal starting materials (M2(N(SiMe3)2)4, M = Mn, Co) with hexadentate ligand platforms RLH6 (RLH6 = MeC(CH2NPh-o-NR)3 where R = H, Ph, Mes (Mes = Mesityl)) or H,CyLH6 = 1,3,5-C6H9(NHPh-o-NH2)3 with added pyridine or tertiary phosphine co-ligands afforded trinuclear complexes of the type (RL)Mn3(py)3 and (RL)Co3(PMe2R’)3 (R’ = Me, Ph). While the sterically less encumbered ligand varieties, HL or PhL, give rise to local square-pyramidal geometries at each of the bound metal atoms, with four anilides forming an equatorial plane and an exogenous pyridine or phosphine in the apical site, the mesityl-substituted ligand (MesL) engenders local tetrahedral coordination. Both the neutral Mn3 and Co3 clusters feature S = 1/2 ground states, as determined by dc magnetometry, 1H NMR spectroscopy, and low-temperature EPR spectroscopy. Within the Mn3 clusters, the long internuclear Mn–Mn separations suggest minimal direct metal-metal orbital overlap. Accordingly, fits to variable-temperature magnetic susceptibility data reveal the presence of weak antiferromagnetic superexchange interactions through the bridging anilide ligands with exchange couplings ranging from J = −16.8 to −42 cm−1. Conversely, the short Co–Co interatomic distances suggest a significant degree of direct metal-metal orbital overlap, akin to the related Fe3 clusters. With the Co3 series, the S = 1/2 ground state can be attributed to population of a single molecular orbital manifold that arises from mixing of the metal- and o-phenylenediamide (OPDA) ligand-based frontier orbitals. Chemical oxidation of the neutral Co3 clusters affords diamagnetic cationic clusters of the type [(RL)Co3(PMe2R)3]+. DFT calculations on the neutral (S = ½) and cationic (S = 0) Co3 clusters reveal that oxidation occurs at an oribital with contributions from both the Co3 core and OPDA subunits. The predicted bond elongations within the ligand OPDA units are corroborated by the ligand bond perturbations observed by X-ray crystallography. PMID:22991939

  4. Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units

    PubMed Central

    Keckhut, P; Funatsu, B M; Claud, C; Hauchecorne, A

    2015-01-01

    Stratospheric temperature series derived from the Advanced Microwave Sounding Unit (AMSU) on board successive NOAA satellites reveal, during periods of overlap, some bias and drifts. Part of the reason for these discrepancies could be atmospheric tides as the orbits of these satellites drifted, inducing large changes in the actual times of measurement. NOAA 15 and 16, which exhibit a long period of overlap, allow deriving diurnal tides that can correct such temperature drifts. The characteristics of the derived diurnal tides during summer periods is in good agreement with those calculated with the Global Scale Wave Model, indicating that most of the observed drifts are likely due to the atmospheric tides. Cooling can be biased by a factor of 2, if times of measurement are not considered. When diurnal tides are considered, trends derived from temperature lidar series are in good agreement with AMSU series. Future adjustments of temperature time series based on successive AMSU instruments will require considering corrections associated with the local times of measurement. PMID:26300563

  5. Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units.

    PubMed

    Keckhut, P; Funatsu, B M; Claud, C; Hauchecorne, A

    2015-01-01

    Stratospheric temperature series derived from the Advanced Microwave Sounding Unit (AMSU) on board successive NOAA satellites reveal, during periods of overlap, some bias and drifts. Part of the reason for these discrepancies could be atmospheric tides as the orbits of these satellites drifted, inducing large changes in the actual times of measurement. NOAA 15 and 16, which exhibit a long period of overlap, allow deriving diurnal tides that can correct such temperature drifts. The characteristics of the derived diurnal tides during summer periods is in good agreement with those calculated with the Global Scale Wave Model, indicating that most of the observed drifts are likely due to the atmospheric tides. Cooling can be biased by a factor of 2, if times of measurement are not considered. When diurnal tides are considered, trends derived from temperature lidar series are in good agreement with AMSU series. Future adjustments of temperature time series based on successive AMSU instruments will require considering corrections associated with the local times of measurement.

  6. Origin of the Surface-Induced First Hyperpolarizability in the C60/SiO2 System: SCC-DFTB Insight.

    PubMed

    Nénon, Sébastien; Champagne, Benoît

    2014-01-02

    Using the self-consistent charge density functional tight binding (SCC-DFTB) method, C60 molecules physisorbed on an α-quartz slab are shown to display a first hyperpolarizability, whereas, owing to their symmetry, both the α-quartz slab and C60 molecule have no first hyperpolarizabilities. A larger first hyperpolarizability is achieved when the lowest-lying (five- or six-membered) ring is situated in between two hydroxyl rows, rather than on top, because this situation favors orbital overlaps and charge transfer. Further analysis has demonstrated that (i) the first hyperpolarizability originates from the MO overlap and field-induced charge transfers from the neighboring substrate/adsorbate moieties but not to geometric relaxation of the C60 molecules at the interface and that (ii) larger first hyperpolarizabilities are associated with low surface coverage and with small distances between C60 and the surface. This contribution is a clear illustration of the emergence of second-order nonlinear optical responses (first hyperpolarizability) as a result of breaking the centrosymmetry.

  7. Radar Probing of Planetary Regoliths: An Example from the Northern Rim of Imbrium Basin

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas W.; Campbell, Bruce A.; Ghent, Rebecca R.; Hawke, B. Ray; Leverington, David W.

    2006-01-01

    Imaging radar measurements at long wavelengths (e.g., >30 cm) allow deep (up to tens of meters) probing of the physical structure and dielectric properties of planetary regoliths. We illustrate a potential application for a Mars orbital synthetic aperture radar (SAR) using new Earth-based 70-cm wavelength radar data for the Moon. The terrae on the northern margin of Mare Imbrium, the Montes Jura region, have diffuse radar backscatter echoes that are 2-4 times weaker at 3.8-cm, 70-cm, and 7.5-m wavelengths than most other lunar nearside terrae. Possible geologic explanations are (1) a pyroclastic deposit associated with sinuous rilles in this region, (2) buried mare basalt or a zone of mixed highland/basaltic debris (cryptomaria), or (3) layers of ejecta associated with the Iridum and Plato impacts that have fewer meter-sized rocks than typical highlands regolith. While radar data at 3.8-cm to 7.5-m wavelengths suggest significant differences between the Montes Jura region and typical highlands, the surface geochemistry and rock abundance inferred from Clementine UV-VIS data and eclipse thermal images are consistent with other lunar terrae. There is no evidence for enhanced iron abundance, expected for basaltic pyroclastic deposits, near the source vents of the sinuous rilles radial to Plato. The regions of low 70-cm radar return are consistent with overlapping concentric ''haloes'' about Iridum and Plato and do not occur referentially in topographically low areas, as is observed for radar-mapped cryptomaria. Thus we suggest that the extensive radar-dark area associated with the Montes Jura region is due to overlapping, rock-poor ejecta deposits from Iridum and Plato craters. Comparison of the radial extent of low-radar-return crater haloes with a model for ejecta thickness shows that these rock-poor layers are detected by 70-cm radar where they are on the order of 10 m and thicker. A SAR in orbit about Mars could use similar deep probing to reveal the nature of crater - and basin-related deposits.

  8. Collisional family structure within the Nysa-Polana complex

    NASA Astrophysics Data System (ADS)

    Dykhuis, Melissa J.; Greenberg, Richard

    2015-05-01

    The Nysa-Polana complex is a group of low-inclination asteroid families in the inner main belt, bounded in semimajor axis by the Mars-crossing region and the Jupiter 3:1 mean-motion resonance. This group is important as the most likely source region for the target of the OSIRIS-REx mission, (101955) Bennu; however, family membership in the region is complicated by the presence of several dynamically overlapping families with a range of surface reflectance properties. The large S-type structure in the region appears to be associated with the parent body (135) Hertha, and displays an (eP,aP) correlation consistent with a collision event near true anomaly of ∼180° with ejecta velocity vej ∼ 285m /s . The ejecta distribution from a collision with these orbital properties is predicted to have a maximum semimajor axis dispersion of δaej = 0.005 ± 0.008AU , which constitutes only a small fraction (7%) of the observed semimajor axis dispersion, the rest of which is attributed to the Yarkovsky effect. The age of the family is inferred from the Yarkovsky dispersion to be 300-50+60 My. Objects in a smaller cluster that overlaps the large Hertha family in proper orbital element space have reflectance properties more consistent with the X-type (135) Hertha than the surrounding S-type family. These objects form a distinct Yarkovsky "V" signature in (aP, H) space, consistent with a more recent collision, which appears to also be dynamically connected to (135) Hertha. Production of two families with different reflectance properties from a single parent could result from the partial differentiation of the parent, shock darkening effects, or other causes. The Nysa-Polana complex also contains a low-albedo family associated with (142) Polana (called "New Polana" by Walsh et al. (Walsh, K.J. et al. [2013]. Icarus 225, 283-297)), and two other low-albedo families associated with (495) Eulalia. The second Eulalia family may be a high-aP , low-eP , low-iP component of the first Eulalia family-forming collision, possibly explained by an anisotropic ejection field.

  9. Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes

    DOE PAGES

    Collins, C. S.; Heidbrink, W. W.; Podestà, M.; ...

    2017-06-09

    Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less

  10. Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, C. S.; Heidbrink, W. W.; Podestà, M.

    Experiments in the DIII-D tokamak show that many overlapping small-amplitude Alfv en eigenmodes (AEs) cause fast-ion transport to sharply increase above a critical threshold, leading to fast-ion density profile resilience and reduced fusion performance. The threshold is above the AE linear stability limit and varies between diagnostics that are sensitive to different parts of fast-ion phase-space. A comparison with theoretical analysis using the nova and orbit codes shows that, for the neutral particle diagnostic, the threshold corresponds to the onset of stochastic particle orbits due to wave-particle resonances with AEs in the measured region of phase space. We manipulated themore » bulk fast-ion distribution and instability behavior through variations in beam deposition geometry, and no significant differences in the onset threshold outside of measurement uncertainties were found, in agreement with the theoretical stochastic threshold analysis. Simulations using the `kick model' produce beam ion density gradients consistent with the empirically measured radial critical gradient and highlight the importance of including the energy and pitch dependence of the fast-ion distribution function in critical gradient models. The addition of electron cyclotron heating changes the types of AEs present in the experiment, comparatively increasing the measured fast-ion density and radial gradient. Our studies provide the basis for understanding how to avoid AE transport that can undesirably redistribute current and cause fast-ion losses, and the measurements are being used to validate AE-induced transport models that use the critical gradient paradigm, giving greater confidence when applied to ITER.« less

  11. Geometric Restraint Drives On- and Off-pathway Catalysis by the Escherichia coli Menaquinol:Fumarate Reductase*

    PubMed Central

    Tomasiak, Thomas M.; Archuleta, Tara L.; Andréll, Juni; Luna-Chávez, César; Davis, Tyler A.; Sarwar, Maruf; Ham, Amy J.; McDonald, W. Hayes; Yankovskaya, Victoria; Stern, Harry A.; Johnston, Jeffrey N.; Maklashina, Elena; Cecchini, Gary; Iverson, Tina M.

    2011-01-01

    Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of the C2–C3 double bond of activated fumarate parallel to the C(4a)–N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR. PMID:21098488

  12. Structural influence in the interaction of cysteine with five coordinated copper complexes: Theoretical and experimental studies

    NASA Astrophysics Data System (ADS)

    Huerta-Aguilar, Carlos Alberto; Thangarasu, Pandiyan; Mora, Jesús Gracia

    2018-04-01

    Copper complexes of N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,2-diaminoethane (L1) and N,N,N‧,N‧-tetrakis(pyridyl-2-ylmethyl)-1,3-diaminopropane (L2) prepared were characterized completely by different analytical methods. The X-structure of the complexes shows that Cu(II) presents in trigonal bi-pyramidal (TBP) geometry, consisting with the electronic spectra where two visible bands corresponding to five coordinated structure were observed. Thus TD-DFT was used to analyze the orbital contribution to the electronic transitions for the visible bands. Furthermore, the interaction of cysteine with the complexes was spectrally studied, and the results were explained through DFT analysis, observing that the geometrical parameters and oxidation state of metal ions play a vital role in the binding of cysteine with copper ion. It appears that the TBP structure is being changed into octahedral geometry during the addition of cysteine to the complexes as two bands (from complex) is turned to a broad band in visible region, signifying the occupation of cysteine molecule at sixth position of octahedral geometry. In the molecular orbital analysis, the existence of a strong overlapping of HOMOs (from cysteine) with LUMOs of Cu ion was observed. The total energy of the systems calculated by DFT shows that cysteine binds favorably with copper (I) than that with Cu(II).

  13. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    NASA Astrophysics Data System (ADS)

    Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.

    2009-04-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  14. Origins of contrasting copper coordination geometries in crystalline copper sulfate pentahydrate.

    PubMed

    Ruggiero, Michael T; Erba, Alessandro; Orlando, Roberto; Korter, Timothy M

    2015-12-14

    Metal-aqua ion ([M(H2O)n](X+)) formation is a fundamental step in mechanisms that are central to enzymatic and industrial catalysis. Past investigations of such ions have yielded a wealth of information regarding their properties, however questions still exist involving the exact structures of these complexes. A prominent example of this is hexaaqua copper(II) ([Cu(H2O)6](2+)), with the solution versus gas-phase configurations under debate. The differences are often attributed to the intermolecular interactions between the bulk solvent and the aquated complex, resulting in structures stabilized by extended hydrogen-bonding networks. Yet solution phase systems are difficult to study due to the lack of atomic-level positional details. Crystalline solids are ideal models for comparative study, as they contain fixed structures that can be fully characterized using diffraction techniques. Here, crystalline copper sulfate pentahydrate (CuSO4·5H2O), which contains two unique copper-water geometries, was studied in order to elucidate the origin of these contrasting hydrated metal envrionments. A combination of solid-state density functional theory and low-temperature X-ray diffraction was used to probe the electronic origins of this phenomenon. This was accomplished through implementation of crystal orbital overlap population and crystal orbital Hamiltonian population analyses into a developmental version of the CRYSTAL14 software. These new computational methods help highlight the delicate interplay between electronic structure and metal-water geometries.

  15. Geometric Restraint Drives On- and Off-pathway Catalysis by the Escherichia coli Menaquinol:Fumarate Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasiak, Thomas M.; Archuleta, Tara L.; Andréll, Juni

    2012-01-05

    Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of themore » C2-C3 double bond of activated fumarate parallel to the C(4a)-N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR.« less

  16. Computational analysis of molecular properties and spectral characteristics of cyano-containing liquid crystals: role of alkyl chains.

    PubMed

    Praveen, P Lakshmi; Ojha, Durga P

    2011-05-01

    The electronic transitions in the uv-visible range of 4'-n-alkyl-4-cyanobiphenyl (nCB) with propyl, pentyl, and heptyl groups, which are of commercial and application interests, have been studied. The uv-visible and circular dichroism spectra of nCB (n = 3,5,7) molecules have been simulated using the time dependent density functional theory Becke3-Lee-Yang-Parr hybrid functional-6-31 + G (d) method. Mulliken atomic charges for each molecule have been compared with Loewdin atomic charges to analyze the molecular charge distribution and phase stability. The highest occupied molecular orbital and lowest unoccupied molecular orbital energies corresponding to the electronic transitions in the uv-visible range have been reported. Excited states have been calculated via the configuration interaction single level with a semiempirical Hamiltonian (intermediate neglect of differential overlap method, as parametrized by Zerner and co-workers). Further, two types of calculations have been performed for model systems containing single and double molecules of nCB. Furthermore, the dimer complexes during the different modes of molecular interactions have also been studied. The interaction energies of dimer complexes have been taken into consideration in order to investigate the most energetically stable configuration. These studies are helpful for understanding the role and flexibility of end chains, in particular, phase behavior and stability.

  17. Interference of Overlapping Insect Vibratory Communication Signals: An Eushistus heros Model

    PubMed Central

    Čokl, Andrej; Laumann, Raul Alberto; Žunič Kosi, Alenka; Blassioli-Moraes, Maria Carolina; Virant-Doberlet, Meta; Borges, Miguel

    2015-01-01

    Plants limit the range of insect substrate-borne vibratory communication by their architecture and mechanical properties that change transmitted signal time, amplitude and frequency characteristics. Stinkbugs gain higher signal-to-noise ratio and increase communication distance by emitting narrowband low frequency vibratory signals that are tuned with transmission properties of plants. The objective of the present study was to investigate hitherto overlooked consequences of duetting with mutually overlapped narrowband vibratory signals. The overlapped vibrations of the model stinkbug species Eushistus heros, produced naturally or induced artificially on different plants, have been analysed. They represent female and male strategies to preserve information within a complex masked signal. The brown stinkbugs E. heros communicate with species and gender specific vibratory signals that constitute characteristic duets in the calling, courtship and rivalry phases of mating behaviour. The calling female pulse overlaps the male vibratory response when the latency of the latter is shorter than the duration of the female triggering signal or when the male response does not inhibit the following female pulse. Overlapping of signals induces interference that changes their amplitude pattern to a sequence of regularly repeated pulses in which their duration and the difference between frequencies of overlapped vibrations are related inversely. Interference does not occur in overlapped narrow band female calling pulses and broadband male courtship pulse trains. In a duet with overlapped signals females and males change time parameters and increase the frequency difference between signals by changing the frequency level and frequency modulation pattern of their calls. PMID:26098637

  18. Thinking Outside of the Blue Marble: Novel Ocean Applications Using the VIIRS Sensor

    NASA Technical Reports Server (NTRS)

    Vandermeulen, Ryan A.; Arnone, Robert

    2016-01-01

    While planning for future space-borne sensors will increase the quality, quantity, and duration of ocean observations in the years to come, efforts to extend the limits of sensors currently in orbit can help shed light on future scientific gains as well as associated uncertainties. Here, we present several applications that are unique to the polar orbiting Visual Infrared Imaging Radiometer Suite (VIIRS), each of which challenge the threshold capabilities of the sensor and provide lessons for future missions. For instance, while moderate resolution polar orbiters typically have a one day revisit time, we are able to obtain multiple looks of the same area by focusing on the extreme zenith angles where orbital views overlap, and pair these observations with those from other sensors to create pseudo-geostationary data sets. Or, by exploiting high spatial resolution (imaging) channels and analyzing patterns of synoptic covariance across the visible spectrum, we can obtain higher spatial resolution bio-optical products. Alternatively, non-traditional products can illuminate important biological interactions in the ocean, such as the use of the Day-Night-Band to provide some quantification of phototactic behavior of marine life along light polluted beaches, as well as track the location of marine fishing vessel fleets along ocean fronts. In this talk, we explore ways to take full advantage of the capabilities of existing sensors in order to maximize insights for future missions.

  19. Optical signatures of spin-orbit exciton in bandwidth-controlled S r2Ir O4 epitaxial films via high-concentration Ca and Ba doping

    NASA Astrophysics Data System (ADS)

    Souri, M.; Kim, B. H.; Gruenewald, J. H.; Connell, J. G.; Thompson, J.; Nichols, J.; Terzic, J.; Min, B. I.; Cao, G.; Brill, J. W.; Seo, A.

    2017-06-01

    We have investigated the electronic and optical properties of (Sr1-xC ax ) 2Ir O4 (x = 0 -0.375 ) and (Sr1-yB ay ) 2Ir O4 (y = 0 -0.375 ) epitaxial thin films, in which the bandwidth is systematically tuned via chemical substitutions of Sr ions by Ca and Ba. Transport measurements indicate that the thin-film series exhibits insulating behavior, similar to the Jeff=1 /2 spin-orbit Mott insulator S r2Ir O4 . As the average A-site ionic radius increases from (Sr1-xC ax ) 2Ir O4 to (Sr1-yB ay ) 2Ir O4 , optical conductivity spectra in the near-infrared region shift to lower energies, which cannot be explained by the simple picture of well-separated Jeff=1 /2 and Jeff=3 /2 bands. We suggest that the two-peak-like optical conductivity spectra of the layered iridates originates from the overlap between the optically forbidden spin-orbit exciton and the intersite optical transitions within the Jeff=1 /2 band. Our experimental results are consistent with this interpretation as implemented by a multiorbital Hubbard model calculation: namely, incorporating a strong Fano-like coupling between the spin-orbit exciton and intersite d -d transitions within the Jeff=1 /2 band.

  20. Cation-Dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-Based Microporous Metal–Organic Frameworks

    DOE PAGES

    Park, Sarah S.; Hontz, Eric R.; Sun, Lei; ...

    2015-01-26

    Isostructural metal-organic frameworks (MOFs) M 2(TTFTB) (M = Mn, Co, Zn, and Cd; H4TTFTB = tetrathiafulvalene tetrabenzoate) exhibit a striking correlation between their single-crystal conductivities and the shortest S···S interaction defined by neighboring TTF cores, which inversely correlates with the ionic radius of the metal ions. The larger cations cause a pinching of the S···S contact, which is responsible for better orbital overlap between p z orbitals on neighboring S and C atoms. Density functional theory calculations show that these orbitals are critically involved in the valence band of these materials, such that modulation of the S···S distance has anmore » important effect on band dispersion and, implicitly, on the conductivity. The Cd analogue, with the largest cation and shortest S···S contact, shows the largest electrical conductivity, σ = 2.86 (±0.53) × 10 -4 S/cm, which is also among the highest in microporous MOFs. These results describe the first demonstration of tunable intrinsic electrical conductivity in this class of materials and serve as a blueprint for controlling charge transport in MOFs with π-stacked motifs.« less

  1. Transforming Matter: A History of Chemistry from Alchemy to the Buckyball by Trevor H. Levere

    NASA Astrophysics Data System (ADS)

    Truman Schwartz, A.

    2001-08-01

    By and large, the chemistry is presented in a logical and comprehensible form. People and ideas are emphasized. However, because of Transforming Matter's brevity and its intended audience, there are inevitable oversimplifications and sins of omission. There were also a few sins of commission in the uncorrected proof that I read. On page 159 there is an implication that equilibrium does not exist in "irreversible" processes such as the precipitation of silver chloride. The author rushes through electron orbitals in one paragraph (page 178) in which he mistakenly refers to something he calls "Planck's equation" and appears to identify p orbitals with n = 2. On the next page we are told that "overlapping p orbitals produced a pi bond." True, but they can also produce a sigma bond. And on page 198 we learn that "a single Freon molecule can cause the decomposition of millions of ozone molecules." The most frequently cited estimate is 100,000 ozone molecules decomposed per Freon molecule. This may be the nit picking of a physical chemist, but it does reflect some of the hazards of trying to achieve an admirable goal--introducing readers to the fascinating history of our fascinating science.

  2. Exact Analytic Solution for a Ballistic Orbiting Wind

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis P.; Hausner, Harry

    2017-07-01

    Much theoretical and observational work has been done on stellar winds within binary systems. We present a new solution for a ballistic wind launched from a source in a circular orbit. The solution is that of a single wind—no second wind is included in the system and the shocks that arise are those due to the orbiting wind interacting with itself. Our method emphasizes the curved streamlines in the corotating frame, where the flow is steady-state, allowing us to obtain an exact solution for the mass density at all pre-shock locations. Assuming an initially isotropic wind, fluid elements launched from the interior hemisphere of the wind will be the first to cross other streamlines, resulting in a spiral structure bounded by two shock surfaces. Streamlines from the outer wind hemisphere later intersect these shocks as well. An analytic solution is obtained for the geometry of the two shock surfaces. Although the inner and outer shock surfaces asymptotically trace Archimedean spirals, our tail solution suggests many crossings where the shocks overlap, beyond which the analytic solution cannot be continued. Our solution can be readily extended to an initially anisotropic wind.

  3. Interseismic Coupling, Co- and Post-seismic Slip: a Stochastic View on the Northern Chilean Subduction Zone

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Duputel, Z.; Simons, M.; Jiang, J.; Riel, B. V.; Moore, A. W.; Owen, S. E.

    2017-12-01

    Mapping subsurface fault slip during the different phases of the seismic cycle provides a probe of the mechanical properties and the state of stress along these faults. We focus on the northern Chile megathrust where first order estimates of interseismic fault locking suggests little to no overlap between regions slipping seismically versus those that are dominantly aseismic. However, published distributions of slip, be they during seismic or aseismic phases, rely on unphysical regularization of the inverse problem, thereby cluttering attempts to quantify the degree of overlap between seismic and aseismic slip. Considering all the implications of aseismic slip on our understanding of the nucleation, propagation and arrest of seismic ruptures, it is of utmost importance to quantify our confidence in the current description of fault coupling. Here, we take advantage of 20 years of InSAR observations and more than a decade of GPS measurements to derive probabilistic maps of inter-seismic coupling, as well as co-seismic and post-seismic slip along the northern Chile subduction megathrust. A wide InSAR velocity map is derived using a novel multi-pixel time series analysis method accounting for orbital errors, atmospheric noise and ground deformation. We use AlTar, a massively parallel Monte Carlo Markov Chain algorithm exploiting the acceleration capabilities of Graphic Processing Units, to derive the probability density functions (PDF) of slip. In northern Chile, we find high probabilities for a complete release of the elastic strain accumulated since the 1877 earthquake by the 2014, Iquique earthquake and for the presence of a large, independent, locked asperity left untapped by recent events, north of the Mejillones peninsula. We evaluate the probability of overlap between the co-, inter- and post-seismic slip and consider the potential occurrence of slow, aseismic slip events along this portion of the subduction zone.

  4. Interfacial charge-transfer transitions in a TiO2-benzenedithiol complex with Ti-S-C linkages.

    PubMed

    Fujisawa, Jun-ichi; Muroga, Ryuki; Hanaya, Minoru

    2015-11-28

    Interfacial charge-transfer (ICT) transitions between organic materials and inorganic semiconductors are a new mechanism for light absorption at organic-semiconductor interfaces. ICT transitions cause one-step interfacial charge separation without loss of energy. This feature is potentially useful to realize efficient organic-inorganic hybrid solar cells. ICT transitions have been examined by employing titanium dioxide (TiO2) nanoparticles chemisorbed with π-conjugated molecules via Ti-O-C linkages. Here, we report ICT transitions in a TiO2 and 1,2-benzenedithiol (BDT) complex with Ti-S-C linkages. BDT adsorbs on TiO2 by the bridging bidentate coordination of the sulfur atoms to surface titanium atoms. The TiO2-BDT complex shows ICT transitions from the BDT moiety to the conduction band of TiO2 in the visible region. The ICT transitions occur by orbital overlaps between the d orbitals of the surface titanium atoms and the π orbitals of the benzene ring. Our density-functional-theory (DFT) analysis reveals that the 3p valence orbitals of the sulfur bridging atoms contribute to more than 50% of the highest occupied molecular orbital (HOMO) and the 3d-3p(sulfur)-π interaction via the Ti-S-C linkage enhances the electronic mixing between the titanium atoms and the benzene moiety as compared to the 3d-2p(oxygen)-πvia the Ti-O-C linkage. This result indicates the important role of the heavier-atom linkers for strong organic-inorganic electronic couplings.

  5. Sentinel-1 TOPS interferometry for along-track displacement measurement

    NASA Astrophysics Data System (ADS)

    Jiang, H. J.; Pei, Y. Y.; Li, J.

    2017-02-01

    The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.

  6. Full particle orbit effects in regular and stochastic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.« less

  7. Full particle orbit effects in regular and stochastic magnetic fields

    DOE PAGES

    Ogawa, Shun; Cambon, Benjamin P.; Leoncini, Xavier; ...

    2016-07-18

    Here we present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, themore » particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. Finally, we show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.« less

  8. Full particle orbit effects in regular and stochastic magnetic fields

    NASA Astrophysics Data System (ADS)

    Ogawa, Shun; Cambon, Benjamin; Leoncini, Xavier; Vittot, Michel; del Castillo-Negrete, Diego; Dif-Pradalier, Guilhem; Garbet, Xavier

    2016-07-01

    We present a numerical study of charged particle motion in a time-independent magnetic field in cylindrical geometry. The magnetic field model consists of an unperturbed reversed-shear (non-monotonic q-profile) helical part and a perturbation consisting of a superposition of modes. Contrary to most of the previous studies, the particle trajectories are computed by directly solving the full Lorentz force equations of motion in a six-dimensional phase space using a sixth-order, implicit, symplectic Gauss-Legendre method. The level of stochasticity in the particle orbits is diagnosed using averaged, effective Poincare sections. It is shown that when only one mode is present, the particle orbits can be stochastic even though the magnetic field line orbits are not stochastic (i.e., fully integrable). The lack of integrability of the particle orbits in this case is related to separatrix crossing and the breakdown of the global conservation of the magnetic moment. Some perturbation consisting of two modes creates resonance overlapping, leading to Hamiltonian chaos in magnetic field lines. Then, the particle orbits exhibit a nontrivial dynamics depending on their energy and pitch angle. It is shown that the regions where the particle motion is stochastic decrease as the energy increases. The non-monotonicity of the q-profile implies the existence of magnetic ITBs (internal transport barriers) which correspond to shearless flux surfaces located in the vicinity of the q-profile minimum. It is shown that depending on the energy, these magnetic ITBs might or might not confine particles. That is, magnetic ITBs act as an energy-dependent particle confinement filter. Magnetic field lines in reversed-shear configurations exhibit topological bifurcations (from homoclinic to heteroclinic) due to separatrix reconnection. We show that a similar but more complex scenario appears in the case of particle orbits that depend in a non-trivial way on the energy and pitch angle of the particles.

  9. Finite Element Analysis of the Implantation Process of Overlapping Stents

    PubMed Central

    Xu, Jiang; Yang, Jie; Sohrabi, Salman; Zhou, Yihua; Liu, Yaling

    2017-01-01

    Overlapping stents are widely used in vascular stent surgeries. However, the rate of stent fractures (SF) and in-stent restenosis (ISR) after using overlapping stents is higher than that of single stent implantations. Published studies investigating the nature of overlapping stents rely primarily on medical images, which can only reveal the effect of the surgery without providing insights into how stent overlap influences the implantation process. In this paper, a finite element analysis of the overlapping stent implantation process was performed to study the interaction between overlapping stents. Four different cases, based on three typical stent overlap modes and two classical balloons, were investigated. The results showed that overlapping contact patterns among struts were edge-to-edge, edge-to-surface, and noncontact. These were mainly induced by the nonuniform deformation of the stent in the radial direction and stent tubular structures. Meanwhile, the results also revealed that the contact pressure was concentrated in the edge of overlapping struts. During the stent overlap process, the contact pattern was primarily edge-to-edge contact at the beginning and edge-to-surface contact as the contact pressure increased. The interactions between overlapping stents suggest that the failure of overlapping stents frequently occurs along stent edges, which agrees with the previous experimental research regarding the safety of overlapping stents. This paper also provides a fundamental understanding of the mechanical properties of overlapping stents. PMID:28690712

  10. Profiling Local Optima in K-Means Clustering: Developing a Diagnostic Technique

    ERIC Educational Resources Information Center

    Steinley, Douglas

    2006-01-01

    Using the cluster generation procedure proposed by D. Steinley and R. Henson (2005), the author investigated the performance of K-means clustering under the following scenarios: (a) different probabilities of cluster overlap; (b) different types of cluster overlap; (c) varying samples sizes, clusters, and dimensions; (d) different multivariate…

  11. Lizard assemblage from a sand dune habitat from southeastern Brazil: a niche overlap analysis.

    PubMed

    Winck, Gisele R; Hatano, Fabio; Vrcibradic, Davor; VAN Sluys, Monique; Rocha, Carlos F D

    2016-01-01

    Communities are structured by interactions of historical and ecological factors, which influence the use of different resources in time and space. We acquired data on time of activity, microhabitat use and diet of a lizard assemblage from a sand dune habitat in a coastal area, southeastern Brazil (Restinga de Jurubatiba). We analyzed the data of niche overlap among species in these three axes (temporal, spatial and trophic) using null models. We found a significant overlap within the trophic niche, whereas the overlap for the other axes did not differ from the expected. Based on this result, we discuss the factors acting on the structure of the local lizard community.

  12. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer.

    PubMed

    Zhong, Rong-Lin; Xu, Hong-Liang; Li, Zhi-Ru

    2016-08-07

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polar 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.

  13. The polar 2e/12c bond in phenalenyl-azaphenalenyl hetero-dimers: Stronger stacking interaction and fascinating interlayer charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Rong-Lin; Li, Zhi-Ru, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn; Xu, Hong-Liang, E-mail: hlxu@nenu.edu.cn, E-mail: lzr@jlu.edu.cn

    An increasing number of chemists have focused on the two-electron/multicenter bond (2e/mc) that was first introduced to interpret the bonding mechanism of radical dimers. Herein, we report the polar two-electron/twelve center (2e/12c) bonding character in a series of phenalenyl-azaphenalenyl radical hetero-dimers. Interestingly, the bonding energy of weaker polar hetero-dimer (P-TAP) is dominated by the overlap of the two different singly occupied molecular orbital of radicals, while that of stronger polar hetero-dimer (P-HAP) is dominated by the electrostatic attraction. Results show that the difference between the electronegativity of the monomers plays a prominent role in the essential attribution of the polarmore » 2e/12c bond. Correspondingly, a stronger stacking interaction in the hetero-dimer could be effectively achieved by increasing the difference of nitrogen atoms number between the monomers. It is worthy of note that an interesting interlayer charge transfer character is induced in the polar hetero-dimers, which is dependent on the difference between the electronegativity of the monomers. It is our expectation that the new knowledge about the bonding nature of radical hetero-dimers might provide important information for designing radical based functional materials with various applications.« less

  14. Error Analysis for High Resolution Topography with Bi-Static Single-Pass SAR Interferometry

    NASA Technical Reports Server (NTRS)

    Muellerschoen, Ronald J.; Chen, Curtis W.; Hensley, Scott; Rodriguez, Ernesto

    2006-01-01

    We present a flow down error analysis from the radar system to topographic height errors for bi-static single pass SAR interferometry for a satellite tandem pair. Because of orbital dynamics the baseline length and baseline orientation evolve spatially and temporally, the height accuracy of the system is modeled as a function of the spacecraft position and ground location. Vector sensitivity equations of height and the planar error components due to metrology, media effects, and radar system errors are derived and evaluated globally for a baseline mission. Included in the model are terrain effects that contribute to layover and shadow and slope effects on height errors. The analysis also accounts for nonoverlapping spectra and the non-overlapping bandwidth due to differences between the two platforms' viewing geometries. The model is applied to a 514 km altitude 97.4 degree inclination tandem satellite mission with a 300 m baseline separation and X-band SAR. Results from our model indicate that global DTED level 3 can be achieved.

  15. Preliminary JIRAM results from Juno polar observations: 3. Evidence of diffuse methane presence in the Jupiter auroral regions

    NASA Astrophysics Data System (ADS)

    Moriconi, M. L.; Adriani, A.; Dinelli, B. M.; Fabiano, F.; Altieri, F.; Tosi, F.; Filacchione, G.; Migliorini, A.; Gérard, J. C.; Mura, A.; Grassi, D.; Sindoni, G.; Piccioni, G.; Noschese, R.; Cicchetti, A.; Bolton, S. J.; Connerney, J. E. P.; Atreya, S. K.; Bagenal, F.; Gladstone, G. R.; Hansen, C.; Kurth, W. S.; Levin, S. M.; Mauk, B. H.; McComas, D. J.; Turrini, D.; Stefani, S.; Olivieri, A.; Amoroso, M.

    2017-05-01

    Throughout the first orbit of the NASA Juno mission around Jupiter, the Jupiter InfraRed Auroral Mapper (JIRAM) targeted the northern and southern polar regions several times. The analyses of the acquired images and spectra confirmed a significant presence of methane (CH4) near both poles through its 3.3 μm emission overlapping the H3+ auroral feature at 3.31 μm. Neither acetylene (C2H2) nor ethane (C2H6) have been observed so far. The analysis method, developed for the retrieval of H3+ temperature and abundances and applied to the JIRAM-measured spectra, has enabled an estimate of the effective temperature for methane peak emission and the distribution of its spectral contribution in the polar regions. The enhanced methane inside the auroral oval regions in the two hemispheres at different longitude suggests an excitation mechanism driven by energized particle precipitation from the magnetosphere.

  16. Linear Dichroism and Photoluminescence Microscopy Imaging of Grain Boundaries in Crystalline Metal-Free Phthalocyanine Thin Films

    NASA Astrophysics Data System (ADS)

    Pan, Zhenwen; Lamarche, Cody; Cour, Ishviene; Rawat, Naveen; Manning, Lane; Headrick, Randall; Furis, Madalina; Physics Dept.; Material Science Program, University of Vermont, Burlington, VT 05405 Team

    2011-03-01

    We employed a combination of linear dichroism and photoluminescence microscopy with spatial resolution of 5 μ m to study the excitonic properties of solution-processed metal-free phthalocyanine (H2Pc) crystalline thin films with millimeter-sized grains. We observe a highly-localized, sharp, monomer-like emission at the high angle grain boundaries, in contrast to samples with more uniform grain orientation where no such feature has been observed. The energy difference between the grain boundary luminescence and the HOMO-LUMO singlet exciton recombination of the crystalline H2Pc is measured to be 160meV. Our systematic survey of grain boundaries indicates this localized state is never present at low angle boundaries where the π -orbital overlap between adjacent grains is significant. It supports recent results which associated a decrease in carrier mobility with the presence of large angle boundaries in similar crystalline pentacene films. This project is supported by DMR- 0722451; DMR-0348354; DMR- 0821268.

  17. Evolution of the electronic structure of La2-xSrxCuO4 with doping determined by positron-annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Howell, R. H.; Sterne, P. A.; Fluss, M. J.; Kaiser, J. H.; Kitazawa, K.; Kojima, H.

    1994-05-01

    We have measured and calculated the electron-positron momentum distribution of La2-xSrxCuO4 samples for Sr concentrations of 0, 0.1, 0.13, and 0.2. Measured distributions were obtained at room temperature with high statistical precision, greater than 4×108 events, in the Lawrence Livermore National Laboratory positron-annihilation angular correlation spectrometer on single-crystal samples fabricated using the traveling solvent floating zone technique. Corresponding theoretical momentum-density calculations were performed using the linear muffin-tin-orbital method. The momentum distribution of all samples contained features derived from the overlap of the positron distribution with the valence electrons. In addition, discontinuities typical of a Fermi surface are seen in the doped samples. The form and position of these features are in general agreement with the Fermi surface and overall momentum distributions as predicted by band theory. However, the evolution of the Fermi surface with doping differed significantly from expectations based on single electron band theories.

  18. Restoration Of MEX SRC Images For Improved Topography: A New Image Product

    NASA Astrophysics Data System (ADS)

    Duxbury, T. C.

    2012-12-01

    Surface topography is an important constraint when investigating the evolution of solar system bodies. Topography is typically obtained from stereo photogrammetric or photometric (shape from shading) analyses of overlapping / stereo images and from laser / radar altimetry data. The ESA Mars Express Mission [1] carries a Super Resolution Channel (SRC) as part of the High Resolution Stereo Camera (HRSC) [2]. The SRC can build up overlapping / stereo coverage of Mars, Phobos and Deimos by viewing the surfaces from different orbits. The derivation of high precision topography data from the SRC raw images is degraded because the camera is out of focus. The point spread function (PSF) is multi-peaked, covering tens of pixels. After registering and co-adding hundreds of star images, an accurate SRC PSF was reconstructed and is being used to restore the SRC images to near blur free quality. The restored images offer a factor of about 3 in improved geometric accuracy as well as identifying the smallest of features to significantly improve the stereo photogrammetric accuracy in producing digital elevation models. The difference between blurred and restored images provides a new derived image product that can provide improved feature recognition to increase spatial resolution and topographic accuracy of derived elevation models. Acknowledgements: This research was funded by the NASA Mars Express Participating Scientist Program. [1] Chicarro, et al., ESA SP 1291(2009) [2] Neukum, et al., ESA SP 1291 (2009). A raw SRC image (h4235.003) of a Martian crater within Gale crater (the MSL landing site) is shown in the upper left and the restored image is shown in the lower left. A raw image (h0715.004) of Phobos is shown in the upper right and the difference between the raw and restored images, a new derived image data product, is shown in the lower right. The lower images, resulting from an image restoration process, significantly improve feature recognition for improved derived topographic accuracy.

  19. Use of psi(alpha)-ETOs in the unified treatment of electronic attraction, electric field and electric field gradient multicenter integrals of screened Coulomb potentials over Slater orbitals.

    PubMed

    Guseinov, Israfil

    2004-02-01

    In this study, using complete orthonormal sets of Psi(alpha)-ETOs (where alpha=1, 0, -1, -2, ...) introduced by the author, a large number of series expansion formulae for the multicenter electronic attraction (EA), electric field (EF) and electric field gradient (EFG) integrals of the Yukawa-like screened Coulomb potentials (SCPs) is presented through the new central and noncentral potentials and the overlap integrals with the same screening constants. The final results obtained are valid for arbitrary locations of STOs and their parameters.

  20. MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.

    2011-01-01

    MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically

  1. Overlapping buprenorphine, opioid, and benzodiazepine prescriptions among Veterans dually enrolled in VA and Medicare Part D

    PubMed Central

    Gellad, Walid F.; Zhao, Xinhua; Thorpe, Carolyn T.; Thorpe, Joshua M.; Sileanu, Florentina E.; Cashy, John P.; Mor, Maria; Hale, Jennifer A.; Radomski, Thomas; Hausmann, Leslie R. M.; Fine, Michael J.; Good, Chester B.

    2016-01-01

    Background Buprenorphine is a key tool in the management of opioid use disorder, but there are growing concerns about abuse, diversion and safety. These concerns are amplified for the Department of Veterans Affairs (VA), whose patients may receive care concurrently from multiple prescribers within and outside VA. To illustrate the extent of this challenge, we examined overlapping prescriptions for buprenorphine, opioids, and benzodiazepines among Veterans dually enrolled in VA and Medicare Part D. Methods We constructed a cohort of all Veterans dually enrolled in VA and Part D who filled an opioid prescription in 2012. We identified patients who received tablet or film buprenorphine products from either source. We calculated the proportion of buprenorphine recipients with any overlapping prescription (based on days supply) for a non-buprenorphine opioid or benzodiazepine, focusing on Veterans who received overlapping prescriptions from a different system than their buprenorphine prescription (Part D buprenorphine recipients receiving overlapping opioids or benzodiazepines from VA and vice versa). Results We identified 1,790 dually enrolled Veterans with buprenorphine prescriptions, including 760 (43%) from VA and 1,091 (61%) from Part D (61 Veterans with buprenorphine from both systems were included in each group). Among VA buprenorphine recipients, 199 (26%) received an overlapping opioid prescription and 11 (1%) received an overlapping benzodiazepine prescription from Part D. Among Part D buprenorphine recipients, 208 (19%) received an overlapping opioid prescription and 178 (16%) received an overlapping benzodiazepine prescription from VA. Among VA and Part D buprenorphine recipients with cross-system opioid overlap, 25% (49/199) and 35% (72/208), respectively, had >90 days of overlap. Conclusions Many buprenorphine recipients receive overlapping prescriptions for opioids and benzodiazepines from a different health care system than the one in which their buprenorphine was filled. These findings highlight a previously undocumented safety risk for Veterans dually enrolled in VA and Medicare. PMID:27925868

  2. Overlapping buprenorphine, opioid, and benzodiazepine prescriptions among veterans dually enrolled in Department of Veterans Affairs and Medicare Part D.

    PubMed

    Gellad, Walid F; Zhao, Xinhua; Thorpe, Carolyn T; Thorpe, Joshua M; Sileanu, Florentina E; Cashy, John P; Mor, Maria; Hale, Jennifer A; Radomski, Thomas; Hausmann, Leslie R M; Fine, Michael J; Good, Chester B

    2017-01-01

    Buprenorphine is a key tool in the management of opioid use disorder, but there are growing concerns about abuse, diversion, and safety. These concerns are amplified for the Department of Veterans Affairs (VA), whose patients may receive care concurrently from multiple prescribers within and outside VA. To illustrate the extent of this challenge, we examined overlapping prescriptions for buprenorphine, opioids, and benzodiazepines among veterans dually enrolled in VA and Medicare Part D. We constructed a cohort of all veterans dually enrolled in VA and Part D who filled an opioid prescription in 2012. We identified patients who received tablet or film buprenorphine products from either source. We calculated the proportion of buprenorphine recipients with any overlapping prescription (based on days supply) for a nonbuprenorphine opioid or benzodiazepine, focusing on veterans who received overlapping prescriptions from a different system than their buprenorphine prescription (Part D buprenorphine recipients receiving overlapping opioids or benzodiazepines from VA and vice versa). There were 1790 dually enrolled veterans with buprenorphine prescriptions, including 760 (43%) from VA and 1091 (61%) from Part D (61 veterans with buprenorphine from both systems were included in each group). Among VA buprenorphine recipients, 199 (26%) received an overlapping opioid prescription and 11 (1%) received an overlapping benzodiazepine prescription from Part D. Among Part D buprenorphine recipients, 208 (19%) received an overlapping opioid prescription and 178 (16%) received an overlapping benzodiazepine prescription from VA. Among VA and Part D buprenorphine recipients with cross-system opioid overlap, 25% (49/199) and 35% (72/208), respectively, had >90 days of overlap. Many buprenorphine recipients receive overlapping prescriptions for opioids and benzodiazepines from a different health care system than the one in which their buprenorphine was filled. These findings highlight a previously undocumented safety risk for veterans dually enrolled in VA and Medicare.

  3. QUIKVIS- CELESTIAL TARGET AVAILABILITY INFORMATION

    NASA Technical Reports Server (NTRS)

    Petruzzo, C.

    1994-01-01

    QUIKVIS computes the times during an Earth orbit when geometric requirements are satisfied for observing celestial objects. The observed objects may be fixed (stars, etc.) or moving (sun, moon, planets). QUIKVIS is useful for preflight analysis by those needing information on the availability of celestial objects to be observed. Two types of analyses are performed by QUIKVIS. One is used when specific objects are known, the other when targets are unknown and potentially useful regions of the sky must be identified. The results are useful in selecting candidate targets, examining the effects of observation requirements, and doing gross assessments of the effects of the orbit's right ascension of the ascending node (RAAN). The results are not appropriate when high accuracy is needed (e.g. for scheduling actual mission operations). The observation duration is calculated as a function of date, orbit node, and geometric requirements. The orbit right ascension of the ascending node can be varied to account for the effects of an uncertain launch time of day. The orbit semimajor axis and inclination are constant throughout the run. A circular orbit is assumed, but a simple program modification will allow eccentric orbits. The geometric requirements that can be processed are: 1) minimum separation angle between the line of sight to the object and the earth's horizon; 2) minimum separation angle between the line of sight to the object and the spacecraft velocity vector; 3) maximum separation angle between the line of sight to the object and the zenith direction; and 4) presence of the spacecraft in the earth's shadow. The user must supply a date or date range, the spacecraft orbit and inclination, up to 700 observation targets, and any geometric requirements to be met. The primary output is the time per orbit that conditions are satisfied, with options for sky survey maps, time since a user-specified orbit event, and bar graphs illustrating overlapping requirements. The output is printed in visually convenient lineprinter form but is also available on data files for use by postprocessors such as external XY plotters. QUIKVIS is written in FORTRAN 77 for batch or interactive execution and has been implemented on a DEC VAX 11/780 operating under VMS with a central memory requirement of approximately 500K of 8 bit bytes. QUIKVIS was developed in 1986 and revised in 1987.

  4. Solving Partial Differential Equations on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henshaw, W D

    2008-09-22

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solutionmore » of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.« less

  5. Real-world injury patterns associated with Hybrid III sternal deflections in frontal crash tests.

    PubMed

    Brumbelow, Matthew L; Farmer, Charles M

    2013-01-01

    This study investigated the relationship between the peak sternal deflection measurements recorded by the Hybrid III 50th percentile male anthropometric test device (ATD) in frontal crash tests and injury and fatality outcomes for drivers in field crashes. ATD sternal deflection data were obtained from the Insurance Institute for Highway Safety's 64 km/h, 40 percent overlap crashworthiness evaluation tests for vehicles with seat belt crash tensioners, load limiters, and good-rated structure. The National Automotive Sampling System Crashworthiness Data System (NASS-CDS) was queried for frontal crashes of these vehicles in which the driver was restrained by a seat belt and air bag. Injury probability curves were calculated by frontal crash type using the injuries coded in NASS-CDS and peak ATD sternal deflection data. Fatality Analysis Reporting System (FARS) front-to-front crashes with exactly one driver death were also studied to determine whether the difference in measured sternal deflections for the 2 vehicles was related to the odds of fatality. For center impacts, moderate overlaps, and large overlaps in NASS-CDS, the probability of the driver sustaining an Abbreviated Injury Scale (AIS) score ≥ 3 thoracic injury, or any nonextremity AIS ≥ 3 injury, increased with increasing ATD sternal deflection measured in crash tests. For small overlaps, however, these probabilities decreased with increasing deflection. For FARS crashes, the fatally injured driver more often was in the vehicle with the lower measured deflection in crash tests (55 vs. 45%). After controlling for other factors, a 5-mm difference in measured sternal deflections between the 2 vehicles was associated with a fatality odds ratio of 0.762 for the driver in the vehicle with the greater deflection (95% confidence interval = 0.373, 1.449). Restraint systems that reduce peak Hybrid III sternal deflection in a moderate overlap crash test are beneficial in real-world crashes with similar or greater overlap but likely have a disbenefit in crashes with small overlap. This may occur because belt-force limiters employed to control deflections allow excursion that could produce contact with interior vehicle components in small overlaps, given the more oblique occupant motion and potential inboard movement of the air bag. Although based on a limited number of cases, this interpretation is supported by differences in skeletal fracture locations among drivers in crashes with different overlaps. Current restraint systems could be improved by designs that reduce sternal deflection in moderate and large overlap crashes without increasing occupant excursion in small overlap crashes.

  6. Dependence of Excited State Potential Energy Surfaces on the Spatial Overlap of the Kohn-Sham Orbitals and the Amount of Nonlocal Hartree-Fock Exchange in Time-Dependent Density Functional Theory.

    PubMed

    Plötner, Jürgen; Tozer, David J; Dreuw, Andreas

    2010-08-10

    Time-dependent density functional theory (TDDFT) with standard GGA or hybrid exchange-correlation functionals is not capable of describing the potential energy surface of the S1 state of Pigment Yellow 101 correctly; an additional local minimum is observed at a twisted geometry with substantial charge transfer (CT) character. To investigate the influence of nonlocal exact orbital (Hartree-Fock) exchange on the shape of the potential energy surface of the S1 state in detail, it has been computed along the twisting coordinate employing the standard BP86, B3LYP, and BHLYP xc-functionals as well as the long-range separated (LRS) exchange-correlation (xc)-functionals LC-BOP, ωB97X, ωPBE, and CAM-B3LYP and compared to RI-CC2 benchmark results. Additionally, a recently suggested Λ-parameter has been employed that measures the amount of CT in an excited state by calculating the spatial overlap of the occupied and virtual molecular orbitals involved in the transition. Here, the error in the calculated S1 potential energy curves at BP86, B3LYP, and BHLYP can be clearly related to the Λ-parameter, i.e., to the extent of charge transfer. Additionally, it is demonstrated that the CT problem is largely alleviated when the BHLYP xc-functional is employed, although it still exhibits a weak tendency to underestimate the energy of CT states. The situation improves drastically when LRS-functionals are employed within TDDFT excited state calculations. All tested LRS-functionals give qualitatively the correct potential energy curves of the energetically lowest excited states of P. Y. 101 along the twisting coordinate. While LC-BOP and ωB97X overcorrect the CT problem and now tend to give too large excitation energies compared to other non-CT states, ωPBE and CAM-B3LYP are in excellent agreement with the RI-CC2 results, with respect to both the correct shape of the potential energy curve as well as the absolute values of the calculated excitation energies.

  7. Giant cell angiofibroma or localized periorbital lymphedema?

    PubMed

    Lynch, Michael C; Chung, Catherine G; Specht, Charles S; Wilkinson, Michael; Clarke, Loren E

    2013-12-01

    Giant cell angiofibroma represents a rare soft tissue neoplasm with a predilection for the orbit. We recently encountered a mass removed from the lower eyelid of a 56-year-old female that histopathologically resembled giant cell angiofibroma. The process consisted of haphazardly arranged CD34-positive spindled and multinucleated cells within an edematous, densely vascular stroma. However, the patient had recently undergone laryngectomy and radiotherapy for a laryngeal squamous cell carcinoma. A similar mass had arisen on the contralateral eyelid, and both had developed several months post-therapy. Lymphedema of the orbit can present as tumor-like nodules and in some cases may share histopathologic features purported to be characteristic of giant cell angiofibroma. A relationship between giant cell angiofibroma and lymphedema has not been established, but our case suggests there may be one. The potential overlap of these two conditions should be recognized, as should other entities that may enter the differential diagnosis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Evolution of band topology by competing band overlap and spin-orbit coupling: Twin Dirac cones in Ba3SnO as a prototype

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze; Ogata, Masao

    2017-11-01

    We theoretically demonstrate how competition between band inversion and spin-orbit coupling (SOC) results in nontrivial evolution of band topology, taking antiperovskite Ba3SnO as a prototype material. A key observation is that when the band inversion dominates over SOC, there appear "twin" Dirac cones in the band structure. Due to the twin Dirac cones, the band shows highly peculiar structure in which the upper cone of one of the twin continuously transforms to the lower cone of the other. Interestingly, the relative size of the band inversion and SOC is controlled in this series of antiperovskite A3E O by substitution of A (Ca, Sr, Ba) and/or E (Sn, Pb) atoms. Analysis of an effective model shows that the emergence of twin Dirac cones is general, which makes our argument a promising starting point for finding a singular band structure induced by the competing band inversion and SOC.

  9. A Combined Density Functional Theory and Spectrophotometry Study of the Bonding Interactions of [NpO 2·M] 4+ Cation–Cation Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freiderich, John W.; Burn, Adam G.; Martin, Leigh R.

    The equilibrium constants for [NpO 2M∙] 4+ (M = Al 3+, In 3+, Sc 3+, Fe 3+) in μ = 10 M nitric acid and [NpO 2∙Ga] 4+ in μ = 10 M hydrochloric acid media have been determined. The trend in the interaction strength follows: Fe 3+ > Sc 3+ In 3+ > Ga 3+ Al 3+. These equilibrium constants are compared to those of previously reported values for NpO 2 + complexes with Cr 3+ and Rh 3+ within the literature. Thermodynamic parameters and bonding modes are discussed, with density functional theory and natural bond orbital analysis indicatingmore » that the NpO 2 + dioxocation acts as a -donor with transition-metal cations and a sigma donor with group 13 cations. The small changes in electron-donating ability is modulated by the overlap with the coordinating metal ion's valence atomic orbitals.« less

  10. The origin of the ligand-controlled regioselectivity in Rh-catalyzed [(2 + 2) + 2] carbocyclizations: steric vs. stereoelectronic effects† †Electronic supplementary information (ESI) available: Computational details, Cartesian coordinates and vibrational frequencies of all optimized structures. See DOI: 10.1039/c5sc02307f Click here for additional data file.

    PubMed Central

    Crandell, Douglas W.; Mazumder, Shivnath

    2015-01-01

    Density functional theory calculations demonstrate that the reversal of regiochemical outcome of the addition for substituted methyl propiolates in the rhodium-catalyzed [(2 + 2) + 2] carbocyclization with PPh3 and (S)-xyl-binap as ligands is both electronically and sterically controlled. For example, the ester functionality polarizes the alkyne π* orbital to favor overlap of the methyl-substituted terminus of the alkyne with the pπ-orbital of the alkenyl fragment of the rhodacycle during alkyne insertion with PPh3 as the ligand. In contrast, the sterically demanding xyl-binap ligand cannot accommodate the analogous alkyne orientation, thereby forcing insertion to occur at the sterically preferred ester terminus, overriding the electronically preferred orientation for alkyne insertion. PMID:28757978

  11. ORIGIN OF THE CHAOTIC MOTION OF THE SATURNIAN SATELLITE ATLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, S.; Vienne, A.; Cooper, N. J.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied bymore » the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.« less

  12. Origin of the Chaotic Motion of the Saturnian Satellite Atlas

    NASA Astrophysics Data System (ADS)

    Renner, S.; Cooper, N. J.; El Moutamid, M.; Sicardy, B.; Vienne, A.; Murray, C. D.; Saillenfest, M.

    2016-05-01

    We revisit the dynamics of Atlas. Using Cassini ISS astrometric observations spanning 2004 February to 2013 August, Cooper et al. found evidence that Atlas is currently perturbed by both a 54:53 corotation eccentricity resonance (CER) and a 54:53 Lindblad eccentricity resonance (LER) with Prometheus. They demonstrated that the orbit of Atlas is chaotic, with a Lyapunov time of order 10 years, as a direct consequence of the coupled resonant interaction (CER/LER) with Prometheus. Here we investigate the interactions between the two resonances using the CoraLin analytical model, showing that the chaotic zone fills almost all the corotation sites occupied by the satellite's orbit. Four 70:67 apse-type mean motion resonances with Pandora are also overlapping, but these resonances have a much weaker effect. Frequency analysis allows us to highlight the coupling between the 54:53 resonances, and confirms that a simplified system including the perturbations due to Prometheus and Saturn's oblateness only captures the essential features of the dynamics.

  13. A Combined Density Functional Theory and Spectrophotometry Study of the Bonding Interactions of [NpO 2·M] 4+ Cation–Cation Complexes

    DOE PAGES

    Freiderich, John W.; Burn, Adam G.; Martin, Leigh R.; ...

    2017-04-14

    The equilibrium constants for [NpO 2M∙] 4+ (M = Al 3+, In 3+, Sc 3+, Fe 3+) in μ = 10 M nitric acid and [NpO 2∙Ga] 4+ in μ = 10 M hydrochloric acid media have been determined. The trend in the interaction strength follows: Fe 3+ > Sc 3+ In 3+ > Ga 3+ Al 3+. These equilibrium constants are compared to those of previously reported values for NpO 2 + complexes with Cr 3+ and Rh 3+ within the literature. Thermodynamic parameters and bonding modes are discussed, with density functional theory and natural bond orbital analysis indicatingmore » that the NpO 2 + dioxocation acts as a -donor with transition-metal cations and a sigma donor with group 13 cations. The small changes in electron-donating ability is modulated by the overlap with the coordinating metal ion's valence atomic orbitals.« less

  14. Interaction Mode and Regioselectivity in Vitamin B12-Dependent Dehalogenation of Aryl Halides by Dehalococcoides mccartyi Strain CBDB1.

    PubMed

    Zhang, Shangwei; Adrian, Lorenz; Schüürmann, Gerrit

    2018-02-20

    The bacterium Dehalococcoides, strain CBDB1, transforms aromatic halides through reductive dehalogenation. So far, however, the structures of its vitamin B 12 -containing dehalogenases are unknown, hampering clarification of the catalytic mechanism and substrate specificity as basis for targeted remediation strategies. This study employs a quantum chemical donor-acceptor approach for the Co(I)-substrate electron transfer. Computational characterization of the substrate electron affinity at carbon-halogen bonds enables discriminating aromatic halides ready for dehalogenation by strain CBDB1 (active substrates) from nondehalogenated (inactive) counterparts with 92% accuracy, covering 86 of 93 bromobenzenes, chlorobenzenes, chlorophenols, chloroanilines, polychlorinated biphenyls, and dibenzo-p-dioxins. Moreover, experimental regioselectivity is predicted with 78% accuracy by a site-specific parameter encoding the overlap potential between the Co(I) HOMO (highest occupied molecular orbital) and the lowest-energy unoccupied sigma-symmetry substrate MO (σ*), and the observed dehalogenation pathways are rationalized with a success rate of 81%. Molecular orbital analysis reveals that the most reactive unoccupied sigma-symmetry orbital of carbon-attached halogen X (σ C-X * ) mediates its reductive cleavage. The discussion includes predictions for untested substrates, thus providing opportunities for targeted experimental investigations. Overall, the presently introduced orbital interaction model supports the view that with bacterial strain CBDB1, an inner-sphere electron transfer from the supernucleophile B 12 Co(I) to the halogen substituent of the aromatic halide is likely to represent the rate-determining step of the reductive dehalogenation.

  15. Dynamic surface electronic reconstruction as symmetry-protected topological orders in topological insulator Bi2Se3

    NASA Astrophysics Data System (ADS)

    Shu, G. J.; Liou, S. C.; Karna, S. K.; Sankar, R.; Hayashi, M.; Chou, F. C.

    2018-04-01

    The layered narrow-band-gap semiconductor Bi2Se3 is composed of heavy elements with strong spin-orbital coupling, which has been identified both as a good candidate for a thermoelectric material with high thermoelectric figure of merit (Z T ) and as a topological insulator of the Z2 type with a gapless surface band in a Dirac-cone shape. The existence of a conjugated π -bond system on the surface of each Bi2Se3 quintuple layer is proposed based on an extended valence bond model with valence electrons distributed in the hybridized orbitals. Supporting experimental evidence of a two-dimensional (2D) conjugated π -bond system on each quintuple layer of Bi2Se3 is provided using electron energy-loss spectroscopy and electron density mapping through inverse Fourier transform of x-ray diffraction data. Quantum chemistry calculations support the π -bond existence between partially filled 4 pz orbitals of Se via side-to-side orbital overlap positively. The conjugated π -bond system on the surface of each quintuple Bi2Se3 layer is proposed to be similar to that found in graphite (graphene) and responsible for the unique 2D conduction mechanism. The van der Waals (vdW) attractive force between quintuple layers is interpreted to be coming from the antiferroelectrically ordered effective electric dipoles, which are constructed with π -bond trimer pairs on Se layers across the vdW gap of minimized Coulomb repulsion.

  16. The Dynamics of Objects in the Inner Edgeworth Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Jones, Daniel C.; Williams, Iwan P.; Melita, Mario D.

    2005-12-01

    Objects in 3:2 mean motion resonance with Neptune are protected from close encounters with Neptune by the resonance. Bodies in orbits with semi-major axis between 39.5 and about 42 AU are not protected by the resonance; indeed due to overlapping secular resonances, the eccentricities of orbits in this region are driven up so that a close encounter with Neptune becomes inevitable. It is thus expected that such orbits are unstable. The list of known Trans-Neptunian objects shows a deficiency in the number of objects in this gap compared to the 43 50 AU region, but the gap is not empty. We numerically integrate models for the initial population in the gap, and also all known objects over the age of the Solar System to determine what fraction can survive. We find that this fraction is significantly less than the ratio of the population in the gap to that in the main belt, suggesting that some mechanism must exist to introduce new members into the gap. By looking at the evolution of the test body orbits, we also determine the manner in which they are lost. Though all have close encounters with Neptune, in most cases this does not lead to ejection from the Solar System, but rather to a reduced perihelion distance causing close encounters with some or all of the other giant planets before being eventually lost from the system, with Saturn appearing to be the cause of the ejection of most of the objects.

  17. [A method for the analysis of overlapped peaks in the high performance liquid chromatogram based on spectrum analysis].

    PubMed

    Liu, Bao; Fan, Xiaoming; Huo, Shengnan; Zhou, Lili; Wang, Jun; Zhang, Hui; Hu, Mei; Zhu, Jianhua

    2011-12-01

    A method was established to analyse the overlapped chromatographic peaks based on the chromatographic-spectra data detected by the diode-array ultraviolet detector. In the method, the three-dimensional data were de-noised and normalized firstly; secondly the differences and clustering analysis of the spectra at different time points were calculated; then the purity of the whole chromatographic peak were analysed and the region were sought out in which the spectra of different time points were stable. The feature spectra were extracted from the spectrum-stable region as the basic foundation. The nonnegative least-square method was chosen to separate the overlapped peaks and get the flow curve which was based on the feature spectrum. The three-dimensional divided chromatographic-spectrum peak could be gained by the matrix operations of the feature spectra with the flow curve. The results displayed that this method could separate the overlapped peaks.

  18. Effects of p-(Trifluoromethoxy)benzyl and p-(Trifluoromethoxy)phenyl Molecular Architecture on the Performance of Naphthalene Tetracarboxylic Diimide-Based Air-Stable n-Type Semiconductors.

    PubMed

    Zhang, Dongwei; Zhao, Liang; Zhu, Yanan; Li, Aiyuan; He, Chao; Yu, Hongtao; He, Yaowu; Yan, Chaoyi; Goto, Osamu; Meng, Hong

    2016-07-20

    N,N'-Bis(4-trifluoromethoxyphenyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-POCF3) and N,N'-bis(4-trifluoromethoxybenzyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-BOCF3) have similar optical and electrochemical properties with a deep LUMO level of approximately 4.2 eV, but exhibit significant differences in electron mobility and molecular packing. NDI-POCF3 exhibits nondetectable charge mobility. Interestingly, NDI-BOCF3 shows air-stable electron transfer performance with enhanced mobility by increasing the deposition temperature onto the octadecyltrichlorosilane (OTS)-modified SiO2/Si substrates and achieves electron mobility as high as 0.7 cm(2) V(-1) s(-1) in air. The different mobilities of those two materials can be explained by several factors including thin-film morphology and crystallinity. In contrast to the poor thin-film morphology and crystallinity of NDI-POCF3, NDI-BOCF3 exhibits larger grain sizes and improved crystallinities due to the higher deposition temperature. In addition, the theoretical calculated transfer integrals of the intermolecular lowest unoccupied molecular orbital (LUMO) of the two materials further show that a large intermolecular orbital overlap of NDI-BOCF3 can transfer electron more efficiently than NDI-POCF3 in thin-film transistors. On the basis of fact that the theoretical calculations are consistent with the experimental results, it can be concluded that the p-(trifluoromethoxy) benzyl (BOCF3) molecular architecture on the former position of the naphthalene tetracarboxylic diimides (NDI) core provides a more effective way to enhance the intermolecular electron transfer property than the p-(trifluoromethoxy) phenyl (POCF3) group for the future design of NDI-related air-stable n-channel semiconductor.

  19. Phenol oxidation through its adduct formation with chromium complex of 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane: A theoretical study

    NASA Astrophysics Data System (ADS)

    Narayanan, Jayanthi; Guadalupe, Hernández J.; Thangarasu, Pandiyan

    2017-04-01

    Structural and electronic properties of [cis-[Cr(tmpcH)X2]n+ (n = 2 or 4; X = OH-, Cl-, Br- and H2O; tmpcH = 1,4,8,11-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane were analyzed by DFT and TD-DFT methods. The local reactivity active site of the ligand was determined by the condensed-to atom Fukui indexes (CAFI) f(r). In the study, the axial bond distance with metal ion undergoes a considerable change from shorter to longer as OH < Cl- < Br- < H2O, agreeing with the molecular orbital analysis where the dz2 energy is lowered for OH- compared to H2O at the axial position. After analyzing the geometrical data collected from literature for the complexes of Cr(II), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn (II) with tmpcH, it was found that the bond distance decreases with increasing number of d-electrons in the 3d orbital, suggesting that the over-lapping of oribital (π) from Npy with the metal d-orbital is more effective than those from Ncyclam with metal d-orbital. Therefore, the change of different oxidation states for [cis-[Cr(tmpcH)X2]n+ influences significantly the geometrical and electronic parameters. For cis-[Cr(tmpcH)Cl2]2+ the calculated bands are red shifted except for the lower energy band (595 nm) which agrees qualitatively with the experimental one; in addition, the effect of solvent on the electronic transition was analyzed. Furthermore, we collected the electronic data for several chromium complexes from the literature, and compared with our results by plotting the data against number of chromium compounds. Finally, the phenol oxidation properties of the chromium complexes were studied, and phenol forms an adduct with [Cr(tmpcH)Cl]3+ to yield [Cr(tmpcH)Cl-OPh]2+ which could produce the phenol radical, which is enhanced by the presence of -OCH3 group at para- position in the phenolic ring.

  20. Lunar Ice Cube: Searching for Lunar Volatiles with a lunar cubesat orbiter

    NASA Astrophysics Data System (ADS)

    Clark, Pamela E.; Malphrus, Ben; Brown, Kevin; Hurford, Terry; Brambora, Cliff; MacDowall, Robert; Folta, David; Tsay, Michael; Brandon, Carl; Lunar Ice Cube Team

    2016-10-01

    Lunar Ice Cube, a NASA HEOMD NextSTEP science requirements-driven deep space exploration 6U cubesat, will be deployed, with 12 others, by NASA's EM1 mission. The mission's high priority science application is understanding volatile origin, distribution, and ongoing processes in the inner solar system. JPL's Lunar Flashlight, and Arizona State University's LunaH-Map, also lunar orbiters to be deployed by EM1, will provide complementary observations. Lunar Ice Cube utilizes a versatile GSFC-developed payload: BIRCHES, Broadband InfraRed Compact, High-resolution Exploration Spectrometer, a miniaturized version of OVIRS on OSIRIS-REx. BIRCHES is a compact (1.5U, 2 kg, 20 W including cryocooler) point spectrometer with a compact cryocooled HgCdTe focal plane array for broadband (1 to 4 micron) measurements and Linear Variable Filter enabling 10 nm spectral resolution. The instrument will achieve sufficient SNR to identify water in various forms, mineral bands, and potentially other volatiles seen by LCROSS (e.g., CH4) as well. GSFC is developing compact instrument electronics easily configurable for H1RG family of focal plane arrays. The Lunar Ice Cube team is led by Morehead State University, who will provide build, integrate and test the spacecraft and provide mission operations. Onboard communication will be provided by the X-band JPL Iris Radio and dual X-band patch antennas. Ground communication will be provided by the DSN X-band network, particularly the Morehead State University 21-meter substation. Flight Dynamics support is provided by GSFC. The Busek micropropulsion system in a low energy trajectory will allow the spacecraft to achieve the science orbit less than a year. The high inclination, equatorial periapsis orbit will allow coverage of overlapping swaths once every lunar cycle at up to six different times of day (from dawn to dusk) as the mission progresses during its nominal six month science mapping period. Led by the JPL Science PI, the Lunar Ice Cube mission science team will determine composition and distribution of volatiles in lunar regolith as a function of time of day, latitude, regolith age and composition, and thus enable understanding of current dynamics of lunar volatiles.

  1. Accuracy Analysis of a Box-wing Theoretical SRP Model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoya; Hu, Xiaogong; Zhao, Qunhe; Guo, Rui

    2016-07-01

    For Beidou satellite navigation system (BDS) a high accuracy SRP model is necessary for high precise applications especially with Global BDS establishment in future. The BDS accuracy for broadcast ephemeris need be improved. So, a box-wing theoretical SRP model with fine structure and adding conical shadow factor of earth and moon were established. We verified this SRP model by the GPS Block IIF satellites. The calculation was done with the data of PRN 1, 24, 25, 27 satellites. The results show that the physical SRP model for POD and forecast for GPS IIF satellite has higher accuracy with respect to Bern empirical model. The 3D-RMS of orbit is about 20 centimeters. The POD accuracy for both models is similar but the prediction accuracy with the physical SRP model is more than doubled. We tested 1-day 3-day and 7-day orbit prediction. The longer is the prediction arc length, the more significant is the improvement. The orbit prediction accuracy with the physical SRP model for 1-day, 3-day and 7-day arc length are 0.4m, 2.0m, 10.0m respectively. But they are 0.9m, 5.5m and 30m with Bern empirical model respectively. We apply this means to the BDS and give out a SRP model for Beidou satellites. Then we test and verify the model with Beidou data of one month only for test. Initial results show the model is good but needs more data for verification and improvement. The orbit residual RMS is similar to that with our empirical force model which only estimate the force for along track, across track direction and y-bias. But the orbit overlap and SLR observation evaluation show some improvement. The remaining empirical force is reduced significantly for present Beidou constellation.

  2. The challenge of precise orbit determination for STSAT-2C using extremely sparse SLR data

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Kucharski, Daniel; Lim, Hyung-Chul; Kim, Byoungsoo

    2016-03-01

    The Science and Technology Satellite (STSAT)-2C is the first Korean satellite equipped with a laser retro-reflector array for satellite laser ranging (SLR). SLR is the only on-board tracking source for precise orbit determination (POD) of STSAT-2C. However, POD for the STSAT-2C is a challenging issue, as the laser measurements of the satellite are extremely sparse, largely due to the inaccurate two-line element (TLE)-based orbit predictions used by the SLR tracking stations. In this study, POD for the STSAT-2C using extremely sparse SLR data is successfully implemented, and new laser-based orbit predictions are obtained. The NASA/GSFC GEODYN II software and seven-day arcs are used for the SLR data processing of two years of normal points from March 2013 to May 2015. To compensate for the extremely sparse laser tracking, the number of estimation parameters are minimized, and only the atmospheric drag coefficients are estimated with various intervals. The POD results show that the weighted root mean square (RMS) post-fit residuals are less than 10 m, and the 3D day boundaries vary from 30 m to 3 km. The average four-day orbit overlaps are less than 20/330/20 m for the radial/along-track/cross-track components. The quality of the new laser-based prediction is verified by SLR observations, and the SLR residuals show better results than those of previous TLE-based predictions. This study demonstrates that POD for the STSAT-2C can be successfully achieved against extreme sparseness of SLR data, and the results can deliver more accurate predictions.

  3. Vibrational, NMR spectrum and orbital analysis of 3,3',5,5'-tetrabromobisphenol A: a combined experimental and computational study.

    PubMed

    Qiu, Shanshan; Wei, Jin; Pan, Feng; Liu, Jingping; Zhang, Aiqian

    2013-03-15

    In the present work, the experimental and theoretical studies on the structure, vibrations, NMR and HOMO-LUMO analysis of 3,3',5,5'-tetrabromobisphenol A (TBBPA) are presented. The FT-IR (400-4000 cm(-1)) and FT-Raman (100-4000 cm(-1)) spectra of TBBPA were recorded. The molecular geometry, vibrational frequencies were calculated by using density functional theory (DFT) method with the 6-31G(d) basis set. The optimized geometric properties, scaled vibrational wavenumbers, IR intensities, Raman activities show good agreement with the experimental data. The assigned vibrational modes of the IR and Raman spectra were compared with the corresponding properties of the polybrominated diphenyl ethers (PBDEs). Comparative analysis indicated that the red shift of C-Br vibration could probably be ascribed to the further electronic density equalization due to the p-π conjugation between O atom and the benzene. The natural bonding orbital (NBO) analysis demonstrated that the intermolecular hyperconjugative interactions are mainly formed by the orbital overlap between σ (O-H), σ(*) (C-C), π (C-C), π(*) (C-C) bond orbitals. Compared to the higher E((2)) value (33.65-34.82 kcal/mol) originated from LP(2)O to π(*) (C-C), the one (E((2)): 8.23-9.73 kcal/mol) from LP(3)Br and π(*) (C-C) contributes to the preferential tendency of C-Br breakage to the C-O breakage in the transformation. The calculated NMR results obtained on the 6-31G(d) level proves good agreement with the experimental data (r(2)=0.999). Analysis of isosurface of the related orbital shows that all the main excitation exhibit π-π(*) character localized on the benzene rings. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. VizieR Online Data Catalog: The Carnegie-Chicago Hubble Program. II. IC 1613 (Hatt+, 2017)

    NASA Astrophysics Data System (ADS)

    Hatt, D.; Beaton, R. L.; Freedman, W. L.; Madore, B. F.; Jang, I.-S.; Hoyt, T. J.; Lee, M. G.; Monson, A. J.; Rich, J. A.; Scowcroft, V.; Seibert, M.

    2018-04-01

    Observations of IC 1613 were obtained on 2015 June 12 using the Inamori-Magellan Areal Camera and Spectrograph (IMACS) on the 6.5m Magellan-Baade telescope at Las Campanas Observatory. We obtain a 15.46'x15.46' field of view with resolution of 0.2"/pixel and observed in the BVI filters. See section 2.1.1. We have made use of archival imaging of IC 1613 taken from the Local Cosmology from Isolated Dwarfs program (PID:GO10505, PI: Gallart; Gallart 2005, LCID). A single field was imaged over 24 orbits between 2006 August 28 and 30 approximately 5' west of the center of IC 1613 using the HST ACS/WFC instrument, which provides a 202"x202" field of view with 0.05"/pixel resolution. Each orbit was divided between two ~1200s exposures in the F475W and F814W passbands, resulting in 48 epochs per filter. See section 2.1.2. We obtained near-infrared imaging over 24 orbits between 2014 December 17 and 18 using the HST WFC3/IR instrument (PID:GO13691, PI: Freedman; Freedman W. 2014 HST Proposal). The orbits were divided between two overlapping 136"x123" WFC3/IR pointings with a native resolution of 0.135"/pixel. See section 2.1.3. In parallel with the observations described in the previous section were 24 orbits with the HST ACS/WFC instrument (PID:GO13691, PI: Freedman; Freedman 2014 W. HST Proposal). Each exposure in F606W and F814W spanned ~500s. See section 2.1.4. (2 data files).

  5. Radial sets: interactive visual analysis of large overlapping sets.

    PubMed

    Alsallakh, Bilal; Aigner, Wolfgang; Miksch, Silvia; Hauser, Helwig

    2013-12-01

    In many applications, data tables contain multi-valued attributes that often store the memberships of the table entities to multiple sets such as which languages a person masters, which skills an applicant documents, or which features a product comes with. With a growing number of entities, the resulting element-set membership matrix becomes very rich of information about how these sets overlap. Many analysis tasks targeted at set-typed data are concerned with these overlaps as salient features of such data. This paper presents Radial Sets, a novel visual technique to analyze set memberships for a large number of elements. Our technique uses frequency-based representations to enable quickly finding and analyzing different kinds of overlaps between the sets, and relating these overlaps to other attributes of the table entities. Furthermore, it enables various interactions to select elements of interest, find out if they are over-represented in specific sets or overlaps, and if they exhibit a different distribution for a specific attribute compared to the rest of the elements. These interactions allow formulating highly-expressive visual queries on the elements in terms of their set memberships and attribute values. As we demonstrate via two usage scenarios, Radial Sets enable revealing and analyzing a multitude of overlapping patterns between large sets, beyond the limits of state-of-the-art techniques.

  6. Monolithic coupling of a SU8 waveguide to a silicon photodiode

    NASA Astrophysics Data System (ADS)

    Nathan, M.; Levy, O.; Goldfarb, I.; Ruzin, A.

    2003-12-01

    We present quantitative results of light coupling from SU8 waveguides into silicon p-n photodiodes in monolithically integrated structures. Multimode, 12 μm thick, and 20 μm wide SU8 waveguides were fabricated to overlap 40×180 μm2 photodiodes, with three different waveguide-photodiode overlap lengths. The attenuation due to leaky-mode coupling in the overlap area was then calculated from photocurrent measurements. The overlap attenuation ranged from a minimum of 2.2 dB per mm overlap length to a maximum of about 3 dB/mm, comparing favorably with reported nonpolymeric waveguide-Si photodiode attenuations.

  7. First-order symmetry-adapted perturbation theory for multiplet splittings.

    PubMed

    Patkowski, Konrad; Żuchowski, Piotr S; Smith, Daniel G A

    2018-04-28

    We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S 2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S 2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.

  8. First-order symmetry-adapted perturbation theory for multiplet splittings

    NASA Astrophysics Data System (ADS)

    Patkowski, Konrad; Żuchowski, Piotr S.; Smith, Daniel G. A.

    2018-04-01

    We present a symmetry-adapted perturbation theory (SAPT) for the interaction of two high-spin open-shell molecules (described by their restricted open-shell Hartree-Fock determinants) resulting in low-spin states of the complex. The previously available SAPT formalisms, except for some system-specific studies for few-electron complexes, were restricted to the high-spin state of the interacting system. Thus, the new approach provides, for the first time, a SAPT-based estimate of the splittings between different spin states of the complex. We have derived and implemented the lowest-order SAPT term responsible for these splittings, that is, the first-order exchange energy. We show that within the so-called S2 approximation commonly used in SAPT (neglecting effects that vanish as fourth or higher powers of intermolecular overlap integrals), the first-order exchange energies for all multiplets are linear combinations of two matrix elements: a diagonal exchange term that determines the spin-averaged effect and a spin-flip term responsible for the splittings between the states. The numerical factors in this linear combination are determined solely by the Clebsch-Gordan coefficients: accordingly, the S2 approximation implies a Heisenberg Hamiltonian picture with a single coupling strength parameter determining all the splittings. The new approach is cast into both molecular-orbital and atomic-orbital expressions: the latter enable an efficient density-fitted implementation. We test the newly developed formalism on several open-shell complexes ranging from diatomic systems (Li⋯H, Mn⋯Mn, …) to the phenalenyl dimer.

  9. Lexical Competition Effects in Aphasia: Deactivation of Lexical Candidates in Spoken Word Processing

    ERIC Educational Resources Information Center

    Janse, Esther

    2006-01-01

    Research has shown that Broca's and Wernicke's aphasic patients show different impairments in auditory lexical processing. The results of an experiment with form-overlapping primes showed an inhibitory effect of form-overlap for control adults and a weak inhibition trend for Broca's aphasic patients, but a facilitatory effect of form-overlap was…

  10. Chaotic Transport in Circumterrestrial Orbits

    NASA Astrophysics Data System (ADS)

    Rosengren, Aaron Jay

    2018-04-01

    The slow deformation of circumterrestrial orbits in the medium region, subject to lunisolar secular resonances, is well approximated by a Hamiltonian system with 2.5 degrees of freedom. This dynamical model is referred to in the astrophysical and celestial dynamics communities as the quadrupolar, secular, hierarchical three-body problem, and, in the non-autonomous case, gives rise to the classical Kozai-Lidov mechanism. In the time-dependent model, brought about in our case by the Moon's perturbed motion, the action variables of the system may experience chaotic variations and large drifts due to the possible overlap of nearby resonances. Using variational chaos indicators, we compute high-resolution portraits of the action space, revealing the existence of tori and structures filling chaotic regions. Our refined and elaborate calculations allow us to isolate precise initial conditions near specific areas of interest and to study their asymptotic behavior in time. We highlight in particular how the drift in phase space is mediated by the complement of the numerically detected KAM tori. Despite their reputed normality, Earth satellite orbits can possess an extraordinarily rich spectrum of dynamical behaviors, and, like the small body remnants of Solar system formation, they have all the complications that make them very interesting candidates for testing the modern tools of chaos theory.

  11. Nonlinear d10-ML2 Transition-Metal Complexes

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2013-01-01

    We have investigated the molecular geometries of a series of dicoordinated d10-transition-metal complexes ML2 (M=Co−, Rh−, Ir−, Ni, Pd, Pt, Cu+, Ag+, Au+; L=NH3, PH3, CO) using relativistic density functional theory (DFT) at ZORA-BLYP/TZ2P. Not all complexes have the expected linear ligand–metal–ligand (L–M–L) angle: this angle varies from 180° to 128.6° as a function of the metal as well as the ligands. Our main objective is to present a detailed explanation why ML2 complexes can become bent. To this end, we have analyzed the bonding mechanism in ML2 as a function of the L–M–L angle using quantitative Kohn–Sham molecular orbital (MO) theory in combination with an energy decomposition analysis (EDA) scheme. The origin of bent L–M–L structures is π backdonation. In situations of strong π backdonation, smaller angles increase the overlap of the ligand’s acceptor orbital with a higher-energy donor orbital on the metal-ligand fragment, and therefore favor π backdonation, resulting in additional stabilization. The angle of the complexes thus depends on the balance between this additional stabilization and increased steric repulsion that occurs as the complexes are bent. PMID:24551547

  12. Comprehensive review on the development of high mobility in oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Choi, Jun Young; Lee, Sang Yeol

    2017-11-01

    Oxide materials are one of the most advanced key technology in the thin film transistors (TFTs) for the high-end of device applications. Amorphous oxide semiconductors (AOSs) have leading technique for flat panel display (FPD), active matrix organic light emitting display (AMOLED) and active matrix liquid crystal display (AMLCD) due to their excellent electrical characteristics, such as field effect mobility ( μ FE ), subthreshold swing (S.S) and threshold voltage ( V th ). Covalent semiconductor like amorphous silicon (a-Si) is attributed to the anti-bonding and bonding states of Si hybridized orbitals. However, AOSs have not grain boundary and excellent performances originated from the unique characteristics of AOS which is the direct orbital overlap between s orbitals of neighboring metal cations. High mobility oxide TFTs have gained attractive attention during the last few years and today in display industries. It is progressively developed to increase the mobility either by exploring various oxide semiconductors or by adopting new TFT structures. Mobility of oxide thin film transistor has been rapidly increased from single digit to higher than 100 cm2/V·s in a decade. In this review, we discuss on the comprehensive review on the mobility of oxide TFTs in a decade and propose bandgap engineering and novel structure to enhance the electrical characteristics of oxide TFTs.

  13. Minimal differences in prevalence and spectrum of organic disease at upper gastrointestinal endoscopy between selected secondary care patients with symptoms of gastro-oesophageal reflux or dyspepsia.

    PubMed

    Irvine, Andrew J; Pinto-Sanchez, Maria Ines; Bercik, Premysl; Moayyedi, Paul; Ford, Alexander C

    2017-04-01

    Gastro-oesophageal reflux and dyspepsia are felt to be separate upper gastrointestinal (GI) conditions. We aimed to measure the degree of overlap between them, and assess whether endoscopic findings differed. Demographic, symptom, upper GI endoscopy and histology data were collected from consecutive adults in secondary care. Patients were categorised according to whether they reported gastro-oesophageal reflux alone, dyspepsia alone or both, and patient demographics and endoscopic findings were compared. Of 1167 patients, 97 (8.3%) had gastro-oesophageal reflux alone, 571 (48.9%) dyspepsia alone, and 499 (42.8%) overlap. Patients with overlap symptoms were more likely to smoke, compared with those with gastro-oesophageal reflux alone, or dyspepsia alone (p = .009), but there were no other differences. Patients with gastro-oesophageal reflux alone or overlap had a higher prevalence of erosive oesophagitis (18.6% and 15.4% respectively, p < .001), but this was still the commonest diagnosis among those with dyspepsia alone (7.2%). No significant differences were seen in prevalence of other endoscopic findings. Gastro-oesophageal reflux and dyspepsia symptoms commonly overlap. There were minimal differences in demographics or spectrum of underlying organic disease between various symptom groups, suggesting that restrictive classifications according to predominant symptom may not be clinically useful.

  14. Prevention of overlapping prescriptions of psychotropic drugs by community pharmacists.

    PubMed

    Shimane, Takuya; Matsumoto, Toshihiko; Wada, Kiyoshi

    2012-10-01

    The nonmedical use or abuse of prescription drugs, including psychotropic medicines, is a growing health problem in Japan. Patient access to psychotropic drugs, specifically from the oversupply of medications due to overlapping prescriptions, may increase the risk of drug abuse and dependence. However, very little is known about such overlapping prescriptions. Today, the dispensing of prescriptions is generally moving from inside to outside of hospitals, with psychotropic drugs mainly dispensed at community pharmacies. In this study, we used health insurance claims (i.e., receipts) for dispensing as the main source of information in an investigation of overlapping prescriptions of psychotropic drugs. A total of 119 patients were found to have received overlapping prescriptions, as identified by community pharmacists who were members of the Saitama Pharmaceutical Association, using patient medication records, followed by medication counseling and prescription notes for the patient. According to our findings, the most frequently overlapping medication was etizolam. Etizolam can be prescribed for more than 30 days since it is not regulated under Japanese law as a "psychotropic drug." Generally, when a drug can be prescribed for a greater number of days, it increases the likelihood of an overlapping prescription during the same period. As a result, the long-term prescription of etizolam increases the risk of overlapping prescriptions. We also found that the patients who received overlapping prescriptions of etizolam were mostly elderly and the most common pattern was prescription from both internal medicine and orthopedics physicians. Etizolam has wide range of indications that are covered by health insurance. Our results suggest that patients who received overlapping prescriptions of etizolam may receive prescriptions from different prescribers for different purposes. Therefore, it may be appropriate to regulate etizolam as a "psychotropic drug" under Japanese law, thus setting a limit on the period for which it can be prescribed in order to help prevent long-term and overlapping prescriptions.

  15. The Cloudsat Mission and the EOS Constellation: A New Dimension of Space-Based Observation of Clouds and Precipitation

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Vane, Deborah G.; Boain, Ronald; Mace, Gerald; Sassen, Kenneth; Wang, Zhien; Illingworth, Anthony; OConnor, Ewan; Rossow, William; Durden, Stephen L.; hide

    2001-01-01

    CloudSat is a satellite experiment designed to measure the vertical structure of clouds from space. The expected launch of CloudSat is planned for 2004 and, once launched, CloudSat will orbit in formation as part of a constellation of satellites including NASA's Aqua and Aura satellites, a NASA-CNES lidar satellite (P-C) and a CNES satellite carrying a polarimeter (PARASOL). A unique feature that CloudSat brings to this constellation is the ability to fly a precise orbit enabling the fields of view of the CloudSat radar to be overlapped with the P-C lidar footprint and the other measurements of the EOS constellation. The precision of this overlap creates a unique multi-satellite observing system for studying the atmospheric processes essential to the hydrological cycle. The vertical profile of cloud properties provided by CloudSat fills a critical gap in the investigation of feedback mechanisms linking clouds to climate. Measuring the vertical profile of cloud properties requires a combination of active and passive instruments, and this will be achieved by combining the radar data of CloudSat with active and passive data from other sensors of the constellation. This paper describes the underpinning science, and gives an overview of the mission, and provides some idea of the expected products and anticipated application of these products. Notably, the CloudSat mission is expected to provide new knowledge about global cloudiness, stimulating new areas of research on clouds including data assimilation and cloud parameterization. The mission also provides an important opportunity to demonstrate active sensor technology for future scientific and tactical applications. The CloudSat mission is a partnership between NASA/JPL, the Canadian Space Agency, Colorado State University, the US Air Force, and the US Department of Energy.

  16. Structural investigation of the substituted pyrochlore AgSbO3 through total scattering techniques.

    PubMed

    Laurita, Geneva; Page, Katharine; Sleight, A W; Subramanian, M A

    2013-10-07

    Polycrystalline samples of the pyrochlore series Ag(1-x)M(n)(x)SbO(3+x[(n-1)/2]) (M = Na, K, and Tl) have been structurally analyzed through total scattering techniques. The upper limits of x obtained were 0.05 for Na, 0.16 for K, and 0.17 for Tl. The Ag(+) cation occupies a site with inversion symmetry on a 3-fold axis. When the smaller Na(+) cation substitutes for Ag(+), it is displaced by about 0.6 Å perpendicular to the 3-fold axis to achieve some shorter Na-O bond distances. When the larger Tl(+) cation substitutes for Ag(+), it is displaced by about 1.14 Å along the 3-fold axis and achieves an environment typical of a lone pair cation. Some of the Tl(3+) from the precursor remains unreduced, leading to a formula of Ag(0.772(1))Tl(+)(0.13(2))Tl(3+)(0.036(1))SbO(3.036(1)). The position of the K(+) dopant was effectively modeled assuming that K(+) occupied the same site as Ag(+). The expansion of the lattice caused by substitution of the larger K(+) and Tl(+) cations results in longer Ag-O bond lengths, which would reduce the overlap of the Ag 4d and O 2p orbitals that compose the valence band maximum. Substitution of the smaller Na(+) results in a decrease in the Ag-O bond distance, thus increasing the overlap of the Ag 4d and O 2p orbitals. This will have a direct influence on the band composition and observed properties of this material of interest.

  17. Orbits: Computer simulation

    NASA Technical Reports Server (NTRS)

    Muszynska, A.

    1985-01-01

    In rotating machinery dynamics an orbit (Lissajous curve) represents the dynamic path of the shaft centerline motion during shaft rotation and resulting precession. The orbit can be observed with an oscilloscope connected to XY promixity probes. The orbits can also be simulated by a computer. The software for HP computer simulates orbits for two cases: (1) Symmetric orbit with four frequency components with different radial amplitudes and relative phase angles; and (2) Nonsymmetric orbit with two frequency components with two different vertical/horizontal amplitudes and two different relative phase angles. Each orbit carries a Keyphasor mark (one-per-turn reference). The frequencies, amplitudes, and phase angles, as well as number of time steps for orbit computation, have to be chosen and introduced to the computer by the user. The orbit graphs can be observed on the computer screen.

  18. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    NASA Astrophysics Data System (ADS)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength and resist crack propagation.

  19. Homing in for New Year: impact parameters and pre-impact orbital evolution of meteoroid 2014 AA

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.; Mialle, P.

    2016-11-01

    On 2008 October 7, small asteroid 2008 TC3 turned itself into the parent body of the first meteor ever to be predicted before entering the Earth's atmosphere. Over five years later, the 2014 AA event became the second instance of such an occurrence. The uncertainties associated with the pre-impact orbit of 2008 TC3 are relatively small because thousands of observations were made during the hours preceding the actual meteor airburst. In sharp contrast, 2014 AA was only observed seven times before impact and consequently its trajectory is somewhat uncertain. Here, we present a recalculation of the impact parameters—location and timing—of this meteor based on infrasound recordings. The new values—(λ_{impact}, φ_{impact}, t_{impact}) = (-44°, +11°, 2456659.618 JD UTC)—and their uncertainties together with Monte Carlo and N-body techniques, are applied to obtain an independent determination of the pre-impact orbit of 2014 AA: a=1.1623 AU, e=0.2116, i=1.4156°, Ω =101.6086°, and ω=52.3393°. Our orbital solution is used to investigate the possible presence of known near-Earth objects (NEOs) moving in similar orbits. Among the objects singled out by this search, the largest is 2013 HO_{11} with an absolute magnitude of 23.0 (diameter 75-169 m) and a MOID of 0.006 AU. Prior to impact, 2014 AA was subjected to a web of overlapping secular resonances and it followed a path similar to those of 2011 GJ3, 2011 JV_{10}, 2012 DJ_{54}, and 2013 NJ4. NEOs in this transient group have their orbits controlled by close encounters with the Earth-Moon system at perihelion and Mars at aphelion, perhaps constituting a dynamical family. Extensive comparison with other studies is also presented.

  20. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    NASA Technical Reports Server (NTRS)

    Westfall, Richard

    1991-01-01

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength and resist crack propagation.

  1. Scoring the correlation of genes by their shared properties using OScal, an improved overlap quantification model.

    PubMed

    Liu, Hui; Liu, Wei; Lin, Ying; Liu, Teng; Ma, Zhaowu; Li, Mo; Zhang, Hong-Mei; Kenneth Wang, Qing; Guo, An-Yuan

    2015-05-27

    Scoring the correlation between two genes by their shared properties is a common and basic work in biological study. A prospective way to score this correlation is to quantify the overlap between the two sets of homogeneous properties of the two genes. However the proper model has not been decided, here we focused on studying the quantification of overlap and proposed a more effective model after theoretically compared 7 existing models. We defined three characteristic parameters (d, R, r) of an overlap, which highlight essential differences among the 7 models and grouped them into two classes. Then the pros and cons of the two groups of model were fully examined by their solution space in the (d, R, r) coordinate system. Finally we proposed a new model called OScal (Overlap Score calculator), which was modified on Poisson distribution (one of 7 models) to avoid its disadvantages. Tested in assessing gene relation using different data, OScal performs better than existing models. In addition, OScal is a basic mathematic model, with very low computation cost and few restrictive conditions, so it can be used in a wide-range of research areas to measure the overlap or similarity of two entities.

  2. Probability of coincidental similarity among the orbits of small bodies - I. Pairing

    NASA Astrophysics Data System (ADS)

    Jopek, Tadeusz Jan; Bronikowska, Małgorzata

    2017-09-01

    Probability of coincidental clustering among orbits of comets, asteroids and meteoroids depends on many factors like: the size of the orbital sample searched for clusters or the size of the identified group, it is different for groups of 2,3,4,… members. Probability of coincidental clustering is assessed by the numerical simulation, therefore, it depends also on the method used for the synthetic orbits generation. We have tested the impact of some of these factors. For a given size of the orbital sample we have assessed probability of random pairing among several orbital populations of different sizes. We have found how these probabilities vary with the size of the orbital samples. Finally, keeping fixed size of the orbital sample we have shown that the probability of random pairing can be significantly different for the orbital samples obtained by different observation techniques. Also for the user convenience we have obtained several formulae which, for given size of the orbital sample can be used to calculate the similarity threshold corresponding to the small value of the probability of coincidental similarity among two orbits.

  3. Detailed Astrometric Analysis of Pluto

    NASA Astrophysics Data System (ADS)

    ROSSI, GUSTAVO B.; Vieira-Martins, R.; Camargo, J. I.; Assafin, M.

    2013-05-01

    Abstract (2,250 Maximum Characters): Pluto is the main representant of the transneptunian objects (TNO's), presenting some peculiarities such as an atmosphere and a satellite system with 5 known moons: Charon, discovered in 1978, Nix and Hydra, in 2006, P4 in 2011 and P5 in 2012. Until the arrival of the New Horizons spacecraft to this system (july 2015), stellar occultations are the most efficient method, from the ground, to know physical and dinamical properties of this system. In 2010, it was evident a drift in declinations (about 20 mas/year) comparing to the ephemerides. This fact motivated us to remake the reductions and analysis of a great set of our observations at OPD/LNA, in a total of 15 years. The ephemerides and occultations results was then compared with the astrometric and photometric reductions of CCD images of Pluto (around 6500 images). Two corrections were used for a refinement of the data set: diferential chromatic refraction and photocenter. The first is due to the mean color of background stars beeing redder than the color of Pluto, resulting in a slightly different path of light through the atmosphere (that may cause a difference in position of 0.1”). It became more evident because Pluto is crossing the region of the galactic plane. The photocenter correction is based on two gaussians curves overlapped, with different hights and non-coincident centers, corresponding to Pluto and Charon (since they have less than 1” of angular separation). The objective is to separate these two gaussian curves from the observed one and find the right position of Pluto. The method is strongly dependent of the hight of each of the gaussian curves, related to the respective albedos of charon and Pluto. A detailed analysis of the astrometric results, as well a comparison with occultation results was made. Since Pluto has an orbital period of 248,9 years and our interval of observation is about 15 years, we have around 12% of its observed orbit and also, our observations were made when Pluto was near its periapsis. With the corrections made, the ephemeris, when recalculated, shall not present sistematic drifts near the temporal interval in wich contains our observational data, allowing the determination of local adjustments at the Pluto orbit.

  4. Orbit determination using real tracking data from FY3C-GNOS

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Lu, Chuanfang; Zhu, Jun; Ding, Huoping

    2017-08-01

    China is currently developing the BeiDou Navigation Satellite System, also known as BDS. The nominal constellation of BDS (regional), which had been able to provide preliminary regional positioning and navigation functions, was composed of fourteen satellites, including 5 GEO, 5 IGSO and 4 MEO satellites, and was realized by the end of 2013. Global navigation satellite system occultation sounder (GNOS) on board the Fengyun3C (FY3C) satellite, which is the first BDS/GPS compatible radio occultation (RO) sounder in the world, was launched on 23 September 2013. The GNOS instrument is capable of tracking up to 6 BeiDou satellites and more than 8 GPS satellites. We first present a quality analysis using 1-week onboard BDS/GPS measurements collected by GNOS. Satellite visibility, multipath combination and the ratio of cycle slips are analyzed. The analysis of satellite visibility shows that for one week the BDS receiver can track up to 6 healthy satellites. The analysis of multipath combinations (MPC) suggests more multipath present for BDS than GPS for the CA code (B1 MPC is 0.597 m, L1 MPC is 0.326 m), but less multipath for the P code (B2 MPC is 0.421 m, L2 MPC is 0.673 m). More cycle slips occur for the BDS than for the GPS receiver as shown by the ratio of total satellites/cycle slips observed over a 24 h period. Both the maximum value and average of the ratio of cycle slips based on BDS measurements is 72/50.29, which is smaller than 368/278.71 based on GPS measurements. Second, the results of reduced dynamic orbit determination using BDS/GPS code and phase measurements, standalone BDS SPP (Single Point Positioning) kinematic solution and real-time orbit determination using BDS/GPS code measurements are presented and analyzed. Using an overlap analysis, the orbit consistency of FY3C-GNOS is about 3.80 cm. The precision of BDS only solutions is about 22 cm. The precision of FY3C-GNOS orbit with the Helmert variance component estimation are improved slightly after the BDS observations are added for one week (October 10-16, 2013). In the three-dimensional direction, the orbit precision is respectively improved by 0.31 cm. BDS code observations already allow a standalone positioning with RMS accuracy of at least 22 m using BDS broadcast ephemeris, while the accuracy is at least 5 m using BDS precise ephemeris. The standard deviations of differences of real-time orbit determination with the Dynamic Model Compensation using BDS/GPS, GPS, and BDS code measurements are 1.24 m, 1.27 m and 6.67 m in three-dimensional direction, respectively. It can slightly improve convergence time for real-time orbit determination by 17 s after the BDS observations are added. And it can also slightly improve the accuracy of real-time orbit determination by 0.03 m. The results obtained in this paper are already rather promising.

  5. Orbital and Landing Operations at Near-Earth

    NASA Technical Reports Server (NTRS)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  6. Combining Satellite and in Situ Data with Models to Support Climate Data Records in Ocean Biology

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2011-01-01

    The satellite ocean color data record spans multiple decades and, like most long-term satellite observations of the Earth, comes from many sensors. Unfortunately, global and regional chlorophyll estimates from the overlapping missions show substantial biases, limiting their use in combination to construct consistent data records. SeaWiFS and MODIS-Aqua differed by 13% globally in overlapping time segments, 2003-2007. For perspective, the maximum change in annual means over the entire Sea WiFS mission era was about 3%, and this included an El NinoLa Nina transition. These discrepancies lead to different estimates of trends depending upon whether one uses SeaWiFS alone for the 1998-2007 (no significant change), or whether MODIS is substituted for the 2003-2007 period (18% decline, P less than 0.05). Understanding the effects of climate change on the global oceans is difficult if different satellite data sets cannot be brought into conformity. The differences arise from two causes: 1) different sensors see chlorophyll differently, and 2) different sensors see different chlorophyll. In the first case, differences in sensor band locations, bandwidths, sensitivity, and time of observation lead to different estimates of chlorophyll even from the same location and day. In the second, differences in orbit and sensitivities to aerosols lead to sampling differences. A new approach to ocean color using in situ data from the public archives forces different satellite data to agree to within interannual variability. The global difference between Sea WiFS and MODIS is 0.6% for 2003-2007 using this approach. It also produces a trend using the combination of SeaWiFS and MODIS that agrees with SeaWiFS alone for 1998-2007. This is a major step to reducing errors produced by the first cause, sensor-related discrepancies. For differences that arise from sampling, data assimilation is applied. The underlying geographically complete fields derived from a free-running model is unaffected by solar zenith angle requirements and obscuration from clouds and aerosols. Combined with in situ dataenhanced satellite data, the model is forced into consistency using data assimilation. This approach eliminates sampling discrepancies from satellites. Combining the reduced differences of satellite data sets using in situ data, and the removal of sampling biases using data assimilation, we generate consistent data records of ocean color. These data records can support investigations of long-term effects of climate change on ocean biology over multiple satellites, and can improve the consistency of future satellite data sets.

  7. Reading Skill Components and Impairments in Middle School Struggling Readers

    ERIC Educational Resources Information Center

    Cirino, Paul T.; Romain, Melissa A.; Barth, Amy E.; Tolar, Tammy D.; Fletcher, Jack M.; Vaughn, Sharon

    2013-01-01

    This study investigated how measures of decoding, fluency, and comprehension in middle school students overlap with one another, whether the pattern of overlap differs between struggling and typical readers, and the relative frequency of different types of reading difficulties. The 1,748 sixth, seventh, and eighth grade students were oversampled…

  8. An Investigation of the Overlap Between the Statistical Discrete Gust and the Power Spectral Density Analysis Methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    The results of a NASA investigation of a claimed Overlap between two gust response analysis methods: the Statistical Discrete Gust (SDG) Method and the Power Spectral Density (PSD) Method are presented. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented for several different airplanes at several different flight conditions indicate that such an Overlap does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  9. STS-41G earth observations

    NASA Image and Video Library

    1984-10-10

    41G-34-036 (5-13 Oct 1984) --- When in space, Space Shuttle astronauts experience 18-dawns to every one on terra firma. The crew of NASA's STS-41G mission captured these spectacular colors just prior to passing through one of those orbital dawns in October of 1984. The scene is over the Pacific Ocean, approximately 2,000 miles from Tokyo. The bands of color represent the various layers of aerosol which surround the planet. The brilliant red is the atmosphere; the overlap between red and blue is the stratosphere; the blue layer is the ionosphere. With increased altitude, the electrons and ions are reduced in number, leaving the vast blackness of space.

  10. The nature of the pressure-induced metallization of FeO and its implications to the core-mantle boundary

    USGS Publications Warehouse

    Sherman, David M.

    1989-01-01

    The pressure and temperature-induced metallization of FeO discovered by Knittle et al (1986) is here argued to result from a Mott transition associated with increased Fe(3d)-Fe(3d) orbital overlap at high pressures. Consequently, it is here argued that a lower mantle containing only these phases should be electrically insulating. Finally, the formation of itinerant d-electrons in FeO may be a necessary, if not sufficient, condition for the apparent alloying of FeO with Fe. Such alloying may allow oxygen to be incorporated into the outer core. -from Author

  11. On the kinematic detection of accreted streams in the Gaia era: a cautionary tale

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, I.; Di Matteo, P.; Haywood, M.; Gómez, A.; Montuori, M.; Combes, F.; Semelin, B.

    2017-08-01

    The ΛCDM cosmological scenario predicts that our Galaxy should contain hundreds of stellar streams in the solar vicinity, fossil relics of the merging history of the Milky Way and more generally of the hierarchical growth of galaxies. Because of the mixing time scales in the inner Galaxy, it has been claimed that these streams should be difficult to detect in configuration space but can still be identifiable in kinematic-related spaces like the energy/angular momenta spaces, E - Lz and L⊥ - Lz, or spaces of orbital/velocity parameters. By means of high-resolution, dissipationless N-body simulations containing between 25 × 106 and 35 × 106 particles, we model the accretion of a series of up to four 1:10 mass ratio satellites then up to eight 1:100 satellites and search systematically for the signature of accretions in these spaces. The novelty of this work with respect to the majority of those already published is our analysis of fully consistent models, where both the satellite(s) and the Milky Way galaxy are "live" systems, which can react to the interaction and experience kinematical heating, tidal effects and dynamical friction (the latter, a process often neglected in previous studies). We find that, in agreement with previous works, all spaces are rich in substructures, but that, contrary to previous works, the origin of these substructures - accreted or in-situ - cannot be determined for the following reasons. In all spaces considered (1) each satellite provides the origin of several independent over-densities; (2) over-densities of multiple satellites overlap; (3) satellites of different masses can produce similar substructures; (4) the overlap between the in-situ and the accreted population is considerable everywhere; and (5) in-situ stars also form substructures in response to the satellite(s') accretion. These points are valid even if the search is restricted to kinematically-selected halo stars only. As we are now entering the "Gaia era", our results warn that extreme caution must be employed before interpreting over-densities in any of those spaces as evidence of relics of accreted satellites. Reconstructing the accretion history of our Galaxy will require a substantial amount of accurate spectroscopic data, that, complemented by the kinematic information, will possibly allow us to (chemically) identify accreted streams and measure their orbital properties.

  12. A comparison of finite element and test results on the vibration and damping characteristics of laminated cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, J.C.; Schaefer, E.D.

    1994-12-31

    Numerical and experimental tests were performed on three thin-wall carbon fabric/epoxy cylinders with end flanges, and their vibration characteristics were compared. Two different laminates with [(0{degree})]{sub s}-2 ply and [(0{degree})]{sub 3}-3 ply configurations were used. All cylinders were fabricated using four gore sections per ply. One of the two 3-ply configurations was fabricated with the gore sections butted together, and the other with the sections overlapped approximately 6 mm. There was very little difference in the natural frequencies from tests with butted or overlapped ply joints. However, there was a 1--20% difference in natural frequencies between the finite element analysismore » (FEA) and test results for the 3-ply cylinders over the frequency range 88 to 577 Hz. The 2-ply configuration had overlapped ply joints and a 0.50 mm thick PTFE/copper substrate adhesively bonded to the outside. In this configuration there was approximately a 7% difference in natural frequencies between the FEA and test results. The effect of the added mass of the substrate in the test samples had a greater influence on the modal analysis than the assumption of a continuum at the overlapped ply joints. The mode shapes for each of the cylinders were comparable for all configurations tested. Damping increased by 12--38% over most of the frequency range for the 3-ply overlapped compared to the butted ply joint configuration. Damping in the 2-ply overlapped ply joint cylinder with PTFE/copper substrate showed a 48-93% (depending on frequency) increase over that of the 3-ply overlapped ply joint cylinder. An increase in damping for both 3-ply configurations and the 2-ply configuration was attributed to increased matrix shearing as a result of changes in mode shape, increased warping, and the resultant increase in internal strain.« less

  13. Overlap Properties of Clouds Generated by a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Khairoutdinov, M.

    2002-01-01

    In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will estimate the radiation effects of multi-layer cloud fields more accurately.

  14. Foraging behavior of lactating South American sea lions (Otaria flavescens) and spatial-temporal resource overlap with the Uruguayan fisheries

    NASA Astrophysics Data System (ADS)

    Riet-Sapriza, Federico G.; Costa, Daniel P.; Franco-Trecu, Valentina; Marín, Yamandú; Chocca, Julio; González, Bernardo; Beathyate, Gastón; Louise Chilvers, B.; Hückstadt, Luis A.

    2013-04-01

    Resource competition between fisheries and marine mammal continue to raise concern worldwide. Understanding this complex conflict requires data on spatial and dietary overlap of marine mammal and fisheries. In Uruguay the South American sea lions population has been dramatically declining over the past decade. The reasons for this population decline are unknown but may include the following: (1) direct harvesting; (2) reduced prey availability and distribution as a consequence of environmental change; or (3) biological interaction with fisheries. This study aims to determine resource overlap and competition between South American sea lions (SASL, Otaria flavescens, n=10) and the artisanal fisheries (AF), and the coastal bottom trawl fisheries (CBTF). We integrated data on sea lions diet (scat analysis), spatial and annual consumption estimates; and foraging behavior-satellite-tracking data from lactating SASL with data on fishing effort areas and fisheries landings. We found that lactating SASL are benthic divers and forage in shallow water within the continental shelf. SASL's foraging areas overlapped with CBTF and AF fisheries operational areas. Dietary analysis indicated a high degree of overlap between the diet of SASL and the AF and CBTF fisheries catch. The results of our work show differing degrees of spatial resource overlap with AF and CBTF, highlighting that there are differences in potential impact from each fishery; and that different management/conservation approaches may need to be taken to solve the fisheries-SASL conflict.

  15. Overlapping parietal activity in memory and perception: evidence for the attention to memory model.

    PubMed

    Cabeza, Roberto; Mazuz, Yonatan S; Stokes, Jared; Kragel, James E; Woldorff, Marty G; Ciaramelli, Elisa; Olson, Ingrid R; Moscovitch, Morris

    2011-11-01

    The specific role of different parietal regions to episodic retrieval is a topic of intense debate. According to the Attention to Memory (AtoM) model, dorsal parietal cortex (DPC) mediates top-down attention processes guided by retrieval goals, whereas ventral parietal cortex (VPC) mediates bottom-up attention processes captured by the retrieval output or the retrieval cue. This model also hypothesizes that the attentional functions of DPC and VPC are similar for memory and perception. To investigate this last hypothesis, we scanned participants with event-related fMRI whereas they performed memory and perception tasks, each comprising an orienting phase (top-down attention) and a detection phase (bottom-up attention). The study yielded two main findings. First, consistent with the AtoM model, orienting-related activity for memory and perception overlapped in DPC, whereas detection-related activity for memory and perception overlapped in VPC. The DPC overlap was greater in the left intraparietal sulcus, and the VPC overlap in the left TPJ. Around overlapping areas, there were differences in the spatial distribution of memory and perception activations, which were consistent with trends reported in the literature. Second, both DPC and VPC showed stronger connectivity with medial-temporal lobe during the memory task and with visual cortex during the perception task. These findings suggest that, during memory tasks, some parietal regions mediate similar attentional control processes to those involved in perception tasks (orienting in DPC vs. detection in VPC), although on different types of information (mnemonic vs. sensory).

  16. Lunar geodesy and cartography: a new era

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Smith, David; Robinson, Mark; Zuber, Maria T.; Neumann, Gregory; Danton, Jacob; Oberst, Juergen; Archinal, Brent; Glaeser, Philipp

    The Lunar Reconnaissance Orbiter (LRO) ushers in a new era in precision lunar geodesy and cartography. LRO was launched in June, 2009, completed its Commissioning Phase in Septem-ber 2009 and is now in its Primary Mission Phase on its way to collecting high precision, global topographic and imaging data. Aboard LRO are the Lunar Orbiter Laser Altimeter (LOLA -Smith, et al., 2009) and the Lunar Reconnaissance Orbiter Camera (LROC -Robinson, et al., ). LOLA is a derivative of the successful MOLA at Mars that produced the global reference surface being used for all precision cartographic products. LOLA produces 5 altimetry spots having footprints of 5 m at a frequency of 28 Hz, significantly bettering MOLA that produced 1 spot having a footprint of 150 m at a frequency of 10 Hz. LROC has twin narrow angle cameras having pixel resolutions of 0.5 meters from a 50 km orbit and a wide-angle camera having a pixel resolution of 75 m and in up to 7 color bands. One of the two NACs looks to the right of nadir and the other looks to the left with a few hundred pixel overlap in the nadir direction. LOLA is mounted on the LRO spacecraft to look nadir, in the overlap region of the NACs. The LRO spacecraft has the ability to look nadir and build up global coverage as well as looking off-nadir to provide stereo coverage and fill in data gaps. The LROC wide-angle camera builds up global stereo coverage naturally from its large field-of-view overlap from orbit to orbit during nadir viewing. To date, the LROC WAC has already produced global stereo coverage of the lunar surface. This report focuses on the registration of LOLA altimetry to the LROC NAC images. LOLA has a dynamic range of tens of km while producing elevation data at sub-meter precision. LOLA also has good return in off-nadir attitudes. Over the LRO mission, multiple LOLA tracks will be in each of the NAC images at the lunar equator and even more tracks in the NAC images nearer the poles. The registration of LOLA altimetry to NAC images is aided by the 5 spots showing regional and local slopes, along and cross-track, that are easily correlated visually to features within the images. Once can precisely register each of the 5 LOLA spots to specific pixels in LROC images of distinct features such as craters and boulders. This can be performed routinely for features at the 100 m level and larger. However, even features at the several m level can also be registered if a single LOLA spots probes the depth of a small crater while the other 4 spots are on the surrounding surface or one spot returns from the top of a small boulder seen by NAC. The automatic registration of LOLA tracks with NAC stereo digital terrain models should provide for even higher accuracy. Also the LOLA pulse spread of the returned signal, which is sensitive to slopes and roughness, is an additional source of information to help match the LOLA tracks to the images As the global coverage builds, LOLA will provide absolute coordinates in latitude, longitude and radius of surface features with accuracy at the meter level or better. The NAC images will then be reg-istered to the LOLA reference surface in the production of precision, controlled photomosaics, having spatial resolutions as good as 0.5 m/pixel. For hundreds of strategic sites viewed in stereo, even higher precision and more complete surface coverage is possible for the produc-tion of digital terrain models and mosaics. LRO, with LOLA and LROC, will improve the relative and absolute accuracy of geodesy and cartography by orders of magnitude, ushering in a new era for lunar geodesy and cartography. Robinson, M., et al., Space Sci. Rev., DOI 10.1007/s11214-010-9634-2, Date: 2010-02-23, in press. Smith, D., et al., Space Sci. Rev., DOI 10.1007/s11214-009-9512-y, published online 16 May 2009.

  17. Volcanic activity at Tvashtar Catena, Io

    USGS Publications Warehouse

    Milazzo, M.P.; Keszthelyi, L.P.; Radebaugh, J.; Davies, A.G.; Turtle, E.P.; Geissler, P.; Klaasen, K.P.; Rathbun, J.A.; McEwen, A.S.

    2005-01-01

    Galileo's Solid State Imager (SSI) observed Tvashtar Catena four times between November 1999 and October 2001, providing a unique look at a distinctive high latitude volcanic complex on Io. The first observation (orbit I25, November 1999) resolved, for the first time, an active extraterrestrial fissure eruption; the brightness temperature was at least 1300 K. The second observation (orbit I27, February 2000) showed a large (??? 500 km 2) region with many, small, hot, regions of active lava. The third observation was taken in conjunction with Cassini imaging in December 2000 and showed a Pele-like, annular plume deposit. The Cassini images revealed an ???400 km high Pele-type plume above Tvashtar Catena. The final Galileo SSI observation of Tvashtar (orbit I32, October 2001), revealed that obvious (to SSI) activity had ceased, although data from Galileo's Near Infrared Mapping Spectrometer (NIMS) indicated that there was still significant thermal emission from the Tvashtar region. In this paper, we primarily analyze the style of eruption during orbit I27 (February 2000). Comparison with a lava flow cooling model indicates that the behavior of the Tvashtar eruption during I27 does not match that of simple advancing lava flows. Instead, it may be an active lava lake or a complex set of lava flows with episodic, overlapping eruptions. The highest reliable color temperature is ???1300 K. Although higher temperatures cannot be ruled out, they do not need to be invoked to fit the observed data. The total power output from the active lavas in February 2000 was at least 1011 W. ?? 2005 Elsevier Inc. All rights reserved.

  18. An Overview of Electron-Proton and High Energy Telescopes of Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Grunau, J.; Boden, S.; Steinhagen, J.; Martin, C.; Wimmer-Schweingruber, R. F.; Boettcher, S.; Seimetz, L.; Ravanbakhsh, A.; Elftmann, R.; Rodriguez-Pacheco, J.; Prieto, M.; Gomez-Herrero, R.

    2013-12-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of five sensors (STEP, SIS, EPT, and HET). The University of Kiel in Germany is also responsible for the design, development, and build of EPT and HET which are presented here. The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEP and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will partially cover the gap between STEP and HET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) on ESA's Solar Orbiter mission, will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from ~20 to 200 MeV/nuc. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level. Here we present the current development status of EPT-HET units and calibration results of demonstration models and present plans for future activities.

  19. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have about 7am/7pm orbital geometry) and afternoon satellites (NOAA 7, 9, 11 and 14 that have about 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error. We find we can decrease the global temperature trend by about 0.07 K/decade. In addition there are systematic time dependent errors present in the data that are introduced by the drift in the satellite orbital geometry arises from the diurnal cycle in temperature which is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observations made in the MSU Ch 1 (50.3 GHz) support this approach. The error is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the errors on the global temperature trend. In one path the entire error is placed in the am data while in the other it is placed in the pm data. Global temperature trend is increased or decreased by about 0.03 K/decade depending upon this placement. Taking into account all random errors and systematic errors our analysis of MSU observations leads us to conclude that a conservative estimate of the global warming is 0. 11 (+-) 0.04 K/decade during 1980 to 1998.

  20. VITMO - A Powerful Tool to Improve Discovery in the Magnetospheric and Ionosphere-Thermosphere Domains

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Stephens, G.; Barnes, R. J.; Talaat, E. R.; Sarris, T.

    2017-12-01

    With the advent of the NASA Magnetospheric Multiscale Mission and the Van Allen Probes we have space missions that probe the Earth's magnetosphere and radiation belts. These missions fly at far distances from the Earth in contrast to the larger number of near-Earth satellites. Both of the satellites make in situ measurements. Energetic particles flow along magnetic field lines from these measurement locations down to the ionosphere/thermosphere region. Discovering other data that may be used with these satellites is a difficult and complicated process. To solve this problem, we have developed a series of light-weight web services that can provide a new data search capability for the Virtual Ionosphere Thermosphere Mesosphere Observatory (VITMO). The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements for a number of magnetic field models and geophysical conditions. These services run in real-time when the user queries for data and allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field. Each service on their own provides a useful new capability for virtual observatories; operating together they provide a powerful new search tool. The ephemerides service was built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov/naif/index.html) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels. The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow "near misses" to be found. The magnetic field tracing service will feature a database of pre-calculated field line tracings of ground stations but will also allow dynamic tracing of arbitrary coordinates.

  1. Improving Discoverability Between the Magnetosphere and Ionosphere/Thermosphere Domains

    NASA Astrophysics Data System (ADS)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Talaat, E. R.; Sarris, T.

    2016-12-01

    With the advent of the NASA Magnetospheric Multiscale Mission and the Van Allen Probes we have space missions that probe the Earth's magnetosphere and radiation belts. These missions fly at far distances from the Earth in contrast to the larger number of near-Earth satellites. Both of the satellites make in situ measurements. Energetic particles flow along magnetic field lines from these measurement locations down to the ionosphere/thermosphere region. Discovering other data that may be used with these satellites is a difficult and complicated process. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for the Virtual Ionosphere Thermosphere Mesosphere Observatory (VITMO). The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements for a number of magnetic field models and geophysical conditions. These services run in real-time when the user queries for data and allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists. Each service on their own provides a useful new capability for virtual observatories; operating together they will provide a powerful new search tool. The ephemerides service is being built using the Navigation and Ancillary Information Facility (NAIF) SPICE toolkit (http://naif.jpl.nasa.gov) allowing them to be extended to support any Earth orbiting satellite with the addition of the appropriate SPICE kernels. The overlap calculator uses techniques borrowed from computer graphics to identify overlapping measurements in space and time. The calculator will allow a user defined uncertainty to be selected to allow "near misses" to be found. The magnetic field tracing service will feature a database of pre-calculated field line tracings of ground stations but will also allow dynamic tracing of arbitrary coordinates with a user selected choice of magnetic field models.

  2. Resolving Differences in Absolute Irradiance Measurements Between the SOHO/CELIAS/SEM and the SDO/EVE.

    PubMed

    Wieman, S R; Didkovsky, L V; Judge, D L

    The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26 - 34 nm and 0.1 - 50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions - i.e ., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26 - 34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1 - 7 nm band extracted from the SEM 0.1 - 50 nm channel.

  3. Measuring the extent of overlaps in protected area designations

    PubMed Central

    Arnell, Andy; Juffe-Bignoli, Diego; Shi, Yichuan; Bingham, Heather; MacSharry, Brian; Kingston, Naomi

    2017-01-01

    Over the past decades, a number of national policies and international conventions have been implemented to promote the expansion of the world’s protected area network, leading to a diversification of protected area strategies, types and designations. As a result, many areas are protected by more than one convention, legal instrument, or other effective means which may result in a lack of clarity around the governance and management regimes of particular locations. We assess the degree to which different designations overlap at global, regional and national levels to understand the extent of this phenomenon at different scales. We then compare the distribution and coverage of these multi-designated areas in the terrestrial and marine realms at the global level and among different regions, and we present the percentage of each county’s protected area extent that is under more than one designation. Our findings show that almost a quarter of the world’s protected area network is protected through more than one designation. In fact, we have documented up to eight overlapping designations. These overlaps in protected area designations occur in every region of the world, both in the terrestrial and marine realms, but are more common in the terrestrial realm and in some regions, notably Europe. In the terrestrial realm, the most common overlap is between one national and one international designation. In the marine realm, the most common overlap is between any two national designations. Multi-designations are therefore a widespread phenomenon but its implications are not well understood. This analysis identifies, for the first time, multi-designated areas across all designation types. This is a key step to understand how these areas are managed and governed to then move towards integrated and collaborative approaches that consider the different management and conservation objectives of each designation. PMID:29176888

  4. Measuring the extent of overlaps in protected area designations.

    PubMed

    Deguignet, Marine; Arnell, Andy; Juffe-Bignoli, Diego; Shi, Yichuan; Bingham, Heather; MacSharry, Brian; Kingston, Naomi

    2017-01-01

    Over the past decades, a number of national policies and international conventions have been implemented to promote the expansion of the world's protected area network, leading to a diversification of protected area strategies, types and designations. As a result, many areas are protected by more than one convention, legal instrument, or other effective means which may result in a lack of clarity around the governance and management regimes of particular locations. We assess the degree to which different designations overlap at global, regional and national levels to understand the extent of this phenomenon at different scales. We then compare the distribution and coverage of these multi-designated areas in the terrestrial and marine realms at the global level and among different regions, and we present the percentage of each county's protected area extent that is under more than one designation. Our findings show that almost a quarter of the world's protected area network is protected through more than one designation. In fact, we have documented up to eight overlapping designations. These overlaps in protected area designations occur in every region of the world, both in the terrestrial and marine realms, but are more common in the terrestrial realm and in some regions, notably Europe. In the terrestrial realm, the most common overlap is between one national and one international designation. In the marine realm, the most common overlap is between any two national designations. Multi-designations are therefore a widespread phenomenon but its implications are not well understood. This analysis identifies, for the first time, multi-designated areas across all designation types. This is a key step to understand how these areas are managed and governed to then move towards integrated and collaborative approaches that consider the different management and conservation objectives of each designation.

  5. A comparative study of novel spectrophotometric resolution techniques applied for pharmaceutical mixtures with partially or severely overlapped spectra

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam M.; Tawakkol, Shereen M.; Fahmy, Nesma M.; Shehata, Mostafa A.

    2015-02-01

    Simultaneous determination of mixtures of lidocaine hydrochloride (LH), flucortolone pivalate (FCP), in presence of chlorquinaldol (CQ) without prior separation steps was applied using either successive or progressive resolution techniques. According to the concentration of CQ the extent of overlapping changed so it can be eliminated from the mixture to get the binary mixture of LH and FCP using ratio subtraction method for partially overlapped spectra or constant value via amplitude difference followed by ratio subtraction or constant center followed by spectrum subtraction spectrum subtraction for severely overlapped spectra. Successive ratio subtraction was coupled with extended ratio subtraction, constant multiplication, derivative subtraction coupled constant multiplication, and spectrum subtraction can be applied for the analysis of partially overlapped spectra. On the other hand severely overlapped spectra can be analyzed by constant center and the novel methods namely differential dual wavelength (D1 DWL) for CQ, ratio difference and differential derivative ratio (D1 DR) for FCP, while LH was determined by applying constant value via amplitude difference followed by successive ratio subtraction, and successive derivative subtraction. The spectra of the cited drugs can be resolved and their concentrations are determined progressively from the same ratio spectrum using amplitude modulation method. The specificity of the developed methods was investigated by analyzing laboratory prepared mixtures and were successfully applied for the analysis of pharmaceutical formulations containing the cited drugs with no interference from additives. The proposed methods were validated according to the ICH guidelines. The obtained results were statistically compared with those of the official or reported methods; using student t-test, F-test, and one way ANOVA, showing no significant difference with respect to accuracy and precision.

  6. Complex overlapping concepts: An effective auditing methodology for families of similarly structured BioPortal ontologies.

    PubMed

    Zheng, Ling; Chen, Yan; Elhanan, Gai; Perl, Yehoshua; Geller, James; Ochs, Christopher

    2018-05-28

    In previous research, we have demonstrated for a number of ontologies that structurally complex concepts (for different definitions of "complex") in an ontology are more likely to exhibit errors than other concepts. Thus, such complex concepts often become fertile ground for quality assurance (QA) in ontologies. They should be audited first. One example of complex concepts is given by "overlapping concepts" (to be defined below.) Historically, a different auditing methodology had to be developed for every single ontology. For better scalability and efficiency, it is desirable to identify family-wide QA methodologies. Each such methodology would be applicable to a whole family of similar ontologies. In past research, we had divided the 685 ontologies of BioPortal into families of structurally similar ontologies. We showed for four ontologies of the same large family in BioPortal that "overlapping concepts" are indeed statistically significantly more likely to exhibit errors. In order to make an authoritative statement concerning the success of "overlapping concepts" as a methodology for a whole family of similar ontologies (or of large subhierarchies of ontologies), it is necessary to show that "overlapping concepts" have a higher likelihood of errors for six out of six ontologies of the family. In this paper, we are demonstrating for two more ontologies that "overlapping concepts" can successfully predict groups of concepts with a higher error rate than concepts from a control group. The fifth ontology is the Neoplasm subhierarchy of the National Cancer Institute thesaurus (NCIt). The sixth ontology is the Infectious Disease subhierarchy of SNOMED CT. We demonstrate quality assurance results for both of them. Furthermore, in this paper we observe two novel, important, and useful phenomena during quality assurance of "overlapping concepts." First, an erroneous "overlapping concept" can help with discovering other erroneous "non-overlapping concepts" in its vicinity. Secondly, correcting erroneous "overlapping concepts" may turn them into "non-overlapping concepts." We demonstrate that this may reduce the complexity of parts of the ontology, which in turn makes the ontology more comprehensible, simplifying maintenance and use of the ontology. Copyright © 2018. Published by Elsevier Inc.

  7. Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure.

    PubMed

    Takimiya, Kazuo; Osaka, Itaru; Mori, Takamichi; Nakano, Masahiro

    2014-05-20

    The design, synthesis, and characterization of organic semiconductors applicable to organic electronic devices, such as organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), had been one of the most important topics in materials chemistry in the past decade. Among the vast number of materials developed, much expectation had been placed on thienoacenes, which are rigid and planar structures formed by fusing thiophenes and other aromatic rings, as a promising candidate for organic semiconductors for high-performance OFETs. However, the thienoacenes examined as an active material in OFETs in the 1990s afforded OFETs with only moderate hole mobilities (approximately 0.1 cm(2) V(-1) s(-1)). We speculated that this was due to the sulfur atoms in the thienoacenes, which hardly contributed to the intermolecular orbital overlap in the solid state. On the other hand, we have focused on other types of thienoacenes, such as [1]benzothieno[3,2-b][1]benzothiophene (BTBT), which seem to have appropriate HOMO spatial distribution for effective intermolecular orbital overlap. In fact, BTBT derivatives and their related materials, including dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT), have turned out to be superior organic semiconductors, affording OFETs with very high mobilities. To illustrate some examples, we have developed 2,7-diphenyl BTBT (DPh-BTBT) that yields vapor-deposited OFETs having mobilities of up to 2.0 cm(2) V(-1) s(-1) under ambient conditions, highly soluble dialkyl-BTBTs (Cn-BTBTs) that afford solution-processed OFETs with mobilities higher than 1.0 cm(2) V(-1) s(-1), and DNTT and its derivatives that yield OFETs with even higher mobilities (>3.0 cm(2) V(-1) s(-1)) and stability under ambient conditions. Such high performances are rationalized by their solid-state electronic structures that are calculated based on their packing structures: the large intermolecular orbital overlap and the isotropic two-dimensional electronic structure are the key regardless of the molecular size and substituents on the BTBT and its related thienoacene cores. Along with the discovery of such attracting performances, versatile and practical methods for the synthesis of BTBT and its derivatives, and the π-extended derivatives including DNTT, dianthra[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DATT), and the thienoacenes with two thieno[3,2-b]thiophene moieties, have been developed. In addition, the materials have been recently utilized in sophisticated devices and circuits, including all-printed transistor arrays, flexible circuits on ultrathin plastic substrates, and biomedical applications, underscoring their promise as practical semiconductors for electronic device applications. These exciting results of the present BTBT-based materials are expected to open doors to new horizons of organic semiconductors in terms of practical application and the design and synthesis of far more superior materials.

  8. Application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows

    NASA Technical Reports Server (NTRS)

    Buning, Pieter G.; Parks, Steven J.; Chan, William M.; Renze, Kevin J.

    1992-01-01

    Several issues relating to the application of Chimera overlapped grids to complex geometries and flowfields are discussed. These include the addition of geometric components with different grid topologies, gridding for intersecting pieces of geometry, and turbulence modeling in grid overlap regions. Sample results are presented for transonic flow about the Space Shuttle launch vehicle. Comparisons with wind tunnel and flight measured pressures are shown.

  9. One-pot DNA construction for synthetic biology: the Modular Overlap-Directed Assembly with Linkers (MODAL) strategy

    PubMed Central

    Casini, Arturo; MacDonald, James T.; Jonghe, Joachim De; Christodoulou, Georgia; Freemont, Paul S.; Baldwin, Geoff S.; Ellis, Tom

    2014-01-01

    Overlap-directed DNA assembly methods allow multiple DNA parts to be assembled together in one reaction. These methods, which rely on sequence homology between the ends of DNA parts, have become widely adopted in synthetic biology, despite being incompatible with a key principle of engineering: modularity. To answer this, we present MODAL: a Modular Overlap-Directed Assembly with Linkers strategy that brings modularity to overlap-directed methods, allowing assembly of an initial set of DNA parts into a variety of arrangements in one-pot reactions. MODAL is accompanied by a custom software tool that designs overlap linkers to guide assembly, allowing parts to be assembled in any specified order and orientation. The in silico design of synthetic orthogonal overlapping junctions allows for much greater efficiency in DNA assembly for a variety of different methods compared with using non-designed sequence. In tests with three different assembly technologies, the MODAL strategy gives assembly of both yeast and bacterial plasmids, composed of up to five DNA parts in the kilobase range with efficiencies of between 75 and 100%. It also seamlessly allows mutagenesis to be performed on any specified DNA parts during the process, allowing the one-step creation of construct libraries valuable for synthetic biology applications. PMID:24153110

  10. Stress Reactivity in Traditional Chinese Medicine–Based Subgroups of Patients with Irritable Bowel Syndrome

    PubMed Central

    Chang, Megan C.; Shapiro, David; Joshi, Aditi; Shahabi, Leila; Tan, Steven; Smith, Suzanne; Hui, Ka Kit; Tillisch, Kirsten; Mayer, Emeran A.

    2014-01-01

    Abstract Objectives: This study aimed to examine differences in autonomic responses to stress, pain perception, and the role of negative affect in these responses in individuals with irritable bowel syndrome (IBS) according to Traditional Chinese Medicine (TCM) classifications. Design: Fifty-nine female patients with IBS age 18–65 years diagnosed by TCM practitioners as showing primarily an excess (n=32) or an overlap (n=27) pattern (mixed excess and deficiency) were assessed for symptom differences, heart rate, and skin conductance responses to a psychosocial stressor and pain perception. Settings/Locations: University of California in Los Angeles, California. Results: Compared with the excess group, the overlap group showed significantly greater overall gastrointestinal symptom severity, abdominal pain, and negative affect. The excess group with higher levels of negative affect showed greater reactivity to stress, whereas the overlap group showed an opposite response pattern. The overlap group showed increased cold sensitivity. Conclusions: IBS patients with the overlap pattern have greater disease severity and comorbidity than those with excess alone. Those with excess showed a pattern of increased stress response with greater negative affect, whereas the overlap group with greater deficiency showed lower physiologic arousal with greater negative affect, consistent with depletion resulting from allostatic load. PMID:24256027

  11. Can a model of overlapping gestures account for scanning speech patterns?

    PubMed

    Tjaden, K

    1999-06-01

    A simple acoustic model of overlapping, sliding gestures was used to evaluate whether coproduction was reduced for neurologic speakers with scanning speech patterns. F2 onset frequency was used as an acoustic measure of coproduction or gesture overlap. The effects of speaking rate (habitual versus fast) and utterance position (initial versus medial) on F2 frequency, and presumably gesture overlap, were examined. Regression analyses also were used to evaluate the extent to which across-repetition temporal variability in F2 trajectories could be explained as variation in coproduction for consonants and vowels. The lower F2 onset frequencies for disordered speakers suggested that gesture overlap was reduced for neurologic individuals with scanning speech. Speaking rate change did not influence F2 onset frequencies, and presumably gesture overlap, for healthy or disordered speakers. F2 onset frequency differences for utterance-initial and -medial repetitions were interpreted to suggest reduced coproduction for the utterance-initial position. The utterance-position effects on F2 onset frequency, however, likely were complicated by position-related differences in articulatory scaling. The results of the regression analysis indicated that gesture sliding accounts, in part, for temporal variability in F2 trajectories. Taken together, the results of this study provide support for the idea that speech production theory for healthy talkers helps to account for disordered speech production.

  12. Percolation in multiplex networks with overlap.

    PubMed

    Cellai, Davide; López, Eduardo; Zhou, Jie; Gleeson, James P; Bianconi, Ginestra

    2013-11-01

    From transportation networks to complex infrastructures, and to social and communication networks, a large variety of systems can be described in terms of multiplexes formed by a set of nodes interacting through different networks (layers). Multiplexes may display an increased fragility with respect to the single layers that constitute them. However, so far the overlap of the links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. Here, we show that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.

  13. An investigation of the 'Overlap' between the Statistical-Discrete-Gust and the Power-Spectral-Density analysis methods

    NASA Technical Reports Server (NTRS)

    Perry, Boyd, III; Pototzky, Anthony S.; Woods, Jessica A.

    1989-01-01

    This paper presents the results of a NASA investigation of a claimed 'Overlap' between two gust response analysis methods: the Statistical Discrete Gust (SDG) method and the Power Spectral Density (PSD) method. The claim is that the ratio of an SDG response to the corresponding PSD response is 10.4. Analytical results presented in this paper for several different airplanes at several different flight conditions indicate that such an 'Overlap' does appear to exist. However, the claim was not met precisely: a scatter of up to about 10 percent about the 10.4 factor can be expected.

  14. Exact relations between homoclinic and periodic orbit actions in chaotic systems

    NASA Astrophysics Data System (ADS)

    Li, Jizhou; Tomsovic, Steven

    2018-02-01

    Homoclinic and unstable periodic orbits in chaotic systems play central roles in various semiclassical sum rules. The interferences between terms are governed by the action functions and Maslov indices. In this article, we identify geometric relations between homoclinic and unstable periodic orbits, and derive exact formulas expressing the periodic orbit classical actions in terms of corresponding homoclinic orbit actions plus certain phase space areas. The exact relations provide a basis for approximations of the periodic orbit actions as action differences between homoclinic orbits with well-estimated errors. This enables an explicit study of relations between periodic orbits, which results in an analytic expression for the action differences between long periodic orbits and their shadowing decomposed orbits in the cycle expansion.

  15. Recombination in liquid-filled ionization chambers beyond the Boag limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brualla-González, L.; Roselló, J.

    Purpose: The high mass density and low mobilities of charge carriers can cause important recombination in liquid-filled ionization chambers (LICs). Saturation correction methods have been proposed for LICs. Correction methods for pulsed irradiation are based on Boag equation. However, Boag equation assumes that the charge ionized by one pulse is fully collected before the arrival of the next pulse. This condition does not hold in many clinical beams where the pulse repetition period may be shorter than the charge collection time, causing overlapping between charge carriers ionized by different pulses, and Boag equation is not applicable there. In this work,more » the authors present an experimental and numerical characterization of collection efficiencies in LICs beyond the Boag limit, with overlapping between charge carriers ionized by different pulses. Methods: The authors have studied recombination in a LIC array for different dose-per-pulse, pulse repetition frequency, and polarization voltage values. Measurements were performed in a Truebeam Linac using FF and FFF modalities. Dose-per-pulse and pulse repetition frequency have been obtained by monitoring the target current with an oscilloscope. Experimental collection efficiencies have been obtained by using a combination of the two-dose-rate method and ratios to the readout of a reference chamber (CC13, IBA). The authors have also used numerical simulation to complement the experimental data. Results: The authors have found that overlap significantly increases recombination in LICs, as expected. However, the functional dependence of collection efficiencies on the dose-per-pulse does not change (a linear dependence has been observed in the near-saturation region for different degrees of overlapping, the same dependence observed in the nonoverlapping scenario). On the other hand, the dependence of collection efficiencies on the polarization voltage changes in the overlapping scenario and does not follow that of Boag equation, the reason being that changing the polarization voltage also affects the charge collection time, thus changing the amount of overlapping. Conclusions: These results have important consequences for saturation correction methods for LICs. On one hand, the two-dose-rate method, which relies on the functional dependence of the collection efficiencies on dose-per-pulse, can also be used in the overlapping situation, provided that the two measurements needed to feed the method are performed at the same pulse repetition frequency (monitor unit rate). This result opens the door to computing collection efficiencies in LICs in many clinical setups where charge overlap in the LIC exists. On the other hand, correction methods based on the voltage-dependence of Boag equation like the three-voltage method or the modified two-voltage method will not work in the overlapping scenario due to the different functional dependence of collection efficiencies on the polarization voltage.« less

  16. Theoretical investigations on the d-p hybridized aromaticity, photoelectron spectroscopy and neutral salts of the LaX2- (X=Al, Ga, In) clusters.

    PubMed

    Chen, Jing; Yang, Huan; Wang, Jing; Cheng, Shi-Bo

    2018-05-30

    We present an extensive density functional theory (DFT) calculations on the geometrical and electronic structures of the triatomic LaX 2 - (X=Al, Ga, In) clusters. Various trail structures and spin states have been attempted to determine the lowest-energy geometries of these La-doped metal clusters. The ground states of all three clusters are calculated to possess the trigonal structures with the singlet multiplicities. The calculations on molecular orbitals (MOs) and nucleus-independent chemical shift (NICS) values have been performed to examine the aromatic characteristics of the LaX 2 - (X=Al, Ga, In) clusters. The present calculations disclose that all these metal clusters are doubly aromatic, namely d-p hybridized σ and π aromaticity resulting from the effective overlap between the 5d atomic orbital of the La atom and the p orbitals of the IIIA group elements. Theoretical vertical detachment energies (VDEs) were also calculated to simulate the photoelectron spectra (PES) of the clusters. In addition, by adding the alkali cations (Li + and Na + ) into the LaX 2 - (X=Al, Ga, In) clusters, the geometries and electronic structures of the corresponding neutral salts have also been investigated to gain more insights in the potential of using these aromatic anions as building blocks. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Detection Technique and Overview of EPT-HET of Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Tammen, J.; Boden, S.; Steinhagen, J.; Elftmann, R.; Martin-Garcia, C.; Boettcher, S. I.; Seimetz, L.; Ravanbakhsh, A.; Mahesh, Y.; Schuster, B.; Kulemzin, A.; Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.; Prieto, M.; Sanchez, S.

    2016-12-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four sensors (STEP, SIS, EPT, and HET). The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEP and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will partially cover the gap between STEP and HET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from 20 to 200 MeV/nuc by dE/dx -Total E technique. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level. Here we present the current development status of EPT-HET and calibration results of units.

  18. Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation.

    PubMed

    Teoh, Joanne Ee Mei; An, Jia; Feng, Xiaofan; Zhao, Yue; Chua, Chee Kai; Liu, Yong

    2018-03-03

    In 4D printing research, different types of complex structure folding and unfolding have been investigated. However, research on cross-folding of origami structures (defined as a folding structure with at least two overlapping folds) has not been reported. This research focuses on the investigation of cross-folding structures using multi-material components along different axes and different horizontal hinge thickness with single homogeneous material. Tensile tests were conducted to determine the impact of multi-material components and horizontal hinge thickness. In the case of multi-material structures, the hybrid material composition has a significant impact on the overall maximum strain and Young's modulus properties. In the case of single material structures, the shape recovery speed is inversely proportional to the horizontal hinge thickness, while the flexural or bending strength is proportional to the horizontal hinge thickness. A hinge with a thickness of 0.5 mm could be folded three times prior to fracture whilst a hinge with a thickness of 0.3 mm could be folded only once prior to fracture. A hinge with a thickness of 0.1 mm could not even be folded without cracking. The introduction of a physical hole in the center of the folding/unfolding line provided stress relief and prevented fracture. A complex flower petal shape was used to successfully demonstrate the implementation of overlapping and non-overlapping folding lines using both single material segments and multi-material segments. Design guidelines for establishing cross-folding structures using multi-material components along different axes and different horizontal hinge thicknesses with single or homogeneous material were established. These guidelines can be used to design and implement complex origami structures with overlapping and non-overlapping folding lines. Combined overlapping folding structures could be implemented and allocating specific hole locations in the overall designs could be further explored. In addition, creating a more precise prediction by investigating sets of in between hinge thicknesses and comparing the folding times before fracture, will be the subject of future work.

  19. New Insights into Structure and Luminescence of Eu III and Sm III Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    DOE PAGES

    Daumann, Lena J.; Tatum, David S.; Snyder, Benjamin E. R.; ...

    2015-01-21

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M IIIL] - (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the Eu III and Sm III complexes of this ligand undergo a transformation after in situ preparation to yield complexes withmore » higher quantum yield (QY) over time. We propose that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements.« less

  20. Optimization of auxiliary basis sets for the LEDO expansion and a projection technique for LEDO-DFT.

    PubMed

    Götz, Andreas W; Kollmar, Christian; Hess, Bernd A

    2005-09-01

    We present a systematic procedure for the optimization of the expansion basis for the limited expansion of diatomic overlap density functional theory (LEDO-DFT) and report on optimized auxiliary orbitals for the Ahlrichs split valence plus polarization basis set (SVP) for the elements H, Li--F, and Na--Cl. A new method to deal with near-linear dependences in the LEDO expansion basis is introduced, which greatly reduces the computational effort of LEDO-DFT calculations. Numerical results for a test set of small molecules demonstrate the accuracy of electronic energies, structural parameters, dipole moments, and harmonic frequencies. For larger molecular systems the numerical errors introduced by the LEDO approximation can lead to an uncontrollable behavior of the self-consistent field (SCF) process. A projection technique suggested by Löwdin is presented in the framework of LEDO-DFT, which guarantees for SCF convergence. Numerical results on some critical test molecules suggest the general applicability of the auxiliary orbitals presented in combination with this projection technique. Timing results indicate that LEDO-DFT is competitive with conventional density fitting methods. (c) 2005 Wiley Periodicals, Inc.

  1. HOPE Survey of the Near-Equatorial Magnetosphere Plasma Environment

    NASA Astrophysics Data System (ADS)

    Fernandes, P. A.; Larsen, B.; Skoug, R. M.; Reeves, G. D.; Denton, M.; Thomsen, M. F.; Funsten, H. O.; Jahn, J. M.; MacDonald, E.

    2016-12-01

    The twin Van Allen Probes spacecraft have completed over four years on-orbit resulting in more than 2 full precessions in local time. We present for the first time a summary of the plasma environment at the near-equatorial magnetosphere inside geostationary orbit from the HOPE (Helium-Oxygen-Proton-Electron) spectrometer. This rich data set is comprised of 48 months of release 3 particle data for electrons, protons, helium ions, and oxygen ions for energies from 15 eV to 50 keV. For each species we calculate median fluxes and flux distributions over the instrument energy range. We present the L and MLT (magnetic local time) distributions of these fluxes, percentiles, and flux ratios. This full-coverage survey, over an extended duration and range of energies and L-shells, examines the ion and electron fluxes and their ratios as a function of solar and geomagnetic activity. This detailed observation of the near-equatorial plasma environment reproduces well-known phenomenology in the energy ranges of overlap, and interpretation focuses on the structure, composition, and dynamics of the inner magnetosphere for various degrees of geomagnetic activity.

  2. Spin precession in spin-orbit coupled weak links: Coulomb repulsion and Pauli quenching

    NASA Astrophysics Data System (ADS)

    Shekhter, R. I.; Entin-Wohlman, O.; Jonson, M.; Aharony, A.

    2017-12-01

    A simple model for the transmission of pairs of electrons through a weak electric link in the form of a nanowire made of a material with strong electron spin-orbit interaction (SOI) is presented, with emphasis on the effects of Coulomb interactions and the Pauli exclusion principle. The constraints due to the Pauli principle are shown to "quench" the coherent SOI-induced precession of the spins when the spatial wave packets of the two electrons overlap significantly. The quenching, which results from the projection of the pair's spin states onto spin-up and spin-down states on the link, breaks up the coherent propagation in the link into a sequence of coherent hops that add incoherently. Applying the model to the transmission of Cooper pairs between two superconductors, we find that in spite of Pauli quenching, the Josephson current oscillates with the strength of the SOI, but may even change its sign (compared to the limit of the Coulomb blockade, when the quenching is absent). Conditions for an experimental detection of these features are discussed.

  3. Controlling the electronic structure of graphene using surface-adsorbate interactions

    DOE PAGES

    Matyba, Piotr; Carr, Adra; Chen, Cong; ...

    2015-07-15

    Hybridization of atomic orbitals in graphene on Ni(111) opens up a large energy gap of ≈2.8eV between nonhybridized states at the K point. Here we use alkali-metal adsorbate to reduce and even eliminate this energy gap, and also identify a new mechanism responsible for decoupling graphene from the Ni substrate without intercalation of atomic species underneath. Using angle-resolved photoemission spectroscopy and density functional theory calculations, we show that the energy gap is reduced to 1.3 eV due to moderate decoupling after adsorption of Na on top of graphene. Calculations confirm that after adsorption of Na, graphene bonding to Ni ismore » much weaker due to a reduced overlap of atomic orbitals, which results from n doping of graphene. Finally, we show that the energy gap is eliminated by strong decoupling resulting in a quasifreestanding graphene, which is achieved by subsequent intercalation of the Na underneath graphene. Furthermore, the ability to partially decouple graphene from a Ni substrate via n doping, with or without intercalation, suggests that the graphene-to-substrate interaction could be controlled dynamically.« less

  4. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion.

    PubMed

    Walter, André; Bechsgaard, Jesper; Scavenius, Carsten; Dyrlund, Thomas S; Sanggaard, Kristian W; Enghild, Jan J; Bilde, Trine

    2017-08-10

    Spiders are predaceous arthropods that are capable of subduing and consuming relatively large prey items compared to their own body size. For this purpose, spiders have evolved potent venoms to immobilise prey and digestive fluids that break down nutrients inside the prey's body by means of extra-oral digestion (EOD). Both secretions contain an array of active proteins, and an overlap of some components has been anecdotally reported, but not quantified. We systematically investigated the extent of such protein overlap. As venom injection and EOD succeed each other, we further infer functional explanations, and, by comparing two spider species belonging to different clades, assess its adaptive significance for spider EOD in general. We describe the protein composition of the digestive fluids of the mygalomorph Acanthoscurria geniculata and the araneomorph Stegodyphus mimosarum, in comparison with previously published data on a third spider species. We found a number of similar hydrolases being highly abundant in all three species. Among them, members of the family of astacin-like metalloproteases were particularly abundant. While the importance of these proteases in spider venom and digestive fluid was previously noted, we now highlight their widespread use across different spider taxa. Finally, we found species specific differences in the protein overlap between venom and digestive fluid, with the difference being significantly greater in S. mimosarum compared to A. geniculata. The injection of venom precedes the injection with digestive fluid, and the overlap of proteins between venom and digestive fluid suggests an early involvement in EOD. Species specific differences in the overlap may reflect differences in ecology between our two study species. The protein composition of the digestive fluid of all the three species we compared is highly similar, suggesting that the cocktail of enzymes is highly conserved and adapted to spider EOD.

  5. Procedural Sensitivities of Effect Sizes for Single-Case Designs with Directly Observed Behavioral Outcome Measures

    ERIC Educational Resources Information Center

    Pustejovsky, James E.

    2018-01-01

    A wide variety of effect size indices have been proposed for quantifying the magnitude of treatment effects in single-case designs. Commonly used measures include parametric indices such as the standardized mean difference, as well as non-overlap measures such as the percentage of non-overlapping data, improvement rate difference, and non-overlap…

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, H K; Miller, W O; Levatin, J L

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time- and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition onmore » the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap collision. We also performed separate simulations studying the debris generated by the collision of 5 and 10 cm spherical projectiles on the Iridium 33 satellite at closing velocities of 5, 10, and 15 km/s. It is important to understand the vulnerability of satellites to small debris threats, given their pervasiveness in orbit. These studies can also be merged with probabilistic conjunction analysis to better understand the risk to space assets. In these computational studies, we found that momentum transfer, kinetic energy losses due to dissipative mechanisms (e.g., fracture), fragment number, and fragment velocity increases with increasing velocity for a fixed projectile size. For a fixed velocity, we found that the smaller projectile size more efficiently transfers momentum to the satellite. This latter point has an important implication: Eight (spaced) 5 cm debris objects can impart more momentum to the satellite, and likely cause more damage, than a single 10 cm debris object at the same velocity. Further studies are required to assess the satellite damage induced by 1-5 cm sized debris objects, as well as multiple debris objects, in this velocity range.« less

  7. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    PubMed

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  8. Uncertainties in tidal theory: Implications for bloated hot Jupiters

    NASA Astrophysics Data System (ADS)

    Leconte, Jérémy; Chabrier, Gilles; Baraffe, Isabelle

    2011-11-01

    Thanks to the combination of transit photometry and radial velocity doppler measurements, we are now able to constrain theoretical models of the structure and evolution of objects in the whole mass range between icy giants and stars, including the giant planet/brown dwarf overlapping mass regime (Leconte et al. 2009). In the giant planet mass range, the significant fraction of planets showing a larger radius than predicted by the models suggests that a missing physical mechanism which is either injecting energy in the deep convective zone or reducing the net outward thermal flux is taking place in these objects. Several possibilities have been suggested for such a mechanism:•downward transport of kinetic energy originating from strong winds generated at the planet's surface (Showman & Guillot 2002),•enhanced opacity sources in hot-Jupiter atmospheres (Burrows et al. 2007),•ohmic dissipation in the ionized atmosphere (Batygin & Stevenson 2010),•(inefficient) layered or oscillatory convection in the planet's interior (Chabrier & Baraffe 2007),•Tidal heating due to circularization of the orbit, as originally suggested by Bodenheimer, Lin & Mardling (2001).Here we first review the differences between current models of tidal evolution and their uncertainties. We then revisit the viability of the tidal heating hypothesis using a tidal model which treats properly the highly eccentric and misaligned orbits commonly encountered in exoplanetary systems. We stress again that the low order expansions in eccentricity often used in constant phase lag tidal models (i.e. constant Q) necessarily yields incorrect results as soon as the (present or initial) eccentricity exceeds ~ 0.2, as can be rigorously demonstrated from Kepler's equations.

  9. Control of the orbital ordering in manganite superlattices and impact on properties

    NASA Astrophysics Data System (ADS)

    Koçak, Ayşegül Begüm; Varignon, Julien; Lemal, Sébastien; Ghosez, Philippe; Lepetit, Marie-Bernadette

    2017-09-01

    The present paper theoretically studies the possibility to control the orbital ordering in manganite superlattices. Indeed, favored dz2eg -orbital occupancy is one of the proposed interpretations for the formation of a "dead" layer at the interfaces in manganite thin films and superlattices. We show here that favored dz2eg -orbital occupancy at the interfaces can be prevented by using alkaline-earth simple oxides as alternating layers in very thin superlattices. Such an alternating layer promotes the contraction of the manganite layers at the interfaces and favors a dx2-y2eg orbital occupancy. This result holds for different manganites, different alkaline-earth simple oxides, as well as different thicknesses of the two layers. While Boltzmann's transport calculations on different superlattices show unexpectedly only weak dependence of the electrical conductivity on the orbital ordering, the enhanced occupation of the dx2-y2 orbital should result in an increased Curie temperature.

  10. Specificity and overlap of attention and memory biases in depression.

    PubMed

    Marchetti, Igor; Everaert, Jonas; Dainer-Best, Justin; Loeys, Tom; Beevers, Christopher G; Koster, Ernst H W

    2018-01-01

    Attentional and memory biases are viewed as crucial cognitive processes underlying symptoms of depression. However, it is still unclear whether these two biases are uniquely related to depression or whether they show substantial overlap. We investigated the degree of specificity and overlap of attentional and memory biases for depressotypic stimuli in relation to depression and anxiety by means of meta-analytic commonality analysis. By including four published studies, we considered a pool of 463 healthy and subclinically depressed individuals, different experimental paradigms, and different psychological measures. Memory bias is reliably and strongly related to depression and, specifically, to symptoms of negative mood, worthlessness, feelings of failure, and pessimism. Memory bias for negative information was minimally related to anxiety. Moreover, neither attentional bias nor the overlap between attentional and memory biases were significantly related to depression. Limitations include cross-sectional nature of the study. Our study showed that, across different paradigms and psychological measures, memory bias (and not attentional bias) represents a primary mechanism in depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Qualitatively different coding of symbolic and nonsymbolic numbers in the human brain.

    PubMed

    Lyons, Ian M; Ansari, Daniel; Beilock, Sian L

    2015-02-01

    Are symbolic and nonsymbolic numbers coded differently in the brain? Neuronal data indicate that overlap in numerical tuning curves is a hallmark of the approximate, analogue nature of nonsymbolic number representation. Consequently, patterns of fMRI activity should be more correlated when the representational overlap between two numbers is relatively high. In bilateral intraparietal sulci (IPS), for nonsymbolic numbers, the pattern of voxelwise correlations between pairs of numbers mirrored the amount of overlap in their tuning curves under the assumption of approximate, analogue coding. In contrast, symbolic numbers showed a flat field of modest correlations more consistent with discrete, categorical representation (no systematic overlap between numbers). Directly correlating activity patterns for a given number across formats (e.g., the numeral "6" with six dots) showed no evidence of shared symbolic and nonsymbolic number-specific representations. Overall (univariate) activity in bilateral IPS was well fit by the log of the number being processed for both nonsymbolic and symbolic numbers. IPS activity is thus sensitive to numerosity regardless of format; however, the nature in which symbolic and nonsymbolic numbers are encoded is fundamentally different. © 2014 Wiley Periodicals, Inc.

  12. Medial orbital wall landmarks in three different North American populations.

    PubMed

    Mehta, Milap P; Perry, Julian D

    2015-04-01

    We sought to measure the medial orbital wall foramina distances in two previously unstudied populations, to describe a new bony medial wall feature, and to validate the accuracy of a new coordinate measurement device within the orbit. Dried, well-preserved, complete human skulls without orbital defects were studied. Age, gender, birthplace, ethnicity, and laterality of the orbit were recorded for each skull. Supranumerary ethmoidal foramina were recorded, and the fronto-ethmoidal groove depth was measured. The distances between the anterior lacrimal crest (ALC) - anterior ethmoidal foramen (AEF), AEF - posterior ethmoidal foramen (PEF), and PEF - optic canal (OC) were measured first by surgical ruler and wire and then by the Microscribe coordinate measurement device. One hundred and forty-six orbits were studied. Fifty-seven orbits were of European or Caucasian descent, 68 orbits of African American descent, 2 orbits of West African descent, 11 orbits of Eskimo descent, and 8 orbits of unknown origin. No significant differences existed between the manual and Microscribe measurements for the ALC-AEF, AEF-PEF, and PEF-OF distances (p < 0.0001). A significant frontoethmoidal groove was observed in 27/146 (19%) orbits, in 6/57 (11%) Caucasian orbits, in 17/70 (24%) African American orbits, and in 4/11 (36%) Eskimo orbits. Supranumerary ethmoidal foramina were found in 50/146 orbits (34.2%) and in 17/27 (63%) orbits with a significant frontoethmoidal grooves. No significant differences in medial wall foramina distances exist between African American and Caucasian orbits; however, a frontoethmoidal groove occurs more commonly in African American orbits. This groove often occurs in the presence of supernumerary ethmoidal foramina. The Microscribe coordinate measurement system represents a valid tool to measure distances within the orbit.

  13. Improving de novo sequence assembly using machine learning and comparative genomics for overlap correction.

    PubMed

    Palmer, Lance E; Dejori, Mathaeus; Bolanos, Randall; Fasulo, Daniel

    2010-01-15

    With the rapid expansion of DNA sequencing databases, it is now feasible to identify relevant information from prior sequencing projects and completed genomes and apply it to de novo sequencing of new organisms. As an example, this paper demonstrates how such extra information can be used to improve de novo assemblies by augmenting the overlapping step. Finding all pairs of overlapping reads is a key task in many genome assemblers, and to this end, highly efficient algorithms have been developed to find alignments in large collections of sequences. It is well known that due to repeated sequences, many aligned pairs of reads nevertheless do not overlap. But no overlapping algorithm to date takes a rigorous approach to separating aligned but non-overlapping read pairs from true overlaps. We present an approach that extends the Minimus assembler by a data driven step to classify overlaps as true or false prior to contig construction. We trained several different classification models within the Weka framework using various statistics derived from overlaps of reads available from prior sequencing projects. These statistics included percent mismatch and k-mer frequencies within the overlaps as well as a comparative genomics score derived from mapping reads to multiple reference genomes. We show that in real whole-genome sequencing data from the E. coli and S. aureus genomes, by providing a curated set of overlaps to the contigging phase of the assembler, we nearly doubled the median contig length (N50) without sacrificing coverage of the genome or increasing the number of mis-assemblies. Machine learning methods that use comparative and non-comparative features to classify overlaps as true or false can be used to improve the quality of a sequence assembly.

  14. Why does the sign problem occur in evaluating the overlap of HFB wave functions?

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Oi, Makito; Shimizu, Noritaka

    2018-04-01

    For the overlap matrix element between Hartree-Fock-Bogoliubov states, there are two analytically different formulae: one with the square root of the determinant (the Onishi formula) and the other with the Pfaffian (Robledo's Pfaffian formula). The former formula is two-valued as a complex function, hence it leaves the sign of the norm overlap undetermined (i.e., the so-called sign problem of the Onishi formula). On the other hand, the latter formula does not suffer from the sign problem. The derivations for these two formulae are so different that the reasons are obscured why the resultant formulae possess different analytical properties. In this paper, we discuss the reason why the difference occurs by means of the consistent framework, which is based on the linked cluster theorem and the product-sum identity for the Pfaffian. Through this discussion, we elucidate the source of the sign problem in the Onishi formula. We also point out that different summation methods of series expansions may result in analytically different formulae.

  15. Effective-one-body model for black-hole binaries with generic mass ratios and spins

    NASA Astrophysics Data System (ADS)

    Taracchini, Andrea; Buonanno, Alessandra; Pan, Yi; Hinderer, Tanja; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Mroué, Abdul H.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilágyi, Béla; Taylor, Nicholas W.; Zenginoglu, Anil

    2014-03-01

    Gravitational waves emitted by black-hole binary systems have the highest signal-to-noise ratio in LIGO and Virgo detectors when black-hole spins are aligned with the orbital angular momentum and extremal. For such systems, we extend the effective-one-body inspiral-merger-ringdown waveforms to generic mass ratios and spins calibrating them to 38 numerical-relativity nonprecessing waveforms produced by the SXS Collaboration. The numerical-relativity simulations span mass ratios from 1 to 8, spin magnitudes up to 98% of extremality, and last for 40 to 60 gravitational-wave cycles. When the total mass of the binary is between 20 and 200M⊙, the effective-one-body nonprecessing (dominant mode) waveforms have overlap above 99% (using the advanced-LIGO design noise spectral density) with all of the 38 nonprecessing numerical waveforms, when maximizing only on initial phase and time. This implies a negligible loss in event rate due to modeling. We also show that—without further calibration— the precessing effective-one-body (dominant mode) waveforms have overlap above 97% with two very long, strongly precessing numerical-relativity waveforms, when maximizing only on the initial phase and time.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casey, Andrew R.; Hawkins, Keith; Koposov, Sergey

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho- Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon . For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundancesmore » for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC . We derive and validate effective temperature T {sub eff}, surface gravity log g , and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.« less

  17. Free Flyer Total and Spectral Solar Irradiance Sensor (TSIS) and Climate Services Mission

    NASA Technical Reports Server (NTRS)

    Cahalan, R.; Pilewskie, P.; Woods, T.

    2012-01-01

    NOAA's planned Total and Spectral Solar Irradiance Sensor (TSIS) mission will fly along with the NOAA user service payloads Advanced Data Collection System (ADCS) and Search and Rescue Satellite Aided Tracking (SARSAT). In ' order to guarantee continuity in the 33-year solar irradiance climate data record, TSIS must be launched in time to overlap with current on-orbit solar irradiance instruments. Currently TSIS is moving towards a launch rcadinss date of January 2015. TSIS provides for continuation of the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM) ,currently onboard NASA's Solar Radiation and Climate Experiment (SORCE) platform, launched in January 2003. The difficulty of ensuring continuity has increased due to the launch failure of NASA's Glory mission with its improved TIM. Achieving the needed overlap must now rely on extending SORCE. and maintaining the TSIS schedule. TSIS is one component of a NASA-NOAA joint program (JPSS) planned to transition certain climate observations to operational mode. We summarize issues of continuity, improvements being made to the TIM and 81M sensors, and plans to provide for traceability of total and spectral irradiance measurements to ground-based cryogenic standards.

  18. Understanding Volatile Occurrence on Vesta Using Bistatic Radar and GRaND Observations by the Dawn Mission

    NASA Astrophysics Data System (ADS)

    Palmer, E. M.; Heggy, E.; Kofman, W. W.

    2016-12-01

    The first orbital bistatic radar experiment was conducted by Dawn at Asteroid Vesta, where Dawn's HGA was used to transmit X-band radio waves and Earth's Deep Space Network (DSN) 70-meter antennas were used to receive. Due to the opportunistic nature of the experiment, the HGA remained in a fixed orientation toward the Earth such that surface radar reflections occurred at grazing incidence angles of 89° just before and after Dawn's occultation behind Vesta. Among the 16 observed echo sites, we find that σ0ranges from -12 dB to -20 dB and has corresponding RMS slopes ranging from 1°- 8°. To assess potential volatile presence, we compare the distribution of RMS slopes to subsurface hydrogen concentrations observed by Dawn's Gamma Ray and Neutron Detector (GRaND) to 1 m depth. While Vesta's surface is thought to have been largely depleted of volatiles during its differentiation, observations by Dawn'sGRaND and VIR instruments suggest the potential introduction of hydrated material through meteoritic impacts. We identify seven sites of potential volatile occurrence—where low roughness (<5°) is observed to be coupled with high content of hydrated materials (0.025 - 0.04 wt%). Such sites support the possibility of volatile presence, as the regolith should otherwise be particularly rough in the absence of smoothening processes such as the melting, run-off and recrystallization of water ice after an impact. The sites correspond to occultation entry orbit numbers 635, 644 and 719—which overlap Divalia Fossae, Marcia crater ejecta and Octavia crater, respectively—and exit orbit numbers 377, 406, 407 and 720—overlapping northern cratered trough terrain, dark material near Aruntia crater and the cratered highlands. Toward comparing volatile occurrence on other small bodies, Dawn'sBSR experiment at Asteroid Ceres raises new questions. How does the range of decimeter-scale RMS slopes compare with Vesta's surface? How well does the distribution of RMS slopes correlate with GRaND's map of subsurface hydrogen concentration? In addition to optimizing future missions' landing and surface trafficability, characterizing small body surface roughness using BSR will enable further investigation into the relationship between volatile presence and decimeter-scale surface roughness.

  19. Effects of Colored Noise on Periodic Orbits in a One-Dimensional Map

    NASA Astrophysics Data System (ADS)

    Li, Feng-Guo; Ai, Bao-Quan

    2011-06-01

    Noise can induce inverse period-doubling transition and chaos. The effects of the colored noise on periodic orbits, of the different periodic sequences in the logistic map, are investigated. It is found that the dynamical behaviors of the orbits, induced by an exponentially correlated colored noise, are different in the mergence of transition, and the effects of the noise intensity on their dynamical behaviors are different from the effects of the correlation time of noise. Remarkably, the noise can induce new periodic orbits, namely, two new orbits emerge in the period-four sequence at the bifurcation parameter value μ = 3.5, four new orbits in the period-eight sequence at μ = 3.55, and three new orbits in the period-six sequence at μ = 3.846, respectively. Moreover, the dynamical behaviors of the new orbits clearly show the resonancelike response to the colored noise.

  20. Detection and Evaluation of Pre-Preg Gaps and Overlaps in Glare Laminates

    NASA Astrophysics Data System (ADS)

    Nardi, Davide; Abouhamzeh, Morteza; Leonard, Rob; Sinke, Jos

    2018-03-01

    Gaps and overlaps between pre-preg plies represent common flaws in composite materials that can be introduced easily in an automated fibre placement manufacturing process and are potentially detrimental for the mechanical performances of the final laminates. Whereas gaps and overlaps have been addressed for full composite material, the topic has not been extended to a hybrid composite material such as Glare, a member of the family of Fibre Metal Laminates (FMLs). In this paper/research, the manufacturing, the detection, and the optical evaluation of intraply gaps and overlaps in Glare laminates are investigated. As part of an initial assessment study on the effect of gaps and overlaps on Glare, only the most critical lay-up has been considered. The experimental investigation started with the manufacturing of specimens having gaps and overlaps with different widths, followed by a non-destructive ultrasonic-inspection. An optical evaluation of the gaps and overlaps was performed by means of microscope image analysis of the cross sections of the specimens. The results from the non-destructive evaluations show the effectiveness of the ultrasonic detection of gaps and overlaps both in position, shape, width, and severity. The optical inspections confirm the accuracy of the non-destructive evaluation also adding useful insights about the geometrical features due to the presence of gaps and overlaps in the final Glare laminates. All the results justify the need for a further investigation on the effect of gaps and overlaps on the mechanical properties.

  1. Habitat use by sympatric species of Eutamias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharples, F.E.

    1983-11-01

    Differences in habitat use were investigated for four species of chipmunk (Eutamias amoenus, E. speciosus, E. senex, and E. quadrimaculatus) that occupy overlapping areas of roughly equal elevation in the northern Sierra Nevada. Livetrapping on six study plots was conducted over a 3-year period. Differences in vegetation structure among plots were quantified, and factors correlated with occurrence of each chipmunk species were identified by discriminant analysis. Three of the congeners appeared to exhibit preferences for different habitats. Only E. senex was found in closed-canopy forest. E. speciosus was associated only with areas of scattered trees. E. amoenus was almost themore » exclusive resident of brush plots and other disturbed areas but overlapped extensively with E. speciosus in open forest. The data suggest that the existence of different vegetational types accommodates overlapping occurrence of these species within a single altitudinal zone.« less

  2. On the ground state of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Bakry, Ahmed S.; Leinweber, Derek B.; Williams, Anthony G.

    2011-08-01

    We investigate the overlap of the ground state meson potential with sets of mesonic-trial wave functions corresponding to different gluonic distributions. We probe the transverse structure of the flux tube through the creation of non-uniform smearing profiles for the string of glue connecting two color sources in Wilson loop operator. The non-uniformly UV-regulated flux-tube operators are found to optimize the overlap with the ground state and display interesting features in the ground state overlap.

  3. Action and Perception Are Temporally Coupled by a Common Mechanism That Leads to a Timing Misperception

    PubMed Central

    Astefanoaei, Corina; Daye, Pierre M.; FitzGibbon, Edmond J.; Creanga, Dorina-Emilia; Rufa, Alessandra; Optican, Lance M.

    2015-01-01

    We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception. PMID:25632126

  4. Electronic band structure study of colossal magnetoresistance in Tl 2Mn 2O 7

    NASA Astrophysics Data System (ADS)

    Seo, D.-K.; Whangbo, M.-H.; Subramanian, M. A.

    1997-02-01

    The electronic structure of Tl 2Mn 2O 7 was examined by performing tight binding band calculations. The overlap between the Mn t 2g- and Tl 6 s-block bands results in a partial filling of the Tl 6 s-block bands. The associated Fermi surface consists of 12 cigar-shape electron pockets with each electron pocket about {1}/{1000} of the first Brillouin zone in size. The Tl 6 s-block bands have orbital contributions from the Mn atoms, and the carrier density is very low. These are important for the occurrence of a colossal magnetoresistance in Tl 2Mn 2O 7.

  5. Breadth of Scientific Activities and Network Station Specifications in the International GPS Service (IGS)

    NASA Technical Reports Server (NTRS)

    Moore, A. W.; Neilan, R. E.; Springer, T. A.; Reigber, Ch.

    2000-01-01

    A strong multipurpose aspect of the International GPS Service (IGS) is revealed by a glance at the titles of current projects and working groups within the IGS: IGS/BIPM Time Transfer Project; Ionosphere Working Group; Troposphere Working Group; International GLONASS Experiment; Working Group on Low-Earth Orbiter Missions; and Tide Gauges, CGPS, and the IGS. The IGS network infrastructure, in large part originally commissioned for geodynamical investigations, has proved to be a valuable asset in developing application-oriented subnetworks whose requirements overlap the characteristics of existing IGS stations and future station upgrades. Issues encountered thus far in the development of multipurpose or multitechnique IGS projects as well as future possibilities will be reviewed.

  6. Evaluation of multiple institutions' models for knowledge-based planning of volumetric modulated arc therapy (VMAT) for prostate cancer.

    PubMed

    Ueda, Yoshihiro; Fukunaga, Jun-Ichi; Kamima, Tatsuya; Adachi, Yumiko; Nakamatsu, Kiyoshi; Monzen, Hajime

    2018-03-20

    The aim of this study was to evaluate the performance of a commercial knowledge-based planning system, in volumetric modulated arc therapy for prostate cancer at multiple radiation therapy departments. In each institute, > 20 cases were assessed. For the knowledge-based planning, the estimated dose (ED) based on geometric and dosimetric information of plans was generated in the model. Lower and upper limits of estimated dose were saved as dose volume histograms for each organ at risk. To verify whether the models performed correctly, KBP was compared with manual optimization planning in two cases. The relationships between the EDs in the models and the ratio of the OAR volumes overlapping volume with PTV to the whole organ volume (V overlap /V whole ) were investigated. There were no significant dosimetric differences in OARs and PTV between manual optimization planning and knowledge-based planning. In knowledge-based planning, the difference in the volume ratio of receiving 90% and 50% of the prescribed dose (V90 and V50) between institutes were more than 5.0% and 10.0%, respectively. The calculated doses with knowledge-based planning were between the upper and lower limits of ED or slightly under the lower limit of ED. The relationships between the lower limit of ED and V overlap /V whole were different among the models. In the V90 and V50 for the rectum, the maximum differences between the lower limit of ED among institutes were 8.2% and 53.5% when V overlap /V whole for the rectum was 10%. In the V90 and V50 for the bladder, the maximum differences of the lower limit of ED among institutes were 15.1% and 33.1% when V overlap /V whole for the bladder was 10%. Organs' upper and lower limits of ED in the models correlated closely with the V overlap /V whole . It is important to determine whether the models in KBP match a different institute's plan design before the models can be shared.

  7. Composite operators in cubic field theories and link-overlap fluctuations in spin-glass models

    NASA Astrophysics Data System (ADS)

    Altieri, Ada; Parisi, Giorgio; Rizzo, Tommaso

    2016-01-01

    We present a complete characterization of the fluctuations and correlations of the squared overlap in the Edwards-Anderson spin-glass model in zero field. The analysis reveals that the energy-energy correlation (and thus the specific heat) has a different critical behavior than the fluctuations of the link overlap in spite of the fact that the average energy and average link overlap have the same critical properties. More precisely the link-overlap fluctuations are larger than the specific heat according to a computation at first order in the 6 -ɛ expansion. An unexpected outcome is that the link-overlap fluctuations have a subdominant power-law contribution characterized by an anomalous logarithmic prefactor which is absent in the specific heat. In order to compute the ɛ expansion we consider the problem of the renormalization of quadratic composite operators in a generic multicomponent cubic field theory: the results obtained have a range of applicability beyond spin-glass theory.

  8. Infrequent visitors of the Kozai kind: the dynamical lives of 2012 FC71, 2014 EK24, 2014 QD364, and 2014 UR

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2015-08-01

    Context. Asteroids with semi-major axes very close to that of a host planet can avoid node crossings when their nodal points are at perihelion and at aphelion. This layout protects the asteroids from close encounters, and eventual collisions, with the host planet. Aims: Here, we study the short-term dynamical evolution of four recently discovered near-Earth asteroids (NEAs) - 2012 FC71, 2014 EK24, 2014 QD364, and 2014 UR - that follow very Earth-like orbits. Methods: Our analysis is based on results of direct N-body calculations that use the most updated ephemerides and include perturbations from the eight major planets, the Moon, the barycentre of the Pluto-Charon system, and the three largest asteroids. Results: These four NEAs exhibit an orbital evolution unlike any other known near-Earth object (NEO). Beyond horseshoe, tadpole, or quasi-satellite trajectories, they follow co-orbital passing orbits relative to the Earth within the Kozai domain. Our calculations show that secular interactions induce librations of their relative argument of perihelion with respect to our planet but also to Venus, Mars, and Jupiter. Secular chaos is also present. The size of this transient population is probably large. Conclusions: Although some of these NEAs can remain orbitally stable for many thousands of years, their secular dynamics are substantially more complicated than commonly thought and cannot be properly described within the framework of the three-body problem alone owing to the overlapping of multiple secular resonances. Objects in this group are amongst the most atypical NEOs regarding favourable visibility windows because these are separated in time by many decades or even several centuries. Figures 2, 3, 5, 7, 9, 11, 13, 15, 17, 18, Table 2, and Appendix A are available in electronic form at http://www.aanda.org

  9. Modulating optical polarization properties of Al-rich AlGaN/AlN quantum well by controlling wavefunction overlap

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Yu, T. J.; Lu, H. M.; Yuan, G. C.; Shen, B.; Zhang, G. Y.

    2013-10-01

    Using modified k.p perturbation method, the optical polarization properties of Al-rich AlGaN/AlN quantum wells (QWs) are studied. It is found that change of wavefunction overlaps between conduction band and valance subbands of heavy hole, light hole, and crystal-field split off hole is different. Such difference leads to the overturn of polarization degree and modulates optical polarization properties as well width and strain vary. This prompts that changing wavefunction overlaps of electron and hole can lead to a way to modulate optical polarization properties of Al-rich AlGaN/AlN QWs, on no condition that valence band order changes.

  10. Sentinel-1A - First precise orbit determination results

    NASA Astrophysics Data System (ADS)

    Peter, H.; Jäggi, A.; Fernández, J.; Escobar, D.; Ayuga, F.; Arnold, D.; Wermuth, M.; Hackel, S.; Otten, M.; Simons, W.; Visser, P.; Hugentobler, U.; Féménias, P.

    2017-09-01

    Sentinel-1A is the first satellite of the European Copernicus programme. Equipped with a Synthetic Aperture Radar (SAR) instrument the satellite was launched on April 3, 2014. Operational since October 2014 the satellite delivers valuable data for more than two years. The orbit accuracy requirements are given as 5 cm in 3D. In order to fulfill this stringent requirement the precise orbit determination (POD) is based on the dual-frequency GPS observations delivered by an eight-channel GPS receiver. The Copernicus POD (CPOD) Service is in charge of providing the orbital and auxiliary products required by the PDGS (Payload Data Ground Segment). External orbit validation is regularly performed by comparing the CPOD Service orbits to orbit solutions provided by POD expert members of the Copernicus POD Quality Working Group (QWG). The orbit comparisons revealed systematic orbit offsets mainly in radial direction (approx. 3 cm). Although no independent observation technique (e.g. DORIS, SLR) is available to validate the GPS-derived orbit solutions, comparisons between the different antenna phase center variations and different reduced-dynamic orbit determination approaches used in the various software packages helped to detect the cause of the systematic offset. An error in the given geometry information about the satellite has been found. After correction of the geometry the orbit validation shows a significant reduction of the radial offset to below 5 mm. The 5 cm orbit accuracy requirement in 3D is fulfilled according to the results of the orbit comparisons between the different orbit solutions from the QWG.

  11. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  12. NH3 molecule adsorption on spinel-type ZnFe2O4 surface: A DFT and experimental comparison study

    NASA Astrophysics Data System (ADS)

    Zou, Cong-yang; Ji, Wenchao; Shen, Zhemin; Tang, Qingli; Fan, Maohong

    2018-06-01

    Ammonia (NH3) is a caustic environment pollutant which contributes to haze formation and water pollution. Zinc ferrite (ZnFe2O4) exhibits good catalytic activity in NH3 removal. The density functional theory (DFT) was applied to explore the interaction mechanism of NH3 molecule adsorption on spinel-type ZnFe2O4 (1 1 0) surface with GGA-PW91 method in atomic and electronic level. The results indicated that NH3 molecule preferred to adsorb on surface Zn atom with the formation of H3Nsbnd Zn coordinate bond over ZnFe2O4 (1 1 0) surface. The H3Nsbnd Zn state was exothermic process with adsorption energy of -203.125 kJ/mol. About 0.157e were transferred from NH3 molecule to the surface which resulted in strong interaction. Higher activation degree occurred in H3Nsbnd Zn configuration with two Nsbnd H bonds elongated and NH3 structure became more flat on the surface. The PDOS change of NH3 molecule was consistent with the result of adsorption energy. It was concluded that s orbital of NH3 (N) and s, p orbitals of Zn atom overlapped at -0.619 Ha. The p orbital of NH3 (N) has interaction with d orbital of Zn atom suggesting the hybridization between them. Based on NH3 removal experimental and XPS spectra results, NH3sbnd ZnFe2O4 interaction was mainly depended on the coordination between Zn atom and NH3 molecule. The DFT calculations have deepened our understanding on NH3sbnd ZnFe2O4 interaction system.

  13. A 4-term energy level scheme for the high-spin ferrous hemoproteins: evidence for the 5E eta, and 5B2 terms as the ground multiplets in hemoproteins with a histidine and a cysteine protein-derived heme ligand, respectively.

    PubMed

    Oganesyan, V S; Sharonov, Y A

    1997-03-01

    We have carried out analysis of the electronic level scheme of the high-spin ferrous hemoproteins by simultaneous fit of the adjustable parameters of a 4-term theoretical model to low-temperature magnetic circular dichroism (MCD), room temperature absorption spectra and available magnetic susceptibility and or Mössbauer data of myoglobin, horseradish peroxidase and cytochrome P450. The high reliability of the ligand field parameter values obtained for deoxymyoglobin is confirmed by good agreement between the predicted and observed magnetic field dependences of MCD and magnetization not used in the fit procedure. In addition, an energy gap between the ground and first excited singlets, estimated to be 4.2 cm-1, agrees well with the value of approximately 4 cm-1 derived from the far-infrared magnetic resonance. Our computer and explicit theoretical analyses give strong evidence that large distinctions in the shape, intensity and temperature behaviour of the MCD of Mb and HRP from those of cytochrome P450 can be described only if the ground manifold in these proteins is 5E eta and 5B2, respectively. The changes in relative energies of the one-electron 3d-orbitals on substitution of an imidazole of histidine for a sulphur anion of cysteine as a protein-derived heme iron ligand are rationalized by the lower ionization potential of the negatively charged sulphur ligand and the higher pi-orbital overlap of its lone pair orbitals with the iron d pi-orbitals compared to the imidazole ligand.

  14. Surveying the Inner Solar System with an Infrared Space Telescope

    NASA Astrophysics Data System (ADS)

    Buie, Marc W.; Reitsema, Harold J.; Linfield, Roger P.

    2016-11-01

    We present an analysis of surveying the inner solar system for objects that may pose some threat to Earth. Most of the analysis is based on understanding the capability provided by Sentinel, a concept for an infrared space-based telescope placed in a heliocentric orbit near the distance of Venus. From this analysis, we show that (1) the size range being targeted can affect the survey design, (2) the orbit distribution of the target sample can affect the survey design, (3) minimum observational arc length during the survey is an important metric of survey performance, and (4) surveys must consider objects as small as D=15{--}30 m to meet the goal of identifying objects that have the potential to cause damage on Earth in the next 100 yr. Sentinel will be able to find 50% of all impactors larger than 40 m in a 6.5 yr survey. The Sentinel mission concept is shown to be as effective as any survey in finding objects bigger than D = 140 m but is more effective when applied to finding smaller objects on Earth-impacting orbits. Sentinel is also more effective at finding objects of interest for human exploration that benefit from lower propulsion requirements. To explore the interaction between space and ground search programs, we also study a case where Sentinel is combined with the Large Synoptic Survey Telescope (LSST) and show the benefit of placing a space-based observatory in an orbit that reduces the overlap in search regions with a ground-based telescope. In this case, Sentinel+LSST can find more than 70% of the impactors larger than 40 m assuming a 6.5 yr lifetime for Sentinel and 10 yr for LSST.

  15. Water-fat separation with parallel imaging based on BLADE.

    PubMed

    Weng, Dehe; Pan, Yanli; Zhong, Xiaodong; Zhuo, Yan

    2013-06-01

    Uniform suppression of fat signal is desired in clinical applications. Based on phase differences introduced by different chemical shift frequencies, Dixon method and its variations are used as alternatives of fat saturation methods, which are sensitive to B0 inhomogeneities. Iterative Decomposition of water and fat with Echo Asymmetry and Least squares estimation (IDEAL) separates water and fat images with flexible echo shifting. Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER, alternatively termed as BLADE), in conjunction with IDEAL, yields Turboprop IDEAL (TP-IDEAL) and allows for decomposition of water and fat signal with motion correction. However, the flexibility of its parameter setting is limited, and the related phase correction is complicated. To address these problems, a novel method, BLADE-Dixon, is proposed in this study. This method used the same polarity readout gradients (fly-back gradients) to acquire in-phase and opposed-phases images, which led to less complicated phase correction and more flexible parameter setting compared to TP-IDEAL. Parallel imaging and undersampling were integrated to reduce scan time. Phantom, orbit, neck and knee images were acquired with BLADE-Dixon. Water-fat separation results were compared to those measured with conventional turbo spin echo (TSE) Dixon and TSE with fat saturation, respectively, to demonstrate the performance of BLADE-Dixon. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The Impacts of an Observationally-Based Cloud Fraction and Condensate Overlap Parameterization on a GCM's Cloud Radiative Effect

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Lee, Dongmin; Norris, Peter; Yuan, Tianle

    2011-01-01

    It has been shown that the details of how cloud fraction overlap is treated in GCMs has substantial impact on shortwave and longwave fluxes. Because cloud condensate is also horizontally heterogeneous at GCM grid scales, another aspect of cloud overlap should in principle also be assessed, namely the vertical overlap of hydrometeor distributions. This type of overlap is usually examined in terms of rank correlations, i.e., linear correlations between hydrometeor amount ranks of the overlapping parts of cloud layers at specific separation distances. The cloud fraction overlap parameter and the rank correlation of hydrometeor amounts can be both expressed as inverse exponential functions of separation distance characterized by their respective decorrelation lengths (e-folding distances). Larger decorrelation lengths mean that hydrometeor fractions and probability distribution functions have high levels of vertical alignment. An analysis of CloudSat and CALIPSO data reveals that the two aspects of cloud overlap are related and their respective decorrelation lengths have a distinct dependence on latitude that can be parameterized and included in a GCM. In our presentation we will contrast the Cloud Radiative Effect (CRE) of the GEOS-5 atmospheric GCM (AGCM) when the observationally-based parameterization of decorrelation lengths is used to represent overlap versus the simpler cases of maximum-random overlap and globally constant decorrelation lengths. The effects of specific overlap representations will be examined for both diagnostic and interactive radiation runs in GEOS-5 and comparisons will be made with observed CREs from CERES and CloudSat (2B-FLXHR product). Since the radiative effects of overlap depend on the cloud property distributions of the AGCM, the availability of two different cloud schemes in GEOS-5 will give us the opportunity to assess a wide range of potential cloud overlap consequences on the model's climate.

  17. Topological Anderson insulator induced by inter-cell hopping disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Shu-Hui; College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018; Song, Juntao, E-mail: jtsong@mail.hebtu.edu.cn

    We have studied in detail the influence of same-orbit and different-orbit hopping disorders in HgTe/CdTe quantum wells. Intriguingly, similar to the behavior of the on-site Anderson disorder, a phase transition from a topologically trivial phase to a topological phase is induced at a proper strength of the same-orbit hopping disorder. For different-orbit hopping disorder, however, the phase transition does not occur. The results have been analytically verified by using effective medium theory. A consistent conclusion can be obtained by comparing phase diagrams, conductance, and conductance fluctuations. In addition, the influence of Rashba spin-orbit interaction (RSOI) on the system has beenmore » studied for different types of disorder, and the RSOI shows different influence on topological phase at different disorders. The topological phase induced by same-orbit hopping disorder is more robust against the RSOI than that induced by on-site Anderson disorder. For different-orbit hopping disorder, no matter whether the RSOI is included or not, the phase transition does not occur. The results indicate, whether or not the topological Anderson insulator can be observed depends on a competition between the different types of the disorder as well as the strength of the RSOI in a system.« less

  18. Hypochondriasis and somatization: two distinct aspects of somatoform disorders?

    PubMed

    Leibbrand, R; Hiller, W; Fichter, M M

    2000-01-01

    We investigated boundaries and overlap between somatization and hypochondriasis on different levels of psychopathology: (1) comorbidity between hypochondriasis and somatization on the level of diagnoses in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV; American Psychiatric Association, 1994): (2) comorbidity with other mental disorders; (3) differences in clinical characteristics: and (4) overlap on the level of psychometric measures. The sample consisted of 120 psycho somatic inpatients. Somatoform, hypochondriacal, and depressive symptomatology, cognitions about body and health, and further aspects of general symptomatology were investigated. Diagnoses of Axis I and II were based on DSM-IV Our results suggest a large overlap on the level of DSM-IV-diagnoses: only 3 of 31 hypochondriacal patients had no multiple somatoform symptoms, while 58 of 86 patients with multiple somatoform symptoms had no hypochondriasis. However, the overlap between hypochondriacal and somatization symptomatology on the level of psychometric measurement is only moderate, indicating that hypochondriasis is a markedly distinct aspect of somatoform disorders.

  19. Examining the Effects of Stiffness and Mass Difference on the Thermal Interface Conductance Between Lennard-Jones Solids

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Henry, Asegun

    2015-12-01

    To date, the established methods that describe thermal interface conductance (TIC) and include mode-level dependence have not included anharmonicity. The current intuition is therefore based on the behavior in the harmonic limit, whereby the extent of overlap in the bulk phonon density of states (DoS) (e.g., frequency overlap) dictates the TIC and more frequency overlap leads to higher TIC. Here, we study over 2,000 interfaces described by the Lennard-Jones potential using equilibrium molecular dynamics simulations, whereby we systematically change the mass and stiffness of each side. We show that the trends in TIC do not generally follow that of the bulk phonon DoS overlap, but instead more closely follow the vibrational power spectrum overlap for the interfacial atoms. We then identify the frequency overlap in the interfacial power spectra as an improved descriptor for understanding the qualitative trends in TIC. Although improved, the results show that the basic intuition of frequency overlap is still insufficient to explain all of the features, as the remaining variations are shown to arise from anharmonicity, which is a critical effect to include in interface calculations above cryogenic temperatures.

  20. The influence of dimensional overlap on location-related priming in the Simon task.

    PubMed

    Lehle, Carola; Stürmer, Birgit; Sommer, Werner

    2013-01-01

    Choice reaction times are shorter when stimulus and response locations are compatible than when they are incompatible as in the Simon effect. Recent studies revealed that Simon effects are strongly attenuated when there is temporal overlap with a different high-priority task, accompanied by a decrease of early location-related response priming as reflected in the lateralized readiness potential (LRP). The latter result was obtained in a study excluding overlap of stimulus location with any other dimension in the tasks. Independent evidence suggests that location-related priming might be present in conditions with dimensional overlap. Here we tested this prediction in a dual-task experiment supplemented with recording LRPs. The secondary task was either a standard Simon task where irrelevant stimulus location overlapped with dimensions of the primary task or a Stroop-like Simon task including additional overlap of irrelevant and relevant stimulus attributes. At high temporal overlap, there was no Simon effect nor was there stimulus-related response priming in either condition. Therefore stimulus-triggered response priming seems to be abolished in conditions of limited capacity even if the likelihood of an S-R compatibility effect is maximized.

  1. Modeling low-thrust transfers between periodic orbits about five libration points: Manifolds and hierarchical design

    NASA Astrophysics Data System (ADS)

    Zeng, Hao; Zhang, Jingrui

    2018-04-01

    The low-thrust version of the fuel-optimal transfers between periodic orbits with different energies in the vicinity of five libration points is exploited deeply in the Circular Restricted Three-Body Problem. Indirect optimization technique incorporated with constraint gradients is employed to further improve the computational efficiency and accuracy of the algorithm. The required optimal thrust magnitude and direction can be determined to create the bridging trajectory that connects the invariant manifolds. A hierarchical design strategy dividing the constraint set is proposed to seek the optimal solution when the problem cannot be solved directly. Meanwhile, the solution procedure and the value ranges of used variables are summarized. To highlight the effectivity of the transfer scheme and aim at different types of libration point orbits, transfer trajectories between some sample orbits, including Lyapunov orbits, planar orbits, halo orbits, axial orbits, vertical orbits and butterfly orbits for collinear and triangular libration points, are investigated with various time of flight. Numerical results show that the fuel consumption varies from a few kilograms to tens of kilograms, related to the locations and the types of mission orbits as well as the corresponding invariant manifold structures, and indicates that the low-thrust transfers may be a beneficial option for the extended science missions around different libration points.

  2. A novel method for overlapping community detection using Multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Morteza; Shahmoradi, Mohammad Reza; Heshmati, Zainabolhoda; Salehi, Mostafa

    2018-09-01

    The problem of community detection as one of the most important applications of network science can be addressed effectively by multi-objective optimization. In this paper, we aim to present a novel efficient method based on this approach. Also, in this study the idea of using all Pareto fronts to detect overlapping communities is introduced. The proposed method has two main advantages compared to other multi-objective optimization based approaches. The first advantage is scalability, and the second is the ability to find overlapping communities. Despite most of the works, the proposed method is able to find overlapping communities effectively. The new algorithm works by extracting appropriate communities from all the Pareto optimal solutions, instead of choosing the one optimal solution. Empirical experiments on different features of separated and overlapping communities, on both synthetic and real networks show that the proposed method performs better in comparison with other methods.

  3. A Twin Study Examining Rumination as a Transdiagnostic Correlate of Psychopathology

    PubMed Central

    Johnson, Daniel P.; Rhee, Soo Hyun; Friedman, Naomi P.; Corley, Robin P.; Munn-Chernoff, Melissa A.; Hewitt, John K.; Whisman, Mark A.

    2016-01-01

    This study examined the genetic and environmental influences on rumination and its associations with several forms of psychopathology in a sample of adult twins (N = 744). Rumination was significantly associated with major depressive disorder, depressive symptoms, generalized anxiety disorder, eating pathology, and substance dependence symptoms. There were distinct patterns of etiological overlap between rumination and each form of psychopathology; rumination had considerable genetic overlap with depression, modest genetic overlap with eating pathology, and almost no genetic overlap with substance dependence. Findings further suggest considerable overlap between genetic and environmental influences on rumination and those contributing to the covariance between forms of psychopathology. Results were specific to ruminative thought and did not extend to self-reflection. These findings support the conceptualization of rumination as a transdiagnostic correlate and risk factor for psychopathology and also suggest that the biological and environmental mechanisms linking rumination to psychopathology may differ depending on the disorder. PMID:28111610

  4. Recent Origin of Titan's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Cuk, Matija

    2014-05-01

    Saturn's regular satellite system contains several dynamical mysteries, including the high tidal heating of Enceladus and undamped eccentricity of Titan. Lainey et al.(2012) proposed that the tidal evolution of the system is much faster than previously thought, which would explain heating of Enceladus and implies that some of the current satellites are less than 1 Gyr old. Cuk et al.(2014) pointed out that this fast tidal evolution could also explain the Titan-Hyperion resonance. If the inner, mid-sized Saturnian moons were re-accreted within the last Gyr, then the same event could have generated the observed eccentricity of Titan. Titan-Hyperion resonance puts strong constraints on this event, as many scenarios lead to the loss of Hyperion (usually through collision with Titan). Here I report on the ongoing study of the history of the Saturnian system, using symplectic integrators SIMPL (for stable configurations) and COMPLEX (for situations when the moons' orbits crossed). I find that the past system of icy satellites could have naturally evolved into instability, by having Dione and Rhea-like moons enter the mutual 4:3 resonance. This resonance is chaotic due to overlap with the solar evection resonance (i.e. the moons' precession rates in the mean-motion resonance overlap with Saturn's mean motion). The outcome of such resonance is a collision between the mid-sized moons, likely followed by re-accretion, with Titan being largely unaffected. I also find that close encounters between a mid-sized moon and Titan could with significant probability both excite Titan and preserve its resonance with Hyperion (cf. Hamilton 2013). I will present possible scenarios in which the previous system had an additional moon exterior to Rhea. This additional moon would have been destabilized by resonances with the inner moons and eventually absorbed by Titan, which acquired its eccentricity in the process. This research is supported by NASA's Outer Planet Research Program.

  5. A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol.

    PubMed

    Carnes, Greg; Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-04-07

    Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy chaining' all couch positions using the selected images until an entire 3D volume was produced. The algorithm produced 16 phase volumes to complete a 4D-CT dataset. Additional 4D-CT datasets were also produced using external marker amplitude and phase angle sorting methods. The image quality of the volumes produced by the different methods was quantified by calculating the mean difference of the sorted overlapping slices from adjacent couch positions. The NCC sorted images showed a significant decrease in the mean difference (p < 0.01) for the five patients.

  6. Evaluation of potential substrates for restenosis and thrombosis in overlapped versus edge-to-edge juxtaposed bioabsorbable scaffolds: Insights from a computed fluid dynamic study.

    PubMed

    Rigatelli, Gianluca; Zuin, Marco; Dell'Avvocata, Fabio; Cardaioli, Paolo; Vassiliev, Dobrin; Ferenc, Miroslaw; Nghia, Nguyen Tuan; Nguyen, Thach; Foin, Nicholas

    2018-04-01

    Multiple BRSs and specifically the Absorb scaffold (BVS) (Abbott Vascular, Santa Clara, CA USA) have been often used to treat long diffuse coronary artery lesions. We evaluate by a computational fluid dynamic(CFD) study the impact on the intravascular fluid rheology on multiple bioabsorbable scaffolds (BRS) by standard overlapping versus edge-to-edge technique. We simulated the treatment of a real long significant coronary lesion (>70% luminal narrowing) involving the left anterior descending artery (LAD) treated with a standard or edge-to-edge technique, respectively. Simulations were performed after BVS implantations in two different conditions: 1) Edge-to-edge technique, where the scaffolds are kissed but not overlapped resulting in a luminal encroachment of 0.015cm (150μm); 2) Standard overlapping, where the scaffolds are overlapped resulting in a luminal encroachment of 0.030cm (300μm). After positioning the BVS across the long lesion, the implantation procedure was performed in-silico following all the usual procedural steps. Analysis of the wall shear stress (WSS) suggested that at the vessel wall level the WSS were lower in the overlapping zones overlapping compared to the edge-to-edge zone (∆=0.061Pa, p=0.01). At the struts level the difference between the two WSS was more striking (∆=1.065e-004 p=0.01) favouring the edge-to-edge zone. Our study suggested that at both vessel wall and scaffold struts levels, there was lowering WSS when multiple BVS were implanted with the standard overlapping technique compared to the "edge-to-edge" technique. This lower WSS might represent a substrate for restenosis, early and late BVS thrombosis, potentially explaining at least in part the recent evidences of devices poor performance. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. [Symptom overlaps between functional heartburn, functional dyspepsia, and irritable bowel syndrome].

    PubMed

    2014-05-01

    To determine symptom overlaps between functional heartburn (FH), functional dyspepsia (FD), and irritable bowel syndrome (IBS). One hundred and ten patients with frequent heartburn but no mucosa breakage under endoscopy were enrolled consecutively. They were required to fill out a questionnaire. The overlapped symptoms of FD and IBS symptoms were screened using Rome ill criteria. The participants were also examined using Hamilton anxiety scale/Hamilton depression scale. All of the participants were followed with 24 h esophageal multichannel intra-luminal impedance monitoring with pH sensor (MII-pH) monitoring and proton pump inhibitor (PPI) trials. The participants were divided into non-erosive reflux disease (NERD) and FH groups. The prevalence of symptom overlaps FD and IBS, between NERD and FH groups was analyzed. Women were more likely to present with FH than with NERD (P < 0.05). The participants with FH had higher prevalence of anxiety and depression than those with NERD (92% vs. 75%, 88% vs. 65% respectively, P < 0.05). Fifty-two (47.3%) patients with heartburn symptom had FD symptoms; 31 (28.2%) had IBS symptoms, and 10 (9.09%) had both FD and IBS symptoms. Patients with FH were more likely to have symptom overlaps of FD and IBS than those with NERD (62% vs. 35%, 48% vs. 11.7%, respectively; P < 0.01). Epigastric pain syndrome (EPS), a subtype of FD, was slightly more likely to have overlapped NERD and FH symptoms than postprandial discomfort symdrome (PDS). But the difference was not significant (29. 1% vs. 18.2%, P > 0.05). IBS-diarrhea was also slightly more likely to have overlapped NERD and FH symptoms than IBS-constipation. Again, the difference was not significant (16.4% vs. 11.8%, P > 0.05). Female, higher prevalence of anxiety and depression, overlapped FD and IBS symptoms are more likely to appear in FH patients than in NERD patients.

  8. Aspects and the Overlap Function.

    ERIC Educational Resources Information Center

    Levine, Marilyn M.; Levine, Leonard P.

    1984-01-01

    Presents system for automatic handling of ordered sets, states based on these sets, and differing points of view regarding Universe of Discourse. Aspects are represented by new logical "overlap" function with examples taken from Ranganathan's horse and carriage parable and several books involving four main concepts (history, geography,…

  9. Libration Point Orbit Utilization for Tactical Advantage in Communications, Surveillance, and Risk Mitigation

    DTIC Science & Technology

    2014-10-27

    Ephemeris model in the orbit analysis software Satellite Took Kit ( STK ). As the first step, a study was conducted to find the visibility coverage using...northern L1 and L3 halo orbits. Figure 55. Average visibility by latitude at different ephemeris epochs for an L1 orbiter from STK analysis . Figure...56. Average visibility by latitude at different ephemeris epochs for an L3 orbiter from STK analysis . Figure 57. Average percent visibility of the

  10. Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation

    PubMed Central

    Teoh, Joanne Ee Mei; Feng, Xiaofan; Zhao, Yue; Liu, Yong

    2018-01-01

    In 4D printing research, different types of complex structure folding and unfolding have been investigated. However, research on cross-folding of origami structures (defined as a folding structure with at least two overlapping folds) has not been reported. This research focuses on the investigation of cross-folding structures using multi-material components along different axes and different horizontal hinge thickness with single homogeneous material. Tensile tests were conducted to determine the impact of multi-material components and horizontal hinge thickness. In the case of multi-material structures, the hybrid material composition has a significant impact on the overall maximum strain and Young’s modulus properties. In the case of single material structures, the shape recovery speed is inversely proportional to the horizontal hinge thickness, while the flexural or bending strength is proportional to the horizontal hinge thickness. A hinge with a thickness of 0.5 mm could be folded three times prior to fracture whilst a hinge with a thickness of 0.3 mm could be folded only once prior to fracture. A hinge with a thickness of 0.1 mm could not even be folded without cracking. The introduction of a physical hole in the center of the folding/unfolding line provided stress relief and prevented fracture. A complex flower petal shape was used to successfully demonstrate the implementation of overlapping and non-overlapping folding lines using both single material segments and multi-material segments. Design guidelines for establishing cross-folding structures using multi-material components along different axes and different horizontal hinge thicknesses with single or homogeneous material were established. These guidelines can be used to design and implement complex origami structures with overlapping and non-overlapping folding lines. Combined overlapping folding structures could be implemented and allocating specific hole locations in the overall designs could be further explored. In addition, creating a more precise prediction by investigating sets of in between hinge thicknesses and comparing the folding times before fracture, will be the subject of future work. PMID:29510503

  11. The Interplay between Scientific Overlap and Cooperation and the Resulting Gain in Co-Authorship Interactions.

    PubMed

    Mayrose, Itay; Freilich, Shiri

    2015-01-01

    Considering the importance of scientific interactions, understanding the principles that govern fruitful scientific research is crucial to policy makers and scientists alike. The outcome of an interaction is to a large extent dependent on the balancing of contradicting motivations accompanying the establishment of collaborations. Here, we assembled a dataset of nearly 20,000 publications authored by researchers affiliated with ten top universities. Based on this data collection, we estimated the extent of different interaction types between pairwise combinations of researchers. We explored the interplay between the overlap in scientific interests and the tendency to collaborate, and associated these estimates with measures of scientific quality and social accessibility aiming at studying the typical resulting gain of different interaction patterns. Our results show that scientists tend to collaborate more often with colleagues with whom they share moderate to high levels of mutual interests and knowledge while cooperative tendency declines at higher levels of research-interest overlap, suggesting fierce competition, and at the lower levels, suggesting communication gaps. Whereas the relative number of alliances dramatically differs across a gradient of research overlap, the scientific impact of the resulting articles remains similar. When considering social accessibility, we find that though collaborations between remote researchers are relatively rare, their quality is significantly higher than studies produced by close-circle scientists. Since current collaboration patterns do not necessarily overlap with gaining optimal scientific quality, these findings should encourage scientists to reconsider current collaboration strategies.

  12. Kepler-36: a pair of planets with neighboring orbits and dissimilar densities.

    PubMed

    Carter, Joshua A; Agol, Eric; Chaplin, William J; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Christensen-Dalsgaard, Jørgen; Deck, Katherine M; Elsworth, Yvonne; Fabrycky, Daniel C; Ford, Eric B; Fortney, Jonathan J; Hale, Steven J; Handberg, Rasmus; Hekker, Saskia; Holman, Matthew J; Huber, Daniel; Karoff, Christopher; Kawaler, Steven D; Kjeldsen, Hans; Lissauer, Jack J; Lopez, Eric D; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Rogers, Leslie A; Stello, Dennis; Borucki, William J; Bryson, Steve; Christiansen, Jessie L; Cochran, William D; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer; Howard, Andrew W; Jenkins, Jon M; Klaus, Todd; Koch, David G; Latham, David W; MacQueen, Phillip J; Sasselov, Dimitar; Steffen, Jason H; Twicken, Joseph D; Winn, Joshua N

    2012-08-03

    In the solar system, the planets' compositions vary with orbital distance, with rocky planets in close orbits and lower-density gas giants in wider orbits. The detection of close-in giant planets around other stars was the first clue that this pattern is not universal and that planets' orbits can change substantially after their formation. Here, we report another violation of the orbit-composition pattern: two planets orbiting the same star with orbital distances differing by only 10% and densities differing by a factor of 8. One planet is likely a rocky "super-Earth," whereas the other is more akin to Neptune. These planets are 20 times more closely spaced and have a larger density contrast than any adjacent pair of planets in the solar system.

  13. The structural chemistry of metallocorroles: combined X-ray crystallography and quantum chemistry studies afford unique insights.

    PubMed

    Thomas, Kolle E; Alemayehu, Abraham B; Conradie, Jeanet; Beavers, Christine M; Ghosh, Abhik

    2012-08-21

    Although they share some superficial structural similarities with porphyrins, corroles, trianionic ligands with contracted cores, give rise to fundamentally different transition metal complexes in comparison with the dianionic porphyrins. Many metallocorroles are formally high-valent, although a good fraction of them are also noninnocent, with significant corrole radical character. These electronic-structural characteristics result in a variety of fascinating spectroscopic behavior, including highly characteristic, paramagnetically shifted NMR spectra and textbook cases of charge-transfer spectra. Although our early research on corroles focused on spectroscopy, we soon learned that the geometric structures of metallocorroles provide a fascinating window into their electronic-structural characteristics. Thus, we used X-ray structure determinations and quantum chemical studies, chiefly using DFT, to obtain a comprehensive understanding of metallocorrole geometric and electronic structures. This Account describes our studies of the structural chemistry of metallocorroles. At first blush, the planar or mildly domed structure of metallocorroles might appear somewhat uninteresting particularly when compared to metalloporphyrins. Metalloporphyrins, especially sterically hindered ones, are routinely ruffled or saddled, but the missing meso carbon apparently makes the corrole skeleton much more resistant to nonplanar distortions. Ruffling, where the pyrrole rings are alternately twisted about the M-N bonds, is energetically impossible for metallocorroles. Saddling is also uncommon; thus, a number of sterically hindered, fully substituted metallocorroles exhibit almost perfectly planar macrocycle cores. Against this backdrop, copper corroles stand out as an important exception. As a result of an energetically favorable Cu(d(x2-y2))-corrole(π) orbital interaction, copper corroles, even sterically unhindered ones, are inherently saddled. Sterically hindered substituents accentuate this effect, sometimes dramatically. Thus, a crystal structure of a copper β-octakis(trifluoromethyl)-meso-triarylcorrole complex exhibits nearly orthogonal, adjacent pyrrole rings. Intriguingly, the formally isoelectronic silver and gold corroles are much less saddled than their copper congeners because the high orbital energy of the valence d(x2-y2) orbital discourages overlap with the corrole π orbital. A crystal structure of a gold β-octakis(trifluoromethyl)-meso-triarylcorrole complex exhibits a perfectly planar corrole core, which translates to a difference of 85° in the saddling dihedral angles between analogous copper and gold complexes. Gratifyingly, electrochemical, spectroscopic, and quantum chemical studies provide a coherent, theoretical underpinning for these fascinating structural phenomena. With the development of facile one-pot syntheses of corrole macrocycles in the last 10-15 years, corroles are now almost as readily accessible as porphyrins. Like porphyrins, corroles are promising building blocks for supramolecular constructs such as liquid crystals and metal-organic frameworks. However, because of their symmetry properties, corrole-based supramolecular constructs will probably differ substantially from porphyrin-based ones. We are particularly interested in exploiting the inherently saddled, chiral architectures of copper corroles to create novel oriented materials such as chiral liquid crystals. We trust that the fundamental structural principles uncovered in this Account will prove useful as we explore these fascinating avenues.

  14. Satellite Collision Modeling with Physics-Based Hydrocodes: Debris Generation Predictions of the Iridium-Cosmos Collision Event and Other Impact Events

    NASA Astrophysics Data System (ADS)

    Springer, H.; Miller, W.; Levatin, J.; Pertica, A.; Olivier, S.

    2010-09-01

    Satellite collision debris poses risks to existing space assets and future space missions. Predictive models of debris generated from these hypervelocity collisions are critical for developing accurate space situational awareness tools and effective mitigation strategies. Hypervelocity collisions involve complex phenomenon that spans several time and length-scales. We have developed a satellite collision debris modeling approach consisting of a Lagrangian hydrocode enriched with smooth particle hydrodynamics (SPH), advanced material failure models, detailed satellite mesh models, and massively parallel computers. These computational studies enable us to investigate the influence of satellite center-of-mass (CM) overlap and orientation, relative velocity, and material composition on the size, velocity, and material type distributions of collision debris. We have applied our debris modeling capability to the recent Iridium 33-Cosmos 2251 collision event. While the relative velocity was well understood in this event, the degree of satellite CM overlap and orientation was ill-defined. In our simulations, we varied the collision CM overlap and orientation of the satellites from nearly maximum overlap to partial overlap on the outermost extents of the satellites (i.e, solar panels and gravity boom). As expected, we found that with increased satellite overlap, the overall debris cloud mass and momentum (transfer) increases, the average debris size decreases, and the debris velocity increases. The largest predicted debris can also provide insight into which satellite components were further removed from the impact location. A significant fraction of the momentum transfer is imparted to the smallest debris (< 1-5mm, dependent on mesh resolution), especially in large CM overlap simulations. While the inclusion of the smallest debris is critical to enforcing mass and momentum conservation in hydrocode simulations, there seems to be relatively little interest in their disposition. Based on comparing our results to observations, it is unlikely that the Iridium 33-Cosmos 2251 collision event was a large mass-overlap collision. We also performed separate simulations studying the debris generated by the collision of 5 and 10 cm spherical projectiles on the Iridium 33 satellite at closing velocities of 5, 10, and 15 km/s. It is important to understand the vulnerability of satellites to small debris threats, given their pervasiveness in orbit. These studies can also be merged with probabilistic conjunction analysis to better understand the risk to space assets. In these computational studies, we found that momentum transfer, kinetic energy losses due to dissipative mechanisms (e.g., fracture), fragment number, and fragment velocity increases with increasing velocity for a fixed projectile size. For a fixed velocity, we found that the smaller projectile size more efficiently transfers momentum to the satellite. This latter point has an important implication: Eight (spaced) 5 cm debris objects can impart more momentum to the satellite, and likely cause more damage, than a single 10 cm debris object at the same velocity. Further studies are required to assess the satellite damage induced by 1-5 cm sized debris objects, as well as multiple debris objects, in this velocity range.

  15. Orthogonality catastrophe and fractional exclusion statistics

    NASA Astrophysics Data System (ADS)

    Ares, Filiberto; Gupta, Kumar S.; de Queiroz, Amilcar R.

    2018-02-01

    We show that the N -particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N -body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.

  16. Orthogonality catastrophe and fractional exclusion statistics.

    PubMed

    Ares, Filiberto; Gupta, Kumar S; de Queiroz, Amilcar R

    2018-02-01

    We show that the N-particle Sutherland model with inverse-square and harmonic interactions exhibits orthogonality catastrophe. For a fixed value of the harmonic coupling, the overlap of the N-body ground state wave functions with two different values of the inverse-square interaction term goes to zero in the thermodynamic limit. When the two values of the inverse-square coupling differ by an infinitesimal amount, the wave function overlap shows an exponential suppression. This is qualitatively different from the usual power law suppression observed in the Anderson's orthogonality catastrophe. We also obtain an analytic expression for the wave function overlaps for an arbitrary set of couplings, whose properties are analyzed numerically. The quasiparticles constituting the ground state wave functions of the Sutherland model are known to obey fractional exclusion statistics. Our analysis indicates that the orthogonality catastrophe may be valid in systems with more general kinds of statistics than just the fermionic type.

  17. Detection of Solar Energetic Electron, Proton and Heavy Ions by EPT-HET of Solar Orbiter: Calibration Results

    NASA Astrophysics Data System (ADS)

    Kulkarni, S. R.; Boden, S.; Elftmann, R.; Tammen, J.; Martin-Garcia, C.; Boettcher, S. I.; Seimetz, L.; Ravanbakhsh, A.; Mahesh, Y.; Schuster, B.; Wimmer-Schweingruber, R. F.; Rodriguez-Pacheco, J.

    2017-12-01

    The Energetic Particle Detector (EPD) suite for ESA's Solar Orbiter will provide key measurements to address particle acceleration at and near the Sun. The EPD suite consists of four sensors (STEP, SIS, EPT, and HET). The Electron Proton Telescope (EPT) is designed to cleanly separate and measure electrons in the energy range from 20 - 400 keV and protons from 20 - 7000 keV. The Solar Orbiter EPT electron measurements from 20 - 400 keV will cover the gap with some overlap between suprathermal electrons measured by STEP and high energy electrons measured by HET. The proton measurements from 20 -7000 keV will partially cover the gap between STEP and HET. The Electron and Proton Telescope relies on the magnet/foil-technique. The High-Energy Telescope (HET) will measure electrons from 300 keV up to about 30 MeV, protons from 10 -100 MeV, and heavy ions from 20 to 200 MeV/nuc by dE/dx -Total E technique. Thus, HET covers the energy range which is of specific interest for studies of the space environment and will perform the measurements needed to understand the origin of high-energy events at the Sun which occasionally accelerate particles to such high energies that they can penetrate the Earth's atmosphere and be measured at ground level. Here we present calibration results of EPT-HET which show that EPT-HET will function as planned.

  18. DORIS and GNSS processing at CNES/CLS for the contribution to the next ITRF2013

    NASA Astrophysics Data System (ADS)

    Loyer, Sylvain; Capdeville, Hugues; Soudarin, Laurent; Mezerette, Adrien; Lemoine, Jean-Michel; Mercier, Flavien; Perosanz, Felix

    2014-05-01

    CNES serves as Analysis Center in the International DORIS Service (IDS) and the International GNSS Service (IGS). DORIS and GNSS data are processed by its subsidiary CLS with the GRGS package software GINS/DYNAMO. For the contribution to the next release of the International Terrestrial Reference Frame planned this year (ITRF2013), two decades of data were analyzed (1993-2013 for DORIS, 1998-2013 for GPS, and 2009-2013 for GLONASS). In this context, the CNES/CLS Analysis Centers provided SINEX solutions to the IDS and IGS Combination Centers, respectively multi-satellite weekly solutions and daily solutions. Normal equations derived from this analysis are also made available to the GRGS Combination Center for the combination at the observation level of the geodetic parameters measured by DORIS, GPS, SLR and VLBI techniques. The purpose of this presentation is to point out how the overall quality of the DORIS and GNSS data processing benefits from the use of the same software and a common basis of models. Here, we present the modeling standards, the networks and the processing strategies. Assessments of some models are also discussed. The quality and the homogeneity of the products (orbits, station coordinates and Earth Orientation Parameters) over the complete period are shown, as well as the temporal variations of some parameters (dynamical parameters, orbit residuals, internal orbit overlaps ...). Some examples of time series of DORIS and GNSS station positions at collocated sites complete this presentation.

  19. Ultrarelativistic bound states in the spherical well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Żaba, Mariusz; Garbaczewski, Piotr

    2016-07-15

    We address an eigenvalue problem for the ultrarelativistic (Cauchy) operator (−Δ){sup 1/2}, whose action is restricted to functions that vanish beyond the interior of a unit sphere in three spatial dimensions. We provide high accuracy spectral data for lowest eigenvalues and eigenfunctions of this infinite spherical well problem. Our focus is on radial and orbital shapes of eigenfunctions. The spectrum consists of an ordered set of strictly positive eigenvalues which naturally splits into non-overlapping, orbitally labelled E{sub (k,l)} series. For each orbital label l = 0, 1, 2, …, the label k = 1, 2, … enumerates consecutive lth seriesmore » eigenvalues. Each of them is 2l + 1-degenerate. The l = 0 eigenvalues series E{sub (k,0)} are identical with the set of even labeled eigenvalues for the d = 1 Cauchy well: E{sub (k,0)}(d = 3) = E{sub 2k}(d = 1). Likewise, the eigenfunctions ψ{sub (k,0)}(d = 3) and ψ{sub 2k}(d = 1) show affinity. We have identified the generic functional form of eigenfunctions of the spherical well which appear to be composed of a product of a solid harmonic and of a suitable purely radial function. The method to evaluate (approximately) the latter has been found to follow the universal pattern which effectively allows to skip all, sometimes involved, intermediate calculations (those were in usage, while computing the eigenvalues for l ≤ 3).« less

  20. Global Warming Estimation from MSU: Correction for Drift and Calibration Errors

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.

    2000-01-01

    Microwave Sounding Unit (MSU) radiometer observations in Ch 2 (53.74 GHz), made in the nadir direction from sequential, sun-synchronous, polar-orbiting NOAA morning satellites (NOAA 6, 10 and 12 that have approximately 7am/7pm orbital geometry) and. afternoon satellites (NOAA 7, 9, 11 and 14 that have approximately 2am/2pm orbital geometry) are analyzed in this study to derive global temperature trend from 1980 to 1998. In order to remove the discontinuities between the data of the successive satellites and to get a continuous time series, first we have used shortest possible time record of each satellite. In this way we get a preliminary estimate of the global temperature trend of 0.21 K/decade. However, this estimate is affected by systematic time-dependent errors. One such error is the instrument calibration error eo. This error can be inferred whenever there are overlapping measurements made by two satellites over an extended period of time. From the available successive satellite data we have taken the longest possible time record of each satellite to form the time series during the period 1980 to 1998 to this error eo. We find eo can decrease the global temperature trend by approximately 0.07 K/decade. In addition there are systematic time dependent errors ed and ec present in the data that are introduced by the drift in the satellite orbital geometry. ed arises from the diurnal cycle in temperature and ec is the drift related change in the calibration of the MSU. In order to analyze the nature of these drift related errors the multi-satellite Ch 2 data set is partitioned into am and pm subsets to create two independent time series. The error ed can be assessed in the am and pm data of Ch 2 on land and can be eliminated. Observation made in the MSU Ch 1 (50.3 GHz) support this approach. The error ec is obvious only in the difference between the pm and am observations of Ch 2 over the ocean. We have followed two different paths to assess the impact of the error ec on the global temperature trend. In one path the entire error ec is placed in the am data while in the other it is placed in the pm data. Global temperature trend is increased or decreased by approximately 0.03 K/decade depending upon this placement. Taking into account all random errors and systematic errors our analysis of MSU observations leads us to conclude that a conservative estimate of the global warming is 0. 11 (+/-) 0.04 K/decade during 1980 to 1998.

  1. Developmental Bias for Number Words in the Intraparietal Sulcus

    ERIC Educational Resources Information Center

    Lussier, Courtney A.; Cantlon, Jessica F.

    2017-01-01

    Children and adults show behavioral evidence of psychological overlap between their early, non-symbolic numerical concepts and their later-developing symbolic numerical concepts. An open question is to what extent the common cognitive signatures observed between different numerical notations are coupled with physical overlap in neural processes.…

  2. Action Learning and Organisation Development: Overlapping Fields of Practice

    ERIC Educational Resources Information Center

    Edmonstone, John

    2011-01-01

    This paper explores the relationship between action learning and Organisation Development (OD). It proposes that they are overlapping fields of practice, with interesting similarities and differences. Both fields of practice are experienced as challenging to conventional ways of viewing organisations and people but are also subject to increasing…

  3. Short-term overlap lamivudine treatment with adefovir dipivoxil in patients with lamivudine-resistant chronic hepatitis B

    PubMed Central

    Nam, Soon Woo; Bae, Si Hyun; Lee, Seung Woo; Kim, Yeon Soo; Kang, Sang Bum; Choi, Jong Young; Cho, Se Hyun; Yoon, Seung Kew; Han, Joon-Yeol; Yang, Jin Mo; Lee, Young Suk

    2008-01-01

    AIM: To evaluate the efficacy of short-term overlap lamivudine therapy with adefovir in patients with lamivudine-resistant and naïve chronic hepatitis B, we compared patients receiving overlap therapy with those receiving adefovir alone. METHODS: Eighty patients who had received lamivudine treatment for various periods and had a lamivudine-resistant liver function abnormality were enrolled. Forty of these patients received adefovir treatment combined with lamivudine treatment for ≥ 2 mo, while the other 40 received adefovir alone. We assessed the levels of hepatitis B virus (HBV) DNA at 0, 12 and 48 wk and serum alanine aminotransferase (ALT) levels after 0, 12, 24 and 48 wk of adefovir treatment in each group. RESULTS: We found serum ALT became normalized in 72 (87.5%) of the 80 patients, and HBV DNA decreased by ≥ 2 log10 copies/mL in 60 (75%) of the 80 patients at the end of a 48-wk treatment. HBV DNA levels were not significantly different between the groups. The improvements in serum ALT were also not significantly different between the two groups. CONCLUSION: These findings suggest short-term overlap lamivudine treatment results in no better virological and biological outcomes than non-overlap adefovir monotherapy. PMID:18350610

  4. Overlapping Modularity at the Critical Point of k-Clique Percolation

    NASA Astrophysics Data System (ADS)

    Tóth, Bálint; Vicsek, Tamás; Palla, Gergely

    2013-05-01

    One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.

  5. Effects of Simplifying Choice Tasks on Estimates of Taste Heterogeneity in Stated-Choice Surveys

    PubMed Central

    Johnson, F. Reed; Ozdemir, Semra; Phillips, Kathryn A

    2011-01-01

    Researchers usually employ orthogonal arrays or D-optimal designs with little or no attribute overlap in stated-choice surveys. The challenge is to balance statistical efficiency and respondent burden to minimize the overall error in the survey responses. This study examined whether simplifying the choice task, by using a design with more overlap, provides advantages over standard minimum-overlap methods. We administered two designs for eliciting HIV test preferences to split samples. Surveys were undertaken at four HIV testing locations in San Francisco, California. Personal characteristics had different effects on willingness to pay for the two treatments, and gains in statistical efficiency in the minimal-overlap version more than compensated for possible imprecision from increased measurement error. PMID:19880234

  6. Validation of automated white matter hyperintensity segmentation.

    PubMed

    Smart, Sean D; Firbank, Michael J; O'Brien, John T

    2011-01-01

    Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion.

  7. Neuroimaging supports behavioral personality assessment: Overlapping activations during reflective and impulsive risk taking.

    PubMed

    Pletzer, Belinda; M Ortner, Tuulia

    2016-09-01

    Personality assessment has been challenged by the fact that different assessment methods (implicit measures, behavioral measures and explicit rating scales) show little or no convergence in behavioral studies. In this neuroimaging study we address for the first time, whether different assessment methods rely on separate or overlapping neuronal systems. Fifty nine healthy adult participants completed two objective personality tests of risk propensity: the more implicit Balloon Analogue Risk Task (BART) and the more explicit Game of Dice Task (GDT). Significant differences in activation, as well as connectivity patterns between both tasks were observed. In both tasks, risky decisions yielded significantly stronger activations than safe decisions in the bilateral caudate, as well as the bilateral Insula. The finding of overlapping brain areas validates different assessment methods, despite their behavioral non-convergence. This suggests that neuroimaging can be an important tool of validation in the field of personality assessment. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparison of Patient Outcomes in 3725 Overlapping vs 3633 Nonoverlapping Neurosurgical Procedures Using a Single Institution's Clinical and Administrative Database.

    PubMed

    Zygourakis, Corinna C; Keefe, Malla; Lee, Janelle; Barba, Julio; McDermott, Michael W; Mummaneni, Praveen V; Lawton, Michael T

    2017-02-01

    Overlapping surgery is a common practice to improve surgical efficiency, but there are limited data on its safety. To analyze the patient outcomes of overlapping vs nonoverlapping surgeries performed by multiple neurosurgeons. Retrospective review of 7358 neurosurgical procedures, 2012 to 2015, at an urban academic hospital. Collected variables: patient age, gender, insurance, American Society of Anesthesiologists score, severity of illness, mortality risk, admission type, transfer source, procedure type, surgery date, number of cosurgeons, presence of neurosurgery resident/fellow/another attending, and overlapping vs nonoverlapping surgery. Outcomes: procedure time, length of stay, estimated blood loss, discharge location, 30-day mortality, 30-day readmission, return to operating room, acute respiratory failure, and severe sepsis. Statistics: univariate, then multivariate mixed-effect models. Overlapping surgery patients (n = 3725) were younger and had lower American Society of Anesthesiologists scores, severity of illness, and mortality risk (P < .0001) than nonoverlapping surgery patients (n = 3633). Overlapping surgeries had longer procedure times (214 vs 172 min; P < .0001), but shorter length of stay (7.3 vs 7.9 d; P = .010) and lower estimated blood loss (312 vs 363 mL’s; P = .003). Overlapping surgery patients were more likely to be discharged home (73.6% vs 66.2%; P < .0001), and had lower mortality rates (1.3% vs 2.5%; P = .0005) and acute respiratory failure (1.8% vs 2.6%; P = .021). In multivariate models, there was no significant difference between overlapping and nonoverlapping surgeries for any patient outcomes, except for procedure duration, which was longer in overlapping surgery (estimate = 23.03; P < .001). When planned appropriately, overlapping surgery can be performed safely within the infrastructure at our academic institution. Copyright © 2017 by the Congress of Neurological Surgeons

  9. VizieR Online Data Catalog: 231 transiting planets eccentricity and mass (Bonomo+, 2017)

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Desidera, S.; Benatti, S.; Borsa, F.; Crespi, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Lodato, G.; Marzari, F.; Boccato, C.; Claudi, R. U.; Cosentino, R.; Covino, E.; Gratton, R.; Maggio, A.; Micela, G.; Molinari, E.; Pagano, I.; Piotto, G.; Poretti, E.; Smareglia, R.; Affer, L.; Biazzo, K.; Bignamini, A.; Esposito, M.; Giacobbe, P.; Hebrard, G.; Malavolta, L.; Maldonado, J.; Mancini, L.; Martinez Fiorenzano, A.; Masiero, S.; Nascimbeni, V.; Pedani, M.; Rainer, M.; Scandariato, G.

    2017-04-01

    We carried out a homogeneous determination of the orbital parameters of 231 TGPs by analysing with our Bayesian DEMCMC tool both the literature RVs and the new high-accuracy and high-precision HARPS-N data we acquired for 45 TGPs orbiting relatively bright stars over ~3 years. We thus produced the largest uniform catalogue of giant planet orbital and physical parameters. For several systems we combined for the first time RV datasets collected with different spectrographs by different groups thus improving the orbital solution. In general, we fitted a separate jitter term for each dataset by allowing for different values of extra noise caused by instrumental effects and/or changing levels of stellar activity in different observing seasons. This way, we uniformly derived the orbital eccentricities of (8 data files).

  10. Correlation between orbital volume, body mass index, and eyeball position in healthy East asians.

    PubMed

    Yoo, Jun Ho; Lee, Young Hen; Lee, Hwa; Kim, Jung Wan; Chang, Minwook; Park, Minsoo; Baek, Sehyun

    2013-05-01

    The objectives of this study were measure the orbital volume of healthy Koreans and analyze the differences between orbital tissue volume with respect to age and sex and to assess any correlation between body mass index (BMI), eyeball position, and orbital volume. We retrospectively evaluated the scan results of patients who had undergone orbital computed tomography scans between November 2010 and November 2011. We assessed the scan results of 184 orbits in 92 adults who had no pathology of the orbit. The individuals were classified into 3 groups with respect to age. Orbital volume, effective orbital volume (defined as the difference between orbital and eyeball volume), extraocular muscle volume, orbital fat volume, and transverse globe protrusion were recorded and analyzed. The records of the subjects were reviewed retrospectively, and BMI was calculated. A correlation analysis was performed to investigate the correlation between BMI, eyeball position, and orbital volume. Orbital tissue volume, with the exception of orbital fat volume, was larger in men compared with women. In both sexes, orbital fat volume increased with increasing age, whereas the other volumes decreased. Orbital tissue volumes increased with increasing BMI, but transverse globe protrusion was not significantly related to BMI. In addition, orbital volume and effective orbital volume were positively correlated with transverse globe protrusion. These results provide basic information about the effects of age, sex, and BMI on orbital volume and eyeball position in healthy Koreans. Furthermore, these results will be helpful in the diagnosis of orbital diseases and in planning orbital surgeries.

  11. Human rather than ape-like orbital morphology allows much greater lateral visual field expansion with eye abduction

    PubMed Central

    Denion, Eric; Hitier, Martin; Levieil, Eric; Mouriaux, Frédéric

    2015-01-01

    While convergent, the human orbit differs from that of non-human apes in that its lateral orbital margin is significantly more rearward. This rearward position does not obstruct the additional visual field gained through eye motion. This additional visual field is therefore considered to be wider in humans than in non-human apes. A mathematical model was designed to quantify this difference. The mathematical model is based on published computed tomography data in the human neuro-ocular plane (NOP) and on additional anatomical data from 100 human skulls and 120 non-human ape skulls (30 gibbons; 30 chimpanzees / bonobos; 30 orangutans; 30 gorillas). It is used to calculate temporal visual field eccentricity values in the NOP first in the primary position of gaze then for any eyeball rotation value in abduction up to 45° and any lateral orbital margin position between 85° and 115° relative to the sagittal plane. By varying the lateral orbital margin position, the human orbit can be made “non-human ape-like”. In the Pan-like orbit, the orbital margin position (98.7°) was closest to the human orbit (107.1°). This modest 8.4° difference resulted in a large 21.1° difference in maximum lateral visual field eccentricity with eyeball abduction (Pan-like: 115°; human: 136.1°). PMID:26190625

  12. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Natwa, M; Hall, NC

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%).more » In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.« less

  13. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation.

    PubMed

    Opitz, Andreas

    2017-04-05

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground-state charge-transfer.

  14. Spectroscopic investigation, hirshfeld surface analysis and molecular docking studies on anti-viral drug entecavir

    NASA Astrophysics Data System (ADS)

    Fathima Rizwana, B.; Prasana, Johanan Christian; Abraham, Christina Susan; Muthu, S.

    2018-07-01

    Entecavir, a new deoxyguanine nucleoside analogue, is a selective inhibitor of the replication of the hepatitis B virus. In the present study, Quantum mechanical approach was carried out on the title compound to study the vibrational spectrum, the stability of the compound, the intermolecular and intramolecular interactions by using Density Functional Theory (DFT) with B3LYP 6-311++G(d,p) basis set. The B3LYP/DFT method was chosen because diverse studies have shown that the results obtained with it are in good agreement with those determined by other costly computational methods. The computational methods were aided by the experimental spectroscopic techniques, namely FTIR and FT Raman spectroscopies. The optimized molecular geometry, vibrational wavenumbers, infrared intensities and Raman scattering activities were calculated. The calculated HOMO and LUMO energies were found to be -6.397 eV and -1.504 eV which indicate the charge transfer within the molecule. The maximum absorption wavelength and the band gap energy of the title compound were obtained from the UV absorption spectrum computed theoretically. Natural Bond Orbital analysis has been carried out to explain the charge transfer (or) delocalization of charge due to the intra molecular interactions. The molecule orbital contributions are studied by using the total (TDOS), partial (PDOS), and overlap population (OPDOS) density of states. Molecular electrostatic potential (MEP), First order hyperpolarizability, Hirshfield surface analysis and Fukui functions calculation were also performed. From the calculations the first order hyperpolarizability was found to be 2.3854 × 10-30 esu. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at different temperatures have been calculated. Molecular docking studies were made on the title compound to study the hydrogen bond interactions and the minimum binding energy was calculated.

  15. Effect of UV Radiation on the Spectral Fingerprints of Earth-like Planets Orbiting M Stars

    NASA Astrophysics Data System (ADS)

    Rugheimer, S.; Kaltenegger, L.; Segura, A.; Linsky, J.; Mohanty, S.

    2015-08-01

    We model the atmospheres and spectra of Earth-like planets orbiting the entire grid of M dwarfs for active and inactive stellar models with Teff = 2300 K to Teff = 3800 K and for six observed MUSCLES M dwarfs with UV radiation data. We set the Earth-like planets at the 1 AU equivalent distance and show spectra from the visible to IR (0.4-20 μm) to compare detectability of features in different wavelength ranges with the James Webb Space Telescope and other future ground- and spaced-based missions to characterize exo-Earths. We focus on the effect of UV activity levels on detectable atmospheric features that indicate habitability on Earth, namely, H2O, O3, CH4, N2O, and CH3Cl. To observe signatures of life—O2/O3 in combination with reducing species like CH4—we find that early and active M dwarfs are the best targets of the M star grid for future telescopes. The O2 spectral feature at 0.76 μm is increasingly difficult to detect in reflected light of later M dwarfs owing to low stellar flux in that wavelength region. N2O, another biosignature detectable in the IR, builds up to observable concentrations in our planetary models around M dwarfs with low UV flux. CH3Cl could become detectable, depending on the depth of the overlapping N2O feature. We present a spectral database of Earth-like planets around cool stars for directly imaged planets as a framework for interpreting future light curves, direct imaging, and secondary eclipse measurements of the atmospheres of terrestrial planets in the habitable zone to design and assess future telescope capabilities.

  16. Anatomical Specializations for Nocturnality in a Critically Endangered Parrot, the Kakapo (Strigops habroptilus)

    PubMed Central

    Corfield, Jeremy R.; Gsell, Anna C.; Brunton, Dianne; Heesy, Christopher P.; Hall, Margaret I.; Acosta, Monica L.; Iwaniuk, Andrew N.

    2011-01-01

    The shift from a diurnal to nocturnal lifestyle in vertebrates is generally associated with either enhanced visual sensitivity or a decreased reliance on vision. Within birds, most studies have focused on differences in the visual system across all birds with respect to nocturnality-diurnality. The critically endangered Kakapo (Strigops habroptilus), a parrot endemic to New Zealand, is an example of a species that has evolved a nocturnal lifestyle in an otherwise diurnal lineage, but nothing is known about its' visual system. Here, we provide a detailed morphological analysis of the orbits, brain, eye, and retina of the Kakapo and comparisons with other birds. Morphometric analyses revealed that the Kakapo's orbits are significantly more convergent than other parrots, suggesting an increased binocular overlap in the visual field. The Kakapo exhibits an eye shape that is consistent with other nocturnal birds, including owls and nightjars, but is also within the range of the diurnal parrots. With respect to the brain, the Kakapo has a significantly smaller optic nerve and tectofugal visual pathway. Specifically, the optic tectum, nucleus rotundus and entopallium were significantly reduced in relative size compared to other parrots. There was no apparent reduction to the thalamofugal visual pathway. Finally, the retinal morphology of the Kakapo is similar to that of both diurnal and nocturnal birds, suggesting a retina that is specialised for a crepuscular niche. Overall, this suggests that the Kakapo has enhanced light sensitivity, poor visual acuity and a larger binocular field than other parrots. We conclude that the Kakapo possesses a visual system unlike that of either strictly nocturnal or diurnal birds and therefore does not adhere to the traditional view of the evolution of nocturnality in birds. PMID:21860663

  17. A new class of accurate, mesh-free hydrodynamic simulation methods

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2015-06-01

    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, smoothed particle hydrodynamics (SPH), and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both SPH and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume `overlap'. We implement and test a parallel, second-order version of the method with self-gravity and cosmological integration, in the code GIZMO:1 this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require `artificial diffusion' terms; and allows the fluid elements to move with the flow, so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages versus SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced `particle noise' and numerical viscosity, more accurate sub-sonic flow evolution, and sharp shock-capturing. Advantages versus non-moving meshes include: automatic adaptivity, dramatically reduced advection errors and numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of `grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous discs, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize `grid noise'. These differences are important for a range of astrophysical problems.

  18. Space webs based on rotating tethered formations

    NASA Astrophysics Data System (ADS)

    Palmerini, Giovanni B.; Sgubini, Silvano; Sabatini, Marco

    2009-07-01

    Several on-going studies indicate the interest for large, light orbiting structures, shaped as fish nets or webs: along the ropes of the web small spacecraft can move like spiders to position and re-locate, at will, pieces of hardware devoted to specific missions. The concept could be considered as an intermediate solution between the large monolithic structure, heavy and expensive to realize, but easy to control, and the formations of satellites, where all system members are completely free and should manoeuvre in order to acquire a desired configuration. Instead, the advantage of having a "hard-but-light" link among the different grids lays in the partition of the tasks among system components and in a possible overall reduction of the control system complexity and cost. Unfortunately, there is no stable configuration for an orbiting, two-dimensional web made by light, flexible tethers which cannot support compression forces. A possible solution is to make use of centrifugal forces to pull the net, with a reduced number of simple thrusters located at the tips of the tethers to initially acquire the required spin. In this paper a dynamic analysis of a simplified rotating web is performed, in order to evaluate the spinning velocity able to satisfy the requirement for the stability of the system. The model adopted overlaps simpler elements, each of them given by a tether (made up of a number of linear finite elements) connecting two extreme bodies accommodating the spinning thrusters. The combination of these "diameter-like" elements provides the web, shaped according to the specific requirements. The net is primarily considered as subjected to Keplerian attraction and J2 and drag perturbations only, but its behaviour under thermal inputs is also investigated.

  19. Galileo Declassified: IOV Spacecraft Metadata and Its Impact on Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Dilssner, Florian; Schönemann, Erik; Springer, Tim; Flohrer, Claudia; Enderle, Werner

    2017-04-01

    In December 2016, shortly after the declaration of Galileo Initial Services, the European GNSS Agency (GSA) disclosed Galileo spacecraft metadata relevant to precise orbit determination (POD), such as antenna phase center parameters, dimensions of the solar panels and the main body, specularity and reflectivity coefficients for the surface materials, yaw attitude steering law, and signal group delays. The metadata relates to the first four operational Galileo satellites, known as the In-Orbit Validation (IOV) satellites, and is publicly available through the European GNSS Service Center (GSC) web site. One of the dataset's major benefits is that it includes nearly all information about the satellites' surface properties needed to develop a physically meaningful analytical solar radiation pressure (SRP) macro model, or "box-wing" (BW) model. Such a BW model for the IOV spacecraft has now been generated for use in NAPEOS, the European Space Operation Centre's (ESOC's) main geodetic software package for POD. The model represents the satellite as a simple six-sided box with two attached panels, or "wings", and allows for the a priori computation of the direct and indirect (Earth albedo) SRP force. Further valuable parameters of the metadata set are the IOV navigation antenna (NAVANT) phase center offsets (PCOs) and variations (PCVs) inferred from pre-launch anechoic chamber measurements. In this work, we report on the validation of the Galileo IOV metadata and its impact on POD, an activity ESOC has been deeply committed to since the launch of the first Galileo experimental satellite, GIOVE-A, in 2005. We first reanalyze the full history of Galileo tracking data the global International GNSS Service (IGS) network has collected since 2012. We generate orbit and clock solutions based on the widely used Empirical CODE Orbit Model (ECOM) with and without the IOV a priori BW model. For the satellite antennas, we apply the new as well as the standard IGS-recommended phase center corrections ("igs08.atx"). Results are evaluated according to several internal and external metrics, such as carrier phase residuals, satellite laser ranging (SLR) data, satellite clock residuals, day-to-day orbit overlap differences, and narrow-lane (NL) double differences as a measure of the quality of the unresolved phase ambiguity estimates. We demonstrate that the use of the new IOV BW and antenna models brings substantial improvements over the standard approach without the a priori model and with igs08.atx. Particularly striking here is the reduction of the SLR residual RMS by a factor of two to three as well as the five-to-ten-times-tighter distribution of the NL residuals - an important aspect for standard NL integer ambiguity resolution. During eclipse season, when the sun's elevation angle is small, the combination of the standard ECOM with the BW model even outperforms the enhanced ECOM ("ECOM2"). Moreover, we elaborate on the Galileo IOV yaw attitude scheme and evaluate noon- and midnight-turn maneuvers by way of reverse point positioning (RPP). The RPP technique takes advantage of the approximately 17 cm horizontal offset of the IOV NAVANT from the spacecraft's yaw axis to estimate the yaw angle. Finally, we estimate the NAVANT's PCO and PCV parameters by utilizing multiple years of IGS tracking data and compare them against the chamber calibration values.

  20. Multi-Body Orbit Architectures for Lunar South Pole Coverage

    NASA Technical Reports Server (NTRS)

    Grebow, D. J.; Ozimek, M. T.; Howell, K. C.; Folta, D. C.

    2006-01-01

    A potential ground station at the lunar south pole has prompted studies of orbit architectures that ensure adequate coverage. Constant communications can be achieved with two spacecraft in different combinations of Earth-Moon libration point orbits. Halo and vertical families, as well as other orbits near L1 and L2 are considered. The investigation includes detailed results using nine different orbits with periods ranging from 7 to 16 days. Natural solutions are generated in a full ephemeris model, including solar perturbations. A preliminary station-keeping analysis is also completed.

  1. Motion of the moonlet in the binary system 243 Ida

    NASA Astrophysics Data System (ADS)

    Lan, L.; Ni, Y.; Jiang, Y.; Li, J.

    2018-02-01

    The motion of the moonlet Dactyl in the binary system 243 Ida is investigated in this paper. First, periodic orbits in the vicinity of the primary are calculated, including the orbits around the equilibrium points and large-scale orbits. The Floquet multipliers' topological cases of periodic orbits are calculated to study the orbits' stabilities. During the continuation of the retrograde near-circular orbits near the equatorial plane, two period-doubling bifurcations and one Neimark-Sacker bifurcation occur one by one, leading to two stable regions and two unstable regions. Bifurcations occur at the boundaries of these regions. Periodic orbits in the stable regions are all stable, but in the unstable regions are all unstable. Moreover, many quasi-periodic orbits exist near the equatorial plane. Long-term integration indicates that a particle in a quasi-periodic orbit runs in a space like a tire. Quasi-periodic orbits in different regions have different styles of motion indicated by the Poincare sections. There is the possibility that moonlet Dactyl is in a quasi-periodic orbit near the stable region I, which is enlightening for the stability of the binary system.

  2. U-shaped relationship between current and pitch in helicene molecules

    NASA Astrophysics Data System (ADS)

    Guo, Yan-Dong; Yan, Xiao-Hong; Xiao, Yang; Liu, Chun-Sheng

    2015-11-01

    The helicene is constructed by twisted benzene or other aromatic rings, exhibiting a helical structure. Using first-principles calculations, we investigate the electronic transport of helicenes under stretching or compressing. Interestingly, a U-shaped curve of the current against d (the pitch of a helicene) is observed. Further analysis shows that, it is the result of the nonmonotonic change of HOMO-LUMO gap with d. The change of overlap between orbitals induced by conformational deformation is found to be the underlying mechanism. Moreover, the U-curve phenomenon is an intrinsic feature of the helicene molecules, being robust to the electrode materials or doping. This U-curve behavior is expected to be extended to helical graphene or other related structures, showing great application potential.

  3. U-shaped relationship between current and pitch in helicene molecules.

    PubMed

    Guo, Yan-Dong; Yan, Xiao-Hong; Xiao, Yang; Liu, Chun-Sheng

    2015-11-19

    The helicene is constructed by twisted benzene or other aromatic rings, exhibiting a helical structure. Using first-principles calculations, we investigate the electronic transport of helicenes under stretching or compressing. Interestingly, a U-shaped curve of the current against d (the pitch of a helicene) is observed. Further analysis shows that, it is the result of the nonmonotonic change of HOMO-LUMO gap with d. The change of overlap between orbitals induced by conformational deformation is found to be the underlying mechanism. Moreover, the U-curve phenomenon is an intrinsic feature of the helicene molecules, being robust to the electrode materials or doping. This U-curve behavior is expected to be extended to helical graphene or other related structures, showing great application potential.

  4. Conjugated polymer sensors built on pi-extended borasiloxane cages.

    PubMed

    Liu, Wenjun; Pink, Maren; Lee, Dongwhan

    2009-06-24

    An efficient 2 + 2 cyclocondensation with dihydroxysilane converted simple arylboronic acids to bifunctional borasiloxane cage molecules, which were subsequently electropolymerized to furnish air-stable thin films. The extended [p,pi]-conjugation that defines the rigid backbone of this new conjugated polymer (CP) motif gives rise to longer-wavelength UV-vis transitions upon oxidative doping, the spectral window and intensity of which can be modified by interaction with Lewis basic reagents. Notably, this boron-containing CP undergoes a rapid and reversible color change from green to orange upon exposure to volatile amine samples under ambient conditions. This direct naked-eye detection scheme can best be explained by invoking the reversible B-N dative bond formation that profoundly influences the p-pi* orbital overlap.

  5. Copernicus POD Service: Orbit Determination of the Sentinel Satellites

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Fernández, Jaime; Ayuga, Francisco; Féménias, Pierre

    2016-04-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus Processing Data Ground Segment (PDGS) of the Sentinel-1, -2 and -3 missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. Sentinel-1A was launched in April 2014 while Sentinel-2A was on June 2015 and both are routinely operated since then. Sentinel-3A is expected to be launched in February 2016 and Sentinel-1B is planned for spring 2016. Thus the CPOD Service will be operating three to four satellites simultaneously in spring 2016. The satellites of the Sentinel-1, -2, and -3 missions are all equipped with dual frequency high precision GPS receivers delivering the main observables for POD. Sentinel-3 satellites will additionally be equipped with a laser retro reflector for Satellite Laser Ranging and a receiver for DORIS tracking. All three types of observables (GPS, SLR and DORIS) will be used routinely for POD. The POD core of the CPOD Service is NAPEOS (Navigation Package for Earth Orbiting Satellites) the leading ESA/ESOC software for precise orbit determination. The careful selection of models and inputs is important to achieve the different but very demanding requirements in terms of orbital accuracy and timeliness for the Sentinel -1, -2 & -3 missions. The three missions require orbital products with various latencies from 30 minutes up to 20-30 days. The accuracy requirements are also different and partly very challenging, targeting 5 cm in 3D for Sentinel-1 and 2-3 cm in radial direction for Sentinel-3. Although the characteristics and the requirements are different for the three missions the same core POD setup is used to the largest extent possible. This strategy facilitates maintenance of the complex system of the CPOD Service. Updates in the dynamical modelling of the satellite orbits, e.g. improvements of the box-wing models, have been done to deliver best possible orbit solutions for the satellite. Quality control of the CPOD orbits is done by validating them with independent orbit solutions provided by the Copernicus POD Quality Working Group. The cross-comparison of orbit solutions from different institutions is essential to monitor and to improve the orbit accuracy because for Sentinel-1 and -2 this is the only possibility to externally assess the quality of the orbits. Sentinel-3 orbits may additionally be validated by using SLR and DORIS observations. This paper presents the Copernicus POD Service in terms of operations and orbital accuracy achieved by the different orbit products of the different missions. For Sentinel-1 and Sentinel-2, this paper presents the impact of the box-wing models. For Sentinel-3, the orbital accuracy will be assessed using the very first data after launch.

  6. Effect of Overlapping Operations on Outcomes in Microvascular Reconstructions of the Head and Neck.

    PubMed

    Sweeny, Larissa; Rosenthal, Eben L; Light, Tyler; Grayson, Jessica; Petrisor, Daniel; Troob, Scott H; Greene, Benjamin J; Carroll, William R; Wax, Mark K

    2017-04-01

    Objective To compare outcomes after microvascular reconstructions of head and neck defects between overlapping and nonoverlapping operations. Study Design Retrospective cohort study. Setting Tertiary care center. Subjects and Methods Patients undergoing microvascular free tissue transfer operations between January 2010 and February 2015 at 2 tertiary care institutions were included (n = 1315). Patients were divided into 2 cohorts by whether the senior authors performed a single or consecutive microvascular reconstruction (nonoverlapping; n = 773, 59%) vs performing overlapping microvascular reconstructions (overlapping; n = 542, 41%). Variables reviewed were as follows: defect location, indication, T classification, surgical details, duration of the operation and hospitalization, and complications (major, minor, medical). Results Microvascular free tissue transfers performed included radial forearm (49%, n = 639), osteocutaneous radial forearm (14%, n = 182), anterior lateral thigh (12%, n = 153), fibula (10%, n = 135), rectus abdominis (7%, n = 92), latissimus dorsi (6%, n = 78), and scapula (<1%, n = 4). The mean duration of the overlapping operations was 21 minutes longer than nonoverlapping operations ( P = .003). Mean duration of hospitalization was similar for nonoverlapping (9.5 days) and overlapping (9.1 days) cohorts ( P = .39). There was no difference in complication rates when stratified by overlapping (45%, n = 241) and nonoverlapping (45%, n = 344) ( P = .99). Subset analysis yielded similar results when minor, major, and medical complications between groups were assessed. The overall survival rate of free tissue transfers was 96%, and this was same for overlapping (96%) and nonoverlapping (96%) operations ( P = .71). Conclusions Patients had similar complication rates and durations of hospitalization for overlapping and nonoverlapping operations.

  7. Recent advances on organic blue thermally activated delayed fluorescence (TADF) emitters for organic light-emitting diodes (OLEDs)

    PubMed Central

    Bui, Thanh-Tuân; Goubard, Fabrice; Ibrahim-Ouali, Malika; Gigmes, Didier

    2018-01-01

    The design of highly emissive and stable blue emitters for organic light emitting diodes (OLEDs) is still a challenge, justifying the intense research activity of the scientific community in this field. Recently, a great deal of interest has been devoted to the elaboration of emitters exhibiting a thermally activated delayed fluorescence (TADF). By a specific molecular design consisting into a minimal overlap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) due to a spatial separation of the electron-donating and the electron-releasing parts, luminescent materials exhibiting small S1–T1 energy splitting could be obtained, enabling to thermally upconvert the electrons from the triplet to the singlet excited states by reverse intersystem crossing (RISC). By harvesting both singlet and triplet excitons for light emission, OLEDs competing and sometimes overcoming the performance of phosphorescence-based OLEDs could be fabricated, justifying the interest for this new family of materials massively popularized by Chihaya Adachi since 2012. In this review, we proposed to focus on the recent advances in the molecular design of blue TADF emitters for OLEDs during the last few years. PMID:29507635

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandrova, Anastassia N.; Nayhouse, Michael J.; Huynh, Mioy T.

    CAl₄²-/- (D₄h, ¹A₁g) is is a cluster ion that has been established to be planar, aromatic, and contain a tetracoordinate planar C atom. Valence isoelectronic substitution of C with Si and Ge in this cluster leads to a radical change of structure toward distorted pentagonal species. We find that this structural change goes together with the cluster acquiring partial covalency of bonding between Si/Ge and Al₄, facilitated by hybridization of the atomic orbitals (AOs). Counter intuitively, for the AAl₄²-/- (A = C, Si, Ge) clusters, hybridization in the dopant atom is strengthened from C, to Si, and to Ge, evenmore » though typically AOs are more likely to hybridize if they are closer in energy (i.e. in earlier elements in the Periodic Table). The trend is explained by the better overlap of the hybrids of the heavier dopants with the orbitals of Al₄. From the thus understood trend, it is inferred that covalency in such clusters can be switched off, by varying the relative sizes of the AOs of the main element and the dopant. Using this mechanism, we then successfully killed covalency in Si, and predicted a new aromatic cluster ion containing a tetracoordinate square planar Si, SiIn₄²-/-.« less

  9. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  10. Research Participation in the Mars Orbiter Laser Altimeter Experiment

    NASA Technical Reports Server (NTRS)

    Pettengill, Gordon H.

    2003-01-01

    This report describes the tasks that have been completed by the Principal Investigator, Gordon Pettengill, and his team during the first year of this grant. Dr. Pettengill was assisted by Dr. Peter Ford and Ms. Joan Quigley. Our main task has been to analyze the polar clouds detected by MOLA (Mars Orbiter Laser Altimeter) during the nominal mission of the Mars Global Surveyor (MGS) in 1999-2001 and to correlate the results with other data sets, in particular that from TES, the MGS thermal emission spectrometer. Starting with the Martian cloud database that we constructed prior to the start of this grant, we have examined all TES footprints that overlap MOLA clouds in time and space, correlating the thermal signature against specific categories that we assign to MOLA clouds on the basis of visual inspection. We are particularly interested in clouds in the region of "cold spots", areas of anomalously low thermal brightness temperature that have been detected in the polar winter by several instruments beginning with IRIS on Mariner 9. They are thought to indicate regions of active CO2 sublimation or snowfall, and it is hoped that MOLA measurements may tell us more about these regions.

  11. Wing geometry of Phlebotomus stantoni and Sergentomyia hodgsoni from different geographical locations in Thailand.

    PubMed

    Sumruayphol, Suchada; Chittsamart, Boonruam; Polseela, Raxsina; Sriwichai, Patchara; Samung, Yudthana; Apiwathnasorn, Chamnarn; Dujardin, Jean-Pierre

    2017-01-01

    Geographic populations of the two main sandflies genera present in Thailand were studied for species and population identification. Size and shape of Phlebotomus stantoni and Sergentomyia hodgsoni from different island and mainland locations were examined by landmark-based geometric morphometrics. Intraspecific and interspecific wing comparison was carried out based on 12 anatomical landmarks. The wing centroid size of P. stantoni was generally larger than that of S. hodgsoni. Within both species, wings from the continent were significantly larger than those from island populations. Size variation could be significant between geographic locations, but could also overlap between genera. The wing venation geometry showed non-overlapping differences between two species. The within-species variation of geometric shape between different geographical locations was highly significant, but it could not interfere with the interspecies difference. The lack of species overlapping in shape, and the high discrimination between geographic populations, make geometric shape a promising character for future taxonomic and epidemiological studies. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  12. Burnout and depression: Label-related stigma, help-seeking, and syndrome overlap.

    PubMed

    Bianchi, Renzo; Verkuilen, Jay; Brisson, Romain; Schonfeld, Irvin Sam; Laurent, Eric

    2016-11-30

    We investigated whether burnout and depression differed in terms of public stigma and help-seeking attitudes and behaviors. Secondarily, we examined the overlap of burnout and depressive symptoms. A total of 1046 French schoolteachers responded to an Internet survey in November-December 2015. The survey included measures of public stigma, help-seeking attitudes and behaviors, burnout and depressive symptoms, self-rated health, neuroticism, extraversion, history of anxiety or depressive disorder, social desirability, and socio-demographic variables. The burnout label appeared to be less stigmatizing than the depression label. In either case, however, fewer than 1% of the participants exhibited stigma scores signaling agreement with the proposed stigmatizing statements. Help-seeking attitudes and behaviors did not differ between burnout and depression. Participants considered burnout and depression similarly worth-treating. A huge overlap was observed between the self-report, time-standardized measures of burnout and depressive symptoms (disattenuated correlation: .91). The overlap was further evidenced in a confirmatory factor analysis. Thus, while burnout and depression as syndromes are unlikely to be distinct, how burnout and depression are socially represented may differ. To our knowledge, this study is the first to compare burnout- and depression-related stigma and help-seeking in the French context. Cross-national, multi-occupational studies examining different facets of stigma are needed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    PubMed

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  14. On the Parity of Structural Persistence in Language Production and Comprehension

    PubMed Central

    Tooley, Kristen M.; Bock, Kathryn

    2014-01-01

    Structural priming creates structural persistence. That is, differences in experience with syntax can change subsequent language performance, and the changes can be observed in both language production and comprehension. However, the effects in comprehension and production appear to differ. In comprehension, persistence is typically found when the verbs are the same in primes and targets; in production, persistence occurs without verb overlap. The contrast suggests a theoretically important hypothesis: parsing in comprehension is lexically driven while formulation in production is structurally driven. A major weakness in this hypothesis about comprehension-production differences is that its empirical motivation rests on the outcomes of experiments in which the priming manipulations differ, the primed sentence structures differ, and the measures of priming differ. To sharpen the comparison, we examined structural persistence with and without verb overlap in both reading comprehension and spoken production, using the same prime presentation procedure, the same syntactic structures, the same sentences, and the same participants. These methods yielded abstract sructural persistence in comprehension as well as production. A measure of the strength of persistence revealed significant effects of priming and verb overlap without significant comprehension—production differences. This argues for uniformity in the structural mechanisms of language processing. PMID:24803423

  15. results obtained by the application of two different methods for the calculation of optimal coplanar orbital maneuvers with time limit

    NASA Astrophysics Data System (ADS)

    Rocco, Emr; Prado, Afbap; Souza, Mlos

    In this work, the problem of bi-impulsive orbital transfers between coplanar elliptical orbits with minimum fuel consumption but with a time limit for this transfer is studied. As a first method, the equations presented by Lawden (1993) were used. Those equations furnishes the optimal transfer orbit with fixed time for this transfer, between two elliptical coplanar orbits considering fixed terminal points. The method was adapted to cases with free terminal points and those equations was solved to develop a software for orbital maneuvers. As a second method, the equations presented by Eckel and Vinh (1984) were used, those equations provide the transfer orbit between non-coplanar elliptical orbits with minimum fuel and fixed time transfer, or minimum time transfer for a prescribed fuel consumption, considering free terminal points. But in this work only the problem with fixed time transfer was considered, the case of minimum time for a prescribed fuel consumption was already studied in Rocco et al. (2000). Then, the method was modified to consider cases of coplanar orbital transfer, and develop a software for orbital maneuvers. Therefore, two software that solve the same problem using different methods were developed. The first method, presented by Lawden, uses the primer vector theory. The second method, presented by Eckel and Vinh, uses the ordinary theory of maxima and minima. So, to test the methods we choose the same terminal orbits and the same time as input. We could verify that we didn't obtain exactly the same result. In this work, that is an extension of Rocco et al. (2002), these differences in the results are explored with objective of determining the reason of the occurrence of these differences and which modifications should be done to eliminate them.

  16. Impact of coexisting irritable bowel syndrome and non-erosive reflux disease on postprandial abdominal fullness and sleep disorders in functional dyspepsia.

    PubMed

    Futagami, Seiji; Yamawaki, Hiroshi; Shimpuku, Mayumi; Izumi, Nikki; Wakabayashi, Taiga; Kodaka, Yasuhiro; Nagoya, Hiroyuki; Shindo, Tomotaka; Kawagoe, Tetsuro; Sakamoto, Choitsu

    2013-01-01

    The association between clinical symptoms and sleep disorders in functional dyspepsia (FD)-overlap syndrome has not been studied in detail. The subjects were 139 patients with FD, 14 with irritable bowel syndrome (IBS), 12 with nonerosive reflux disease (NERD), and 41 healthy volunteers. Gastric motility was evaluated with the (13)C-acetate breath test. We used Rome III criteria to evaluate upper abdominal symptoms, and Self-Rating Questionnaire for Depression (SRQ-D) scores to determine depression status. Sleep disorders were evaluated with Pittsburgh Sleep Quality Index (PSQI) scores. There were no significant differences in age, body-mass index, alcohol intake, and smoking rate between patients with FD alone and those with FD-overlap syndrome. The postprandial abdominal fullness score in patients with FD-NERD-IBS was significantly greater than that in patients with FD-NERD overlap syndrome (p<0.001) or FD alone (p<0.001). The score for the feeling of hunger in patients with FD-NERD-IBS was significantly greater than that in patients with FD alone (p=0.0025), FD-NERD overlap syndrome (p=0.0088), or FD-IBS overlap syndrome (p=0.0057). The heartburn score in subjects with FD-NERD-IBS overlap syndrome was significantly greater than that in subjects with FD alone (p=0.0035) or FD-IBS overlap syndrome (p=0.0026). The Tmax in patients with FD-overlap syndrome or FD alone was significantly higher than that in healthy volunteers. The Pittsburgh Sleep Quality Index score in subjects with FD-NERD-IBS overlap syndrome was significantly greater than that in subjects with FD alone. Symptom scores, such as those for postprandial abdominal fullness, heartburn, and the feeling of hunger, in patients with FD-overlap syndromes are significantly greater than those in patients with FD alone. Further studies are necessary to clarify whether various symptoms are related to sleep disorders in patients with FD-NERD-IBS overlap syndrome.

  17. Melas Chasma, Day and Night.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image is a mosaic of day and night infrared images of Melas Chasma taken by the camera system on NASA's Mars Odyssey spacecraft. The daytime temperature images are shown in black and white, superimposed on the martian topography. A single nighttime temperature image is superimposed in color. The daytime temperatures range from approximately -35 degrees Celsius (-31 degrees Fahrenheit) in black to -5 degrees Celsius (23 degrees Fahrenheit) in white. Overlapping landslides and individual layers in the walls of Melas Chasma can be seen in this image. The landslides flowed over 100 kilometers (62 miles) across the floor of Melas Chasma, producing deposits with ridges and grooves of alternating warm and cold materials that can still be seen. The temperature differences in the daytime images are due primarily to lighting effects, where sunlit slopes are warm (bright) and shadowed slopes are cool (dark). The nighttime temperature differences are due to differences in the abundance of rocky materials that retain their heat at night and stay relatively warm (red). Fine grained dust and sand (blue) cools off more rapidly at night. These images were acquired using the thermal infrared imaging system infrared Band 9, centered at 12.6 micrometers.

    Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for NASA's Office of Space Science in Washington, D.C. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. Additional science partners are located at the Russian Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL. Aviation and Space Agency and at Los Alamos National Laboratories, New Mexico. Lockheed Martin Astronautics, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

  18. Spin-orbit-torque-induced skyrmion dynamics for different types of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Kim, Kyoung-Whan; Lee, Hyun-Woo; Lee, Kyung-Jin

    2018-06-01

    We investigate current-induced skyrmion dynamics in the presence of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque corresponding to various types of spin-orbit coupling. We determine the symmetries of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque based on linear spin-orbit coupling model. We find that like interfacial Dzyaloshinskii-Moriya interaction (Rashba spin-orbit coupling) and bulk Dzyaloshinskii-Moriya interaction (Weyl spin-orbit coupling), Dresselhaus spin-orbit coupling also has a possibility for stabilizing skyrmion and current-induced skyrmion dynamics.

  19. Orbiter, Flyby and Lander Mission Concepts for Investigating Europa's Habitability

    NASA Astrophysics Data System (ADS)

    Prockter, L. M.

    2012-04-01

    Coauthors: R. T. Pappalardo (1), F. Bagenal (2), A. C. Barr (3), B. G. Bills (1), D. L. Blaney (1), D. D. Blankenship (4), W. Brinckerhoff (5), J. E. P. Connerney (5), K. Hand (1), T. Hoehler (6), W. Kurth (7), M. McGrath (8), M. Mellon (9), J. M. Moore (6), D. A. Senske (1), E. Shock (10), D. E. Smith (11), T. Gavin (1), G. Garner (1), T. Magner (12), B. C. Cooke (1), R. Crum (1), V. Mallder (12), L. Adams (12), K. Klaasen (1), G. W. Patterson (12), and S. D. Vance (1); 1: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; 2: University of Colorado, Boulder, CO, USA; 3: Brown University, Providence, RI, USA; 4: University of Texas Institute for Geophysics, Austin, TX, USA; 5: NASA Goddard Space Flight Center, Greenbelt, MD, USA; 6: NASA Ames Research Center, Mountain View, CA, USA; 7: University of Iowa, Iowa City, IA, USA; 8: NASA Marshall Space Flight Center, Huntsville, AL, USA; 9: Southwest Research Institute, Boulder, CO, USA; 10: Arizona State University, Tempe, AZ, USA; 11: Massachusetts Institute of Technology, Cambridge, MA, USA; 12: Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. Introduction: Assessment of Europa's habitability requires understanding whether the satellite possesses the three "ingredients" for life: water, chemistry, and energy. The National Research Council's Planetary Decadal Survey [1] placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (JEO) mission concept [2] is incompatible with NASA's projected planetary science budget. Thus, in April 2011, NASA enlisted a small Europa Science Definition Team (ESDT) to consider Europa mission options that might be more feasible over the next decade from a programmatic perspective. The ESDT has studied three Europa mission concepts: a Europa orbiter, a Europa multiple-flyby mission, and a Europa lander. These share an overarching goal: Explore Europa to investigate its habitability. Each of the three mission options would address this goal in different and complementary ways, and each has high science value of its own, independent of the others. Each mission concept traces geophysical, compositional, and/or geological investigations that are best addressed by that specific platform. Investigations best addressed through near-continuous global data sets that are obtained under relatively uniform conditions could be undertaken by the orbiter; investigations that are more focused on characterization of local regions could be accomplished by a spacecraft making multiple flybys from Jupiter orbit; and measurements that are most effective from the surface could be addressed by a lander. Although there is overlap in the science objectives of these three mission concepts, each stands alone as a viable Europa mission concept.

  20. Hints of hybridizing Majorana fermions in a nanowire coupled to superconducting leads

    NASA Astrophysics Data System (ADS)

    Finck, A. D. K.; van Harlingen, D. J.; Mohseni, P. K.; Jung, K.; Li, X.

    2013-03-01

    It has been proposed that a nanowire with strong spin-orbit coupling that is contacted with a conventional superconductor and subjected to a large magnetic field can be driven through a topological phase transition. In this regime, the two ends of the nanowire together host a pair of quasi-particles known as Majorana fermions (MFs). A key feature of MFs is that they are pinned to zero energy when the topological nanowire is long enough such that the wave functions of the two MFs do not overlap significantly, resulting in a zero bias anomaly (ZBA). It has been recently predicted that changes in external parameters can vary the wave function overlap and cause the MFs to hybridize in an oscillatory fashion. This would lead to a non-monotonic splitting or broadening of the ZBA and help distinguish MF transport signatures from a Kondo effect. Here, we present transport studies of an InAs nanowire contacted with niobium nitride leads in high magnetic fields. We observe a number of robust ZBAs that can persist for a wide range of back gate bias and magnetic field strength. Under certain conditions, we find that the height and width of the ZBA can oscillate with back gate bias or magnetic field. This work was supported by Microsoft Project Q.

  1. The RAVE-on Catalog of Stellar Atmospheric Parameters and Chemical Abundances for Chemo-dynamic Studies in the Gaia Era

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Hawkins, Keith; Hogg, David W.; Ness, Melissa; Rix, Hans-Walter; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C.; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K.; Grebel, Eva K.; Helmi, Amina; Munari, Ulisse; Navarro, Julio F.; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary

    2017-05-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature T eff, surface gravity log g, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.

  2. Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yong-Hui; Huang, Jingsong; Sheng, Xiaolan

    In neighboring layers of bilayer (and few-layer) graphenes, both AA and AB stacking motifs are known to be separated at a distance corresponding to van der Waals (vdW) interactions. In this Letter, we present for the first time a new aspect of graphene chemistry in terms of a special chemical bonding between the giant graphene "molecules". Through rigorous theoretical calculations, we demonstrate that the N-doped graphenes (NGPs) with various doping levels can form an unusual two-dimensional (2D) pi-pi bonding in bilayer NGPs bringing the neighboring NGPs to significantly reduced interlayer separations. The interlayer binding energies can be enhanced by upmore » to 50% compared to the pristine graphene bilayers that are characterized by only vdW interactions. Such an unusual chemical bonding arises from the pi-pi overlap across the vdW gap while the individual layers maintain their in-plane pi-conjugation and are accordingly planar. Moreover, the existence of the resulting interlayer covalent-like bonding is corroborated by electronic structure calculations and crystal orbital overlap population (COOP) analyses. In NGP-based graphite with the optimal doping level, the NGP layers are uniformly stacked and the 3D bulk exhibits metallic characteristics both in the in-plane and along the stacking directions.« less

  3. Role of inter-tube coupling and quantum interference on electrical transport in carbon nanotube junctions

    NASA Astrophysics Data System (ADS)

    Tripathy, Srijeet; Bhattacharyya, Tarun Kanti

    2016-09-01

    Due to excellent transport properties, Carbon nanotubes (CNTs) show a lot of promise in sensor and interconnect technology. However, recent studies indicate that the conductance in CNT/CNT junctions are strongly affected by the morphology and orientation between the tubes. For proper utilization of such junctions in the development of CNT based technology, it is essential to study the electronic properties of such junctions. This work presents a theoretical study of the electrical transport properties of metallic Carbon nanotube homo-junctions. The study focuses on discerning the role of inter-tube interactions, quantum interference and scattering on the transport properties on junctions between identical tubes. The electronic structure and transport calculations are conducted with an Extended Hückel Theory-Non Equilibrium Green's Function based model. The calculations indicate conductance to be varying with a changing crossing angle, with maximum conductance corresponding to lattice registry, i.e. parallel configuration between the two tubes. Further calculations for such parallel configurations indicate onset of short and long range oscillations in conductance with respect to changing overlap length. These oscillations are attributed to inter-tube coupling effects owing to changing π orbital overlap, carrier scattering and quantum interference of the incident, transmitted and reflected waves at the inter-tube junction.

  4. Nitrogen-Doping Enables Covalent-Like pi-pi Bonding between Graphenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Yong-Hui; Huang, Jingsong; Sumpter, Bobby G

    The neighboring layers in bi-layer (and few-layer) graphenes of both AA and AB stacking motifs are known to be separated at a distance corresponding to van der Waals (vdW) interactions. In this Letter, we present for the first time a new aspect of graphene chemistry in terms of a special chemical bonding between the giant graphene molecules . Through rigorous theoretical calculations, we demonstrate that the N-doped graphenes (NGPs) with various doping levels can form an unusual two-dimensional (2D) pi pi bonding in bi-layer NGPs bringing the neighboring NGPs to significantly reduced interlayer separations. The interlayer binding energies can bemore » enhanced by up to 50% compared to the pristine graphene bi-layers that are characterized by only vdW interactions. Such an unusual chemical bonding arises from the pi pi overlap across the vdW gap while the individual layers maintain their in-plane pi-conjugation and are accordingly planar. The existence of the resulting interlayer covalent-like bonding is corroborated by electronic structure calculations and crystal orbital overlap population (COOP) analyses. In NGP-based graphite with the optimal doping level, the NGP layers are uniformly stacked and the 3D bulk exhibits metallic characteristics both in the in-plane and along the stacking directions.« less

  5. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L =1

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-01

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L =1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  6. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    PubMed

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy.

  7. Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes

    DOE PAGES

    Tian, Yong-Hui; Huang, Jingsong; Sheng, Xiaolan; ...

    2015-07-07

    In neighboring layers of bilayer (and few-layer) graphenes, both AA and AB stacking motifs are known to be separated at a distance corresponding to van der Waals (vdW) interactions. In this Letter, we present for the first time a new aspect of graphene chemistry in terms of a special chemical bonding between the giant graphene "molecules". Through rigorous theoretical calculations, we demonstrate that the N-doped graphenes (NGPs) with various doping levels can form an unusual two-dimensional (2D) pi-pi bonding in bilayer NGPs bringing the neighboring NGPs to significantly reduced interlayer separations. The interlayer binding energies can be enhanced by upmore » to 50% compared to the pristine graphene bilayers that are characterized by only vdW interactions. Such an unusual chemical bonding arises from the pi-pi overlap across the vdW gap while the individual layers maintain their in-plane pi-conjugation and are accordingly planar. Moreover, the existence of the resulting interlayer covalent-like bonding is corroborated by electronic structure calculations and crystal orbital overlap population (COOP) analyses. In NGP-based graphite with the optimal doping level, the NGP layers are uniformly stacked and the 3D bulk exhibits metallic characteristics both in the in-plane and along the stacking directions.« less

  8. Autism and Schizophrenia in High Functioning Adults: Behavioral Differences and Overlap

    ERIC Educational Resources Information Center

    Spek, Annelies A.; Wouters, Saskia G. M.

    2010-01-01

    Several recent studies have demonstrated a genetical overlap between autism and schizophrenia. However, at a behavioral level it remains unclear which features can validly distinguish adults with autism from an adult schizophrenia group. To this end, the present study compared 21 individuals with the autistic disorder and 21 individuals with…

  9. Evidence for Overlapping Genetic Influences on Autistic and ADHD Behaviours in a Community Twin Sample

    ERIC Educational Resources Information Center

    Ronald, Angelica; Simonoff, Emily; Kuntsi, Jonna; Asherson, Philip; Plomin, Robert

    2008-01-01

    Background: High levels of clinical comorbidity have been reported between autistic spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). This study takes an individual differences approach to determine the degree of phenotypic and aetiological overlap between autistic traits and ADHD behaviours in the general population.…

  10. An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Lessard, Victor R.

    1990-01-01

    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.

  11. Dependency of geodynamic parameters on the GNSS constellation

    NASA Astrophysics Data System (ADS)

    Scaramuzza, Stefano; Dach, Rolf; Beutler, Gerhard; Arnold, Daniel; Sušnik, Andreja; Jäggi, Adrian

    2018-01-01

    Significant differences in time series of geodynamic parameters determined with different Global Navigation Satellite Systems (GNSS) exist and are only partially explained. We study whether the different number of orbital planes within a particular GNSS contributes to the observed differences by analyzing time series of geocenter coordinates (GCCs) and pole coordinates estimated from several real and virtual GNSS constellations: GPS, GLONASS, a combined GPS/GLONASS constellation, and two virtual GPS sub-systems, which are obtained by splitting up the original GPS constellation into two groups of three orbital planes each. The computed constellation-specific GCCs and pole coordinates are analyzed for systematic differences, and their spectral behavior and formal errors are inspected. We show that the number of orbital planes barely influences the geocenter estimates. GLONASS' larger inclination and formal errors of the orbits seem to be the main reason for the initially observed differences. A smaller number of orbital planes may lead, however, to degradations in the estimates of the pole coordinates. A clear signal at three cycles per year is visible in the spectra of the differences between our estimates of the pole coordinates and the corresponding IERS 08 C04 values. Combinations of two 3-plane systems, even with similar ascending nodes, reduce this signal. The understanding of the relation between the satellite constellations and the resulting geodynamic parameters is important, because the GNSS currently under development, such as the European Galileo and the medium Earth orbit constellation of the Chinese BeiDou system, also consist of only three orbital planes.

  12. Seawifs Technical Report Series. Volume 2: Analysis of Orbit Selection for Seawifs: Ascending Versus Descending Node

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Gregg, Watson W.

    1992-01-01

    Due to range safety considerations, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color instrument may be required to be launched into a near-noon descending node, as opposed to the ascending node used by the predecessor sensor, the Coastal Zone Color Scanner (CZCS). The relative importance of ascending versus descending near-noon orbits was assessed here to determine if descending node will meet the scientific requirements of SeaWiFS. Analyses focused on ground coverage, local times of coverage, solar and viewing geometries (zenith and azimuth angles), and sun glint. Differences were found in the areas covered by individual orbits, but were not important when taken over a 16 day repeat time. Local time of coverage was also different: for ascending node orbits the Northern Hemisphere was observed in the morning and the Southern Hemisphere in the afternoon, while for descending node orbits the Northern Hemisphere was observed in the afternoon and the Southern in the morning. There were substantial differences in solar azimuth and spacecraft azimuth angles both at equinox and at the Northern Hemisphere summer solstice. Negligible differences in solar and spacecraft zenith angles, relative azimuth angles, and sun glint were obtained at the equinox. However, large differences were found in solar zenith angles, relative azimuths, and sun glint for the solstice. These differences appeared to compensate across the scan, however, an increase in sun glint in descending node over that in ascending node on the western part of the scan was compensated by a decrease on the eastern part of the scan. Thus, no advantage or disadvantage could be conferred upon either ascending node or descending node for noon orbits. Analyses were also performed for ascending and descending node orbits that deviated from a noon equator crossing time. For ascending node, afternoon orbits produced the lowest mean solar zenith angles in the Northern Hemisphere, and morning orbits produced the lowest angles for the Southern Hemisphere. For descending node, morning orbits produced the lowest mean solar zenith angles for the Northern Hemisphere; afternoon orbits produced the lowest angles for the Southern Hemisphere.

  13. The orbital evolution of NEA 30825 1900 TG1

    NASA Astrophysics Data System (ADS)

    Timoshkova, E. I.

    2008-02-01

    The orbital evolution of the near-Earth asteroid (NEA) 30825 1990 TG1 has been studied by numerical integration of the equations of its motion over the 100 000-year time interval with allowance for perturbations from eight major planets and Pluto, and the variations in its osculating orbit over this time interval were determined. The numerical integrations were performed using two methods: the Bulirsch-Stoer method and the Everhart method. The comparative analysis of the two resulting orbital evolutions of motion is presented for the time interval examined. The evolution of the asteroid motion is qualitatively the same for both variants, but the rate of evolution of the orbital elements is different. Our research confirms the known fact that the application of different integrators to the study of the long-term evolution of the NEA orbit may lead to different evolution tracks.

  14. Meteor showers associated with 2003EH1

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Williams, I. P.; Kokhirova, G. I.

    2008-06-01

    Using the Everhart RADAU19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.

  15. Validation of Automated White Matter Hyperintensity Segmentation

    PubMed Central

    Smart, Sean D.; Firbank, Michael J.; O'Brien, John T.

    2011-01-01

    Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion. PMID:21904678

  16. Quantifying high resolution transitional breaks in plant and mammal distributions at regional extent and their association with climate, topography and geology.

    PubMed

    Di Virgilio, Giovanni; Laffan, Shawn W; Ebach, Malte C

    2013-01-01

    We quantify spatial turnover in communities of 1939 plant and 59 mammal species at 2.5 km resolution across a topographically heterogeneous region in south-eastern Australia to identify distributional breaks and low turnover zones where multiple species distributions overlap. Environmental turnover is measured to determine how climate, topography and geology influence biotic turnover differently across a variety of biogeographic breaks and overlaps. We identify the genera driving turnover and confirm the versatility of this approach across spatial scales and locations. Directional moving window analyses, rotated through 360°, were used to measure spatial turnover variation in different directions between gridded cells containing georeferenced plant and mammal occurrences and environmental variables. Generalised linear models were used to compare taxic turnover results with equivalent analyses for geology, regolith weathering, elevation, slope, solar radiation, annual precipitation and annual mean temperature, both uniformly across the entire study area and by stratifying it into zones of high and low turnover. Identified breaks and transitions were compared to a conservation bioregionalisation framework widely used in Australia. Detailed delineations of plant and mammal turnover zones with gradational boundaries denoted subtle variation in species assemblages. Turnover patterns often diverged from bioregion boundaries, though plant turnover adhered most closely. A prominent break zone contained either comparable or greater numbers of unique genera than adjacent overlaps, but these were concentrated in a small subsection relatively under-protected by conservation reserves. The environmental correlates of biotic turnover varied for different turnover zones in different subsections of the study area. Topography and temperature showed much stronger relationships with plant turnover in a topographically complex overlap, relative to a lowland overlap where weathering was most predictive. This method can quantify transitional turnover patterns from small to broad extents, at different resolutions for any location, and complements broad-scale bioregionalisation schemes in conservation planning.

  17. Unique and Overlapping Symptoms in Schizophrenia Spectrum and Dissociative Disorders in Relation to Models of Psychopathology: A Systematic Review

    PubMed Central

    Renard, Selwyn B.; Huntjens, Rafaele J. C.; Lysaker, Paul H.; Moskowitz, Andrew; Aleman, André; Pijnenborg, Gerdina H. M.

    2017-01-01

    Schizophrenia spectrum disorders (SSDs) and dissociative disorders (DDs) are described in the fifth edition of the Diagnostic and Statistical Manual for Mental Disorders (DSM-5) and tenth edition of the International Statistical Classification of Diseases and Related Health Problems (ICD-10) as 2 categorically distinct diagnostic categories. However, several studies indicate high levels of co-occurrence between these diagnostic groups, which might be explained by overlapping symptoms. The aim of this systematic review is to provide a comprehensive overview of the research concerning overlap and differences in symptoms between schizophrenia spectrum and DDs. For this purpose the PubMed, PsycINFO, and Web of Science databases were searched for relevant literature. The literature contained a large body of evidence showing the presence of symptoms of dissociation in SSDs. Although there are quantitative differences between diagnoses, overlapping symptoms are not limited to certain domains of dissociation, nor to nonpathological forms of dissociation. In addition, dissociation seems to be related to a history of trauma in SSDs, as is also seen in DDs. There is also evidence showing that positive and negative symptoms typically associated with schizophrenia may be present in DD. Implications of these results are discussed with regard to different models of psychopathology and clinical practice. PMID:27209638

  18. Perception of scent over-marks by golden hamsters (Mesocricetus auratus): novel mechanisms for determining which individual's mark is on top.

    PubMed

    Johnston, R E; Bhorade, A

    1998-09-01

    Hamsters preferentially remember or value the top scent of a scent over-mark. What cues do they use to do this? Using habituation-discrimination techniques, we exposed male golden hamsters (Mesocricetus auratus) on 3 to 4 trials to genital over-marks from 2 females and then tested subjects for their familiarity with these 2 scents compared with that of a novel female's secretion. Preferential memory for 1 of the 2 individuals' scents did not occur if the 2 marks did not overlap or did not overlap but differed in age, but it did occur if a region of overlap existed or 1 mark apparently occluded another (but did not overlap it). Thus, hamsters use regions of overlap and the spatial configuration of scents to evaluate over-marks. These phenomena constitute evidence for previously unsuspected perceptual abilities, including olfactory scene analysis, which is analogous to visual and auditory scene analysis.

  19. Benchmarking database performance for genomic data.

    PubMed

    Khushi, Matloob

    2015-06-01

    Genomic regions represent features such as gene annotations, transcription factor binding sites and epigenetic modifications. Performing various genomic operations such as identifying overlapping/non-overlapping regions or nearest gene annotations are common research needs. The data can be saved in a database system for easy management, however, there is no comprehensive database built-in algorithm at present to identify overlapping regions. Therefore I have developed a novel region-mapping (RegMap) SQL-based algorithm to perform genomic operations and have benchmarked the performance of different databases. Benchmarking identified that PostgreSQL extracts overlapping regions much faster than MySQL. Insertion and data uploads in PostgreSQL were also better, although general searching capability of both databases was almost equivalent. In addition, using the algorithm pair-wise, overlaps of >1000 datasets of transcription factor binding sites and histone marks, collected from previous publications, were reported and it was found that HNF4G significantly co-locates with cohesin subunit STAG1 (SA1).Inc. © 2015 Wiley Periodicals, Inc.

  20. A 19-year radar altimeter elevation change time-series of the East and West Antarctic ice sheets

    NASA Astrophysics Data System (ADS)

    Sundal, A. V.; Shepherd, A.; Wingham, D.; Muir, A.; Mcmillan, M.; Galin, N.

    2012-12-01

    We present 19 years of continuous radar altimeter observations of the East and West Antarctic ice sheets acquired by the ERS-1, ERS-2, and ENVISAT satellites between May 1992 and September 2010. Time-series of surface elevation change were developed at 39,375 crossing points of the satellite orbit ground tracks using the method of dual cycle crossovers (Zwally et al., 1989; Wingham et al., 1998). In total, 46.5 million individual measurements were included in the analysis, encompassing 74 and 76 % of the East and West Antarctic ice sheet, respectively. The satellites were cross-calibrated by calculating differences between elevation changes occurring during periods of mission overlap. We use the merged time-series to explore spatial and temporal patterns of elevation change and to characterise and quantify the signals of Antarctic ice sheet imbalance. References: Wingham, D., Ridout, A., Scharroo, R., Arthern, R. & Shum, C.K. (1998): Antarctic elevation change from 1992 to 1996. Science, 282, 456-458. Zwally, H. J., Brenner, A. C., Major, J. A., Bindschadler, R. A. & Marsh, J. G. (1989): Growth of Greenland ice-sheet - measurements. Science, 246, 1587-1589.

Top