Sample records for orbital evolution due

  1. POET: Planetary Orbital Evolution due to Tides

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan

    2014-08-01

    POET (Planetary Orbital Evolution due to Tides) calculates the orbital evolution of a system consisting of a single star with a single planet in orbit under the influence of tides. The following effects are The evolutions of the semimajor axis of the orbit due to the tidal dissipation in the star and the angular momentum of the stellar convective envelope by the tidal coupling are taken into account. In addition, the evolution includes the transfer of angular momentum between the stellar convective and radiative zones, effect of the stellar evolution on the tidal dissipation efficiency, and stellar core and envelope spins and loss of stellar convective zone angular momentum to a magnetically launched wind. POET can be used out of the box, and can also be extended and modified.

  2. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less

  3. On the rates of type Ia supernovae originating from white dwarf collisions in quadruple star systems

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.

    2018-04-01

    We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution and encounters with passing stars. We focus on type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 {au}, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche Lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_⊙^{-1} and (1.3± 0.2) × 10^{-6} M_⊙^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of order 10^{-3} M_⊙^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.

  4. On the rates of Type Ia supernovae originating from white dwarf collisions in quadruple star systems

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.

    2018-07-01

    We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution, and encounters with passing stars. We focus on Type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 au, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_{⊙}^{-1} and (1.3± 0.2) × 10^{-6} M_{⊙}^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of the order of 10^{-3} M_{⊙}^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.

  5. Evolution of the Edgeworth-Kuiper Belt and Kuiperoidal Dust

    NASA Astrophysics Data System (ADS)

    Ozernoy, L. M.; Ipatov, S. I.

    Evolution of orbits of Edgeworth-Kuiper belt objects (EKBOs) under the gravitational influence of the giant planets has been studied by a number of authors (e.g., Duncan & Levison; Budd; Ozernoy, Gorkavyi & Taidakova). Here we show that the gravitational interactions of EKBOs can also play a certain role in their orbital evolution. For instance, during the last 4 Gyr as many as several percents of EKBOs could change their semimajor axes by more than 1 AU due to close encounters with other EKBOs. Even small variations in orbital elements of EKBOs caused by their mutual collisions coupled with the mutual gravitational influence can cause large variations in the orbital elements due to the gravitational influence of planets. About 6% of Neptune-crossers can reach the orbit of the Earth, with the average time in Earth-crossing orbits of about 5× 103 yr. The portion of former EKBOs now moving in Earth-crossing orbits can exceed 20% of all Earth-crossers. Evaporation of the volatile material from the EKBOs surfaces, due to mutual EKBO collisions, along with the Solar wind and the heating by the Sun, are the sources of the dust in the outer Solar system. The evolution and structure of the interplanetary dust cloud computed, in some approximations, by Gorkavyi, Ozernoy, Mather, & Taidakova offers a preliminary 3-D physical model of the cloud, which includes three dust components (asteroidal, cometary, and kuiperoidal), which is fairly consistent with the available data of Pioneer and Voyager dust detectors and contribution of the zodiacal light into the COBE/DIRBE data. We acknowledge support of this work by NASA grant NAG5-10776, the Russian Federal Program ``Astronomy'' (section 1.9.4.1), RFBR (01-02-17540), and INTAS (00-240).

  6. The puzzling orbital period evolution of the LMXB AX J1745.6-2901

    NASA Astrophysics Data System (ADS)

    Ponti, G.; De, K.; Munoz-Darias, T.; Stella, L.; Nandra, K.

    2017-10-01

    The discovery of gravitational waves through mergers of binary black holes raises the question of how such compact systems form, renewing issues related to the orbital evolution of binary systems. Eclipsing X-ray binaries are excellent tools to constrain the orbital period evolution and how the system loses angular momentum. I will present an X-ray eclipse timing analysis (spanning an interval of more than 20 yr) of one of such objects, AX J1745.6-2901. Its orbital period is decreasing at a rate Pdotorb=-4.03+-0.32 e-11 s s-1, at least one order of magnitude larger than expected from conservative mass transfer and angular momentum losses due to gravitational waves and magnetic braking, and it might result from either non-conservative mass transfer or magnetic activity changing the quadrupole moment of the companion star. I will also show that imprinted on the long-term evolution of the orbit, there are highly significant eclipse leads delays of 10-30 s, characterized by a clear state dependence in which, on average, eclipses occur earlier during the hard state. Finally, I will discuss whether accretion disc winds might have an impact onto the orbital evolution.

  7. Dynamical evolution of a fictitious population of binary Neptune Trojans

    NASA Astrophysics Data System (ADS)

    Brunini, Adrián

    2018-03-01

    We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.

  8. Neutron Orbital Occupancies in the A{approx}100 Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borello-Lewin, T.; Duarte, J. L. M.; Horodynski-Matsushigue, L. B.

    2009-06-03

    The evolutive behavior of the experimental neutron orbital occupancies, along isotopic chains in the A{approx}100, is taken as a microscopic indicator of the transition. No increase of the vlg{sub 7/2} orbital occupancy was revealed for N>55, contrary previous expectations that interpreted the increase of deformation as due mainly to the n-p interaction in the SOP orbitals.

  9. POET: A Model for Planetary Orbital Evolution Due to Tides on Evolving Stars

    NASA Astrophysics Data System (ADS)

    Penev, Kaloyan; Zhang, Michael; Jackson, Brian

    2014-06-01

    We make publicly available an efficient, versatile, easy to use and extend tool for calculating the evolution of circular aligned planetary orbits due to the tidal dissipation in the host star. This is the first model to fully account for the evolution of the angular momentum of the stellar convective envelope by the tidal coupling, the transfer of angular momentum between the stellar convective and radiative zones, the effects of the stellar evolution on the tidal dissipation efficiency and stellar core and envelope spins, the loss of stellar convective zone angular momentum to a magnetically launched wind and frequency dependent tidal dissipation. This is only a first release and further development is under way to allow calculating the evolution of inclined and eccentric orbits, with the latter including the tidal dissipation in the planet and its feedback on planetary structure. Considerable effort has been devoted to providing extensive documentation detailing both the usage and the complete implementation details, in order to make it as easy as possible for independent groups to use and/or extend the code for their purposes. POET represents a significant improvement over some previous models for planetary tidal evolution and so has many astrophysical applications. In this article, we describe and illustrate several key examples.

  10. Tidal dissipation in the Earth and Moon from lunar laser ranging

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.; Williams, J. G.; Dickey, J. O.; Newhall, X. X.

    1984-01-01

    The evolution of the Moon's orbit which is governed by tidal dissipation in the Earth while the evolution of its spin is controlled by its own internal dissipation is discussed. Lunar laser ranging data from August 1969 through May 1982 yields the values of both of these parameters. It is suggested that if the Moon was orbited the Earth since its formation, this must be an anomalously high value presumably due to changes in dissipation in the oceans due to continental drift. The explanation that the dissipation occurs at the interface between the mantle and a liquid core of shell is preferred.

  11. A preliminary analysis of the orbit of the Mars Trojan asteroid (5261) Eureka

    NASA Technical Reports Server (NTRS)

    Mikkola, Seppo; Innanen, Kimmo; Muinonen, Karri; Bowell, Edward

    1994-01-01

    Observations and results of orbit determination of the first known Mars Trojan asteroid (5261) Eureka are presented. We have numerically calculated the evolution of the orbital elements, and have analyzed the behavior of the motion during the next 2 Myr. Strong perturbations by planets other than Mars seem to stabilize the eccentricity of the asteroid by stirring the high order resonances present in the elliptic restricted problem. As a result, the orbit appears stable at least on megayear timescales. The difference of the mean longitudes of Mars and Eureka and the semimajor axis of the asteroid form a pair of variables that essentially behave in an adiabatic manner, while the evolution of the other orbital elements is largely determined by the pertubations due to other planets.

  12. Orbital and attitude evolution of SCD-1 and SCD-2 Brazilian satellites

    NASA Astrophysics Data System (ADS)

    Murcia, J. O.; Carrara, V.; Kuga, H. K.

    2017-10-01

    The SCD-1 and SCD-2 satellites were launched in 1993 and 1998, respectively, with use of the Launcher “Pegasus” of the OSC (Orbital Sciences Corporation). 21 and 16 years later, the satellites are still in orbit around the Earth and providing data for users. Mission and Operational data from Satellite Tracking Center Network are stored in mission files in the Satellite Control Center (SCC) and made available to the users. The SCC also stores history files of the satellite orbit and attitude ephemeris, besides the on-board telemetry, temperatures, equipment status, etc. This work will present some analysis of the orbit ephemeris evolution based upon the Two-Line Elements sets (TLE’s) obtained from NORAD (North American Aerospace Defense Command). Attitude evolution along time is also presented for both satellites from SCC data. The orbit decay will be explained as resulting mainly due to the solar activity during the satellite lifetime. This work aims to report the history of more than 20 years of continuous operation of SCD-1 and SCD-2. At the end, an estimation of the orbital decay is forecast with the use of NASA’s DAS software.

  13. Orbital resonances of Taiwan's FORMOSAT-2 remote sensing satellite

    NASA Astrophysics Data System (ADS)

    Lin, Shin-Fa; Hwang, Cheinway

    2018-06-01

    Unlike a typical remote sensing satellite that has a global coverage and non-integral orbital revolutions per day, Taiwan's FORMOSAT-2 (FS-2) satellite has a non-global coverage due to the mission requirements of one-day repeat cycle and daily visit around Taiwan. These orbital characteristics result in an integer number of revolutions a day and orbital resonances caused by certain components of the Earth's gravity field. Orbital flight data indicated amplified variations in the amplitudes of FS-2's Keplerian elements. We use twelve years of orbital observations and maneuver data to analyze the cause of the resonances and explain the differences between the simulated (at the pre-launch stage) and real orbits of FS-2. The differences are quantified using orbital perturbation theories that describe secular and long-period orbital evolutions caused by resonances. The resonance-induced orbital rising rate of FS-2 reaches +1.425 m/day, due to the combined (modeled) effect of resonances and atmospheric drags (the relative modeling errors < 10%). The concave shapes in the time-evolution of the longitude of descending node (LonDN) coincide with the positive rates of daily semi-major axis (SMA) change, also caused by resonances. The non-zonal geopotential coefficients causing the resonance effects contributed up to 45% of FS-2's inclination decline. Our retrospective analysis of FS-2's resonant orbit can provide lessons for a remote sensing mission similar to FS-2, especially in the early mission design and planning phase.

  14. On the Existence of Regular and Irregular Outer Moons Orbiting the Pluto-Charon System

    NASA Astrophysics Data System (ADS)

    Michaely, Erez; Perets, Hagai B.; Grishin, Evgeni

    2017-02-01

    The dwarf planet Pluto is known to host an extended system of five co-planar satellites. Previous studies have explored the formation and evolution of the system in isolation, neglecting perturbative effects by the Sun. Here we show that secular evolution due to the Sun can strongly affect the evolution of outer satellites and rings in the system, if such exist. Although precession due to extended gravitational potential from the inner Pluto-Charon binary quench such secular evolution up to a crit ˜ 0.0035 au (˜0.09 R Hill the Hill radius; including all of the currently known satellites), outer orbits can be significantly altered. In particular, we find that co-planar rings and satellites should not exist beyond a crit; rather, satellites and dust particles in these regions secularly evolve on timescales ranging between 104 and 106 years, and quasi-periodically change their inclinations and eccentricities through secular evolution (Lidov-Kozai oscillations). Such oscillations can lead to high inclinations and eccentricities, constraining the range where such satellites (and dust particles) can exist without crossing the orbits of the inner satellites or crossing the outer Hill stability range. Outer satellites, if such exist are therefore likely to be irregular satellites, with orbits limited to be non-circular and/or highly inclined. Current observations, including the recent data from the New-Horizons mission explored only inner regions (<0.0012 au) and excluded the existence of additional satellites; however, the irregular satellites discussed here should reside farther, in the yet uncharted regions around Pluto.

  15. The Influence of the Orbital Evolution of Main Belt Asteroids on Their Spin Vectors

    NASA Astrophysics Data System (ADS)

    Skoglöv, E.; Erikson, A.

    2002-11-01

    It was found that certain features in the observed spin vector distribution of main belt asteroids can be explained by the differences in the dynamical spin vector evolution between objects with high and low orbital inclinations. In particular, the deficiency of high-inclination objects whose spin vectors are close to the ecliptic plane can be accounted for. The present spin vector distribution of main belt asteroids is due to several factors connected with their collisional and dynamical evolution. In this paper, the influence of the orbital evolution on the spin axis of asteroids is examined in the case of 25 objects with typical main belt orbital evolution and 125 synthetic objects, during an integration over a time period of 1 Myr. This investigation produced the following general results: • The difference between maximum and minimum obliquity increases in an approximately linear fashion with increasing orbital inclination of the studied objects. • The inclination is the major factor influencing the magnitude of the obliquity variation. This variation is generally larger for asteroids with their initial spin vectors located close to the orbital plane. • In general, the regular obliquity differences are relatively insensitive to differences in the shape, composition, and spin rate of the asteroids. The result is compared with the properties of the observed spin vectors for 73 main belt asteroids and good agreement is found between the above results and the existing spin vector distribution.

  16. On the Coplanar Integrable Case of the Twice-Averaged Hill Problem with Central Body Oblateness

    NASA Astrophysics Data System (ADS)

    Vashkov'yak, M. A.

    2018-01-01

    The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.

  17. Long term evolution of distant retrograde orbits in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Bezrouk, Collin; Parker, Jeffrey S.

    2017-09-01

    This work studies the evolution of several Distant Retrograde Orbits (DROs) of varying size in the Earth-Moon system over durations up to tens of millennia. This analysis is relevant for missions requiring a completely hands off, long duration quarantine orbit, such as a Mars Sample Return mission or the Asteroid Redirect Mission. Four DROs are selected from four stable size regions and are propagated for up to 30,000 years with an integrator that uses extended precision arithmetic techniques and a high fidelity dynamical model. The evolution of the orbit's size, shape, orientation, period, out-of-plane amplitude, and Jacobi constant are tracked. It has been found that small DROs, with minor axis amplitudes of approximately 45,000 km or less decay in size and period largely due to the Moon's solid tides. Larger DROs (62,000 km and up) are more influenced by the gravity of bodies external to the Earth-Moon system, and remain bound to the Moon for significantly less time.

  18. Orbital Evolution of Moons in Weakly Accreting Circumplanetary Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Yuri I.; Gressel, Oliver; Kobayashi, Hiroshi

    We investigate the formation of hot and massive circumplanetary disks (CPDs) and the orbital evolution of satellites formed in these disks. Because of the comparatively small size-scale of the sub-disk, quick magnetic diffusion prevents the magnetorotational instability (MRI) from being well developed at ionization levels that would allow MRI in the parent protoplanetary disk. In the absence of significant angular momentum transport, continuous mass supply from the parental protoplanetary disk leads to the formation of a massive CPD. We have developed an evolutionary model for this scenario and have estimated the orbital evolution of satellites within the disk. We find,more » in a certain temperature range, that inward migration of a satellite can be stopped by a change in the structure due to the opacity transitions. Moreover, by capturing second and third migrating satellites in mean motion resonances, a compact system in Laplace resonance can be formed in our disk models.« less

  19. Tidal evolution of close binary asteroid systems

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.; Margot, Jean-Luc

    2010-12-01

    We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than 5 times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent. This work has possible implications for the determination of the Roche limit and for spin-state alteration during close flybys.

  20. The evolution of Orbiter depot support, with applications to future space vehicles

    NASA Technical Reports Server (NTRS)

    Mcclain, Michael L.

    1990-01-01

    The reasons for depot consolidation and the processes established to implement the Orbiter depot are presented. The Space Shuttle Orbiter depot support is presently being consolidated due to equipment suppliers leaving the program, escalating depot support costs, and increasing repair turnaround times. Details of the depot support program for orbiter hardware and selected pieces of support equipment are discussed. The benefits gained from this consolidation and the lessons learned are then applied to future reuseable space vehicles to provide program managers a forward look at the need for efficient depot support.

  1. Mottness Collapse in 1 T -TaS2 -xSex Transition-Metal Dichalcogenide: An Interplay between Localized and Itinerant Orbitals

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Li, Xintong; Wang, Naizhou; Ruan, Wei; Ye, Cun; Cai, Peng; Hao, Zhenqi; Yao, Hong; Chen, Xianhui; Wu, Jian; Wang, Yayu; Liu, Zheng

    2017-10-01

    The layered transition-metal dichalcogenide 1 T -TaS2 has been recently found to undergo a Mott-insulator-to-superconductor transition induced by high pressure, charge doping, or isovalent substitution. By combining scanning tunneling microscopy measurements and first-principles calculations, we investigate the atomic scale electronic structure of the 1 T -TaS2 Mott insulator and its evolution to the metallic state upon isovalent substitution of S with Se. We identify two distinct types of orbital textures—one localized and the other extended—and demonstrate that the interplay between them is the key factor that determines the electronic structure. In particular, we show that the continuous evolution of the charge gap visualized by scanning tunneling microscopy is due to the immersion of the localized-orbital-induced Hubbard bands into the extended-orbital-spanned Fermi sea, featuring a unique evolution from a Mott gap to a charge-transfer gap. This new mechanism of Mottness collapse revealed here suggests an interesting route for creating novel electronic states and designing future electronic devices.

  2. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  3. Tidal evolution of the Moon from a high-obliquity, high-angular-momentum Earth.

    PubMed

    Ćuk, Matija; Hamilton, Douglas P; Lock, Simon J; Stewart, Sarah T

    2016-11-17

    In the giant-impact hypothesis for lunar origin, the Moon accreted from an equatorial circum-terrestrial disk; however, the current lunar orbital inclination of five degrees requires a subsequent dynamical process that is still unclear. In addition, the giant-impact theory has been challenged by the Moon's unexpectedly Earth-like isotopic composition. Here we show that tidal dissipation due to lunar obliquity was an important effect during the Moon's tidal evolution, and the lunar inclination in the past must have been very large, defying theoretical explanations. We present a tidal evolution model starting with the Moon in an equatorial orbit around an initially fast-spinning, high-obliquity Earth, which is a probable outcome of giant impacts. Using numerical modelling, we show that the solar perturbations on the Moon's orbit naturally induce a large lunar inclination and remove angular momentum from the Earth-Moon system. Our tidal evolution model supports recent high-angular-momentum, giant-impact scenarios to explain the Moon's isotopic composition and provides a new pathway to reach Earth's climatically favourable low obliquity.

  4. Development of experimental facilities for processing metallic crystals in orbit

    NASA Technical Reports Server (NTRS)

    Duncan, Bill J.

    1990-01-01

    This paper discusses the evolution, current status, and planning for facilities to exploit the microgravity environment of earth orbit in applied metallic materials science. Space-Shuttle based facilities and some precursor flight programs are reviewed. Current facility development programs and planned Space Station furnace capabilities are described. The reduced gravity levels available in earth orbit allow the processing of metallic materials without the disturbing influence of gravitationally induced thermal convection, stratification due to density differences in sample components, or the effects of hydrostatic pressure.

  5. Cosmic dust and space debris; Proceedings of the Topical Meetings and Workshop 6 of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M. (Editor); Hanner, M. S. (Editor); Kessler, D. J. (Editor)

    1986-01-01

    These proceedings encompass topics in the fields of extraterrestrial material samples, IRAS solar system and dust model results, and earth orbit debris. Attention is given to chemical fractionation during high velocity impact, particle deceleration and survival in multiple thin foil targets, and IRAS studies of asteroids, comets, cometary tails, the zodiacal background, and the three-dimensional modeling of interplanetary dust. Also discussed are the evolution of an earth orbit debris cloud, orbital debris due to future space activities, collision probabilities in geosynchronous orbits, and a bitelescopic survey of low altitude orbital debris.

  6. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    NASA Astrophysics Data System (ADS)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  7. Non-gravitational force modeling of Comet 81P/Wild 2. II. Rotational evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Pedro J.; Davidsson, Björn J. R.

    2007-11-01

    In this paper, we have studied both the dynamical and the rotational evolution of an 81P/Wild 2-like comet under the effects of the outgassing-induced force and torque. The main aim is to study if it is possible to reproduce the non-gravitational orbital changes observed in this comet, and to establish the likely evolution of both orbital and rotational parameters. To perform this study, a simple thermophysical model has been used to estimate the torque acting on the nucleus. Once the torque is calculated, Euler equations are solved numerically considering a nucleus mass directly estimated from the changes in the orbital elements (as determined from astrometry). According to these simulations, when the water production rate and changes in orbital parameters for 1997, as well as observational rotational parameters for 2004 are imposed as constraints, the change in the orbital period of 81P/Wild 2, ΔP=P˙, will decrease so that P¨=-5 to -1minorbit, which is similar to the actual tendency observed from 1988 up to 1997. This nearly constant decreasing can be explained as due to a slight drift of the spin axis orientation towards larger ecliptic longitudes. After studying the possible spin axis orientations proposed for 1997, simulations suggest that the spin obliquity and argument (I,Φ)=(56°,167°) is the most likely. As for rotational evolution, changes per orbit smaller than 10% of the actual spin velocity are probable, while the most likely value corresponds to a change between 2 and 7% of the spin velocity. Equally, net changes in the spin axis orientation of 4°-8° per orbit are highly expected.

  8. The evolution of kicked stellar-mass black holes in star cluster environments

    NASA Astrophysics Data System (ADS)

    Webb, Jeremy J.; Leigh, Nathan W. C.; Singh, Abhishek; Ford, K. E. Saavik; McKernan, Barry; Bellovary, Jillian

    2018-03-01

    We consider how dynamical friction acts on black holes that receive a velocity kick while located at the centre of a gravitational potential, analogous to a star cluster, due to either a natal kick or the anisotropic emission of gravitational waves during a black hole-black hole merger. Our investigation specifically focuses on how well various Chandrasekhar-based dynamical friction models can predict the orbital decay of kicked black holes with mbh ≲ 100 M⊙ due to an inhomogeneous background stellar field. In general, the orbital evolution of a kicked black hole follows that of a damped oscillator where two-body encounters and dynamical friction serve as sources of damping. However, we find models for approximating the effects of dynamical friction do not accurately predict the amount of energy lost by the black hole if the initial kick velocity vk is greater than the stellar velocity dispersion σ. For all kick velocities, we also find that two-body encounters with nearby stars can cause the energy evolution of a kicked BH to stray significantly from standard dynamical friction theory as encounters can sometimes lead to an energy gain. For larger kick velocities, we find the orbital decay of a black hole departs from classical theory completely as the black hole's orbital amplitude decays linearly with time as opposed to exponentially. Therefore, we have developed a linear decay formalism, which scales linearly with black hole mass and v_k/σ in order to account for the variations in the local gravitational potential.

  9. ECCENTRICITY EVOLUTION THROUGH ACCRETION OF PROTOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Yuji; Nagasawa, Makiko; Ida, Shigeru, E-mail: yuji.matsumoto@nao.ac.jp, E-mail: nagasawa.m.ad@m.titech.ac.jp, E-mail: ida@elsi.jp

    2015-09-10

    Most super-Earths detected by the radial velocity (RV) method have significantly smaller eccentricities than the eccentricities corresponding to velocity dispersion equal to their surface escape velocity (“escape eccentricities”). If orbital instability followed by giant impacts among protoplanets that have migrated from outer regions is considered, it is usually considered that eccentricities of the merged bodies become comparable to those of orbital crossing bodies, which are excited up to their escape eccentricities by close scattering. However, the eccentricity evolution in the in situ accretion model has not been studied in detail. Here, we investigate the eccentricity evolution through N-body simulations. Wemore » have found that the merged planets tend to have much smaller eccentricities than escape eccentricities due to very efficient collision damping. If the protoplanet orbits are initially well separated and their eccentricities are securely increased, an inner protoplanet collides at its apocenter with an outer protoplanet at its pericenter. The eccentricity of the merged body is the smallest for such configurations. Orbital inclinations are also damped by this mechanism and planets tend to share a same orbital plane, which is consistent with Kepler data. Such efficient collision damping is not found when we start calculations from densely packed orbits of the protoplanets. If the protoplanets are initially in the mean-motion resonances, which corresponds to well separated orbits, the in situ accretion model well reproduces the features of eccentricities and inclinations of multiple super-Earths/Earth systems discovered by RV and Kepler surveys.« less

  10. [Acute dacryocystitis complicating primary mononucleosis infection].

    PubMed

    Delbet, C; PhamDang, N; Mondie, J-M; Barthelemy, I

    2010-01-01

    Infectious mononucleosis may lead to numerous complications. Tonsillar hyperplasia with risk of airway obstruction is well known. Dacryocystitis is a rare but potentially severe complication. A 6-year-old child with primary mononucleosis infectious diagnosed 8 days before, developed acute dacryocystitis, with rapid evolution to orbital cellulitis, despite adequate antibiotherapy. Emergency surgical drainage was required. Dacryocystitis is a rare and little documented complication of EBV infection. Its acute evolution to orbital cellulitis is possible and potentially severe. Its physiopathology is specific. Patients are initially free of chronic stenosis and epiphora, which express acute obstruction of the lachrymal sac due to general lymphoid hyperplasia. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  11. The Thermal Expansion of Ring Particles and the Secular Orbital Evolution of Rings Around Planets and Asteroids

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2013-01-01

    The thermal expansion and contraction of ring particles orbiting a planet or asteroid can cause secular orbit evolution. This effect, called here the thermal expansion effect, depends on ring particles entering and exiting the shadow of the body they orbit. A particle cools off in the shadow and heats up again in the sunshine, suffering thermal contraction and expansion. The changing cross-section it presents to solar radiation pressure plus time lags due to thermal inertia lead to a net along-track force. The effect causes outward drift for rocky particles. For the equatorial orbits considered here, the thermal expansion effect is larger than Poynting-Robertson drag in the inner solar system for particles in the size range approx. 0.001 - 0.02 m. This leads to a net increase in the semimajor axis from the two opposing effects at rates ranging from approx. 0.1 R per million years for Mars to approx. 1 R per million years for Mercury, for distances approx. 2R from the body, where R is the body's radius. Asteroid 243 Ida has approx. 10 R per million years, while a hypothetical Near-Earth Asteroid (NEA) can have faster rates of approx. 0.5 R per thousand years, due chiefly to its small radius compared to the planets. The thermal expansion effect weakens greatly at Jupiter and is overwhelmed by Poynting-Robertson for icy particles orbiting Saturn. Meteoroids in eccentric orbits about the Sun also suffer the thermal expansion effect, but with only approx. 0.0003e2 AU change in semimajor axis over a million years for a 2 m meteoroid orbiting between Mercury and Earth.

  12. On the Existence of Regular and Irregular Outer Moons Orbiting the Pluto–Charon System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaely, Erez; Perets, Hagai B.; Grishin, Evgeni

    The dwarf planet Pluto is known to host an extended system of five co-planar satellites. Previous studies have explored the formation and evolution of the system in isolation, neglecting perturbative effects by the Sun. Here we show that secular evolution due to the Sun can strongly affect the evolution of outer satellites and rings in the system, if such exist. Although precession due to extended gravitational potential from the inner Pluto–Charon binary quench such secular evolution up to a {sub crit} ∼ 0.0035 au (∼0.09 R {sub Hill} the Hill radius; including all of the currently known satellites), outer orbitsmore » can be significantly altered. In particular, we find that co-planar rings and satellites should not exist beyond a {sub crit}; rather, satellites and dust particles in these regions secularly evolve on timescales ranging between 10{sup 4} and 10{sup 6} years, and quasi-periodically change their inclinations and eccentricities through secular evolution (Lidov–Kozai oscillations). Such oscillations can lead to high inclinations and eccentricities, constraining the range where such satellites (and dust particles) can exist without crossing the orbits of the inner satellites or crossing the outer Hill stability range. Outer satellites, if such exist are therefore likely to be irregular satellites, with orbits limited to be non-circular and/or highly inclined. Current observations, including the recent data from the New-Horizons mission explored only inner regions (<0.0012 au) and excluded the existence of additional satellites; however, the irregular satellites discussed here should reside farther, in the yet uncharted regions around Pluto.« less

  13. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs aftermore » several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.« less

  14. Origin and Evolution of Comet Clouds

    NASA Astrophysics Data System (ADS)

    Higuchi, Arika

    2007-01-01

    The Oort cloud (comet cloud) is a spherical comet reservoir surrounding a planetary system. We have investigated the comet cloud formation that consists of two dynamical stages of orbital evolution of planetesimals due to (1) planetary perturbation, and (2) the galactic tide. We investigated the first stage by using numerical calculations and obtained the probabilities of the fates of planetesimals as functions of the orbital parameters of the planets and planetesimals. We investigated the second stage by using the secular perturbation theory and showed the evolution of the structure of a comet cloud from a planetesimal disk. We found that (1) massive planets effectively produce comet cloud candidates by scattering and (2) many planetesimals with semimajor axes larger than 1,000 AU rise up their perihelion distances to the outside of the planetary region and become members of the Oort cloud in 5 Gyr.

  15. Dynamical tides in highly eccentric binaries: chaos, dissipation, and quasi-steady state

    NASA Astrophysics Data System (ADS)

    Vick, Michelle; Lai, Dong

    2018-05-01

    Highly eccentric binary systems appear in many astrophysical contexts, ranging from tidal capture in dense star clusters, precursors of stellar disruption by massive black holes, to high-eccentricity migration of giant planets. In a highly eccentric binary, the tidal potential of one body can excite oscillatory modes in the other during a pericentre passage, resulting in energy exchange between the modes and the binary orbit. These modes exhibit one of three behaviours over multiple passages: low-amplitude oscillations, large-amplitude oscillations corresponding to a resonance between the orbital frequency and the mode frequency, and chaotic growth, with the mode energy reaching a level comparable to the orbital binding energy. We study these phenomena with an iterative map that includes mode dissipation, fully exploring how the mode evolution depends on the orbital and mode properties of the system. The dissipation of mode energy drives the system towards a quasi-steady state, with gradual orbital decay punctuated by resonances. We quantify the quasi-steady state and the long-term evolution of the system. A newly captured star around a black hole can experience significant orbital decay and heating due to the chaotic growth of the mode amplitude and dissipation. A giant planet pushed into a high-eccentricity orbit may experience a similar effect and become a hot or warm Jupiter.

  16. Orbital and Collisional Evolution of the Irregular Satellites

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Alvarellos, Jose L. A.; Dones, Luke; Levison, Harold F.

    2003-07-01

    The irregular moons of the Jovian planets are a puzzling part of the solar system inventory. Unlike regular satellites, the irregular moons revolve around planets at large distances in tilted and eccentric orbits. Their origin, which is intimately linked with the origin of the planets themselves, is yet to be explained. Here we report a study of the orbital and collisional evolution of the irregular satellites from times after their formation to the present epoch. The purpose of this study is to find out the features of the observed irregular moons that can be attributed to this evolution and separate them from signatures of the formation process. We numerically integrated ~60,000 test satellite orbits to map orbital locations that are stable on long time intervals. We found that the orbits highly inclined to the ecliptic are unstable due to the effect of the Kozai resonance, which radially stretches them so that satellites either escape from the Hill sphere, collide with massive inner moons, or impact the parent planet. We also found that prograde satellite orbits with large semimajor axes are unstable due to the effect of the evection resonance, which locks the orbit's apocenter to the apparent motion of the Sun around the parent planet. In such a resonance, the effect of solar tides on a resonant moon accumulates at each apocenter passage of the moon, which causes a radially outward drift of its orbital apocenter; once close to the Hill sphere, the moon escapes. By contrast, retrograde moons with large orbital semimajor axes are long-lived. We have developed an analytic model of the distant satellite orbits and used it to explain the results of our numerical experiments. In particular, we analytically studied the effect of the Kozai resonance. We numerically integrated the orbits of the 50 irregular moons (known by 2002 August 16) for 108 yr. All orbits were stable on this time interval and did not show any macroscopic variations that would indicate instabilities operating on longer time spans. The average orbits calculated from this experiment were then used to probe the collisional evolution of the irregular satellite systems. We found that (1) the large irregular moons must have collisionally eliminated many small irregular moons, thus shaping their population to the currently observed structures; (2) some dynamical families of satellites could have been formed by catastrophic collisions among the irregular moons; and (3) Phoebe's surface must have been heavily cratered by impacts from an extinct population of Saturnian irregular moons, much larger than the present one. We therefore suggest that the Cassini imaging of Phoebe in 2004 can be used to determine the primordial population of small irregular moons of Saturn. In such a case, we will also better understand the overall efficiency of the formation process of the irregular satellites and the physical conditions that existed during planetary formation. We discovered two dynamical families of tightly clustered orbits within the Jovian retrograde group. We believe that these two clusters may be the remnants of two collisionally disrupted bodies. We found that the entire Jovian retrograde group and the Saturnian inclination groups were not produced by single breakups, because the ejection velocities derived from the orbital structures of these groups greatly exceed values calculated by modern numerical models of collisional breakups. Taken together, the evidence presented here suggests that many properties of the irregular moons previously assigned to their formation process may have resulted from their later dynamical and collisional evolution. Finally, we have found that several irregular moons, namely, Pasiphae, Sinope, S/2001 J10, S/2000 S5, S/2000 S6, and S/2000 S3, have orbits characterized by secular resonances. The orbits of some of these moons apparently evolved by some slow dissipative process in the past and became captured in tiny resonant volumes.

  17. Evolution of vaporizing pulsars

    NASA Technical Reports Server (NTRS)

    Mccormick, P.

    1994-01-01

    We construct evolutional scenarios for LMXB's using a simplified stellar model. We discuss the origin and evolution of short-period, low mass binary pulsars with evaporating companions. We suggest that these systems descend from low-mass X-ray binaries and that angular momentum loss mainly due to evaporative wind drives their evolution. We derive limits on the energy and angular momentum carried away by the wind based on the observed low eccentricity. In our model the companion remains near contact, and its quasiadiabatic expansion causes the binary to expand. Short-term oscillations of the orbital period may occur if the Roche-lobe overflow forms an evaporating disk.

  18. The orbital evolution of NEA 30825 1900 TG1

    NASA Astrophysics Data System (ADS)

    Timoshkova, E. I.

    2008-02-01

    The orbital evolution of the near-Earth asteroid (NEA) 30825 1990 TG1 has been studied by numerical integration of the equations of its motion over the 100 000-year time interval with allowance for perturbations from eight major planets and Pluto, and the variations in its osculating orbit over this time interval were determined. The numerical integrations were performed using two methods: the Bulirsch-Stoer method and the Everhart method. The comparative analysis of the two resulting orbital evolutions of motion is presented for the time interval examined. The evolution of the asteroid motion is qualitatively the same for both variants, but the rate of evolution of the orbital elements is different. Our research confirms the known fact that the application of different integrators to the study of the long-term evolution of the NEA orbit may lead to different evolution tracks.

  19. Effect of the rotation and tidal dissipation history of stars on the evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, Emeline; Mathis, Stéphane

    2016-11-01

    Since 20 years, a large population of close-in planets orbiting various classes of low-mass stars (from M-type to A-type stars) has been discovered. In such systems, the dissipation of the kinetic energy of tidal flows in the host star may modify its rotational evolution and shape the orbital architecture of the surrounding planetary system. In this context, recent observational and theoretical works demonstrated that the amplitude of this dissipation can vary over several orders of magnitude as a function of stellar mass, age and rotation. In addition, stellar spin-up occurring during the Pre-Main-Sequence (PMS) phase because of the contraction of stars and their spin-down because of the torque applied by magnetized stellar winds strongly impact angular momentum exchanges within star-planet systems. Therefore, it is now necessary to take into account the structural and rotational evolution of stars when studying the orbital evolution of close-in planets. At the same time, the presence of planets may modify the rotational dynamics of the host stars and as a consequence their evolution, magnetic activity and mixing. In this work, we present the first study of the dynamics of close-in planets of various masses orbiting low-mass stars (from 0.6~M_⊙ to 1.2~M_⊙) where we compute the simultaneous evolution of the star's structure, rotation and tidal dissipation in its external convective envelope. We demonstrate that tidal friction due to the stellar dynamical tide, i.e. tidal inertial waves excited in the convection zone, can be larger by several orders of magnitude than the one of the equilibrium tide currently used in Celestial Mechanics, especially during the PMS phase. Moreover, because of this stronger tidal friction in the star, the orbital migration of the planet is now more pronounced and depends more on the stellar mass, rotation and age. This would very weakly affect the planets in the habitable zone because they are located at orbital distances such that stellar tide-induced migration happens on very long timescales. We also demonstrate that the rotational evolution of host stars is only weakly affected by the presence of planets except for massive companions.

  20. The Pan-Pacific Planet Search. VII. The Most Eccentric Planet Orbiting a Giant Star

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Jones, M. I.; Horner, Jonathan; Kane, Stephen R.; Marshall, J. P.; Mustill, A. J.; Jenkins, J. S.; Pena Rojas, P. A.; Zhao, Jinglin; Villaver, Eva; Butler, R. P.; Clark, Jake

    2017-12-01

    Radial velocity observations from three instruments reveal the presence of a 4 M Jup planet candidate orbiting the K giant HD 76920. HD 76920b has an orbital eccentricity of 0.856 ± 0.009, making it the most eccentric planet known to orbit an evolved star. There is no indication that HD 76920 has an unseen binary companion, suggesting a scattering event rather than Kozai oscillations as a probable culprit for the observed eccentricity. The candidate planet currently approaches to about four stellar radii from its host star, and is predicted to be engulfed on a ∼100 Myr timescale due to the combined effects of stellar evolution and tidal interactions.

  1. Black hole/pulsar binaries in the Galaxy

    NASA Astrophysics Data System (ADS)

    Shao, Yong; Li, Xiang-Dong

    2018-06-01

    We have performed population synthesis calculation on the formation of binaries containing a black hole (BH) and a neutron star (NS) in the Galactic disc. Some of important input parameters, especially for the treatment of common envelope evolution, are updated in the calculation. We have discussed the uncertainties from the star formation rate of the Galaxy and the velocity distribution of NS kicks on the birthrate (˜ 0.6-13 M yr^{-1}) of BH/NS binaries. From incident BH/NS binaries, by modelling the orbital evolution due to gravitational wave radiation and the NS evolution as radio pulsars, we obtain the distributions of the observable parameters such as the orbital period, eccentricity, and pulse period of the BH/pulsar binaries. We estimate that there may be ˜3-80 BH/pulsar binaries in the Galactic disc and around 10 per cent of them could be detected by the Five-hundred-metre Aperture Spherical radio Telescope.

  2. The role of tidal torques on the evolution of the system of Saturn's co-orbital satellites Janus and Epimetheus

    NASA Astrophysics Data System (ADS)

    Caudal, Gérard V.

    2013-04-01

    This paper discusses the effect of tides raised by Saturn on its co-orbital satellites Janus and Epimetheus, and its consequences on the long-term evolution of the co-orbital horseshoe pattern of those moons. This tidal effect is found to produce a loosening of the co-orbital lock of Janus and Epimetheus. The increase of the difference D between their semi-major axes under this process is estimated as 2.77 km/Myear, regardless of whether the moons are composed of monolithic or fractured ice. On the other hand, assuming that the outer edge of Saturn's A ring is permanently maintained by Janus and Epimetheus at their 7:6 resonance, Lissauer et al. [Lissauer, J.J., Goldreich, P., Tremaine S., 1985. Icarus 64, 425-434] have shown that the torques exerted on Janus and Epimetheus due to resonances with Saturn's rings would produce a tightening of the co-orbital lock. The rate of decrease of orbital difference D under that latter process depends upon the precise relative radial location of the A-ring outer edge as compared with Janus' lower orbit semi-major axis, which is quantified here by means of a parameter po characterizing the efficiency of the effect of Janus' ring resonance. Under the combined effects of those two processes, depending on the value of po relative to a critical value po ≈ 19%, the system will evolve toward either a transition from horseshoe to tadpole orbit, or to a destruction of the co-orbital lock, after a few tens of Myears. Most recent observations of the A ring's outer edge by Spitale and Porco [Spitale, J.N., Porco, C.C., 2009. The Astronomical Journal 138, 1520-1528] tend to indicate that the future evolution will be a net tightening of the co-orbital system, until a tadpole situation will be reached after about 15 Myears. From a study of the past history of the co-orbital system, it is shown that such a scenario is compatible with a capture from free orbits to co-orbital horseshoe pattern some 25 Myears ago.

  3. Manned orbital facility: A user's guide

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The salient conceptual features and expected evolution of the facility are discussed; the baseline design is offered as a model against which the reader can compare his needs. The overall program is discussed, supporting services and resources are described, and examples of typical payload applications are given. The general design features and configurations representing the baseline MOF developed and derived with due consideration given to applicable designs and subsystems such as those available in the Skylab, orbiter, and space lab vehicles.

  4. Orbital evolution and escape of Martian Trojans due to the Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos

    2017-06-01

    Recently it was shown that the Yarkovsky effect can lead to significant orbit change for Trojans of Mars [1,2] and that the orbital distribution of observed Trojans is consistent with a negative along-track acceleration of the same functional form as seasonal yarkovsky; this feature was used to constrain the age of the Eureka family of Mars Trojan asteroids [2]. In contrast, the Yarkovsky effect appears to have a negligible role in shaping observed families of Jupiter Trojans [3].To explore the evolution and end states of Trojans evolved by the Yarkosky effect, I have numerically integrated test particles under a model of the diurnal variant and for different values of the acceleration strength up to 10-2 AU/Myr for da/dt outside the resonance. I use as a starting point the orbits of the three largest Martian Trojans: 5261 Eureka, (101429) 1998 VF31 and (121514) 1999 UJ7.I find, as in [2], that the evolution of the inclination I and the libration amplitude L depends on the sign of the acceleration and is essentially deterministic. Considering the rate of change of the Tisserand constant [5,6] leads to a simple analytical expression that reproduces well the inclination evolution of the Trojans. The evolution of e is somewhat more stochastic, probably due to chaotic diffusion [4] and/or the influence of Mars’ eccentricity [2].Trojans escape upon reaching the boundaries of stability domains mapped out in [4], demarcated by resonances with principal secular modes and the Kozai resonance. The mechanism of escape is by increasing e and/or the libration amplitude to the point of allowing close encounters with Mars.During the presentation I will describe the ensemble evolution of Trojans under Yarkovsky, how it is related to the lifetime in the 1:1 resonance and discuss the implications for Trojan stability at Earth and Jupiter.[1] Christou, A.A., 2013, Icarus, 224, 144.[2] Ćuk, M., Christou, A.A., Hamilton, D.P., 2015, Icarus, 252, 339.[3] Milani, A., Knezević, Z., Spoto, F., Cellino, A., Novaković, B., Tsirvoulis, G., 2017, Icarus, 288, 240.[4] Scholl, H., Marzari, F., Tricarico, P., 2005, Icarus, 175, 397.[5] Hamilton, D.P., 1994, Icarus, 109, 221[6] Liou, J. C., Zook, H. A., 1997, Icarus, 128, 354.

  5. A Consideration of HALO Type Orbit Designation and Maintaining for KUAFU-A and WSO/UV Missions

    NASA Astrophysics Data System (ADS)

    Nianchuan, J.; Xian, S.; Jianguo, Y.; Guangli, W.; Jingsong, P.

    In the new era of deep space exploration more and more explorations at special places or points in solar system are carried out and planned There are five equilibrium points in the Sun-Earth system and the orbits around these points have good dynamic attribute Due to this reason The areas vicinity equilibrium points have many advantages for space exploration In recent 20 years the NASA and ESA have successfully launched several spacecrafts orbiting the Sun-Earth collinear equilibrium points Following the developing steps of space and deep space exploration in China Chinese scientists and engineers are considering and suggesting two equilibrium points explorations One is named KUAFU-A mission whose craft will orbit L1 point and the scientific target is studying the evolution of space weather of solar-terrestrial area The other is WSO UV mission whose craft will orbit L2 point and the scientific target is studying the structure and evolution of galaxies This report is mainly about HALO type orbit designation and maintaining for these two missions Following points are included 1 Briefly reviewing the explorations at the equilibrium points launched by NASA and ESA 2 Simply introducing the exploration KUAFU-A and WSO UV 3 Discussing the designation and maintaining of HALO type orbits in some detail for KUAFU-A and WSO UV

  6. Orbiting space debris: Dangers, measurement and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-06-01

    Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.

  7. On the orbits of low-mass companions to white dwarfs and the fates of the known exoplanets

    NASA Astrophysics Data System (ADS)

    Nordhaus, J.; Spiegel, D. S.

    2013-06-01

    The ultimate fates of binary companions to stars (including whether the companion survives and the final orbit of the binary) are of interest in light of an increasing number of recently discovered, low-mass companions to white dwarfs (WDs). In this Letter, we study the evolution of a two-body system wherein the orbit adjusts due to structural changes in the primary, dissipation of orbital energy via tides, and mass-loss during the giant phases; previous studies have not incorporated changes in the primary's spin. For companions ranging from Jupiter's mass to ˜0.3 M⊙ and primaries ranging from 1 to 3 M⊙, we determine the minimum initial semimajor axis required for the companion to avoid engulfment by the primary during post-main-sequence evolution, and highlight the implications for the ultimate survival of the known exoplanets. We present regions in secondary mass and orbital period space where an engulfed companion might be expected to survive the common envelope phase (CEP), and compare with known M dwarf+WD short-period binaries. Finally, we note that engulfed Earth-like planets cannot survive a CEP. Detection of a first-generation terrestrial planet in the WD habitable zone requires scattering from a several au orbit to a high-eccentricity orbit (with a periastron of ˜R⊙) from which it is damped into a circular orbit via tidal friction, possibly rendering it an uninhabitable, charred ember.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naoz, Smadar; Li, Gongjie; Zanardi, Macarena

    The secular approximation of the hierarchical three body systems has been proven to be very useful in addressing many astrophysical systems, from planets to stars to black holes. In such a system, two objects are on a tight orbit and the tertiary is on a much wider orbit. Here, we study the dynamics of a system by taking the tertiary mass to zero and solve the hierarchical three body system up to the octupole level of approximation. We find a rich dynamics that the outer orbit undergoes due to gravitational perturbations from the inner binary. The nominal result of themore » precession of the nodes is mostly limited for the lowest order of approximation; however, when the octupole level of approximation is introduced, the system becomes chaotic, as expected, and the tertiary oscillates below and above 90°, similarly to the non-test particle flip behavior. We provide the Hamiltonian of the system and investigate the dynamics of the system from the quadrupole to the octupole level of approximations. We also analyze the chaotic and quasi-periodic orbital evolution by studying the surfaces of sections. Furthermore, including general relativity, we showcase the long-term evolution of individual debris disk particles under the influence of a far-away interior eccentric planet. We show that this dynamics can naturally result in retrograde objects and a puffy disk after a long timescale evolution (a few Gyr) for initially aligned configuration.« less

  9. Polarized single crystal neutron diffraction study of the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x =0.024 )

    NASA Astrophysics Data System (ADS)

    Chatterji, T.; Stunault, A.; Brown, P. J.

    2018-02-01

    We have determined the temperature evolution of the spin and orbital moments in the zero-magnetization ferromagnet Sm1 -xGdxAl2 (x = 0.024) by combining polarized and unpolarized single crystal neutron diffraction data. The sensitivity of the polarized neutron technique has allowed the moment values to be determined with a precision of ≈0.1 μB . Our results clearly demonstrate that, when magnetized by a field of 8 T, the spin and orbital moments in Sm1 -xGdxAl2 are oppositely directed, so that the net magnetization is very small. Below 60 K the contributions from spin and orbital motions are both about 2 μB , with that due to orbital motion being slightly larger than that due to spin. Between 60 and 65 K the contributions of each to the magnetization fall rapidly and change sign at Tcomp ≈67 K , above which the aligned moments recover but with the orbital magnetization still slightly higher than the spin one. These results imply that above Tcomp the small resultant magnetization of the Sm3 + ion is oppositely directed to the magnetizing field. It is suggested that this anomaly is due to polarization of conduction electron spin associated with the doping Gd3 + ions.

  10. Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patruno, Alessandro; King, Andrew R.; Jaodand, Amruta

    The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deepmore » radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.« less

  11. Characterizing Accreting Double White Dwarf Binaries with the Laser Interferometer Space Antenna and Gaia

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Kremer, Kyle; Bueno, Michael; Larson, Shane L.; Coughlin, Scott; Kalogera, Vassiliki

    2018-02-01

    We demonstrate a method to fully characterize mass-transferring double white dwarf (DWD) systems with a helium-rich (He) white dwarf (WD) donor based on the mass–radius (M–R) relationship for He WDs. Using a simulated Galactic population of DWDs, we show that donor and accretor masses can be inferred for up to ∼60 systems observed by both Laser Interferometer Space Antenna (LISA) and Gaia. Half of these systems will have mass constraints {{Δ }} {M}{{D}} ≲ 0.2 {M}ȯ and {{Δ }} {M}{{A}} ≲ 2.3 {M}ȯ . We also show how the orbital frequency evolution due to astrophysical processes and gravitational radiation can be decoupled from the total orbital frequency evolution for up to ∼50 of these systems.

  12. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  13. COUPLED EVOLUTIONS OF THE STELLAR OBLIQUITY, ORBITAL DISTANCE, AND PLANET'S RADIUS DUE TO THE OHMIC DISSIPATION INDUCED IN A DIAMAGNETIC HOT JUPITER AROUND A MAGNETIC T TAURI STAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Ling; Gu, Pin-Gao; Bodenheimer, Peter H.

    We revisit the calculation of the ohmic dissipation in a hot Jupiter presented by Laine et al. by considering more realistic interior structures, stellar obliquity, and the resulting orbital evolution. In this simplified approach, the young hot Jupiter of one Jupiter mass is modeled as a diamagnetic sphere with a finite resistivity, orbiting across tilted stellar magnetic dipole fields in vacuum. Since the induced ohmic dissipation occurs mostly near the planet's surface, we find that the dissipation is unable to significantly expand the young hot Jupiter. Nevertheless, the planet inside a small corotation orbital radius can undergo orbital decay bymore » the dissipation torque and finally overfill its Roche lobe during the T Tauri star phase. The stellar obliquity can evolve significantly if the magnetic dipole is parallel/antiparallel to the stellar spin. Our results are validated by the general torque-dissipation relation in the presence of the stellar obliquity. We also run the fiducial model of Laine et al. and find that the planet's radius is sustained at a nearly constant value by the ohmic heating, rather than being thermally expanded to the Roche radius as suggested by the authors.« less

  14. Lunar Orbit Anomaly

    NASA Astrophysics Data System (ADS)

    Riofrio, L.

    2012-12-01

    Independent experiments show a large anomaly in measurements of lunar orbital evolution, with applications to cosmology and the speed of light. The Moon has long been known to be slowly drifting farther from Earth due to tidal forces. The Lunar Laser Ranging Experiment (LLRE) indicates the Moon's semimajor axis increasing at 3.82 ± .07 cm/yr, anomalously high. If the Moon were today gaining angular momentum at this rate, it would have coincided with Earth less than 2 Gyr ago. Study of tidal rhythmites indicates a rate of 2.9 ± 0.6 cm/yr. Historical eclipse observations independently measure a recession rate of 2.82 ± .08 cm/yr. Detailed numerical simulation of lunar orbital evolution predicts 2.91 cm/yr. LLRE differs from three independent experiments by over12 sigma. A cosmology where speed of light c is related to time t by GM=tc^3 has been suggested to predict the redshifts of Type Ia supernovae, and a 4.507034% proportion of baryonic matter. If c were changing in the amount predicted, lunar orbital distance would appear to increase by an additional 0.935 cm/yr. An anomaly in the lunar orbit may be precisely calculated, shedding light on puzzles of 'dark energy'. In Planck units this cosmology may be summarized as M=R=t.Lunar Recession Rate;

  15. Capture of Small Bodies After Tidal Disruption

    NASA Astrophysics Data System (ADS)

    Ershova, A.; Medvedev, Yu.

    2017-09-01

    The subject of the current work is the phisical and dynamical evolution of the small comets group formed by tidal disruption of the protocomet while passing near the large body (Sun, Jupiter). The equations of motion were integrated numericaly. In case of the Sun the evolution of the sun-grazing orbits were discussed and the typical lifetime of such comets was estimated. Nongravitational acceleration and the size reduction of fragments due to sublimation were taking into account using the Marsden formula.

  16. How long will asteroids on retrograde orbits survive?

    NASA Astrophysics Data System (ADS)

    Kankiewicz, Paweł; Włodarczyk, Ireneusz

    2018-05-01

    Generally, a common scenario for the origin of minor planets with high orbital inclinations does not exist. This applies especially to objects whose orbital inclinations are much greater than 90° (retrograde asteroids). Since the discovery of Dioretsa in 1999, approximately 100 small bodies now are classified as retrograde asteroids. A small number of them were reclassified as comets, due to cometary activity. There are only 25 multi-opposition retrograde asteroids, with a relatively large number of observations and well-determined orbits. We studied the orbital evolution of numbered and multi-opposition retrograde asteroids by numerical integration up to 1 Gy forward and backward in time. Additionally, we analyzed the propagation of orbital elements with the observational errors, determined dynamical lifetimes and studied their chaotic properties. Conclusively, we obtained quantitative parameters describing the long-term stability of orbits relating to the past and the future. In turn, we were able to estimate their lifetimes and how long these objects will survive in the Solar System.

  17. Surface Evolution from Orbital Decay on Phobos

    NASA Astrophysics Data System (ADS)

    Hurford, Terry; Asphaug, Erik; Spitale, Joseph; Hemingway, Douglas; Rhoden, Alyssa; Henning, Wade; Bills, Bruce; Kattenhorn, Simon; Walker, Matthew

    2015-11-01

    Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises, and will suffer tidal disruption before colliding with Mars. We calculate the surface stress field of the de-orbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos’ prominent grooves have an excellent correlation with computed stress orientations. The model predicts an interior that has very low strength on the tidal evolution timescale, overlain by a ~10-100 m exterior shell that has elastic properties similar to lunar regolith.Shortly after the Viking spacecraft obtained the first geomorphic images of Phobos, it was proposed that stresses from orbital decay cause grooves. But, assuming a homogeneous Phobos, it proved impossible to account for the build-up of failure stress in the exterior regardless of the value assumed for Phobos’ rigidity. Hence, the tidal model languished. Here, we revisit the tidal origin of surface fractures with a more detailed treatment that shows the production of significant stress in a surface layer, with a very strong correlation to the geometry of grooves.Our model results applied to surface observations imply that Phobos has a rubble pile interior that is nearly strengthless. A lunar-like cohesive regolith outer layer overlays the rubble pile interior. This outer layer behaves elastically and can experience significant tidal stress at levels able to drive tensile failure. Fissures can develop as the global body deforms due to increasing tides related to orbital decay. Phobos may have an active and evolving surface; an exciting target for further exploration. The interior predictions of this model can be evaluated by future detailed studies performed by an orbiter or lander.

  18. Optimal reentry prediction of space objects from LEO using RSM and GA

    NASA Astrophysics Data System (ADS)

    Mutyalarao, M.; Raj, M. Xavier James

    2012-07-01

    The accurate estimation of the orbital life time (OLT) of decaying near-Earth objects is of considerable importance for the prediction of risk object re-entry time and hazard assessment as well as for mitigation strategies. Recently, due to the reentries of large number of risk objects, which poses threat to the human life and property, a great concern is developed in the space scientific community all over the World. The evolution of objects in Low Earth Orbit (LEO) is determined by a complex interplay of the perturbing forces, mainly due to atmospheric drag and Earth gravity. These orbits are mostly in low eccentric (eccentricity < 0.2) and have variations in perigee and apogee altitudes due to perturbations during a revolution. The changes in the perigee and apogee altitudes of these orbits are mainly due to the gravitational perturbations of the Earth and the atmospheric density. It has become necessary to use extremely complex force models to match with the present operational requirements and observational techniques. Further the re-entry time of the objects in such orbits is sensitive to the initial conditions. In this paper the problem of predicting re-entry time is attempted as an optimal estimation problem. It is known that the errors are more in eccentricity for the observations based on two line elements (TLEs). Thus two parameters, initial eccentricity and ballistic coefficient, are chosen for optimal estimation. These two parameters are computed with response surface method (RSM) using a genetic algorithm (GA) for the selected time zones, based on rough linear variation of response parameter, the mean semi-major axis during orbit evolution. Error minimization between the observed and predicted mean Semi-major axis is achieved by the application of an optimization algorithm such as Genetic Algorithm (GA). The basic feature of the present approach is that the model and measurement errors are accountable in terms of adjusting the ballistic coefficient and eccentricity. The methodology is tested with the recently reentered objects ROSAT and PHOBOS GRUNT satellites. The study reveals a good agreement with the actual reentry time of these objects. It is also observed that the absolute percentage error in re-entry prediction time for all the two objects is found to be very less. Keywords: low eccentric, Response surface method, Genetic algorithm, apogee altitude, Ballistic coefficient

  19. Options for the Further Orbit Evolution of the Swarm Mission

    NASA Astrophysics Data System (ADS)

    Sieg, Detlef; Diekmann, Frank

    2016-08-01

    The three satellites of ESA's magnetic field mission Swarm were launched into a common low Earth circular orbit in November 2013 to measure precisely the magnetic signals from Earth's core, mantle, crust and oceans, as well as the ionosphere and magnetosphere. Since completion of the orbit acquisition phase in April 2014 one satellite (Swarm-B) is flying in a higher orbit with an inclination of 87.8deg and an altitude decaying from 520km. The other two satellites are Swarm-A (trailing) and Swarm-C (leading). They form the lower pair with an initial altitude of 473km, an inclination of 87.4 deg and an ascending node difference of 1.4 deg. The original mission analysis foresaw a decay of the lower pair down to 300km altitude within 4 years after launch. The target altitude of the launcher injection orbit was selected accordingly with some margin due to uncertainties in the solar activity prediction. However the final altitude selection had to be provided more than half a year before launch. Following several launch delays, the major part of the mission falls now beyond the maximum of the current solar cycle. Because of the lower radio flux and geomagnetic activity, the air drag forces are now much lower and the actual decay takes longer.As a first countermeasure the target for the inclination difference between Swarm-B and Swarm-A/C was reduced to 0.4deg shortly before the start of the orbit acquisition manoeuvre sequence early 2014 such that the LTAN drift between the orbit planes of B and A/C has been reduced to 1.5h per year to avoid a too large difference towards the end of the mission.First the paper describes the routine orbit determination approach by ESOC flight dynamics, which is used to determine absolute drag scale factors. Based on the in- flight calibrated values, long-term orbit predictions are calculated every half a year and can be compared against the actual observed decay. This gives good confidence for the prediction of the future altitude evolution. The latest results for different confidence levels of the predicted solar activity are given.Then estimated relative differences between the drag scale factors of the lower satellite pair are presented together with the evolution of the lower pair separation and the corresponding maintenance manoeuvres. Finally, the major part of the poster presentation focuses on different options to change the future orbit evolution.

  20. Evolution of the Janus-Epimetheus coorbital resonance due to torques from Saturn's rings

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Goldreich, P.; Tremaine, S.

    1985-01-01

    The effects of the gravitational interactions between Saturn's rings and the coorbital satellites, Janus and Epimetheus, on the 1:1 horseshoe resonance between these moons is examined. It is shown that the 7:6 resonance of these moons, which presumably maintains the sharp outer edge of the A ring, leads to a rapid tightening of the coorbital lock. The results lead to the prediction that the orbital configuration might evolve from the current horseshoe-type lock to one of tadpole orbits around a single Lagrangian point in about 20 myr.

  1. Long-term orbital evolution of short-period comets found in Project Cosmo-DICE

    NASA Technical Reports Server (NTRS)

    Nakamura, Tsuko; Yoshikawa, Makoto

    1992-01-01

    Orbital evolutions of about 160 short-period (SP) comets are numerically integrated for 4400 years in the framework of a realistic dynamical model. By the round-trip error in closure test, a reliable time space of the integrated orbits is estimated for each comet. Majority of the SP comets with their Tisserand's constant(J) between 2.8 and 3.1 are found to evolve within the past 1000-2000 years from the orbits whose perihelia are near the Jovian orbit to the orbits with perihelia of 1-2 AU. This evolution is much more rapid than that expected from Monte Carlo simulations based on symmetric distribution of planetary perturbations, thus suggesting that asymmetry of perturbation distribution play an important role in cometary evolution. Several comets are shown to evolve from the near-Saturn orbits and then to be handed over under the control of Jupiter. We also find that a few comets were captured from long-period orbits (a = 75-125 AU) via only a few close encounters with Jupiter. It is confirmed that the captured SP comets of low-inclination with 2.7 less than J less than 3.1 show more or less strong chaotic behavior. On the other hand, comets with longer orbital period and/or of high inclination reveal slow or quasi-periodic orbital evolution.

  2. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  3. Orbiting space debris: Dangers, measurement, and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-01-01

    Space debris is a growing environmental problem. Accumulation of objects in Earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, Unites States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-Earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical, and diplomatic components. Actions need to be taken now for the following reasons: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the the loss of critical space systems such as the Space Shuttle or the Space Station.

  4. On the Dynamical Foundations of the Lidov-Kozai Theory

    NASA Astrophysics Data System (ADS)

    Prokhorenko, V. I.

    2018-01-01

    The Lidov-Kozai theory developed by each of the authors independently in 1961-1962 is based on qualitative methods of studying the evolution of orbits for the satellite version of the restricted three-body problem (Hill's problem). At present, this theory is in demand in various fields of science: in the field of planetary research within the Solar system, the field of exoplanetary systems, and the field of high-energy physics in interstellar and intergalactic space. This has prompted me to popularize the ideas that underlie the Lidov-Kozai theory based on the experience of using this theory as an efficient tool for solving various problems related to the study of the secular evolution of the orbits of artificial planetary satellites under the influence of external gravitational perturbations with allowance made for the perturbations due to the polar planetary oblateness.

  5. Evolution of asteroidal orbits with high inclinations

    NASA Astrophysics Data System (ADS)

    Solovaya, Nina A.; Pittich, Eduard M.

    1993-10-01

    The 20,000 years orbital evolution of massless fictitious asteroid located at a border of the Hill's gravitational sphere has been investigated. The eleven orbits with the eccentricities from 0.0 to 0.4 in five groups of inclinations from 40 deg to 80 deg were numerically integrated with planetary perturbations of six major planets, using the numerical integration n-body program with the Everhart's integrator RA 15. For each group time evolution of orbital elements of the asteroids is presented.

  6. How useful is the `mean stream' in discussing meteoroid stream evolution?

    NASA Astrophysics Data System (ADS)

    Williams, I. P.; Jones, D. C.

    2007-02-01

    The current model for meteoroid formation involves particles being ejected from parent objects, usually comets and sometimes asteroids. The orbital speed of any body in the Solar system is much larger than any potential ejection speed of small particles from the body, hence the initial orbit of any meteoroid is fairly similar to that of the parent. However, with the passage of time the effects of gravitational perturbations from the planets and solar radiation will cause the orbits of the meteoroids to evolve away from the parent's orbit. Initially this may cause a meteor shower to occur, but eventually will lead to the dissipation of the stream. When modelling meteoroid streams, it is usually more convenient to use the average orbital elements of all the meteoroids to study their evolution. In this paper, we consider the evolution of the orbits of several sets of meteoroids comparing the effectiveness of using the mean and median values for a stream when modelling the overall evolution. We conclude that although both mean and median provide a good match to the evolution of the real meteoroids for most of the time interval studied, the mean orbit remains more consistently close to the stream.

  7. Numerical Modelling of Tertiary Tides

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Correia, Alexandre C. M.; Eggleton, Peter P.; Han, Zhanwen

    2018-06-01

    Stellar systems consisting of multiple stars tend to undergo tidal interactions when the separations between the stars are short. While tidal phenomena have been extensively studied, a certain tidal effect exclusive to hierarchical triples (triples in which one component star has a much wider orbit than the others) has hardly received any attention, mainly due to its complexity and consequent resistance to being modelled. This tidal effect is the tidal perturbation of the tertiary by the inner binary, which in turn depletes orbital energy from the inner binary, causing the inner binary separation to shrink. In this paper, we develop a fully numerical simulation of these "tertiary tides" by modifying established tidal models. We also provide general insight as to how close a hierarchical triple needs to be in order for such an effect to take place, and demonstrate that our simulations can effectively retrieve the orbital evolution for such systems. We conclude that tertiary tides are a significant factor in the evolution of close hierarchical triples, and strongly influence at least ˜1% of all multiple star systems.

  8. Wind-accelerated orbital evolution in binary systems with giant stars

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Blackman, Eric G.; Nordhaus, Jason; Frank, Adam; Carroll-Nellenback, Jonathan

    2018-01-01

    Using 3D radiation-hydrodynamic simulations and analytic theory, we study the orbital evolution of asymptotic giant branch (AGB) binary systems for various initial orbital separations and mass ratios, and thus different initial accretion modes. The time evolution of binary separations and orbital periods are calculated directly from the averaged mass-loss rate, accretion rate and angular momentum loss rate. We separately consider spin-orbit synchronized and zero-spin AGB cases. We find that the angular momentum carried away by the mass loss together with the mass transfer can effectively shrink the orbit when accretion occurs via wind-Roche lobe overflow. In contrast, the larger fraction of mass lost in Bondi-Hoyle-Lyttleton accreting systems acts to enlarge the orbit. Synchronized binaries tend to experience stronger orbital period decay in close binaries. We also find that orbital period decay is faster when we account for the non-linear evolution of the accretion mode as the binary starts to tighten. This can increase the fraction of binaries that result in common envelope, luminous red novae, Type Ia supernovae and planetary nebulae with tight central binaries. The results also imply that planets in the habitable zone around white dwarfs are unlikely to be found.

  9. Monte Carlo generators for studies of the 3D structure of the nucleon

    DOE PAGES

    Avakian, Harut; D'Alesio, U.; Murgia, F.

    2015-01-23

    In this study, extraction of transverse momentum and space distributions of partons from measurements of spin and azimuthal asymmetries requires development of a self consistent analysis framework, accounting for evolution effects, and allowing control of systematic uncertainties due to variations of input parameters and models. Development of realistic Monte-Carlo generators, accounting for TMD evolution effects, spin-orbit and quark-gluon correlations will be crucial for future studies of quark-gluon dynamics in general and 3D structure of the nucleon in particular.

  10. KSC-03pd0504

    NASA Image and Video Library

    2003-02-18

    KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft arrives at the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry ito orbit the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission, GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  11. Orbital evolution of space debris due to aerodynamic forces

    NASA Astrophysics Data System (ADS)

    Crowther, R.

    1993-08-01

    The concepts used in the AUDIT (Assessment Using Debris Impact Theory) debris modelling suite are introduced. A sensitivity analysis is carried out to determine the dominant parameters in the modelling process. A test case simulating the explosion of a satellite suggest that at the parent altitude there is a greater probability of collision with more massive fragments.

  12. Modeling of the Orbital Evolution of 2060 Chiron

    NASA Astrophysics Data System (ADS)

    Kovalenko, Nataliya S.; Babenko, Yury G.; Churyumov, Klim I.

    2002-03-01

    The origin of Centaurs is one of the most interesting problems of Solar system science, and it has not yet been solved. To shed light on this problem one can investigate Centaurs' past and future orbital evolution. In this paper we discuss the results of Chiron's orbital evolution modeling. It was the first discovered Centaur and is the brightest one. Numerical integration was produced for 1 Myr forward and backward from the present time. A program based on the Everhart single sequence method for integrating orbits was used.

  13. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in massive planets. II. Effect of stellar metallicity

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Gallet, F.; Mathis, S.; Charbonnel, C.; Amard, L.; Alibert, Y.

    2017-08-01

    Observations of hot-Jupiter exoplanets suggest that their orbital period distribution depends on the metallicity of the host stars. We investigate here whether the impact of the stellar metallicity on the evolution of the tidal dissipation inside the convective envelope of rotating stars and its resulting effect on the planetary migration might be a possible explanation for this observed statistical trend. We use a frequency-averaged tidal dissipation formalism coupled to an orbital evolution code and to rotating stellar evolution models in order to estimate the effect of a change of stellar metallicity on the evolution of close-in planets. We consider here two different stellar masses: 0.4 M⊙ and 1.0 M⊙ evolving from the early pre-main sequence phase up to the red-giant branch. We show that the metallicity of a star has a strong effect on the stellar parameters, which in turn strongly influence the tidal dissipation in the convective region. While on the pre-main sequence, the dissipation of a metal-poor Sun-like star is higher than the dissipation of a metal-rich Sun-like star; on the main sequence it is the opposite. However, for the 0.4 M⊙ star, the dependence of the dissipation with metallicity is much less visible. Using an orbital evolution model, we show that changing the metallicity leads to different orbital evolutions (e.g., planets migrate farther out from an initially fast-rotating metal-rich star). Using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more steps are needed to improve our model to try to quantitatively fit our results to the observations. Specifically, we need to improve the treatment of the rotation evolution in the orbital evolution model, and ultimately we need to consistently couple the orbital model to the stellar evolution model.

  14. Ballistic capture into lunar and Martian distant retrograde orbits

    NASA Astrophysics Data System (ADS)

    Bezrouk, Collin J.

    Distant retrograde orbits (DROs) are a neutrally stable class of three-body orbits. Because of their stability, DROs cannot be targeted with a low-energy transfer along a stable manifold like unstable three-body orbits in the circular restricted three-body problem (CR3BP). However, in more complicated dynamical models, the effects of small perturbing forces can be exploited to build ballistic capture trajectories (BCTs) into DROs. We develop a method for building sets of BCTs for a particular reference DRO with recommendations for minimizing computational effort. Sets of BCTs are generated in the Earth-Moon system and the Mars-Phobos system due to their applicability to near-term missions and large difference in mass parameters. These BCT sets are stochastically analyzed to determine the range of conditions necessary for using a BCT, such as energy, solar system geometry, and origin. The nature of the DRO after the spacecraft is captured is studied, including minor body flyby altitudes and variations in the size and shape over time. After a spacecraft has used a BCT, it can decrease its sensitivity to perturbations and extend its mission duration with a series of stabilizing maneuvers. Quasi-periodic orbits are constructed in the Earth-Moon CR3BP that lie on the boundary of stability, and closely resemble the DROs that result from using a BCT. Minimum cost transfers are then constructed between these quasi-periodic orbits and a target periodic DRO using a variety of methods for searching and optimizing. It is discovered that BCTs that target planar quasi-periodic DROs can be stabilized for about 15% of the cost of stabilizing a BCT with large out-of-plane motion. Once a spacecraft is in a stable DRO, the long duration evolution of that orbit is of interest. Using a high fidelity dynamical model and numerical precision techniques, the evolution of several DROs in the Earth-Moon system is studied over a period of 30,000 years. The perturbing forces that cause a DRO to transition into an unstable orbit are identified and analyzed. DROs larger than 60,000 km grow in amplitude due to solar gravity until they depart the Moon after several centuries. DROs smaller than 45,000 km remain stable for 25,000 years or more, but decay in size due to the Moon's solid tide bulge, which eventually causes the DRO to depart the Moon. The DROs evolve chaotically and occasionally experience periods of relatively fast amplitude growth when the period of the DRO is in resonance with the frequency of particular perturbing forces.

  15. On disk-planet interactions and orbital eccentricities

    NASA Technical Reports Server (NTRS)

    Ward, William R.

    1988-01-01

    While Lindblad resonances both within and without a perturber's orbit excite its eccentricity, the present study of the eccentricity evolution due to the density wave interaction between a planetesimal and a Keplerian disk notes that coronation resonances in these regions lose their eccentricity damping effectiveness if the object is embedded in a continuous disk without a gap. Attention is given to another class of Lindblad resonances which, under these conditions, operates on disk material coorbiting with the perturber; these resonances thereby become the most important source of eccentricity damping. A model problem indicates that eccentricity ultimately undergoes decay.

  16. The three principal secular resonances nu(5), nu(6), and nu(16) in the asteroidal belt

    NASA Astrophysics Data System (ADS)

    Froeschle, Ch.; Scholl, H.

    1989-09-01

    Theoretical and numerical results obtained for secular resonant motion in the asteroidal belt are reviewed. William's (1969) theory yields the locations of the principal secular resonances nu(5), Nu(6), and nu(16) in the asteroidal belt. Theories by Nakai and Kinoshita (1985) and by Yoshikawa (1987) make it possible to model the basic features of orbital evolution at the secular resonances nu(16) and nu(6), respectively. No theory is available for the secular resonance nu(5). Numerical experiments by Froeschle and Scholl yield quantitative and new qualitative results for orbital evolutions at the three principal secular resonances nu(5), nu(6), and nu(16). These experiments indicate possible chaotic motion due to overlapping resonances. A secular resonance may overlap with another secular resonance or with a mean motion resonance. The role of the secular resonances as possible sources of meteorites is discussed.

  17. Stretch or contraction induced inversion of rectification in diblock molecular junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ping; Hu, Gui-Chao; Song, Yang; Xie, Zhen; Wang, Chuan-Kui

    2013-09-01

    Based on ab initio theory and nonequilibrium Green's function method, the effect of stretch or contraction on the rectification in diblock co-oligomer molecular diodes is investigated theoretically. Interestingly, an inversion of rectifying direction induced by stretching or contracting the molecular junctions, which is closely related to the number of the pyrimidinyl-phenyl units, is proposed. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals as well as transmission coefficients under external biases gives an inside view of the observed results. It reveals that the asymmetric molecular level shift and asymmetric evolution of orbital wave functions under biases are competitive mechanisms for rectification. The stretching or contracting induced inversion of the rectification is due to the conversion of the dominant mechanism. This work suggests a feasible technique to manipulate the rectification performance in molecular diodes by use of the mechanically controllable method.

  18. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    NASA Astrophysics Data System (ADS)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  19. The possible effect of reaction wheel unloading on orbit determination for Chang'E-1 lunar mission

    NASA Astrophysics Data System (ADS)

    Jianguo, Yan; Jingsong, Ping; Fei, Li

    During the flight of 3-axis stabilized lunar orbiter i e SELENE main orbiter Chang E-1 due to the overflow of the accumulated angular momentum the reaction-wheel will be unloaded during certain period so as to release the angular momentum for initialization Then the momentum wheel will be reloaded for satellite attitude measurement and control Above action will not only change the attitude but also change the orbit of the spacecraft Assuming the reaction-wheel unloading is carried out twice a day according to the current engineering designation and plan for SELENE main orbiter and Chang E-1 missions considering the algebra configuration of the tracking stations the Moon and the lunar orbiter the orbit determination is simulated for 14 days evolution of lunar orbiter In the simulation the satellite orbit is generated using GEODYNII code Based on the generated orbit the common view time period of the satellite by VLBI and USB network in every day is computed the orbit determination is processed for all the arcs of the orbit The orbit determination result of 28 orbits in 14 days is provided The orbits cover most of the possible geometrical configuration among orbiter the Moon and the tracking network The analysis here can benefit the tracking designation and plan for Chang E-1 mission

  20. DIFFICULTY IN THE FORMATION OF COUNTER-ORBITING HOT JUPITERS FROM NEAR-COPLANAR HIERARCHICAL TRIPLE SYSTEMS: A SUB-STELLAR PERTURBER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yuxin; Suto, Yasushi, E-mail: yuxin@utap.phys.s.u-tokyo.ac.jp

    2016-03-20

    Among 100 transiting planets with a measured projected spin–orbit angle λ, several systems are suggested to be counter-orbiting. While these cases may be due to the projection effect, the mechanism that produces a counter-orbiting planet has not been established. A promising scenario for counter-orbiting planets is the extreme eccentricity evolution in near-coplanar hierarchical triple systems with eccentric inner and outer orbits. We examine this scenario in detail by performing a series of systematic numerical simulations, and consider the possibility of forming hot Jupiters (HJs), especially a counter-orbiting one under this mechanism with a distant sub-stellar perturber. We incorporate quadrupole andmore » octupole secular gravitational interaction between the two orbits, and also short-range forces (correction for general relativity, star and inner planetary tide, and rotational distortion) simultaneously. We find that most systems are tidally disrupted and that a small fraction of the surviving planets turn out to be prograde. The formation of counter-orbiting HJs in this scenario is possible only in a very restricted parameter region, and thus is very unlikely in practice.« less

  1. Eccentricity Evolution of Extrasolar Multiple Planetary Systems Due to the Depletion of Nascent Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Nagasawa, M.; Lin, D. N. C.; Ida, S.

    2003-04-01

    Most extrasolar planets are observed to have eccentricities much larger than those in the solar system. Some of these planets have sibling planets, with comparable masses, orbiting around the same host stars. In these multiple planetary systems, eccentricity is modulated by the planets' mutual secular interaction as a consequence of angular momentum exchange between them. For mature planets, the eigenfrequencies of this modulation are determined by their mass and semimajor axis ratios. However, prior to the disk depletion, self-gravity of the planets' nascent disks dominates the precession eigenfrequencies. We examine here the initial evolution of young planets' eccentricity due to the apsidal libration or circulation induced by both the secular interaction between them and the self-gravity of their nascent disks. We show that as the latter effect declines adiabatically with disk depletion, the modulation amplitude of the planets' relative phase of periapsis is approximately invariant despite the time-asymmetrical exchange of angular momentum between planets. However, as the young planets' orbits pass through a state of secular resonance, their mean eccentricities undergo systematic quantitative changes. For applications, we analyze the eccentricity evolution of planets around υ Andromedae and HD 168443 during the epoch of protostellar disk depletion. We find that the disk depletion can change the planets' eccentricity ratio. However, the relatively large amplitude of the planets' eccentricity cannot be excited if all the planets had small initial eccentricities.

  2. The statistical mechanics of relativistic orbits around a massive black hole

    NASA Astrophysics Data System (ADS)

    Bar-Or, Ben; Alexander, Tal

    2014-12-01

    Stars around a massive black hole (MBH) move on nearly fixed Keplerian orbits, in a centrally-dominated potential. The random fluctuations of the discrete stellar background cause small potential perturbations, which accelerate the evolution of orbital angular momentum by resonant relaxation. This drives many phenomena near MBHs, such as extreme mass-ratio gravitational wave inspirals, the warping of accretion disks, and the formation of exotic stellar populations. We present here a formal statistical mechanics framework to analyze such systems, where the background potential is described as a correlated Gaussian noise. We derive the leading order, phase-averaged 3D stochastic Hamiltonian equations of motion, for evolving the orbital elements of a test star, and obtain the effective Fokker-Planck equation for a general correlated Gaussian noise, for evolving the stellar distribution function. We show that the evolution of angular momentum depends critically on the temporal smoothness of the background potential fluctuations. Smooth noise has a maximal variability frequency {{ν }max }. We show that in the presence of such noise, the evolution of the normalized angular momentum j=\\sqrt{1-{{e}2}} of a relativistic test star, undergoing Schwarzschild (in-plane) general relativistic precession with frequency {{ν }GR}/{{j}2}, is exponentially suppressed for j\\lt {{j}b}, where {{ν }GR}/jb2˜ {{ν }max }, due to the adiabatic invariance of the precession against the slowly varying random background torques. This results in an effective Schwarzschild precession-induced barrier in angular momentum. When jb is large enough, this barrier can have significant dynamical implications for processes near the MBH.

  3. Towards investigation of evolution of dynamical systems with independence of time accuracy: more classes of systems

    NASA Astrophysics Data System (ADS)

    Gurzadyan, V. G.; Kocharyan, A. A.

    2015-07-01

    The recently developed method (Paper 1) enabling one to investigate the evolution of dynamical systems with an accuracy not dependent on time is developed further. The classes of dynamical systems which can be studied by that method are much extended, now including systems that are: (1) non-Hamiltonian, conservative; (2) Hamiltonian with time-dependent perturbation; (3) non-conservative (with dissipation). These systems cover various types of N-body gravitating systems of astrophysical and cosmological interest, such as the orbital evolution of planets, minor planets, artificial satellites due to tidal, non-tidal perturbations and thermal thrust, evolving close binary stellar systems, and the dynamics of accretion disks.

  4. Elliptical optical solitary waves in a finite nematic liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Minzoni, Antonmaria A.; Sciberras, Luke W.; Smyth, Noel F.; Worthy, Annette L.

    2015-05-01

    The addition of orbital angular momentum has been previously shown to stabilise beams of elliptic cross-section. In this article the evolution of such elliptical beams is explored through the use of an approximate methodology based on modulation theory. An approximate method is used as the equations that govern the optical system have no known exact solitary wave solution. This study brings to light two distinct phases in the evolution of a beam carrying orbital angular momentum. The two phases are determined by the shedding of radiation in the form of mass loss and angular momentum loss. The first phase is dominated by the shedding of angular momentum loss through spiral waves. The second phase is dominated by diffractive radiation loss which drives the elliptical solitary wave to a steady state. In addition to modulation theory, the "chirp" variational method is also used to study this evolution. Due to the significant role radiation loss plays in the evolution of an elliptical solitary wave, an attempt is made to couple radiation loss to the chirp variational method. This attempt furthers understanding as to why radiation loss cannot be coupled to the chirp method. The basic reason for this is that there is no consistent manner to match the chirp trial function to the generated radiating waves which is uniformly valid in time. Finally, full numerical solutions of the governing equations are compared with solutions obtained using the various variational approximations, with the best agreement achieved with modulation theory due to its ability to include both mass and angular momentum losses to shed diffractive radiation.

  5. On the orbital evolution of radiating binary systems

    NASA Astrophysics Data System (ADS)

    Bekov, A. A.; Momynov, S. B.

    2018-05-01

    The evolution of dynamic parameters of radiating binary systems with variable mass is studied. As a dynamic model, the problem of two gravitating and radiating bodies is considered, taking into account the gravitational attraction and the light pressure of the interacting bodies with the additional assumption of isotropic variability of their masses. The problem combines the Gylden-Meshchersky problem, acquiring a new physical meaning, and the two-body photogravitational Radzievsky problem. The evolving orbit is presented, unlike Kepler, with varying orbital elements - parameter and eccentricity, defines by the parameter µ(t), area integral C and quasi-integral energy h(t). Adiabatic invariants of the problem, which are of interest for the slow evolution of orbits, are determined. The general course of evolution of orbits of binary systems with radiation are determined by the change of the parameter µ(t) and the total energy of the system.

  6. Proper motion and secular variations of Keplerian orbital elements

    NASA Astrophysics Data System (ADS)

    Butkevich, Alexey G.

    2018-05-01

    High-precision observations require accurate modelling of secular changes in the orbital elements in order to extrapolate measurements over long time intervals, and to detect deviation from pure Keplerian motion caused, for example, by other bodies or relativistic effects. We consider the evolution of the Keplerian elements resulting from the gradual change of the apparent orbit orientation due to proper motion. We present rigorous formulae for the transformation of the orbit inclination, longitude of the ascending node and argument of the pericenter from one epoch to another, assuming uniform stellar motion and taking radial velocity into account. An approximate treatment, accurate to the second-order terms in time, is also given. The proper motion effects may be significant for long-period transiting planets. These theoretical results are applicable to the modelling of planetary transits and precise Doppler measurements as well as analysis of pulsar and eclipsing binary timing observations.

  7. NEXT GENERATION OF TELESCOPES OR DYNAMICS REQUIRED TO DETERMINE IF EXO-MOONS HAVE PROGRADE OR RETROGRADE ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Karen M.; Fujii, Yuka

    2014-08-20

    We survey the methods proposed in the literature for detecting moons of extrasolar planets in terms of their ability to distinguish between prograde and retrograde moon orbits, an important tracer of the moon formation channel. We find that most moon detection methods, in particular, sensitive methods for detecting moons of transiting planets, cannot observationally distinguishing prograde and retrograde moon orbits. The prograde and retrograde cases can only be distinguished where the dynamical evolution of the orbit due to, e.g., three body effects is detectable, where one of the two cases is dynamically unstable, or where new observational facilities, which canmore » implement a technique capable of differentiating the two cases, come online. In particular, directly imaged planets are promising targets because repeated spectral and photometric measurements, which are required to determine moon orbit direction, could also be conducted with the primary interest of characterizing the planet itself.« less

  8. Evolution of the accretion structure of the compact object in the symbiotic binary BF Cygni during outburst in 2009-2014

    NASA Astrophysics Data System (ADS)

    Tomov, N. A.; Tomova, M. T.; Bisikalo, D. V.

    2017-12-01

    The eclipsing symbiotic binary BF Cyg has had five orbital minima during its last optical outburst after 2006. The second minimum is much shallower than the first one and after that the minimum get deeper again. We determined the parameters of the accretion structure surrounding the compact object in two minima and traced its evolution until 2014. Moreover, we analysed the continuum of the system in the region of the UBVRCIC photometric bands to derive the parameters of its components at two times orbital maximum and calculated the mass-loss rate of the compact object. The results obtained allow us to conclude about the mechanism of fading of the optical light of the system until 2014. These results show that the optical flux of the outbursted compact object decreases because of "contraction" of its observed photosphere (pseudophotosphere) which, on its side, is due to increase of the velocity of its stellar wind, and the optical flux of the circumbinary nebula decreases mainly because of reduction of its mean density, which, on its side, is due to destruction of the accretion structure.

  9. Population evolution in the GEO vicinity

    NASA Astrophysics Data System (ADS)

    Wegener, P.; Bendisch, J.; Krag, H.; Stabroth, S.

    The geostationary orbit is now in use for nearly 40 years. Due to the absence of major energy dissipating mechanisms, the object population in the GEO environment steadily grew during this time. In mid 2001, a total of 762 known objects permanently resided within the GEO region (GEO +/-1000 km). Additionally, two explosion events are confirmed within the geostationary ring, which further enlarge the already existing population consisting of payloads and upper stages. Recent observation results obtained by the ESA Space Debris Telescope (SDT) at Tenerife show strong indications for even more fragment clouds. Since the geostationary ring can be seen as a unique resource, which is not protected by any significant selfcleaning effect, a monitoring of the object environment in the vicinity of this orbit is mandatory. In a first step, this paper characterizes the history and current state of the GEO environment. The evolution of fresh object clouds within and out of the ring is analysed to get a better understanding of the short- and mid-term impact of explosion events as well as Solid Rocket Motor (SRM) firings on the overall population. Next to explosion prevention, the transfer of satellites to a graveyard orbit about 300 km above the geostationary altitude is agreed to be the most effective mean to preserve GEO. Although this procedure is internationally recommended, only one third of the retiring spacecraft is in fact brought to a sufficiently high orbit. Another 30% performs a re-orbiting, but is ending up in an orbit in the direct vicinity of the GEO ring or even touching or crossing it. The reason for this low performance often can be found in insufficient fuel gauging or urgent need for several more months of operation. In the future, one possibility to mitigate the population growth by remo v - i n g those spacecraft could be a dedicated vehicle transferring several large objects to the graveyard area before retiring there on its own. The number and distribution of possible candidates for such a removal is outlined. Assuming a future traffic model and different scenarios for re-orbiting and removal, the future evolution of the large object population in and near GEO can be estimated.

  10. Tidal Dissipation In Rotating Low Mass Stars: Implications For The Orbital Evolution Of Close In Planets

    NASA Astrophysics Data System (ADS)

    Gallet, Florian; Bolmont, Emeline; Mathis, Stéphane; Charbonnel, Corinne; Amard, Louis; Alibert, Yann

    2017-10-01

    Close-in planets represent a large fraction of the population of confirmed exoplanets. To understand the dynamical evolution of these planets, star-planet interactions must be taken into account. In particular, the dependence of the tidal interactions on the structural parameters of the star, its rotation, and its metallicity should be treated in the models. We quantify how the tidal dissipation in the convective envelope of rotating low-mass stars evolves in time. We also investigate the possible consequences of this evolution on planetary orbital evolution. In Gallet et al. (2017) and Bolmont et al. (2017) we generalized the work of Bolmont & Mathis (2016) by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution and non-solar metallicity. We find that during the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the star through the stellar contraction. On the main-sequence tidal dissipation is strongly driven by the evolution of the surface rotation that is impacted by magnetized stellar winds braking. Finally, during the more evolved phases, the tidal dissipation sharply decreases as radiative core retreats in mass and radius towards the red-giant branch. Using an orbital evolution model, we also show that changing the metallicity leads to diUerent orbital evolutions (e.g., planets migrate farther out from an initially fast rotating metal rich star). By using this model, we qualitatively reproduced the observational trends of the population of hot Jupiters with the metallicity of their host stars. However, more work still remain to be do so as to be able to quantitatively fit our results to the observations.

  11. The devil is in the tails: the role of globular cluster mass evolution on stream properties

    NASA Astrophysics Data System (ADS)

    Balbinot, Eduardo; Gieles, Mark

    2018-02-01

    We present a study of the effects of collisional dynamics on the formation and detectability of cold tidal streams. A semi-analytical model for the evolution of the stellar mass function was implemented and coupled to a fast stellar stream simulation code, as well as the synthetic cluster evolution code EMACSS for the mass evolution as a function of a globular cluster orbit. We find that the increase in the average mass of the escaping stars for clusters close to dissolution has a major effect on the observable stream surface density. As an example, we show that Palomar 5 would have undetectable streams (in an SDSS-like survey) if it was currently three times more massive, despite the fact that a more massive cluster loses stars at a higher rate. This bias due to the preferential escape of low-mass stars is an alternative explanation for the absence of tails near massive clusters, than a dark matter halo associated with the cluster. We explore the orbits of a large sample of Milky Way globular clusters and derive their initial masses and remaining mass fraction. Using properties of known tidal tails, we explore regions of parameter space that favour the detectability of a stream. A list of high-probability candidates is discussed.

  12. Review of investigations performed in the USSR on close approaches of comets to Jupiter and the evolution of cometary orbits

    NASA Technical Reports Server (NTRS)

    Kazimirchak-Polonskaya, E. I.

    1976-01-01

    Methods are reviewed for calculating the evolution of cometary orbits with emphasis on the orbital changes that take place when comets pass within the spheres of action of giant planets. Topics discussed include: differences and difficulties in methods used for the calculation of large perturbations by Jupiter; the construction of numerical theories of motion covering the whole period of observations of each comet, allowing for planetary perturbations and the effects of nongravitational forces; and investigations of the evolution of cometary orbits over the 400 year interval 1660-2060. The classical theory of cometary capture is briefly discussed.

  13. A Stable, Narrow-Gap Oxyfluoride Photocatalyst for Visible-Light Hydrogen Evolution and Carbon Dioxide Reduction.

    PubMed

    Kuriki, Ryo; Ichibha, Tom; Hongo, Kenta; Lu, Daling; Maezono, Ryo; Kageyama, Hiroshi; Ishitani, Osamu; Oka, Kengo; Maeda, Kazuhiko

    2018-05-30

    Mixed anion compounds such as oxynitrides and oxychalcogenides are recognized as potential candidates of visible-light-driven photocatalysts since, as compared with oxygen 2p orbitals, p orbitals of less electronegative anion (e.g., N 3- , S 2- ) can form a valence band that has more negative potential. In this regard, oxyfluorides appear unsuitable because of the higher electronegativity of fluorine. Here we show an exceptional case, an anion-ordered pyrochlore oxyfluoride Pb 2 Ti 2 O 5.4 F 1.2 that has a small band gap (ca. 2.4 eV). With suitable modification of Pb 2 Ti 2 O 5.4 F 1.2 by promoters such as platinum nanoparticles and a binuclear ruthenium(II) complex, Pb 2 Ti 2 O 5.4 F 1.2 worked as a stable photocatalyst for visible-light-driven H 2 evolution and CO 2 reduction. Density functional theory calculations have revealed that the unprecedented visible-light-response of Pb 2 Ti 2 O 5.4 F 1.2 arises from strong interaction between Pb-6s and O-2p orbitals, which is enabled by a short Pb-O bond in the pyrochlore lattice due to the fluorine substitution.

  14. Stirring of a planetesimal swarm - The role of distant encounters

    NASA Technical Reports Server (NTRS)

    Weidenschilling, Stuart J.

    1989-01-01

    The viscous stirring algorithm developed by Stewart and Wetherill (1988) to treat the random velocities induced in planetesimals by their mutual gravitational perturbations encompasses only the scattering of bodies in crossing orbits by close encounters. Expressions are presently derived for the stirring rate due to distant encounters on the basis of three-body formalism, using a stirring rate that has the same mass-dependence as that for close encounters. The relative importance of both the close encounter and distant encounter mechanisms depends on the Safronov number. Perturbations by a planetary embryo in scenarios that involve explosive growth are found capable of affecting planetesimal evolution in noncrossing orbits.

  15. Quasi-Tangency Points on the Orbits of a Small Body and a Planet at the Low-Velocity Encounter

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, N. Yu.

    2018-03-01

    We propose a method for selecting a low-velocity encounter of a small body with a planet from the evolution of the orbital elements. Polar orbital coordinates of the quasi-tangency point on the orbit of a small body are determined. Rectangular heliocentric coordinates of the quasi-tangency point on the orbit of a planet are determined. An algorithm to search for low-velocity encounters in the evolution of the orbital elements of small bodies is described. The low-velocity encounter of comet 39P/Oterma with Jupiter is considered as an example.

  16. Geophysical and atmospheric evolution of habitable planets.

    PubMed

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  17. The Investigations of Orbital Evolution of Centaurs 2060 Chiron, P/Oterma and P/Schwassmann-Wachmann 1

    NASA Astrophysics Data System (ADS)

    Kovalenko, N.; Churyumov, K.; Babenko, Yu.

    2002-01-01

    Chiron, comet 39P/Oterma and comet 29P/Schwassmann-Wachmann 1 are discussed. The orbital evolutions of chosen objects were traced 1 million years backward and forward from the present time. For numerical integration the program based on the Everhart implicit single sequence methods for integrating orbits was used. perturbations from the giant planets and very chaotic. It is now believed that Centaurs could be captured from the Kuiper Belt and in the future transform into the short-period comets. Currently more then 20 Centaurs are known. The cometary activity in one of them (2060 Chiron) has been detected up to now. simulated the past and future orbital evolution of active Centaur 2060 (95P) Chiron and two distant Jupiter-family comets with similar to Centaurs' perihelia and aphelia - comets 39P/Oterma and 29P/Schwassmann-Wachmann 1. Only our knowledge gathered from the Earth-based observations, orbital evolution investigations and future spacecraft missions will solve this problem.

  18. The origin and evolution of a differentiated Mimas

    NASA Astrophysics Data System (ADS)

    Neveu, M.; Rhoden, A. R.

    2017-11-01

    In stark contrast with its neighbor moon Enceladus, Mimas is surprisingly geologically quiet, despite an eccentric orbit and distance to Saturn prone to levels of tidal dissipation 30 times higher. While Mimas' lack of geological activity could be due to a stiff, frigid interior, libration data acquired using the Cassini spacecraft suggest that its interior is not homogeneous. Here, we present one-dimensional models of the thermal, structural, and orbital evolution of Mimas under two accretion scenarios: primordial, undifferentiated formation in the Saturnian sub-nebula, and late, layered formation from a debris ring created by the disruption of one or more previous moons. We find it difficult to reproduce a differentiated, eccentric Mimas under a primordial accretion scenario: either Mimas never differentiates, or the internal warming that leads to differentiation increases tidal dissipation, yielding runaway heating that produces a persistent ocean, thereby circularizing Mimas' orbit. Only if Mimas accretes very early (so that the decay of short-lived radionuclides initiates differentiation) but its rheology is not highly dissipative (in order to stop runaway tidal heating even if the eccentricity is not negligible) can the simulations match the observational constraints. Alternatively, a late, layered accretion scenario yields a present-day Mimas that matches observational constraints, independently of the magnitude of tidal dissipation. Consistent with previous findings, these models do not produce an ocean on Enceladus unless its orbital eccentricity is higher than today's value.

  19. Scenarios of giant planet formation and evolution and their impact on the formation of habitable terrestrial planets.

    PubMed

    Morbidelli, Alessandro

    2014-04-28

    In our Solar System, there is a clear divide between the terrestrial and giant planets. These two categories of planets formed and evolved separately, almost in isolation from each other. This was possible because Jupiter avoided migrating into the inner Solar System, most probably due to the presence of Saturn, and never acquired a large-eccentricity orbit, even during the phase of orbital instability that the giant planets most likely experienced. Thus, the Earth formed on a time scale of several tens of millions of years, by collision of Moon- to Mars-mass planetary embryos, in a gas-free and volatile-depleted environment. We do not expect, however, that this clear cleavage between the giant and terrestrial planets is generic. In many extrasolar planetary systems discovered to date, the giant planets migrated into the vicinity of the parent star and/or acquired eccentric orbits. In this way, the evolution and destiny of the giant and terrestrial planets become intimately linked. This paper discusses several evolutionary patterns for the giant planets, with an emphasis on the consequences for the formation and survival of habitable terrestrial planets. The conclusion is that we should not expect Earth-like planets to be typical in terms of physical and orbital properties and accretion history. Most habitable worlds are probably different, exotic worlds.

  20. Large-size space debris flyby in low earth orbits

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total Δ V and with amount of detachable de-orbiting units onboard the maneuvering platform and onboard the refueling vehicle.

  1. On the long-period evolution of the sun-synchronous orbits

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. D.; Jasim, A. T.

    2016-05-01

    The dynamic evolution of sun-synchronous orbits at a time interval of 20 years is considered. The numerical motion simulation has been carried out using the Celestial Mechanics software package developed at the Institute of Astronomy of the University of Bern. The dependence of the dynamic evolution on the initial value of the ascending node longitude is examined for two families of sun-synchronous orbits with altitudes of 751 and 1191 km. Variations of the semimajor axis and orbit inclination are obtained depending on the initial value of the ascending node longitude. Recommendations on the selection of orbits, in which spent sun-synchronous satellites can be moved, are formulated. Minimal changes of elements over a time interval of 20 years have been observed for orbits in which at the initial time the angle between the orbit ascending node and the direction of the Sun measured along the equator have been close to 90° or 270°. In this case, the semimajor axis of the orbit is not experiencing secular perturbations arising from the satellite's passage through the Earth's shadow.

  2. Consideration of lifetime limitation for spent stages in GTO

    NASA Astrophysics Data System (ADS)

    Sharma, R.; Bandyopadhyay, P.; Adimurthy, V.

    It is well known that the time of launch during a day can have substantial effect in determining the orbital life of an object placed in a highly elliptic orbit like GTO (Ref.1). One of the proposed criteria to ensure stable space debris environment is to place the objects in orbits with limited lifetime of up to 25 years. This paper presents the investigations made in this connection for the Launch of GSLV-D1 on April 18, 2001. The decay of objects from elliptic orbits of moderate eccentricity is well understood in the literature where the apogee height decreases fast resulting in the circularization of orbits, which decays gradually under the effect of drag till the reentry. The evolution of objects in GTO orbits, whose perigee altitude falls between 180 km to 650 km and apogee is near the geo-stationary altitudes (35000 km to 36000 km), is determined by a complex interplay of different kind of forces, like upper atmospheric drag and luni-solar gravitation. These orbits are characterized by periodic changes in the altitude of the perigee caused by gravitational perturbations of the moon and the sun. The initial orientation of the orbit just after the launch with respect to the sun and the moon predominantly determines the subsequent histories of the orbital evolution. Therefore, the launch time plays an important role. The long time evolution of objects in GTO orbits can fall into two broad categories; (a) Decay predominantly by luni-solar gravity effect and (b) Decay by combination of atmospheric drag and luni-solar perturbations. In the former case, the perigee is driven below the decay altitude and circularization of the orbit does not take place before the reentry. In the later case, the evolution has phases of complex interplay of drag and luni-solar perturbations. Atmospheric drag generates a retarding force on the space object, but the effects of the sun and the moon on the object are more complex and can result in either increase or decrease in perigee altitude. It is interesting to understand the basic physics of the luni-solar perturbations. A few typical examples presented here illustrate this effect very clearly. It is interesting to note that in GTO orbits the interplay of drag and luni- solar gravity effects can give rise to situations where more drag get translated into more lifetime. Orbital evolution study of the third stage of GSLV-D1, which falls into the second category described above, provides us with a few interesting observations (Ref.2). The orbital lifetime can vary from around 7 months to well beyond 50 years depending on the launch time during the day of launch. A study with respect to few other days during the year to find the effect of sun and moon initial locations on orbital life is also included. For the present launch, the orbital life is around 600 days, which is well within the widely accepted criterion on the lifetime of any manmade space object. It is noted that the osculating perigee altitude decreases and apogee altitude increases when the object comes near the perigee due to oblate earth effects. The decrease in perigee is about 3.5 km and the increase in apogee is 160 km. Utilizing 175 Two Line Element (TLE) sets of the object available in the first 100 days of its life, the suitable ballistic coefficient is estimated and simulations up to re-entry are done. The re-entry is predicted between 7 Nov 2002 and 29 Dec 2002. A continuous monitoring with the available orbital data shows that the predictions continue to be within the above bounds. Ref.1. King-Hele, D.G., "Lifetime Predictions for Satellites in Low inclination Transfer Orbits", Journal of the British Interplanetary Society, Vol.35, pp.339-344, 1982 Ref.2. Priyankar Bandhopadhyay, Sharma, R.K., Adimurthy,V., " The Orbiting Third Stage of GSLV-D1 as Space Debris", VSSC/AERO/TR-001/2001, Vikram Sarabhai Space Centre, Trivandrum, 2001

  3. Telecommunications systems evolution for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Noreen, Gary; De Paula, Ramon P.; Edwards, Charles D. Jr; Komarek, Thomas; Edwards, Bernard L.; Edwards, Bernard L.; Kerridge, Stuart J.; Diehl, Roger; Franklin, Stephen F.

    2003-01-01

    This paper describes the evolution of telecommunication systems at Mars. It reviews the telecommunications capabilities, technology and limiting factors of current and planned Mars orbiters from Mars Global Surveyor to the planned Mars Telecommunications Orbiter (MTO).

  4. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGES

    Bai, Yang; He, Hui-Min; Li, Ying; ...

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H 2O) 2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  5. The effects of the stellar wind and orbital motion on the jets of high-mass microquasars

    NASA Astrophysics Data System (ADS)

    Bosch-Ramon, V.; Barkov, M. V.

    2016-05-01

    Context. High-mass microquasar jets propagate under the effect of the wind from the companion star, and the orbital motion of the binary system. The stellar wind and the orbit may be dominant factors determining the jet properties beyond the binary scales. Aims: This is an analytical study, performed to characterise the effects of the stellar wind and the orbital motion on the jet properties. Methods: Accounting for the wind thrust transferred to the jet, we derive analytical estimates to characterise the jet evolution under the impact of the stellar wind. We include the Coriolis force effect, induced by orbital motion and enhanced by the wind's presence. Large-scale evolution of the jet is sketched, accounting for wind-to-jet thrust transfer, total energy conservation, and wind-jet flow mixing. Results: If the angle of the wind-induced jet bending is larger than its half-opening angle, the following is expected: (I) a strong recollimation shock; (II) bending against orbital motion, caused by Coriolis forces and enhanced by the wind presence; and (III) non-ballistic helical propagation further away. Even if disrupted, the jet can re-accelerate due to ambient pressure gradients, but wind entrainment can weaken this acceleration. On large scales, the opening angle of the helical structure is determined by the wind-jet thrust relation, and the wind-loaded jet flow can be rather slow. Conclusions: The impact of stellar winds on high-mass microquasar jets can yield non-ballistic helical jet trajectories, jet partial disruption and wind mixing, shocks, and possibly non-thermal emission. Among other observational diagnostics, such as radiation variability at any band, the radio morphology on milliarcsecond scales can be informative on the wind-jet interaction.

  6. Orbital Evolution of Particles and Stable Zones at the F Ring Core

    NASA Astrophysics Data System (ADS)

    Whizin, Akbar; Cuzzi, J.; Hogan, R.; Dobrovolskis, A.; Colwell, J.; Scargle, J.; Dones, L.; Showalter, M.

    2012-10-01

    The F ring of Saturn is often thought of as a ‘shepherded’ ring; however, it is closer to the more massive of its two shepherd satellites, Prometheus. Pandora, the outer satellite, is near a 3:2 mean motion resonance with larger Mimas causing periodic fluctuations in its orbit. The perturbations from the Saturnian satellites result in chaotic orbits throughout the F ring region (Scargle et al 1993 DPS 25, #26.04, Winter et al 2007 MNRAS 380, L54; 2010 A&A 523, A67). We follow the approach of Cuzzi et al. (abstract this meeting) in exploring zones of relative stability in the F ring region using a N-body Bulirsch-Stoer orbital integrator that includes the 14 main satellites of Saturn. We find relatively stable zones situated among the tightly packed Prometheus and Pandora resonances that we dub “anti-resonances.” At these locations ring particles have much smaller changes in their semi-major axes and eccentricities than particles outside of anti-resonance zones. We present high radial resolution simulations where we track the orbital evolution of 6000 test particles over time in a 200km region and find that the variance of the semi-major axes of particles in anti-resonances can be less than 1km over a period of 32 years, while just 5km away in either radial direction the variance can be tens of km’s. More importantly, particles outside of these stable zones can migrate into one due to chaotic orbits, but once they enter an anti-resonance zone they remain there. The anti-resonances act as long-lived sinks for ring particles and explain the location of the F ring core even though it is not in overall torque balance with the shepherd moons.

  7. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the two largest members of the main asteroid belt, the giant asteroid Vesta and the dwarf planet Ceres. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional thrust design objectives (like minimum (Delta)V or minimum transfer time) often result in thrust direction time evolutions that can not be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and necessary to successfully navigate Dawn through all orbital transfers at Vesta.

  8. Evolution of band topology by competing band overlap and spin-orbit coupling: Twin Dirac cones in Ba3SnO as a prototype

    NASA Astrophysics Data System (ADS)

    Kariyado, Toshikaze; Ogata, Masao

    2017-11-01

    We theoretically demonstrate how competition between band inversion and spin-orbit coupling (SOC) results in nontrivial evolution of band topology, taking antiperovskite Ba3SnO as a prototype material. A key observation is that when the band inversion dominates over SOC, there appear "twin" Dirac cones in the band structure. Due to the twin Dirac cones, the band shows highly peculiar structure in which the upper cone of one of the twin continuously transforms to the lower cone of the other. Interestingly, the relative size of the band inversion and SOC is controlled in this series of antiperovskite A3E O by substitution of A (Ca, Sr, Ba) and/or E (Sn, Pb) atoms. Analysis of an effective model shows that the emergence of twin Dirac cones is general, which makes our argument a promising starting point for finding a singular band structure induced by the competing band inversion and SOC.

  9. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    DOE PAGES

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...

    2014-10-08

    Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less

  10. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    PubMed Central

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  11. Near-Earth asteroid satellite spins under spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naidu, Shantanu P.; Margot, Jean-Luc

    We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of chaoticmore » regions in the phase space has important consequences for the evolution of binary asteroids. It may substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also affect the analysis and interpretation of light curve and radar observations.« less

  12. The orbital evolution of the asteroid 4179 Toutatis during 11,550 years

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Pushkaryov, A. N.

    The orbital evolution of the asteroid 4179 Toutatis was followed by the Everhart method in the time interval 2250 AD to 9300 BC. The closest encounters with Earth are calculated in the evolution process. It is shown that this asteroid is not dangerous for Earth during the time interval 2250 AD to 9300 BC.

  13. Long term evolution of planetary systems with a terrestrial planet and a giant planet.

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2017-06-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion.

  14. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  15. GCM Simulations of Titan's Paleoclimate

    NASA Astrophysics Data System (ADS)

    Lora, Juan M.; Lunine, Jonathan; Russell, Joellen; Hayes, Alexander

    2014-11-01

    The hemispheric asymmetry observed in the distribution of Titan's lakes and seas has been suggested to be the result of asymmetric seasonal forcing, where a relative moistening of the north occurs in the current epoch due to its longer and less intense summers. General circulation models (GCMs) of present-day Titan have also shown that the atmosphere transports methane away from the equator. In this work, we use a Titan GCM to investigate the effects that changes in Titan's effective orbital parameters have had on its climate in recent geologic history. The simulations show that the climate is relatively insensitive to changes in orbital parameters, with persistently dry low latitudes and wet polar regions. The amount of surface methane that builds up over either pole depends on the insolation distribution, confirming the influence of orbital forcing on the distribution of surface liquids. The evolution of the orbital forcing implies that the surface reservoir must be transported on timescales of ~30 kyr, in which case the asymmetry reverses with a period of ~125 kyr. Otherwise, the orbital forcing is insufficient for generating the observed dichotomy.

  16. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  17. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  18. Skylab program payload integration. TO27 sample array

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.; Westcott, P. A.

    1974-01-01

    The objective of the TO27 sample array was to determine the change in optical properties of various transmissive windows, mirrors, and diffraction gratings caused by the deposition of contaminants found about the orbital assembly. The expected information to be obtained from the total TO27 sample array program is as follows: (1) effect of space contaminants on transmittance, reflectance, grating efficiency, and polarization; (2) variations in deposition of contaminants due to substrate, solar radiation, period of exposure, direction of exposure, and geometry effects; (3) identification of contaminants and source of evolution; (4) time of contaminant evolution and lingering time; and (5) guidelines for a model of spacecraft contamination.

  19. Roles of NN-interaction components in shell-structure evolution

    NASA Astrophysics Data System (ADS)

    Umeya, Atsushi; Muto, Kazuo

    2016-11-01

    Since the importance of the monopole interaction was first emphasized in 1960s, roles of monopole strengths of two-body nucleon-nucleon interaction in shell structure have been discussed. Through the monopole strengths, we study the roles in shell-structure evolution, starting from explicit forms of the interaction. For the tensor component of the interaction, we show the derivation of the relation, (2j> + 1)Vjj> + (2j< + 1)Vjj< = 0, with a detailed manipulation. We show that one-body spin-orbit term appears in the multipole expansion of two-body spin-orbit interaction. Only the spin-orbit components can affect the spin-orbit energy splitting between spin-orbit partners, when the spin-orbit partner orbits are fully occupied.

  20. Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Loeb, Abraham

    2016-03-01

    We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.

  1. Evolution of the orbit of asteroid 4179 Toutatis over 11,550 years.

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Pushkarev, A. N.

    1994-05-01

    The Everhart method is used to study evolution of the orbit of the asteroid 4179 Toutatis, a member of the Apollo group, over the time period 9300 B.C. to 2250 A.D. Minimum asteroid-Earth distances during the evolution process are calculated. It is shown that the asteroid presents no danger to the Earth over the interval studied.

  2. Risks of nuclear waste disposal in space. III - Long-term orbital evolution of small particle distribution

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Wells, W. C.

    1980-01-01

    A study of long term risks is presented that treats an additional pathway that could result in earth reentry, namely, small radioactive particles released in solar orbit due to payload fragmentation by accidental explosion or meteoroid impact. A characterization of such an event and of the initial mass size distribution of particles is given for two extremes of waste form strength. Attention is given to numerical results showing the mass-time distribution of material and the fraction of initial mass intercepted by earth. It is concluded that it appears that program planners need not be to concerned about the risks of this particular failure mechanism and return pathway.

  3. Strong binary pulsar constraints on Lorentz violation in gravity.

    PubMed

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  4. Ridge Formation And De-spinning Of Iapetus Via An Impact-generated Satellite

    NASA Astrophysics Data System (ADS)

    Levison, Harold F.; Walsh, K. J.; Barr, A. C.; Dones, L.

    2011-04-01

    We present a scenario for building the equatorial ridge and de-spinning Iapetus through an impact-generated disk and satellite. This impact puts debris into orbit, forming a ring inside the Roche limit and a satellite outside. This satellite rapidly pushes the ring material down to the surface of Iapetus, and then itself tidally evolves outward, thereby helping to de-spin Iapetus. This scenario can de-spin Iapetus an order of magnitude faster than when tides due to Saturn act alone, almost independently of its interior geophysical evolution. Eventually, the satellite is stripped from its orbit by Saturn. The range of satellite and impactor masses required is compatible with the estimated impact history of Iapetus.

  5. Ridge formation and de-spinning of Iapetus via an impact-generated satellite

    NASA Astrophysics Data System (ADS)

    Levison, H. F.; Walsh, K. J.; Barr, A. C.; Dones, L.

    2011-08-01

    We present a scenario for building the equatorial ridge and de-spinning Iapetus through an impact-generated disk and satellite. This impact puts debris into orbit, forming a ring inside the Roche limit and a satellite outside. This satellite rapidly pushes the ring material down to the surface of Iapetus, and then itself tidally evolves outward, thereby helping to de-spin Iapetus. This scenario can de-spin Iapetus an order of magnitude faster than when tides due to Saturn act alone, almost independently of its interior geophysical evolution. Eventually, the satellite is stripped from its orbit by Saturn. The range of satellite and impactor masses required is compatible with the estimated impact history of Iapetus.

  6. Spin-orbit coupling for tidally evolving super-Earths

    NASA Astrophysics Data System (ADS)

    Rodríguez, A.; Callegari, N.; Michtchenko, T. A.; Hussmann, H.

    2012-12-01

    We investigate the spin behaviour of close-in rocky planets and the implications for their orbital evolution. Considering that the planet rotation evolves under simultaneous actions of the torque due to the equatorial deformation and the tidal torque, both raised by the central star, we analyse the possibility of temporary captures in spin-orbit resonances. The results of the numerical simulations of the exact equations of motions indicate that, whenever the planet rotation is trapped in a resonant motion, the orbital decay and the eccentricity damping are faster than the ones in which the rotation follows the so-called pseudo-synchronization. Analytical results obtained through the averaged equations of the spin-orbit problem show a good agreement with the numerical simulations. We apply the analysis to the cases of the recently discovered hot super-Earths Kepler-10 b, GJ 3634 b and 55 Cnc e. The simulated dynamical history of these systems indicates the possibility of capture in several spin-orbit resonances; particularly, GJ 3634 b and 55 Cnc e can currently evolve under a non-synchronous resonant motion for suitable values of the parameters. Moreover, 55 Cnc e may avoid a chaotic rotation behaviour by evolving towards synchronization through successive temporary resonant trappings.

  7. Complete tidal evolution of Pluto-Charon

    NASA Astrophysics Data System (ADS)

    Cheng, W. H.; Lee, Man Hoi; Peale, S. J.

    2014-05-01

    Both Pluto and its satellite Charon have rotation rates synchronous with their orbital mean motion. This is the theoretical end point of tidal evolution where transfer of angular momentum has ceased. Here we follow Pluto’s tidal evolution from an initial state having the current total angular momentum of the system but with Charon in an eccentric orbit with semimajor axis a≈4RP (where RP is the radius of Pluto), consistent with its impact origin. Two tidal models are used, where the tidal dissipation function Q∝1/frequency and Q = constant, where details of the evolution are strongly model dependent. The inclusion of the gravitational harmonic coefficient C22 of both bodies in the analysis allows smooth, self consistent evolution to the dual synchronous state, whereas its omission frustrates successful evolution in some cases. The zonal harmonic J2 can also be included, but does not cause a significant effect on the overall evolution. The ratio of dissipation in Charon to that in Pluto controls the behavior of the orbital eccentricity, where a judicious choice leads to a nearly constant eccentricity until the final approach to dual synchronous rotation. The tidal models are complete in the sense that every nuance of tidal evolution is realized while conserving total angular momentum-including temporary capture into spin-orbit resonances as Charon’s spin decreases and damped librations about the same.

  8. Tatooines Future: The Eccentric Response of Keplers Circumbinary Planets to Common-Envelope Evolution of their Host Stars

    NASA Technical Reports Server (NTRS)

    Kostov, Veselin B.; Moore, Keavin; Tamayo, Daniel; Jayawardhana, Ray; Rinehart, Stephen A.

    2016-01-01

    Inspired by the recent Kepler discoveries of circumbinary planets orbiting nine close binary stars, we explore the fate of the former as the latter evolve off the main sequence. We combine binary star evolution models with dynamical simulations to study the orbital evolution of these planets as their hosts undergo common-envelope stages, losing in the process a tremendous amount of mass on dynamical timescales. Five of the systems experience at least one Roche-lobe overflow and common-envelope stages (Kepler-1647 experiences three), and the binary stars either shrink to very short orbits or coalesce; two systems trigger a double-degenerate supernova explosion. Kepler's circumbinary planets predominantly remain gravitationally bound at the end of the common-envelope phase, migrate to larger orbits, and may gain significant eccentricity; their orbital expansion can be more than an order of magnitude and can occur over the course of a single planetary orbit. The orbits these planets can reach are qualitatively consistent with those of the currently known post-common-envelope, eclipse-time variations circumbinary candidates. Our results also show that circumbinary planets can experience both modes of orbital expansion (adiabatic and non-adiabatic) if their host binaries undergo more than one common-envelope stage; multiplanet circumbinary systems like Kepler-47 can experience both modes during the same common-envelope stage. Additionally, unlike Mercury orbiting the Sun, a circumbinary planet with the same semi-major axis can survive the common envelope evolution of a close binary star with a total mass of 1 Solar Mass.

  9. Orbiter Crew Compartment Integration-Stowage

    NASA Technical Reports Server (NTRS)

    Morgan, L. Gary

    2007-01-01

    This viewgraph presentation describes the Orbiter Crew Compartment Integration (CCI) stowage. The evolution of orbiter crew compartment stowage volume is also described, along with photographs presented of the on-orbit volume stowage capacity.

  10. Approximate analytic method for high-apogee twelve-hour orbits of artificial Earth's satellites

    NASA Astrophysics Data System (ADS)

    Vashkovyaka, M. A.; Zaslavskii, G. S.

    2016-09-01

    We propose an approach to the study of the evolution of high-apogee twelve-hour orbits of artificial Earth's satellites. We describe parameters of the motion model used for the artificial Earth's satellite such that the principal gravitational perturbations of the Moon and Sun, nonsphericity of the Earth, and perturbations from the light pressure force are approximately taken into account. To solve the system of averaged equations describing the evolution of the orbit parameters of an artificial satellite, we use both numeric and analytic methods. To select initial parameters of the twelve-hour orbit, we assume that the path of the satellite along the surface of the Earth is stable. Results obtained by the analytic method and by the numerical integration of the evolving system are compared. For intervals of several years, we obtain estimates of oscillation periods and amplitudes for orbital elements. To verify the results and estimate the precision of the method, we use the numerical integration of rigorous (not averaged) equations of motion of the artificial satellite: they take into account forces acting on the satellite substantially more completely and precisely. The described method can be applied not only to the investigation of orbit evolutions of artificial satellites of the Earth; it can be applied to the investigation of the orbit evolution for other planets of the Solar system provided that the corresponding research problem will arise in the future and the considered special class of resonance orbits of satellites will be used for that purpose.

  11. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    NASA Technical Reports Server (NTRS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  12. Analysis of Probabilistic Orbital Evolution of the Asteroids 2011 CQ1 and 2011 MD

    NASA Astrophysics Data System (ADS)

    Sambarov, G. E.; Syusina, O. M.

    2018-06-01

    The orbital evolution of asteroids 2011 CQ1 and 2011 MD approaching to the Earth is investigated. The influence of perturbing forces on the accuracy of constructing the regions of their possible motions is investigated.

  13. Low Lunar Orbit Design via Graphical Manipulation of Eccentricity Vector Evolution

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Sweetser, Theodore H.; Roncoli, Ralph B.

    2012-01-01

    Low lunar orbits, such as those used by GRAIL and LRO, experience predictable variations in the evolution of their eccentricity vectors. These variations are nearly invariant with respect to the initial eccentricity and argument of periapse and change only in the details with respect to the initial semi-major axis. These properties suggest that manipulating the eccentricity vector evolution directly can give insight into orbit maintenance designs and can reduce the number of propagations required. A trio of techniques for determining the desired maneuvers is presented in the context of the GRAIL extended mission.

  14. Effect of the stellar spin history on the tidal evolution of close-in planets

    NASA Astrophysics Data System (ADS)

    Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.

    2012-08-01

    Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.

  15. Heliotropic dust rings for Earth climate engineering

    NASA Astrophysics Data System (ADS)

    Bewick, R.; Lücking, C.; Colombo, C.; Sanchez, J. P.; McInnes, C. R.

    2013-04-01

    This paper examines the concept of a Sun-pointing elliptical Earth ring comprised of dust grains to offset global warming. A new family of non-Keplerian periodic orbits, under the effects of solar radiation pressure and the Earth's J2 oblateness perturbation, is used to increase the lifetime of the passive cloud of particles and, thus, increase the efficiency of this geoengineering strategy. An analytical model is used to predict the orbit evolution of the dust ring due to solar-radiation pressure and the J2 effect. The attenuation of the solar radiation can then be calculated from the ring model. In comparison to circular orbits, eccentric orbits yield a more stable environment for small grain sizes and therefore achieve higher efficiencies when the orbit decay of the material is considered. Moreover, the novel orbital dynamics experienced by high area-to-mass ratio objects, influenced by solar radiation pressure and the J2 effect, ensure the ring will maintain a permanent heliotropic shape, with dust spending the largest portion of time on the Sun facing side of the orbit. It is envisaged that small dust grains can be released from a circular generator orbit with an initial impulse to enter an eccentric orbit with Sun-facing apogee. Finally, a lowest estimate of 1 × 1012 kg of material is computed as the total mass required to offset the effects of global warming.

  16. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-04-01

    To date, no binary star system with an orbital period less than 7.5 days has been observed to host a circumbinary planet (CBP), a puzzling observation given the thousands of binary stars with orbital periods < 10 days discovered by the Kepler mission (Kirk et al., 2016) and the observational biases that favor their detection (Munoz & Lai, 2015). We outline a mechanism that explains the observed lack of CBPs via coupled stellar-tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations, transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that in some cases, the stability semi-major axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that typically, at least one planet is ejected from the system. We apply our theory to the shortest period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar-tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  17. Eclipse timings of the low-mass X-ray binary EXO 0748-676: Statistical arguments against orbital period changes

    NASA Technical Reports Server (NTRS)

    Hertz, Paul; Wood, Kent S.; Cominsky, Lynn

    1995-01-01

    EXO 0748-676, an eclipsing low-mass X-ray binary, is one of only about four or five low-mass X-ray binaries for which orbital period evolution has been reported. We observed a single eclipse egress with ROSAT . The time of this egress is consistent with the apparent increase in P(sub orb) previously reported on the basis of EXOSAT and Ginga observations. Standard analysis, in which O-C (observed minus calculated) timing residuals are examined for deviations from a constant period, implicitly assume that the only uncertainty in each residual is measurement error and that these errors are independent. We argue that the variable eclipse durations and profiles observed in EXO 0748-676 imply that there is an additional source of uncertainty in timing measurements, that this uncertainty is intrinsic to the binary system, and that it is correlated from observation to observation with a variance which increases as a function of the number of binary cycles between observations. This intrinsic variability gives rise to spurious trends in O-C residuals which are misinterpreted as changes in the orbital period. We describe several statistics tests which can be used to test for the presence of intrinsic variability. We apply those statistical tests which are suitable to the EXO 0748-676 observations. The apparent changes in the orbital period of EXO 0748-676 can be completely accounted for by intrinsic variability with an rms variability of approximately 0.35 s per orbital cycle. The variability appears to be correlated from cycle-to-cycle on timescales of less than 1 yr. We suggest that the intrinsic variability is related to slow changes in either the source's X-ray luminosity or the structure of the companion star's atmosphere. We note that several other X-ray binaries and cataclysmic variables have previously reported orbital period changes which may also be due to intrinsic variability rather than orbital period evolution.

  18. Effects of Orbital Evolution on Lunar Ice Stability

    NASA Astrophysics Data System (ADS)

    Siegler, M. A.; Bills, B. G.; Paige, D. A.

    2010-12-01

    Permanently shadowed regions of the Moon have complex thermal histories that influence their ability to act as traps for water ice. Though many areas are now cold enough that surface water ice would be stable from sublimation losses for billions of years, this has not always been the case. Here we examine the effects of the long term orbital and rotational evolution of the Moon on polar thermal history, volatile stability and mobility. Using data from the Diviner Lunar Radiometer, aboard the Lunar Reconnaissance Orbiter, we validate models of the current temperature in the lunar polar region. This model includes the effects of topography, scattering, re-radiation, and regolith thermal properties. Then, integrating the effects of tidal torques backward from the present, we reconstruct past orbital and rotational states and use them as input to the thermal model to estimate the thermal environment of the distant lunar past. The rate of tidal evolution of the lunar orbit is quite uncertain, thus use orbital semimajor axis as independent variable, rather than time, in the reconstruction. The orbital integration results in a high obliquity period which occurred when the Moon was at about half its present distance from the Earth. This period, which caused half a year of direct sunlight on the polar region, is due to a transition between two Cassini States, spin-orbit configurations resulting from internal dissipation within the Moon. Since this event, the tilt of the Moon (with respect to the ecliptic) has slowly decreased to the current 1.54 degree. Prior to this transition, due to the relatively small Earth-Moon distance, large amplitude variations in the inclination of the orbital plain were also important. We examine the stability of polar volatiles in response to the evolving lunar orbit, and apply simple models to describe when in the Moon’s history supplied volatiles would have been most likely to be buried by thermal diffusion. When temperatures are much below 95K, ice delivered to the lunar surface is immobile in terms of thermal diffusion. Unless buried on relatively short time scales, most of the current polar environments are currently too cold to efficiently drive ice downward along thermal gradients and protect it from other surface loss processes. In the past, these same locations went through “ice trap” periods, where they were warm enough that supplied volatiles might have been buried by on short time scales, but cold enough that they would not be lost quickly, supplying the subsurface with volatiles that could still be stable today. The Cassini state transition was so warm that ice would either have been driven out into space, or possibly deep into the lunar subsurface. If a present lunar cold trap is ice bearing, that ice is likely to be representative of these “ice trap” periods and have little to do with the early Moon. As each current cold trap had a period where it was most efficient at thermal ice burial, the location of current ground ice on the Moon might also constrain the obliquity and time at which it was deposited. The presence of ice in a specific crater may imply either an increase in water flux or large comet impact during that period.

  19. Van Allen Probes observations of outer radiation belt evolution during CME and CIR storms

    NASA Astrophysics Data System (ADS)

    Hudson, M. K.; Shen, X.; Jaynes, A. N.; Shi, Q.; Tian, A.; Claudepierre, S. G.; Qin, M.; Zong, Q.; Sun, W.

    2017-12-01

    Storm time outer radiation belt evolutes dramatically. It is still an stuff problem to model and predict the evolutions. The MeV electron flux can loss, no change or increase during different storms. Most of the previous statistical results were made by low altitude polar orbiting satellites, such as SAMPEX and NOAA POES, or geosynchronous orbiting satellites, such as GOES. Although part of the electron flux observed by polar orbiting satellites can be treated as trapped electrons, they are already close to the ionosphere with pitch angles apart from 90 degrees. Geosynchronous orbiting satellites are limited to r=6.6 RE (geocentric radial distance in Earth radii). The Van Allen Probes twin spacecraft, launched on 30 August 2012 with orbit near the equatorial plane, apogee at 5.8 RE and perigee at 620 km, give us a good oppurtuinity to study the storm-time outer radiation belt evolutions. During the time period from the begining of 2013 to the end of 2016, 31 CMEs and 28 CIRs are identified from OMNI-2 dataset. Superposed epoch analysis shows that CIR-storms which increased flux closer to geosynchronous orbit consistent with earlier studies, while CME-storms likely produce deeper penetration of enhanced flux and local heating which is greater at higher energies at lower L*.

  20. The orbital evolution of the Aten asteroids over 11,550 years (9300 BC to 2250 AD)

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Pushkarev, A. N.

    1991-04-01

    The orbital evolution of five Aten asteroids was monitored by the Everhart method in the time interval from 9300 BC to 2250 AD. The closest encounters with large planets in the evolution process are calculated. Four out of five asteroids exhibit stable resonances with earth and Venus over the period from 9300 BC to 2250 AD.

  1. Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo

    2015-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.

  2. Orbital evolution of some Centaurs

    NASA Astrophysics Data System (ADS)

    Kovalenko, Nataliya; Babenko, Yuri; Churyumov, Klim

    2002-11-01

    In this work we investigated the dynamical evolution of Centaurs objects 2060 (Chiron), 5145 (Pholus), 7066 (Nessus), 8405 (Asbolus), 10199 (Chariklo), 10370 (Hylonome), and Scattered-Disk object 15874. We have carried out orbital integration of test particles with initial orbits similar to those of these objects. Calculations were produced for +/-600kyr-10Myr starting at epoch and using the implicit single sequence Everhart methods. 12 variational orbits for each of selected Centaurs also have been numerically integrated for +/-200 kyr toward the past and the future. The most probable paths were traced up to +/-1 Myr. The character of orbital elements changes and peculiarities of close approaches to giant planets are discussed.

  3. Nonadiabatic Ab Initio Molecular Dynamics with the Floating Occupation Molecular Orbital-Complete Active Space Configuration Interaction Method [Non-Adiabatic Ab Initio Molecular Dynamics with Floating Occupation Molecular Orbitals CASCI Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollas, Daniel; Sistik, Lukas; Hohenstein, Edward G.

    Here, we show that the floating occupation molecular orbital complete active space configuration interaction (FOMO-CASCI) method is a promising alternative to the widely used complete active space self-consistent field (CASSCF) method in direct nonadiabatic dynamics simulations. We have simulated photodynamics of three archetypal molecules in photodynamics: ethylene, methaniminium cation, and malonaldehyde. We compared the time evolution of electronic populations and reaction mechanisms as revealed by the FOMO-CASCI and CASSCF approaches. Generally, the two approaches provide similar results. Some dynamical differences are observed, but these can be traced back to energetically minor differences in the potential energy surfaces. We suggest thatmore » the FOMO-CASCI method represents, due to its efficiency and stability, a promising approach for direct ab initio dynamics in the excited state.« less

  4. Magnetization reversal in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jia, E-mail: lijia@wipm.ac.cn

    2014-10-07

    We theoretically investigate the dynamics of magnetization in ferromagnetic thin films induced by spin-orbit interaction with Slonczewski-like spin transfer torque. We reproduce the experimental results of perpendicular magnetic anisotropy films by micromagnetic simulation. Due to the spin-orbit interaction, the magnetization can be switched by changing the direction of the current with the assistant of magnetic field. By increasing the current amplitude, wider range of switching events can be achieved. Time evolution of magnetization has provided us a clear view of the process, and explained the role of minimum external field. Slonczewski-like spin transfer torque modifies the magnetization when current ismore » present. The magnitude of the minimum external field is determined by the strength of the Slonczewski-like spin transfer torque. The investigations may provide potential applications in magnetic memories.« less

  5. Radiation forces on small particles in the solar system

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Lamy, P. L.; Soter, S.

    1979-01-01

    Solar radiation forces on small particles in the solar system are examined, and the resulting orbital evolution of interplanetary and circumplanetary dust is considered. An expression is derived for the effects of radiation pressure and Poynting-Robertson drag on small, spherical particles using the energy and momentum transformation laws of special relativity, and numerical examples are presented to illustrate that radiation pressure and Poynting-Robertson drag are only important for particles within a narrow size range. The orbital consequences of these radiation forces are considered both for heliocentric and planetocentric orbiting particles, and the coupling between particle sizes and dynamics is discussed. A qualitative derivation is presented for the differential Doppler effect, which is due to the differential Doppler shifting of radiation from approaching and receding solar hemispheres, and the Yarkovsky effect, which is important for rotating meter-to kilometer-sized particles, is briefly described.

  6. THE PUZZLING MUTUAL ORBIT OF THE BINARY TROJAN ASTEROID (624) HEKTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchis, F.; Cuk, M.; Durech, J.

    Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W. M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req = 125 km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formedmore » the system. The inferred density of Hektor's system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.« less

  7. Using Real and Simulated TNOs to Constrain the Outer Solar System

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan

    2018-04-01

    Over the past 2-3 decades our understanding of the outer solar system’s history and current state has evolved dramatically. An explosion in the number of detected trans-Neptunian objects (TNOs) coupled with simultaneous advances in numerical models of orbital dynamics has driven this rapid evolution. However, successfully constraining the orbital architecture and evolution of the outer solar system requires accurately comparing simulation results with observational datasets. This process is challenging because observed datasets are influenced by orbital discovery biases as well as TNO size and albedo distributions. Meanwhile, such influences are generally absent from numerical results. Here I will review recent work I and others have undertaken using numerical simulations in concert with catalogs of observed TNOs to constrain the outer solar system’s current orbital architecture and past evolution.

  8. TIDALLY DRIVEN ROCHE-LOBE OVERFLOW OF HOT JUPITERS WITH MESA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valsecchi, Francesca; Rasio, Frederic A.; Rappaport, Saul

    2015-11-10

    Many exoplanets have now been detected in orbits with ultra-short periods very close to the Roche limit. Building upon our previous work, we study the possibility that mass loss through Roche lobe overflow (RLO) may affect the evolution of these planets, and could possibly transform a hot Jupiter into a lower-mass planet (hot Neptune or super-Earth). We focus here on systems in which the mass loss occurs slowly (“stable mass transfer” in the language of binary star evolution) and we compute their evolution in detail with the binary evolution code Modules for Experiments in Stellar Astrophysics. We include the effectsmore » of tides, RLO, irradiation, and photo-evaporation (PE) of the planet, as well as the stellar wind and magnetic braking. Our calculations all start with a hot Jupiter close to its Roche limit, in orbit around a Sun-like star. The initial orbital decay and onset of RLO are driven by tidal dissipation in the star. We confirm that such a system can indeed evolve to produce lower-mass planets in orbits of a few days. The RLO phase eventually ends and, depending on the details of the mass transfer and on the planetary core mass, the orbital period can remain around a few days for several Gyr. The remnant planets have rocky cores and some amount of envelope material, which is slowly removed via PE at a nearly constant orbital period; these have properties resembling many of the observed super-Earths and sub-Neptunes. For these remnant planets, we also predict an anti-correlation between mass and orbital period; very low-mass planets (M{sub pl} ≲ 5 M{sub ⊕}) in ultra-short periods (P{sub orb} < 1 day) cannot be produced through this type of evolution.« less

  9. Comparison of Orbital Parameters for GEO Debris Predicted by LEGEND and Observed by MODEST: Can Sources of Orbital Debris be Identified?

    NASA Technical Reports Server (NTRS)

    Barker, Edwin S.; Matney, M. J.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Seitzer, P.

    2006-01-01

    Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view approx.1.3deg) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12deg and a RAAN of 345deg. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA s LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. The question to be addressed: are the UCTs detected by MODEST in this inclination/RAAN region related to the Titan 3C-4 breakup? Discussion will include the observational biases in attempting to detect a specific, uncontrolled target during given observing session. These restrictions include: (1) the length of the observing session which is 8 hours or less at any given date or declination; (2) the assumption of ACO elements for detected object when the breakup model predicts debris with non-zero eccentricities; (3) the size and illumination or brightness of the debris predicted by the model and the telescope/sky limiting magnitude.

  10. The signatures of the parental cluster on field planetary systems

    NASA Astrophysics Data System (ADS)

    Cai, Maxwell Xu; Portegies Zwart, Simon; van Elteren, Arjen

    2018-03-01

    Due to the high stellar densities in young clusters, planetary systems formed in these environments are likely to have experienced perturbations from encounters with other stars. We carry out direct N-body simulations of multiplanet systems in star clusters to study the combined effects of stellar encounters and internal planetary dynamics. These planetary systems eventually become part of the Galactic field population as the parental cluster dissolves, which is where most presently known exoplanets are observed. We show that perturbations induced by stellar encounters lead to distinct signatures in the field planetary systems, most prominently, the excited orbital inclinations and eccentricities. Planetary systems that form within the cluster's half-mass radius are more prone to such perturbations. The orbital elements are most strongly excited in the outermost orbit, but the effect propagates to the entire planetary system through secular evolution. Planet ejections may occur long after a stellar encounter. The surviving planets in these reduced systems tend to have, on average, higher inclinations and larger eccentricities compared to systems that were perturbed less strongly. As soon as the parental star cluster dissolves, external perturbations stop affecting the escaped planetary systems, and further evolution proceeds on a relaxation time-scale. The outer regions of these ejected planetary systems tend to relax so slowly that their state carries the memory of their last strong encounter in the star cluster. Regardless of the stellar density, we observe a robust anticorrelation between multiplicity and mean inclination/eccentricity. We speculate that the `Kepler dichotomy' observed in field planetary systems is a natural consequence of their early evolution in the parental cluster.

  11. The Interior and Orbital Evolution of Charon as Preserved in Its Geologic Record

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Henning, Wade; Hurford, Terry A.; Hamilton, Douglas P.

    2014-01-01

    Pluto and its largest satellite, Charon, currently orbit in a mutually synchronous state; both bodies continuously show the same face to one another. This orbital configuration is a natural end-state for bodies that have undergone tidal dissipation. In order to achieve this state, both bodies would have experienced tidal heating and stress, with the extent of tidal activity controlled by the orbital evolution of Pluto and Charon and by the interior structure and rheology of each body. As the secondary, Charon would have experienced a larger tidal response than Pluto, which may have manifested as observable tectonism. Unfortunately, there are few constraints on the interiors of Pluto and Charon. In addition, the pathway by which Charon came to occupy its present orbital state is uncertain. If Charon's orbit experienced a high-eccentricity phase, as suggested by some orbital evolution models, tidal effects would have likely been more significant. Therefore, we determine the conditions under which Charon could have experienced tidally-driven geologic activity and the extent to which upcoming New Horizons spacecraft observations could be used to constrain Charon's internal structure and orbital evolution. Using plausible interior structure models that include an ocean layer, we find that tidally-driven tensile fractures would likely have formed on Charon if its eccentricity were on the order of 0.01, especially if Charon were orbiting closer to Pluto than at present. Such fractures could display a variety of azimuths near the equator and near the poles, with the range of azimuths in a given region dependent on longitude; east-west-trending fractures should dominate at mid-latitudes. The fracture patterns we predict indicate that Charon's surface geology could provide constraints on the thickness and viscosity of Charon's ice shell at the time of fracture formation.

  12. The orbital evolution of the AMOR asteroidal group during 11,550 years

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Zausaev, A. F.; Pushkaryov, A. N.

    The orbital evolution of twenty seven Amor asteroids was determined by the Everhart method for the time interval from 2250 AD to 9300 BC. Closest encounters with terrestrial planets are calculated in the evolution process. Stable resonances with Venus, Earth and Jupiter over the period from 2250 AD to 9300 BC have been obtained. Theoretical coordinates of radiants on initial and final moments of integrating were calculated.

  13. Migration of Trans-Neptunian Objects to a Near-Earth Space

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.; Oegerle, William (Technical Monitor)

    2002-01-01

    Our estimates of the migration of trans-Neptunian objects (TNOs) to a near-Earth space are based on the results of investigations of orbital evolution of TNOs and Jupiter-crossing objects (JCOs). The orbital evolution of TNOs was considered in many papers. Recently we investigated the evolution for intervals of at least 5-10 Myr of 2500 JCOs under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period P(sub alpha)less than 10 yr, and in the second series we took N=500 orbits close to the orbit of Comet 10P Tempel 2 (alpha=3.1 AU, e=0.53, i=12 deg). We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr, and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance q of bodies was less than a semimajor axis of the planet.

  14. Did A Planet Survive A Post-Main Sequence Evolutionary Event?

    NASA Astrophysics Data System (ADS)

    Sorber, Rebecca; Jang-Condell, Hannah; Zimmerman, Mara

    2018-06-01

    The GL86 is star system approximately 10 pc away with a main sequence K- type ~ 0.77 M⊙ star (GL 86A) with a white dwarf ~0.49 M⊙ companion (GL86 B). The system has a ~ 18.4 AU semi-major axis, an orbital period of ~353 yrs, and an eccentricity of ~ 0.39. A 4.5 MJ planet orbits the main sequence star with a semi-major axis of 0.113 AU, an orbital period of 15.76 days, in a near circular orbit with an eccentricity of 0.046. If we assume that this planet was formed during the time when the white dwarf was a main sequence star, it would be difficult for the planet to have remained in a stable orbit during the post-main sequence evolution of GL86 B. The post-main sequence evolution with planet survival will be examined by modeling using the program Mercury (Chambers 1999). Using the model, we examine the origins of the planet: whether it formed before or after the post-main sequence evolution of GL86B. The modeling will give us insight into the dynamical evolution of, not only, the binary star system, but also the planet’s life cycle.

  15. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasskazov, Alexander; Merritt, David

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analyticmore » approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.« less

  16. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  17. Space station evolution: Planning for the future

    NASA Technical Reports Server (NTRS)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-01-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  18. Space station evolution: Planning for the future

    NASA Astrophysics Data System (ADS)

    Diaz, Alphonso V.; Askins, Barbara S.

    1987-06-01

    The need for permanently manned presence in space has been recognized by the United States and its international partners for many years. The development of this capability was delayed due to the concurrent recognition that reusable earth-to-orbit transportation was also needed and should be developed first. While the decision to go ahead with a permanently manned Space Station was on hold, requirements for the use of the Station were accumulating as ground-based research and the data from unmanned spacecraft sparked the imagination of both scientists and entrepreneurs. Thus, by the time of the Space Station implementation decision in the early 1980's, a variety of disciplines, with a variety of requirements, needed to be accommodated on one Space Station. Additional future requirements could be forecast for advanced missions that were still in the early planning stages. The logical response was the development of a multi-purpose Space Station with the ability to evolve on-orbit to new capabilities as required by user needs and national or international decisions, i.e., to build an evolutionary Space Station. Planning for evolution is conducted in parallel with the design and development of the baseline Space Station. Evolution planning is a strategic management process to facilitate change and protect future decisions. The objective is not to forecast the future, but to understand the future options and the implications of these on today's decisions. The major actions required now are: (1) the incorporation of evolution provisions (hooks and scars) in the baseline Space Station; and (2) the initiation of an evolution advanced development program.

  19. A comparison of Lorentz, planetary gravitational, and satellite gravitational resonances

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas P.

    1994-01-01

    We consider a charged dust grain whose orbital motion is dominated by a planet's point-source gravity, but perturbed by higher-order terms in the planet's gravity field as well as by the Lorentz force arising from an asymmetric planetary magnetic field. Perturbations to Keplerian orbits due to a nonspherical gravity field are expressed in the traditional way: in terms of a disturbing function which can be expanded in a series of spherical harmonics (W. M. Kaula, 1966). In order to calculate the electromagnetic perturbation, we first write the Lorentz force in terms of the orbital elements and then substitute it into Gauss' perturbation equations. We use our result to derive strengths of Lorentz resonances and elucidate their properties. In particular, we compare Lorentz resonances to two types of gravitational resonances: those arising from periodic tugs of a satellite and those due to the attraction of an arbitrarily shaped planet. We find that Lorentz resonances share numerous properties with their gravitational counterparts and show, using simple physical arguments, that several of these patterns are fundamental, applying not only to our expansions, but to all quantities expressed in terms of orbital elements. Some of these patterns have been previously called 'd'Alembert rules' for satellite resonances. Other similarities arise because, to first-order in the perturbing force, the three problems share an integral of the motion. Yet there are also differences; for example, first-order inclination resonances exist for perturbations arising from planetary gravity and from the Lorentz force, but not for those due to an orbiting satellite. Finally, we provide a heuristic treatment of a particle's orbital evolution under the influence of drag and resonant forces. Particles brought into mean-motion resonances experience either trapping or resonant 'jumps,' depending on the direction from which the resonance is approached. We show that this behavior does not depend on the details of the perturbing force but rather is fundamental to all mean-motion resonances.

  20. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2010-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution).

  1. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2014-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6397 at 10cm, for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system.

  2. Tidal formation of Hot Jupiters in binary star systems

    NASA Astrophysics Data System (ADS)

    Bataille, M.; Libert, A.-S.; Correia, A. C. M.

    2015-10-01

    More than 150 Hot Jupiters with orbital periods less than 10 days have been detected. Their in-situ formation is physically unlikely. We need therefore to understand the migration of these planets from high distance (several AUs). Three main models are currently extensively studied: disk-planet interactions (e.g. [3]), planet-planet scattering (e.g. [4]) and Kozai migration (e.g. [2]). Here we focus on this last mechanism, and aim to understand which dynamical effects are the most active in the accumulation of planetary companions with low orbital periods in binary star systems. To do so, we investigate the secular evolution of Hot Jupiters in binary star systems. Our goal is to study analytically the 3-day pile-up observed in their orbital period. Our framework is the hierarchical three-body problem, with the effects of tides, stellar oblateness, and general relativity. Both the orbital evolution and the spin evolution are considered. Using the averaged equations of motion in a vectorial formalism of [1], we have performed # 100000 numerical simulations of well diversified three-body systems, reproducing and generalizing the numerical results of [2]. Based on a thorough analysis of the initial and final configurations of the systems, we have identified different categories of secular evolutions present in the simulations, and proposed for each one a simplified set of equations reproducing the evolution. Statistics about spin-orbit misalignements and mutual inclinations between the orbital planes of the Hot Jupiter and the star companion are also provided. Finally, we show that the extent of the 3 day pile-up is very dependent on the initial parameters of the simulations.

  3. Orbital evolution studies of planet-crossing asteroids.

    NASA Astrophysics Data System (ADS)

    Hahn, Gerhard; Lagerkvist, Claes-Ingvar

    1987-03-01

    Numerical integrations of 26 orbits of planet-crossing astetoids of Apollo-Amor type have been performed, in a solar system model including the perturbations by the planets from Venus to Neptune. The 15:th order RADAU integrator (Everhart, 1985) has been used. Orbits for the asteroids 433 Eros, 887 Alinda, 1036 Ganymed, 1221 Amor, 1580 Betulia, 1627 Ivar, 1685 Toro, 1862 Apollo, 1863 Antinous, 1864 Daedalus, 1865 Cerberus, 1915 Quetzalcoatl and 1916 Boreas have been integrated over 100 000 years forward in time and for 1866 Sisyphus, 2102 Tantalus, 2201 Oljato, 2329 Orthos, 3360 1981 VA, 3552 1983 SA, 1981 EJ30, 1985 PA, 1985 WA, 1986 DA 1986 JK and 1986 RA a period of about 33 000 years has been covered. The orbital evolutions of these asteroids are discussed. This work is part of a larger study of the long-term orbital evolution of planet-crossing asteroids and will be continued within the project SPACEGUARD (Milani et al., 1987).

  4. Time-local equation for exact time-dependent optimized effective potential in time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.

    2017-04-01

    Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.

  5. KSC-03pd0506

    NASA Image and Video Library

    2003-02-18

    KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft sits on the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry into space the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  6. KSC-03pd0505

    NASA Image and Video Library

    2003-02-18

    KENNEDY SPACE CENTER, FLA. -- The Orbital Sciences Corp.'s L-1011 aircraft arrives at the Skid Strip, Cape Canaveral Air Force Station, with the Pegasus rocket attached below. The Pegasus will carry into space the Galaxy Evolution Explorer (GALEX), an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission, GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  7. The secular tidal disruption of stars by low-mass Super Massive Black Holes secondaries in galactic nuclei

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Leigh, Nathan

    2018-06-01

    Stars passing too close to a super massive black hole (SMBH) can produce tidal disruption events (TDEs). Since the resulting stellar debris can produce an electromagnetic flare, TDEs are believed to probe the presence of single SMBHs in galactic nuclei, which otherwise remain dark. In this paper, we show how stars orbiting an IMBH secondary are perturbed by an SMBH primary. We find that the evolution of the stellar orbits are severely affected by the primary SMBH due to secular effects and stars orbiting with high inclinations with respect to the SMBH-IMBH orbital plane end their lives as TDEs due to Kozai-Lidov oscillations, hence illuminating the secondary SMBH/IMBH. Above a critical SMBH mass of ≈1.15 × 108 M⊙, no TDE can occur for typical stars in an old stellar population since the Schwarzschild radius exceeds the tidal disruption radius. Consequently, any TDEs due to such massive SMBHs will remain dark. It follows that no TDEs should be observed in galaxies more massive than ≈4.15 × 1010 M⊙, unless a lower-mass secondary SMBH or IMBH is also present. The secular mechanism for producing TDEs considered here therefore offers a useful probe of SMBH-SMBH/IMBH binarity in the most massive galaxies. We further show that the TDE rate can be ≈10-4 - 10-3 yr-1, and that most TDEs occur on ≈0.5 Myr. Finally, we show that stars may be ejected with velocities up to thousands of km s-1, which could contribute to the observed population of Galactic hypervelocity stars.

  8. The orbital evolution of the Apollo asteroid group over 11,550 years

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Pushkarev, A. N.

    1992-08-01

    The Everhard method was used to monitor the orbital evolution of 20 Apollo asteroids in the time interval from 2250 A.D. to 9300 B.C. The closest encounters with large planets in the evolution process are calculated. Stable resonances with Venus and Earth over the period from 2250 A.D. to 9300 B.C. are obtained. Theoretical coordinates of radiants on initial and final moments of integration are calculated.

  9. Full-field drift Hamiltonian particle orbits in 3D geometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Graves, J. P.; Brunner, S.; Isaev, M. Yu

    2011-02-01

    A Hamiltonian/Lagrangian theory to describe guiding centre orbit drift motion which is canonical in the Boozer coordinate frame has been extended to include full electromagnetic perturbed fields in anisotropic pressure 3D equilibria with nested magnetic flux surfaces. A redefinition of the guiding centre velocity to eliminate the motion due to finite equilibrium radial magnetic fields and the choice of a gauge condition that sets the radial component of the electromagnetic vector potential to zero are invoked to guarantee that the Boozer angular coordinates retain the canonical structure. The canonical momenta are identified and the guiding centre particle radial drift motion and parallel gyroradius evolution are derived. The particle coordinate position is linearly modified by wave-particle interactions. All the nonlinear wave-wave interactions appear explicitly only in the evolution of the parallel gyroradius. The radial variation of the electrostatic potential is related to the binormal component of the displacement vector for MHD-type perturbations. The electromagnetic vector potential projections can then be determined from the electrostatic potential and the radial component of the MHD displacement vector.

  10. KOI2138 -- a Spin-Orbit Aligned Intermediate Period Super-Earth

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.

    2015-11-01

    A planet's formation and evolution are encoded in spin-orbit alignment -- the planet's inclination relative to its star's equatorial plane. While the solar system's spin-orbit aligned planets indicate our own relatively quiescent history, many close-in giant planets show significant misalignment. Some planets even orbit retrograde! Hot Jupiters, then, have experienced fundamentally different histories than we experienced here in the solar system. In this presentation, I will show a new determination of the spin-orbit alignment of 2.1 REarth exoplanet candidate KOI2138. KOI2138 shows a gravity-darkened transit lightcurve that is consistent with spin-orbit alignment. This measurement is important because the only other super-Earth with an alignment determination (55 Cnc e, orbit period 0.74 days) is misaligned. With an orbital period of 23.55 days, KOI2138 is far enough from its star to avoid tidal orbit evolution. Therefore its orbit is likely primordial, and hence it may represent the tip of an iceberg of terrestrial, spin-orbit aligned planets that have histories that more closely resemble that of the solar system's terrestrial planets.

  11. Scalar self-force for highly eccentric equatorial orbits in Kerr spacetime

    NASA Astrophysics Data System (ADS)

    Thornburg, Jonathan; Wardell, Barry

    2017-04-01

    If a small "particle" of mass μ M (with μ ≪1 ) orbits a black hole of mass M , the leading-order radiation-reaction effect is an O (μ2) "self-force" acting on the particle, with a corresponding O (μ ) "self-acceleration" of the particle away from a geodesic. Such "extreme-mass-ratio inspiral" systems are likely to be important gravitational-wave sources for future space-based gravitational-wave detectors. Here we consider the "toy model" problem of computing the self-force for a scalar-field particle on a bound eccentric orbit in Kerr spacetime. We use the Barack-Golbourn-Vega-Detweiler effective-source regularization with a 4th-order puncture field, followed by an ei m ϕ ("m -mode") Fourier decomposition and a separate time-domain numerical evolution in 2 +1 dimensions for each m . We introduce a finite worldtube that surrounds the particle worldline and define our evolution equations in a piecewise manner so that the effective source is only used within the worldtube. Viewed as a spatial region, the worldtube moves to follow the particle's orbital motion. We use slices of constant Boyer-Lindquist time in the region of the particle's motion, deformed to be asymptotically hyperboloidal and compactified near the horizon and J+ . Our numerical evolution uses Berger-Oliger mesh refinement with 4th-order finite differencing in space and time. Our computational scheme allows computation for highly eccentric orbits and should be generalizable to orbital evolution in the future. Our present implementation is restricted to equatorial geodesic orbits, but this restriction is not fundamental. We present numerical results for a number of test cases with orbital eccentricities as high as 0.98. In some cases we find large oscillations ("wiggles") in the self-force on the outgoing leg of the orbit shortly after periastron passage; these appear to be caused by the passage of the orbit through the strong-field region close to the background Kerr black hole.

  12. Orbital Evolution of Jupiter-family Comets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2004-05-01

    The orbital evolution of more than 25,000 Jupiter-family comets (JFCs) under the gravitational influence of planets was studied. After 40 Myr one considered object (with initial orbit close to that of Comet 88P) got aphelion distance Q<3.5 AU, and it moved in orbits with semi-major axis a=2.60-2.61 AU, perihelion distance 1.71.4 AU, Q<2.6 AU, e=0.2-0.3, and i=9-33 deg for 8 Myr (and it had Q<3 AU for 100 Myr). So JFCs can rarely get typical asteroid orbits and move in them for Myrs. In our opinion, it can be possible that Comet 133P (Elst--Pizarro) moving in a typical asteroidal orbit was earlier a JFC and it circulated its orbit also due to non-gravitational forces. JFCs got near-Earth object (NEO) orbits more often than typical asteroidal orbits. A few JFCs got Earth-crossing orbits with a<2 AU and Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Three considered former JFCs even got inner-Earth orbits (with Q<0.983 AU) or Aten orbits for Myrs. The probability of a collision of one of such objects, which move for millions of years inside Jupiter's orbit, with a terrestrial planet can be greater than analogous total probability for thousands other objects. Results obtained by the Bulirsch-Stoer method and by a symplectic method were mainly similar (except for probabilities of close encounters with the Sun when they were high). Our results show that the trans-Neptunian belt can provide a significant portion of NEOs, or the number of trans-Neptunian objects migrating inside solar system could be smaller than it was earlier considered, or most of 1-km former trans-Neptunian objects that had got NEO orbits disintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448). This work was supported by NASA (NAG5-10776) and INTAS (00-240).

  13. Secular orbital evolution of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  14. Infalling clouds on to supermassive black hole binaries - II. Binary evolution and the final parsec problem

    NASA Astrophysics Data System (ADS)

    Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico

    2017-11-01

    The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.

  15. Orbital atherectomy: device evolution and clinical data.

    PubMed

    Staniloae, Cezar S; Korabathina, Ravikiran

    2014-05-01

    A number of atherectomy devices were developed in the last few years. Among them, the DiamondBack 360° Peripheral Orbital Atherectomy System (Cardiovascular Systems, Inc) was specifically designed to work in severely calcified plaque. This article reviews the history, mechanism of action, evolution, clinical data, and future applications of this particular atherectomy device.

  16. Space Station fluid management logistics

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  17. The Solar-Type Hard-Binary Frequency and Distributions of Orbital Parameters in the Open Cluster M37

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Meibom, Soren; Barnes, Sydney A.; Mathieu, Robert D.

    2014-02-01

    Binary stars, and particularly the short-period ``hard'' binaries, govern the dynamical evolution of star clusters and determine the formation rates and mechanisms for exotic stars like blue stragglers and X-ray sources. Understanding the near-primordial hard-binary population of star clusters is of primary importance for dynamical models of star clusters, which have the potential to greatly advance our understanding of star cluster evolution. Yet the binary frequencies and distributions of binary orbital parameters (period, eccentricity, etc.) for young coeval stellar populations are poorly known, due to a lack of necessary observations. The young (~540 Myr) open cluster M37 hosts a rich binary population that can be used to empirically define these initial conditions. Importantly, this cluster has been the target of a comprehensive WIYN/Hydra radial-velocity (RV) survey, from which we have already identified a nearly complete sample of 329 solar-type (1.5 <=M [M_⊙] <=1.0) members in M37. Of these stars, 82 show significant RV variability, indicative of a binary companion. We propose to build upon these data with a multi-epoch RV survey using WIYN/Hydra to derive kinematic orbital solutions for these 82 binaries in M37. This project was granted time in 2013B and scheduled for later this year. We anticipate that about half of the detected binaries in M37 will acquire enough RV measurements (>=10) in 2013B to begin searching for orbital solutions. With this proposal and perhaps one additional semester we should achieve >=10 RV measurements for the remaining binaries.

  18. The orbital thermal evolution and global expansion of Ganymede

    NASA Astrophysics Data System (ADS)

    Bland, Michael T.; Showman, Adam P.; Tobie, Gabriel

    2009-03-01

    The tectonically and cryovolcanically resurfaced terrains of Ganymede attest to the satellite's turbulent geologic history. Yet, the ultimate cause of its geologic violence remains unknown. One plausible scenario suggests that the Galilean satellites passed through one or more Laplace-like resonances before evolving into the current Laplace resonance. Passage through such a resonance can excite Ganymede's eccentricity, leading to tidal dissipation within the ice shell. To evaluate the effects of resonance passage on Ganymede's thermal history we model the coupled orbital-thermal evolution of Ganymede both with and without passage through a Laplace-like resonance. In the absence of tidal dissipation, radiogenic heating alone is capable of creating large internal oceans within Ganymede if the ice grain size is 1 mm or greater. For larger grain sizes, oceans will exist into the present epoch. The inclusion of tidal dissipation significantly alters Ganymede's thermal history, and for some parameters (e.g. ice grain size, tidal Q of Jupiter) a thin ice shell (5 to 20 km) can be maintained throughout the period of resonance passage. The pulse of tidal heating that accompanies Laplace-like resonance capture can cause up to 2.5% volumetric expansion of the satellite and contemporaneous formation of near surface partial melt. The presence of a thin ice shell and high satellite orbital eccentricity would generate moderate diurnal tidal stresses in Ganymede's ice shell. Larger stresses result if the ice shell rotates non-synchronously. The combined effects of satellite expansion, its associated tensile stress, rapid formation of near surface partial melt, and tidal stress due to an eccentric orbit may be responsible for creating Ganymede's unique surface features.

  19. Tidal effects in differentiated viscoelastic bodies: a numerical approach

    NASA Astrophysics Data System (ADS)

    Walterová, M.; Běhounková, M.

    2017-09-01

    The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models. We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on a model Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a "fluid limit." The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.

  20. UV SURFACE ENVIRONMENT OF EARTH-LIKE PLANETS ORBITING FGKM STARS THROUGH GEOLOGICAL EVOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rugheimer, S.; Sasselov, D.; Segura, A.

    2015-06-10

    The UV environment of a host star affects the photochemistry in the atmosphere, and ultimately the surface UV environment for terrestrial planets and therefore the conditions for the origin and evolution of life. We model the surface UV radiation environment for Earth-sized planets orbiting FGKM stars in the circumstellar Habitable Zone for Earth through its geological evolution. We explore four different types of atmospheres corresponding to an early-Earth atmosphere at 3.9 Gyr ago and three atmospheres covering the rise of oxygen to present-day levels at 2.0 Gyr ago, 0.8 Gyr ago, and modern Earth. In addition to calculating the UVmore » flux on the surface of the planet, we model the biologically effective irradiance, using DNA damage as a proxy for biological damage. We find that a pre-biotic Earth (3.9 Gyr ago) orbiting an F0V star receives 6 times the biologically effective radiation as around the early Sun and 3520 times the modern Earth–Sun levels. A pre-biotic Earth orbiting GJ 581 (M3.5 V) receives 300 times less biologically effective radiation, about 2 times modern Earth–Sun levels. The UV fluxes calculated here provide a grid of model UV environments during the evolution of an Earth-like planet orbiting a range of stars. These models can be used as inputs into photo-biological experiments and for pre-biotic chemistry and early life evolution experiments.« less

  1. Signatures of spin-orbital states of t2g 2 system in optical conductivity: R VO3 (R =Y and La)

    NASA Astrophysics Data System (ADS)

    Kim, Minjae

    2018-04-01

    We investigate signatures of the spin and orbital states of R VO3 (R =Y and La) in optical conductivity using density functional theory plus dynamical mean-field theory (DFT+DMFT). From the assignment of multiplet state configurations to optical transitions, the DFT+DMFT reproduces experimental temperature-dependent evolutions of optical conductivity for both YVO3 and LaVO3. We also show that the optical conductivity is a useful quantity to probe the evolution of the orbital state even in the absence of spin order. The result provides a reference to investigate the spin and orbital states of t2g 2 vanadate systems, which is an important issue for both fundamental physics on spin and orbital states and applications of vanadates by means of orbital state control.

  2. Pervasive orbital eccentricities dictate the habitability of extrasolar earths.

    PubMed

    Kita, Ryosuke; Rasio, Frederic; Takeda, Genya

    2010-09-01

    The long-term habitability of Earth-like planets requires low orbital eccentricities. A secular perturbation from a distant stellar companion is a very important mechanism in exciting planetary eccentricities, as many of the extrasolar planetary systems are associated with stellar companions. Although the orbital evolution of an Earth-like planet in a stellar binary system is well understood, the effect of a binary perturbation on a more realistic system containing additional gas-giant planets has been very little studied. Here, we provide analytic criteria confirmed by a large ensemble of numerical integrations that identify the initial orbital parameters leading to eccentric orbits. We show that an extrasolar earth is likely to experience a broad range of orbital evolution dictated by the location of a gas-giant planet, which necessitates more focused studies on the effect of eccentricity on the potential for life.

  3. Coupled Evolution with Tides of the Radius and Orbit of Transiting Giant Planets

    NASA Astrophysics Data System (ADS)

    Ibgui, Laurent; Burrows, A.

    2009-12-01

    Some transiting extrasolar giant planets have measured radii larger than predicted by the standard theory. We explore the possibility that an earlier episode of tidal heating can explain such radius anomalies and apply the formalism we develop to HD 209458b as an example. We find that for strong enough tides the planet's radius can undergo a transient phase of inflation that temporarily interrupts canonical, monotonic shrinking due to radiative losses. Importantly, an earlier episode of tidal heating can result in a planet with an inflated radius, even though its orbit has nearly circularized. Moreover, we confirm that at late times, and under some circumstances, by raising tides on the star itself a planet can spiral into its host. We note that a 3 to 10 solar planet atmospheric opacity with no tidal heating is sufficient to explain the observed radius of HD 209458b. However, our model demonstrates that with an earlier phase of episodic tidal heating we can fit the observed radius of HD 209458b even with lower (solar) atmospheric opacities. This work demonstrates that, if a planet is left with an appreciable eccentricity after early inward migration and/or dynamical interaction, coupling radius and orbit evolution in a consistent fashion that includes tidal heating, stellar irradiation, and detailed model atmospheres might offer a generic solution to the inflated radius puzzle for transiting extrasolar giant planets.

  4. Was Proxima captured by Alpha Centauri A and B?

    NASA Astrophysics Data System (ADS)

    Feng, F.; Jones, H. R. A.

    2018-01-01

    The nearest stellar system consists of the stars Proxima, Alpha Centauri A and B and at least one planet Proxima b. The habitability of Proxima b and any other planets are likely to be significantly influenced by the orbital evolution of the system. To study the dynamical evolution of the system, we simulate the motions of Proxima and Alpha Centauri A and B due to the perturbations from the Galactic tide and stellar encounters in a Monte Carlo fashion. From 100 clones, we find that 74 per cent orbits of Proxima Centauri are bound to Alpha Centauri A and B while 17 per cent and 9 per cent orbits become unbound in the simulations over the past and future 5 Gyr. If the system migrated outward in the Milky Way to its current location, more than 50 per cent of clones could become unstable in backward simulations. The ratio of unstable clones increases with the simulation time-scale and encounter rate. This provides some evidence for a capture scenario for the formation of the current triple system. Despite large uncertainties, the metallicity difference between Proxima and Alpha Centauri A and B is also suggestive of their different origin. None the less, further improvements in the available data and models will be necessary for a reliable assessment of the history of the Proxima-Alpha Centauri system and its impact on the habitability of Proxima b.

  5. Discovery of orbital decay in SMC X-1

    NASA Technical Reports Server (NTRS)

    Levine, A.; Rappaport, S.; Boynton, P.; Deeter, J.; Nagase, F.

    1992-01-01

    The results are reported of three observations of the binary X ray pulsar SMC X-1 with the Ginga satellite. Timing analyses of the 0.71 s X ray pulsations yield Doppler delay curves which, in turn, provide the most accurate determination of the SMC X-1 orbital parameters available to date. The orbital phase of the 3.9 day orbit is determined in May 1987, Aug. 1988, and Aug. 1988 with accuracies of 11, 1, and 3.5 s, respectively. These phases are combined with two previous determinations of the orbital phase to yield the rate of change in the orbital period: P sub orb/P sub orb = (-3.34 + or - 0.023) x 10(exp -6)/yr. An interpretation of this measurement and the known decay rate for the orbit of Cen X-3 is made in the context of tidal evolution. Finally, a discussion is presented of the relation among the stellar evolution, orbital decay, and neutron star spinup time scales for the SMC X-1 system.

  6. Evolution of migrating protoplanets heated by pebble accretion

    NASA Astrophysics Data System (ADS)

    Chrenko, Ondrej; Broz, Miroslav; Lambrechts, Michiel

    2017-10-01

    We study the interactions in a protoplanetary system consisting of a gas disk, a pebble disk and embedded low-mass protoplanets. The hydrodynamic simulations are performed using a new code based on 2D FARGO (Masset 2000) which we call FARGO_THORIN (http://sirrah.troja.mff.cuni.cz/~chrenko/). The code treats the hydrodynamics of gas and pebbles within a two-fluid approximation, accounts for the heating and cooling processes in the gaseous component (including heating due to pebble accretion) and propagates the planets in 3D using a high-order integration scheme (IAS15; Rein & Spiegel 2015). Our aim is to investigate how pebble accretion alters the orbital evolution of protoplanets undergoing Type-I migration.First, we demonstrate that pebble accretion can heat the protoplanets so that their luminosity induces the heating torque (Benítez-Llambay et al. 2015) and the hot-trail effect (Chrenko et al. 2017; Eklund & Masset 2017). The heating torque is always positive and alters the migration rates and directions profoundly, thus changing the position of planet traps and deserts. The hot-trail effect, on the other hand, pumps the eccentricity of initially circular orbits up to e ~ h. After becoming eccentric, the protoplanets exhibit reduced probability of resonant locking during the migration and moreover, their close encounters become more frequent and provide more opportunities for scattering or merger events. The mergers can be massive enough to become giant planet cores. We discuss the importance of the excited eccentricities and violent orbital evolution for the extrasolar planet population synthesis. Finally, we present an extended model with flux-mean opacities caused by a coupled disk of coagulating dust grains with a realistic size distribution. The aim of this model is to constrain possible pathways of migrating planets towards the inner rim of the protoplanetary disk.

  7. Tidal Evolution of Asteroidal Binaries. Ruled by Viscosity. Ignorant of Rigidity.

    NASA Astrophysics Data System (ADS)

    Efroimsky, Michael

    2015-10-01

    This is a pilot paper serving as a launching pad for study of orbital and spin evolution of binary asteroids. The rate of tidal evolution of asteroidal binaries is defined by the dynamical Love numbers kl divided by quality factors Q. Common in the literature is the (oftentimes illegitimate) approximation of the dynamical Love numbers with their static counterparts. Since the static Love numbers are, approximately, proportional to the inverse rigidity, this renders a popular fallacy that the tidal evolution rate is determined by the product of the rigidity by the quality factor: {k}l/Q\\propto 1/(μ Q). In reality, the dynamical Love numbers depend on the tidal frequency and all rheological parameters of the tidally perturbed body (not just rigidity). We demonstrate that in asteroidal binaries the rigidity of their components plays virtually no role in tidal friction and tidal lagging, and thereby has almost no influence on the intensity of tidal interactions (tidal torques, tidal dissipation, tidally induced changes of the orbit). A key quantity that overwhelmingly determines the tidal evolution is a product of the effective viscosity η by the tidal frequency χ . The functional form of the torque’s dependence on this product depends on who wins in the competition between viscosity and self-gravitation. Hence a quantitative criterion, to distinguish between two regimes. For higher values of η χ , we get {k}l/Q\\propto 1/(η χ ), {while} for lower values we obtain {k}l/Q\\propto η χ . Our study rests on an assumption that asteroids can be treated as Maxwell bodies. Applicable to rigid rocks at low frequencies, this approximation is used here also for rubble piles, due to the lack of a better model. In the future, as we learn more about mechanics of granular mixtures in a weak gravity field, we may have to amend the tidal theory with other rheological parameters, ones that do not show up in the description of viscoelastic bodies. This line of study provides a tool to exploring the orbital history of asteroidal pairs, as well as of their final spin states.

  8. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions

    PubMed Central

    Barnes, R.

    2015-01-01

    Abstract The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the “tidal zone,” where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life. Key Words: Tidal dissipation—Thermal history—Planetary interiors—Magnetic field. Astrobiology 15, 739–760. PMID:26393398

  9. Tidal Heating of Earth-like Exoplanets around M Stars: Thermal, Magnetic, and Orbital Evolutions.

    PubMed

    Driscoll, P E; Barnes, R

    2015-09-01

    The internal thermal and magnetic evolution of rocky exoplanets is critical to their habitability. We focus on the thermal-orbital evolution of Earth-mass planets around low-mass M stars whose radiative habitable zone overlaps with the "tidal zone," where tidal dissipation is expected to be a significant heat source in the interior. We develop a thermal-orbital evolution model calibrated to Earth that couples tidal dissipation, with a temperature-dependent Maxwell rheology, to orbital circularization and migration. We illustrate thermal-orbital steady states where surface heat flow is balanced by tidal dissipation and cooling can be stalled for billions of years until circularization occurs. Orbital energy dissipated as tidal heat in the interior drives both inward migration and circularization, with a circularization time that is inversely proportional to the dissipation rate. We identify a peak in the internal dissipation rate as the mantle passes through a viscoelastic state at mantle temperatures near 1800 K. Planets orbiting a 0.1 solar-mass star within 0.07 AU circularize before 10 Gyr, independent of initial eccentricity. Once circular, these planets cool monotonically and maintain dynamos similar to that of Earth. Planets forced into eccentric orbits can experience a super-cooling of the core and rapid core solidification, inhibiting dynamo action for planets in the habitable zone. We find that tidal heating is insignificant in the habitable zone around 0.45 (or larger) solar-mass stars because tidal dissipation is a stronger function of orbital distance than stellar mass, and the habitable zone is farther from larger stars. Suppression of the planetary magnetic field exposes the atmosphere to stellar wind erosion and the surface to harmful radiation. In addition to weak magnetic fields, massive melt eruption rates and prolonged magma oceans may render eccentric planets in the habitable zone of low-mass stars inhospitable for life.

  10. Evolution of orbits of the Apollo group asteroids over 11550 years.

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Pushkarev, A. N.

    The Everhart method is used to study the evolution of the orbits of 20 asteroids of the Apollo group over the time period from 9300 B.C. to 2250 A.D. Minimum distances of the asteroids to the major planets over the evolution process are calculated. The stability of resonances with Venus and Earth over the 9300 B.C.to 2250 A.D. time period is shown. Theoretical coordinates of radiants for the initial and final integration times are presented.

  11. On the orbital evolution of the Lyrid meteoroid stream

    NASA Astrophysics Data System (ADS)

    Kornoš, Leonard; Tóth, Juraj; Porubčan, Vladimír; Klačka, Jozef; Nagy, Roman; Rudawska, Regina

    2015-12-01

    A detailed analysis of the Lyrid video orbits from the EDMOND database is performed. Applying selective methods, the weighted mean orbit and mean geophysical parameters are derived. The occurrence of orbits with the semimajor axes smaller than 35 AU, in comparison with the value of 55 AU of the parent comet Thatcher, is about 80%, in the set of higher quality data of the Lyrids in the EDMOND database. The gravitational orbital evolutions of Thatcher and modelled particles ejected in five perihelion passages of the comet in the past are studied. Both, orbits of the comet and modelled particles, are under quite strong disturbing influence of Jupiter, Saturn and Earth. After the integration to the present, the mean theoretical radiants, the mean geocentric velocities and periods of activity of particles approaching the Earth's orbit were calculated. The mean orbits of the modelled streams of particles ejected from different perihelia match well the mean Lyrid orbit from the IAU MDC and the observed video Lyrids from the EDMOND database. The particles released in the two oldest simulated perihelion passages of the parent comet are most responsible for the occurrence of the Earth-crossing orbits with the semimajor axes smaller than 35 AU, but no one below 20 AU. The influence of non-gravitational effects, mainly solar radiation, may shorten semimajor axis of a submilimeter particle with density of 0.3 g/cm3 by more than half during an evolution of 50 000 years. A common influence of gravitational perturbations and non-gravitational effects can provide a dynamical way to the short-period orbits. However, this process is for millimeter and larger particles (video and photographic) less effective.

  12. Tidally-induced thermal runaway on extrasolar Earth: Impact on habitability

    NASA Astrophysics Data System (ADS)

    Behounkova, M.; Tobie, G.; Choblet, G.; Cadek, O.

    2010-12-01

    Low mass extrasolar bodies start to be discovered owing to the increased precision of detection surveys. As the detection probability decreases with the star-body distance, these planets (and the numerous candidates already announced for the coming years) are likely to orbit their parent stars in a close distance. These short-period planets undergo a strong tidal forcing and their orbits are tidally locked. The associated heat production may influence the internal thermal evolution of these bodies: it has even been suggested that the habitable zone could be influenced by tidal heating (Barnes et al. 2008; Henning et al. 2009). In this study, we further investigate the effect of tidal heating on thermal evolution of tidally locked Earth-like planets. Owing to the strong temperature dependence of the mechanical properties of both the long-term evolution and the tidal deformations, the two processes are coupled. Nevertheless, the tidal deformation has no direct effect on the convective flow and only the dissipative part is included as a heat source for mantle dynamics since the time scales of the two processes strongly differs. For significant tidal dissipation rates, the strong positive feedback leads, in some cases, to thermal runaways. We focus here on the susceptibility of Earth-like planets to tidal dissipation for fixed orbital parameters (eccentricity, orbital period and the spin-orbit resonance type) and on the associated timescales for runaway (if any). In order to describe this behavior and the three dimensional nature of both the tidal forcing and the temperature anomalies, a fully three-dimensional approach solving the two processes simultaneously is employed (Běhounková et al., JGR, in press). We consider an extrasolar planet having the internal properties similar to the Earth. Two modes for heat transfer are modeled through the choice of convective parameters (Rayleigh number and temperature dependence of viscosity, amount of radiogenic heating): a relatively effective plate-tectonics-like regime and a one-plate (stagnant lid) regime. For all numerical experiments sharing the same initial temperature conditions, the reciprocal value of the runaway timescale depends linearly on the initial tidal dissipation. Moreover, the occurrence of tidally driven runaways is associated to large scale melting of the interior having an impact on the habitability of the planet. In the case of runaway timescales between 0.1 and 1Gy and for the plate-tectonics-like heat transfer, the habitable zone is affected by the thermal runaway only for high eccentricities (e≳0.2) for 0.1M sun stars and 1:1 resonance. In the case of the 3:2 orbital resonance, whatever the eccentricity is, the runaway affects the habitable zone for orbital periods lower than 7-12 days. The impact on the habitable zone is even higher for one-plate planets due to the ineffective heat transfer. For more massive stars (>0.5M sun), tidal heating in the habitable zone is not significant and has no impact on the internal evolution.

  13. Evolution of the phonon density of states of LaCoO3 over the spin state transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golosova, N. O.; Kozlenko, D. P.; Kolesnikov, Alexander I

    2011-01-01

    The phonon spectra of LaCoO3 were studied by inelastic neutron scattering in the temperature range of 4 120 K. The DFT calculations of the lattice dynamics have been made for interpretation of the experimental data. The observed and calculated phonon frequencies were found to be in a reasonable agreement. The evolution of the phonon density of states over the spin state transition was analyzed. In the low-temperature range (T < 50 K), an increase in the energy of resolved breathing, stretching, and bending phonon modes was found, followed by their softening and broadening at higher temperatures due to the spinmore » state transition and relevant orbital-phonon coupling.« less

  14. Evolution of magnetic Dirac bosons in a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Boyko, D.; Balatsky, A. V.; Haraldsen, J. T.

    2018-01-01

    We examine the presence and evolution of magnetic Dirac nodes in the Heisenberg honeycomb lattice. Using linear spin theory, we evaluate the collinear phase diagram as well as the change in the spin dynamics with various exchange interactions. We show that the ferromagnetic structure produces bosonic Dirac and Weyl points due to the competition between the interactions. Furthermore, it is shown that the criteria for magnetic Dirac nodes are coupled to the magnetic structure and not the overall crystal symmetry, where the breaking of inversion symmetry greatly affects the antiferromagnetic configurations. The tunability of the nodal points through variation of the exchange parameters leads to the possibility of controlling Dirac symmetries through an external manipulation of the orbital interactions.

  15. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2011-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  16. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2012-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  17. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2012-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  18. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2011-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  19. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2013-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the mechanisms leading to the ejection of matter from the binary system).

  20. Results in orbital evolution of objects in the geosynchronous region

    NASA Technical Reports Server (NTRS)

    Friesen, Larry Jay; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1990-01-01

    The orbital evolution of objects at or near geosynchronous orbit (GEO) has been simulated to investigate possible hazards to working geosynchronous satellites. Orbits of both large satellites and small particles have been simulated, subject to perturbations by nonspherical geopotential terms, lunar and solar gravity, and solar radiation pressure. Large satellites in initially circular orbits show an expected cycle of inclination change driven by lunar and solar gravity, but very little altitude change. They thus have little chance of colliding with objects at other altitudes. However, if such a satellite is disrupted, debris can reach thousands of kilometers above or below the initial satellite altitude. Small particles in GEO experience two cycles driven by solar radiation: an expected eccentricity cycle and an inclination cycle not expected. Particles generated by GEO insertion stage solid rocket motors typically hit the earth or escape promptly; a small fraction appear to remain in persistent orbits.

  1. Warsaw Catalogue of cometary orbits: 119 near-parabolic comets

    NASA Astrophysics Data System (ADS)

    Królikowska, Małgorzata

    2014-07-01

    Context. The dynamical evolution of near-parabolic comets strongly depends on the starting values of the orbital elements derived from the positional observations. In addition, when drawing conclusions about the origin of these objects, it is crucial to control the uncertainties of orbital elements at each stage of the dynamical evolution. Aims: I apply a completely homogeneous approach to determine the cometary orbits and their uncertainties. The resulting catalogue is suitable for the investigation of the origin and future of near-parabolic comets. Methods: First, osculating orbits were determined on the basis of positional data. Second, the dynamical calculations were performed backwards and forwards up to 250 au from the Sun to derive original and future barycentric orbits for each comet. In the present investigation of dynamical evolution, the numerical calculations for a given object start from the swarm of virtual comets constructed using the previously determined osculating (nominal) orbit. In this way, the uncertainties of orbital elements were derived at the end of numerical calculations. Results: Homogeneous sets of orbital elements for osculating, original and future orbits are given. The catalogue of 119 cometary orbits constitutes about 70 per cent of all the first class so-called Oort spike comets discovered during the period 1801-2010 and about 90 per cent of those discovered in 1951-2010, for which observations were completed at the end of 2013. Non-gravitational (NG) orbits are derived for 45 comets, including asymmetric NG solution for six of them. Additionally, the new method for cometary orbit-quality assessment is applied for all these objects. The catalogue is available at http://ssdp.cbk.waw.pl/LPCs and also at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A126

  2. About Tidal Evolution of Quasi-Periodic Orbits of Satellites

    NASA Astrophysics Data System (ADS)

    Ershkov, Sergey V.

    2017-06-01

    Tidal interactions between Planet and its satellites are known to be the main phenomena, which are determining the orbital evolution of the satellites. The modern ansatz in the theory of tidal dissipation in Saturn was developed previously by the international team of scientists from various countries in the field of celestial mechanics. Our applying to the theory of tidal dissipation concerns the investigating of the system of ODE-equations (ordinary differential equations) that govern the orbital evolution of the satellites; such an extremely non-linear system of 2 ordinary differential equations describes the mutual internal dynamics for the eccentricity of the orbit along with involving the semi-major axis of the proper satellite into such a monstrous equations. In our derivation, we have presented the elegant analytical solutions to the system above; so, the motivation of our ansatz is to transform the previously presented system of equations to the convenient form, in which the minimum of numerical calculations are required to obtain the final solutions. Preferably, it should be the analytical solutions; we have presented the solution as a set of quasi- periodic cycles via re-inversing of the proper ultra- elliptical integral. It means a quasi-periodic character of the evolution of the eccentricity, of the semi-major axis for the satellite orbit as well as of the quasi-periodic character of the tidal dissipation in the Planet.

  3. Updated science issues and observation plans of BepiColombo Mercury Magnetosphere Orbiter (MMO)

    NASA Astrophysics Data System (ADS)

    Murakami, G.; Fujimoto, M.; Hayakawa, H.

    2017-12-01

    After the successful observation by the first Mercury orbiter MESSENGER ended in 2015, Mercury becomes one of the most curious planets to investigate. MESSENGER raised new science issues, such as the northward offset of planetary dipole magnetic filed, the highly dynamic magnetosphere, and the year-to-year constant exosphere. These outstanding discoveries still remain as open issues due to some limitations of instruments onboard MESSENGER and its extended elliptical orbit with apherm in southern hemisphere. The next Mercury exploration project BepiColombo will address these open issues. BepiColombo is an ESA-JAXA joint mission to Mercury with the aim to understand the process of planetary formation and evolution as well as to understand Mercury's extreme environment in the solar system. Two spacecraft, i.e. the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO), will be launched in October 2018 by an Ariane-5 launch vehicle and arrive at Mercury in December 2025. The mechanical test in a complete stack configuration has been performed in the ESA test center and successfully finished. MMO is mainly designed for plasma observations and is expected to extract essential elements of space plasma physics that become visible in the Hermean environment. MMO has large constraints on science operations, such as thermal issue and limited telemetry rate. Due to the thermal issue each science instrument cannot always be turned on. In addition, due to the low telemetry rate in average, only a part ( 20-30%) of science mission data with high resolution can be downlinked. Therefore, in order to maximize the scientific results and outcomes to be achieved by MMO, we are now working to optimize the science observation and downlink plans in detail. Here we present the updated science goals for MMO based on the latest MESSENGER results and the current observation plans how to approach these science issues.

  4. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  5. Tidal regime of intact planetoid capture model for the Earth-Moon system: Does it relate to the archean sedimentary rock record?

    NASA Technical Reports Server (NTRS)

    Malcuit, Robert J.; Winters, Ronald R.

    1993-01-01

    Regardless of one's favorite model for the origin of the Earth-Moon system (fission, coformation, tidal capture, giant-impact) the early history of lunar orbital evolution would produce significant thermal and earth and ocean tidal effects on the primitive earth. Three of the above lunar origin models (fission, coformation, giant-impact) feature a circular orbit which undergoes a progressive increase in orbital radius from the time of origin to the present time. In contrast, a tidal capture model places the moon in an elliptical orbit undergoing progressive circularization from the time of capture (for model purposes about 3.9 billion years ago) for at least a few 10(exp 8) years following the capture event. Once the orbit is circularized, the subsequent tidal history for a tidal capture scenario is similar to that for other models of lunar origin and features a progressive increase in orbital radius to the current state of the lunar orbit. This elliptical orbit phase, if it occurred, should have left a distinctive signature in the terrestrial and lunar rock records. Depositional events would be associated terrestrial shorelines characterized by abnormally high, but progressively decreasing, ocean tidal amplitudes and ranges associated with such an orbital evolution. Several rock units in the age range 3.6-2.5 billion years before present are reported to have a major tidal component. Examples are the Warrawoona, Fortescue, and Hamersley Groups of Western Australia and the Pangola and Witwatersand Supergroups of South Africa. Detailed study of the features of these tidal sequences may be helpful in deciphering the style of lunar orbital evolution during the Archean Eon.

  6. Periodic motion near non-principal-axis rotation asteroids

    NASA Astrophysics Data System (ADS)

    Shang, Haibin; Wu, Xiaoyu; Qin, Xiao; Qiao, Dong

    2017-11-01

    The periodic motion near non-principal-axis (NPA) rotation asteroids is proved to be markedly different from that near uniformly rotating bodies due to the complex spin state with precession, raising challenges in terms of the theoretical implications of dynamical systems. This paper investigates the various periodic motions near the typical NPA asteroid 4179 Toutatis, which will contribute to the understanding of the dynamical environments near the widespread asteroids in the Solar system. A novel method with the incorporation of the ellipsoid-mascon gravitational field model and global optimization is developed to efficiently locate periodic solutions in the system. The numerical results indicate that abundant periodic orbits appear near the NPA asteroids. These various orbits are theoretically classified into five topological types with special attention paid to the cycle stability. Although the concept of classical family disappears in our results, some orbits with the same topological structure constitute various generalized `families' as the period increases. Among these `families' a total of 4 kinds of relationships between orbits, including rotation, evolution, distortion and quasi-symmetry, are found to construct the global mapping of these types. To cover the rotation statuses of various NPA asteroids, this paper also discusses the variation of periodic orbits with diverse asteroid spin rates, showing that the scales of some orbits expand, shrink or almost annihilate as the system period changes; meanwhile, their morphology and topology remain unchanged.

  7. The role of disc self-gravity in circumbinary planet systems - I. Disc structure and evolution

    NASA Astrophysics Data System (ADS)

    Mutter, Matthew M.; Pierens, Arnaud; Nelson, Richard P.

    2017-03-01

    We present the results of two-dimensional hydrodynamic simulations of self-gravitating circumbinary discs around binaries whose parameters match those of the circumbinary planet-hosting systems Kepler-16, Kepler-34 and Kepler-35. Previous work has shown that non-self-gravitating discs in these systems form an eccentric precessing inner cavity due to tidal truncation by the binary, and planets which form at large radii migrate until stalling at this cavity. Whilst this scenario appears to provide a natural explanation for the observed orbital locations of the circumbinary planets, previous simulations have failed to match the observed planet orbital parameters. The aim of this work is to examine the role of self-gravity in modifying circumbinary disc structure as a function of disc mass, prior to considering the evolution of embedded circumbinary planets. In agreement with previous work, we find that for disc masses between one and five times the minimum mass solar nebula (MMSN), disc self-gravity affects modest changes in the structure and evolution of circumbinary discs. Increasing the disc mass to 10 or 20 MMSN leads to two dramatic changes in disc structure. First, the scale of the inner cavity shrinks substantially, bringing its outer edge closer to the binary. Secondly, in addition to the eccentric inner cavity, additional precessing eccentric ring-like features develop in the outer regions of the discs. If planet formation starts early in the disc lifetime, these changes will have a significant impact on the formation and evolution of planets and precursor material.

  8. The journey of Typhon-Echidna as a binary system through the planetary region

    NASA Astrophysics Data System (ADS)

    Araujo, R. A. N.; Galiazzo, M. A.; Winter, O. C.; Sfair, R.

    2018-06-01

    Among the current population of the 81 known trans-Neptunian binaries (TNBs), only two are in orbits that cross the orbit of Neptune. These are (42355) Typhon-Echidna and (65489) Ceto-Phorcys. In this work, we focused our analyses on the temporal evolution of the Typhon-Echidna binary system through the outer and inner planetary systems. Using numerical integrations of the N-body gravitational problem, we explored the orbital evolutions of 500 clones of Typhon, recording the close encounters of those clones with planets. We then analysed the effects of those encounters on the binary system. It was found that only {≈ }22 per cent of the encounters with the giant planets were strong enough to disrupt the binary. This binary system has an ≈ 3.6 per cent probability of reaching the terrestrial planetary region over a time-scale of approximately 5.4 Myr. Close encounters of Typhon-Echidna with Earth and Venus were also registered, but the probabilities of such events occurring are low ({≈}0.4 per cent). The orbital evolution of the system in the past was also investigated. It was found that in the last 100 Myr, Typhon might have spent most of its time as a TNB crossing the orbit of Neptune. Therefore, our study of the Typhon-Echidna orbital evolution illustrates the possibility of large cometary bodies (radii of 76 km for Typhon and 42 km for Echidna) coming from a remote region of the outer Solar system and that might enter the terrestrial planetary region preserving its binarity throughout the journey.

  9. A multi-pixel InSAR time series analysis method: Simultaneous estimation of atmospheric noise, orbital errors and deformation

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Simons, M.

    2016-12-01

    InSAR time series analysis allows reconstruction of ground deformation with meter-scale spatial resolution and high temporal sampling. For instance, the ESA Sentinel-1 Constellation is capable of providing 6-day temporal sampling, thereby opening a new window on the spatio-temporal behavior of tectonic processes. However, due to computational limitations, most time series methods rely on a pixel-by-pixel approach. This limitation is a concern because (1) accounting for orbital errors requires referencing all interferograms to a common set of pixels before reconstruction of the time series and (2) spatially correlated atmospheric noise due to tropospheric turbulence is ignored. Decomposing interferograms into statistically independent wavelets will mitigate issues of correlated noise, but prior estimation of orbital uncertainties will still be required. Here, we explore a method that considers all pixels simultaneously when solving for the spatio-temporal evolution of interferometric phase Our method is based on a massively parallel implementation of a conjugate direction solver. We consider an interferogram as the sum of the phase difference between 2 SAR acquisitions and the corresponding orbital errors. In addition, we fit the temporal evolution with a physically parameterized function while accounting for spatially correlated noise in the data covariance. We assume noise is isotropic for any given InSAR pair with a covariance described by an exponential function that decays with increasing separation distance between pixels. We regularize our solution in space using a similar exponential function as model covariance. Given the problem size, we avoid matrix multiplications of the full covariances by computing convolutions in the Fourier domain. We first solve the unregularized least squares problem using the LSQR algorithm to approach the final solution, then run our conjugate direction solver to account for data and model covariances. We present synthetic tests showing the efficiency of our method. We then reconstruct a 20-year continuous time series covering Northern Chile. Without input from any additional GNSS data, we recover the secular deformation rate, seasonal oscillations and the deformation fields from the 2005 Mw 7.8 Tarapaca and 2007 Mw 7.7 Tocopilla earthquakes.

  10. Orbital clustering of martian Trojans: An asteroid family in the inner Solar System?

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos A.

    2013-05-01

    We report on the discovery of new martian Trojans within the Minor Planet Center list of asteroids. Their orbital evolution over 108 yr shows characteristic signatures of dynamical longevity (Scholl, H., Marzari, F., Tricarico, P. [2005]. Icarus 175, 397-408) while their average orbits resemble that of the largest known martian Trojan, 5261 Eureka. The group forms a cluster within the region where the most stable Trojans should reside. Based on a combinatorial analysis and a comparison with the jovian Trojan population, we argue that both this feature and the apparent paucity of km-sized martian Trojans (Trilling, D.E., Spahr, T.B., Rivkin, A.S., Hergenrother, C.W., Kortenkamp, S.J. [2006]. ID 2006A-0251) as compared to expectations from earlier work (Tabachnik, S., Evans, N.W. [1999]. Astrophys. J. 517, L63-L66) is not due to observational bias but instead a natural end result of the collisional comminution (Jutzi, M., Michel, P., Benz, W., Richardson, D.C. [2010]. Icarus 207, 54-65) or, alternatively, the rotational fission (Pravec, P. et al. [2010]. Nature 466, 1085-1088) of a progenitor L5 Trojan of Mars. Under the collisional scenario in particular, the new martian Trojans are dynamically young, in agreement with our age estimate of this "cluster" of <2 Gyr based on the earlier work of Scholl et al. (Scholl, H., Marzari, F., Tricarico, P. [2005]. Icarus 175, 397-408). This work highlights the Trojan regions of the terrestrial planets as natural laboratories to study processes important for small body evolution in the Solar System and provides the first direct evidence for an orbital cluster of asteroids close to the Earth.

  11. Coevolution of Binaries and Circumbinary Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Fleming, David; Quinn, Thomas R.

    2018-04-01

    The recent discoveries of circumbinary planets by Kepler raise questions for contemporary planet formation models. Understanding how these planets form requires characterizing their formation environment, the circumbinary protoplanetary disk, and how the disk and binary interact. The central binary excites resonances in the surrounding protoplanetary disk that drive evolution in both the binary orbital elements and in the disk. To probe how these interactions impact both binary eccentricity and disk structure evolution, we ran N-body smooth particle hydrodynamics (SPH) simulations of gaseous protoplanetary disks surrounding binaries based on Kepler 38 for 10^4 binary orbital periods for several initial binary eccentricities. We find that nearly circular binaries weakly couple to the disk via a parametric instability and excite disk eccentricity growth. Eccentric binaries strongly couple to the disk causing eccentricity growth for both the disk and binary. Disks around sufficiently eccentric binaries strongly couple to the disk and develop an m = 1 spiral wave launched from the 1:3 eccentric outer Lindblad resonance (EOLR). This wave corresponds to an alignment of gas particle longitude of periastrons. We find that in all simulations, the binary semi-major axis decays due to dissipation from the viscous disk.

  12. A homogeneous sample of binary galaxies: Basic observational properties

    NASA Technical Reports Server (NTRS)

    Karachentsev, I. D.

    1990-01-01

    A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.

  13. K2-232 b: a transiting warm Saturn on an eccentric P = 11.2 d orbit around a V = 9.9 star

    NASA Astrophysics Data System (ADS)

    Brahm, R.; Espinoza, N.; Jordán, A.; Rojas, F.; Sarkis, P.; Díaz, M. R.; Rabus, M.; Drass, H.; Lachaume, R.; Soto, M. G.; Jenkins, J. S.; Jones, M. I.; Henning, Th; Pantoja, B.; Vučković, M.

    2018-06-01

    We report the discovery of K2-232 b using photometric data of the Kepler K2 satellite coupled with ground-based spectroscopic observations. K2-232 b has a mass of MP = 0.397 ± 0.037 MJ, a radius of RP = 1.00 ± 0.020 RJ, and a moderately low equilibrium temperature of Teq = 1030 ± 15 K due to its relatively large star-planet separation of a = 0.1036 au. K2-232 b orbits its bright (V = 9.9) late F-type host star in an eccentric orbit (e = 0.258 ± 0.025) every 11.2 d, and is one of only four well-characterized warm Jupiters having host stars brighter than V = 10. We estimate a heavy element content of 20 ± 7 M⊕ for K2-232 b, which is consistent with standard models of giant planet formation. The bright host star of K2-232 b makes this system a well-suited target for detailed follow-up observations that will aid in the study of the atmospheres and orbital evolution of giant planets at moderate separations from their host stars.

  14. Dynamic localization in optical and Zeeman lattices in the presence of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kartashov, Yaroslav V.; Konotop, Vladimir V.; Zezyulin, Dmitry A.; Torner, Lluis

    2016-12-01

    The dynamic localization of a two-level atom in a periodic potential under the action of spin-orbit coupling and a weak harmonically varying linear force is studied. We consider optical and Zeeman potentials that are either in phase or out of phase in two spinor components, respectively. The expectation value for the position of the atom after one oscillation period of the linear force is recovered in authentic resonances or in pseudoresonances. The frequencies of the linear force corresponding to authentic resonances are determined by the band structure of the periodic potential and are affected by the spin-orbit coupling. The width or dispersion of the wave packet in authentic resonances is usually minimal. The frequencies corresponding to pseudoresonances do not depend on the type of potential and on the strength of the spin-orbit coupling, while the evolution of excitations at the corresponding frequencies is usually accompanied by significant dispersion. Pseudoresonances are determined by the initial phase of the linear force and by the quasimomentum of the wave packet. Due to the spinor nature of the system, the motion of the atom is accompanied by periodic, but not harmonic, spin oscillations. Under the action of spin-orbit coupling the oscillations of the wave packet can be nearly completely suppressed in optical lattices. Dynamic localization in Zeeman lattices is characterized by doubling of the resonant oscillation periods due to band crossing at the boundary of the Brillouin zone. We also show that higher harmonics in the Fourier expansion of the energy band lead to effective dispersion, which can be strong enough to prevent dynamic localization of the Bloch wave packet.

  15. Spin Evolution of Stellar Progenitors in Compact Binaries

    NASA Astrophysics Data System (ADS)

    Steinle, Nathan; Kesden, Michael

    2018-01-01

    Understanding the effects of various processes on the spins of stellar progenitors in compact binary systems is important for modeling the binary’s evolution and thus for interpreting the gravitational radiation emitted during inspiral and merger. Tides, winds, and natal kicks can drastically modify the binary parameters: tidal interactions increase the spin magnitudes, align the spins with the orbital angular momentum, and circularize the orbit; stellar winds decrease the spin magnitudes and cause mass loss; and natal kicks can misalign the spins and orbital angular momentum or even disrupt the binary. Also, during Roche lobe overflow, the binary may experience either stable mass transfer or common envelope evolution. The former can lead to a mass ratio reversal and alter the component spins, while the latter can dramatically shrink the binary separation. For a wide range of physically reasonable stellar-evolution scenarios, we compare the timescales of these processes to assess their relative contributions in determining the initial spins of compact binary systems.

  16. A hot Saturn on an eccentric orbit around the giant star K2-132

    NASA Astrophysics Data System (ADS)

    Jones, M. I.; Brahm, R.; Espinoza, N.; Jordán, A.; Rojas, F.; Rabus, M.; Drass, H.; Zapata, A.; Soto, M. G.; Jenkins, J. S.; Vučković, M.; Ciceri, S.; Sarkis, P.

    2018-06-01

    Although the majority of radial velocity detected planets have been found orbiting solar-type stars, a fraction of them have been discovered around giant stars. These planetary systems have revealed different orbital properties when compared to solar-type star companions. In particular, radial velocity surveys have shown that there is a lack of giant planets in close-in orbits around giant stars, in contrast to the known population of hot Jupiters orbiting solar-type stars. It has been theorized that the reason for this distinctive feature in the semimajor axis distribution is the result of the stellar evolution and/or that it is due to the effect of a different formation/evolution scenario for planets around intermediate-mass stars. However, in the past few years a handful of transiting short-period planets (P ≲ 10 days) have been found around giant stars, thanks to the high-precision photometric data obtained initially by the Kepler mission, and later by its two-wheel extension K2. These new discoveries have allowed us for the first time to study the orbital properties and physical parameters of these intriguing and elusive substellar companions. In this paper we report on an independent discovery of a transiting planet in field 10 of the K2 mission, also reported recently by Grunblatt et al. (2017, AJ, 154, 254). The host star has recently evolved to the giant phase, and has the following atmospheric parameters: Teff = 4878 ± 70 K, log g = 3.289 ± 0.004, and [Fe/H] = -0.11 ± 0.05 dex. The main orbital parameters of K2-132 b, obtained with all the available data for the system are: P = 9.1708 ± 0.0025 d, e = 0.290 ± 0.049, Mp = 0.495 ± 0.007 MJ and Rp = 1.089 ± 0.006 RJ. This is the fifth known planet orbiting any giant star with a < 0.1, and the most eccentric one among them, making K2-132 b a very interesting object. Tables of the photometry and of the radial velocities are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A76

  17. On the life and death of satellite haloes

    NASA Astrophysics Data System (ADS)

    Taffoni, Giuliano; Mayer, Lucio; Colpi, Monica; Governato, Fabio

    2003-05-01

    We study the evolution of dark matter satellites orbiting inside more massive haloes using semi-analytical tools coupled with high-resolution N-body simulations. We select initial satellite sizes, masses, orbital energies, and eccentricities as predicted by hierarchical models of structure formation. Both the satellite (of initial mass Ms,0) and the main halo (of mass Mh) are described by a Navarro, Frenk & White density profile with various concentrations. We explore the interplay between dynamic friction and tidal mass loss/evaporation in determining the final fate of the satellite. We provide a user-friendly expression for the dynamic friction time-scale τdf,live and for the disruption time for a live (i.e. mass-losing) satellite. This can be easily implemented into existing semi-analytical models of galaxy formation improving considerably the way they describe the evolution of satellites. Massive satellites (Ms,0 > 0.1Mh) starting from typical cosmological orbits sink rapidly (irrespective of the initial circularity) toward the centre of the main halo where they merge after a time τdf,rig, as if they were rigid. Satellites of intermediate mass (0.01Mh < Ms,0 < 0.1Mh) suffer severe tidal mass losses as dynamic friction reduces their pericentre distance. In this case, mass loss increases substantially their decay time with respect to a rigid satellite. The final fate depends on the concentration of the satellite, cs, relative to that of the main halo, ch. Only in the unlikely case where cs/ch<~ 1 are satellites disrupted. In this mass range, τdf,live gives a measure of the merging time. Among the satellites whose orbits decay significantly, those that survive must have been moving preferentially on more circular orbits since the beginning as dynamical friction does not induce circularization. Lighter satellites (Ms,0 < 0.01Mh) do not suffer significant orbital decay and tidal mass loss stabilizes the orbit even further. Their orbits should map those at the time of entrance into the main halo. After more than a Hubble time satellites have masses Ms~ 1-10 per cent Ms,0, typically, implying Ms < 0.001Mh for the remnants. In a Milky-Way-like halo, light satellites should be present even after several orbital times with their baryonic components experimenting morphological changes due to tidal stirring. They coexist with the remnants of more massive satellites depleted in their dark matter content by the tidal field, which should move preferentially on tightly bound orbits.

  18. Tidal dissipation in rotating low-mass stars and implications for the orbital evolution of close-in planets. I. From the PMS to the RGB at solar metallicity

    NASA Astrophysics Data System (ADS)

    Gallet, F.; Bolmont, E.; Mathis, S.; Charbonnel, C.; Amard, L.

    2017-08-01

    Context. Star-planet interactions must be taken into account in stellar models to understand the dynamical evolution of close-in planets. The dependence of the tidal interactions on the structural and rotational evolution of the star is of particular importance and should be correctly treated. Aims: We quantify how tidal dissipation in the convective envelope of rotating low-mass stars evolves from the pre-main sequence up to the red-giant branch depending on the initial stellar mass. We investigate the consequences of this evolution on planetary orbital evolution. Methods: We couple the tidal dissipation formalism previously described to the stellar evolution code STAREVOL and apply this coupling to rotating stars with masses between 0.3 and 1.4 M⊙. As a first step, this formalism assumes a simplified bi-layer stellar structure with corresponding averaged densities for the radiative core and the convective envelope. We use a frequency-averaged treatment of the dissipation of tidal inertial waves in the convection zone (but neglect the dissipation of tidal gravity waves in the radiation zone). In addition, we generalize a recent work by following the orbital evolution of close-in planets using the new tidal dissipation predictions for advanced phases of stellar evolution. Results: On the pre-main sequence the evolution of tidal dissipation is controlled by the evolution of the internal structure of the contracting star. On the main sequence it is strongly driven by the variation of surface rotation that is impacted by magnetized stellar winds braking. The main effect of taking into account the rotational evolution of the stars is to lower the tidal dissipation strength by about four orders of magnitude on the main sequence, compared to a normalized dissipation rate that only takes into account structural changes. Conclusions: The evolution of the dissipation strongly depends on the evolution of the internal structure and rotation of the star. From the pre-main sequence up to the tip of the red-giant branch, it varies by several orders of magnitude, with strong consequences for the orbital evolution of close-in massive planets. These effects are the strongest during the pre-main sequence, implying that the planets are mainly sensitive to the star's early history.

  19. Von Neumann entropy in a Rashba-Dresselhaus nanodot; dynamical electronic spin-orbit entanglement

    NASA Astrophysics Data System (ADS)

    Safaiee, Rosa; Golshan, Mohammad Mehdi

    2017-06-01

    The main purpose of the present article is to report the characteristics of von Neumann entropy, thereby, the electronic hybrid entanglement, in the heterojunction of two semiconductors, with due attention to the Rashba and Dresselhaus spin-orbit interactions. To this end, we cast the von Neumann entropy in terms of spin polarization and compute its time evolution; with a vast span of applications. It is assumed that gate potentials are applied to the heterojunction, providing a two dimensional parabolic confining potential (forming an isotropic nanodot at the junction), as well as means of controlling the spin-orbit couplings. The spin degeneracy is also removed, even at electronic zero momentum, by the presence of an external magnetic field which, in turn, leads to the appearance of Landau states. We then proceed by computing the time evolution of the corresponding von Neumann entropy from a separable (spin-polarized) initial state. The von Neumann entropy, as we show, indicates that electronic hybrid entanglement does occur between spin and two-dimensional Landau levels. Our results also show that von Neumann entropy, as well as the degree of spin-orbit entanglement, periodically collapses and revives. The characteristics of such behavior; period, amplitude, etc., are shown to be determined from the controllable external agents. Moreover, it is demonstrated that the phenomenon of collapse-revivals' in the behavior of von Neumann entropy, equivalently, electronic hybrid entanglement, is accompanied by plateaus (of great importance in quantum computation schemes) whose durations are, again, controlled by the external elements. Along these lines, we also make a comparison between effects of the two spin-orbit couplings on the entanglement (von Neumann entropy) characteristics. The finer details of the electronic hybrid entanglement, which may be easily verified through spin polarization measurements, are also accreted and discussed. The novel results of the present article, with potent applications in the field of quantum information processing, provide a deeper understanding of the electronic von Neumann entropy and hybrid entanglement that occurs in two-dimensional nanodots.

  20. Coupled Evolution with Tides of the Radius and Orbit of Transiting Giant Planets: General Results

    NASA Astrophysics Data System (ADS)

    Ibgui, Laurent; Burrows, Adam

    2009-08-01

    Some transiting extrasolar giant planets (EGPs) have measured radii larger than predicted by the standard theory. In this paper, we explore the possibility that an earlier episode of tidal heating can explain such radius anomalies and apply the formalism we develop to HD 209458b as an example. We find that for strong enough tides the planet's radius can undergo a transient phase of inflation that temporarily interrupts canonical, monotonic shrinking due to radiative losses. Importantly, an earlier episode of tidal heating can result in a planet with an inflated radius, even though its orbit has nearly circularized. Moreover, we confirm that at late times, and under some circumstances, by raising tides on the star itself a planet can spiral into its host. We note that a 3× to 10× solar planet atmospheric opacity with no tidal heating is sufficient to explain the observed radius of HD 209458b. However, our model demonstrates that with an earlier phase of episodic tidal heating, we can fit the observed radius of HD 209458b even with lower (solar) atmospheric opacities. This work demonstrates that, if a planet is left with an appreciable eccentricity after early inward migration and/or dynamical interaction, coupling radius and orbit evolution in a consistent fashion that includes tidal heating, stellar irradiation, and detailed model atmospheres might offer a generic solution to the inflated radius puzzle for transiting EGPs such as WASP-12b, TrES-4, and WASP-6b.

  1. Abundances in metal-rich stars. Detailed abundance analysis of 47 G and K dwarf stars with [Me/H] > 0.10 dex

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Gustafsson, B.

    1998-04-01

    We have derived elemental abundances of O, Na, Mg, Al, Si, Ca, Ti, Cr, Mn, Fe, Co, Ni as well as for a number of s-elements for 47 G and K dwarf, with [Me/H]>0.1 dex. The selection of stars was based on their kinematics as well as on their uvby-beta photometry. One sample of stars on rather eccentric orbits traces the chemical evolution interior to the solar orbit and another, on circular orbits, the evolution around the solar orbit. A few Extreme Population I stars were included in the latter sample. The stars have -0.1 dex < [Fe/H] < 0.42 dex. The spectroscopic [Fe/H] correlate well with the [Me/H] derived from uvby-beta photometry. We find that the elemental abundances of Mg, Al, Si, Ca, Ti, Cr and Ni all follow [Fe/H]. Our data put further constraints on models of galactic chemical evolution, in particular of Cr, Mn and Co which have not previously been studied for dwarf stars with [Me/H] >0.1 dex. The increase in [Na/Fe] and [Al/Fe] as a function of [Fe/H] found previously by \\cite[Edvardsson et al. (1993a)]{Edv93} has been confirmed for [Na/Fe]. This upturning relation, and the scatter around it, are shown not to be due to a mixture of populations with different mean distances to the galactic centre. We do not confirm the same trend for aluminium, which is somewhat surprising since both these elements are thought to be produced in the same environments in the pre-supernova stars. Nor have we been able to trace any tendency for relative abundances of O, Si, and Ti relative to Fe to vary with the stellar velocities, i.e. the stars present mean distance to the galactic centre. These results imply that there is no significant difference in the chemical evolution of the different stellar populations for stars with [Me/H]>0.1 dex. We find that [O/Fe] continue to decline with increasing [Fe/H] and that oxygen and europium correlate well. However [Si/Fe] and [Ca/Fe] seem to stay constant. A real (``cosmic'') scatter in [Ti/Fe] at given [Fe/H] is suggested as well as a decreasing abundance of the s-elements relative to iron for the most metal-rich dwarf stars. We discuss our results in the context of recent models of galactic chemical evolution. In our sample we have included a few very metal rich stars, sometimes called SMR (super metal rich) stars. We find these stars to be among the most iron-rich in our sample but far from as metal-rich as indicated by their photometric metallicities. SMR stars on highly eccentric orbits, alleged to trace the evolution of the chemical evolution in the galactic Bulge, have previously been found overabundant in O, Mg and Si. We have included three such stars from the study by \\cite[Barbuy & Grenon (1990)]{Bar90}. We find them to be less metal rich and the other elemental abundances remain puzzling. Detailed spectroscopic abundance analyses of K dwarf stars are rare. Our study includes 5 K dwarf stars and has revealed what appears to be a striking example of overionization. The overionization is especially prominent for Ca, Cr and Fe. The origin of this apparent overionization is not clear and we discuss different explanations in some detail. Based on observations at the McDonald Observatory.

  2. A mission-oriented orbit design method of remote sensing satellite for region monitoring mission based on evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Xin; Zhang, Jing; Yao, Huang

    2015-12-01

    Remote sensing satellites play an increasingly prominent role in environmental monitoring and disaster rescue. Taking advantage of almost the same sunshine condition to same place and global coverage, most of these satellites are operated on the sun-synchronous orbit. However, it brings some problems inevitably, the most significant one is that the temporal resolution of sun-synchronous orbit satellite can't satisfy the demand of specific region monitoring mission. To overcome the disadvantages, two methods are exploited: the first one is to build satellite constellation which contains multiple sunsynchronous satellites, just like the CHARTER mechanism has done; the second is to design non-predetermined orbit based on the concrete mission demand. An effective method for remote sensing satellite orbit design based on multiobjective evolution algorithm is presented in this paper. Orbit design problem is converted into a multi-objective optimization problem, and a fast and elitist multi-objective genetic algorithm is utilized to solve this problem. Firstly, the demand of the mission is transformed into multiple objective functions, and the six orbit elements of the satellite are taken as genes in design space, then a simulate evolution process is performed. An optimal resolution can be obtained after specified generation via evolution operation (selection, crossover, and mutation). To examine validity of the proposed method, a case study is introduced: Orbit design of an optical satellite for regional disaster monitoring, the mission demand include both minimizing the average revisit time internal of two objectives. The simulation result shows that the solution for this mission obtained by our method meet the demand the users' demand. We can draw a conclusion that the method presented in this paper is efficient for remote sensing orbit design.

  3. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  4. KSC-03pd0507

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle is on a transporter, ready to be moved from the Skid Strip, Cape Canaveral Air Force Station, to the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry the GALEX, an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history, into orbit. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  5. KSC-03pd0508

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle is on a transporter, ready to be moved from the Skid Strip, Cape Canaveral Air Force Station, to the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  6. A map-based determination of the nature of Beta Delphini

    NASA Technical Reports Server (NTRS)

    Gatewood, George; Castelaz, Michael; Persinger, Timothy; Stein, John; Demarque, Pierre

    1989-01-01

    The Beta Delphini binary system presents a stringent test of the theory of stellar evolution. Improved parallax and component masses are found for its giant (F5 III and F5 IV) stars. A study of the evolutionary status of the system indicates it to be 1.9 Gyr (1.9 billion years) old and to have a metallicity of approximately 1.5 times that of the Sun. The perturbation due to the 26.6 yr orbital motion is clearly shown in this 2.2 yr study and allows the most precise determination of the relative masses of the component stars to date. The next few months present an unusual opportunity for orbital study as the system passes through periastron. Two of the reference stars are found to have distances of less than 100 parsecs.

  7. KSC-03pd1282

    NASA Image and Video Library

    2003-04-28

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, Orbital Sciences' L-1011 aircraft waits for takeoff time between 7:50 and 9:50 a.m. EDT. Attached underneath is the Pegasus XL rocket with its payload, the Galaxy Evolution Explorer (GALEX), due to be released about 8 a.m. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.

  8. KSC-03pd1283

    NASA Image and Video Library

    2003-04-28

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, Orbital Sciences' L-1011 aircraft waits for takeoff time between 7:50 and 9:50 a.m. EDT. Attached underneath is the Pegasus XL rocket with its payload, the Galaxy Evolution Explorer (GALEX), due to be released about 8 a.m. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.

  9. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2013-10-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).

  10. Timing of millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2014-04-01

    Timing of the dozen pulsars discovered by us in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the orbital secular evolution, the eclipse region, and the role played by the high energy photons released from the pulsar in the ejection of matter from the binary system).

  11. Averaged model to study long-term dynamics of a probe about Mercury

    NASA Astrophysics Data System (ADS)

    Tresaco, Eva; Carvalho, Jean Paulo S.; Prado, Antonio F. B. A.; Elipe, Antonio; de Moraes, Rodolpho Vilhena

    2018-02-01

    This paper provides a method for finding initial conditions of frozen orbits for a probe around Mercury. Frozen orbits are those whose orbital elements remain constant on average. Thus, at the same point in each orbit, the satellite always passes at the same altitude. This is very interesting for scientific missions that require close inspection of any celestial body. The orbital dynamics of an artificial satellite about Mercury is governed by the potential attraction of the main body. Besides the Keplerian attraction, we consider the inhomogeneities of the potential of the central body. We include secondary terms of Mercury gravity field from J_2 up to J_6, and the tesseral harmonics \\overline{C}_{22} that is of the same magnitude than zonal J_2. In the case of science missions about Mercury, it is also important to consider third-body perturbation (Sun). Circular restricted three body problem can not be applied to Mercury-Sun system due to its non-negligible orbital eccentricity. Besides the harmonics coefficients of Mercury's gravitational potential, and the Sun gravitational perturbation, our average model also includes Solar acceleration pressure. This simplified model captures the majority of the dynamics of low and high orbits about Mercury. In order to capture the dominant characteristics of the dynamics, short-period terms of the system are removed applying a double-averaging technique. This algorithm is a two-fold process which firstly averages over the period of the satellite, and secondly averages with respect to the period of the third body. This simplified Hamiltonian model is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface depending on three variables: the orbital semimajor axis, eccentricity and inclination. We find frozen orbits for an average altitude of 400 and 1000 km, which are the predicted values for the BepiColombo mission. Finally, the paper delves into the orbital stability of frozen orbits and the temporal evolution of the eccentricity of these orbits.

  12. Dynamical fate of wide binaries in the solar neighborhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, M.D.; Shapiro, S.L.; Wasserman, I.

    1987-01-01

    An analytical model is presented for the evolution of wide binaries in the Galaxy. The study is pertinent to the postulated solar companion, Nemesis, which may disturb the Oort cloud and cause catastrophic comet showers to strike the earth every 26 Myr. Distant gravitational encounters are modeled by Fokker-Planck coefficients for advection and diffusion of the orbital binding energy. It is shown that encounters with passing stars cause a diffusive evolution of the binding energy and semimajor axis. Encounters with subclumps in giant molecular clouds disrupt orbits to a degree dependent on the cumulative number of stellar encounters. The timemore » scales of the vents and the limitations of scaling laws used are discussed. Results are provided from calculations of galactic distribution of wide binaries and the evolution of wide binary orbits. 38 references.« less

  13. Orbital evolution of 95/P Chiron, 39P/Oterma, 29P/Shwassmann-Wachmann 1, and of 33 Centaurs

    NASA Astrophysics Data System (ADS)

    Kovalenko, N. S.; Churyumov, K. I.; Babenko, Yu. G.

    2011-12-01

    The paper is devoted to numerical modeling of orbital evolution of 34 Centaurs, and 2 distant Jupiter-family comets - 39P/Oterma and 29P/Shwassmann-Wachmann 1. As a result the evolutionary tracks of orbital elements of 33 Centaurs and 3 comets (95/P Chiron (2060), 39P/Oterma and 29P/Shwassmann-Wachmann 1) are obtained. The integrations were produced for 1 Myr back and forth in time starting at epoch and using the implicit single sequence Everhart methods. The statistical analysis of numerical integrations results was done, trends in changes of Centaurs' orbital elements in the past and in the future are revealed. The part of Centaurs that are potential comets is defined by the values of perihelia distributions for modeled orbits. It is shown that Centaurs may transits into orbits typical for Jupiter-family comets, and vice versa. Centaurs represent one of possible sources for replenishment of JFCs population, but other sources are also necessary.

  14. Consequences of tidal interaction between disks and orbiting protoplanets for the evolution of multi-planet systems with architecture resembling that of Kepler 444

    NASA Astrophysics Data System (ADS)

    Papaloizou, J. C. B.

    2016-11-01

    We study orbital evolution of multi-planet systems with masses in the terrestrial planet regime induced through tidal interaction with a protoplanetary disk assuming that this is the dominant mechanism for producing orbital migration and circularization. We develop a simple analytic model for a system that maintains consecutive pairs in resonance while undergoing orbital circularization and migration. This model enables migration times for each planet to be estimated once planet masses, circularization times and the migration time for the innermost planet are specified. We applied it to a system with the current architecture of Kepler 444 adopting a simple protoplanetary disk model and planet masses that yield migration times inversely proportional to the planet mass, as expected if they result from torques due to tidal interaction with the protoplanetary disk. Furthermore the evolution time for the system as a whole is comparable to current protoplanetary disk lifetimes. In addition we have performed a number of numerical simulations with input data obtained from this model. These indicate that although the analytic model is inexact, relatively small corrections to the estimated migration rates yield systems for which period ratios vary by a minimal extent. Because of relatively large deviations from exact resonance in the observed system of up to 2 %, the migration times obtained in this way indicate only weak convergent migration such that a system for which the planets did not interact would contract by only {˜ }1 % although undergoing significant inward migration as a whole. We have also performed additional simulations to investigate conditions under which the system could undergo significant convergent migration before reaching its final state. These indicate that migration times have to be significantly shorter and resonances between planet pairs significantly closer during such an evolutionary phase. Relative migration rates would then have to decrease allowing period ratios to increase to become more distant from resonances as the system approached its final state in the inner regions of the protoplanetary disk.

  15. Hydrodynamical processes in coalescing binary stars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    1994-01-01

    Coalescing neutron star binaries are considered to be the most promising sources of gravitational waves that could be detected by the planned laser-interferometer LIGO/VIRGO detectors. Extracting gravity wave signals from noisy data requires accurate theoretical waveforms in the frequency range 10-1000 Hz end detailed understanding of the dynamics of the binary orbits. We investigate the quasi-equilibrium and dynamical tidal interactions in coalescing binary stars, with particular focus on binary neutron stars. We develop a new formalism to study the equilibrium and dynamics of fluid stars in binary systems. The stars are modeled as compressible ellipsoids, and satisfy polytropic equation of state. The hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. The equilibrium binary structure is determined by a set of algebraic equations. We consider both synchronized and nonsynchronized systems, obtaining the generalizations to compressible fluid of the classical results for the ellipsoidal binary configurations. Our method can be applied to a wide variety of astrophysical binary systems containing neutron stars, white dwarfs, main-sequence stars and planets. We find that both secular and dynamical instabilities can develop in close binaries. The quasi-static (secular) orbital evolution, as well as the dynamical evolution of binaries driven by viscous dissipation and gravitational radiation reaction are studied. The development of the dynamical instability accelerates the binary coalescence at small separation, leading to appreciable radial infall velocity near contact. We also study resonant excitations of g-mode oscillations in coalescing binary neutron stars. A resonance occurs when the frequency of the tidal driving force equals one of the intrinsic g-mode frequencies. Using realistic microscopic nuclear equations of state, we determine the g-modes in a cold neutron atar. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. Because of the weak coupling between the g-modes and the tidal potential, the induced orbital phase errors due to resonances are small. However, resonant excitations of the g-modes play an important role in the tidal heating of binary neutron stars.

  16. The exploration of Titan with an orbiter and a lake probe

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Coustenis, Athena; Fanchini, Gilbert; Hayes, Alex G.; Iess, Luciano; Khurana, Krishan; Lebreton, Jean-Pierre; Lopes, Rosaly M.; Lorenz, Ralph D.; Meriggiola, Rachele; Moriconi, Maria Luisa; Orosei, Roberto; Sotin, Christophe; Stofan, Ellen; Tobie, Gabriel; Tokano, Tetsuya; Tosi, Federico

    2014-12-01

    Fundamental questions involving the origin, evolution, and history of both Titan and the broader Saturnian system can be answered by exploring this satellite from an orbiter and also in situ. We present the science case for an exploration of Titan and one of its lakes from a dedicated orbiter and a lake probe. Observations from an orbit-platform can improve our understanding of Titan's geological processes, surface composition and atmospheric properties. Further, combined measurements of the gravity field, rotational dynamics and electromagnetic field can expand our understanding of the interior and evolution of Titan. An in situ exploration of Titan's lakes provides an unprecedented opportunity to understand the hydrocarbon cycle, investigate a natural laboratory for prebiotic chemistry and habitability potential, and study meteorological and marine processes in an exotic environment. We briefly discuss possible mission scenarios for a future exploration of Titan with an orbiter and a lake probe.

  17. Kalman filtering applied to real-time monitoring of apogee maneuvers

    NASA Technical Reports Server (NTRS)

    Deboer, Frederic; Barbier, Christian

    1993-01-01

    Part of the Space Mathematics Division in CNES, the Flight Dynamics Center provides attitude and orbit determinations and maneuvers during the Launch and Early Operation Phase (LEOP) of geostationary satellites. Orbit determination is based on a Kalman filter method; when the 2 GHz CNES/NASA network is used, Doppler measurements are available and allow orbit determination during the apogee maneuvers. This method was used for TELE-X and TDF 2 LEOP (3-axis controlled satellites) and also for TELECOM 2 and HISPASAT (spun satellites): it enables us to follow the evolution of the maneuver and gives out a quite accurate estimation of the reached orbit. In this paper, we briefly describe the dynamic models of the orbit evolution in both cases, '3-axis' and 'inertial' thrust. Then, we present the results obtained for each case. Afterwards, we present some cases to show the robustness of the filter.

  18. The Roles of Tidal Evolution and Evaporative Mass Loss in the Origin of CoRoT-7 b

    NASA Technical Reports Server (NTRS)

    Jackson, Brian; Miller, Neil; Barnes, Rory; Raymond, Sean N.; Fortney, Jonathan J.; Greenberg, Richard

    2010-01-01

    CoRoT-7 b is the first confirmed rocky exoplanet, but, with an orbital semimajor axis of 0.0172 au, its origins may be unlike any rocky planet in our Solar System. In this study, we consider the roles of tidal evolution and evaporative mass loss in CoRoT-7 b's history, which together have modified the planet's mass and orbit. If CoRoT-7 b has always been a rocky body, evaporation may have driven off almost half its original mass, but the mass loss may depend sensitively on the extent of tidal decay of its orbit. As tides caused CoRoT-7 b's orbit to decay, they brought the planet closer to its host star, thereby enhancing the mass loss rate. Such a large mass loss also suggests the possibility that CoRoT-7 b began as a gas giant planet and had its original atmosphere completely evaporated. In this case, we find that CoRoT-7 b's original mass probably did not exceed 200 Earth masses (about two-third of a Jupiter mass). Tides raised on the host star by the planet may have significantly reduced the orbital semimajor axis, perhaps causing the planet to migrate through mean-motion resonances with the other planet in the system, CoRoT-7 c. The coupling between tidal evolution and mass loss may be important not only for CoRoT-7 b but also for other close-in exoplanets, and future studies of mass loss and orbital evolution may provide insight into the origin and fate of close-in planets, both rocky and gaseous.

  19. Shape Shifting Satellites in Binary Near-Earth Asteroids: Do Meteoroid Impacts Play a Role in BYORP Orbital Evolution?

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry

    2012-01-01

    Less than catastrophic meteoroid impacts over 10(exp 5) years may change the shape of small rubble-pile satellites in binary NEAs, lengthening the average BYORP (binary Yarkovsky-Radzievskii-Paddack) rate of orbital evolution. An estimate of shape-shifting meteoroid fluxes give numbers close enough to causing random walks in the semimajor axis of binary systems to warrant further investigation

  20. On the Pre-impact Orbital Evolution of 2018 LA, Parent Body of the Bright Fireball Observed Over Botswana on 2018 June 2

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl

    2018-06-01

    On 2018 June 2, meteoroid 2018 LA became the third natural body ever to be observed before entering our atmosphere ---small asteroids 2014 AA and 2008 TC3 had stricken the Earth on 2014 January 2 and 2008 October 7, respectively. Here, we explore the pre-impact orbital evolution of 2018 LA and investigate the possible presence of known NEOs moving in similar orbits using N-body simulations and the D-criteria. We identify several objects moving in orbits similar to that of 2018 LA and focus on three of them: (454100) 2013 BO73, which is the largest of the group and a PHA, 2016 LR, and 2018 BA5, which follows a path very close to that of 2018 LA in terms of semimajor axis, eccentricity, and inclination. All these objects could be part of a dynamical grouping and their orbital evolution is rather chaotic, experiencing close encounters with Venus, the Earth-Moon system, and Mars. NEO encounters take place at the node and, on the short-term, the relative positions of our planet in its orbit around the Sun repeat every year. Besides the bright fireball observed over Botswana on 2018 June 2, three other bolides were observed early in June in recent years: Crete on 2002 June 6, Washington State on 2004 June 3, and Reisadalen on 2007 June 7.

  1. The Case for a Geocentric rather than Heliocentric Origin of the Late Stage Heavy Bombardment (LHB) of the Moon and Tidal Evolution of its Orbit

    NASA Astrophysics Data System (ADS)

    Davis, P. M.; Stacey, F. D.

    2009-12-01

    Melt breccia samples returned from the Apollo mission have dates that suggest that the impacts that formed major basins on the Moon occurred between 3.8 and 4.0 Ga i.e., about 0.6 G years after Lunar formation. Three models have been proposed to explain the LHB. Heliocentric models including (1) The period marked the end of large-scale impacts associated with planetary formation and (2) It corresponded to a spike in impacts associated with major reorientation of the solar system (the ‘Nice model’), when the orbits Jupiter and Saturn became resonant, causing the orbits of Uranus and Neptune to become unstable and grow, scattering cometary and asteroidal fragments into Earth-Moon crossing orbits, and a geocentric model (3) It was due to collision with the last of a series of moonlets formed during Earth accretion which were swept up by tidal regression of a large Moon that had been formed near the Earth by a giant impact. While there is no smoking gun for any of these scenarios we will discuss a possible scenario for (3). Numerical calculations show that tidal regression of a large inner Moon sequentially traps exterior smaller moonlets into 2:1 resonance. Resonant trapping rapidly increases the eccentricity of their orbits causing them to become Moon-crossing. If the orbital radii of the moonlets had a resonance or Bode's law-type distribution, for the last collision to take place at 0.6 Gy, the Moon would have been at ~40 RE when it took place. One of the implications is that the associated LHB impacts would have significantly less relative velocity than those derived from asteroidal or cometary distances associated with (1) or (2). This may explain the low content of vapor condensate in the Lunar breccias. The tidal evolution from ~40 RE at 0.6 Gy requires a lower tidal friction than at present, but this has been evident for many years from tidal rhythmite data.

  2. High Throughput 600 Watt Hall Effect Thruster for Space Exploration

    NASA Technical Reports Server (NTRS)

    Szabo, James; Pote, Bruce; Tedrake, Rachel; Paintal, Surjeet; Byrne, Lawrence; Hruby, Vlad; Kamhawi, Hani; Smith, Tim

    2016-01-01

    A nominal 600-Watt Hall Effect Thruster was developed to propel unmanned space vehicles. Both xenon and iodine compatible versions were demonstrated. With xenon, peak measured thruster efficiency is 46-48% at 600-W, with specific impulse from 1400 s to 1700 s. Evolution of the thruster channel due to ion erosion was predicted through numerical models and calibrated with experimental measurements. Estimated xenon throughput is greater than 100 kg. The thruster is well sized for satellite station keeping and orbit maneuvering, either by itself or within a cluster.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@eps.s.u-tokyo.ac.jp

    The climatic evolution of the Earth depends strongly on the evolution of the insolation from the Sun and the amount of the greenhouse gasses, especially CO{sub 2} in the atmosphere. Here, we investigate the evolution of the climate of hypothetical Earths around stars whose masses are different from the solar mass with a luminosity evolution model of the stars, a mantle degassing model coupled with a parameterized convection model of the planetary interiors, and an energy balance climate model of the planetary surface. In the habitable zone (HZ), the climate of the planets is initially warm or hot, depending onmore » the orbital semimajor axes. We found that, in the inner HZ, the climate of the planets becomes hotter with time owing to the increase in the luminosity of the central stars, while, in the outer HZ, it becomes colder and eventually globally ice-covered owing to the decrease in the CO{sub 2} degassing rate of the planets. The orbital condition for maintaining the warm climate similar to the present Earth becomes very limited, and more interestingly, the planet orbiting in the outer HZ becomes globally ice-covered after a certain critical age (∼3 Gyr for the hypothetical Earth with standard parameters), irrespective of the mass of the central star. This is because the critical age depends on the evolution of the planets and planetary factors, rather than on the stellar mass. The habitability of the Earth-like planet is shown to be limited with age even though it is orbiting within the HZ.« less

  4. Planet Formation in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca

    About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.

  5. Smaller solar system bodies and orbits; Proceedings of Symposium 3, Workshops II, III, and XXVI, and Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Runcorn, S. K. (Editor); Carr, M. H. (Editor); Moehlmann, D. (Editor); Stiller, H. (Editor); Matson, D. L. (Editor); Ambrosius, B. A. C. (Editor); Kessler, D. J. (Editor)

    1990-01-01

    Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.

  6. Smaller solar system bodies and orbits; Proceedings of Symposium 3, Workshops II, III, and XXVI, and Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Astrophysics Data System (ADS)

    Runcorn, S. K.; Carr, M. H.; Moehlmann, D.; Stiller, H.; Matson, D. L.; Ambrosius, B. A. C.; Kessler, D. J.

    Topics discussed in this volume include the reappraisal of the moon and Mars/Phobos/Deimos; the origin and evolution of planetary and satellite systems; asteroids, comets, and dust (a post-IRAS perspective); satellite dynamics; future planetary missions; and orbital debris. Papers are presented on a comparison of the chemistry of moon and Mars, the use of a mobile surface radar to study the atmosphere and ionosphere, and laser-ionization studies with the technical models of the LIMA-D/Phobos. Attention is given to planetogonic scenarios and the evolution of relatively mass-rich preplanetary disks, the kinetic behavior of planetesimals revolving around the sun, the planetary evolution of Mars, and pre- and post-IRAS asteroid taxonomies. Consideration is also given to ocean tides and tectonic plate motions in high-precision orbit determination, the satellite altimeter calibration techniques, a theory of the motion of an artificial satellite in the earth atmosphere, ESA plans for planetary exploration, and the detection of earth orbiting objects by IRAS.

  7. Compact Objects In Binary Systems: Formation and Evolution of X-ray Binaries and Tides in Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Valsecchi, Francesca

    Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.

  8. Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat Constellation

    NASA Astrophysics Data System (ADS)

    Reising, S. C.; Todd, G.; Padmanabhan, S.; Brown, S. T.; Lim, B.; Kummerow, C. D.; Chandra, C. V.; van den Heever, S. C.; L'Ecuyer, T. S.; Luo, Z. J.; Haddad, Z. S.; Munchak, S. J.; Ruf, C. S.; Berg, G.; Koch, T.; Boukabara, S. A.

    2014-12-01

    TEMPEST addresses key science needs related to cloud and precipitation processes using a constellation of five CubeSats with identical five-frequency millimeter-wave radiometers spaced 5-10 minutes apart in orbit. The deployment of CubeSat constellations on satellite launches of opportunity allows Earth system observations to be accomplished with greater robustness, shorter repeat times and at a small fraction of the cost of typical Earth Science missions. The current suite of Earth-observing satellites is capable of measuring precipitation parameters using radar or radiometric observations. However, these low Earth-orbiting satellites provide only a snapshot of each storm, due to their repeat-pass times of many hours to days. With typical convective events lasting 1-2 hours, it is highly unlikely that the time evolution of clouds through the onset of precipitation will be observed with current assets. The TEMPEST CubeSat constellation directly observes the time evolution of clouds and identifies changes in time to detect the moment of the onset of precipitation. The TEMPEST millimeter-wave radiometers penetrate into the cloud to directly observe changes as the cloud begins to precipitate or ice accumulates inside the storm. The evolution of ice formation in clouds is important for climate prediction because it largely drives Earth's radiation budget. TEMPEST improves understanding of cloud processes and helps to constrain one of the largest sources of uncertainty in climate models. TEMPEST provides observations at five millimeter-wave frequencies from 90 to 183 GHz using a single compact instrument that is well suited for a 6U CubeSat architecture and fits well within the NASA CubeSat Launch Initiative (CSLI) capabilities. Five identical CubeSats deployed in the same orbital plane with 5-10 minute spacing at 390-450 km altitude and 50-65 degree inclination capture 3 million observations of precipitation, including 100,000 deep convective events in a one-year mission. TEMPEST provides critical information on the time evolution of cloud and precipitation microphysics, thereby yielding a first-order understanding of how assumptions in current cloud-model parameterizations behave in diverse climate regimes.

  9. Scalar Resonant Relaxation of Stars around a Massive Black Hole

    NASA Astrophysics Data System (ADS)

    Bar-Or, Ben; Fouvry, Jean-Baptiste

    2018-06-01

    In nuclear star clusters, the potential is governed by the central massive black hole (MBH), so that stars move on nearly Keplerian orbits and the total potential is almost stationary in time. Yet, the deviations of the potential from the Keplerian one, due to the enclosed stellar mass and general relativity, will cause the stellar orbits to precess. Moreover, as a result of the finite number of stars, small deviations of the potential from spherical symmetry induce residual torques that can change the stars’ angular momentum faster than the standard two-body relaxation. The combination of these two effects drives a stochastic evolution of orbital angular momentum, a process named “resonant relaxation” (RR). Owing to recent developments in the description of the relaxation of self-gravitating systems, we can now fully describe scalar resonant relaxation (relaxation of the magnitude of the angular momentum) as a diffusion process. In this framework, the potential fluctuations due to the complex orbital motion of the stars are described by a random correlated noise with statistical properties that are fully characterized by the stars’ mean field motion. On long timescales, the cluster can be regarded as a diffusive system with diffusion coefficients that depend explicitly on the mean field stellar distribution through the properties of the noise. We show here, for the first time, how the diffusion coefficients of scalar RR, for a spherically symmetric system, can be fully calculated from first principles, without any free parameters. We also provide an open source code that evaluates these diffusion coefficients numerically.

  10. Are Adonis and Hephaistos "Extinct" Comets?

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.

    The investigation of the evolution of Earth-approaching asteroids with the aim of revealing their meteor streams is one of the ways to determine if these asteroids are extinct comets. The orbital evolution of asteroids 2101 Adonis and 2212 Hephaistos studied, respectively, by AlfanGoryachev and Everhart methods shows that these asteroids cross the Earth's orbit four times. Their possible meteoroid swarms may therefore produce four meteor showers each. In this work, the theoretically predicted orbital elements and radiants of these streams are compared to the available observational data. In the cases of both Adonis and Hephaistos, all four meteor showers are shown to be active. Most likely, these asteroids are extinct comets.

  11. The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution

    NASA Astrophysics Data System (ADS)

    Khain, Tali; Batygin, Konstantin; Brown, Michael E.

    2018-04-01

    The observation that the orbits of long-period Kuiper Belt objects are anomalously clustered in physical space has recently prompted the Planet Nine hypothesis - the proposed existence of a distant and eccentric planetary member of our Solar System. Within the framework of this model, a Neptune-like perturber sculpts the orbital distribution of distant Kuiper Belt objects through a complex interplay of resonant and secular effects, such that the surviving orbits get organized into apsidally aligned and anti-aligned configurations with respect to Planet Nine's orbit. We present results on the role of Kuiper Belt initial conditions on the evolution of the outer Solar System using numerical simulations. Intriguingly, we find that the final perihelion distance distribution depends strongly on the primordial state of the system, and demonstrate that a bimodal structure corresponding to the existence of both aligned and anti-aligned clusters is only reproduced if the initial perihelion distribution is assumed to extend well beyond 36 AU. The bimodality in the final perihelion distance distribution is due to the permanently stable objects, with the lower perihelion peak corresponding to the anti-aligned orbits and the higher perihelion peak corresponding to the aligned orbits. We identify the mechanisms that enable the persistent stability of these objects and locate the regions of phase space in which they reside. The obtained results contextualize the Planet Nine hypothesis within the broader narrative of solar system formation, and offer further insight into the observational search for Planet Nine.

  12. Planetary migration in protoplanetary discs and outer Solar System architecture.

    NASA Astrophysics Data System (ADS)

    Crida, A.; Morbidelli, A.; Tsiganis, K.

    2007-08-01

    Planets form around stars in gaseous protoplanetary discs. Due to tidal effects, they perturb the gas distribution, which in turn affects their motion. If the planet is massive enough (see for instance Crida et al. 2006 for a criterion), it repels the gas efficiently and opens a gap around its orbit ; then, locked into its gap, the planet follows the disc viscous evolution, which generally consists in accretion onto the central star. This process is called type II migration and leads to the orbital decay of the planet on a timescale shorter than the disc lifetime. After a review of these processes, we will focus on the Solar System giant planets. Strong constraints suggest that they did not migrate significantly. Masset and Snellgrove (2001) have shown that the evolution of 2 giants planets in mean motion resonance in a common gap differs from the evolution of a single planet. For what concerns Jupiter and Saturn, we found that in some conditions on the disc parameter, they can avoid significant migration (Morbidelli and Crida 2007). Adding Uranus and Neptune to the system, six stable fully resonant configurations for the four giants in the gas disc appear. Of course, none of them correspond to the present configuration. However, after the gas disc phase, the system was surrounded by a planetesimal disk. Interactions with this debris disk make the planets slowly evolve, until an instability in reached. This destabilises the planetesimal disc and triggers the Late Heavy Bombardment, while the planets reach their actual position, like in the model by Tsiganis et al (2005) and Gomes et al (2005). Our simulations show a very satisfying case, opening the possibility for a dynamically consistent scenario of the outer Solar System evolution, starting from the gas phase.

  13. Physical Orbit for Lam Vir and Testing of Stellar Evolution Models

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Monnier, J. D.; Torres, G.; Pedretti, E.; Millan-Gabet, R.; Berger, J.-P.; Traub, W. A.; Schloerb, F. P.

    2005-12-01

    Lambda Virginis is a well-known double-lined spectroscopic Am binary with the interesting property that both stars are very similar in abundance but one is sharp-lined and the other is broad-lined. The differing rotation rates and the unusual metallic-lined nature of this system presents a unique opportunity to test stellar evolution models. In this poster, we present high resolution observations of Lam Vir, taken with the Infrared-Optical Telescopes Array (IOTA) between 2003 and 2005. By combining our interferometric data with double-lined radial velocity data, we determined for the first time the physical orbit of Lam Vir, as well as the orbital parallax of the system. In addition, the masses of the two components are determined with 1% and 1.5% errors respectively. Our preliminary result from comparison with stellar evolution models suggests a discrepancy between Lam Vir and standard models.

  14. Dynamical and photometric investigation of cometary type 2 tails

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1975-01-01

    The absolute calibration of the photometric profile of the antitail of Comet Kohoutek 1973 XII on plates taken with the Curtis Schmidt telescope of the University of Michigan at the Cerro Tololo Inter-American Observatory is described in detail. The formula for the determination of the air mass, and the correction for atmospheric absorption and for the loss of light due to vignetting are included. The calibration stars were used to derive the coefficients converting the relative intensity scale to the absolute surface-brightness units. The extensive results of the study of the orbital evolution of vaporizing dust particles are listed in a tabular form. Gradual evaporation from the surface of a particle results typically in its expulsion from the solar system. The properties of the particle and the elements of its orbit at expulsion are given as functions of the particle's properties and orbit before appreciable evaporation commenced. Also given are circumstances at an encounter of an expelled particle with the earth as a function of the particle's properties. A few specific cases are represented graphically.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Jason W., E-mail: jwbarnes@uidaho.ed

    Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbitmore » alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.« less

  16. Dust Transport from Enceladus to the moons of Saturn

    NASA Astrophysics Data System (ADS)

    Juhasz, A.; Hsu, H. W.; Kempf, S.; Horanyi, M.

    2016-12-01

    Saturn's vast E-ring engulfs the satellites Mimas, Enceladus, Tethys, Dione, and Rea, reaching even beyond Titan, while its inner edge is adjacent with the outskirts of the A-ring. The E-ring is comprised of characteristically micron and submicron sized particles, originating mainly from the active plumes of Enceladus, and possibly the other moons as well due to their continual bombardment by interplanetary dust particles. The dynamics of the E-ring grains can be surprising as in addition to the gravity of Saturn and its moons, their motion is governed by radiation pressure, plasma drag, and electromagnetic forces as they collect charges interacting with the magnetospheric plasma environment of Saturn. Due to sputtering, their mass is diminishing and, hence, their charge-to-mass ratio is increasing in time. A "young" gravitationally dominated micron-sized particle will "mature" into a nanometer-sized grain whose motion resembles that of a heavy ion. Simultaneously with their mass loss, the dust particles are pushed outwards by plasma drag. Time to time, their evolving orbits intersect the orbits of the Saturnian moons and the E-ring particles can be deposited onto their surfaces, possibly altering their makeup and spectral properties. Using the Cassini magnetospheric observations, we have followed the orbital evolution of E-ring particles, through their entire life, starting at Enceladus, ending in: a) a collision with the A-ring or any of the satellites; or b) losing all their mass due to sputtering; or c) leave the magnetosphere of Saturn. This presentation will focus on the deposition rates and maps of E-ring particles to the surfaces of the moons.

  17. Evolution of Cometary Dust Particles to the Orbit of the Earth: Particle Size, Shape, and Mutual Collisions

    NASA Astrophysics Data System (ADS)

    Yang, Hongu; Ishiguro, Masateru

    2018-02-01

    In this study, we numerically investigated the orbital evolution of cometary dust particles, with special consideration of the initial size–frequency distribution (SFD) and different evolutionary tracks according to the initial orbit and particle shape. We found that close encounters with planets (mostly Jupiter) are the dominating factor determining the orbital evolution of dust particles. Therefore, the lifetimes of cometary dust particles (∼250,000 yr) are shorter than the Poynting–Robertson lifetime, and only a small fraction of large cometary dust particles can be transferred into orbits with small semimajor axes. The exceptions are dust particles from 2P/Encke and, potentially, active asteroids that have little interaction with Jupiter. We also found that the effects of dust shape, mass density, and SFD were not critical in the total mass supply rate to the interplanetary dust particle (IDP) cloud complex when these quantities are confined by observations of zodiacal light brightness and SFD around the Earth’s orbit. When we incorporate a population of fluffy aggregates discovered in the Earth’s stratosphere and the coma of 67P/Churyumov–Gerasimenko within the initial ejection, the initial SFD measured at the comae of comets (67P and 81P/Wild 2) can produce the observed SFD around the Earth’s orbit. Considering the above effects, we derived the probability of mutual collisions among dust particles within the IDP cloud for the first time in a direct manner via numerical simulation and concluded that mutual collisions can mostly be ignored.

  18. Orbital evolution of small binary asteroids

    NASA Astrophysics Data System (ADS)

    Ćuk, Matija; Nesvorný, David

    2010-06-01

    About 15% of both near-Earth and main-belt asteroids with diameters below 10 km are now known to be binary. These small asteroid binaries are relatively uniform and typically contain a fast-spinning, flattened primary and a synchronously rotating, elongated secondary that is 20-40% as large (in diameter) as the primary. The principal formation mechanism for these binaries is now thought to be YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect induced spin-up of the primary followed by mass loss and accretion of the secondary from the released material. It has previously been suggested (Ćuk, M. [2007]. Astrophys. J. 659, L57-L60) that the present population of small binary asteroids is in a steady state between production through YORP and destruction through binary YORP (BYORP), which should increase or decrease secondary's orbit, depending on the satellite's shape. However, BYORP-driven evolution has not been directly modeled until now. Here we construct a simple numerical model of the binary's orbital as well the secondary's rotational dynamics which includes BYORP and selected terms representing main solar perturbations. We find that many secondaries should be vulnerable to chaotic rotation even for relatively low-eccentricity mutual orbits. We also find that the precession of the mutual orbit for typical small binary asteroids might be dominated by the perturbations from the prolate and librating secondary, rather than the oblate primary. When we evolve the mutual orbit by BYORP we find that the indirect effects on the binary's eccentricity (through the coupling between the orbit and the secondary's spin) dominate over direct ones caused by the BYORP acceleration. In particular, outward evolution causes eccentricity to increase and eventually triggers chaotic rotation of the secondary. We conclude that the most likely outcome will be reestablishing of the synchronous lock with a "flipped" secondary which would then evolve back in. For inward evolution we find an initial decrease of eccentricity and secondary's librations, to be followed by later increase. We think that it is likely that various forms of dissipation we did not model may damp the secondary's librations close to the primary, allowing for further inward evolution and a possible merger. We conclude that a merger or a tidal disruption of the secondary are the most likely outcomes of the BYORP evolution. Dissociation into heliocentric pairs by BYORP alone should be very difficult, and satellite loss might be restricted to the minority of systems containing more than one satellite at the time.

  19. Long-Term Evolution of Orbits About a Precessing Oblate Planet: 3. A Semianalytical and a Purely Numerical Approach

    DTIC Science & Technology

    2007-11-01

    Keywords Orbital elements · Osculating elements · Mars · Natural satellites · Natural satellites’ orbits · Deimos · Equinoctial precession · The...theory of orbits about a precessing and nutating oblate planet, in terms of osculating elements defined in a frame associated with the equator of...solar-gravity-perturbed satellite orbiting an oblate planet subject to nonuniform equinoctial precession. This nonuniformity of precession is caused by

  20. KSC-03pd1281

    NASA Image and Video Library

    2003-04-28

    KENNEDY SPACE CENTER, FLA. - In the early morning hours at Cape Canaveral Air Force Station, Orbital Sciences' L-1011 aircraft waits for takeoff time between 7:50 and 9:50 a.m. EDT. Attached underneath is the Pegasus XL rocket with its payload, the Galaxy Evolution Explorer (GALEX), due to be released about 8 a.m. The GALEX will carry into space an orbiting telescope that will observe a million galaxies across 10 billion years of cosmic history to help astronomers determine when the stars and elements we see today had their origins. The spacecraft will sweep the skies for 28 months using state-of-the-art ultraviolet detectors to single out galaxies dominated by young, hot, short-lived stars that give off a great deal of energy at that wavelength. These galaxies are actively creating stars, and therefore provide a window into the history and causes of star formation in galaxies.

  1. Thrust Direction Optimization: Satisfying Dawn's Attitude Agility Constraints

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2013-01-01

    The science objective of NASA's Dawn Discovery mission is to explore the giant asteroid Vesta and the dwarf planet Ceres, the two largest members of the main asteroid belt. Dawn successfully completed its orbital mission at Vesta. The Dawn spacecraft has complex, difficult to quantify, and in some cases severe limitations on its attitude agility. The low-thrust transfers between science orbits at Vesta required very complex time varying thrust directions due to the strong and complex gravity and various science objectives. Traditional low-thrust design objectives (like minimum change in velocity or minimum transfer time) often result in thrust direction time evolutions that cannot be accommodated with the attitude control system available on Dawn. This paper presents several new optimal control objectives, collectively called thrust direction optimization that were developed and turned out to be essential to the successful navigation of Dawn at Vesta.

  2. Evolution of the Debris Cloud Generated by the Fengyun-1C Fragmentation Event

    NASA Technical Reports Server (NTRS)

    Pardini, Carmen; Anselmo, Luciano

    2007-01-01

    The cloud of cataloged debris produced in low earth orbit by the fragmentation of the Fengyun-1C spacecraft was propagated for 15 years, taking into account all relevant perturbations. Unfortunately, the cloud resulted to be very stable, not suffering substantial debris decay during the time span considered. The only significant short term evolution was the differential spreading of the orbital planes of the fragments, leading to the formation of a debris shell around the earth approximately 7-8 months after the breakup, and the perigee precession of the elliptical orbits. Both effects will render the shell more "isotropic" in the coming years. The immediate consequence of the Chinese anti-satellite test, carried out in an orbital regime populated by many important operational satellites, was to increase significantly the probability of collision with man-made debris. For the two Italian spacecraft launched in the first half of 2007, the collision probability with cataloged objects increased by 12% for AGILE, in equatorial orbit, and by 38% for COSMO-SkyMed 1, in sun-synchronous orbit.

  3. Research of the orbital evolution of asteroid 2012 DA14 (in Russian)

    NASA Astrophysics Data System (ADS)

    Zausaev, A. F.; Denisov, S. S.; Derevyanka, A. E.

    Research of the orbital evolution of asteroid 2012 DA14 on the time interval from 1800 to 2206 is made, an object close approaches with Earth and the Moon are detected, the probability of impact with Earth is calculated. The used mathematical model is consistent with the DE405, the integration was performed using a modified Everhart's method of 27th order, the probability of collision is calculated using the Monte Carlo method.

  4. Orbital Evolution of Jupiter-Family Comets

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. S.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We investigated the evolution for periods of at least 5-10 Myr of 2500 Jupiter-crossing objects (JCOs) under the gravitational influence of all planets, except for Mercury and Pluto (without dissipative factors). In the first series we considered N=2000 orbits near the orbits of 30 real Jupiter-family comets with period less than 10 yr, and in the second series we took 500 orbits close to the orbit of Comet 10P Tempel 2. We calculated the probabilities of collisions of objects with the terrestrial planets, using orbital elements obtained with a step equal to 500 yr and then summarized the results for all time intervals and all bodies, obtaining the total probability P(sub sigma) of collisions with a planet and the total time interval T(sub sigma) during which perihelion distance of bodies was less than a semimajor axis of the planet. The values of P = 10(exp 6)P(sub sigma)/N and T = T(sub sigma)/1000 yr are presented in Table together with the ratio r of the total time interval when orbits were of Apollo type (at e less than 0.999) to that of Amor type.

  5. Eclipse-Free-Time Assessment Tool for IRIS

    NASA Technical Reports Server (NTRS)

    Eagle, David

    2012-01-01

    IRIS_EFT is a scientific simulation that can be used to perform an Eclipse-Free- Time (EFT) assessment of IRIS (Infrared Imaging Surveyor) mission orbits. EFT is defined to be those time intervals longer than one day during which the IRIS spacecraft is not in the Earth s shadow. Program IRIS_EFT implements a special perturbation of orbital motion to numerically integrate Cowell's form of the system of differential equations. Shadow conditions are predicted by embedding this integrator within Brent s method for finding the root of a nonlinear equation. The IRIS_EFT software models the effects of the following types of orbit perturbations on the long-term evolution and shadow characteristics of IRIS mission orbits. (1) Non-spherical Earth gravity, (2) Atmospheric drag, (3) Point-mass gravity of the Sun, and (4) Point-mass gravity of the Moon. The objective of this effort was to create an in-house computer program that would perform eclipse-free-time analysis. of candidate IRIS spacecraft mission orbits in an accurate and timely fashion. The software is a suite of Fortran subroutines and data files organized as a "computational" engine that is used to accurately predict the long-term orbit evolution of IRIS mission orbits while searching for Earth shadow conditions.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonini, Fabio; Lithwick, Yoram; Hamers, Adrian S.

    Gas giants orbiting their host star within the ice line are thought to have migrated to their current locations from farther out. Here we consider the origin and dynamical evolution of observed Jupiters, focusing on hot and warm Jupiters with outer friends. We show that the majority of the observed Jupiter pairs (20 out of 24) are dynamically unstable if the inner planet is placed at ≳1 au distance from the stellar host. This finding is at odds with formation theories that invoke the migration of such planets from semimajor axes ≳1 au due to secular dynamical processes (e.g., secularmore » chaos, Lidov–Kozai [LK] oscillations) coupled with tidal dissipation. In fact, the results of N -body integrations show that the evolution of dynamically unstable systems does not lead to tidal migration but rather to planet ejections and collisions with the host star. This and other arguments lead us to suggest that most of the observed planets with a companion could not have been transported from farther out through secular migration processes. More generally, by using a combination of numerical and analytic techniques, we show that the high- e LK migration scenario can only account for less than 10% of all gas giants observed between 0.1 and 1 au. Simulations of multiplanet systems support this result. Our study indicates that rather than starting on highly eccentric orbits with orbital periods above 1 yr, these “warm” Jupiters are more likely to have reached the region where they are observed today without having experienced significant tidal dissipation.« less

  7. Formation of close binary black holes merging due to gravitational-wave radiation

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Cherepashchuk, A. M.

    2017-10-01

    The conditions for the formation of close-binary black-hole systems merging over the Hubble time due to gravitational-wave radiation are considered in the framework of current ideas about the evolution of massive close-binary systems. The original systems whose mergers were detected by LIGO consisted of main-sequence stars with masses of 30-100 M ⊙. The preservation of the compactness of a binary black hole during the evolution of its components requires either the formation of a common envelope, probably also with a low initial abundance of metals, or the presence of a "kick"—a velocity obtained during a supernova explosion accompanied by the formation of a black hole. In principle, such a kick can explain the relatively low frequency of mergers of the components of close-binary stellar black holes, if the characteristic speed of the kick exceeds the orbital velocities of the system components during the supernova explosion. Another opportunity for the components of close-binary systems to approach each other is related to their possible motion in a dense molecular cloud.

  8. Orbital evolution of Neptune's ring arcs

    NASA Astrophysics Data System (ADS)

    Giuliatti-Winter, Silvia; Madeira, Gustavo

    2016-10-01

    Voyager 2 spacecraft sent several images of the Neptune's ring system in 1989. These images show a set of arcs (Courage, Liberté, Egalité and Fraternité), previously detected by stellar occultation in 1984, embedded in the tenuous Adams ring. In order to maintain the confinement of the arcs against the spreading, Renner et al. (2015) proposeda model which the Adams ring has a collection of small coorbital satellites placed in specific positions. These coorbitals would be responsible for maintaining the arcs particles. In this work we analyse the orbital evolution of the particles coorbital to the satellites by adding the effects of the solar radiation force. Our numerical results show that due to this dissipative effect the smallest particles, 1μm in size, leave the arc in less than 10years. Larger particles leave the arc, but can stay confined between the coorbital satellites. De Pater et al. (2005) suggested that a small moonlet embedded in the arc Fraternité can be the source of the arcs and even theAdams ring through an erosion mechanism. Our preliminary results showed that a moonlet up to 200m in radius can stay in the arc without causing any significant variation in the eccentricities of the coorbitals and the particles.

  9. Collisional and Radiative Relaxation of Antihydrogen.

    NASA Astrophysics Data System (ADS)

    Bass, E. M.; Dubin, D. H. E.

    2007-11-01

    Antihydrogen is produced in high-magnetic-field Penning traps by introducing antiprotons into a pure-positron plasma at cryogenic temperature T.ootnotetextG. Gabrielse et al., Phys. Rev. Lett. 89, 213401 (2002).^,ootnotetextM. Amoretti et al., Nature 419, 456 (2002). In the experimental regime, three-body recombination forms highly-excited atoms which exhibit classical guiding-center drift orbits.ootnotetextM.E. Glinsky and T.M. O'Neil, Phys. Fluids B 3, 1279 (1991).^,ootnotetextF. Robicheaux and J.D. Hanson, Phys. Rev. A 69, 010701 (2004). Using energy transition rates obtained from a Monte-Carlo simulation, we track the collisional evolution of a distribution of atoms from binding energies near T to Uc= e^2 (B^2/mec^2)^1/3, where atom dynamics is chaotic. While the flux through the kinetic bottleneck (U = 4 T) is proportional to T-9/2, data suggest that the flux at Uc (at a fixed time) does not scale strongly with T or magnetic field B. At Uc, radiation begins to take over as the principle energy-loss mechanism. Evolution due to radiation is tracked for a typical collisionally-evolved energy distribution to show that a small number of low-angular-momentum atoms radiate to the ground state rapidly, while others drop into slowly-radiating, circular orbits at intermediate energies.

  10. Long-term evolution of 1991 DA: A dynamically evolved extinct Halley-type comet

    NASA Technical Reports Server (NTRS)

    Hahn, Gerhard; Bailey, M. E.

    1992-01-01

    The long-term dynamical evolution of 21 variational orbits for the intermediate-period asteroid 1991 DA was followed for up to +/-10(exp 5) years from the present. 1991 DA is close to the 2:7 resonance with Jupiter; it has avoided close encounters, within 1 AU, with this planet for at least the past 30,000 years, even at the node crossing. The future evolution typically shows no close encounters with Jupiter within at least 50,000 years. This corresponds to the mean time between node crossings with either Jupiter or Saturn. Close encounters with Saturn and Jupiter lead to a chaotic evolution for the whole ensemble, while secular perturbations cause large-amplitude swings in eccentricity and inclination (the latter covering the range 15 deg approximately less than i approximately less than 85 deg) which correlate with deep excursions of the perihelion distance to values much less than 1 AU. These variations are similar to those found in P/Machholz and a variety of other high-inclination orbits, e.g., P/Hartley-IRAS. We emphasize the connection between the orbital evolution of 1991 DA and that of Halley-type comets. If 1991 DA was once a comet, it is not surprising that it is now extinct.

  11. Minimum Propellant Low-Thrust Maneuvers near the Libration Points

    NASA Astrophysics Data System (ADS)

    Marinescu, A.; Dumitrache, M.

    The impulse technique certainly can bring the vehicle on orbits around the libration points or close to them. The question that aries is, by what means can the vehicle arrive in such cases at the libration points? A first investigation carried out in this paper can give an answer: the use of the technique of low-thrust, which, in addition, can bring the vehicle from the libration points near to or into orbits around these points. This aspect is considered in this present paper where for the applications we have considered the transfer for orbits of the equidistant point L4 and of the collinear point L2, from Earth-moon system. This transfer maneuver can be used to insertion one satellite on libration points orbits. In Earth- moon system the points L 4 and L 5 because an vehicle in on of the equidistant points in quite stable and remains in its vicinity of perturbed, have potential interest for the establishment of transporder satellite for interplanetary tracking. In contrast an vehicle in one of the collinear points is quite instable and it will oscillate along the Earth-moon-axis at increasing amplitude and gradually escape from the libration point. Let use assume that a space vehicle equipped with a low-thrust propulsion is near a libration point L. We consider the planar motion in the restricted frame of the three bodies in the rotating system L, where the Earth-moon distance D=l. The unit of time T is period of the moon's orbit divided by 2 and multiplied by the square root of the quantity one plus the moon/Earth mass ratio, and the unit of mass is the Earth's mass. With these predictions the motion equatios of the vehicle equiped with a low-thrust propulsion installation in the linear approximation near the libration point, have been established. The parameters of the motion at the beginning and the end of these maneuvers are known, the variational problem has been formulated as a Lagrange type problem with fixed extremities. On established the differential equations of the extremals and integrating these differential equations we obtain the desired extremals which characterize the minimum propellant optimal manoeuvres of transfer from libration points to their orbits. By means of Legendre conditions for weak minimum and Weierstrass condition for strong minimum, is demonstrated that variational problem so formulated has sense and is a problem of minimum. The integration of extremal's differential equations system can not lead to analytical solutions easily to obtain and for this we have directed to a numerical integration. The problem is a bilocal one because the motion parameter values are predicted at the beginning and of the maneuver (the manoeuvre duration coincides with the combustion duration) the values of the Lagrange multipliers not being specified at the beginning and end of the manoeuvre. For determination of the velocities at any point on the libration point L4 and L2 has been elaborated the program of calculus on the integration of the motion equations without accelerations due thrust during a revolution period the coordinates and velocities to be equal, with which have been calculated the velocities at the apoapsis A and respectively A'. With these specifications, the final conditions (at the end of the maneuver) could be established, and the determination of optimal transfer parameters in the specified points could be determined. The calculus performed for the transfer from the libration points L4 and L2 to their orbits, shows that the evolution velocities on the orbits are in general small, the velocities on the L2 orbits being greater than the velocities on L 4 orbits having the same semimajor axis. This fact is explicable because the period of evolution on orbits of libration point L4 is greater than the period of orbits of the libration point L2. For the transfer in the apoapsis of both orbits (the points A. and A') on can remarque the fact the accelerations due thrust are greater for orbits around the libration point L2 comparatively with orbits having the same semimajor axis around the libration point L 4 ( maneuver duration = 106 s = 11.574 days for L 4 and = 105 s = 1.157 days for L2 ). Considering orbits around libration points L4 and L2 with semimajor axis between 150-15000 km the components of acceleration due thrust have values between 10-2 -10-5 m/S2 which lays in the range of performances of law thrust propulsion installations (the D, T units have been converted in m, s). *Senior Scientist. Member AIAA **Researche Engineer

  12. Diverse Orbits Around Mars Graphic

    NASA Image and Video Library

    2015-05-04

    This graphic depicts the relative shapes and distances from Mars for five active orbiter missions plus the planet's two natural satellites. It illustrates the potential for intersections of the spacecraft orbits. The number of active orbiter missions at Mars increased from three to five in 2014. With the increased traffic, NASA has augmented a process for anticipating orbit intersections and avoiding collisions. NASA's Mars Odyssey and MRO (Mars Reconnaissance Orbiter) travel near-circular orbits. The European Space Agency's Mars Express, NASA's MAVEN (Mars Atmosphere and Volatile Evolution) and India's MOM (Mars Orbiter Mission), travel more elliptical orbits. Phobos and Deimos are the two natural moons of Mars. http://photojournal.jpl.nasa.gov/catalog/PIA19396

  13. Double-core evolution. 5: Three-dimensional effects in the merger of a red giant with a dwarf companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1994-01-01

    The evolution of the common envelope phase of a binary system consisting of a 4.67 solar mass red giant and a 0.94 solar mass dwarf is studied using smoothed particle hydrodynamics. We demonstrate that the three-dimensional effects associated with the gravitational tidal torques lead to a rapid decay of the orbit on timescales approximately less than 1 yr. The relative orbit of the two cores in the common envelope is initally eccentric and tends to circularize as the orbital separation of the two cores decreases. The angular momentum lost from the orbital motion is distributed throughout the common envelope, and the double core does not evolve to a state of co-rotation for the evolutionary time followed. The energy dissipated from the relative orbit and deposited in the common envelope results in the ejection of approximately 13% of the mass of the envelope. The mass is ejected in all directions, but there is a preference for mass ejection in the orbital plane of the binary system. For example, approximately 80% of the ejected mass lies within 30 deg of the binary orbital plane. Because gravitational forces are long range, most of the energy and angular momentum is imparted to a small fraction of the common envelope resulting in an efficiency of the mass ejection process of approximately 15%. The core of the red giant executes significant displacement with respect to the center of mass of the system and contributes nearly equally to the total energy dissipation rate during the latter phases of the evolution. The degree of departure from synchronism of the initial binary system can be an important property of the system which can affect the outcome of the common envelope phase.

  14. Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of GJ 667C

    DTIC Science & Technology

    2014-01-10

    observed trend is consistent with a gravitational acceleration exerted by the inner pair of stars (A and B) in this multiple star system. Our planet...the other hand, the observed trend in the RV of the C component can be caused by its orbital acceleration around the AB pair. 3. LONG-TERM EVOLUTION...polar torque acting on a rotating planet is the sum of the gravitational torque, caused by the triaxial permanent shape and the corresponding quadrupole

  15. FORMATION AND EVOLUTION OF GALACTIC INTERMEDIATE/LOW-MASS X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn

    2015-08-10

    We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries (I/LMXBs) by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs and present their distribution in the initial donor mass versus initial orbital period diagram. We then follow the evolution of the I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We find that the birthrate of the I/LMXB population is in the range of 9 × 10{sup −6}–3.4 × 10{sup −5} yr{sup −1}, compatiblemore » with that of BMSPs that are thought to descend from I/LMXBs. We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries with orbital periods ≲1 day and donor masses ≲0.3M{sub ⊙}. The resultant BMSPs have orbital periods ranging from less than 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates (∼10{sup −10} M{sub ⊙} yr{sup −1}) of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ∼0.1–10 days is severely underestimated. These discrepancies imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss.« less

  16. On the timing properties of SAX J1808.4-3658 during its 2015 outburst

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Di Salvo, T.; Burderi, L.; Riggio, A.; Pintore, F.; Gambino, A. F.; Iaria, R.; Tailo, M.; Scarano, F.; Papitto, A.

    2017-10-01

    We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuSTAR observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin-down at an average rate \\dot{ν }_{SD}=1.5(2)× 10^{-15} Hz s-1. We also discuss possible corrections to the spin-down rate accounting for mass accretion on to the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatible with a binary expansion at a mean rate \\dot{P}_{orb}=3.6(4)× 10^{-12} s s-1, in agreement with previously reported values. This fast evolution is incompatible with an evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. We discuss the observed orbital expansion in terms of non-conservative mass transfer and gravitational quadrupole coupling mechanism. We find that the latter can explain, under certain conditions, small fluctuations (of the order of few seconds) of the orbital period around a global parabolic trend. At the same time, a non-conservative mass transfer is required to explain the observed fast orbital evolution, which likely reflects ejection of a large fraction of mass from the inner Lagrangian point caused by the irradiation of the donor by the magnetodipole rotator during quiescence (radio-ejection model). This strong outflow may power tidal dissipation in the companion star and be responsible of the gravitational quadrupole change oscillations.

  17. Contribution of explosion and future collision fragments to the orbital debris environment

    NASA Technical Reports Server (NTRS)

    Su, S.-Y.; Kessler, D. J.

    1985-01-01

    The time evolution of the near-earth man-made orbital debris environment modeled by numerical simulation is presented in this paper. The model starts with a data base of orbital debris objects which are tracked by the NORAD ground radar system. The current untrackable small objects are assumed to result from explosions and are predicted from data collected from a ground explosion experiment. Future collisions between earth orbiting objects are handled by the Monte Carlo method to simulate the range of collision possibilities that may occur in the real world. The collision fragmentation process between debris objects is calculated using an empirical formula derived from a laboratory spacecraft impact experiment to obtain the number versus size distribution of the newly generated debris population. The evolution of the future space debris environment is compared with the natural meteoroid background for the relative spacecraft penetration hazard.

  18. Is the Eureka cluster a collisional family of Mars Trojan asteroids?

    NASA Astrophysics Data System (ADS)

    Christou, Apostolos A.; Borisov, Galin; Dell'Oro, Aldo; Cellino, Alberto; Bagnulo, Stefano

    2017-09-01

    We explore the hypothesis that the Eureka family of sub-km asteroids in the L5 region of Mars could have formed in a collision. We estimate the size distribution index from available information on family members; model the orbital dispersion of collisional fragments; and carry out a formal calculation of the collisional lifetime as a function of size. We find that, as initially conjectured by Rivkin et al. (2003), the collisional lifetime of objects the size of (5261) Eureka is at least a few Gyr, significantly longer than for similar-sized Main Belt asteroids. In contrast, the observed degree of orbital compactness is inconsistent with all but the least energetic family-forming collisions. Therefore, the family asteroids may be ejecta from a cratering event sometime in the past ∼ 1 Gyr if the orbits are gradually dispersed by gravitational diffusion and the Yarkovsky effect (Ćuk et al., 2015). The comparable sizes of the largest family members require either negligible target strength or a particular impact geometry under this scenario (Durda et al., 2007; Benavidez et al., 2012). Alternatively, the family may have formed by a series of YORP-induced fission events (Pravec et al., 2010). The shallow size distribution of the family is similar to that of small MBAs (Gladman et al., 2009) interpreted as due to the dominance of this mechanism for Eureka-family-sized asteroids (Jacobson et al., 2014). However, our population index estimate is likely a lower limit due to the small available number of family asteroids and observational incompleteness. Future searches for fainter family members, further observational characterisation of the known Trojans' physical properties as well as orbital and rotational evolution modelling will help distinguish between different formation models.

  19. The Generation of the Distant Kuiper Belt by Planet Nine from an Initially Broad Perihelion Distribution

    NASA Astrophysics Data System (ADS)

    Khain, Tali; Batygin, Konstantin; Brown, Michael E.

    2018-06-01

    The observation that the orbits of long-period Kuiper Belt objects (KBOs) are anomalously clustered in physical space has recently prompted the Planet Nine hypothesis—the proposed existence of a distant and eccentric planetary member of our solar system. Within the framework of this model, a Neptune-like perturber sculpts the orbital distribution of distant KBOs through a complex interplay of resonant and secular effects, such that in addition to perihelion-circulating objects, the surviving orbits get organized into apsidally aligned and anti-aligned configurations with respect to Planet Nine’s orbit. In this work, we investigate the role of Kuiper Belt initial conditions on the evolution of the outer solar system using numerical simulations. Intriguingly, we find that the final perihelion distance distribution depends strongly on the primordial state of the system, and we demonstrate that a bimodal structure corresponding to the existence of both aligned and anti-aligned clusters is only reproduced if the initial perihelion distribution is assumed to extend well beyond ∼36 au. The bimodality in the final perihelion distance distribution is due to the existence of permanently stable objects, with the lower perihelion peak corresponding to the anti-aligned orbits and the higher perihelion peak corresponding to the aligned orbits. We identify the mechanisms that enable the persistent stability of these objects and locate the regions of phase space in which they reside. The obtained results contextualize the Planet Nine hypothesis within the broader narrative of solar system formation and offer further insight into the observational search for Planet Nine.

  20. Vlasov Treatment of Coherent Synchrotron Radiation from Arbitrary Planar Orbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warnock, R

    2004-09-22

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates. The plates represent shielding due to the vacuum chamber. The vertical distribution of charge is an arbitrary fixed function. Our goal is to follow the time evolution of the phase space distribution by solving the Vlasov-Maxwell equations in the time domain. This provides simulations with lower numerical noise than the macroparticle method, and allows one to study such issues as emittance degradation and microbunching due to CSR in bunch compressors. The fields excited by the bunch are computed inmore » the laboratory frame from a new formula that leads to much simpler computations than the usual retarded potentials or Lienard-Wiechert potentials. The nonlinear Vlasov equation, formulated in the interaction picture, is integrated in the beam frame by approximating the Perron-Frobenius operator. The distribution function is represented by B-splines, in a scheme preserving positivity and normalization of the distribution. For application to a chicane bunch compressor we take steps to deal with energy chirp, an initial near-perfect correlation of energy with position in the bunch.« less

  1. Tidal Interaction among Red Giants Close Binary Systems in APOGEE Database

    NASA Astrophysics Data System (ADS)

    Sun, Meng; Arras, Phil; Majewski, Steven R.; Troup, Nicholas William; Weinberg, Nevin N.

    2017-01-01

    Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), the tidal evolution of binaries containing a red giant branch (RGB) star with a stellar or substellar companion was investigated. The tide raised by the companion in the RGB star leads to exchange of angular momentum between the orbit and the stellar spin, causing the orbit to contract. The tidal dissipation rate is computed using turbulent viscosity acting on the equilibrium tidal flow, where careful attention is paid to the effects of reduced viscosity for close-in companions. Evolutionary models for the RGB stars, from the zero-age main sequence to the present, were acquired from the MESA code. "Standard" turbulent viscosity gives rise to such a large orbital decay that many observed systems have decay times much shorter than the RGB evolution time. Several theories for "reduced" turbulent viscosity are investigated, and reduce the number of systems with uncomfortably short decay times.

  2. A deformation model of flexible, HAMR objects for accurate propagation under perturbations and the self-shadowing effects

    NASA Astrophysics Data System (ADS)

    Channumsin, Sittiporn; Ceriotti, Matteo; Radice, Gianmarco

    2018-02-01

    A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth's gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100 days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.

  3. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    NASA Technical Reports Server (NTRS)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  4. Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    NASA Technical Reports Server (NTRS)

    Smith, E. A.; Ward, D. T.; Schmitt, M. W.; Phenneger, M. C.; Vaughn, F. J.; Lupisella, M. L.

    1989-01-01

    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions.

  5. The Architectural Design Rules of Solar Systems Based on the New Perspective

    NASA Astrophysics Data System (ADS)

    Sharma, Bijay Kumar

    2011-05-01

    In this paper I present a new perspective of the birth and evolution of Planetary Systems. This new perspective presents an all encompassing and self consistent Paradigm of the birth and evolution of the solar systems. In doing so it redefines astronomy and rewrites astronomical principles. Kepler and Newton defined a stable and non-evolving elliptical orbits. While this perspective defines a collapsing or expanding spiral orbit of planets except for Brown Dwarfs. Brown Dwarfs are significant fraction of the central star. Hence they rapidly evolve from non-Keplerian state to the end point which is a Keplerian state where it is in stable elliptical orbits. On the basis of the Lunar Laser Ranging Data released by NASA on the Silver Jubilee Celebration of Man's Landing on Moon on 21st July 1969-1994, theoretical formulation of Earth-Moon tidal interaction was carried out and Planetary Satellite Dynamics was established. It was found that this mathematical analysis could as well be applied to Star and Planets system and since every star could potentially contain an extra-solar system, hence we have a large ensemble of exo-planets to test our new perspective on the birth and evolution of solar systems. Till date 403 exo-planets have been discovered in 390 extra-solar systems by radial velocity method, by transiting planet method, by gravitational lensing method, by direct imaging method and by timing method. I have taken 12 single planet systems, four Brown Dwarf - Star systems and two Brown Dwarf pairs. Following architectural design rules are corroborated through this study of exo-planets. All planets are born at inner Clarke's Orbit what we refer to as inner geo-synchronous orbit in case of Earth-Moon System. The inner Clarke's Orbit is an orbit of unstable equilibrium. By any perturbative force such as cosmic particles or radiation pressure, the planet gets tipped long of aG1 or short of aG1. Here aG1 is inner Clarke's Orbit. If planet is long of aG1 then it is said to be in extra-synchronous orbit. Here Gravitational Sling Shot effect is in play. In gravity assist planet fly-by maneuver in space flights, gravitational sling shot is routinely used to boost the space craft to its destination. The exo-planet can either be launched on death spiral as CLOSE HOT JUPITERS or can be launched on an expanding spiral path as the planets in our Solar System are. In death spiral, exo-planet less than 5 mJ will get pulverized and vaporized in close proximity to the host star. If the mass is between 5 and 7.5 mJ then it will be partially vaporized and partially engulfed by the host star and if it is greater than 7.5 mJ, then it will be completely ingested by the host star. In the process the planet will deposit all its material and angular momentum in the Host Star. This will leave tell-tale imprints of ingestion: in such cases host Star will have higher 7Li, host star will become a rapidly rotating progenitor and the host star will have excess IR. All these have been confirmed by observations of Transiting Planets. It was also found that if the exo-planet are significant fraction of the host star then those exo-planets rapidly migrate from aG1 to aG2 and have very short Time Constant of Evolution as Brown Dwarfs have. But if exo-planets are insignificant fraction of the host star as our terrestrial planets are then they are stay put in their original orbit of birth. By corollary this implies that Giant exo-planets reach nearly Unity Evolution Factor in a fraction of the life span of a solar system. This is particularly true for brown dwarfs orbiting main sequence stars. In this study four star systems hosting Brown Dwarfs, two Brown Dwarf pairs and 12 extrasolar systems hosting Jupiter sized planets are selected. In Brown Dwarfs evolution factor is invariably UNITY or near UNITY irrespective of their respective age and Time Constant of Evolution is very short of the order of year or tens of years. In case of 12 exo-planets system with increasing mass ratio evolution factor increases and time constant of evolution shortens from Gy to My though there are two exceptions. TW Hydrae is a special case. This Solar System is newly born system which is only 9 million years old. Hence its exo-planet has just been born and it is very near its birth place just as predicted by my hypothesis. In fact it is only slightly greater than aG1. This vindicates our basic premise that planets are always born at inner Clarke's Orbit. This study vindicates the design rules which had been postulated at 35th COSPAR Scientific Assembly in 2004 at Paris, France, under the title "New Perspective on the Birth & Evolution of Solar Systems".

  6. Concepts for the evolution of the Space Station Program

    NASA Technical Reports Server (NTRS)

    Michaud, Roger B.; Miller, Ladonna J.; Primeaux, Gary R.

    1986-01-01

    An evaluation is made of innovative but pragmatic waste management, interior and exterior orbital module construction, Space Shuttle docking, orbital repair operation, and EVA techniques applicable to the NASA Space Station program over the course of its evolution. Accounts are given of the Space Shuttle's middeck extender module, an on-orbit module assembly technique employing 'Pringles' stack-transportable conformal panels, a flexible Shuttle/Space Station docking tunnel, an 'expandable dome' for transfer of objects into the Space Station, and a Space Station dual-hatch system. For EVA operations, pressurized bubbles with articulating manipulator arms and EVA hard suits incorporating maneuvering, life support and propulsion capabilities, as well as an EVA gas propulsion system, are proposed. A Space Station ultrasound cleaning system is also discussed.

  7. Strong-field gravitational-wave emission in Schwarzschild and Kerr geometries: some general considerations

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. F.; Rueda, J. A.; Ruffini, R.

    2018-01-01

    We have used the perturbations of the exact solutions of the Einstein equations to estimate the relativistic wave emission of a test particle orbiting around a black hole. We show how the hamiltonian equations of motion of a test particle augmented with the radiation-reaction force can establish a priori constraints on the possible phenomena occurring in the merger of compact objects. The dynamical evolution consists of a helicoidal sequence of quasi-circular orbits, induced by the radiation-reaction and the background spacetime. Near the innermost stable circular orbit the evolution is followed by a smooth transition and finally plunges geodesically into the black hole horizon. This analysis gives physical insight of the merger of two equal masses objects.

  8. Binary YORP Effect and Evolution of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Steinberg, Elad; Sari, Re'em

    2011-02-01

    The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over ~104-105 years for a Dp = 2 km primary with a Ds = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J 2 effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.

  9. Dynamical implantation of objects in the Kuiper Belt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brasil, P. I. O.; Nesvorný, D.; Gomes, R. S., E-mail: pedro_brasil87@hotmail.com, E-mail: davidn@boulder.swri.edu, E-mail: rodney@on.br

    Several models have been suggested in the past to describe the dynamical formation of hot Kuiper Belt objects (hereafter Hot Classicals or HCs for short). Here, we discuss a dynamical mechanism that allows orbits to evolve from the primordial planetesimal disk at ≲ 35 AU to reach the orbital region now occupied by HCs. We performed three different sets of numerical simulations to illustrate this mechanism. Two of these simulations were based on modern theories for the early evolution of the solar system (the Nice and jumping-Jupiter models). The third simulation was performed with the purpose of increasing the resolutionmore » at 41-46 AU. The common aspect of these simulations is that Neptune scatters planetesimals from ≲ 35 AU to >40 AU and then undergoes a long phase of slow residual migration. Our results show that to reach an HC orbit, a scattered planetesimal needs to be captured in a mean motion resonance (MMR) with Neptune where the perihelion distance rises due to the Kozai resonance (which occurs in MMRs even for moderate inclinations). Finally, while Neptune is still migrating, the planetesimal is released from the MMR on a stable HC orbit. We show that the orbital distribution of HCs expected from this process provides a reasonable match to observations. The capture efficiency and the mass deposited into the HC region appears to be sensitive to the maximum eccentricity reached by Neptune during the planetary instability phase. Additional work will be needed to resolve this dependency in detail.« less

  10. Stellar motion induced by gravitational instabilities in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Michael, Scott; Durisen, R. H.

    2010-07-01

    We test the effect of assumptions about stellar motion on the behaviour of gravitational instabilities (GIs) in protoplanetary discs around solar-type stars by performing two simulations that are identical in all respects except the treatment of the star. In one simulation, the star is assumed to remain fixed at the centre of the inertial reference frame. In the other, stellar motion is handled properly by including an indirect potential in the hydrodynamic equations to model the star's reference frame as one which is accelerated by star/disc interactions. The discs in both simulations orbit a solar mass star, initially extend from 2.3 to 40 au with a ϖ-1/2 surface density profile, and have a total mass of 0.14 Msolar. The γ = 5/3 ideal gas is assumed to cool everywhere with a constant cooling time of two outer rotation periods. The overall behaviour of the disc evolution is similar, except for weakening in various measures of GI activity by about at most tens of per cent for the indirect potential case. Overall conclusions about disc evolution in earlier papers by our group, where the star was always assumed to be fixed in an inertial frame, remain valid. There is no evidence for independent one-armed instabilities, like the Stimulation by the Long-range Interaction of Newtonian Gravity (SLING), in either simulation. On the other hand, the stellar motion about the system centre of mass (COM) in the simulation with the indirect potential is substantial, up to 0.25 au during the burst phase, as GIs initiate, and averaging about 0.9 au during the asymptotic phase, when the GIs reach an overall balance of heating and cooling. These motions appear to be a stellar response to non-linear interactions between discrete global spiral modes in both the burst and asymptotic phases of the evolution, and the star's orbital motion about the COM reflects the orbit periods of disc material near the corotation radii of the dominant spiral waves. This motion is, in principle, large enough to be observable and could be confused with stellar wobble due to the presence of one or more super-Jupiter mass protoplanets orbiting at 10's au. We discuss why the excursions in our simulation are so much larger than those seen in simulations by Rice et al.

  11. Frequency and time-domain inspiral templates for comparable mass compact binaries in eccentric orbits

    NASA Astrophysics Data System (ADS)

    Tanay, Sashwat; Haney, Maria; Gopakumar, Achamveedu

    2016-03-01

    Inspiraling compact binaries with non-negligible orbital eccentricities are plausible gravitational wave (GW) sources for the upcoming network of GW observatories. In this paper, we present two prescriptions to compute post-Newtonian (PN) accurate inspiral templates for such binaries. First, we adapt and extend the postcircular scheme of Yunes et al. [Phys. Rev. D 80, 084001 (2009)] to obtain a Fourier-domain inspiral approximant that incorporates the effects of PN-accurate orbital eccentricity evolution. This results in a fully analytic frequency-domain inspiral waveform with Newtonian amplitude and 2PN-order Fourier phase while incorporating eccentricity effects up to sixth order at each PN order. The importance of incorporating eccentricity evolution contributions to the Fourier phase in a PN-consistent manner is also demonstrated. Second, we present an accurate and efficient prescription to incorporate orbital eccentricity into the quasicircular time-domain TaylorT4 approximant at 2PN order. New features include the use of rational functions in orbital eccentricity to implement the 1.5PN-order tail contributions to the far-zone fluxes. This leads to closed form PN-accurate differential equations for evolving eccentric orbits, and the resulting time-domain approximant is accurate and efficient to handle initial orbital eccentricities ≤0.9 . Preliminary GW data analysis implications are probed using match estimates.

  12. Orbits and Interiors of Planets

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin

    2012-05-01

    The focus of this thesis is a collection of problems of timely interest in orbital dynamics and interior structure of planetary bodies. The first three chapters are dedicated to understanding the interior structure of close-in, gaseous extrasolar planets (hot Jupiters). In order to resolve a long-standing problem of anomalously large hot Jupiter radii, we proposed a novel magnetohydrodynamic mechanism responsible for inflation. The mechanism relies on the electro-magnetic interactions between fast atmospheric flows and the planetary magnetic field in a thermally ionized atmosphere, to induce electrical currents that flow throughout the planet. The resulting Ohmic dissipation acts to maintain the interior entropies, and by extension the radii of hot Jupiters at an enhanced level. Using self-consistent calculations of thermal evolution of hot Jupiters under Ohmic dissipation, we demonstrated a clear tendency towards inflated radii for effective temperatures that give rise to significant ionization of K and Na in the atmosphere, a trend fully consistent with the observational data. Furthermore, we found that in absence of massive cores, low-mass hot Jupiters can over-flow their Roche-lobes and evaporate on Gyr time-scales, possibly leaving behind small rocky cores. Chapters four through six focus on the improvement and implications of a model for orbital evolution of the solar system, driven by dynamical instability (termed the "Nice" model). Hydrodynamical studies of the orbital evolution of planets embedded in protoplanetary disks suggest that giant planets have a tendency to assemble into multi-resonant configurations. Following this argument, we used analytical methods as well as self-consistent numerical N-body simulations to identify fully-resonant primordial states of the outer solar system, whose dynamical evolutions give rise to orbital architectures that resemble the current solar system. We found a total of only eight such initial conditions, providing independent constraints for the solar system's birth environment. Next, we addressed a significant drawback of the original Nice model, namely its inability to create the physically unique, cold classical population of the Kuiper Belt. Specifically, we showed that a locally-formed cold belt can survive the transient instability, and its relatively calm dynamical structure can be reproduced. The last four chapters of this thesis address various aspects and consequences of dynamical relaxation of planetary orbits through dissipative effects as well as the formation of planets in binary stellar systems. Using octopole-order secular perturbation theory, we demonstrated that in multi-planet systems, tidal dissipation often drives orbits onto dynamical "fixed points," characterized by apsidal alignment and lack of periodic variations in eccentricities. We applied this formalism towards investigating the possibility that the large orbital eccentricity of the transiting Neptune-mass planet Gliese 436b is maintained in the face of tidal dissipation by a second planet in the system and computed a locus of possible orbits for the putative perturber. Following up along similar lines, we used various permutations of secular theory to show that when applied specifically to close-in low-mass planetary systems, various terms in the perturbation equations become separable, and the true masses of the planets can be solved for algebraically. In practice, this means that precise knowledge of the system's orbital state can resolve the sin( i) degeneracy inherent to non-transiting planets. Subsequently, we investigated the onset of chaotic motion in dissipative planetary systems. We worked in the context of classical secular perturbation theory, and showed that planetary systems approach chaos via the so-called period-doubling route. Furthermore, we demonstrated that chaotic strange attractors can exist in mildly damped systems, such as photo-evaporating nebulae that host multiple planets. Finally, we considered planetary formation in highly inclined binary systems, where orbital excitation due to the Kozai resonance apparently implies destructive collisions among planetesimals. Through a proper account of gravitational interactions within the protoplanetary disk, we showed that fast apsidal recession induced by disk self-gravity tends to erase the Kozai effect, and ensure that the disk's unwarped, rigid structure is maintained, resolving the difficulty in planet-formation. (Abstract shortened by UMI.)

  13. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.

    2015-04-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  14. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin

    2015-04-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. As deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. This evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  15. Spin dynamics of close-in planets exhibiting large transit timing variations

    NASA Astrophysics Data System (ADS)

    Delisle, J.-B.; Correia, A. C. M.; Leleu, A.; Robutel, P.

    2017-09-01

    We study the spin evolution of close-in planets in compact multi-planetary systems. The rotation period of these planets is often assumed to be synchronous with the orbital period due to tidal dissipation. Here we show that planet-planet perturbations can drive the spin of these planets into non-synchronous or even chaotic states. In particular, we show that the transit timing variation (TTV) is a very good probe to study the spin dynamics, since both are dominated by the perturbations of the mean longitude of the planet. We apply our model to KOI-227 b and Kepler-88 b, which are both observed undergoing strong TTVs. We also perform numerical simulations of the spin evolution of these two planets. We show that for KOI-227 b non-synchronous rotation is possible, while for Kepler-88 b the rotation can be chaotic.

  16. Clumps in the outer disk by disk instability: Why they are initially gas giants and the legacy of disruption

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Hayfield, Tristen; Mayer, Lucio; Durisen, Richard H.

    2010-06-01

    We explore the initial conditions for fragments in the extended regions (r≳50AU) of gravitationally unstable disks. We combine analytic estimates for the fragmentation of spiral arms with 3D SPH simulations to show that initial fragment masses are in the gas giant regime. These initial fragments will have substantial angular momentum, and should form disks with radii of a few AU. We show that clumps will survive for multiple orbits before they undergo a second, rapid collapse due to H 2 dissociation and that it is possible to destroy bound clumps by transporting them into the inner disk. The consequences of disrupted clumps for planet formation, dust processing, and disk evolution are discussed. We argue that it is possible to produce Earth-mass cores in the outer disk during the earliest phases of disk evolution.

  17. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.

    PubMed

    Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; Zhou, Bo; Wu, Sanfeng; Dumcenco, Dumitru; Yan, Kai; Zhang, Yi; Mo, Sung-Kwan; Dudin, Pavel; Kandyba, Victor; Yablonskikh, Mikhail; Barinov, Alexei; Shen, Zhixun; Zhang, Shoucheng; Huang, Yingsheng; Xu, Xiaodong; Hussain, Zahid; Hwang, Harold Y; Cui, Yi; Chen, Yulin

    2016-08-10

    Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.

  18. Timing and searching millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew; van Straten, Willem

    2010-04-01

    Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.

  19. ACCURATE LOW-MASS STELLAR MODELS OF KOI-126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feiden, Gregory A.; Chaboyer, Brian; Dotter, Aaron, E-mail: gregory.a.feiden@dartmouth.edu

    2011-10-10

    The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influencemore » of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.« less

  20. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.

    PubMed

    Correia, Alexandre C M; Laskar, Jacques

    2004-06-24

    Mercury is locked into a 3/2 spin-orbit resonance where it rotates three times on its axis for every two orbits around the sun. The stability of this equilibrium state is well established, but our understanding of how this state initially arose remains unsatisfactory. Unless one uses an unrealistic tidal model with constant torques (which cannot account for the observed damping of the libration of the planet) the computed probability of capture into 3/2 resonance is very low (about 7 per cent). This led to the proposal that core-mantle friction may have increased the capture probability, but such a process requires very specific values of the core viscosity. Here we show that the chaotic evolution of Mercury's orbit can drive its eccentricity beyond 0.325 during the planet's history, which very efficiently leads to its capture into the 3/2 resonance. In our numerical integrations of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-orbit resonant state was the most probable final outcome of the planet's evolution, occurring 55.4 per cent of the time.

  1. Simultaneous Modeling of the Thermophysical and Dynamical Evolution of Saturn's Icy Satellites

    NASA Astrophysics Data System (ADS)

    Johnson, Torrence V.; Castillo-Rogez, J. C.; Matson, D. L.; Sotin, C.; Lunine, J. I.

    2007-10-01

    This poster describes the methodology we use in modeling the geophysical and dynamical evolution of the icy satellites of Saturn. For each of the model's modules we identify the relevant physical, chemical, mineralogical, and material science principals that are used. Then we present the logic of the modeling approach and its implementation. The main modules handle thermal, geological, and dynamical processes. Key parameters such as temperature, thermal conductivity, rigidity, viscosity, Young's modulus, dynamic Love number k2, and frequency-dependent dissipation factor Q(ω) are transmitted between the modules in the course of calculating an evolutionary sequence. Important initial conditions include volatile and nonvolatile compositions, formation time, rotation period and shape, orbital eccentricity and semimajor axis, and temperature and porosity profiles. The thermal module treats the thermal effects of accretion, melting of ice, differentiation and tidal dissipation. Heat transfer is by conduction only because in the cases thus far studied the criterion for convection is not met. The geological module handles the evolution of porosity, shape, and lithospheric strength. The dynamical module calculates despinning and orbital evolution. Chief outputs include the orbital evolution, the interior temperatures as a function of time and depth, and other parameters of interest such as k2, and Q(ω) as a function of time. This work was carried out at the Jet Propulsion Laboratory-California Institute of Technology, under contract to NASA.

  2. The evolution of a binary in a retrograde circular orbit embedded in an accretion disk

    NASA Astrophysics Data System (ADS)

    Ivanov, P. B.; Papaloizou, J. C. B.; Paardekooper, S.-J.; Polnarev, A. G.

    2015-04-01

    Aims: Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary with a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate the time scales for inward migration that leads to coalescence and the accretion rate to the secondary component. Methods: We employed both semi-analytic methods and two-dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. Results: We develop the theory of type I migration in this case and go on to determine the conditions for gap formation. We find that when this happens inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed accretion disk. The accretion rate onto the secondary itself is found to only play a minor role in the orbital evolution as it is of the order of q1/3 of that to the primary. We obtain good general agreement between the semi-analytic and fully numerical approaches and note that the former can be applied to disks with a wide dynamic range on long time scales. Conclusions: We conclude that inward migration induced by interaction with the disk can enable the binary to migrate inwards, alleviating the so-called final parsec problem. When q is sufficiently small, there is no well-pronounced cavity inside the binary orbit, unlike the prograde case. The accretion rate to the secondary does not influence the binary orbital evolution much, but can lead to some interesting observational consequences, provided the accretion efficiency is sufficiently large. In this case the binary may be detected as, for example, two sources of radiation rotating around each other. However, the study should be extended to consider orbits with significant eccentricity and the effects of gravitational radiation at small length scales. Also, torques acting between a circumbinary accretion disk, which has a non-zero inclination with respect to a retrograde binary orbit at large distances, may cause the inclination to increase on a time scale that can be similar to, or smaller than, the time scale of orbital evolution, depending on the disk parameters and binary mass ratio. This is also an aspect for future study. The movies are available in electronic form at http://www.aanda.org

  3. Correlated motion of electrons in the He atom irradiated with coherent light

    NASA Astrophysics Data System (ADS)

    Someda, Kiyohiko

    2018-05-01

    Correlated motion of electrons in the He atom irradiated with linearly polarised light is discussed. Mixing of the 2pz orbital into the 1s orbital is interpreted as motion of an electron along the z-axis. The transitions to the configurations (1s)(2pz) and (2pz)(2pz) from (1s)(1s) are described by using 1s-2pz hybridised orbitals with variable coefficients of hybridisation, in other words, by using the Thouless parameters. The quasi-eigenstates of the atom in stationary light are obtained on the basis of the Floquet formalism, and the behaviour of the Thouless parameters is analysed. Trajectories of time evolution of the Thouless parameters are found to be useful to grasp the motion of electrons. Shapes of the trajectories are classified into four modes: (1) two electrons try to stay away from each other due to Coulomb repulsion, (2) one of the electrons is solely driven to run, (3) two electrons are driven to travel together and (4) two electrons run anti-parallel with each other. The conditions of intensity and frequency of light causing these four modes are clarified and summarised in a kind of phase diagram.

  4. Energizing the last phase of common-envelope removal

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2017-11-01

    We propose a scenario where a companion that is about to exit a common-envelope evolution (CEE) with a giant star accretes mass from the remaining envelope outside its deep orbit and launches jets that facilitate the removal of the remaining envelope. The jets that the accretion disc launches collide with the envelope and form hot bubbles that energize the envelope. Due to gravitational interaction with the envelope, which might reside in a circumbinary disc, the companion migrates farther in, but the inner boundary of the circumbinary disc continues to feed the accretion disc. While near the equatorial plane mass leaves the system at a very low velocity, along the polar directions velocities are very high. When the primary is an asymptotic giant branch star, this type of flow forms a bipolar nebula with very narrow waists. We compare this envelope-removal process with four other last-phase common-envelope-removal processes. We also note that the accreted gas from the envelope outside the orbit in the last phase of the CEE might carry with it angular momentum that is anti-aligned to the orbital angular momentum. We discuss the implications to the possibly anti-aligned spins of the merging black hole event GW170104.

  5. Questions about Mercury's role in comparative planetary geophysics

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.; Weidenschilling, S. J.; Davis, D. R.; Greenberg, R.; Leake, M. A.

    1985-01-01

    Problems which have arisen in formulating a mutually consistent picture of Mercury's evolution are outlined. It appears that one or more of the following widely adopted assumptions are wrong about Mercury: (1) its original composition at least approximately resulted from equilibrium condensation; (2) its magnetic field arises from a still-active dynamo; (3) its thermal evolution should have yielded early core formation followed by cooling and a global contraction approaching 20 km in the planet's radius; (4) Mercury's surface is basaltic and the intercrater plains are of volcanic origin. It is suggested that Mercury's role in comparative planetology be reevaluated in the context of an alternative timescale based on the possibility that Mercury was subjected to a continuing source of cratering projectiles over recent aeons, which have not impacted the other terrestrial planets. Although such vulcanoids have not yet been discovered, the evolution of Mercury's orbit due to secular perturbations could well have led to a prolonged period of sweeping out any intra-Mercurian planetesimals that were originally present. Mercury's surface could be younger than previously believed, which explains why Mercury's core is still molten.

  6. Urey Prize Lecture - Chaotic dynamics in the solar system

    NASA Technical Reports Server (NTRS)

    Wisdom, Jack

    1987-01-01

    Attention is given to solar system cases in which chaotic solutions of Newton's equations are important, as in chaotic rotation and orbital evolution. Hyperion is noted to be tumbling chaotically; chaotic orbital evolution is suggested to be of fundamental importance to an accounting for the Kirkwood gaps in asteroid distribution and for the phase space boundary of the chaotic zone at the 3/1 mean-motion commensurability with Jupiter. In addition, chaotic trajectories in the 2/1 chaotic zone reach very high eccentricities by a route that carries them to high inclinations temporarily.

  7. Records of Migration in the Exoplanet Configurations

    NASA Astrophysics Data System (ADS)

    Michtchenko, Tatiana A.; Rodriguez Colucci, A.; Tadeu Dos Santos, M.

    2013-05-01

    Abstract (2,250 Maximum Characters): When compared to our Solar System, many exoplanet systems exhibit quite unusual planet configurations; some of these are hot Jupiters, which orbit their central stars with periods of a few days, others are resonant systems composed of two or more planets with commensurable orbital periods. It has been suggested that these configurations can be the result of a migration processes originated by tidal interactions of the planets with disks and central stars. The process known as planet migration occurs due to dissipative forces which affect the planetary semi-major axes and cause the planets to move towards to, or away from, the central star. In this talk, we present possible signatures of planet migration in the distribution of the hot Jupiters and resonant exoplanet pairs. For this task, we develop a semi-analytical model to describe the evolution of the migrating planetary pair, based on the fundamental concepts of conservative and dissipative dynamics of the three-body problem. Our approach is based on an analysis of the energy and the orbital angular momentum exchange between the two-planet system and an external medium; thus no specific kind of dissipative forces needs to be invoked. We show that, under assumption that dissipation is weak and slow, the evolutionary routes of the migrating planets are traced by the stationary solutions of the conservative problem (Birkhoff, Dynamical systems, 1966). The ultimate convergence and the evolution of the system along one of these modes of motion are determined uniquely by the condition that the dissipation rate is sufficiently smaller than the roper frequencies of the system. We show that it is possible to reassemble the starting configurations and migration history of the systems on the basis of their final states, and consequently to constrain the parameters of the physical processes involved.

  8. UNDERSTANDING THE EVOLUTION OF CLOSE BINARY SYSTEMS WITH RADIO PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: obenvenu@fcaglp.unlp.edu.ar, E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@astro.iag.usp.br

    We calculate the evolution of close binary systems (CBSs) formed by a neutron star (behaving as a radio pulsar) and a normal donor star, which evolve either to a helium white dwarf (HeWD) or to ultra-short orbital period systems. We consider X-ray irradiation feedback and evaporation due to radio pulsar irradiation. We show that irradiation feedback leads to cyclic mass transfer episodes, allowing CBSs to be observed in between episodes as binary radio pulsars under conditions in which standard, non-irradiated models predict the occurrence of a low-mass X-ray binary. This behavior accounts for the existence of a family of eclipsingmore » binary systems known as redbacks. We predict that redback companions should almost fill their Roche lobe, as observed in PSR J1723-2837. This state is also possible for systems evolving with larger orbital periods. Therefore, binary radio pulsars with companion star masses usually interpreted as larger than expected to produce HeWDs may also result in such quasi-Roche lobe overflow states, rather than hosting a carbon-oxygen WD. We found that CBSs with initial orbital periods of P{sub i} < 1 day evolve into redbacks. Some of them produce low-mass HeWDs, and a subgroup with shorter P{sub i} becomes black widows (BWs). Thus, BWs descend from redbacks, although not all redbacks evolve into BWs. There is mounting observational evidence favoring BW pulsars to be very massive (≳ 2 M {sub ☉}). As they should be redback descendants, redback pulsars should also be very massive, since most of the mass is transferred before this stage.« less

  9. On the potentially dramatic history of the super-Earth ρ 55 Cancri e

    NASA Astrophysics Data System (ADS)

    Hansen, Bradley M. S.; Zink, Jonathon

    2015-07-01

    We demonstrate that tidal evolution of the inner planet (`e') of the system orbiting the star ρ 55 Cancri could have led to passage through two secular resonances with other planets in the system. The consequence of this evolution is excitation of both the planetary eccentricity and inclination relative to the original orbital plane. The large mass ratio between the innermost planet and the others means that these excitations can be of substantial amplitude and can have dramatic consequences for the system organization. Such evolution can potentially explain the large observed mutual inclination between the innermost and outermost planets in the system, and implies that tidal heating could have substantially modified the structure of planet e, and possibly reduced its mass by Roche lobe overflow. Similar inner secular resonances may be found in many multiple planet systems and suggest that many of the innermost planets in these systems could have suffered similar evolutions.

  10. Launch window analysis of satellites in high eccentricity or large circular orbits

    NASA Technical Reports Server (NTRS)

    Renard, M. L.; Bhate, S. K.; Sridharan, R.

    1973-01-01

    Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions.

  11. Deep Hydrothermal Circulation and Implications for the Early Crustal Compositional and Thermal Evolution of Mars

    NASA Astrophysics Data System (ADS)

    Parmentier, E. M.; Mustard, J. F.; Ehlmann, B. L.; Roach, L. H.

    2007-12-01

    Both orbital remote sensing and geophysical observations indicate an important role for hydrothermal crustal cooling during the Noachian epoch. Orbital remote sensing shows that phyllosilicate minerals are common in Noachian-aged terrains but have not been observed in younger terrains (<3.8 Ga). Throughout the Noachian highlands, phyllosilicates are observed in deeply eroded terrains as well as in association with impact craters, in their walls, rims, ejecta, and in central peaks of craters as large as 45 km, corresponding to excavation depths of 4-5 km. CRISM and OMEGA mapping typically show phyllosilicate-bearing rocks occupy the lowest observable stratigraphic unit, and the most common alteration minerals are iron magnesium smectites which typically form at low pressures and temperatures <200°C. Widespread occurrences of phyllosilicates to depths of at least 4-5 km may provide evidence for deep crustal hydrothermal circulation during the Noachian. Geophysical evidence from surface deformation associated with faulting and from the analysis of the relationship of gravity and topography suggest elastic lithosphere thicknesses a large as ~30 km near the end of the Noachian, corresponding to surface heatflux of 20-40 mW/m2. Relaxation of elastic stresses due to thermally activated creep results in elastic lithosphere thicknesses sensitive to crustal temperatures. Plausible planetary thermal evolution models with chondritic abundances of heat producing elements predict a surface heat flux of 50-60 mW/m2 near the end of the Noachian. The difference in the heat flux required for planetary cooling and that inferred from elastic lithospheric thickness, suggests that a significant fraction of heatflow reaching the surface may be transported by hydrothermal convection rather than by conduction alone. Relaxation of crustal thickness variations due to lower crustal flow is sensitive to both the temperature and geothermal gradient at the crust-mantle boundary. In the presence of a low thermal conductivity regolith, thermal evolution models also indicate that crustal thickness variations created during the Noachian would not be preserved, even with a creep-resistant dry diabase rheology. Thus, a mechanism enhancing heat flux in the Noachian Martian crust is indicated. The studies to be reported will summarize these individual constraints on thermal structure and explore their combined implications for the depth and vigor of hydrothermal circulation during the early crustal evolution of Mars.

  12. Electric currents in the subsolar region of the Venus lower ionosphere

    NASA Technical Reports Server (NTRS)

    Cole, K. D.; Hoegy, W. R.

    1994-01-01

    The ion and electron momentum equations, along with Ampere's law, are solved for the ion and electron drift velocities and the electric field in the subsolar Venus ionosphere, assuming a partially ionized gas and a single ion species having the ion mean mass. All collision terms among the ions, electrons and neutral particles are retained in the equations. A general expression for the evolution of the magnetic field is derived and compared with earlier expressions. Subsolar region data in the altitude range 150-300 km from the Pioneer Venus Orbiter are used to calculate altitude profiles of the components of the current due to the electric field, gradients of pressure, and gravity. Altitude profiles of the ion and electron velocities as well as the electric field, electrodynamic heating, and the energy density are determined. Only orbits having a complete set of measured plasma temperatures and densities, neutral densities, and magnetic field were considered for analysis; the results are shown only for orbit 202. The vertical velocity at altitudes above 220 km is upgoing for orbit 202. This result is consistent with observations of molecular ions at high altitudes and of plasma flow to the nightside, both of which require upward velocity of ions from the dayside ionosphere. Above about 230 km the momentum equations are extremely sensitive to the altitude profiles of density, temperature, and magnetic field.

  13. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, T.; Ji, J. H.

    2013-03-01

    Clumpy structure in the Vega's debris disk has been previously reported at millimeter wavelengths and attributed to the concentrations of dust grains trapped in resonances with a potential planet. However, current imaging at multi-wavelengths with higher sensitivity is against the former observed structure. The disk is now revealed to have a smooth structure. A planet orbiting Vega could not be neglected,but the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize modified MERCURY codes to numerically simulate Vega system, consisting of debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80~AU and 120~AU, respectively. The radius of dust grains distributes in the range from 10 μm to 100 μm, in nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e=0.6), the planetary semi-major axis cannot be larger than 60~AU, otherwise, the structure of debris disk will congregate due to the existence of the postulated planet. The 2:1 mean motion resonances may play a significant role in sculpting the debris disk.

  14. A Study on the Characteristics of the Structure of Vega's Debris Disk

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Ji, Jiang-hui

    2013-10-01

    The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.

  15. THE ROLE OF CORE MASS IN CONTROLLING EVAPORATION: THE KEPLER RADIUS DISTRIBUTION AND THE KEPLER-36 DENSITY DICHOTOMY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Eric D.; Fortney, Jonathan J.

    2013-10-10

    We use models of coupled thermal evolution and photo-evaporative mass loss to understand the formation and evolution of the Kepler-36 system. We show that the large contrast in mean planetary density observed by Carter et al. can be explained as a natural consequence of photo-evaporation from planets that formed with similar initial compositions. However, rather than being due to differences in XUV irradiation between the planets, we find that this contrast is due to the difference in the masses of the planets' rock/iron cores and the impact that this has on mass-loss evolution. We explore in detail how our coupledmore » models depend on irradiation, mass, age, composition, and the efficiency of mass loss. Based on fits to large numbers of coupled evolution and mass-loss runs, we provide analytic fits to understand threshold XUV fluxes for significant atmospheric loss, as a function of core mass and mass-loss efficiency. Finally we discuss these results in the context of recent studies of the radius distribution of Kepler candidates. Using our parameter study, we make testable predictions for the frequency of sub-Neptune-sized planets. We show that 1.8-4.0 R{sub ⊕} planets should become significantly less common on orbits within 10 days and discuss the possibility of a narrow 'occurrence valley' in the radius-flux distribution. Moreover, we describe how photo-evaporation provides a natural explanation for the recent observations of Ciardi et al. that inner planets are preferentially smaller within the systems.« less

  16. Pre-late heavy bombardment evolution of the Earth's obliquity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Gongjie; Batygin, Konstantin, E-mail: gli@cfa.harvard.edu

    2014-11-01

    The Earth's obliquity is stabilized by the Moon, which facilitates a rapid precession of the Earth's spin axis, detuning the system away from resonance with orbital modulation. It is, however, likely that the architecture of the solar system underwent a dynamical instability-driven transformation, where the primordial configuration was more compact. Hence, the characteristic frequencies associated with orbital perturbations were likely faster in the past, potentially allowing for secular resonant encounters. In this work, we examine if, at any point in the Earth's evolutionary history, the obliquity varied significantly. Our calculations suggest that even though the orbital perturbations were different, themore » system nevertheless avoided resonant encounters throughout its evolution. This indicates that the Earth obtained its current obliquity during the formation of the Moon.« less

  17. ON THE DYNAMICS AND ORIGIN OF HAUMEA'S MOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ćuk, Matija; Ragozzine, Darin; Nesvorný, David, E-mail: mcuk@seti.org

    2013-10-01

    The dwarf planet Haumea has two large satellites, Namaka and Hi'iaka, which orbit at relatively large separations. Both moons have significant eccentricities and inclinations in a pattern that is consistent with a past orbital resonance. Based on our analysis, we find that the present system is not consistent with satellite formation close to the primary and tidal evolution through mean-motion resonances. We propose that Namaka experienced only limited tidal evolution, leading to the mutual 8:3 mean-motion resonance which redistributed eccentricities and inclinations between the moons. This scenario requires that the original orbit of Hi'iaka was mildly eccentric; we propose thatmore » this eccentricity was either primordial or acquired through encounters with other trans-Neptunian objects. Both dynamical stability and our preferred tidal evolution model imply that the moons' masses are only about one-half of previously estimated values, suggesting high albedos and low densities. Because the present orbits of the moons strongly suggest formation from a flat disk close to their present locations, we conclude that Hi'iaka and Namaka may be second-generation moons, formed after the breakup of a larger past moon, previously proposed as the parent body of the Haumea family. We derive plausible parameters of that moon, consistent with the current models of Haumea's formation. An interesting implication of this hypothesis is that Hi'iaka and Namaka may orbit retrograde with respect to Haumea's spin. Retrograde orbits of Haumea's moons would be in full agreement with available observations and our dynamical analysis, and could provide a unique confirmation of the ''disrupted satellite'' scenario for the origin of the family.« less

  18. Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, H.; Yin, Z. P.; Wu, S. F.

    In the iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d xy orbital than on the d xz/d yz orbital yield quasi-particles with d xy orbital character having larger mass renormalization and abnormal temperature evolution. However, the physical origin of this orbital di erentiation is debated between the Hund's coupling induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasi-particle (QP) anomaly in LiFeAs. Lastly, the excellent agreement between our photoemission measurements and first-principlesmore » many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling.« less

  19. Orbital-differentiated coherence-incoherence crossover identified by photoemission spectroscopy in LiFeAs

    DOE PAGES

    Miao, H.; Yin, Z. P.; Wu, S. F.; ...

    2016-11-14

    In the iron-based superconductors (FeSCs), orbital differentiation is an important phenomenon, whereby correlations stronger on the d xy orbital than on the d xz/d yz orbital yield quasi-particles with d xy orbital character having larger mass renormalization and abnormal temperature evolution. However, the physical origin of this orbital di erentiation is debated between the Hund's coupling induced unbinding of spin and orbital degrees of freedom and the Hubbard interaction instigated orbital selective Mott transition. Here we use angle-resolved photoemission spectroscopy to identify an orbital-dependent correlation-induced quasi-particle (QP) anomaly in LiFeAs. Lastly, the excellent agreement between our photoemission measurements and first-principlesmore » many-body theory calculations shows that the orbital-differentiated QP lifetime anomalies in LiFeAs are controlled by the Hund's coupling.« less

  20. Life and Death Near Zero: The distribution and evolution of NEA orbits of near-zero MOID, (e, i), and q

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Morbidelli, Alessandro; Granvik, Mikael

    2016-10-01

    Modeling the distribution of orbits with near-zero orbital parameters requires special attention to the dimensionality of the parameters in question. This is even more true since orbits of near-zero MOID, (e, i), or q are especially interesting as sources or sinks of NEAs. An essentially zero value of MOID (Minimum Orbital Intersection Distance) with respect to the Earth's orbit is a requirement for an impact trajectory, and initially also for ejecta from lunar impacts into heliocentric orbits. The collision cross section of the Earth goes up greatly with decreasing relative encounter velocity, venc, thus the impact flux onto the Earth is enhanced in such low-venc objects, which correspond to near-zero (e,i) orbits. And lunar ejecta that escapes from the Earth-moon system mostly does so at only barely greater than minimum velocity for escape (Gladman, et al., 1995, Icarus 118, 302-321), so the Earth-moon system is both a source and a sink of such low-venc orbits, and understanding the evolution of these populations requires accurately modeling the orbit distributions. Lastly, orbits of very low heliocentric perihelion distance, q, are particularly interesting as a "sink" in the NEA population as asteroids "fall into the sun" (Farinella, et al., 1994, Nature 371, 314-317). Understanding this process, and especially the role of disintegration of small asteroids as they evolve into low-q orbits (Granvik et al., 2016, Nature 530, 303-306), requires accurate modeling of the q distribution that would exist in the absence of a "sink" in the distribution. In this paper, we derive analytical expressions for the expected steady-state distributions near zero of MOID, (e,i), and q in the absence of sources or sinks, compare those to numerical simulations of orbit distributions, and lastly evaluate the distributions of discovered NEAs to try to understand the sources and sinks of NEAs "near zero" of these orbital parameters.

  1. Orbital motion of the solar power satellite

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.

    1977-01-01

    A study on the effects of solar radiation pressure on the SPS orbit is documented. It was shown that the eccentricity of the orbit can increase from initially being zero. The SPS configuration is primarily considered but the results are applicable to any geosynchronous satellite that resembles a flat surface continually facing the sun. The orbital evolution of the SPS was investigated over its expected 30 year lifetime and the satellite was assumed to be in free flight. The satellite's motion was described with analytical formulae which could be used to develop an orbit control theory in order to minimize station keeping costs.

  2. Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers

    NASA Astrophysics Data System (ADS)

    Poisson, Eric

    1996-11-01

    Among the expected sources of gravitational waves for the Laser Interferometer Space Antenna (LISA) is the capture of solar-mass compact stars by massive black holes residing in galactic centers. We construct a simple model for such a capture, in which the compact star moves freely on a circular orbit in the equatorial plane of the massive black hole. We consider the gravitational waves emitted during the late stages of orbital evolution, shortly before the orbiting mass reaches the innermost stable circular orbit. We construct a simple model for the gravitational-wave signal, in which the phasing of the waves plays the dominant role. The signal's behavior depends on a number of parameters, including μ, the mass of the orbiting star, M, the mass of the central black hole, and J, the black hole's angular momentum. We calculate, using our simplified model, and in the limit of large signal-to-noise ratio, the accuracy with which these quantities can be estimated during a gravitational-wave measurement. For concreteness we consider a typical system consisting of a 10Msolar black hole orbiting a nonrotating black hole of mass 106Msolar, whose gravitational waves are monitored during an entire year before the orbiting mass reaches the innermost stable circular orbit. Defining χ≡cJ/GM2 and η≡μ/M, we find Δχ~=5×10-2/ρ, Δη/η~=6×10-2/ρ, and ΔM/M~=2×10-3/ρ. Here, ρ denotes the signal-to-noise ratio associated with the signal and its measurement. That these uncertainties are all much smaller than 1/ρ, the signal-to-noise ratio level, is due to the large number of wave cycles received by the detector in the course of one year. These are the main results of this paper. Our simplified model also suggests a method for experimentally testing the strong-field predictions of general relativity.

  3. The long-term evolution of known resonant trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Saillenfest, M.; Lari, G.

    2017-07-01

    Aims: Numerous trans-Neptunian objects are known to be in mean-motion resonance with Neptune. We aim to describe their long-term orbital evolution (both past and future) by means of a one-degree-of-freedom secular model. In this paper, we focus only on objects with a semi-major axis larger than 50 astronomical units (au). Methods: For each resonant object considered, a 500 000-year numerical integration is performed. The output is digitally filtered to get the parameters of the resonant secular model. Their long-term (Giga-year) orbital evolution is then represented by the level curves of the secular Hamiltonian. Results: For the majority of objects considered, the mean-motion resonance has little impact on the long-term trajectories (the secular dynamics is similar to a non-resonant one). However, a subset of objects is strongly affected by the resonance, producing moderately-high-amplitude oscillations of the perihelion distance and/or libration of the argument of perihelion around a fixed centre. Moreover, the high perihelion distance of the object 2015 FJ345 is plainly explained by long-term resonant dynamics, allowing us to also deduce its orbital elements at the time of capture in resonance (at least 15 million years ago). The same type of past evolution is expected for 2014 FZ71.

  4. Complexity of the Earth's space-atmosphere interaction region (SAIR) response to the solar flux at 10.7 cm as seen through the evaluation of five solar cycle two-line element (TLE) records

    NASA Astrophysics Data System (ADS)

    Molaverdikhani, Karan; Ajabshirizadeh, Ali; Davoudifar, Pantea; Lashkanpour, Majid

    2016-09-01

    Orbital debris are long-standing threats to space systems. They also contribute to the flux of macroscopic particles into the Earth's atmosphere and eventually affects environmental processes across several other related regions. As impactful space debris may be, debris along with other Low Earth Orbit (LEO) orbiting objects, also serve as valuable long-monitoring probes to deduce the properties of geospace environment in-situ. We define the Daily Decay Rate (DDR) as a suitable indicator of how the Earth's space-atmosphere interaction region (SAIR) responds to solar activity and how solar activity directly affects the orbital evolution of a LEO orbiter. We present a computationally simplified technique that simultaneously solves the motion equations for DDR and cross-sectional area to mass ratio (A/m) from consecutive TLE records. By evaluating more than 50 million TLE records we estimate A/m of 15,307 NORAD-indexed objects and determine how DDR varies. We observe the thermospheric ;natural thermostat; in our results, consistent with previous studies. We compare the observed DDRs with two models based on NRLMSISE-00 and DTM-2013, and present evidence the models display a systemic altitudinal bias. We propose several possibilities to explain this altitudinal bias including the overestimated CD at low altitudes in our models (presumably due to the despinning effect of perturbing forces on the orbiting objects), and incomplete and limited coverage of in-situ observations at high solar activity. We conclude that the density models do not reliably reproduce the densities and atmospheric-thermospheric behaviors at high solar active conditions, especially for F10.7 cm above 300 sfu.

  5. Effectiveness of GNSS disposal strategies

    NASA Astrophysics Data System (ADS)

    Alessi, E. M.; Rossi, A.; Valsecchi, G. B.; Anselmo, L.; Pardini, C.; Colombo, C.; Lewis, H. G.; Daquin, J.; Deleflie, F.; Vasile, M.; Zuiani, F.; Merz, K.

    2014-06-01

    The management of the Global Navigation Satellite Systems (GNSS) and of the Medium Earth Orbit (MEO) region as a whole is a subject that cannot be deferred, due to the growing exploitation and launch rate in that orbital regime. The advent of the European Galileo and the Chinese Beidou constellations significantly added complexity to the system and calls for an adequate global view on the four constellations present in operation. The operation procedures, including maintenance and disposal practices, of the constellations currently deployed were analyzed in order to asses a proper reference simulation scenario. The complex dynamics of the MEO region with all the geopotential and lunisolar resonances was studied to better identify the proper end-of-life orbit for every proposed strategy, taking into account and, whenever possible, exploiting the orbital dynamics in this peculiar region of space. The possibility to exploit low thrust propulsion or non gravitational perturbations with passive de-orbiting devices (and a combination of the two) was analyzed, in view of possible applications in the design of the future generations of the constellations satellites. Several upgrades in the long-term evolution software SDM and DAMAGE were undertaken to properly handle the constellation simulations in every aspect from constellation maintenance to orbital dynamics. A thorough approach considering the full time evolving covariance matrix associated with every object was implemented in SDM to compute the collision risk and associated maneuver rate for the constellation satellites. Once the software upgrades will be completed, the effectiveness of the different disposal strategies will be analyzed in terms of residual collision risk and avoidance maneuvers rate. This work was performed under the ESA/GSP Contract no. 4000107201/12/F/MOS.

  6. A primordial origin for misalignments between stellar spin axes and planetary orbits.

    PubMed

    Batygin, Konstantin

    2012-11-15

    The existence of gaseous giant planets whose orbits lie close to their host stars ('hot Jupiters') can largely be accounted for by planetary migration associated with viscous evolution of proto-planetary nebulae. Recently, observations of the Rossiter-McLaughlin effect during planetary transits have revealed that a considerable fraction of hot Jupiters are on orbits that are misaligned with respect to the spin axes of their host stars. This observation has cast doubt on the importance of disk-driven migration as a mechanism for producing hot Jupiters. Here I show that misaligned orbits can be a natural consequence of disk migration in binary systems whose orbital plane is uncorrelated with the spin axes of the individual stars. The gravitational torques arising from the dynamical evolution of idealized proto-planetary disks under perturbations from massive distant bodies act to misalign the orbital planes of the disks relative to the spin poles of their host stars. As a result, I suggest that in the absence of strong coupling between the angular momentum of the disk and that of the host star, or of sufficient dissipation that acts to realign the stellar spin axis and the planetary orbits, the fraction of planetary systems (including systems of 'hot Neptunes' and 'super-Earths') whose angular momentum vectors are misaligned with respect to their host stars will be commensurate with the rate of primordial stellar multiplicity.

  7. An interpretation of the narrow positron annihilation feature from X-ray nova Muscae 1991

    NASA Technical Reports Server (NTRS)

    Chen, Wan; Gehrels, Neil; Cheng, F. H.

    1993-01-01

    The physical mechanism responsible for the narrow redshifted positron annihilation gamma-ray line from the X-ray nova Muscae 1991 is studied. The orbital inclination angle of the system is estimated and its black hole mass is constrained under the assumptions that the annihilation line centroid redshift is purely gravitational and that the line width is due to the combined effect of temperature broadening and disk rotation. The large black hole mass lower limit of 8 solar and the high binary mass ratio it implies raise a serious challenge to theoretical models of the formation and evolution of massive binaries.

  8. Runaway and moist greenhouse atmospheres and the evolution of earth and Venus

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1988-01-01

    For the case of fully moisture-saturated and cloud-free conditions, the present one-dimensional climate model for the response of an earthlike atmosphere to large solar flux increases notes the critical solar flux at which runaway greenhouse (total evaporation of oceans) occurs to be 1.4 times the present flux at the earth's orbit, almost independently of the CO2 content of the atmophere. The value is, however, sensitive to the H2O absorption coefficient in the 8-12 micron window. Venus oceans may have been lost early on due to rapid water vapor photodissociation, followed by hydrogen escape into space.

  9. Eta Carinae and Its Ejecta, the Homunculus

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.

    2014-01-01

    Eta Carinae (Eta Car), its interacting winds and historical ejecta provide an unique astrophysical laboratory that permits addressing a multitude of questions ranging from stellar evolution, colliding winds, chemical enrichment, nebular excitation to the formation of molecules and dust. Every 5.54 years, Eta Car changes from high excitation to several-months-long low excitation caused by modulation of the massive interacting winds due to a very eccentric binary orbit. The surrounding Homunculus (Figure 1) and Little Homunculus, thrown out in the 1840s Great Eruption and the 1890s Lesser Eruption, respond to the changing flux, providing clues to many physical phenomena of great interest to astrophysicists.

  10. SOLAR SYSTEM MOONS AS ANALOGS FOR COMPACT EXOPLANETARY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Stephen R.; Hinkel, Natalie R.; Raymond, Sean N., E-mail: skane@ipac.caltech.edu

    2013-11-01

    The field of exoplanetary science has experienced a recent surge of new systems that is largely due to the precision photometry provided by the Kepler mission. The latest discoveries have included compact planetary systems in which the orbits of the planets all lie relatively close to the host star, which presents interesting challenges in terms of formation and dynamical evolution. The compact exoplanetary systems are analogous to the moons orbiting the giant planets in our solar system, in terms of their relative sizes and semimajor axes. We present a study that quantifies the scaled sizes and separations of the solarmore » system moons with respect to their hosts. We perform a similar study for a large sample of confirmed Kepler planets in multi-planet systems. We show that a comparison between the two samples leads to a similar correlation between their scaled sizes and separation distributions. The different gradients of the correlations may be indicative of differences in the formation and/or long-term dynamics of moon and planetary systems.« less

  11. Formation of Close-in Super-Earths in an Evolving Disk Due to Disk Winds

    NASA Astrophysics Data System (ADS)

    Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru; Morbidelli, Alessandro

    2018-04-01

    Planets with masses larger than Mars mass undergo rapid inward migration (type I migration) in a standard protoplanetary disk. Recent magnetohydrodynamical simulations revealed the presence of magnetically-driven disk winds, which would alter the disk profile and the type I migration in the close-in region (r<1 au). We investigate orbital evolution of planetary embryos in a disk that viscously evolves under effects of magnetically-driven disk winds. The aim is to examine whether observed distributions of close-in super-Earths can be reproduced by simulations. We find that the type I migration is significantly suppressed in a disk with flat surface density profile. After planetary embryos undergo slow inward migration, they are captured in a resonant chain. The resonant chain undergoes late orbital instability during the gas depletion, leading to a non-resonant configuration. We also find that observed distributions of close-in super-Earths (e.g., period ratio, mass ratio) can be reproduced by results of simulations.

  12. Execution of the Spitzer In-orbit Checkout and Science Verification Plan

    NASA Technical Reports Server (NTRS)

    Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.

    2004-01-01

    The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges

  13. Eyelid Edema: A Rare Cause of a Common Sign

    PubMed Central

    Almeida, Cristina; Freitas, Cristina; Sales-Sanz, Marco; Ribeiro, Sara

    2017-01-01

    We report a 48-year-old female patient who presented to the emergency room with right eyelid edema, with 3 days of evolution. She had suffered minor trauma to this eye one week before. She reported episodes of right eyelid swelling of spontaneous resolution since the occurrence of a traumatic brain injury 5 years ago. Ophthalmological examination showed a soft and painless eyelid edema of the right eye. Brain computed tomography showed an area of bone discontinuity of the orbital roof with brain herniation and a CSF leak into the eyelid (blepharocele). Magnetic resonance confirmed the result of TC and revealed an area of frontal encephalomalacia. Ibuprofen (800 mg/day) was prescribed, with complete resolution within 20 days. She was evaluated by Neurosurgery with no indication of surgery due to the resolution of the edema and absence of symptoms. Blepharocele is a rare entity that should be considered in the differential diagnosis of unilateral eyelid edema. It can be secondary to an orbital fracture or congenital lesion. PMID:28848682

  14. Distant retrograde orbits for the Moon's exploration

    NASA Astrophysics Data System (ADS)

    Sidorenko, Vladislav

    We discuss the properties of the distant retrograde orbits (which are called quasi-satellite orbits also) around Moon. For the first time the distant retrograde orbits were described by J.Jackson in studies on restricted three body problem at the beginning of 20th century [1]. In the synodic (rotating) reference frame distant retrograde orbit looks like an ellipse whose center is slowly drifting in the vicinity of minor primary body while in the inertial reference frame the third body is orbiting the major primary body. Although being away the Hill sphere the third body permanently stays close enough to the minor primary. Due to this reason the distant retrograde orbits are called “quasi-satellite” orbits (QS-orbits) too. Several asteroids in solar system are in a QS-orbit with respect to one of the planet. As an example we can mention the asteroid 2002VE68 which circumnavigates Venus [2]. Attention of specialists in space flight mechanics was attracted to QS-orbits after the publications of NASA technical reports devoted to periodic moon orbits [3,4]. Moving in QS-orbit the SC remains permanently (or at least for long enough time) in the vicinity of small celestial body even in the case when the Hill sphere lies beneath the surface of the body. The properties of the QS-orbit can be studied using the averaging of the motion equations [5,6,7]. From the theoretical point of view it is a specific case of 1:1 mean motion resonance. The integrals of the averaged equations become the parameters defining the secular evolution of the QS-orbit. If the trajectory is robust enough to small perturbations in the simplified problem (i.e., restricted three body problem) it may correspond to long-term stability of the real-world orbit. Our investigations demonstrate that under the proper choice of the initial conditions the QS-orbits don’t escape from Moon or don’t impact Moon for long enough time. These orbits can be recommended as a convenient technique for the large scale browsing of the Moon’s environment. [1] Jackson, J. (1913) MNRAS, 74, 62-82. [2] Mikkola, S., Brasser, R., Wiegert, P., Innanen, K. (2004) MNRAS, 351, L63-L65. [3] Broucke, R.A. (1968) NASA Technical Report 32-1168, JPL. [4] Broucke, R.A. (1969) NASA Technical Report 32-1360, JPL. [5] Kogan, A.I. (1989) Cosmic Research, 26, 705-710. [6] Namouni, F. (1999) Icarus, 6, 293-314. [7] Sidorenko, V.V., Neishtadt, A.I., Artemyev, A.V., Zelenyi, L.M. (2013) Doklady Physics, 58, 207-211.

  15. Dynamical Stability and Evolution of Kepler’s compact inner multi-planet systems

    NASA Astrophysics Data System (ADS)

    Pu, Bonan

    2017-06-01

    NASA’s Kepler mission has revealed a population of highly compact inner multi-planet systems. These systems, typically consisting of 4-6 super-Earths, feature tight orbital spacing between planets as well as low orbital inclinations (~2 deg. ) and eccentricities (~2%). This stands in contrast to Kepler’s singles population, which appears to feature higher orbital obliquities and eccentricities, as well as a lower transit timing variation fraction indicative of lower true planet multiplicities.In this talk, I will present some previous and ongoing research aimed at understanding the dynamical evolution of these Kepler systems. First, I will present numerical N-body investigations on the long-term stability of multi-planet systems, the results of which suggest that Kepler’s systems are near the edge of stability. Next, I will discuss some current research on the dynamics of planetary close encounters and collisions, and their implications for the ultimate fate of dynamically unstable multi-planet systems. Finally, I will highlight some recent results on the dynamical stability and evolution of inner multi-planet systems when they are accompanied by external giant planet and/or stellar companions.

  16. Dynamical Evolution of Meteoroid Streams, Developments Over the Last 30 Years

    NASA Technical Reports Server (NTRS)

    Williams, I. P.

    2011-01-01

    As soon as reliable methods for observationally determining the heliocentric orbits of meteoroids and hence the mean orbit of a meteoroid stream in the 1950s and 60s, astronomers strived to investigate the evolution of the orbit under the effects of gravitational perturbations from the planets. At first, the limitations in the capabilities of computers, both in terms of speed and memory, placed severe restrictions on what was possible to do. As a consequence, secular perturbation methods, where the perturbations are averaged over one orbit became the norm. The most popular of these is the Halphen- Goryachev method which was used extensively until the early 1980s. The main disadvantage of these methods lies in the fact that close encounter can be missed, however they remain useful for performing very long-term integrations. Direct integration methods determine the effects of the perturbing forces at many points on an orbit. This give a better picture of the orbital evolution of an individual meteoroid, but many meteoroids have to be integrated in order to obtain a realistic picture of the evolution of a meteoroid stream. The notion of generating a family of hypothetical meteoroids to represent a stream and directly integrate the motion of each was probably first used by Williams Murray & Hughes (1979), to investigate the Quadrantids. Because of computing limitations, only 10 test meteoroids were used. Only two years later, Hughes et. al. (1981) had increased the number of particles 20-fold to 200 while after a further year, Fox Williams and Hughes used 500 000 test meteoroids to model the Geminid stream. With such a number of meteoroids it was possible for the first time to produce a realistic cross-section of the stream on the ecliptic. From that point on there has been a continued increase in the number of meteoroids, the length of time over which integration is carried out and the frequency with which results can be plotted so that it is now possible to produce moving images of the stream. As a consequence, over recent years, emphasis has moved to considering stream formation and the role fragmentation plays in this.

  17. A rapid method of estimating the collision frequencies between the earth and the earth-crossing bodies

    NASA Technical Reports Server (NTRS)

    Su, Shin-Yi; Kessler, Donald J.

    1991-01-01

    The present study examines a very fast method of calculating the collision frequency between two low-eccentricity orbiting bodies for evaluating the evolution of earth-orbiting objects such as space debris. The results are very accurate and the required computer time is negligible. The method is now applied without modification to calculate the collision frequencies for moderately and highly eccentric orbits.

  18. On the formation of SMC X-1: The effect of mass and orbital angular momentum loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tao; Li, X.-D., E-mail: litao@nju.edu.cn, E-mail: lixd@nju.edu.cn; The Key Laboratory of Modern Astronomy and Astrophysics, Ministry of Education, Nanjing 210093

    SMC X-1 is a high-mass X-ray binary with an orbital period of 3.9 days. The mass of the neutron star is as low as ∼1M {sub ☉}, suggesting that it was likely formed through an electron-capture supernova rather than an iron-core collapse supernova. From the present system configurations, we argue that the orbital period at the supernova was ≲ 10 days. Since the mass transfer process between the neutron star's progenitor and the companion star before the supernova should have increased the orbital period to tens of days, a mechanism with efficient orbit angular momentum loss and relatively small massmore » loss is required to account for its current orbital period. We have calculated the evolution of the progenitor binary systems from zero-age main sequence to the pre-supernova stage with different initial parameters and various mass and angular momentum loss mechanisms. Our results show that the outflow from the outer Lagrangian point or a circumbinary disk formed during the mass transfer phase may be qualified for this purpose. We point out that these mechanisms may be popular in binary evolution and significantly affect the formation of compact star binaries.« less

  19. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  20. A synthesis of Plio-Pleistocene leaf wax biomarker records of hydrological variation in East Africa and their relationship with hominin evolution

    NASA Astrophysics Data System (ADS)

    Lupien, R.; Russell, J. M.; Campisano, C. J.; Feibel, C. S.; Deino, A. L.; Kingston, J.; Potts, R.; Cohen, A. S.

    2017-12-01

    Climate change is thought to play a critical role in human evolution. However, the mechanisms behind this relationship are difficult to test due to a lack of long, high-quality paleoclimate records from hominin fossil locales. We improve the understanding of this relationship by examining Plio-Pleistocene lake sediment cores from East Africa that were drilled by the Hominin Sites and Paleolakes Drilling Project, an international effort to study the environment in which our hominin ancestors evolved and dispersed. We have analyzed organic geochemical signals of climate from drill cores from Ethiopia and Kenya spanning the Pliocene to recent time (from north to south: paleolake Hadar, Lake Turkana, Lake Baringo, and paleolake Koora). Specifically, we analyzed the hydrogen isotopic composition of terrestrial leaf waxes, which records changes in regional atmospheric circulation and hydrology. We reconstructed quantitative records of rainfall amount at each of the study sites, which host sediment spanning different geologic times and regions. By compiling these records, we test hominin evolutionary hypotheses as well as crucial questions about climate trend and variability. We find that there is a gradual or step-wise enrichment in δDwax, signifying a trend from a wet to dry climate, from the Pliocene to the Pleistocene, perhaps implying an influence of global temperature, ice sheet extent, and/or atmospheric greenhouse gas concentrations on East African climate. However, the shift is small relative to the amplitude of orbital-scale isotopic variations. The records indicate a strong influence of eccentricity-modulated orbital precession, and imply that local insolation effects are the likely cause of East African precipitation. Several of the intervals of high isotopic variability coincide with key hominin fossil or technological transitions, suggesting that climate variability plays a key role in hominin evolution.

  1. Compositional Imprints in Density–Distance–Time: A Rocky Composition for Close-in Low-mass Exoplanets from the Location of the Valley of Evaporation

    NASA Astrophysics Data System (ADS)

    Jin, Sheng; Mordasini, Christoph

    2018-02-01

    We use an end-to-end model of planet formation, thermodynamic evolution, and atmospheric escape to investigate how the statistical imprints of evaporation depend on the bulk composition of planetary cores (rocky versus icy). We find that the population-wide imprints like the location of the “evaporation valley” in the distance–radius plane and the corresponding bimodal radius distribution clearly differ depending on the bulk composition of the cores. Comparison with the observed position of the valley suggests that close-in low-mass Kepler planets have a predominantly Earth-like rocky composition. Combined with the excess of period ratios outside of MMR, this suggests that low-mass Kepler planets formed inside of the water iceline but were still undergoing orbital migration. The core radius becomes visible for planets losing all primordial H/He. For planets in this “triangle of evaporation” in the distance–radius plane, the degeneracy in composition is reduced. In the observed planetary mass–mean density diagram, we identify a trend to more volatile-rich compositions with an increasing radius (R/R ⊕ ≲ 1.6 rocky; 1.6–3.0 ices, and/or H/He ≳3: H/He). The mass–density diagram contains important information about formation and evolution. Its characteristic broken V-shape reveals the transitions from solid planets to low-mass core-dominated planets with H/He and finally to gas-dominated giants. Evaporation causes the density and orbital distance to be anticorrelated for low-mass planets in contrast to giants, where closer-in planets are less dense, likely due to inflation. The temporal evolution of the statistical properties reported here will be of interest for the PLATO 2.0 mission, which will observe the temporal dimension.

  2. Planet formation: constraints from transiting extrasolar planets

    NASA Astrophysics Data System (ADS)

    Guillot, T.; Santos, N.; Pont, F.; Iro, N.; Melo, C.; Ribas, I.

    Ten extrasolar planets with masses between 105 and 430M⊕ are known to transit their star. The knowledge of their mass and radius allows an estimate of their composition, but uncertainties on equations of state, opacities and possible missing energy sources imply that only inaccurate constraints can be derived when considering each planet separately. This is illustrated by HD209458b and XO-1b, two planets that appear to be larger than models would predict. Using a relatively simple evolution model, we show that the radius anomaly, i.e. the difference between the measured and theoretically calculated radii, is anticorrelated with the metallicity of the parent star. This implies that the present size, structure and composition of these planets is largely determined by the initial metallicity of the protoplanetary disk, and not, or to a lesser extent, by other processes such as the differences in the planets' orbital evolutions, tides due to finite eccentricities/inclinations and planet evaporation. Using evolution models including the presence of a core and parametrized missing physics, we show that all nine planets belong to a same ensemble characterized by a mass of heavy elements MZ that is a steep function of the stellar metallicity: from ˜ 10 M⊕ around a solar composition star, to ˜ 100 M⊕ for twice the solar metallicity. Together with the observed lack of giant planets in close orbits around metal-poor stars, these results imply that heavy elements play a key role in the formation of close-in giant planets. The large values of MZ and of the planet enrichments for metal-rich stars shows the need for alternative theories of planet formation including migration and subsequent collection of planetesimals.

  3. Exoplanet recycling in massive white-dwarf debris discs

    NASA Astrophysics Data System (ADS)

    van Lieshout, R.; Kral, Q.; Charnoz, S.; Wyatt, M. C.; Shannon, A.

    2018-05-01

    Several tens of white dwarfs are known to host circumstellar discs of dusty debris, thought to arise from the tidal disruption of rocky bodies originating in the star's remnant planetary system. This paper investigates the evolution of such discs if they are very massive, as may be the case if their progenitor was a terrestrial planet, moon, or dwarf planet. Assuming the discs are physically thin and flat, like Saturn's rings, their evolution is governed by Poynting-Robertson drag or viscous spreading, where the disc's effective viscosity is due to self-gravity wakes. For discs with masses ≳ 1026 g, located in the outer parts of the tidal disruption zone, viscous spreading dominates the evolution, and mass is transported both in- and outwards. When outwards-spreading material flows beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of moonlets at the outer edge of Saturn's rings. The newly formed bodies migrate outwards by exchanging angular momentum with the disc and coalesce into larger objects through mutual collisions. Eventually, the disc's Roche-limit overflow recycles tens of percent of the original disc mass; most ends up in a single large body near 2:1 mean-motion resonance with the disc's outer edge. Hence, the recycling of a tidally disrupted super-Earth, for example, could yield an Earth-mass planet on a ˜10-h orbit, located in the habitable zone for 2-to-10-Gyr-old white dwarfs. The recycling process also creates a population of smaller bodies just outside the Roche limit, which may explain the minor planets recently postulated to orbit WD 1145+017.

  4. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FADE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xian, Fenglin; Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra 2601; Ye, Jiandong, E-mail: yejd@nju.edu.cn

    In this work, anion alloying is engineered in ZnON nanocrystalline films, and the resultant evolution of the structural transition, subgap states, and carrier transport is investigated. A broad distribution of sub-gap states above the valence band maximum is introduced by nitrogen due to the hybridization of N 2p and O 2p orbitals. The phase transition from partially amorphous states to full crystallinity occurs above a characteristic growth temperature of 100 °C, and the localized states are suppressed greatly due to the reduction of nitrogen composition. The electronic properties are dominated by grain boundary scattering and electron transport across boundary barriers throughmore » thermal activation at band edge states at high temperatures. The conductivity below 130 K exhibits a weak temperature dependence, which is a signature of variable-range hopping conduction between localized states introduced by nitrogen incorporation.« less

  6. The Innisfree meteorite: Dynamical history of the orbit - Possible family of meteor bodies

    NASA Astrophysics Data System (ADS)

    Galibina, I. V.; Terent'eva, A. K.

    1987-09-01

    Evolution of the Innisfree meteorite orbit caused by secular perturbations is studied over the time interval of 500000 yrs (from the current epoch backwards). Calculations are made by the Gauss-Halphen-Gorjatschew method taking into account perturbations from the four outer planets - Jupiter, Saturn, Uranus and Neptune. In the above mentioned time interval the meteorite orbit has undergone no essential transformations. The Innisfree orbit intersected in 91 cases the Earth orbit and in 94 - the Mars orbit. A system of small and large meteor bodies (producing ordinary meteors and fireballs) which may be genetically related to the Innisfree meteorite has been found, i.e. there probably exists an Innisfree family of meteor bodies.

  7. Analysis of orbital perturbations acting on objects in orbits near geosynchronous earth orbit

    NASA Technical Reports Server (NTRS)

    Friesen, Larry J.; Jackson, Albert A., IV; Zook, Herbert A.; Kessler, Donald J.

    1992-01-01

    The paper presents a numerical investigation of orbital evolution for objects started in GEO or in orbits near GEO in order to study potential orbital debris problems in this region. Perturbations simulated include nonspherical terms in the earth's geopotential field, lunar and solar gravity, and solar radiation pressure. Objects simulated include large satellites, for which solar radiation pressure is insignificant, and small particles, for which solar radiation pressure is an important force. Results for large satellites are largely in agreement with previous GEO studies that used classical perturbation techniques. The orbit plane of GEO satellites placed in a stable plane orbit inclined approximately 7.3 deg to the equator experience very little precession, remaining always within 1.2 percent of their initial orientation. Solar radiation pressure generates two major effects on small particles: an orbital eccentricity oscillation anticipated from previous research, and an oscillation in orbital inclination.

  8. THE EVOLUTION OF PRIMORDIAL BINARY OPEN STAR CLUSTERS: MERGERS, SHREDDED SECONDARIES, AND SEPARATED TWINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De la Fuente Marcos, R.; De la Fuente Marcos, C., E-mail: raul@galaxy.suffolk.e

    2010-08-10

    The properties of the candidate binary star cluster population in the Magellanic Clouds and Milky Way are similar. The fraction of candidate binaries is {approx}10% and the pair separation histogram exhibits a bimodal distribution commonly attributed to their transient nature. However, if primordial pairs cannot survive for long as recognizable bound systems, how are they ending up? Here, we use simulations to confirm that merging, extreme tidal distortion, and ionization are possible depending on the initial orbital elements and mass ratio of the cluster pair. Merging is observed for initially close pairs but also for wider systems in nearly parabolicmore » orbits. Its characteristic timescale depends on the initial orbital semi-major axis, eccentricity, and cluster pair mass ratio, becoming shorter for closer, more eccentric equal mass pairs. Shredding of the less massive cluster and subsequent separation is observed in all pairs with appreciably different masses. Wide pairs evolve into separated twins characterized by the presence of tidal bridges and separations of 200-500 pc after one Galactic orbit. Most observed binary candidates appear to be following this evolutionary path which translates into the dominant peak (25-30 pc) in the observed pair separation distribution. The secondary peak at smaller separations (10-15 pc) can be explained as due to close pairs in almost circular orbits and/or undergoing merging. Merged clusters exhibit both peculiar radial density and velocity dispersion profiles shaped by synchronization and gravogyro instabilities. Simulations and observations show that long-term binary open cluster stability is unlikely.« less

  9. Evolution of the Olympus Mons Caldera, Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Robinson, Mark S.; Zuber, Maria T.

    1990-01-01

    Extensive high-resolution (15 to 20 m/pixel) coverage of Olympus Mons volcano permits the investigation of the sequence of events associated with the evolution of the nested summit caldera. The sequence of the intra-caldera events is well illustrated by image data collected on orbits 473S and 474S of Viking Orbiter 1. These data cover both the oldest and youngest portions of the caldera floor. The chronology inferred from the observations is presented which in turn can be interpreted in terms of the internal structure of the volcano (i.e., magma chamber depth and the existence of dikes).

  10. Modelling the bow–shock evolution along the DSO/G2 orbit in the Galactic centre

    NASA Astrophysics Data System (ADS)

    Štofanová, Lýdia; Zajaček, Michal; Kunneriath, Devaky; Eckart, Andreas; Karas, Vladimír

    2017-12-01

    A radially directed flow of gaseous environment from a supermassive black hole affects the evolution of a bow–shock that develops along the orbit of an object passing through the pericentre. The bow–shock exhibits asymmetry between the approaching and receding phases, as can be seen in calculations of the bow-shock size, the velocity profile along the shocked layer, and the surface density of the bow–shock, and by emission-measure maps. We discuss these effects in the context of the recent pericentre transit of DSO/G2 near Sagittarius A*.

  11. Climate evolution on the terrestrial planets

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.; Toon, O. B.

    1989-01-01

    The present comparative evaluation of the long-term evolution of the Venus, earth, and Mars climates suggests that the earth's climate has remained temperate over most of its history despite a secular solar luminosity increase in virtue of a negative-feedback cycle based on atmospheric CO2 levels and climate. The examination of planetary climate histories suggests that an earth-sized planet should be able to maintain liquid water on its surface at orbital distances in the 0.9-1.5 AU range, comparable to the orbit of Mars; this, in turn, implies that there may be many other habitable planets within the Galaxy.

  12. Dynamics of Intense Currents in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton V.; Angelopoulos, Vassilis; Halekas, Jasper S.; Vinogradov, Alexander A.; Vasko, Ivan Y.; Zelenyi, Lev M.

    2018-06-01

    Transient currents in the solar wind are carried by various magnetic field discontinuities that contribute significantly to the magnetic field fluctuation spectrum. Internal instabilities and dynamics of these discontinuities are believed to be responsible for magnetic field energy dissipation and corresponding charged particle acceleration and heating. Accurate modeling of these phenomena requires detailed investigation of transient current formation and evolution. By examining such evolution using a unique data set compiled from observations of the same solar wind flow by two spacecraft at Earth’s and Mars’s orbits, we show that it consists of several processes: discontinuity thinning (decrease in thickness normalized by the ion inertial length), intensification of currents normalized to the proton thermal current (i.e., the product of proton charge, density, and thermal velocity), and increase in the compressional component of magnetic field variations across discontinuities. The significant proton temperature variation around most observed discontinuities indicates possible proton heating. Plasma velocity jumps across the discontinuities are well correlated with Alfvén velocity changes. We discuss possible explanations of the observed discontinuity evolution. We also compare the observed evolution with predictions of models describing discontinuity formation due to Alfvén wave steepening. Our results show that discontinuity modeling likely requires taking into account both the effects of nonlinear Alfvén wave dynamics and solar wind expansion.

  13. Oort's cloud evolution under the influence of the galactic field.

    NASA Astrophysics Data System (ADS)

    Kiryushenkova, N. V.; Chepurova, V. M.; Shershkina, S. L.

    By numerical integration (Everhart's method) of the differential equations of cometary movement in Oort's cloud an attempt was made to observe how the galactic gravitational field changes the orbital elements of these comets during three solar revolutions in the Galaxy. It is shown that the cometary orbits are more elongated, even the initially circular orbits become strongly elliptical, in the outer layers of Oort's cloud it is possible for comets to turn into hyperbolic orbits and to leave the solar system. The boundaries of the solar system have been precised.

  14. Dynamical Evolution Induced by Planet Nine

    NASA Astrophysics Data System (ADS)

    Batygin, Konstantin; Morbidelli, Alessandro

    2017-12-01

    The observational census of trans-Neptunian objects with semimajor axes greater than ˜ 250 {au} exhibits unexpected orbital structure that is most readily attributed to gravitational perturbations induced by a yet-undetected, massive planet. Although the capacity of this planet to (I) reproduce the observed clustering of distant orbits in physical space, (II) facilitate the dynamical detachment of their perihelia from Neptune, and (III) excite a population of long-period centaurs to extreme inclinations is well-established through numerical experiments, a coherent theoretical description of the dynamical mechanisms responsible for these effects remains elusive. In this work, we characterize the dynamical processes at play from semi-analytic grounds. We begin by considering a purely secular model of orbital evolution induced by Planet Nine and show that it is at odds with the ensuing stability of distant objects. Instead, the long-term survival of the clustered population of long-period Kuiper Belt objects (KBOs) is enabled by a web of mean-motion resonances driven by Planet Nine. Then, by taking a compact-form approach to perturbation theory, we show that it is the secular dynamics embedded within these resonances that regulate the orbital confinement and perihelion detachment of distant KBOs. Finally, we demonstrate that the onset of large-amplitude oscillations of the orbital inclinations is accomplished through the capture of low-inclination objects into a high-order secular resonance, and we identify the specific harmonic that drives the evolution. In light of the developed qualitative understanding of the governing dynamics, we offer an updated interpretation of the current observational data set within the broader theoretical framework of the Planet Nine hypothesis.

  15. EFFECTS OF DYNAMICAL EVOLUTION OF GIANT PLANETS ON SURVIVAL OF TERRESTRIAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumura, Soko; Ida, Shigeru; Nagasawa, Makiko

    2013-04-20

    The orbital distributions of currently observed extrasolar giant planets allow marginally stable orbits for hypothetical, terrestrial planets. In this paper, we propose that many of these systems may not have additional planets on these ''stable'' orbits, since past dynamical instability among giant planets could have removed them. We numerically investigate the effects of early evolution of multiple giant planets on the orbital stability of the inner, sub-Neptune-like planets which are modeled as test particles, and determine their dynamically unstable region. Previous studies have shown that the majority of such test particles are ejected out of the system as a resultmore » of close encounters with giant planets. Here, we show that secular perturbations from giant planets can remove test particles at least down to 10 times smaller than their minimum pericenter distance. Our results indicate that, unless the dynamical instability among giant planets is either absent or quiet like planet-planet collisions, most test particles down to {approx}0.1 AU within the orbits of giant planets at a few AU may be gone. In fact, out of {approx}30% of survived test particles, about three quarters belong to the planet-planet collision cases. We find a good agreement between our numerical results and the secular theory, and present a semi-analytical formula which estimates the dynamically unstable region of the test particles just from the evolution of giant planets. Finally, our numerical results agree well with the observations, and also predict the existence of hot rocky planets in eccentric giant planet systems.« less

  16. Special Features in the Structure of Resonant Perturbations of Uncontrollable Objects of Glonass and GPS Navigating Systems. Influence on the Orbital Evolution

    NASA Astrophysics Data System (ADS)

    Tomilova, I. V.; Bordovitsyna, T. V.

    2017-08-01

    Results of investigation into the resonant structure of perturbations and long-term orbital evolution of space vehicles of GLONASS and GPS global navigating satellite systems (GNSS) under assumption that all of them have lost control on 08/01/2015 are presented. It is demonstrated that the majority of the examined objects are in the range of action of the secular resonances of various types. In addition, practically all satellites of the GPS system are within the scope of the 2:1 orbital resonance with rotation of the Earth. Results of the MEGNO analysis demonstrate that the motion of all objects of the GLONASS system during the 100-year period is regular, whereas the motion of the majority of objects of the GPS system is subject to chaotization.

  17. The formation of giant planets in wide orbits by photoevaporation-synchronized migration

    NASA Astrophysics Data System (ADS)

    Guilera, O. M.; Miller Bertolami, M. M.; Ronco, M. P.

    2017-10-01

    The discovery of giant planets in wide orbits represents a major challenge for planet formation theory. In the standard core accretion paradigm, planets are expected to form at radial distances ≲20 au in order to form massive cores (with masses ≳10 M⊕) able to trigger the gaseous runaway growth before the dissipation of the disc. This has encouraged authors to find modifications of the standard scenario as well as alternative theories like the formation of planets by gravitational instabilities in the disc to explain the existence of giant planets in wide orbits. However, there is not yet consensus on how these systems are formed. In this Letter, we present a new natural mechanism for the formation of giant planets in wide orbits within the core accretion paradigm. If photoevaporation is considered, after a few Myr of viscous evolution a gap in the gaseous disc is opened. We found that, under particular circumstances planet migration becomes synchronized with the evolution of the gap, which results in an efficient outward planet migration. This mechanism is found to allow the formation of giant planets with masses Mp ≲ 1MJup in wide stable orbits as large as ∼130 au from the central star.

  18. The Visual Orbit and Evolutionary State of 12 Bootes

    NASA Technical Reports Server (NTRS)

    Boden, A.; Creech-Eakman, M.; Queloz, D.

    1999-01-01

    Herein we report the determination of the 12 Boo visual orbit from near-infrared, long-baseline interferometric measurements taken with the Palomar Testbed Interferometer (PTI). We further add photometric and spectroscopic measurements in an attempt to understand the fundamental stellar parameters and evolution of the 12 Boo components.

  19. The Stability of Orbital Configurations and the Ultimate Configurations of Planetary and Satellite Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Duncan, Martin J.

    2004-01-01

    The contents include the following: 1) Dynamical Evolution of the Earth-Moon Progenitors. 2) Dynamical Connections between Giant and Terrestrial Planets. 3) Dynamics of the Upsilon Andromedae Planetary System. 4) Dynamics of the Planets Orbiting GJ 876. and 5) Integrators for Planetary Accretion in Binaries.

  20. Calculating TMDs of a large nucleus: Quasi-classical approximation and quantum evolution

    DOE PAGES

    Kovchegov, Yuri V.; Sievert, Matthew D.

    2015-12-24

    We set up a formalism for calculating transverse-momentum-dependent parton distribution functions (TMDs) of a large nucleus using the tools of saturation physics. By generalizing the quasi-classical Glauber–Gribov–Mueller/McLerran–Venugopalan approximation to allow for the possibility of spin–orbit coupling, we show how any TMD can be calculated in the saturation framework. This can also be applied to the TMDs of a proton by modeling it as a large “nucleus.” To illustrate our technique, we calculate the quark TMDs of an unpolarized nucleus at large-x: the unpolarized quark distribution and the quark Boer–Mulders distribution. Here, we observe that spin–orbit coupling leads to mixing betweenmore » different TMDs of the nucleus and of the nucleons. We then consider the evolution of TMDs: at large-x, in the double-logarithmic approximation, we obtain the Sudakov form factor. At small-x the evolution of unpolarized-target quark TMDs is governed by BK/JIMWLK evolution, while the small-x evolution of polarized-target quark TMDs appears to be dominated by the QCD Reggeon.« less

  1. Geometric phase due to orbit-orbit interaction: rotating LP11 modes in a two-mode fiber

    NASA Astrophysics Data System (ADS)

    Pradeep Chakravarthy, T.; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2017-10-01

    Accumulation of geometric phase due to non-coplanar propagation of higher-order modes in an optical fiber is experimentally demonstrated. Vertically-polarized LP11 fiber mode, excited in a horizontally-held, torsion-free, step-index, two-mode optical fiber, rotates due to asymmetry in the propagating k-vectors, arising due to off-centered beam location at the fiber input. Perceiving the process as due to rotation of the fiber about the off-axis launch position, the orbital Berry phase accumulation upon scanning the launch position in a closed-loop around the fiber axis manifests as rotational Doppler effect, a consequence of orbit-orbit interaction. The anticipated phase accumulation as a function of the input launch position, observed through interferometry is connected to the mode rotation angle, quantified using the autocorrelation method.

  2. EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalomeni, B.; Rappaport, S.; Molnar, M.

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43more » donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.« less

  3. Evolution of Cataclysmic Variables and Related Binaries Containing a White Dwarf

    NASA Astrophysics Data System (ADS)

    Kalomeni, B.; Nelson, L.; Rappaport, S.; Molnar, M.; Quintin, J.; Yakut, K.

    2016-12-01

    We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1-4.7 M ⊙), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass (P orb-M don) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb(M wd) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb-M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.

  4. The evolution of the Quarantid meteoroid shower

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Obrubov, Iu. V.; Pushkarev, A. N.

    1991-02-01

    The Everhart method is used to trace the orbital evolution of 36 model Quadrantid meteoroids over a 5750 yr period. It is found that the Quadrantid shower is responsible for eight related showers. These include the Ursids, the Northern and Southern delta-Aquarids, and the Carinids.

  5. The evolution of Saturn's radiation belts modulated by changes in radial diffusion

    NASA Astrophysics Data System (ADS)

    Kollmann, P.; Roussos, E.; Kotova, A.; Paranicas, C.; Krupp, N.

    2017-12-01

    Globally magnetized planets, such as the Earth1 and Saturn2, are surrounded by radiation belts of protons and electrons with kinetic energies well into the million electronvolt range. The Earth's proton belt is supplied locally from galactic cosmic rays interacting with the atmosphere3, as well as from slow inward radial transport4. Its intensity shows a relationship with the solar cycle4,5 and abrupt dropouts due to geomagnetic storms6,7. Saturn's proton belts are simpler than the Earth's because cosmic rays are the principal source of energetic protons8 with virtually no contribution from inward transport, and these belts can therefore act as a prototype to understand more complex radiation belts. However, the time dependence of Saturn's proton belts had not been observed over sufficiently long timescales to test the driving mechanisms unambiguously. Here we analyse the evolution of Saturn's proton belts over a solar cycle using in-situ measurements from the Cassini Saturn orbiter and a numerical model. We find that the intensity in Saturn's proton radiation belts usually rises over time, interrupted by periods that last over a year for which the intensity is gradually dropping. These observations are inconsistent with predictions based on a modulation in the cosmic-ray source, as could be expected4,9 based on the evolution of the Earth's proton belts. We demonstrate that Saturn's intensity dropouts result instead from losses due to abrupt changes in magnetospheric radial diffusion.

  6. The Effects of Tidal Dissipation on the Thermal Evolution of Triton

    NASA Astrophysics Data System (ADS)

    Gaeman, J.; Hier-Majumder, S.; Roberts, J. H.

    2009-12-01

    This work explores the coupled structural, thermal, and orbital evolution of Neptune's icy satellite, Triton. Recent geyser activity, ridge formation, and volatile transport, observed on Triton's surface, indicate possible activity within Triton's interior [1,2]. Triton is hypothesized to have been captured from an initially heliocentric orbit. During the circularization of Triton's orbit following its capture by Neptune, intense tidal heating likely contributed to the formation of a subsurface ocean [3]. Although the time of Triton's capture is not exactly known, it is likely that the event took place earlier in the history of our solar system, when the probability of binary capture was higher [4, 5]. This work examines the thermal evolution of Triton by employing a coupled tidal and two-phase thermal evolution model, for both an early and late capture scenario. Thermal evolution of a solid crust underlain by an H2O-NH3 mushy layer is driven by the evolution of tidal heating, as Triton's orbital eccentricity evolves following its capture. The governing equations for tidal heating are solved using the propagator matrix method [6, 7], while the governing equation for the coupled crust-multiphase layer thermal evolution were numerically solved using a finite volume discretization. The results indicate that the existence of a subsurface ocean is strongly dependent on ammonia content as larger concentrations of ammonia influence liquidus temperature and density contrast between solid and liquid phases [8]. Preliminary results indicate that an ocean likely exists for compositions containing a relatively high percentage of ammonia for both early and late capture of the satellite. In contrast, the subsurface ocean freezes completely for lower ammonia content. [1] Brown, R. H., Kirk, R. L. (1994). Journal of Geophysical Research 99, 1965-981. [2] Prockter, L. M., Nimmo, F., Pappalardo, R. T. (2005). Geophysical Research Letters 32, L14202. [3] Ross, M. N., Schubert, G. (1990). Geophysical Research Letters 17, 1749-752. [4] Agnor, C. B., Hamilton, D. P. (2006). Nature 441, 192-94. [5] Schenk, P. M., Zahnle, K. (2007). Icarus 192, 135-49. [6] Roberts, J. H., Nimmo, F. (2008). Icarus 194, 675-689. [7] Sabadini, R., Vermeersen, B., (2004). Global Dynamics of the Earth. Kluwer Academic Publishers. [8] Hogenboom, D. L., Kargel, J. S., Concolmagno, G. J., Holden, T. C., Lee, L., Buyyounouski, M. (1997). Icarus 128, 171-80.

  7. Chaotic Dynamics of Trans-Neptunian Objects Perturbed by Planet Nine

    NASA Astrophysics Data System (ADS)

    Hadden, Sam; Li, Gongjie; Payne, Matthew J.; Holman, Matthew J.

    2018-06-01

    Observations of clustering among the orbits of the most distant trans-Neptunian objects (TNOs) has inspired interest in the possibility of an undiscovered ninth planet lurking in the outskirts of the solar system. Numerical simulations by a number of authors have demonstrated that, with appropriate choices of planet mass and orbit, such a planet can maintain clustering in the orbital elements of the population of distant TNOs, similar to the observed sample. However, many aspects of the rich underlying dynamical processes induced by such a distant eccentric perturber have not been fully explored. We report the results of our investigation of the dynamics of coplanar test-particles that interact with a massive body on an circular orbit (Neptune) and a massive body on a more distant, highly eccentric orbit (the putative Planet Nine). We find that a detailed examination of our idealized simulations affords tremendous insight into the rich test-particle dynamics that are possible. In particular, we find that chaos and resonance overlap plays an important role in particles’ dynamical evolution. We develop a simple mapping model that allows us to understand, in detail, the web of overlapped mean-motion resonances explored by chaotically evolving particles. We also demonstrate that gravitational interactions with Neptune can have profound effects on the orbital evolution of particles. Our results serve as a starting point for a better understanding of the dynamical behavior observed in more complicated simulations that can be used to constrain the mass and orbit of Planet Nine.

  8. Revisiting the collision risk with cataloged objects for the Iridium and COSMO-SkyMed satellite constellations

    NASA Astrophysics Data System (ADS)

    Pardini, Carmen; Anselmo, Luciano

    2017-05-01

    After two decades of slightly declining growth rate, the population of cataloged objects around the Earth increased by more than 56% in just a couple of years, from January 2007 to February 2009, due to two collisions in space involving the catastrophic destruction of three intact satellites (Fengyun 1C, Cosmos 2251 and Iridium 33) in high inclination orbits. Both events had occurred in the altitude range already most affected by previous launch activity and breakups. In 2011 a detailed analysis had been carried out to analyze the consequences of these fragmentations, in particular concerning the evolution of the collision risk for the Iridium and COSMO-SkyMed satellite constellations. Five years after such first assessment, the cataloged objects environment affecting the two constellations was revisited to evaluate how the situation had evolved due to the varying contribution of the above mentioned breakup fragments and the space activities carried out in the meantime. Being distributed, at 778 km, over six nearly polar orbit planes separated by just 30° at the equator, the Iridium satellites represent a very good gauge for checking the evolution of the environment in the most critical low Earth region. In approximately five years, from May 2011 to June 2016, the average flux of cataloged objects on the Iridium satellites increased by about 14%, to 1.59×10-5 m-2 per year. The cataloged fragments of Fengyun 1C, Cosmos 2251 and Iridium 33 still accounted for, on average, 54% of the total flux. More than 39% of the latter was associated with the Fengyun 1C fragments, about 11% with the Cosmos 2251 fragments and less than 4% with the Iridium 33 fragments. Specifically concerning the mutual interaction among the Iridium 33 debris and the parent constellation, the progressive dispersion and rather fast decay of the fragments below the Iridium operational altitude, coupled with a slow differential plane precession and low average relative velocities with respect to four of the six constellation planes, determined in five years, on average, a decline of the flux by about 31%, i.e. to about 5.75×10-7 m-2 per year. The decrease occurred in each constellation plane, even though with different rates and percentages, due to the varying relative orbit geometry. From May 2011 to June 2016, the mean flux of cataloged objects on the COSMO-SkyMed satellites, at 623 km, increased by about 26%, to 7.24×10-6 m-2 per year. The Fengyun 1C, Cosmos 2251 and Iridium 33 cataloged fragments accounted for, on average, about 1/4 of the total, with 12% due to Fengyun 1C, 8% to Cosmos 2251 and 4% to Iridium 33.

  9. The Solid Rocket Motor Slag Population: Results of a Radar-based Regressive Statistical Evaluation

    NASA Technical Reports Server (NTRS)

    Horstman, Matthew F.; Xu, Yu-Lin

    2008-01-01

    Solid rocket motor (SRM) slag has been identified as a significant source of man-made orbital debris. The propensity of SRMs to generate particles of 100 m and larger has caused concern regarding their contribution to the debris environment. Radar observation, rather than in-situ gathered evidence, is currently the only measurable source for the NASA/ODPO model of the on-orbit slag population. This simulated model includes the time evolution of the resultant orbital populations using a historical database of SRM launches, propellant masses, and estimated locations and times of tail-off. However, due to the small amount of observational evidence, there can be no direct comparison to check the validity of this model. Rather than using the assumed population developed from purely historical and physical assumptions, a regressional approach was used which utilized the populations observed by the Haystack radar from 1996 to present. The estimated trajectories from the historical model of slag sources, and the corresponding plausible detections by the Haystack radar, were identified. Comparisons with observational data from the ensuing years were made, and the SRM model was altered with respect to size and mass production of slag particles to reflect the historical data obtained. The result is a model SRM population that fits within the bounds of the observed environment.

  10. Orbital effects in cobaltites by neutron scattering

    NASA Astrophysics Data System (ADS)

    Louca, Despina

    2005-03-01

    The orbital degree of freedom can play a central role in the physics of transition metal perovskite oxides because of its intricate coupling with other degrees of freedom such as spin, charge and lattice. In this talk the case of La1-xSrxCoO3 will be presented. Using elastic and inelastic neutron scattering, we investigated the thermal evolution of the local atomic structure and lattice dynamics in the pure sample and with the addition of charge carriers as the system crosses over from a paramagnetic insulator to a ferromagnetic metal. In LaCoO3, the thermal activation of the Co ions from a nonmagnetic ground state to an intermediate spin state gives rise to orbital degeneracy. This leads to Jahn-Teller distortions that are dynamical in nature. Doping stabilizes the intermediate spin configuration of the Co ions in the paramagnetic insulating phase. Evidence for local static Jahn-Teller distortions is observed but without long-range ordering. The size of the JT lattice is proportional to the amount of charge. However, with cooling to the metallic phase, static JT distortions disappear for x <= 30 %, the percolation limit. This coincides with narrowing of two modes at φ=22,nd,4,eV in the phonon spectrum in which we argue is due to localized dynamical JT fluctuations^1. The implications of the orbital effects to the structural and magnetic properties will be discussed. ^1D. Louca and J. L. Sarrao, Phys. Rev. Lett. 91, 155501 (2003).

  11. Resonant thickening of self-gravitating discs: imposed or self-induced orbital diffusion in the tightly wound limit

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe; Chavanis, Pierre-Henri; Monk, Laura

    2017-11-01

    The secular thickening of a self-gravitating stellar galactic disc is investigated using the dressed collisionless Fokker-Planck equation and the inhomogeneous multicomponent Balescu-Lenard equation. The thick WKB limits for the diffusion fluxes are found using the epicyclic approximation, while assuming that only radially tightly wound transient spirals are sustained by the disc. This yields simple quadratures for the drift and diffusion coefficients, providing a clear understanding of the positions of maximum vertical orbital diffusion within the disc, induced by fluctuations either external or due to the finite number of particles. These thick limits also offer a consistent derivation of a thick disc Toomre parameter, which is shown to be exponentially boosted by the ratio of the vertical to radial scaleheights. Dressed potential fluctuations within the disc statistically induce a vertical bending of a subset of resonant orbits, triggering the corresponding increase in vertical velocity dispersion. When applied to a tepid stable tapered disc perturbed by shot noise, these two frameworks reproduce qualitatively the formation of ridges of resonant orbits towards larger vertical actions, as found in direct numerical simulations, but overestimates the time-scale involved in their appearance. Swing amplification is likely needed to resolve this discrepancy, as demonstrated in the case of razor-thin discs. Other sources of thickening are also investigated, such as fading sequences of slowing bars, or the joint evolution of a population of giant molecular clouds within the disc.

  12. Effects of Variable Eccentricity on the Climate of an Earth-like World

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the astronomical community with a cornucopia of planetary systems that are very different from the one that we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for the Moon. Using a three-dimensional general circulation model (3D GCM) with a fully coupled ocean, we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earth’s orbit. We investigate two scenarios that involve the evolution of the Earth-like planet’s orbital eccentricity from 0 to 0.283 over 6500 years, and from 0 to 0.066 on a timescale of 4500 years. In both cases we discover that they would maintain relatively temperate climates over the timescales simulated. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitability of these worlds. These are the first such 3D GCM simulations using a fully coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  13. The Dynamics of Objects in the Inner Edgeworth Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Jones, Daniel C.; Williams, Iwan P.; Melita, Mario D.

    2005-12-01

    Objects in 3:2 mean motion resonance with Neptune are protected from close encounters with Neptune by the resonance. Bodies in orbits with semi-major axis between 39.5 and about 42 AU are not protected by the resonance; indeed due to overlapping secular resonances, the eccentricities of orbits in this region are driven up so that a close encounter with Neptune becomes inevitable. It is thus expected that such orbits are unstable. The list of known Trans-Neptunian objects shows a deficiency in the number of objects in this gap compared to the 43 50 AU region, but the gap is not empty. We numerically integrate models for the initial population in the gap, and also all known objects over the age of the Solar System to determine what fraction can survive. We find that this fraction is significantly less than the ratio of the population in the gap to that in the main belt, suggesting that some mechanism must exist to introduce new members into the gap. By looking at the evolution of the test body orbits, we also determine the manner in which they are lost. Though all have close encounters with Neptune, in most cases this does not lead to ejection from the Solar System, but rather to a reduced perihelion distance causing close encounters with some or all of the other giant planets before being eventually lost from the system, with Saturn appearing to be the cause of the ejection of most of the objects.

  14. Planet Formation in Disks with Inclined Binary Companions: Can Primordial Spin-Orbit Misalignment be Produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary disks, and inclined binary companions may tilt the stellar spin axis with respect to the disk's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disk evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disk photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disk-binary systems. We take into account planet-disk interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disk via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with "cold" Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  15. Planet formation in discs with inclined binary companions: can primordial spin-orbit misalignment be produced?

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Many hot Jupiter (HJ) systems have been observed to have their stellar spin axis misaligned with the planet's orbital angular momentum axis. The origin of this spin-orbit misalignment and the formation mechanism of HJs remain poorly understood. A number of recent works have suggested that gravitational interactions between host stars, protoplanetary discs, and inclined binary companions may tilt the stellar spin axis with respect to the disc's angular angular momentum axis, producing planetary systems with misaligned orbits. These previous works considered idealized disc evolution models and neglected the gravitational influence of newly formed planets. In this paper, we explore how disc photoevaporation and planet formation and migration affect the inclination evolution of planet-star-disc-binary systems. We take into account planet-disc interactions and the gravitational spin-orbit coupling between the host star and the planet. We find that the rapid depletion of the inner disc via photoevaporation reduces the excitation of stellar obliquities. Depending on the formation and migration history of HJs, the spin-orbit coupling between the star and the planet may reduces and even completely suppress the excitation of stellar obliquities. Our work constrains the formation/migration history of HJs. On the other hand, planetary systems with `cold' Jupiters or close-in super-earths may experience excitation of stellar obliquities in the presence of distant inclined companions.

  16. Binary asteroid orbit evolution due to primary shape deformation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi; Jacobson, Seth A.; Davis, Alex

    2017-10-01

    About a sixth of all small asteroid systems are binary [Margot et al., Science, 2002]. Many binary asteroids consist of an elongated synchronous secondary body orbiting a fast-rotating spheroidal primary body with ridges on its equator. The primary in such systems has experienced a long-term spin-up due to the YORP effect [Vokrouhlick'y et al., Asteroid IV, 2015]. This spin-up process can make the primary reach its spin barrier inducing shape deformation processes that ease the structural condition for failure inside the primary [e.g., Holsapple, Icarus, 2010]. Earlier works have shown that structural heterogeneities in the primary such as the shape and density distribution induce asymmetric deformation [Sánchez and Scheeres, Icarus, 2016]. Here, we investigate how asymmetric shape deformation in the primary affects the mutual motion of a binary system. We use a dynamics model for an irregularly shaped binary system that accounts for possible deformation of the primary [Hirabayashi et al., LPSC, 2017]. In this model, we consider asymmetric deformation that occurs based on structural failure in the primary and thus it modifies the location of the center of mass of the system. Using 1999 KW4 as an example, we study a hypothetical case in which the primary is initially identical to the current shape [Ostro et al., Science, 2006] with an aspect ratio (AR) of 0.83 and then suddenly changes its shape to an AR of 0.76. The results show that the asymmetric deformation process and the shift of the center of mass excite the eccentricity of the mutual orbit. Considering that the original mutual orbit has an eccentricity of 0.0004, after the primary shape change the eccentricity reaches values up to 0.15. Also, since the gravity field is modified after deformation, the secondary’s spin is desynchronized from the mutual orbit. Since synchronicity is a requirement for the binary YORP (BYORP) effect, which modifies the semi-major axis of binary asteroids, a primary shape change temporarily pauses the BYORP effect, in effect lengthening the effective BYORP timescale.

  17. Particle number dependence in the non-linear evolution of N-body self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Benhaiem, D.; Joyce, M.; Sylos Labini, F.; Worrakitpoonpon, T.

    2018-01-01

    Simulations of purely self-gravitating N-body systems are often used in astrophysics and cosmology to study the collisionless limit of such systems. Their results for macroscopic quantities should then converge well for sufficiently large N. Using a study of the evolution from a simple space of spherical initial conditions - including a region characterized by so-called 'radial orbit instability' - we illustrate that the values of N at which such convergence is obtained can vary enormously. In the family of initial conditions we study, good convergence can be obtained up to a few dynamical times with N ∼ 103 - just large enough to suppress two body relaxation - for certain initial conditions, while in other cases such convergence is not attained at this time even in our largest simulations with N ∼ 105. The qualitative difference is due to the stability properties of fluctuations introduced by the N-body discretisation, of which the initial amplitude depends on N. We discuss briefly why the crucial role which such fluctuations can potentially play in the evolution of the N body system could, in particular, constitute a serious problem in cosmological simulations of dark matter.

  18. A TREND BETWEEN COLD DEBRIS DISK TEMPERATURE AND STELLAR TYPE: IMPLICATIONS FOR THE FORMATION AND EVOLUTION OF WIDE-ORBIT PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.

    2013-09-20

    Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processesmore » (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.« less

  19. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  20. Vibrational and rotational sequences in 101Mo and 103,4Ru studied via multinucleon transfer reactions

    DOE PAGES

    Regan, P. H.; Wheldon, C.; Yamamoto, A. D.; ...

    2005-04-01

    The near-yrast states of 42 101Mo 59 and 44 103,4Ru 59,60 have been studied following their population via heavy-ion multinucleon transfer reactions between a 136 Xe beam and a thin, self-supporting 100Mo target. The ground state sequence in 104Ru can be understood as demonstrating a simple evolution from a quasi-vibrational structure at lower spins to statically deformed, quasi-rotational excitation involving the population of a pair of low-Ω h 11/2 neutron orbitals. The effect of the decoupled h 11/2 orbital on this vibration-to-rotational evolution is demonstrated by an extension of the "E-GOS" prescription to include odd-A nuclei. The experimental results aremore » also compared with self-consistent Total Routhian Surface calculations which also highlight the polarising role of the highly aligned neutron h 11/2 orbital in these nuclei.« less

  1. MEGNO-analysis of light pressure influence on orbital evolution of object in GEO. (Russian Title: MEGNO-анализ влияния светового давления на орбитальную эволюцию объектов зоны ГЕО)

    NASA Astrophysics Data System (ADS)

    Aleksandrova, A. G.; Bordovitsyna, T. V.; Chuvashov, I. N.

    2011-07-01

    In the present work results of investigations of the effect of radiation pressure on the orbital evolution of objects in the GEO are presentеd.. MEGNO-analysis of orbits in the GEO for different values of sail (area to mass ratio) have been performed. Average parameter MEGNO as main indicator of chaotic or stable motion has been used. The results have been obtained using software package "Numerical model of the systems artificial satellite motion", implemented on the cluster "Skiff Cyberia".

  2. Geometric method for forming periodic orbits in the Lorenz system

    NASA Astrophysics Data System (ADS)

    Nicholson, S. B.; Kim, Eun-jin

    2016-04-01

    Many systems in nature are out of equilibrium and irreversible. The non-detailed balance observable representation (NOR) provides a useful methodology for understanding the evolution of such non-equilibrium complex systems, by mapping out the correlation between two states to a metric space where a small distance represents a strong correlation [1]. In this paper, we present the first application of the NOR to a continuous system and demonstrate its utility in controlling chaos. Specifically, we consider the evolution of a continuous system governed by the Lorenz equation and calculate the NOR by following a sufficient number of trajectories. We then show how to control chaos by converting chaotic orbits to periodic orbits by utilizing the NOR. We further discuss the implications of our method for potential applications given the key advantage that this method makes no assumptions of the underlying equations of motion and is thus extremely general.

  3. A Circumbinary Disk Model for the Rapid Orbital Shrinkage in Black Hole Low-mass X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Tian; Li, Xiang-Dong

    2018-05-01

    Several black hole low-mass X-ray binaries (BHLMXBs) show very fast orbital shrinkage, which is difficult to understand in the standard picture of the LMXB evolution. Based on the possible detection of a circumbinary (CB) disk in A0620-00 and XTE J1118+480, we investigate the influence of the interaction between a CB disk and the inner binary and calculate the evolution of the binary using the Modules for Experiments in Stellar Astrophysics. We consider two cases for the CB disk formation in which it is fed by mass loss during single outburst or successive outbursts in the LMXB. We show that when taking reasonable values of the initial mass and the dissipating time of the disk, it is possible to explain the fast orbital shrinkage in the BHLMXBs without invoking a high-mass transfer rate.

  4. The SOAPS project - Spin-orbit alignment of planetary systems. Exoplanets' evolution histories in systems with different architectures

    NASA Astrophysics Data System (ADS)

    Faedi, F.; Gómez Maqueo Chew, Y.; Fossati, L.; Pollacco, D.; McQuillan, A.; Hebb, L.; Chaplin, W. J.; Aigrain, S.

    2013-04-01

    The wealth of information rendered by Kepler planets and planet candidates is indispensable for statistically significant studies of distinct planet populations, in both single and multiple systems. Empirical evidences suggest that Kepler's planet population shows different physical properties as compared to the bulk of known exoplanets. The SOAPS project, aims to shed light on Kepler's planets formation, their migration and architecture. By measuring v sini accurately for Kepler hosts with rotation periods measured from their high-precision light curves, we will assess the alignment of the planetary orbit with respect to the stellar spin axis. This degree of alignment traces the formation history and evolution of the planetary systems, and thus, allows to distinguish between different proposed migration theories. SOAPS will increase by a factor of 2 the number of spin-orbit alignment measurements pushing the parameters space down to the SuperEarth domain. Here we present our preliminary results.

  5. Modeling of Transmittance Degradation Caused by Optical Surface Contamination by Atomic Oxygen Reaction with Adsorbed Silicones

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron; Banks, Bruce; Miller, Sharon; Stueber, Thomas; Sechkar, Edward

    2001-01-01

    A numerical procedure is presented to calculate transmittance degradation caused by contaminant films on spacecraft surfaces produced through the interaction of orbital atomic oxygen (AO) with volatile silicones and hydrocarbons from spacecraft components. In the model, contaminant accretion is dependent on the adsorption of species, depletion reactions due to gas-surface collisions, desorption, and surface reactions between AO and silicone producing SiO(x), (where x is near 2). A detailed description of the procedure used to calculate the constituents of the contaminant layer is presented, including the equations that govern the evolution of fractional coverage by specie type. As an illustrative example of film growth, calculation results using a prototype code that calculates the evolution of surface coverage by specie type is presented and discussed. An example of the transmittance degradation caused by surface interaction of AO with deposited contaminant is presented for the case of exponentially decaying contaminant flux. These examples are performed using hypothetical values for the process parameters.

  6. Timing and searching millisecond pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    D'Amico, Nichi; Possenti, Andrea; Manchester, Dick; Johnston, Simon; Kramer, Michael; Sarkissian, John; Lyne, Andrew; Burgay, Marta; Corongiu, Alessandro; Camilo, Fernando; Bailes, Matthew

    2009-10-01

    Timing the dozen pulsars discovered in P303 is ensuring high quality results: (a) the peculiarities (in position or projected acceleration) of all the 5 millisecond pulsars in NGC6752 suggested the presence of non thermal dynamics in the core, perhaps due to black-holes of intermediate mass; (b) the eclipsing pulsar in NGC6397 is a stereotype for studying the late evolution of exotic binaries. We propose to continue our timing project focusing mostly on NGC6752 at 20cm (in order to measure additional parameters useful to constrain the existence of a black-hole) and NGC6397 at 10cm (for studying the eclipse region and the orbital secular evolution). We also request time for performing pilot observations for a new deeper than ever search for millisecond pulsars in a subset of suitable clusters. This revamped search (as well as the requested timing observations) will exploit the new back-ends (APSR and DFB4) now available at Parkes.

  7. Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi; Feng, Chun, E-mail: fengchun@ustb.edu.cn, E-mail: ghyu@mater.ustb.edu.cn; Liu, Yang

    2014-02-03

    This paper reports the interfacial oxygen migration effect and its induced magnetic anisotropy evolution in Pt/Co/MgO/Pt films. During depositing the MgO layer, oxygen atoms from the MgO combine with the neighboring Co atoms, leading to the formation of CoO at the Co/MgO interface. Meanwhile, the films show in-plane magnetic anisotropy (IMA). After annealing, most of the oxygen atoms in CoO migrate back to the MgO layer, resulting in obvious improvement of Co/MgO interface and the enhancement of effective Co-O orbital hybridization. These favor the evolution of magnetic anisotropy from IMA to perpendicular magnetic anisotropy (PMA). The oxygen migration effect ismore » achieved by the redox reaction at the Co/MgO interface. On the contrary, the transfer from IMA to PMA cannot be observed in Pt/Co/Pt films due to the lack of interfacial oxygen migration.« less

  8. Mimas: Constraints on Origin and Evolution from Libration Data

    NASA Astrophysics Data System (ADS)

    Neveu, Marc; Rhoden, Alyssa R.

    2016-10-01

    In stark contrast with its neighbor moon Enceladus, Mimas is surprisingly geologically quiet, despite an orbital configuration prone to levels of tidal dissipation 30 times higher. While Mimas' lack of activity could be due to a stiff, frigid interior, libration data from the Cassini spacecraft suggest its interior is not homogeneous [1]. Here, we present 1-D models of Mimas' thermal and structural evolution under two accretion scenarios: primordial, undifferentiated formation in the Saturnian subnebula [2]; and late, layered formation from a debris ring created by the disruption of one or more previous moons [3]. In the primordial scenario, our simulations yield two possible outcomes. If tidal dissipation proceeds at levels higher than those obtained using an Andrade rheology [4], Mimas differentiates and an ocean persists until the present day. This should quickly circularize its orbit, but the current orbit is eccentric. In addition, Mimas lacks surface fractures that should result from strong tidal stresses in an ice shell atop an ocean [5]. If dissipation proceeds at lower levels obtained using a Maxwell rheology, it is too weak to drive differentiation; this does not match the observed libration [1]. In the late accretion scenario, Mimas forms already differentiated. As a result, even its deepest ice is within only 100 km of the frigid surface, and poorly insulated by overlying thermally conductive crystalline ice. Thus, all ice remains cold and poorly dissipative, even if dissipation is an order of magnitude above that provided by the Andrade rheology [4]. If Mimas' rocky core is slightly non-hydrostatic [1], this matches the observed libration. We conclude that Mimas' libration is compatible with a late origin from a debris ring, but not with primordial accretion. Consistent with findings from many authors (e.g. [6]), these models cannot produce an ocean on Enceladus unless its orbital eccentricity is higher than observed.References:[1] Tajeddine et al. (2014) Science 346, 322[2] Peale (1999) Annu Rev Astron Astrophys 37, 533[3] Charnoz et al. (2011) Icarus 216, 535[4] McCarthy & Cooper (2016) EPSL 443, 185[5] Rhoden et al., JGR: Planets, submitted[6] Roberts & Nimmo (2008) Icarus 194, 675

  9. Blessing and curse of chaos in numerical turbulence simulations

    NASA Astrophysics Data System (ADS)

    Lee, Jon

    1994-03-01

    Because of the trajectory instability, time reversal is not possible beyond a certain evolution time and hence the time irreversibility prevails under the finite-accuracy trajectory computation. This therefore provides a practical reconciliation of the dynamic reversibility and macroscopic irreversibility (blessing of chaos). On the other hand, the trajectory instability is also responsible for a limited evolution time, so that finite-accuracy computation would yield a pseudo-orbit which is totally unrelated to the true trajectory (curse of chaos). For the inviscid 2D flow, however, we can accurately compute the long- time average of flow quantities with a pseudo-orbit by invoking the ergodic theorem.

  10. Common Envelope Evolution: Implications for Post-AGB Stars and Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Nordhaus, J.

    2017-10-01

    Common envelopes (CE) are of broad interest as they represent one method by which binaries with initially long-period orbits of a few years can be converted into short-period orbits of a few hours. Despite their importance, the brief lifetimes of CE phases make them difficult to directly observe. Nevertheless, CE interactions are potentially common, can produce a diverse array of nebular shapes, and can accommodate current post-AGB and planetary nebula outflow constraints. Here, I discuss ongoing theoretical and computational work on CEs and speculate on what lies ahead for determining accurate outcomes of this elusive phase of evolution.

  11. Evidence for a Past High-Eccentricity Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Garrick-Betthell, Ian; Wisdom, Jack; Zuber, Maria T.

    2007-01-01

    The large differences between the Moon's three principal moments of inertia have been mystery since Laplace considered them in 1799. Here we present calculations that show how past high eccentricity orbits can account for the moment differences, represented by the low-order lunar gravity field and libration parameters. One of our solutions is that the Moon may have once been in a 3:2 resonance of the orbit period to spin-period, similar to Mercury's present state. The possibility of past high-eccentricity orbits suggests a rich dynamical history and may influence our understanding of the early thermal evolution of the Moon.

  12. Asteroid-type orbit evolution near the 5:2 resonance

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.

    1992-01-01

    In this case of the 5:2 commensurability with the motion of Jupiter, an asteroid can reach the orbits of Mars, Earth, and Venus when eccentricity e is greater than 0.41, 0.65, and 0.74, respectively. For individual fictitious asteroids, Ipatov and Yoshikawa obtained a growth in e from 0.15 to 074-0.76. Rates of changes in orbital orientations are different for Mars, Earth, Venus, and the asteroid. Therefore, for corresponding values of e, the asteroid could encounter these planets and leave the gap at those encounters. In order to investigate this hypothesis of the 5:2 Kirkwood gap formation, Ipatov studied the regions of initial data for which the eccentricities of asteroids located near the 5:2 commensurability exceeded 0.41 during evolution. The orbit evolution for 500 fictitious asteroids was investigated by numerical integration of the complete (unaveraged) equations of motion for the three-body problem (Sun-Jupiter-asteroid). The equations of motion were integrated in the time intervals T is greater than or equal to 5(10)(exp 3)t(sub J) (t(sub J) is the heliocentric orbital period of Jupiter) in the planar model, T is greater than or equal to 10(exp 4)t(sub J) at initial inclination 5 deg is less than or equal to i(sub 0) is less than or equal to 20 deg and T = 10(exp 5)t(sub J) at i(sub 0) = 40 deg. The larger interval T was taken at i(sub 0) = 40 deg because in this case for the majority of runs maximum values of e and i were reached in the time delta(t) is greater than 2(10)(exp 4)t(sub J).

  13. Evolution of the Carter constant for inspirals into a black hole: Effect of the black hole quadrupole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flanagan, Eanna E.; Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853; Hinderer, Tanja

    2007-06-15

    We analyze the effect of gravitational radiation reaction on generic orbits around a body with an axisymmetric mass quadrupole moment Q to linear order in Q, to the leading post-Newtonian order, and to linear order in the mass ratio. This system admits three constants of the motion in absence of radiation reaction: energy, angular momentum along the symmetry axis, and a third constant analogous to the Carter constant. We compute instantaneous and time-averaged rates of change of these three constants. For a point particle orbiting a black hole, Ryan has computed the leading order evolution of the orbit's Carter constant,more » which is linear in the spin. Our result, when combined with an interaction quadratic in the spin (the coupling of the black hole's spin to its own radiation reaction field), gives the next to leading order evolution. The effect of the quadrupole, like that of the linear spin term, is to circularize eccentric orbits and to drive the orbital plane towards antialignment with the symmetry axis. In addition we consider a system of two point masses where one body has a single mass multipole or current multipole of order l. To linear order in the mass ratio, to linear order in the multipole, and to the leading post-Newtonian order, we show that there does not exist an analog of the Carter constant for such a system (except for the cases of an l=1 current moment and an l=2 mass moment). Thus, the existence of the Carter constant in Kerr depends on interaction effects between the different multipoles. With mild additional assumptions, this result falsifies the conjecture that all vacuum, axisymmetric spacetimes possess a third constant of the motion for geodesic motion.« less

  14. Rotation state of 495 Eulalia and its implication

    NASA Astrophysics Data System (ADS)

    Vokrouhlický, D.; Ďurech, J.; Pravec, P.; Oey, J.; Vraštil, J.; Hornoch, K.; Kušnirák, P.; Groom, R.; Warner, B. D.; Bottke, W. F.

    2016-01-01

    Context. The low-albedo part of the Nysa-Polana-Hertha asteroid complex has recently been found to consist of at least two families. The larger of them has been associated with asteroid 495 Eulalia, hereafter named the Eulalia family. The unstable location of this body very close to Jupiter's 3:1 mean motion resonance (J3/1 resonance) at the periphery of the associated family in the space of proper orbital elements makes this case peculiar. Aims: We consider the possibility that 495 Eulalia was originally positioned farther from the J3/1 resonance when the family formed via a catastrophic impact than it is today. It was then transported to its current orbit by the Yarkovsky thermal forces over hundreds of millions of years. This requires that 495 Eulalia had a prograde rotation state. Methods: We use photometric observations and lightcurve inversion methods to determine the rotation pole of 495 Eulalia. Numerical simulation accounting for perturbations from the Yarkovsky effect then reveals the possible pathways of Eulalia orbital evolution. Results: We find that both of the possible pole solutions are prograde, in accordance with our initial hypothesis. In studying the long-term evolution of Eulalia's spin state, we show that the obliquity can oscillate over a large interval of values yet always remain <90°. We estimate that Eulalia could have migrated by as much as ~0.007 au toward the J3/1 resonance within the past 1 Gyr. Our numerical runs show that it could have originated in the orbital zone well aligned with other family members in proper eccentricity, whichafter it gained its current orbit by chaotic evolution along the J3/1 resonance.

  15. Reduced Diversity of Life around Proxima Centauri and TRAPPIST-1

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Loeb, Abraham

    2017-09-01

    The recent discovery of potentially habitable exoplanets around Proxima Centauri and TRAPPIST-1 has attracted much attention due to their potential for hosting life. We delineate a simple model that accurately describes the evolution of biological diversity on Earth. Combining this model with constraints on atmospheric erosion and the maximal evolutionary timescale arising from the star’s lifetime, we arrive at two striking conclusions: (I) Earth-analogs orbiting low-mass M-dwarfs are unlikely to be inhabited, and (II) K-dwarfs and some G-type stars are potentially capable of hosting more complex biospheres than the Earth. Hence, future searches for biosignatures may have higher chances of success when targeting planets around K-dwarf stars.

  16. Gyrophase drifts and the orbital evolution of dust at Jupiter's Gossamer Ring

    NASA Technical Reports Server (NTRS)

    Northrop, T. G.; Mendis, D. A.; Schaffer, Les

    1989-01-01

    The 'gyrophase drift' phenomenon in Jupiter's fine-dust 'gossamer ring' is presently shown to exceed the plasma-drag drift, and may be able to move small, charged grains either toward or away from synchronous radius. The grain gyrophase drifts toward the higher temperature in the presence of a radial gradient in plasma temperature; gyrophase drift will also occur in conjunction with a radial gradient in the relative concentrations of different plasma ion species, or even due to plasma-grain velocity variation associated with the grain's cycloidal motion through the plasma. The Poynting-Robertson drift is noted to be diminutive by comparison with either the plasma-drag or gyrophase drifts.

  17. KSC-03pd0489

    NASA Image and Video Library

    2003-02-13

    KENNEDY SPACE CENTER, FLA. -- The solar array panels on the Galaxy Evolution Explorer (GALEX) satellite are deployed during processing in the Multi-Payload Processing Facility. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  18. KSC-03pd0476

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, the GALEX satellite has been moved to a rotation stand. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  19. KSC-03pd0488

    NASA Image and Video Library

    2003-02-13

    KENNEDY SPACE CENTER, FLA. - The solar array panels on the Galaxy Evolution Explorer (GALEX) satellite are deployed during processing in the Multi-Payload Processing Facility. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  20. KSC-03pd0481

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility look over the GALEX satellite before solar array testing. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  1. KSC-03pd0480

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. - Workers prepare the GALEX satellite for solar array testing in the Multi-Payload Processing Facility. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  2. KSC-03pd0490

    NASA Image and Video Library

    2003-02-13

    KENNEDY SPACE CENTER, FLA. -- The solar array panels on the Galaxy Evolution Explorer (GALEX) satellite are deployed during processing in the Multi-Payload Processing Facility. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  3. KSC-03pd0479

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- The GALEX satellite is rotated to vertical again for solar array testing in the Multi-Payload Processing Facility. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  4. KSC-03pd0477

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, a worker inspects the GALEX satellite after its rotation on a stand. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  5. KSC-03pd0478

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, a worker checks over the GALEX satellite on a rotation stand. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  6. Unstable Box Orbits in Cuspy Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Hasan, H.; Pfenniger, D.

    1996-01-01

    The aim of this work is to gain physical insight into the role played by a concentrated central mass in affecting the shape of elliptical galaxies, by examining its effect on the stability of box orbits which are the backbone of triaxial elliptical galaxies. Ample observational evidence is now available for the existence of a central mass concentration or central cusps in galaxies. The central mass is expected to cause orbital stochasticity and chaotic mixing of orbits, which could have ramifications on galactic evolution. We investigate here the interplay between potential cuspiness and eccentricity on the stability of axial orbits in a scale-free potential in a simple, preliminary attempt to characterize this effect.

  7. On the coplanar eccentric non-restricted co-orbital dynamics

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  8. Evolution of the Climate Continuum from the Mid-Miocene Climatic Optimum to the Present

    NASA Astrophysics Data System (ADS)

    Aswasereelert, W.; Meyers, S. R.; Hinnov, L. A.; Kelly, D.

    2011-12-01

    The recognition of orbital rhythms in paleoclimate data has led to a rich understanding of climate evolution during the Neogene and Quaternary. In contrast, changes in stochastic variability associated with the transition from unipolar to bipolar glaciation have received less attention, although the stochastic component likely preserves key insights about climate. In this study, we seek to evaluate the dominance and character of stochastic climate energy since the Middle Miocene Climatic Optimum (~17 Ma). These analyses extend a previous study that suggested diagnostic stochastic responses associated with Northern Hemisphere ice sheet development during the Plio-Pleistocene (Meyers and Hinnov, 2010). A critical and challenging step necessary to conduct the work is the conversion of depth data to time data. We investigate climate proxy datasets using multiple time scale hypotheses, including depth-derived time scales, sedimentologic/geochemical "tuning", minimal orbital tuning, and comprehensive orbital tuning. To extract the stochastic component of climate, and also explore potential relationships between the orbital parameters and paleoclimate response, a number of approaches rooted in Thomson's (1982) multi-taper spectral method (MTM) are applied. Importantly, the MTM technique is capable of separating the spectral "continuum" - a measure of stochastic variability - from the deterministic periodic orbital signals (spectral "lines") preserved in proxy data. Time series analysis of the proxy records using different chronologic approaches allows us to evaluate the sensitivity of our conclusion about stochastic and deterministic orbital processes during the Middle Miocene to present. Moreover, comparison of individual records permits examination of the spatial dependence of the identified climate responses. Meyers, S.R., and Hinnov, L.A. (2010), Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise: Paleoceanography, 25, PA3207, doi:10.1029/2009PA001834. Thomson, D.J. (1982), Spectrum estimation and harmonic analysis: IEEE Proceedings, v. 70, p. 1055-1096.

  9. Dynamical Models of the Solar System Formation and Evolution

    NASA Technical Reports Server (NTRS)

    Stewart, Glen R.

    2002-01-01

    Mark Lewis has extended his them is work by completing a series of N-body simulations of a narrow ring that: is in the location of Saturn's F-ring and is perturbed by a single satellite comparable to Prometheus, but on a circular orbit. We had previously shown how the satellite perturbations can cause a broadly distributed sparse population of ring particles to become concentrated into narrow rings that can be maintained outside of any resonance location. For low optical depths, the collisions between ring particles are highly localized in the peaks of the satellite wakes. The inelastic collisions therefore occur at a particular orbital phase angle so as to damp the azimuthal component of the relative velocities. Since particle positions are not changed by collisions, the semimajor axes of the particles are shifted toward the actual particle positions where the collisions occur. Thus, negative radial diffusion can occur while conserving orbital angular momentum so long as the forced eccentricity is continually re-excited by the satellite. We speculated that the separation between the final ringlets was largely determined by the magnitude of the forced eccentricities induced by the satellite at closest approach. We carried out a series of simulations with a variety of different satellite masses in order to vary the magnitude of the forced eccentricity. We found that indeed the final spacing of the ringlets does increase with the magnitude of the forced eccentricity (Lewis and Stewart 2002). This occurs because neighboring eccentric ringlets drift out of phase with one another due to Keplerian shear and eventually collide with one another, leading to a smaller number of more widely spaced ringlets, The time scale required to form narrow ringlets in these simulations is much shorter than one would expect from standard theories based upon the orbit-averaged torque produced by multiple passes by the satellite. We find that the initial ringlets form in less than two synodic periods and the final state is typically reached in 10 to 20 synodic periods. These studies move us closer to understanding the significantly more complex system of Saturn's F ring, where the perturbation magnitude varies over short temporal and spatial time scales due to the orbital eccentricities of the perturbing satellite. We are currently extending the simulation to allow for an eccentric orbit of the satellite.

  10. Magnetic fields driven by tidal mixing in radiative stars

    NASA Astrophysics Data System (ADS)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  11. A leaf wax biomarker record of early Pleistocene hydroclimate from West Turkana, Kenya

    NASA Astrophysics Data System (ADS)

    Lupien, R. L.; Russell, J. M.; Feibel, C.; Beck, C.; Castañeda, I.; Deino, A.; Cohen, A. S.

    2018-04-01

    Climate is thought to play a critical role in human evolution; however, this hypothesis is difficult to test due to a lack of long, high-quality paleoclimate records from key hominin fossil locales. To address this issue, we analyzed organic geochemical indicators of climate in a drill core from West Turkana, Kenya that spans ∼1.9-1.4 Ma, an interval that includes several important hominin evolutionary transitions. We analyzed the hydrogen isotopic composition of terrestrial plant waxes (δDwax) to reconstruct orbital-timescale changes in regional hydrology and their relationship with global climate forcings and the hominin fossil record. Our data indicate little change in the long-term mean hydroclimate during this interval, in contrast to inferred changes in the level of Lake Turkana, suggesting that lake level may be responding dominantly to deltaic progradation or tectonically-driven changes in basin configuration as opposed to hydroclimate. Time-series spectral analyses of the isotopic data reveal strong precession-band (21 kyr) periodicity, indicating that regional hydroclimate was strongly affected by changes in insolation. We observe an interval of particularly high-amplitude hydrologic variation at ∼1.7 Ma, which occurs during a time of high orbital eccentricity hence large changes in processionally-driven insolation amplitude. This interval overlaps with multiple hominin species turnovers, the appearance of new stone tool technology, and hominin dispersal out of Africa, supporting the notion that climate variability played an important role in hominin evolution.

  12. 3-D orbital evolution model of outer asteroid belt

    NASA Technical Reports Server (NTRS)

    Solovaya, Nina A.; Gerasimov, Igor A.; Pittich, Eduard M.

    1992-01-01

    The evolution of minor planets in the outer part of the asteroid belt is considered. In the framework of the semi-averaged elliptic restricted three-dimensional three-body model, the boundary of regions of the Hill's stability is found. As was shown in our work, the Jacobian integral exists.

  13. Orbital Dynamics, Environmental Heterogeneity, and the Evolution of the Human Brain

    ERIC Educational Resources Information Center

    Grove, Matt

    2012-01-01

    Many explanations have been proposed for the evolution of our anomalously large brains, including social, ecological, and epiphenomenal hypotheses. Recently, an additional hypothesis has emerged, suggesting that advanced cognition and, by inference, increases in brain size, have been driven over evolutionary time by the need to deal with…

  14. The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1995-01-01

    The origin of the highly eccentric, inclined, and resonance-locked orbit of Pluto has long been a puzzle. A possible explanation has been proposed recently which suggests that these extraordinary orbital properties may be a natural consequence of the formation and early dynamical evolution of the outer solar system. A resonance capture mechanism is possible during the clearing of the residual planetesimal debris and the formation of the Oort Cloud of comets by planetesimal mass loss from the vicinity of the giant planets. If this mechanism were in operation during the early history of the planetary system, the entire region between the orbit of Neptune and approximately 50 AU would have been swept by first-order mean motion resonances. Thus, resonance capture could occur not only for Pluto, but quite generally for other trans-Neptunian small bodies. Some consequences of this evolution for the present-day dynamical structure of the trans-Neptunian region are (1) most of the objects in the region beyond Neptune and up to approximately 50 AU exist in very narrow zones located at orbital resonances with Neptune (particularly the 3:2 and the 2:1 resonances); and (2) these resonant objects would have significantly large eccentricities. The distribution of objects in the Kuiper Belt as predicted by this theory is presented here.

  15. Frequency maps as a probe of secular evolution in the Milky Way

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2015-03-01

    The frequency analysis of the orbits of halo stars and dark matter particles from a cosmological hydrodynamical simulation of a disk galaxy from the MUGS collaboration (Stinson et al. 2010) shows that even if the shape of the dark matter halo is nearly oblate, only about 50% of its orbits are on short-axis tubes, confirming a previous result: under baryonic condensation all orbit families can deform their shapes without changing orbital type (Valluri et al. 2010). Orbits of dark matter particles and halo stars are very similar reflecting their common accretion origin and the influence of baryons. Frequency maps provide a compact representation of the 6-D phase space distribution that also reveals the history of the halo (Valluri et al. 2012). The 6-D phase space coordinates for a large population of halo stars in the Milky Way that will be obtained from future surveys can be used to reconstruct the phase-space distribution function of the stellar halo. The similarity between the frequency maps of halo stars and dark matter particles (Fig. 1) implies that reconstruction of the stellar halo distribution function can reveal the phase space distribution of the unseen dark matter particles and provide evidence for secular evolution. MV is supported by NSF grant AST-0908346 and the Elizabeth Crosby grant.

  16. Obliquity evolution of the minor satellites of Pluto and Charon

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Nichols-Fleming, Fiona; Chen, Yuan-Yuan; Noyelles, Benoît

    2017-09-01

    New Horizons mission observations show that the small satellites Styx, Nix, Kerberos and Hydra, of the Pluto-Charon system, have not tidally spun-down to near synchronous spin states and have high obliquities with respect to their orbit about the Pluto-Charon binary (Weaver, 2016). We use a damped mass-spring model within an N-body simulation to study spin and obliquity evolution for single spinning non-round bodies in circumbinary orbit. Simulations with tidal dissipation alone do not show strong obliquity variations from tidally induced spin-orbit resonance crossing and this we attribute to the high satellite spin rates and low orbital eccentricities. However, a tidally evolving Styx exhibits intermittent obliquity variations and episodes of tumbling. During a previous epoch where Charon migrated away from Pluto, the minor satellites could have been trapped in orbital mean motion inclination resonances. An outward migrating Charon induces large variations in Nix and Styx's obliquities. The cause is a commensurability between the mean motion resonance frequency and the spin precession rate of the spinning body. As the minor satellites are near mean motion resonances, this mechanism could have lifted the obliquities of all four minor satellites. The high obliquities need not be primordial if the minor satellites were at one time captured into mean motion resonances.

  17. Tides and the evolution of planetary habitability.

    PubMed

    Barnes, Rory; Raymond, Sean N; Jackson, Brian; Greenberg, Richard

    2008-06-01

    Tides raised on a planet by the gravity of its host star can reduce the planet's orbital semi-major axis and eccentricity. This effect is only relevant for planets orbiting very close to their host stars. The habitable zones of low-mass stars are also close in, and tides can alter the orbits of planets in these locations. We calculate the tidal evolution of hypothetical terrestrial planets around low-mass stars and show that tides can evolve planets past the inner edge of the habitable zone, sometimes in less than 1 billion years. This migration requires large eccentricities (>0.5) and low-mass stars ( less or similar to 0.35 M(circle)). Such migration may have important implications for the evolution of the atmosphere, internal heating, and the Gaia hypothesis. Similarly, a planet that is detected interior to the habitable zone could have been habitable in the past. We consider the past habitability of the recently discovered, approximately 5 M(circle) planet, Gliese 581 c. We find that it could have been habitable for reasonable choices of orbital and physical properties as recently as 2 Gyr ago. However, when constraints derived from the additional companions are included, most parameter choices that indicate past habitability require the two inner planets of the system to have crossed their mutual 3:1 mean motion resonance. As this crossing would likely have resulted in resonance capture, which is not observed, we conclude that Gl 581 c was probably never habitable.

  18. MSFC Skylab electrical power systems mission evaluation

    NASA Technical Reports Server (NTRS)

    Woosley, A. P.

    1974-01-01

    The design, development, and operation of the Skylab electrical power system are discussed. The electrical systems for the airlock module of the orbital workshop and the Apollo telescope mount are described. Skylab is considered an integral laboratory, however, both cluster and module hardware distinct sections are included. Significant concept and requirement evolution, testing, and modifications resulting from tests are briefly summarized to aid in understanding the launch configuration description and the procedures and performance discussed for in-orbit operation. Specific problems encountered during Skylab orbital missions are analyzed.

  19. On the small-x behavior of the orbital angular momentum distributions in QCD

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshitaka; Yang, Dong-Jing

    2018-06-01

    We present the numerical solution of the leading order QCD evolution equation for the orbital angular momentum distributions of quarks and gluons and discuss its implications for the nucleon spin sum rule. We observe that at small-x, the gluon helicity and orbital angular momentum distributions are roughly of the same magnitude but with opposite signs, indicating a significant cancellation between them. A similar cancellation occurs also in the quark sector. We explain analytically the reason for this cancellation.

  20. Asynchronous polar V1500 Cyg: orbital, spin and beat periods

    NASA Astrophysics Data System (ADS)

    Pavlenko, E. P.; Mason, P. A.; Sosnovskij, A. A.; Shugarov, S. Yu; Babina, Ju V.; Antonyuk, K. A.; Andreev, M. V.; Pit, N. V.; Antonyuk, O. I.; Baklanov, A. V.

    2018-06-01

    The bright Nova Cygni 1975 is a rare nova on a magnetic white dwarf (WD). Later it was found to be an asynchronous polar, now called V1500 Cyg. Our multisite photometric campaign occurring 40 years post eruption covered 26-nights (2015-2017). The reflection effect from the heated donor has decreased, but still dominates the optical radiation with an amplitude ˜1m.5. The 0m.3 residual reveals cyclotron emission and ellipsoidal variations. Mean brightness modulation from night-to-night is used to measure the 9.6-d spin-orbit beat period that is due to changing accretion geometry including magnetic pole-switching of the flow. By subtracting the orbital and beat frequencies, spin-phase dependent light curves are obtained. The amplitude and profile of the WD spin light curves track the cyclotron emitting accretion regions on the WD and they vary systematically with beat phase. A weak intermittent signal at 0.137613-d is likely the spin period, which is 1.73(1) min shorter than the orbital period. The O-C diagram of light curve maxima displays phase jumps every one-half beat period, a characteristic of asynchronous polars. The first jump we interpret as pole switching between regions separated by 180°. Then the spot drifts during ˜ 0.1 beat phase before undergoing a second phase jump between spots separated by less than 180°. We trace the cooling of the still hot WD as revealed by the irradiated companion. The post nova evolution and spin-orbit asynchronism of V1500 Cyg continues to be a powerful laboratory for accretion flows onto magnetic white dwarfs.

  1. Astronomical constraints on global carbon-cycle perturbation during Oceanic Anoxic Event 2 (OAE2)

    NASA Astrophysics Data System (ADS)

    Li, Yong-Xiang; Montañez, Isabel P.; Liu, Zhonghui; Ma, Lifeng

    2017-03-01

    Oceanic Anoxic Event 2 (OAE2) was a major disturbance in global carbon cycling and transient climate disruption, triggered by a pulse of volcanic CO2. Although this well-studied perturbation to the ocean-atmosphere system offers a unique opportunity to better understand abrupt climate change in response to CO2-forcing, the origin, evolution and duration of the event are still debated due in large part to the temporal resolution of existing OAE2 records and uncertainty over the duration of the overall perturbation and C cycle shifts within it. Here we report coupled magnetic susceptibility (MS) and carbon-isotope time-series of ∼2.5 to 5 ± 0.5kyr resolution from an expanded OAE2 interval from southern Tibet, China. MS cyclicity indicates short eccentricity modulation, permitting the construction of a high-precision orbital timescale which, when integrated with the high resolution δ13Ccarb record, fully constrains the timing and nature of onset through recovery of OAE2, revealing finer-scale structure than previously recognized. Abrupt coupled shifts in δ13Ccarb and MS, and changing phase relationships in-step with transitions between high and low long eccentricity, indicate orbitally linked changes in marine carbon cycling and monsoon dynamics superimposed on repeated wholesale oceanographic changes. In particular, the high-resolution Tibetan record reveals dynamic shifts in the phasing relationship of MS and δ13 C, which suggests that the initiation of ocean anoxia was probably not orbitally forced. This finding is in sharp contrast with the paradigm of orbitally forced ocean anoxia. Conversely, the new record suggests that termination of anoxia was likely orbitally forced and superimposed on a dramatic oceanographic change.

  2. Coalescing neutron stars - a step towards physical models. I. Hydrodynamic evolution and gravitational-wave emission.

    NASA Astrophysics Data System (ADS)

    Ruffert, M.; Janka, H.-T.; Schaefer, G.

    1996-07-01

    We investigate the dynamics and evolution of coalescing neutron stars. The three-dimensional Newtonian equations of hydrodynamics are integrated by the "Piecewise Parabolic Method" on an equidistant Cartesian grid with a resolution of 64^3^ or 128^3^. Although the code is purely Newtonian, we do include the emission of gravitational waves and their backreaction on the hydrodynamic flow. The properties of neutron star matter are described by the physical equation of state of Lattimer & Swesty (1991). In addition to the fundamental hydrodynamic quantities, density, momentum, and energy, we follow the time evolution of the electron density in the stellar gas. Energy loss by all types of neutrinos and changes of the electron fraction due to the emission of electron neutrinos and antineutrinos are taken into account by an elaborate "neutrino leakage scheme". We simulate the coalescence of two identical, cool neutron stars with a baryonic mass of =~1.6Msun_ and a radius of =~15km and with an initial center-to-center distance of 42km. The initial distributions of density and electron concentration are given from a model of a cold neutron star in hydrostatic equilibrium, the temperature in our initial models is increased such that the thermal energy is about 3% of the degeneracy energy for given density and electron fraction (central temperature about 8MeV). We investigate three cases which differ by the initial velocity distribution in the neutron stars, representing different cases of the neutron star spins relative to the direction of the orbital angular momentum vector. The orbit decays due to gravitational-wave emission, and after half a revolution the stars are so close that dynamical instability sets in. Within about 1ms they merge into a rapidly spinning (P_spin_=~1ms), high-density body (ρ=~10^14^g/cm^3^) with a surrounding thick disk of material with densities ρ=~10^10^-10^12^g/cm^3^ and orbital velocities of 0.3-0.5c. In this work we evaluate the models in detail with respect to the gravitational wave emission using the quadrupole approximation. In a forthcoming paper we will concentrate on the neutrino emission and implications for gamma-ray bursters. The peak emission of gravitational waves is short but powerful. A maximum luminosity in excess of 10^55^erg/s is reached for about 1ms. The amplitudes of the gravitational waves are close to 3x10^-23^ at a distance of 1Gpc, and the typical frequencies are between 1KHz and 2KHz, near the dynamical frequency of the orbital motion of the merging and coalescing neutron stars. In contrast to the diverging gravitational wave amplitude of two coalescing point-masses, our models show decreasing amplitudes of the waves because of the finite extension of the neutron stars and the nearly spherical shape of the merged object toward the end of the simulations. The structure and temporal development of the gravitational wave signal and energy spectrum show systematic trends with the amount of angular momentum in the system and depend on the details of the hydrodynamic mass motions.

  3. Defunct Satellites, Rotation Rates and the YORP Effect

    NASA Astrophysics Data System (ADS)

    Albuja, A.; Scheeres, D.

    2013-09-01

    With the increasing number of defunct satellites and associated space debris found in orbit, it is important to understand the dynamics governing the motion of these bodies. Orbit perturbations are coupled with the body's attitude dynamics; therefore it is necessary to have an understanding of attitude dynamics for accurate predictions of debris orbits. Additionally, it is important to have a clear idea of the rotational dynamics of such objects for removal and mitigation purposes. The Yarkovsky-O'Keefe-Raszvieskii-Paddack (YORP) effect has been well studied and credited for the observed secular change in angular velocity of various asteroids. The YORP effect arises due to sunlight being either absorbed and re-emitted as energy or being directly reflected, creating a net downward force on the body's surface. As a result of both of these factors, an overall torque is created on the body yielding a change in the rotational dynamics. While YORP has been extensively studied for asteroids, it has yet to be systematically applied to objects in Earth orbit such as space debris. This paper analyzes the effects of YORP on the obliquity and angular velocity of defunct satellites and other pieces of debris found in Earth orbit. The rotational dynamics are first averaged over the rotational period and next over the orbital period of the Earth, about which the debris is assumed to be orbiting. Using these averaged dynamics, long-term predictions of the evolution of both angular velocity and obliquity are made. In the analysis simulation results are compared to published observational data for defunct satellites. The observed rotation periods of the satellites are used to compute how much torque would be required to obtain such a period only due to YORP. These required torques are compared to the torques that we predict to be acting on these satellites. As an example of what we will present, consider the GEO satellite Gorizont-11. The normalized inferred coefficient for the satellite Gorizont-11 is compared to the computed normalized coefficient for the same satellite. The computed normalized coefficient for Gorizont-11 is 6e-3, while the inferred normalized coefficient for the same satellite is 9e-3. We note that these are of the same order of magnitude, although the real number will be a function of the optical reflectance properties of the bodies, their geometry, etc. The results of this work show that YORP could be the sole cause for the anomalous and rapid rotation of some defunct satellites that has been seen through observations.

  4. Diffusive Tidal Evolution for Migrating Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Wu, Yanqin

    2018-03-01

    I consider a Jovian planet on a highly eccentric orbit around its host star, a situation produced by secular interactions with its planetary or stellar companions. The tidal interactions at every periastron passage exchange energy between the orbit and the planet’s degree-2 fundamental-mode. Starting from zero energy, the f-mode can diffusively grow to large amplitudes if its one-kick energy gain is ≥10‑5 of the orbital energy. This requires a pericenter distance of ≤4 tidal radii (or 1.6 Roche radii). If the f-mode has a non-negligible initial energy, diffusive evolution can occur at a lower threshold. The first effect can stall the secular migration as the f-mode can absorb orbital energy and decouple the planet from its secular perturbers, parking all migrating jupiters safely outside the zone of tidal disruption. The second effect leads to rapid orbit circularization as it allows an excited f-mode to continuously absorb orbital energy as the orbit eccentricity decreases. So without any explicit dissipation, other than the fact that the f-mode will damp nonlinearly when its amplitude reaches unity, the planet can be transported from a few au to ∼0.2 au in ∼104 years. Such a rapid circularization is equivalent to a dissipation factor Q ∼ 1, and it explains the observed deficit of super-eccentric Jovian planets. Lastly, the repeated f-mode breaking likely deposits energy and angular momentum in the outer envelope and avoids thermally ablating the planet. Overall, this work boosts the case for hot Jupiter formation through high-eccentricity secular migration.

  5. The long-term evolution of the X-ray pulsar XTE J1814-338: A receding jet contribution to the quiescent optical emission?

    NASA Astrophysics Data System (ADS)

    Baglio, M. C.; D'Avanzo, P.; Muñoz-Darias, T.; Breton, R. P.; Campana, S.

    2013-11-01

    Aims: We present a study of the quiescent optical counterpart of the accreting millisecond X-ray pulsar XTE J1814-338 that is aimed at unveiling the different components, which contribute to the quiescent optical emission of the system. Methods: We carried out multiband (BVR) orbital phase-resolved photometry of the system using the ESO Very Large Telescope (VLT) that is equipped with the FORS2 camera, covering about 70% of the 4.3 hour orbital period. Results: The optical light curves are consistent with a sinusoidal variability that are modulated with an orbital period with a semi-amplitude of 0.5-0.7 mag. They show evidence of a strongly irradiated companion star, which agrees with previous findings for this system. However, the observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system seems to be fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curve performed with a Markov chain Monte Carlo technique, we derive constraints on the companion star, disc fluxes, system distance, and companion star mass. Conclusions: The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. Compared to our data with previous observations, which were collected over 5 years, the flux decrease and spectral evolution of the observed quiescent optical emission cannot be satisfactorily explained with the combined contribution of an irradiated companion star and of an accretion disc alone. The observed progressive flux decrease as the system gets bluer could be due to a continuum component that evolves towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence, we hypothesize that an additional component, such as synchrotron emission from a jet was significantly contributing in the data obtained earlier during quiescence and then progressively fading or moving its break frequency towards longer wavelengths. Based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 383.D-0730(A).

  6. Orbital dynamics in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Hoffman, Loren

    In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions, and 10 re-mergers of the 40% gas remnants. All simulations were run using a version of GADGET-2 [173] that included subresolution models of radiative cooling, star formation, and supernova and AGN feedback. The potential was frozen at the last snapshot of each simulation and the orbits of ~50,000 randomly chosen stars were integrated for ~100 dynamical times, and classified based on their Fourier spectra using the algorithm of [30]. The 40% gas remnants were found to be dominated by minor-axis tube orbits in their inner regions, whereas box orbits were the dominant orbit family in the inner parts of the dissipationless disk-disk and remnant-remnant systems. The phase space available to minor-axis tube orbits in even the 5% gas remnants was much larger than that in the dissipationless remnants, but the 5% gas remnants are not fast rotators because these orbits tend to be isotropically distributed at low gas fractions. Some of the remnants show significant minor axis rotation, due to large orientation twists in their outer parts (in the 40% gas remnants) and asymmetrically rotating major-axis tube orbits throughout the remnants (in the re-mergers).

  7. Simulating TGF and gamma ray emission above and within stormclouds due to the interaction of TeV cosmic ray shower electrons/positrons/photons with plausible electric field geometries generated in stormclouds.

    NASA Astrophysics Data System (ADS)

    Connell, P. H.

    2017-12-01

    The University of Valencia has developed a software simulator LEPTRACK to simulate lepton and photon scattering in any kind of media with a variable density, and permeated by electric/magnetic fields of any geometry, and which can handle an exponential runaway avalanche. Here we show results of simulating the interaction of electrons/positrons/photons in an incoming TeV cosmic ray shower with the kind of electric fields expected in a stormcloud after a CG discharge which removes much of the positive charge build up at the centre of the cloud. The point is to show not just a Relativistic Runaway Electron Avalanche (RREA) above the upper negative shielding layer at 12 km but other gamma ray emission due to electron/positron interaction in the remaining positive charge around 9km and the lower negative charge at 6km altitude. We present here images, lightcurves, altitude profiles, spectra and videos showing the different ionization, excitation and photon density fields produced, their time evolution, and how they depend critically on where the cosmic ray shower beam intercepts the electric field geometry. We also show a new effect of incoming positrons, which make up a significant fraction of the shower, where they appear to "orbit" within the high altitude negative shielding layer, and which has been conjectured to produce significant microwave emission, as well as a short range 511 keV annihilation line. The interesting question is if this conjectured emission can be observed and correlated with TGF orbital observations to prove that a TGF originates in the macro-fields of stormclouds or the micro-fields of light leaders and streamers where this "positron orbiting" is not likely to occur.

  8. Migration of comets to near-Earth space

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.

    The orbital evolution of more than 21000 Jupiter-crossing objects under the gravitational influence of planets was investigated. For orbits close to that of Comet 2P, the mean collision probabilities of Jupiter-crossing objects with the terrestrial planets were greater by two orders of magnitude than for some other comets. For initial orbital elements close to those of Comets 2P, 10P, 44P, and 113P, a few objects (<0.1%) got Earth-crossing orbits with semi-major axes a<2 AU and aphelion distances Q<4.2 AU and moved in such orbits for more than 1 Myr (up to tens or even hundreds of Myrs). Some of them even got inner-Earth orbits (Q<0.983 AU) and Aten orbits for millions of years. Most former trans-Neptunian objects that have typical near-Earth object orbits moved in such orbits for millions of years, so during most of this time they were extinct comets or disintegrated into mini-comets.

  9. a Permanent Magnet Hall Thruster for Orbit Control of Lunar Polar Satellites

    NASA Astrophysics Data System (ADS)

    Ferreira, Jose Leonardo; Silva Moraes, Bruno; Soares Ferreira, Ivan; Cardozo Mour, Decio; Winter, Othon

    Future moon missions devoted to lunar surface remote sensing and to many others scientific exploration topics will require more fine and higher precision orbit control. It is well known that, lunar satellites in polar orbits will suffer a high increase on the eccentricity due to the gravitational perturbation of the Earth. Without proper orbit correction the satellite life time will decrease and end up in a collision with the moon surface. It is pointed out by many authors that this effect is a natural consequence of the Lidov-Kozai resonance. In the present work, we propose a precise method of orbit eccentricity control based on the use of a low thrust Hall plasma thruster. The proposed method is based on an approach intended to keep the orbital eccentricity of the satellite at low values. A previous work on this subject was made using numerical integration considering two systems: the 3-body problem, Moon-Earth-satellite and the 4-body problem, Moon-Earth-Sun-satellite (??). In such simulation it is possible to follow the evolution of the satellite's eccentricity and find empirical expressions for the length of time needed to occur the collision with the moon. In this work, a satellite orbit eccentricity control maneuvering is proposed. It is based on working parameters of a low thrust propulsion permanent magnet Hall plasma thruster (PMHT), which is been developed at University of Brasilia, Brazil. We studied different arcs of active lunar satellite propulsion in order to be able to introduce a correction of the eccentricity at each cycle. The calculations were made considering a set of different thrust values, from 0.1N up to 0.4N which can be obtained by using the PMHT. In each calculation procedure we measured the length of eccentricity correction provided by active propulsion. From these results we obtained empirical expressions of the time needed for the corrections as a function of the initial altitude and as a function of the thrust value. 1. Winter, O. C. et all in Controlling the Eccentricity of Polar Lunar Orbits with Low Thrust Propulsion, Mathematical Problems in Engineering, vol. on Space Dynamics, 2009.

  10. New Measurements of Mars Thermospheric Variability from MAVEN EUVM Solar Occultations

    NASA Astrophysics Data System (ADS)

    Thiemann, E.; Eparvier, F. G.; Andersson, L.; Pilinski, M.; Chamberlin, P. C.; Fowler, C. M.; Dominique, M.; Bougher, S. W.; Gröller, H.; Girazian, Z.; Lillis, R. J.

    2017-12-01

    The Mars thermosphere encompasses both the coldest and hottest regions of the Mars neutral atmosphere, where temperatures warm from below 150 K at the well-mixed homopause to 300 K at the collisionless exobase, and change by comparable magnitudes over the diurnal cycle. In this dynamic and highly-structured region, atoms and molecules are accelerated by a number of processes, potentially leading to escape and permanent loss to space. Increasingly, evidence shows that atmospheric escape to space has resulted in the loss of a substantial portion of Mars's atmosphere over the planet's history. Given that the thermosphere is the neutral reservoir for atmospheric escape, understanding how and why it varies is crucial for understanding how Mars's climate has evolved over time. The Mars Atmosphere and Volatile EvolutioN (MAVEN) orbiter's Extreme Ultraviolet (EUV) Monitor (EUVM) has recently demonstrated the capability to measure thermospheric density from 100 to 200 km with solar occultations of its 17-22 nm channel. These measurements are routine, inherently constrained to either 06:00 or 18:00 Local Time, and span all latitudes, a number of which have been revisited multiple times over the past 3 Earth years due to MAVEN's orbital precession. These factors, coupled with uncertainties in retrieved densities below 10%, make MAVEN EUVM occultations ideal for tracking both long-term and latitudinal thermospheric variability. Some notable trends revealed by the EUVM occultation data are variations in poleward warming due to changes in global circulation patterns, planetary-scale waves due to varying gravity wave or tidal forcing, and temperature due to solar EUV variability. In this study, we present these new measurements in detail. We begin by briefly presenting the measurement methods and uncertainties, and show an overview of the measurements made to-date, putting them in the context of observations made by other missions, other instruments onboard MAVEN, and the newly arrived ExoMars Trace Gas Orbiter (TGO). We then show observations of latitudinal and seasonal temperature and density variability made over the MAVEN mission, and discuss the possible underlying causes. We conclude by discussing plans to make these new data publically available as an official MAVEN data product.

  11. Models of the Jovian Ring and Comparisions With Observations

    NASA Astrophysics Data System (ADS)

    Juhasz, A.; Horanyi, M.

    2008-12-01

    A number of in situ and remote sensing observations of the Jovian ring system exist so we can now combine observations from Voyager, Pioneer, Galileo and Cassini, as well as ground based and HST measurements. In this presentation we will compare this large body of observations to available theoretical models of the dust dynamics in the Jovian ring. Common to all models (Burns et al., 1985, 2001 ; Horanyi et al.,1996, 2004) is the basic idea that dust is being continuously produced due to micro-meteoroid bombardment of the moons in this region. Also, the spatial distribution of dust in the halo region inward of the main ring is generally accepted to be a consequence of electrodynamic perturbations acting on small charged dust particles. However, in the suggested theoretical models the time scale for orbital evolution is drastically differ. Burns et al. argues, that in the main ring, dust particles evolve inward very slowly due to Poynting-Robertson drag. A typical micron sized grain is predicted to orbit Jupiter for 104 years before crashing into the atmosphere of Jupiter. Horanyi et al. argues that the radial transport is due to resonant charge variations, dictated by the plasma density distribution. In this model grains are transported on a time scale that is orders of magnitude shorter than predicted by PR drag. Here we use both of these models to generate brightness distributions and predict optical depth distributions for same geometries and wavelengths as that of the observations. Quantitative comparisons of the modeled and the real observations lead us to the conclusion that the dust transport in ring/halo region at Jupiter is mainly due to resonant charge variation.

  12. Migration of Matter from the Edgeworth-Kuiper and Main Asteroid Belts to the Earth

    NASA Technical Reports Server (NTRS)

    Ipatov. S. I.; Oegerle, William (Technical Monitor)

    2002-01-01

    The main asteroid belt (MAB), the Edgeworth-Kuiper belt (EKB), and comets belong to the main sources of dust in the Solar System. Most of Jupiter-family comets came from the EKB. Comets can be distracted due to close encounters with planets and the Sun, collisions with small bodies, a nd internal forces. We support the Eneev's idea that the largest objects in the ELB and MAB could be formed directly by the compression of rarefied dust condensations of the protoplanetary cloud but not by the accretion of small (for example, 1-km) planetesimals. The total mass of planetesimals that entered the EKB from the feeding zone of the giant planets during their accumulation could exceed tens of Earth's masses. These planetesimals increased eccentricities of 'local' trans-Neptunian objects (TNOs) and swept most of these TNOs. A small portion of such planetesimals could left beyond Neptune's orbit in highly eccentric orbits. The results of previous investigations of migration and collisional evolution of minor bodies were summarized. Mainly our recent results are presented.

  13. Alfvén Turbulence Driven by High-Dimensional Interior Crisis in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Chian, A. C.-L.; Rempel, E. L.; Macau, E. E. N.; Rosa, R. R.; Christiansen, F.

    2003-09-01

    Alfvén intermittent turbulence has been observed in the solar wind. It has been previously shown that the interplanetary Alfvén intermittent turbulence can appear due to a low-dimensional temporal chaos [1]. In this paper, we study the nonlinear spatiotemporal dynamics of Alfvén waves governed by the Kuramoto-Sivashinsky equation which describes the phase evolution of a large-amplitude Alfvén wave. We investigate the Alfvén turbulence driven by a high-dimensional interior crisis, which is a global bifurcation caused by the collision of a chaotic attractor with an unstable periodic orbit. This nonlinear phenomenon is analyzed using the numerical solutions of the model equation. The identification of the unstable periodic orbits and their invariant manifolds is fundamental for understanding the instability, chaos and turbulence in complex systems such as the solar wind plasma. The high-dimensional dynamical system approach to space environment turbulence developed in this paper can improve our interpretation of the origin and the nature of Alfvén turbulence observed in the solar wind.

  14. ASTEROIDS: Living in the Kingdom of Chaos

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.

    2000-10-01

    The existence of chaotic regions in the main asteroid belt, related with the lowest-order mean-motion and secular resonances, has long been known. However, only in the last decade have semi-analytic theories allowed a proper understanding of the chaotic behavior observed in numerical simulations which accurately incorporate the entire planetary system. The most spectacular result has been the discovery that the asteroids in some of these resonance may collide with the Sun on typical time scales of a few million year, their eccentricities being pumped to unity during their chaotic evolution. But the asteroid belt is not simply divided into violent chaotic zones and regular regions. It has been shown that the belt is criss-crossed by a large number of high-order mean-motion resonances with Jupiter or Mars, as well as by `three-body resonances' with Jupiter and Saturn. All these weak resonances cause the slow chaotic drift of the `proper' eccentricities and inclinations. The traces left by this evolution are visible, for example, in the structure of the Eos and Themis asteroid families. Weak chaos may also explain the anomalous dispersion of the eccentricities and inclinations observed in the Flora ``clan." Moreover, due to slow increases in their eccentricities, many asteroids start to cross the orbit of Mars, over a wide range of semimajor axes. The improved knowledge of the asteroid belt's chaotic structure provides, for the first time, an opportunity to build detailed quantitative models of the origin and the orbital distribution of Near-Earth Asteroids and meteorites. In turn, these models seem to imply that the semimajor axes of main-belt asteroids must also slowly evolve with time. For asteroids larger than about 20 km this is due mainly to encounters with Ceres, Pallas, and Vesta, while for smaller bodies the so-called Yarkovsky effect should dominate. Everything moves chaotically in the asteroid belt.

  15. On the past orbital history of Comet P/Halley

    NASA Astrophysics Data System (ADS)

    Carusi, A.; Valsecchi, G. B.; Kresak, L.; Perozzi, E.

    The results of backward integration of the Comet P/Halley behavior over the time span from 1585 AD to 9367 BC (a total of 4 million days) are discussed. The integration was performed on the FPS 364, using the integrator described by Everhart (1985); planets from Venus to Neptune were included, and nongravitational forces were neglected. Graphs are presented for the temporal evolution of the orbital eccentricity (computed along the barycentric orbit at each aphelion passage), orbital inclination, the argument of perihelion of the orbit, perihelion distance, and the two nodal distances of P/Halley comet. A more or less continuous decrease of the orbital eccentricity and inclination were found, as well as of the argument of perihelion. It is suggested that Comet P/Halley may have undergone strong gravitational interactions with Jupiter about 11,000 years ago, and that the time span spent by the comet in a short period orbit may be as short as that.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naoz, Smadar; Stephan, Alexander P.; Fragos, Tassos

    The formation of black hole (BH) low-mass X-ray binaries (LMXB) poses a theoretical challenge, as low-mass companions are not expected to survive the common-envelope scenario with the BH progenitor. Here we propose a formation mechanism that skips the common-envelope scenario and relies on triple-body dynamics. We study the evolution of hierarchical triples following the secular dynamical evolution up to the octupole-level of approximation, including general relativity, tidal effects, and post-main-sequence evolution such as mass loss, changes to stellar radii, and supernovae. During the dynamical evolution of the triple system the “eccentric Kozai-Lidov” mechanism can cause large eccentricity excitations in themore » LMXB progenitor, resulting in three main BH-LMXB formation channels. Here we define BH-LMXB candidates as systems where the inner BH-companion star crosses its Roche limit. In the “eccentric” channel (∼81% of the LMXBs in our simulations) the donor star crosses its Roche limit during an extreme eccentricity excitation while still on a wide orbit. Second, we find a “giant” LMXB channel (∼11%), where a system undergoes only moderate eccentricity excitations but the donor star fills its Roche-lobe after evolving toward the giant branch. Third, we identify a “classical” channel (∼8%), where tidal forces and magnetic braking shrink and circularize the orbit to short periods, triggering mass-transfer. Finally, for the giant channel we predict an eccentric (∼0.3–0.6) preferably inclined (∼40°, ∼140°) tertiary, typically on a wide enough orbit (∼10{sup 4} au) to potentially become unbound later in the triple evolution. While this initial study considers only one representative system and neglects BH natal kicks, we expect our scenario to apply across a broad region of parameter space for triple-star systems.« less

  17. Dynamical evolution of near-Earth asteroid 1991 VG

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2018-01-01

    The discovery of 1991 VG on 1991 November 6 attracted an unprecedented amount of attention as it was the first near-Earth object (NEO) ever found on an Earth-like orbit. At that time, it was considered by some as the first representative of a new dynamical class of asteroids, while others argued that an artificial (terrestrial or extraterrestrial) origin was more likely. Over a quarter of a century later, this peculiar NEO has been recently recovered and the new data may help in confirming or ruling out early theories about its origin. Here, we use the latest data to perform an independent assessment of its current dynamical status and short-term orbital evolution. Extensive N-body simulations show that its orbit is chaotic on time-scales longer than a few decades. We confirm that 1991 VG was briefly captured by Earth's gravity as a minimoon during its previous fly-by in 1991-1992; although it has been a recurrent transient co-orbital of the horseshoe type in the past and it will return as such in the future, it is not a present-day co-orbital companion of the Earth. A realistic NEO orbital model predicts that objects like 1991 VG must exist and, consistently, we have found three other NEOs - 2001 GP2, 2008 UA202 and 2014 WA366 - which are dynamically similar to 1991 VG. All this evidence confirms that there is no compelling reason to believe that 1991 VG is not natural.

  18. Orbital Characteristics of the Subdwarf-B and F V Star Binary EC 20117-4014 (=V4640 Sgr)

    NASA Astrophysics Data System (ADS)

    Otani, T.; Oswalt, T. D.; Lynas-Gray, A. E.; Kilkenny, D.; Koen, C.; Amaral, M.; Jordan, R.

    2018-06-01

    Among the competing evolution theories for subdwarf-B (sdB) stars is the binary evolution scenario. EC 20117-4014 (=V4640 Sgr) is a spectroscopic binary system consisting of a pulsating sdB star and a late F main-sequence companion; however, the period and the orbit semimajor axes have not been precisely determined. This paper presents orbital characteristics of the EC 20117-4014 binary system using 20 years of photometric data. Periodic observed minus calculated (O–C) variations were detected in the two highest-amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating the binary system’s precise orbital period (P = 792.3 days) and the light-travel-time amplitude (A = 468.9 s). This binary shows no significant orbital eccentricity, and the upper limit of the eccentricity is 0.025 (using 3σ as an upper limit). This upper limit of the eccentricity is the lowest among all wide sdB binaries with known orbital parameters. This analysis indicated that the sdB is likely to have lost its hydrogen envelope through stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB stars. In addition to those results, the underlying pulsation period change obtained from the photometric data was \\dot{P} = 5.4 (±0.7) × 10‑14 d d‑1, which shows that the sdB is just before the end of the core helium-burning phase.

  19. Convergence Time towards Periodic Orbits in Discrete Dynamical Systems

    PubMed Central

    San Martín, Jesús; Porter, Mason A.

    2014-01-01

    We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct algorithms that allow our theoretical results to be implemented successfully in practice. PMID:24736594

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese

    The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less

  1. The European Spacelab structural design evolution

    NASA Technical Reports Server (NTRS)

    Thirkettle, A. J.

    1982-01-01

    Spacelab is a manned, reusable laboratory which is being developed for the European Space Agency (ESA). In its working mode it will fly in low earth orbit in the cargo bay of the Shuttle Transportation System (STS) Orbiter. A description is presented of the structural development of the various features of Spacelab. System requirements are considered along with structural requirements, quasi-static loads, acoustic loads, pressure loads, crash loads, ground loads, and the fatigue profile. Aspects of thermal environment generation are discussed, and questions regarding the design evolution of the pallet structure are examined. Details of pallet structure testing are reported, taking into account static strength tests, acoustic tests, the modal survey test, crash tests, and fatigue/fracture mechanics testing.

  2. Messier 101 Single Orbit Exposure

    NASA Image and Video Library

    2003-07-25

    This single orbit exposure, ultraviolet color image of Messier 101 was taken by NASA's Galaxy Evolution Explorer on June 20, 2003. Messier 101 is a large spiral galaxy located 20 million light-years from Earth. This image is a short and medium "exposure" picture of the evolution of star formation in a spiral galaxy. The far ultraviolet emission detects the younger stars as concentrated in tight spiral arms, while the near ultraviolet emission, which traces stars living for more than 100 million years, displays the movement of the spiral pattern over a 100 million year period. The red stars in the foreground of the image are Milky Way stars. http://photojournal.jpl.nasa.gov/catalog/PIA04632

  3. Radii and Orbits of Hot Jupiters

    NASA Astrophysics Data System (ADS)

    Wu, Yanqin

    2011-09-01

    Hot jupiters suffer extreme external (stellar) and internal (tidal, Ohmic and wind-power) heating. These lead to peculiar thermal evolution, which is potentially self-destrutive. For instance, the amount of energy deposited during tidal dissipation far exceeds the planets' binding energy. If this energy is mostly deposited in shallow layers, it does little damage to the planet. However, the presence of stellar insolation changes the picture, and Ohmic/wind-power heating further modifies the subsequent evolution of these jupiters. A diversity of planetary sizes results. We tie these thermodynamical processes together with the migration history of hot jupiters to explain the orbital distribution and physical radii of hot jupiters. Moreover, we constrain the location of tidal heating inside the planet.

  4. Mars Atmosphere and Volatile Evolution (MAVEN) Mission Design

    NASA Technical Reports Server (NTRS)

    Folta, David C.

    2010-01-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission was selected as the second in the low-cost Mars Scout mission series. MAVEN will determine the role that loss of volatiles to space has played through time from a highly inclined elliptical orbit. The launch period opens November 18. 2013 with arrival September 16, 2014. After achieving a 35-hour capture orbit, maneuvers will reduce the period to 4.5-hours with periapsis near 150 kilometers and maintain the periapsis within a specified density corridor. MAVEN will also execute "Deep Dip" campaigns, with periapsis at an altitude near 125 kilometers. This paper presents the unique mission design challenges of the MAVEN mission.

  5. Eta Carinae: X-ray Line Variations during the 2003 X-ray Minimum, and the Orbit Orientation

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Henley, D.; Hamaguchi, K.; Khibashi, K.; Pittard, J. M.; Stevens, I. R.; Gull, T. R.

    2007-01-01

    The future evolution of Eta Carinae will be as a supernova (or hypernova) and black hole. The evolution is highly contingent on mass and angular momentum changes and instabilities. The presence of a companion can serve to trigger instabilities and provide pathways for mass and angular momentum exchange loss. X-rays can be used a a key diagnostic tool: x-ray temperatures trace pre-shock wind velocities, periodic x-ray variability traces the orbit, and x-ray line variations traces the flow and orientation of shocked gas. This brief presentation highlights x-ray line variations from the HETG and presents a model of the colliding wind flow.

  6. Orbital resonances, unusual configurations and exotic rotation states among planetary satellites

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    1986-01-01

    The origin of orbital resonances is shown in the demonstration of the evolution of a pair of planetary satellites through a commensurability of the mean motions by a sequence of diagrams of constant energy curves in a two-dimensional phase space; the closed curve corresponding to the motion in each successive diagram is identified by its adiabatically conserved area. It is found that two-body resonances serve as a basis in the solution of the problem of the origin and evolution of the three-body Laplace resonance among the Galilean satellites of Jupiter. The unusual rotation state of Saturn's satellite Hyperion which is expected to tumble chaotically for an indefinite amount of time is discussed.

  7. Origin of the moon - The collision hypothesis

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1987-01-01

    Theoretical models of lunar origin involving one or more collisions between the earth and other large sun-orbiting bodies are examined in a critical review. Ten basic propositions of the collision hypothesis (CH) are listed; observational data on mass and angular momentum, bulk chemistry, volatile depletion, trace elements, primordial high temperatures, and orbital evolution are summarized; and the basic tenets of alternative models (fission, capture, and coformation) are reviewed. Consideration is given to the thermodynamics of large impacts, rheological and dynamical problems, numerical simulations based on the CH, disk evolution models, and the chemical implications of the CH. It is concluded that the sound arguments and evidence supporting the CH are not (yet) sufficient to rule out other hypotheses.

  8. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 4: Design analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Topics covered include growth options evaluation, mass properties, attitude control and structural dynamics, contamination evaluation, berthing concepts, orbit reboost options and growth kit concepts. Systems support elements and space support equipment are reviewed with emphasis on power module operations and technology planning.

  9. Dynamic mass exchange in doubly degenerate binaries. I - 0.9 and 1.2 solar mass stars

    NASA Technical Reports Server (NTRS)

    Benz, W.; Cameron, A. G. W.; Press, W. H.; Bowers, R. L.

    1990-01-01

    The dynamic mass exchange process in doubly degenerate binaries was investigated using a three-dimensional numerical simulation of the evolution of a doubly degenerate binary system in which the primary is a 1.2-solar-mass white dwarf and the Roche lobe filling secondary is a 0.9-solar-mass dwarf. The results show that, in a little more than two orbital periods, the secondary is completely destroyed and transformed into a thick disk orbiting about the primary. Since only a very small fraction of the mass (0.0063 solar mass) escapes the system, the evolution of the binary results in the formation of a massive object. This object is composed of three parts, the initial white dwarf primary, a very hot pressure-supported spherical envelope, and a rotationally supported outer disk. The evolution of the system can be understood in terms of a simple analytical model where it is shown that the angular momentum carried by the mass during the transfer and stored in the disk determines the evolution of the system.

  10. Dynamical Asteroseismology: towards improving the theories of stellar structure and (tidal) evolution

    NASA Astrophysics Data System (ADS)

    Tkachenko, Andrew

    2017-10-01

    The potential of the dynamical asteroseismology, the research area that builds upon the synergies between the asteroseismology and binary stars research fields, is discussed in this manuscript. We touch upon the following topics: i) the mass discrepancy observed in intermediate-to high-mass main-sequence and evolved binaries as well as in the low mass systems that are still in the pre-main sequence phase of their evolution; ii) the rotationally induced mixing in high-mass stars, in particular how the most recent theoretical predictions and spectroscopic findings compare to the results of asteroseismic investigations; iii) internal gravity waves and their potential role in the evolution of binary star systems and surface nitrogen enrichment in high-mass stars; iv) the tidal evolution theory, in particular how its predictions of spin-orbit synchronisation and orbital circularisation compare to the present-day high-quality observations; v) the tidally-induced pulsations and their role in the angular momentum transport within binary star systems; vi) the scaling relations between fundamental and seismic properties of stars across the entire HR-diagram.

  11. Forward orbital evolution of the Vesta Family with and without the Yarkovsky effect

    NASA Astrophysics Data System (ADS)

    Wlodarczyk, Ireneusz; Leliwa-Kopystynski, Jacek

    2018-02-01

    Vesta family members (VFMs), totally 17164, were selected by means of hierarchical clustering method (HCM) from the data base containing 393347 synthetic proper elements of numbered asteroids from the ASTDyS Catalogue (2015) updated in May 5, 2015. Keplerian elements from the Lowell Catalogue (2015) were used for studying orbital evolution of all 17164 VFMs in the time interval 1 Gy forward. Two cases were considered: evolution pass without the Yarkovsky effect (YN) and evolution pass with it (YY). It has been found that swarm of asteroids disperses about 28 times more efficient for the case YY than in the case YN. Efficiency of dispersion was studied versus semiaxis of asteroids relative to Vesta (smaller or larger than semiaxis of Vesta) as well as versus the sizes of asteroids. Weak relationships between size and efficiency of dispersion on YE have been found for the both cases YN and YY. The loss of number of the asteroids from VF weakly depends on their sizes. The total lost by number as well by mass is about 10% per 1 Gy.

  12. Subdwarf B Stars: Tracers Of Binary Evolution

    NASA Astrophysics Data System (ADS)

    Morales-Rueda, L.; Maxted, P. F. L.; Marsh, T. R.

    2007-08-01

    Subdwarf B stars are a superb stellar population to study binary evolution. In 2001, Maxted et al. (MNRAS, 326, 1391) found that 21 out of the 36 subdwarf B stars they studied were in short period binaries. These observations inspired new theoretical work that suggests that up to 90 per cent of subdwarf B stars are in binary systems with the remaining apparently single stars being the product of merging pairs. This high binary fraction added to the fact that they are detached binaries that have not changed significantly since they came out of the common envelope, make subdwarf B stars a perfect population to study binary evolution. By comparing the observed orbital period distribution of subdwarf B stars with that obtained from population synthesis calculations we can determine fundamental parameters of binary evolution such as the common envelope ejection efficiency. Here we give an overview of the fraction of short period binaries found from different surveys as well as the most up to date orbital period distribution determined observationally. We also present results from a recent search for subdwarf B stars in long period binaries.

  13. Statistical Similarities Between WSA-ENLIL+Cone Model and MAVEN in Situ Observations From November 2014 to March 2016

    NASA Astrophysics Data System (ADS)

    Lentz, C. L.; Baker, D. N.; Jaynes, A. N.; Dewey, R. M.; Lee, C. O.; Halekas, J. S.; Brain, D. A.

    2018-02-01

    Normal solar wind flows and intense solar transient events interact directly with the upper Martian atmosphere due to the absence of an intrinsic global planetary magnetic field. Since the launch of the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, there are now new means to directly observe solar wind parameters at the planet's orbital location for limited time spans. Due to MAVEN's highly elliptical orbit, in situ measurements cannot be taken while MAVEN is inside Mars' magnetosheath. To model solar wind conditions during these atmospheric and magnetospheric passages, this research project utilized the solar wind forecasting capabilities of the WSA-ENLIL+Cone model. The model was used to simulate solar wind parameters that included magnetic field magnitude, plasma particle density, dynamic pressure, proton temperature, and velocity during a four Carrington rotation-long segment. An additional simulation that lasted 18 Carrington rotations was then conducted. The precision of each simulation was examined for intervals when MAVEN was in the upstream solar wind, that is, with no exospheric or magnetospheric phenomena altering in situ measurements. It was determined that generalized, extensive simulations have comparable prediction capabilities as shorter, more comprehensive simulations. Generally, this study aimed to quantify the loss of detail in long-term simulations and to determine if extended simulations can provide accurate, continuous upstream solar wind conditions when there is a lack of in situ measurements.

  14. Periodic orbits around areostationary points in the Martian gravity field

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Dong; Baoyin, Hexi; Ma, Xing-Rui

    2012-05-01

    This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.

  15. Laboratory Calibration Studies in Support of ORGANICS on the International Space Station: Evolution of Organic Matter in Space

    NASA Technical Reports Server (NTRS)

    Ruiterkamp, R.; Ehrenfreund, P.; Halasinski, T.; Salama, F.; Foing, B.; Schmidt, W.

    2002-01-01

    This paper describes the scientific overview and current status of ORGANICS an exposure experiment performed on the International Space Station (ISS) to study the evolution of organic matter in space (PI: P. Ehrenfreund), with supporting laboratory experiments performed at NASA Ames. ORGANICS investigates the chemical evolution of samples submitted to long-duration exposure to space environment in near-Earth orbit. This experiment will provide information on the nature, evolution, and survival of carbon species in the interstellar medium (ISM) and in solar system targets.

  16. Neonatal orbital abscess

    PubMed Central

    Al-Salem, Khalil M; Alsarayra, Fawaz A; Somkawar, Areej R

    2014-01-01

    Orbital complications due to ethmoiditis are rare in neonates. A case of orbital abscess due to acute ethmoiditis in a 28-day-old girl is presented. A Successful outcome was achieved following antimicrobial therapy alone; spontaneous drainage of the abscess occurred from the lower lid without the need for surgery. From this case report, we intend to emphasize on eyelid retraction as a sign of neonatal orbital abscess, and to review all the available literature of similar cases. PMID:24008806

  17. Spectroscopy of Mars Atmosphere from Orbiting and Ground-based Observatories: Recent Results and Implications for Evolution

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V. A.

    2003-07-01

    This is a review of the ground-based and Earth-orbiting studies of Mars atmosphere in the last decade that resulted in the detections of HDO, D, H2, He, and detailed mapping of O3, O2(delta), and CO. These studies provide new insights on the history of volatiles and climate on Mars.

  18. Shape similarities and differences in the skulls of scavenging raptors.

    PubMed

    Guangdi, S I; Dong, Yiyi; Ma, Yujun; Zhang, Zihui

    2015-04-01

    Feeding adaptations are a conspicuous feature of avian evolution. Bill and cranial shape as well as the jaw muscles are closely related to diet choice and feeding behaviors. Diurnal raptors of Falconiformes exhibit a wide range of foraging behaviors and prey preferences, and are assigned to seven dietary groups in this study. Skulls of 156 species are compared from the dorsal, lateral and ventral views, by using geometric morphometric techniques with those landmarks capturing as much information as possible on the overall shape of cranium, bill, orbits, nostrils and attachment area for different jaw muscles. The morphometric data showed that the skull shape of scavengers differ significantly from other raptors, primarily because of different feeding adaptations. As a result of convergent evolution, different scavengers share generalized common morphology, possessing relatively slender and lower skulls, longer bills, smaller and more sideward orbits, and more caudally positioned quadrates. Significant phylogenetic signals suggested that phylogeny also played important role in shape variation within scavengers. New World vultures can be distinguished by their large nostrils, narrow crania and small orbits; Caracaras typically show large palatines, crania and orbits, as well as short, deep and sharp bill.

  19. Secular dynamics of hierarchical multiple systems composed of nested binaries, with an arbitrary number of bodies and arbitrary hierarchical structure - II. External perturbations: flybys and supernovae

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.

    2018-05-01

    We extend the formalism of a previous paper to include the effects of flybys and instantaneous perturbations such as supernovae on the long-term secular evolution of hierarchical multiple systems with an arbitrary number of bodies and hierarchy, provided that the system is composed of nested binary orbits. To model secular encounters, we expand the Hamiltonian in terms of the ratio of the separation of the perturber with respect to the barycentre of the multiple system, to the separation of the widest orbit. Subsequently, we integrate over the perturber orbit numerically or analytically. We verify our method for secular encounters and illustrate it with an example. Furthermore, we describe a method to compute instantaneous orbital changes to multiple systems, such as asymmetric supernovae and impulsive encounters. The secular code, with implementation of the extensions described in this paper, is publicly available within AMUSE, and we provide a number of simple example scripts to illustrate its usage for secular and impulsive encounters and asymmetric supernovae. The extensions presented in this paper are a next step towards efficiently modelling the evolution of complex multiple systems embedded in star clusters.

  20. Understanding Asteroid Disruptions Using Very Young Dust Bands

    NASA Astrophysics Data System (ADS)

    Espy Kehoe, Ashley J.; Kehoe, T. J.; Colwell, J. E.; Dermott, S. F.

    2013-10-01

    Zodiacal dust bands are structures that result from the dynamical sculpting of the dust particles released in the catastrophic disruption of an asteroid. Partial dust bands are the recently discovered younger siblings of the dust bands, ones that are still forming and due to very recent disruptions within the last few hundred thousand years. During the early stages of formation, these structures retain information on the original catastrophic disruptions that produced them (since the dust has not yet been lost or significantly altered by orbital or collisional decay). The first partial dust band, at about 17 degrees latitude, was revealed using a very precise method of co-adding the IRAS data set. We have shown that these partial dust bands exhibit structure consistent with a forming band, can be used to constrain the original size distribution of the dust produced in the catastrophic disruption of an asteroid, and these very young structures also allow a much better estimate of the total amount of dust released in the disruption. In order to interpret the observations and constrain the parameters of the dust injected into the cloud following an asteroid disruption, we have developed detailed models of the dynamical evolution of the dust that makes up the band. We model the dust velocity distribution resulting from the initial impact and then track the orbital evolution of the dust under the effects of gravitational perturbations from all the planets as well as radiative forces of Poynting-Robertson drag, solar wind drag and radiation pressure and use these results to produce maps of the thermal emission. Through the comparison of our newly completed dynamical evolution models with the coadded observations, we can put constraints on the parameters of dust producing the band. We confirm the source of the band as the very young Emilkowalski cluster ( <250,000 years; Nesvorny et al., 2003) and present our most recent estimates of the size-distribution and cross-sectional area of material in the band and discuss the implications of these constraints on the temporal evolution of the zodiacal cloud and to the structure of the parent asteroid.

  1. Close encounters of a rotating star with planets in parabolic orbits of varying inclination and the formation of hot Jupiters

    NASA Astrophysics Data System (ADS)

    Ivanov, P. B.; Papaloizou, J. C. B.

    2011-10-01

    In this paper we extend the theory of close encounters of a giant planet on a parabolic orbit with a central star developed in our previous work (Ivanov and Papaloizou in MNRAS 347:437, 2004; MNRAS 376:682, 2007) to include the effects of tides induced on the central star. Stellar rotation and orbits with arbitrary inclination to the stellar rotation axis are considered. We obtain results both from an analytic treatment that incorporates first order corrections to normal mode frequencies arising from stellar rotation and numerical treatments that are in satisfactory agreement over the parameter space of interest. These results are applied to the initial phase of the tidal circularisation problem. We find that both tides induced in the star and planet can lead to a significant decrease of the orbital semi-major axis for orbits having periastron distances smaller than 5-6 stellar radii with tides in the star being much stronger for retrograde orbits compared to prograde orbits. Assuming that combined action of dynamic and quasi-static tides could lead to the total circularisation of orbits this corresponds to observed periods up to 4-5 days. We use the simple Skumanich law to characterise the rotational history of the star supposing that the star has its rotational period equal to one month at the age of 5 Gyr. The strength of tidal interactions is characterised by circularisation time scale, t ev , which is defined as a typical time scale of evolution of the planet's semi-major axis due to tides. This is considered as a function of orbital period P obs , which the planet obtains after the process of tidal circularisation has been completed. We find that the ratio of the initial circularisation time scales corresponding to prograde and retrograde orbits, respectively, is of order 1.5-2 for a planet of one Jupiter mass having P obs ~ 4 days. The ratio grows with the mass of the planet, being of order five for a five Jupiter mass planet with the same P orb . Note, however, this result might change for more realistic stellar rotation histories. Thus, the effect of stellar rotation may provide a bias in the formation of planetary systems having planets on close orbits around their host stars, as a consequence of planet-planet scattering, which favours systems with retrograde orbits. The results reported in the paper may also be applied to the problem of tidal capture of stars in young stellar clusters.

  2. Tidal dissipation and evolution of white dwarfs around massive black holes: an eccentric path to tidal disruption

    NASA Astrophysics Data System (ADS)

    Vick, Michelle; Lai, Dong; Fuller, Jim

    2017-06-01

    A white dwarf (WD) captured into a high-eccentricity orbit around a massive black hole (MBH) may undergo many pericentre passages before tidal disruption. During these passages, the tidal potential of the MBH excites internal oscillations or waves in the WD, and the dissipation of these oscillations can significantly influence the physical properties of the WD prior to its disruption. We calculate the amplitude of the tidally excited gravity (buoyancy) waves in the WD as a function of the pericentre distance and eccentricity for realistic WD models, under the assumption that these outgoing gravity waves are efficiently dissipated in the outer layers of the WD by non-linear effects or radiative damping. We obtain fitting formulae for the tidal energy and angular momentum transfer rates as well as the tidal heating rate. We find that these dynamical tides are much weaker than gravitational radiation in driving the orbital decay of the WD-MBH binary, and they are also inefficient in changing the WD spin during the orbital evolution. Incorporating our computed tidal dissipation rate into a mesa-based WD evolution code, we find that tidal heating can lead to appreciable brightening of the WD and may induce runaway fusion in the hydrogen envelope well before the WD undergoes tidal disruption.

  3. Comet and asteroid hazard to the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.; Mather, J. C.

    2004-01-01

    We estimated the rate of comet and asteroid collisions with the terrestrial planets by calculating the orbits of 13,000 Jupiter-crossing objects (JCOs) and 1300 resonant asteroids and computing the probabilities of collisions based on random-phase approximations and the orbital elements sampled with a 500 years step. The Bulirsh-Stoer and a symplectic orbit integrator gave similar results for orbital evolution, but may give different collision probabilities with the Sun. A small fraction of former JCOs reached orbits with aphelia inside Jupiter's orbit and some reached Apollo orbits with semi-major axes less than 2 AU, Aten orbits and inner-Earth orbits (with aphelia less than 0.983 AU) and remained there for millions of years. Though less than 0.1% of the total, these objects were responsible for most of the collision probability of former JCOs with Earth and Venus. We conclude that a significant fraction of near-Earth objects could be extinct comets that came from the trans-Neptunian region or most of such comets disintegrated during their motion in near-Earth object orbits.

  4. New estimate of the micrometeoroids flux at the heliocentric distance of Mercury

    NASA Astrophysics Data System (ADS)

    Borin, Patrizia; Cremonese, Gabriele; Marzari, Francesco

    This work shows preliminary results of a study of the orbital evolution of dust particles originating from the Main Belt in order to obtain a statistical analysis, then to provide an estimate of the flux of particles hitting the Mercury's surface. Meteoritic flux on Mercury really depends on the particle size, because meteoroids of different size follow different dynamical evolution. In this work we consider meteoritic sizes smaller than 1 cm that are particles with a dynamical evolution dominated by the Poynting-Robertson effect. The meteoroid impact mechanism seems to be an important source of neutral atoms contributing to the exosphere and, according to recent papers, mostly due to particles smaller than 1 cm. Unfortunately the dynamical studies and statistics of meteoroids smaller than 1 cm are based on quite old papers and always extrapolated from calculations made for the Earth. This is the reason why we are working on a dynamical model following small dust particles that may hit the surface of Mercury. Up to now we have taken into account only particles coming from the Main Belt. The main effects that determine the distribution of dust in the Solar System are the gravitational attractions of the Sun and planets, Poynting-Robertson drag, solar radiation pressure, solar wind pressure and the effects of different magnetic fields. In order to determine the meteoritic flux at the heliocentric distance of Mercury we utilize the dynamical evolution model of dust particles of Marzari and Vanzani (1994) that numerically solves a (N+1)+M body problem (Sun + N planets + M body with zero mass) with the high-precision integrator RA15 (Everhart 1985). The solar radiation pressure and Poynting-Robertson drag, together with the gravitational interactions of the planets, are taken as major perturbing forces affecting the orbital evolution of the dust particles. We have performed numerical simulations with different initial conditions for the dust particles, depending on the sources, with the aim of estimating to flux of dust on the surface of Mercury. In this work we will report the first interesting estimate of the flux of small particles, and their velocity distribution, hitting the surface of Mercury. We intend also to evaluate a possible asymmetry between the leading and trailing surface of Mercury in terms of impact frequency.

  5. Yarkovsky-driven Impact Predictions: Apophis and 1950 DA

    NASA Astrophysics Data System (ADS)

    Chesley, Steven R.; Farnocchia, D.; Chodas, P. W.; Milani, A.

    2013-10-01

    Orbit determination for Near-Earth Asteroids presents unique technical challenges due to the imperative of early detection and careful assessment of the risk posed by specific Earth close approaches. The occurrence of an Earth impact can be decisively driven by the Yarkovsky effect, which is the most important nongravitational perturbation as it causes asteroids to undergo a secular variation in semimajor axis resulting in a quadratic effect in anomaly. We discuss the cases of (99942) Apophis and (29075) 1950 DA. The relevance of the Yarkovsky effect for Apophis is due to a scattering close approach in 2029 with minimum geocentric distance ~38000 km. For 1950 DA the influence of the Yarkovsky effect in 2880 is due to the long time interval preceding the impact. We use the available information from the astrometry and the asteroids' physical models and dynamical evolution as a starting point for a Monte Carlo method that allows us to measure how the Yarkovsky effect affects orbital predictions. We also find that 1950 DA has a 98% likelihood of being a retrograde rotator. For Apophis we map onto the 2029 close approach b-plane and analyze the keyholes corresponding to resonant close approaches. For 1950 DA we use the b-plane corresponding to the possible impact in 2880. We finally compute the impact probability from the mapped probability density function on the considered b-plane. For Apophis we have 4 in a million chances of an impact in 2068, while the probability of Earth impact in 2880 for 1950 DA is 0.04%.

  6. Change in general relativistic precession rates due to Lidov-Kozai oscillations in Solar system

    NASA Astrophysics Data System (ADS)

    Sekhar, A.; Asher, D. J.; Werner, S. C.; Vaubaillon, J.; Li, G.

    2017-06-01

    Both general relativistic (GR) precession and the Lidov-Kozai mechanism, separately, are known to play an important role in the orbital evolution of Solar system bodies. Previous works have studied these two mechanisms independently in great detail. However, both these phenomena occurring at the same time in real Solar system bodies have rarely been explored. In this work, we find a continuum connecting the GR precession dominant and Lidov-Kozai-like mechanism dominant regimes, I.e. an intermediate regime where the competing effects of GR precession and Lidov-Kozai-like oscillations coexist simultaneously. We find some real examples in the Solar system in this intermediate regime. Moreover, we identify a rare example among them, comet 96P/Machholz 1, which shows significant changes in the rates of GR precession (an order of magnitude higher than Mercury's GR precession rate) due to sungrazing and sun-colliding phases induced by Lidov-Kozai-like oscillations. This comet's combination of orbital elements and initial conditions (at the present epoch) favour this measurable rapid change in GR precession (at some points peaking up to 60 times Mercury's GR precession rate) along with prograde-retrograde inclination flip (due to Lidov-Kozai-like oscillations). Similar tests are performed for hundreds of bodies lying in the moderately low perihelion distance and moderately low semimajor axis phase space in the Solar system, the present lowest perihelion distance asteroid 322P/SOHO 1, and further examples connected with 96P/Machholz 1 namely, the Marsden and Kracht families of sungrazing comets plus low perihelion meteoroid streams like Daytime Arietids and Southern Delta Aquariids.

  7. Binary neutron star merger simulations with different initial orbital frequency and equation of state

    NASA Astrophysics Data System (ADS)

    Maione, F.; De Pietri, R.; Feo, A.; Löffler, F.

    2016-09-01

    We present results from three-dimensional general relativistic simulations of binary neutron star coalescences and mergers using public codes. We considered equal mass models where the baryon mass of the two neutron stars is 1.4{M}⊙ , described by four different equations of state (EOS) for the cold nuclear matter (APR4, SLy, H4, and MS1; all parametrized as piecewise polytropes). We started the simulations from four different initial interbinary distances (40,44.3,50, and 60 km), including up to the last 16 orbits before merger. That allows us to show the effects on the gravitational wave (GW) phase evolution, radiated energy and angular momentum due to: the use of different EOS, the orbital eccentricity present in the initial data and the initial separation (in the simulation) between the two stars. Our results show that eccentricity has a major role in the discrepancy between numerical and analytical waveforms until the very last few orbits, where ‘tidal’ effects and missing high-order post-Newtonian coefficients also play a significant role. We test different methods for extrapolating the GW signal extracted at finite radii to null infinity. We show that an effective procedure for integrating the Newman-Penrose {\\psi }4 signal to obtain the GW strain h is to apply a simple high-pass digital filter to h after a time domain integration, where only the two physical motivated integration constants are introduced. That should be preferred to the more common procedures of introducing additional integration constants, integrating in the frequency domain or filtering {\\psi }4 before integration.

  8. 4-D Imaging and Modeling of Eta Carinae's Inner Fossil Wind Structures

    NASA Astrophysics Data System (ADS)

    Madura, Thomas I.; Gull, Theodore; Teodoro, Mairan; Clementel, Nicola; Corcoran, Michael; Damineli, Augusto; Groh, Jose; Hamaguchi, Kenji; Hillier, D. John; Moffat, Anthony; Richardson, Noel; Weigelt, Gerd; Lindler, Don; Feggans, Keith

    2017-11-01

    Eta Carinae is the most massive active binary within 10,000 light-years and is famous for the largest non-terminal stellar explosion ever recorded. Observations reveal that the supermassive (~120 M⊙) binary, consisting of an LBV and either a WR or extreme O star, undergoes dramatic changes every 5.54 years due to the stars' very eccentric orbits (e ~ 0.9). Many of these changes are caused by a dynamic wind-wind collision region (WWCR) between the stars, plus expanding fossil WWCRs formed one, two, and three 5.54-year cycles ago. The fossil WWCRs can be spatially and spectrally resolved by the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). Starting in June 2009, we used the HST/STIS to spatially map Eta Carinae's fossil WWCRs across one full orbit, following temporal changes in several forbidden emission lines (e.g. [Feiii] 4659 Å, [Feii] 4815 Å), creating detailed data cubes at multiple epochs. Multiple wind structures were imaged, revealing details about the binary's orbital motion, photoionization properties, and recent (~5 - 15 year) mass-loss history. These observations allow us to test 3-D hydrodynamical and radiative-transfer models of the interacting winds. Our observations and models strongly suggest that the wind and photoionization properties of Eta Carinae's binary have not changed substantially over the past several orbital cycles. They also provide a baseline for following future changes in Eta Carinae, essential for understanding the late-stage evolution of this nearby supernova progenitor. For more details, see Gull et al. (2016) and references therein.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Chun-Hwey; Song, Mi-Hwa; Yoon, Jo-Na

    A photometric study of BD And was made through the analysis of two sets of new BVR light curves. The light curves with migrating photometric waves outside eclipse show that BD And is a short-period RS CVn-type binary star. The analysis of all available timings reveals that the orbital period has varied in a strictly cyclical way with a period of 9.2 yr. The periodic variation most likely arises from the light-time effect due to a tertiary moving in a highly elliptical orbit (e {sub 3} = 0.76). The Applegate mechanism could not operate properly in the eclipsing pair. Themore » light curves were modeled with two large spots on the hotter star and a large third light amounting to about 14% of the total systemic light. BD And is a triple system: a detached binary system consisting of two nearly equal solar-type stars with an active primary star and a G6-G7 tertiary dwarf. The absolute dimensions of the eclipsing pair and tertiary components were determined. The three components with a mean age of about 5.8 Gyr are located at midpositions in main-sequence bands. The radius of the secondary is about 17% larger than that deduced from stellar models. The orbital and radiometric characteristics of the tertiary are intensively investigated. One important feature is that the mutual inclination between two orbits is larger than 60°, implying that Kozai cycles had occurred very efficiently in the past. The possible past and future evolutions of the BD And system, driven by KCTF and MBTF, are also discussed.« less

  10. Effects of Variable Eccentricity on the Climate of an Earth-Like World

    NASA Technical Reports Server (NTRS)

    Way, M. J.; Georgakarakos, Nikolaos

    2017-01-01

    The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earths orbit. We investigate two scenarios that involve evolution of the Earth-like planets orbital eccentricity from 0 to 0.066 on a time scale of 4500 years, and from 0 to 0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on time scales of 109 years. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitabilty of these worlds. These are the first such 3-D GCM simulations using a fully-coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.

  11. Wide-Field HST Observations of the Globular Cluster System in NGC 1399

    NASA Astrophysics Data System (ADS)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial-resolution imaging study of globular clusters (GCs) in NGC 1399, the central giant elliptical cD galaxy in the Fornax galaxy cluster, obtained with HST/ACS. Using a novel technique to construct drizzled PSF libraries for HST/ACS data, we accurately determine the GC half-light radius, r_h, for the major fraction of the NGC 1399 GC system and find a trend of increasing r_h versus galactocentric distance, R_gal, out to ~10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs which are found to have a mean size ratio of r_h(red)/r_h(blue)=0.82+/-0.11 at all R_gal from the core regions of the galaxy out to ~40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanisms related to the evolution of their constituent stellar populations. Modeling the stellar mass density profile of NGC 1399 derived from its surface brightness profile shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regions. We suggest that this may be realized by an exotic GC orbit distribution function, an extended dark matter halo, and/or tidal stress induced by the increased stochasticity in the dwarf halo substructure at larger galactocentric radii. We compare our results with the GC r_h distribution functions in various galaxies and find that the fraction of extended GCs is systematically larger in late-type galaxies compared with GC systems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies. We match our GC r_h measurements with radial velocity data from the literature and split the resulting sample at the median r_h value into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion, 225+/-25 km/s, than their extended counterparts, 317+/-21 km/s. Considering the weaker statistical correlation in the GC r_h-color and the GC r_h-R_gal relations, the more significant GC size-dynamics relation appears to be astrophysically more relevant and hints at the dominant influence of the GC orbit distribution function on the evolution of GC structural parameters.

  12. Wide-Field Hubble Space Telescope Observations of the Globular Cluster System in NGC 1399*

    NASA Technical Reports Server (NTRS)

    Puzia, Thomas H.; Paolillo, Maurizio; Goudfrooij, Paul; Maccarone, Thomas J.; Fabbiano, Giuseppina; Angelini, Lorella

    2014-01-01

    We present a comprehensive high spatial resolution imaging study of globular clusters (GCs) in NGC 1399, thecentral giant elliptical cD galaxy in the Fornax galaxy cluster, conducted with the Advanced Camera for Surveys(ACS) aboard theHubble Space Telescope(HST).Using a novel technique to construct drizzled point-spreadfunction libraries for HSTACS data, we accurately determine the fidelity of GC structural parameter measurementsfrom detailed artificial star cluster experiments and show the superior robustness of the GC half-light radius,rh,compared with other GC structural parameters, such as King core and tidal radius. The measurement ofrhfor themajor fraction of the NGC 1399 GC system reveals a trend of increasingrhversus galactocentric distance,Rgal,out to about 10 kpc and a flat relation beyond. This trend is very similar for blue and red GCs, which are found tohave a mean size ratio ofrh,redrh,blue0.820.11 at all galactocentric radii from the core regions of the galaxyout to40 kpc. This suggests that the size difference between blue and red GCs is due to internal mechanismsrelated to the evolution of their constituent stellar populations. Modeling the mass density profile of NGC 1399shows that additional external dynamical mechanisms are required to limit the GC size in the galaxy halo regionstorh2 pc. We suggest that this may be realized by an exotic GC orbit distribution function, an extended darkmatter halo, andor tidal stress induced by the increased stochasticity in the dwarf halo substructure at largergalactocentric distances. We compare our results with the GCrhdistribution functions in various galaxies and findthat the fraction of extended GCs withrh5 pc is systematically larger in late-type galaxies compared with GCsystems in early-type galaxies. This is likely due to the dynamically more violent evolution of early-type galaxies.We match our GCrhmeasurements with radial velocity data from the literature and split the resulting sample at themedianrhvalue into compact and extended GCs. We find that compact GCs show a significantly smaller line-of-sight velocity dispersion,cmp22525 km s1, than their extended counterparts,ext31721 km s1.Considering the weaker statistical correlation in the GCrhcolor and the GCrhRgalrelations, the more significantGC sizedynamics relation appears to be astrophysically more relevant and hints at the dominant influence of theGC orbit distribution function on the evolution of GC structural parameters.

  13. Relay Support for the Mars Science Laboratory and the Coming Decade of Mars Relay Network Evolution

    NASA Technical Reports Server (NTRS)

    Edwards, Charles D., Jr.; Arnold, Bradford W.; Bell, David J.; Bruvold, Kristoffer N.; Gladden, Roy E.; Ilott, Peter A.; Lee, Charles H.

    2012-01-01

    Mars Relay Network is prepared to support MSL: a) ODY/MRO/MEX will all provide critical event comm support during EDL. b) New Electra/Electra-Lite capabilities on the MSL-MRO link will support >250 Mb/sol MSL data return. 2013 MAVEN orbiter will replenish on-orbit relay infrastructure as prior orbiters approach end-of-life. While NASA has withdrawn from the 2016 EMTGO and 2018 Joint Rover missions, analysis of the potential link shows a path to Gbit/sol relay capability 2012.

  14. Accretional evolution of a planetesimal swarm. I - A new simulation

    NASA Technical Reports Server (NTRS)

    Spaute, Dominique; Weidenschilling, Stuart J.; Davis, Donald R.; Marzari, Francesco

    1991-01-01

    This novel simulation of planetary accretion simultaneously treats many interacting heliocentric distance zones and characterizes planetesimals via Keplerian elements. The numerical code employed, in addition to following the size distribution and the orbit-element distribution of a planetesimal swarm from arbitrary size and orbit distributions, treats a small number of the largest bodies as discrete objects with individual orbits. The accretion algorithm used yields good agreement with the analytic solutions; agreement is also obtained with the results of Weatherill and Stewart (1989) for gravitational accretion of planetesimals having equivalent initial conditions.

  15. Ram Pressure Stripping of Galaxy JO201

    NASA Astrophysics Data System (ADS)

    Zhong, Greta; Tonnesen, Stephanie; Jaffé, Yara; Bellhouse, Callum; Bianca Poggianti

    2017-01-01

    Despite the discovery of the morphology-density relation more than 30 years ago, the process driving the evolution of spiral galaxies into S0s in clusters is still widely debated. Ram pressure stripping--the removal of a galaxy's interstellar medium by the pressure of the intracluster medium through which it orbits--may help explain galactic evolution and quenching in clusters. MUSE (Multi Unit Spectroscopic Explorer) observational data of galaxy JO201 in cluster Abell 85 reveal it to be a jellyfish galaxy--one with an H-alpha emitting gas tail on only one side. We model the possible orbits for this galaxy, constrained by the cluster mass profile, line of sight velocity, and projected distance from the cluster center. Using Enzo, an adaptive mesh refinement hydrodynamics code, we simulate effects of ram pressure on this galaxy for a range of possible orbits. We present comparisons of both the morphology and velocity structure of our simulated galaxy to the observations of H-alpha emission.

  16. Linear analysis of the evolution of nearly polar low-mass circumbinary discs

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen H.; Martin, Rebecca G.

    2018-01-01

    In a recent paper Martin & Lubow showed through simulations that an initially tilted disc around an eccentric binary can evolve to polar alignment in which the disc lies perpendicular to the binary orbital plane. We apply linear theory to show both analytically and numerically that a nearly polar aligned low-mass circumbinary disc evolves to polar alignment and determine the alignment time-scale. Significant disc evolution towards the polar state around moderately eccentric binaries can occur for typical protostellar disc parameters in less than a typical disc lifetime for binaries with orbital periods of order 100 yr or less. Resonant torques are much less effective at truncating the inner parts of circumbinary polar discs than the inner parts of coplanar discs. For polar discs, they vanish for a binary eccentricity of unity. The results agree with the simulations in showing that discs can evolve to a polar state. Circumbinary planets may then form in such discs and reside on polar orbits.

  17. Dynamical Evolution of Asteroids and Meteoroids Using the Yarkovsky Effect

    NASA Technical Reports Server (NTRS)

    Bottke, William F., Jr.; Vokrouhlicky, David; Rubincam, David P.; Broz, Miroslav; Smith, David E. (Technical Monitor)

    2001-01-01

    The Yarkovsky effect is a thermal radiation force which causes objects to undergo semimajor axis drift and spin up/down as a function of their spin, orbit, and material properties. This mechanism can be used to (i) deliver asteroids (and meteoroids) with diameter D < 20 km from their parent bodies in the main belt to chaotic resonance zones capable of transporting this material to Earth-crossing orbits, (ii) disperse asteroid families, with drifting bodies jumping or becoming trapped in mean-motion and secular resonances within the main belt, and (iii) modify the rotation rates of asteroids a few km in diameter or smaller enough to explain the excessive number of very fast and very slow rotators among the small asteroids. Accordingly, we suggest that nongravitational forces, which produce small but meaningful effects on asteroid orbits and rotation rates over long timescales, should now be considered as important as collisions and gravitational perturbations to our overall understanding of asteroid evolution.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiler, M.; Seiß, M.; Hoffmann, H.

    The reconstruction of the orbital evolution of the propeller structure Blériot orbiting in Saturn’s A ring from recurrent observations in Cassini ISS images yielded a considerable offset motion from the expected Keplerian orbit. This offset motion can be composed by three sinusoidal harmonics with amplitudes and periods of 1845, 152, 58 km and 11.1, 3.7, and 2.2 years, respectively. In this paper we present results from N -body simulations, where we integrated the orbital evolution of a moonlet, which is placed at the radial position of Blériot under the gravitational action of the Saturnian satellites. Our simulations yield that, especiallymore » the gravitational interactions with Prometheus, Pandora, and Mimas are forcing the moonlet to librate with the right frequencies, but the libration amplitudes are too small to explain the observations. Thus, further mechanisms are needed to explain the amplitudes of the forced librations—e.g., moonlet–ring interactions. Here, we develop a model, where the moonlet is allowed to be slightly displaced with respect to its created gaps breaking the point symmetry and causing a repulsive force in this way. As a result, the evolution of the moonlet’s longitude can be described by a harmonic oscillator. In the presence of external forcing by the outer moons, the libration amplitudes get the more amplified the closer the forcing frequency is to the eigenfrequency of the disturbed propeller oscillator. Applying our model to Blériot, it is possible to reproduce a libration period of 13 years with an amplitude of about 2000 km.« less

  19. A Librational Model for the Propeller Blériot in the Saturnian Ring System

    NASA Astrophysics Data System (ADS)

    Seiler, M.; Sremčević, M.; Seiß, M.; Hoffmann, H.; Spahn, F.

    2017-05-01

    The reconstruction of the orbital evolution of the propeller structure Blériot orbiting in Saturn’s A ring from recurrent observations in Cassini ISS images yielded a considerable offset motion from the expected Keplerian orbit. This offset motion can be composed by three sinusoidal harmonics with amplitudes and periods of 1845, 152, 58 km and 11.1, 3.7, and 2.2 years, respectively. In this paper we present results from N-body simulations, where we integrated the orbital evolution of a moonlet, which is placed at the radial position of Blériot under the gravitational action of the Saturnian satellites. Our simulations yield that, especially the gravitational interactions with Prometheus, Pandora, and Mimas are forcing the moonlet to librate with the right frequencies, but the libration amplitudes are too small to explain the observations. Thus, further mechanisms are needed to explain the amplitudes of the forced librations—e.g., moonlet-ring interactions. Here, we develop a model, where the moonlet is allowed to be slightly displaced with respect to its created gaps breaking the point symmetry and causing a repulsive force in this way. As a result, the evolution of the moonlet’s longitude can be described by a harmonic oscillator. In the presence of external forcing by the outer moons, the libration amplitudes get the more amplified the closer the forcing frequency is to the eigenfrequency of the disturbed propeller oscillator. Applying our model to Blériot, it is possible to reproduce a libration period of 13 years with an amplitude of about 2000 km.

  20. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new satellites (i.e., debris) due to collisions exceeds the loss of objects due to orbital decay. NASA s evolutionary satellite population model LEGEND (LEO-to-GEO Environment Debris model), developed by the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, is a high fidelity three-dimensional physical model that is capable of simulating the historical satellite environment, as well as the evolution of future debris populations (14, 15). The subject study assumed no rocket bodies and spacecraft were launched after December 2004, and no future disposal maneuvers were allowed for existing spacecraft, few of which currently have such a capability. The rate of satellite explosions would naturally decrease to zero within a few decades as the current satellite population ages. The LEGEND future projection adopts a Monte Carlo approach to simulate future on-orbit explosions and collisions. Within a given projection time step, once the explosion probability is estimated for an intact object, a random number is drawn and compared with the probability to determine if an explosion would occur. A similar procedure is applied to collisions for each pair of target and projectile involved within the same time step. Due to the nature of the Monte Carlo process, multiple projection runs must be performed and analyzed before one can draw reliable and meaningful conclusions from the outcome. A total of fifty, 200-year future projection Monte Carlo simulations were executed and evaluated (16).

  1. MAGNETIC GAMES BETWEEN A PLANET AND ITS HOST STAR: THE KEY ROLE OF TOPOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strugarek, A.; Brun, A. S.; Réville, V.

    Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star–planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. Themore » Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star–planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 10{sup 19} W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.« less

  2. Magnetic Games between a Planet and Its Host Star: The Key Role of Topology

    NASA Astrophysics Data System (ADS)

    Strugarek, A.; Brun, A. S.; Matt, S. P.; Réville, V.

    2015-12-01

    Magnetic interactions between a star and a close-in planet are postulated to be a source of enhanced emissions and to play a role in the secular evolution of the orbital system. Close-in planets generally orbit in the sub-alfvénic region of the stellar wind, which leads to efficient transfers of energy and angular momentum between the star and the planet. We model the magnetic interactions occurring in close-in star-planet systems with three-dimensional, global, compressible magnetohydrodynamic numerical simulations of a planet orbiting in a self-consistent stellar wind. We focus on the cases of magnetized planets and explore three representative magnetic configurations. The Poynting flux originating from the magnetic interactions is an energy source for enhanced emissions in star-planet systems. Our results suggest a simple geometrical explanation for ubiquitous on/off enhanced emissions associated with close-in planets, and confirm that the Poynting fluxes can reach powers of the order of 1019 W. Close-in planets are also shown to migrate due to magnetic torques for sufficiently strong stellar wind magnetic fields. The topology of the interaction significantly modifies the shape of the magnetic obstacle that leads to magnetic torques. As a consequence, the torques can vary by at least an order of magnitude as the magnetic topology of the interaction varies.

  3. Chariklo vs Chiron: the stability of the rings due to planetary close encounters

    NASA Astrophysics Data System (ADS)

    Sfair, Rafael; Araujo, Rosana; Cabo Winter, Othon

    2017-10-01

    The surprising discovery of a two well defined rings around the Centaur Chariklo was the first finding of such structures around a small body (Braga Ribas et al., 2014). Since it is known that the centaurs have a short lifetime (up to ten million years) and they experience a large number of encounters with the giant planets, one raises the question whether the rings would survive along the orbital evolution of Chariklo. In a previous work we analyzed through numerical simulations the effects of the close encounters with the giant planets experienced by an ensemble of 729 Chariklo-like objects (Araujo, Sfair & Winter, 2016). Even when considering the most extreme encounters, the most likely result (>90%) is the survival of the ring system without any significant orbital change. Here we intend to broaden our analysis to 2060 Chiron, another Centaur with a presumed ring system (Ortiz et al., 2015). Applying the same method of Araujo, Sfair & Winter (2016), initially we recorded the encounters with the giant planets performed by the clones of Chiron. We first notice Chiron's lifetime is shorter, and the number of encounters it experienced is significantly larger than by Chariklo. As a consequence, the rings of Chiron would be more susceptible to be disrupted by the close approaches with the giant planets. We attribute this dichotomy to the difference of orbital and physical parameters of the two centaurs.

  4. Updated O-C Diagrams for Several Bright HW Vir Binaries Observed with the Evryscope

    NASA Astrophysics Data System (ADS)

    Corcoran, Kyle A.; Barlow, Brad; Corbett, Hank; Fors, Octavi; Howard, Ward S.; Law, Nicholas; Ratzloff, Jeff

    2018-01-01

    HW Vir systems are eclipsing, post-common-envelope binaries consisting of a hot subdwarf star and a cooler M dwarf or brown dwarf companion. They show a strong reflection effect and have characteristically short orbital periods of only a few hours, allowing observers to detect multiple eclipses per night. Observed minus calculated (O-C) studies allow one to measure miniscule variations in the orbital periods of these systems by comparing observed eclipse timings to a calculated ephemeris. This technique is useful for detecting period changes due to secular evolution of the binary, gravitational wave emission, or reflex motion from an orbiting circumbinary object. Numerous eclipse timings obtained over several years are vital to the proper interpretation and analysis of O-C diagrams. The Evryscope – an array of twenty-four individual telescopes built by UNC and deployed on Cerro Tololo – images the entire Southern sky once every two minutes, producing an insurmountable amount of data for objects brighter than 16th magnitude. The cadence with which Evryscope exposes makes it an unparalleled tool for O-C analyses of HW Vir binaries; it will catalogue thousands of eclipses over the next several years. Here we present updated O-C diagrams for several HW Vir binaries using recent measurements from the Evryscope. We also use observations of AA Dor, an incredibly stable astrophysical clock, to characterize the accuracy of the Evryscope’s timestamps.

  5. Flyby of large-size space debris objects and their transition to the disposal orbits in LEO

    NASA Astrophysics Data System (ADS)

    Baranov, Andrey A.; Grishko, Dmitriy A.; Razoumny, Yury N.; Jun, Li

    2017-06-01

    The article focuses on the flyby issue involving large-size space debris (LSSD) objects in low Earth orbits. The data on overall sizes of the known upper-stages and last stages of launch-vehicles make it possible to emphasize five compact groups of such objects from the Satellite catalogue in 600-2000 km altitude interval. The flyby maneuvers are executed by a single space vehicle (SV) that transfers the current captured LSSD object to the specially selected circular or elliptical disposal orbit (DO) and after a period of time returns to capture a new one. The flight is always realized when a value of the Right Ascension of the Ascending Node (RAAN) is approximately the same for the current DO and for an orbit of the following LSSD object. Distinctive features of changes in mutual distribution of orbital planes of LSSD within a group are shown on the RAAN deviations' evolution portrait. In case of the first three groups (inclinations 71°, 74° and 81°), the lines describing the relative orientation of orbital planes are quasi-parallel. Such configuration allows easy identification of the flyby order within a group, and calculation of the mission duration and the required total ΔV. In case of the 4th and the 5th groups the RAAN deviations' evolution portrait represents a conjunction of lines chaotically intersecting. The article studies changes in mission duration and in the required ΔV depending on the catalogue number of the first object in the flyby order. The article also contains a comparative efficiency analysis of the two world-wide known schemes applicable to LSSD objects' de-orbiting; the analysis is carried out for all 5 distinguished LSSD groups.

  6. Radiation Pressure, Poynting-Robertson Drag, and Solar Wind Drag in the Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Jackson, A. A.

    1995-01-01

    In this paper, we examine the effects of radiation pressure, Poynting-Robertson (PR) drag, and solar wind drag on dust grains trapped in mean motion resonances with the Sun and Jupiter in the restricted (negligible dust mass) three-body Problem. We especially examine the evolution of dust grains in the 1:1 resonance. As a first step, the Sun and Jupiter are idealized to both be in circular orbit about a common center of mass (circular restricted three-body problem). From the equation of motion of the dust particle in the rotating reference frame, the drag-induced time rate of change of its Jacobi "constant," C, is then derived and expressed in spherical coordinates. This new mathematical expression in spherical coordinates shows that C, in the 1:1 resonance, both oscillates and secularly increases with increasing time. The new expression gives rise to an easy understanding of how an orbit evolves when the radiation force and solar wind drag are included. All dust grain orbits are unstable in time when PR and solar wind drag are included in the Sun-Jupiter-dust system. Tadpole orbits evolve into horseshoe orbits; and these orbits continuously expand in size to lead to close encounters with Jupiter. Permanent trapping is impossible. Orbital evolutions of a dust grain trapped in the 1:1 resonance in the planar circular, an inclined case, an eccentric case, and the actual Sun-Jupiter case are numerically simulated and compared with each other and show grossly similar time behavior. Resonances other than 1:1 are also explored with the new expression. Stable exterior resonance trapping may be possible under certain conditions. One necessary condition for such a trap is derived. Trapping in interior resonances is shown to be always unstable.

  7. Updating the orbital ephemeris of the dipping source XB 1254-690 and the distance to the source

    NASA Astrophysics Data System (ADS)

    Gambino, Angelo F.; Iaria, Rosario; Di Salvo, Tiziana; Matranga, Marco; Burderi, Luciano; Pintore, Fabio; Riggio, Alessandro; Sanna, Andrea

    2017-09-01

    XB 1254-690 is a dipping low mass X-ray binary system hosting a neutron star and showing type I X-ray bursts. We aim at obtaining a more accurate orbital ephemeris and at constraining the orbital period derivative of the system for the first time. In addition, we want to better constrain the distance to the source in order to locate the system in a well defined evolutive scenario. We apply, for the first time, an orbital timing technique to XB 1254-690, using the arrival times of the dips present in the light curves that have been collected during 26 yr of X-ray pointed observations acquired from different space missions. We estimate the dip arrival times using a statistical method that weights the count-rate inside the dip with respect to the level of persistent emission outside the dip. We fit the obtained delays as a function of the orbital cycles both with a linear and a quadratic function. We infer the orbital ephemeris of XB 1254-690, improving the accuracy of the orbital period with respect to previous estimates. We infer a mass of M 2 = 0.42 ± 0.04 M ʘ for the donor star, in agreement with estimations already present in literature, assuming that the star is in thermal equilibrium while it transfers part of its mass via the inner Lagrangian point, and assuming a neutron star mass of 1.4 M ʘ. Using these assumptions, we also constrain the distance to the source, finding a value of 7.6 ± 0.8 kpc. Finally, we discuss the evolution of the system, suggesting that it is compatible with a conservative mass transfer driven by magnetic braking.

  8. The Evolution of Mission Architectures for Human Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  9. KSC-03pd0512

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle enters the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, a space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  10. KSC-03pd0484

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  11. KSC-03pd0483

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  12. KSC-03pd0492

    NASA Image and Video Library

    2003-02-13

    KENNEDY SPACE CENTER, FLA. -- Workers in the Multi-Payload Processing Facility check the solar array panels on the Galaxy Evolution Explorer (GALEX) satellite after they were deployed. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  13. KSC-03pd0511

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. - As darkness falls, the Pegasus launch vehicle arrives at the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, a space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  14. KSC-03pd0485

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  15. KSC-03pd0482

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  16. KSC-03pd0486

    NASA Image and Video Library

    2003-02-06

    KENNEDY SPACE CENTER, FLA. -- In the Multi-Payload Processing Facility, workers check the deployment of the cover of the telescope on the GALEX satellite. The Galaxy Evolution Explorer (GALEX) is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  17. KSC-03pd0491

    NASA Image and Video Library

    2003-02-13

    KENNEDY SPACE CENTER, FLA. - Workers in the Multi-Payload Processing Facility check the solar array panels on the Galaxy Evolution Explorer (GALEX) satellite after they were deployed. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  18. KSC-03pd0487

    NASA Image and Video Library

    2003-02-13

    KENNEDY SPACE CENTER, FLA. - The Galaxy Evolution Explorer (GALEX) satellite is ready for deployment of its solar array panels during processing in the Multi-Payload Processing Facility. The GALEX is an orbiting space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25 via a Pegasus rocket.

  19. KSC-03pd0513

    NASA Image and Video Library

    2003-02-19

    KENNEDY SPACE CENTER, FLA. -- The Pegasus launch vehicle is inside the Multi-Payload Processing Facility (MPPF) at KSC. There it will be mated to the Galaxy Evolution Explorer (GALEX). The Pegasus will carry into orbit the GALEX, a space telescope that will observe galaxies in ultraviolet light across 10 billion years of cosmic history. Led by the California Institute of Technology, GALEX will conduct several first-of-a-kind sky surveys, including an extra-galactic (beyond our galaxy) ultraviolet all-sky survey. During its 29-month mission GALEX will produce the first comprehensive map of a Universe of galaxies under construction, bringing more understanding of how galaxies like the Milky Way were formed. GALEX is due to be launched from Cape Canaveral Air Force Station March 25.

  20. A study of lunar models based on Apollo and other data

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The research concerned with the interpretation of lunar data developed during the Apollo Program is reported. The areas of research include: X-ray emission spectra and molecular orbitals of lunar materials, magnetic properties of lunar rock, lunar features, thermal history and evolution of the moon, and the internal constitution and evolution of the moon.

Top