Science.gov

Sample records for orbital giant resonances

  1. Influence of resonant periodic orbits on the formation of giant planetary systems

    NASA Astrophysics Data System (ADS)

    Libert, Anne-Sophie; Sotiriadis, Sotiris; Antoniadou, Kyriaki

    2017-06-01

    The late-stage formation of giant planetary systems leads to interesting dynamical mechanisms. By use of extensive n-body simulations, we follow the evolution of three giant planets in the late stage of the gas disc, investigating the gravitational interactions among the planets during the migration phase. Our simulations, which take into account the Type-II migration, the damping of planetary eccentricity and inclination, and an exponential decrease of the disc mass, reproduce the semi-major axis and eccentricity distributions of the detected giant planets. We show that, starting from quasi-circular and quasi-coplanar orbits, highly mutually inclined systems can form, despite the strong eccentricity and inclination damping, due to planet-planet scattering and/or resonant phenomena. A detailed analysis of the long-term dynamical evolutions of these 3D systems is performed, with a particular emphasis on the different inclination-growth mechanisms. We observe that 30% of the final system architectures are strongly affected by a mean-motion resonance. While inclination-type resonances are commonly observed at large eccentricities, we show here that inclination excitation can also be produced at small to moderate eccentricities. We perform a dynamical study of our results, guided by the computation of vertical critical orbits and the bifurcation of families of spatial periodic orbits.

  2. On the orbital evolution of a pair of giant planets in mean motion resonance

    NASA Astrophysics Data System (ADS)

    André, Q.; Papaloizou, J. C. B.

    2016-10-01

    Pairs of extrasolar giant planets in a mean motion commensurability are common with 2:1 resonance occurring most frequently. Disc-planet interaction provides a mechanism for their origin. However, the time-scale on which this could operate in particular cases is unclear. We perform 2D and 3D numerical simulations of pairs of giant planets in a protoplanetary disc as they form and maintain a mean motion commensurability. We consider systems with current parameters similar to those of HD 155358, 24 Sextantis and HD 60532, and disc models of varying mass, decreasing mass corresponding to increasing age. For the lowest mass discs, systems with planets in the Jovian mass range migrate inwards maintaining a 2:1 commensurability. Systems with the inner planet currently at around 1 au from the central star could have originated at a few au and migrated inwards on a time-scale comparable to protoplanetary disc lifetimes. Systems of larger mass planets such as HD 60532 attain 3:1 resonance as observed. For a given mass accretion rate, results are insensitive to the disc model for the range of viscosity prescriptions adopted, there being good agreement between 2D and 3D simulations. However, in a higher mass disc a pair of Jovian mass planets passes through 2:1 resonance before attaining a temporary phase lasting a few thousand orbits in an unstable 5:3 resonance prior to undergoing a scattering. Thus, finding systems in this commensurability is unlikely.

  3. The Electric Giant Resonances

    NASA Astrophysics Data System (ADS)

    van der Woude, A.

    The following sections are included: * Introduction * Experimental Methods to Study Giant Resonances * Introduction * The Tools * Introduction * Tools for Isoscalar Scattering * INELASTIC α-SCATTERING * INELASTIC PROTON SCATTERING * Tools for Isovector Excitations * γ-ABSORPTION AND PARTICLE CAPTURE REACTIONS * CHARGE EXCHANGE REACTIONS - THE (π+, π0) REACTION * Tools For Isoscalar And Isovector Excitations * INELASTIC ELECTRON SCATTERING * GIANT RESONANCE EXCITATION BY FAST HEAVY IONS * From Multipole Cross Section To Multipole Strength * The Electric Isoscalar Resonances * The Isoscalar Giant Monopole Resonance * Systematics on the GMR * Compressibility and the Giant Monopole Resonance * Introduction * The Compressibility of nuclear matter from the GMR energies * Discussion * The Isoscalar Giant Quadrupole Resonance * General Trends In Medium-Heavy and Heavy Nuclei * The GQR In Light Nuclei * The Isoscalar 3- Strength, LEOR and HEOR * Isoscalar 4+ Strength * Miscellaneous; Isoscalar 1- and L > 4-Strength * The Electric Isovector Giant Resonances * The Isovector Giant Dipole Resonance: GDR * The Isovector Giant Monopole Resonances: IVGMR * The Isovector Quadrupole Resonance: IVGQR * The Effect of Ground State Deformation on the Shape of Giant Resonance: Microscopic Picture * Giant Resonances Built on Excited States * Introduction * Capture Reactions on Light Nuclei * Statistical decay of GDR γ Emission in Heavy Compound Systems * Introduction * Theoretical Predictions * Some Experimental Results * Summary and Outlook * Acknowledgements * General References * References

  4. Giant resonances: Progress, new directions, new challenges

    SciTech Connect

    Bertrand, J.R.; Beene, J.R.

    1989-01-01

    A review of some recent developments in the field of giant multipole resonances is presented. Particular emphasis is placed on directions that the authors feel will be followed in this field during the next several years. In particular, the use of high-energy heavy ions to excite the giant resonances is shown to provide exciting new capabilities for giant resonance studies. Among subjects covered are: Coulomb excitation of giant resonances, photon decay of giant resonances, the recent controversy over the identity of the giant monopole resonance, the most recent value for incompressibility of nuclear matter from analysis of giant monopole data, the isospin character of the 63 A/sup /minus/1/3/ GQR, agreement between (e,e/prime/) and (hadron, hadron/prime/) excitation of the giant quadrupole resonance, prospects for multiphonon giant resonance observation, and isolation of the isovector giant quadrupole resonance. 55 refs., 23 figs., 4 tabs.

  5. Giant Solitary Fibrous Tumor of Orbit.

    PubMed

    Tenekeci, Goktekin; Sari, Alper; Vayisoglu, Yusuf; Serin, Onur

    2015-07-01

    Solitary fibrous tumors (SFTs) have been reported in various locations in the body. Solitary fibrous tumors are extremely rare tumors, especially when located in the orbit. Diagnosis of SFT cannot be made based on histopathology only because it exhibits a variable microscopic appearance, and necessitates immunohistochemistry to confirm the diagnosis. A 51-year-old man was admitted to our clinic for the evaluation of a mass bulging in his left eye. Clinical examination revealed a painless mass extruding out of the orbital cavity with dimensions of 8 × 7  cm. Exenteration of the left eye including the upper and lower eyelid and reconstruction of the orbital cavity using a temporoparietal fascia flap and a temporal muscle flap was performed. SFT of orbital region is known as a slow growing and painless tumor. Based on previous studies, increased mitotic rate of the tumor gives the impression that the tumor has a malignant nature. Until now a small number or orbital SFTs were reported and none of them presented with a giant mass protruding out of the orbital cavity. We present a unique case of orbital SFT filling the whole orbital cavity and protruding outward as a giant mass. This case has been reported to expand our knowledge in this debated entity.

  6. 4f wavefunction collapse and giant resonances in molecules

    NASA Astrophysics Data System (ADS)

    Robin, M. B.

    1985-08-01

    The effective potential for an f orbital in an atom reflects both the attractive Coulomb and repulsive centrifugal forces, resulting in a double-well potential. Transitions from nd orbitals to f¯ orbitals bound in the inner well of the effective potential are unique in their frequency, intensity and response to external perturbations, and are known as "giant resonances". In molecules, the role of the repulsive centrifugal force is played instead by orthogonality to bonding valence orbitals, in which case the inner-well wavefunctions then become antibonding valence MOs. In general, the expected molecular giant resonances resulting from transitions between d-like MOs and antibonding valence MOs of f symmetry are not seen because of strong valence/Rydberg mixing. However, in certain molecules having high symmetries and the proper electronic configurations, this upper-state mixing is symmetry forbidden, and so molecular giant resonances can appear. These d → f¯ molecular giant resonances are identified for the first time in the vacuum-ultraviolet spectra of cyclopropane, cyclohexane, neopentane and uranium hexafluoride.

  7. Excitation of giant resonances via direct reactions

    SciTech Connect

    Bertrand, F.E.

    1982-01-01

    Experimental measurements of electric giant multipole resonances are discussed. The parameters of the giant quadrupole resonance are now firmly established by an extensive set of measurements. The GQR is providing a significant influence in other areas of nuclear physics. The monopole resonance has now been established and its observation has provided the first direct measure of the nuclear compressibility. A strong case for the existence of a giant octupole resonance is now being made through a variety of hadron reactions. However, the supply of giant multipole resonances has not been exhausted. The newer techniques such as higher energy proton scattering, charge exchange reactions, heavy-ion scattering and pion reactions offer considerable hope for identifying new resonances during the next few years.

  8. Giant resonances of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.

    2008-04-01

    It is demonstrated for the first time that the effect of a fullerene shell on the photoionization of a “caged” atom in an endohedral can result in the formation of giant endohedral resonances or GER. This is illustrated by the concrete case of the Xe@C60 photoionization cross section that, at 17 eV, exhibits a powerful resonance with total oscillator strengths of about 25. The prominent modification of the 5 p 6 electron photoionization cross section of Xe@C60 takes place due to the strong fullerene shell polarization under the action of the incoming electromagnetic wave and the oscillation of this cross section due to the reflection of the photoelectron from Xe by the C60. These two factors transform the smoothly decreasing 5 p 6 cross section of Xe into a rather complex curve with a powerful maximum for Xe@C60, with the oscillator strength of it being equal to 25. We also present the results for the dipole angular anisotropy parameter that is strongly affected by the reflection of the photoelectron waves, but not modified by C60 polarization.

  9. Giant resonances of endohedral atoms

    NASA Astrophysics Data System (ADS)

    Amusia, M. Ya.; Baltenkov, Arkadiy; Chernysheva, Larissa

    2008-05-01

    We demonstrate for that the effect of fullerene shell upon photoionization of the ``caged'' atom in an endohedral can result in formation of Giant Endohedral Resonances or GER. This is illustrated by the concrete case of Xe@C60 photoionization cross-section that exhibits at 17 eV a powerful resonance with total oscillator strengths of about 25. The prominent modification of the 5p^6 electron photoionization cross-section of Xe@C60 takes place due to strong fullerene shell polarization under the action of the incoming electromagnetic wave and oscillation of this cross-section due to the reflection of the photoelectron from Xe by the C60. These two factors transform the smoothly decreasing 5p^6 cross-section of Xe into a rather complex curve with a powerful maximum for Xe@C60, with the oscillator strength of it being equal to 25! We present also the results for the dipole angular anisotropy parameter that is strongly affected by the reflection of the photoelectron waves but not modified by C60 polarization.

  10. Resonant and secular orbital interactions

    NASA Astrophysics Data System (ADS)

    Zhang, Ke

    In stable solar systems, planets remain in nearly elliptical orbits around their stars. Over longer timescales, however, their orbital shapes and sizes change due to mutual gravitational perturbations. Orbits of satellites around a planet vary for the same reason. Because of their interactions, the orbits of planets and satellites today are different from what they were earlier. In order to determine their original orbits, which are critical constraints on formation theories, it is crucial to understand how orbits evolve over the age of the Solar System. Depending on their timescale, we classify orbital interactions as either short-term (orbital resonances) or long-term (secular evolution). My work involves examples of both interaction types. Resonant history of the small Neptunian satellites. In satellite systems, tidal migration brings satellite orbits in and out of resonances. During a resonance passage, satellite orbits change dramatically in a very short period of time. We investigate the resonant history of the six small Neptunian moons. In this unique system, the exotic orbit of the large captured Triton (with a circular, retrograde, and highly tilted orbit) influences the resonances among the small satellites very strongly. We derive an analytical framework which can be applied to Neptune's satellites and to similar systems. Our numerical simulations explain the current orbital tilts of the small satellites as well as constrain key physical parameters of both Neptune and its moons. Secular orbital interactions during eccentricity damping. Long-term periodic changes of orbital shape and orientation occur when two or more planets orbit the same star. The variations of orbital elements are superpositions of the same number of fundamental modes as the number of planets in the system. We investigate how this effect interacts with other perturbations imposed by external disturbances, such as the tides and relativistic effects. Through analytical studies of a

  11. Orbital Resonances Around Black Holes

    NASA Astrophysics Data System (ADS)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-01

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  12. Orbital resonances around black holes.

    PubMed

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  13. Hierarchical spin-orbital polarization of a giant Rashba system.

    PubMed

    Bawden, Lewis; Riley, Jonathan M; Kim, Choong H; Sankar, Raman; Monkman, Eric J; Shai, Daniel E; Wei, Haofei I; Lochocki, Edward B; Wells, Justin W; Meevasana, Worawat; Kim, Timur K; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J; Shen, Kyle M; Chou, Fangcheng; King, Phil D C

    2015-09-01

    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two "spin-split" branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector.

  14. Hierarchical spin-orbital polarization of a giant Rashba system

    PubMed Central

    Bawden, Lewis; Riley, Jonathan M.; Kim, Choong H.; Sankar, Raman; Monkman, Eric J.; Shai, Daniel E.; Wei, Haofei I.; Lochocki, Edward B.; Wells, Justin W.; Meevasana, Worawat; Kim, Timur K.; Hoesch, Moritz; Ohtsubo, Yoshiyuki; Le Fèvre, Patrick; Fennie, Craig J.; Shen, Kyle M.; Chou, Fangcheng; King, Phil D. C.

    2015-01-01

    The Rashba effect is one of the most striking manifestations of spin-orbit coupling in solids and provides a cornerstone for the burgeoning field of semiconductor spintronics. It is typically assumed to manifest as a momentum-dependent splitting of a single initially spin-degenerate band into two branches with opposite spin polarization. Combining polarization-dependent and resonant angle-resolved photoemission measurements with density functional theory calculations, we show that the two “spin-split” branches of the model giant Rashba system BiTeI additionally develop disparate orbital textures, each of which is coupled to a distinct spin configuration. This necessitates a reinterpretation of spin splitting in Rashba-like systems and opens new possibilities for controlling spin polarization through the orbital sector. PMID:26601268

  15. Isoscalar giant resonances in {sup 48}Ca

    SciTech Connect

    Lui, Y.-W.; Youngblood, D. H.; Shlomo, S.; Chen, X.; Tokimoto, Y.; Krishichayan,; Anders, M.; Button, J.

    2011-04-15

    The giant resonance region from 9.5 MeV < E{sub x} < 40 MeV in {sup 48}Ca has been studied with inelastic scattering of 240-MeV {alpha} particles at small angles, including 0 deg. 95{sub -15}{sup +11}% of E0 energy-weighted sum rule (EWSR), 83{sub -16}{sup +10}% of E2 EWSR, and 137 {+-} 20% of E1 EWSR were located below E{sub x}=40 MeV. A comparison of the experimental data with calculated results for the isoscalar giant monopole resonance, obtained within the mean-field-based random-phase approximation, is also given.

  16. Signature to detect the isovector giant quadrupole resonance

    NASA Astrophysics Data System (ADS)

    Speth, J.; Cha, D.; Klemt, V.; Wambach, J.

    1985-06-01

    We calculate the γ decay from the isoscalar and isovector giant quadrupole resonances in 208Pb into the low-lying spectrum. Whereas the γ decay from the isoscalar giant quadrupole resonance into the first excited 3- state is very small, the corresponding transition from the isovector giant quadrupole resonance is strongly enhanced. According to preliminary calculations, these results hold rather generally for other heavy mass nuclei. We suggest using this property in experimental investigation of the isovector giant quadrupole resonance.

  17. Giant infantile gliosarcoma: magnetic resonance imaging findings.

    PubMed

    Sanal, Hatice Tuba; Bulakbasi, Nail; Kocaoglu, Murat; Onguru, Onder; Chen, Lina

    2008-08-01

    Gliosarcoma is an uncommon variant of glioblastoma multiforme, which is composed of gliomatous and sarcomatous elements. The tumor is rarely encountered in childhood. This case report presents the magnetic resonance imaging characteristics of a giant gliosarcoma in a 3-year-old girl. Size and location of the tumor are described.

  18. a Survey of Giant Resonance Excitations with 200 Mev Protons

    NASA Astrophysics Data System (ADS)

    Tinsley, James Royce

    The giant resonance region in ('60)Ni, ('90)Zr, ('120)Sn, and ('208)Pb has been studied using inelastic scattering of 200 MeV protons. Angular distributions were obtained for the giant quadrupole resonance, giant octupole resonance, and for the combined giant dipole and giant monopole resonance between 4 and 20 degrees. The 2(H/2PI)(omega) component of the giant hexadecapole resonance has been directly observed for the first time in ('208)Pb. In the other nuclei, upper limits on the amount of hexadecapole strength contained within the giant quadrupole resonance have been obtained. Peaks are observed in ('60)Ni and ('90)Zr that are consistent with recently reported M1 states. Discrepancies between sum rules extracted from this data and from previous work are discussed. Possible explanations include DWBA breakdown or difficulties in estimating the magnitude of the continuum. Systematics obtained for the giant resonances are compared to earlier work.

  19. Origin of the orbital architecture of the giant planets of the Solar System.

    PubMed

    Tsiganis, K; Gomes, R; Morbidelli, A; Levison, H F

    2005-05-26

    Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.

  20. Dynamical Coupling of Pygmy and Giant Resonances

    NASA Astrophysics Data System (ADS)

    Bertulani, Carlos; Brady, Nathan; Aumann, Thomas; Thomas, James

    2016-03-01

    One of the effects overseen in studies of excitation of pygmy resonances is the fact that both pygmy and giant resonances are strongly coupled. This coupling leads to dynamical effects such as the modification of transition probabilities and and cross sections. We make an assessment of such effects by means of the relativistic coupled channels equations developed by our group. Supported by the U.S. NSF Grant No. 1415656 and the U.S. DOE Grant No. DE-FG02-08ER41533.

  1. Giant planet formation on wide orbits by core accretion

    NASA Astrophysics Data System (ADS)

    Guilera, O. M.; Ronco, M. P.

    2017-07-01

    The discovery of giant planets on wide orbits represents a major challenge for the standard core accretion model. In such model, giant planets are expected to form at small or moderate distances from the central star in order to form massive cores able to trigger the gaseous runaway growth before the dissipation of the disk. In this work, we present a new simple mechanism for the formation of giant planets on wide orbits by core accretion considering planet formation, planet migration and disk evolution.

  2. Spin-orbit ferromagnetic resonance

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew

    2013-03-01

    In conventional magnetic resonance techniques the magnitude and direction of the oscillatory magnetic field are (at least approximately) known. This oscillatory field is used to probe the properties of a spin ensemble. Here, I will describe experiments that do the inverse. I will discuss how we use a magnetic resonance technique to map out the current-induced effective magnetic fields in the ferromagnetic semiconductors (Ga,Mn)As and (Ga,Mn)(As,P). These current-induced fields have their origin in the spin-orbit interaction. Effective magnetic fields are observed with symmetries which resemble the Dresselhaus and Rashba spin-orbit interactions and which depend on the diagonal and off-diagonal strain respectively. Ferromagnetic semiconductor materials of different strains, annealing conditions and concentrations are studied and the results compared with theoretical calculations. Our original study measured the rectification voltage coming from the product of the oscillatory magnetoresistance, during magnetisation precession, and the alternating current. More recently we have developed an impedance matching technique which enables us to extract microwave voltages from these high resistance (10 k Ω) samples. In this way we measure the microwave voltage coming from the product of the oscillating magneto-resistance and a direct current. The direct current is observed to affect the magnetisation precession, indicating that anti-damping as well as field-like torques can originate from the spin-orbit interaction.

  3. Thermal effects on isoscalar giant resonance energies in hot nuclei

    SciTech Connect

    Wen, W.; Dai, G.; Jin, G.

    1995-07-01

    The thermal effects on the energies of the isoscalar giant multipole resonances of hot nuclei are discussed and an approximate formula for the energy as a function of temperature is derived via a hydrodynamic theory. The energy difference between the isoscalar giant multipole resonance of a hot nucleus and its ground-state resonance depends on the competition between the volume expansion and the increase of the average kinetic energy per nucleon of hot nuclei, which lower and raise the resonance energy, respectively, and nearly counteract each other in magnitude. The variaiton of the isoscalar giant resonance energy with temperature is very small.

  4. A THIRD GIANT PLANET ORBITING HIP 14810

    SciTech Connect

    Wright, J. T.; Fischer, D. A.; Ford, Eric B.; Veras, D.; Wang, J.; Henry, G. W.; Marcy, G. W.; Howard, A. W.; Johnson, John Asher

    2009-07-10

    We present new precision radial velocities and a three-planet Keplerian orbit fit for the V = 8.5, G5 V star HIP 14810. We began observing this star at Keck Observatory as part of the N2K Planet Search Project. Wright et al. announced the inner two planets to this system, and subsequent observations have revealed the outer planet and the proper orbital solution for the middle planet. The planets have minimum masses of 3.9, 1.3, and 0.6 M {sub Jup} and orbital periods of 6.67, 147.7, and 952 day, respectively. We have numerically integrated the family of orbital solutions consistent with the data and find that they are stable for at least 10{sup 6} yr. Our photometric search shows that the inner planet does not transit.

  5. Pion production via isobar giant resonance formation and decay

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Deutchman, P. A.; Madigan, R. L.; Norbury, J. W.

    1984-01-01

    A spin, isotopic-spin formalism for the production of pions due to decays of isobar giant resonances formed in peripheral heavy-ion collisions is presented. The projectile nucleus isobar giant resonance state is assumed to coherently form and then incoherently decay to produce the pions. Total spin and isotopic spin for the system are conserved through the concomitant excitation of the target nucleus to an isobaric analog giant resonance state. Comparisons of the predicted total pion cross sections, over a range of energies, are made with heavy-ion pion data.

  6. Orbit of a Giant and a Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-11-01

    The binary system Procyon, located a mere 11 light-years away, consists of a bright, subgiant star and a faint white dwarf presenting a distinct challenge for astronomers to observe. But careful analysis of two decades of precise measurements with the Hubble Space Telescope has now finally revealed some of its secrets.Challenging ObservationsPerturbations were detected as early as 1844 in the orbit of Procyon, originally thought to be a single star. Astronomers of the time suspected that this wobbling was due to the pull of a companion orbiting Procyon, but it wasnt until five decades later that the companion was first detected visually.Why? Because the subgiant Procyon A is the 8th brightest star in the sky. Its companion, on the other hand, is a white dwarf thats fainter (in visual wavelengths) by a factor of nearly 16,000! And the two stars are separated by an angular distance of less than 5.Due to the difficulty observing the system, the measurements of its motion and resulting estimates of the masses of the two stars have been a subject of debate for the better part of the last century.Led by Howard Bond (Pennsylvania State University and the Space Telescope Science Institute), a team of astronomers has now analyzed two decades of Hubble observations of the system, combined with historical, ground-based observations dating back to the 19th century. Bond and collaborators used these data to precisely measure the orbital elements of Procyon and obtain dynamical masses of the two stars.Surprising MixingRelative orbit of Procyon B around Procyon A. The red curve is the authors fit to the orbit, and the open blue circles are positions predicted by the orbital elements found. The black dots are the HST observations of Procyon B. The open green and turquoise circles are the (significantly less precise!) historical, ground-based observations. [Bond et al. 2015]The team reports that this system orbits once every 40.8 years. They find masses for the two stars of 1

  7. DISSIPATIVE DIVERGENCE OF RESONANT ORBITS

    SciTech Connect

    Batygin, Konstantin; Morbidelli, Alessandro

    2013-01-01

    A considerable fraction of multi-planet systems discovered by the observational surveys of extrasolar planets reside in mild proximity to first-order mean-motion resonances. However, the relative remoteness of such systems from nominal resonant period ratios (e.g., 2:1, 3:2, and 4:3) has been interpreted as evidence for lack of resonant interactions. Here, we show that a slow divergence away from exact commensurability is a natural outcome of dissipative evolution and demonstrate that libration of critical angles can be maintained tens of percent away from nominal resonance. We construct an analytical theory for the long-term dynamical evolution of dissipated resonant planetary pairs and confirm our calculations numerically. Collectively, our results suggest that a significant fraction of the near-commensurate extrasolar planets are in fact resonant and have undergone significant dissipative evolution.

  8. A Secular Resonance Between Iapetus and the Giant Planets

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; Dones, Henry C. Luke; Nesvorny, David; Walsh, Kevin J.

    2017-06-01

    Iapetus is the outermost of the regular satellites of Saturn, and its origin and evolution present a number of unsolved problems. From the point of view of orbital dynamics, it is remarkable that Iapetus has a large inclination (8 degrees) and a significantly smaller eccentricity (0.03), contrary to the pattern expected if its orbit was excited by encounters between Saturn and other planets early in the Solar System's history (Nesvorny et al, 2014). Here we report our long-term numerical integrations of Iapetus's orbit that show multi-Myr oscillations of Iapetus's eccentricity with an amplitude on the order of 0.01. We find that the basic argument causing this behavior is the sum of the longitude of pericenter and the longitude of the node of Iapetus, with a 0.3 Myr period. This argument appears to be in resonance with the period of the g5 mode in the eccentricity and perihelion of Saturn. We find that our nominal solution, including Saturn's oblateness, Titan, Iapetus and all four giant planets, shows librations of the argument: ǎrpi_Iapetus - ǎrpi_g5 + \\Omega_Iapetus - \\Omega_SaturnEq, where ǎrpi and \\Omega are the longitudes of pericenters and nodes, respectively, and \\Omega_SaturnEq is Saturn's equinox. While planetary perturbations are crucial in generating the g5 mode and therefore maintaining this resonance, we find that Iapetus is affected by the planets only indirectly, with the Sun being the dominant direct perturber. The libration is stable for tens of Myr for the nominal rate of Saturn's pole precession (French et al, 2017), and appears stable indefinitely if we assume a secular resonance between Saturn's node and the secular mode g18 (Ward and Hamilton, 2004; Hamilton and Ward, 2004). We will present the implication of this resonance for the origin of Iapetus's orbit and the dynamical history of Saturn's system. This research is funded by NASA Outer Planets Research Program award NNX14AO38G. References: French, R. G., McGhee-French, C. A

  9. Orbital resonances and Poynting-Robertson drag

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Jackson, A. A.

    1993-01-01

    The phenomenon of resonance trapping with Poynting-Robertson drag in the simplest case - the circular restricted three-body problem - is elucidated. Attention is given to what determines whether a grain of a given size passes through a given resonance or is trapped there, to how and why a trapped particle's orbit evolves with time, and to why Poynting-Robertson drag resonances are only temporary, while gas-drag resonances appear to be stable. The possibility of trapping a grain into resonance with a planet depends on the combination of the following parameters: the ratio of radiation pressure force to solar gravity, the mass of the perturbing planet normalized to the solar mass, an integer, and eccentricity. In general, the peak eccentricity and sometimes the threshold value are large enough so that crossing orbits and close approaches to the planet can inhibit capture and aid escape from resonance.

  10. Polarized Ytterbium with orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Wang, Su; Zhou, Zhengwei; Zhengwei Zhou Team

    2016-05-01

    Orbital Feshbash resonance make progress for Feshbach resonance on alkaline earth atoms. It urge us to control the interaction of alkaline earth atoms using magnetic field without optical heating. In this work, we research the polarized Ytterbium gases with orbital Feshbach resonance. The gases have normal, superfuild, breach pair double, breach pair open phases in BEC region. It only have normal, and superfuild phases in BCS region. We also plot the particle number fixed phase diagrams. The gases have the phase separation region and normal phase region.

  11. THE FORMATION MECHANISM OF GAS GIANTS ON WIDE ORBITS

    SciTech Connect

    Dodson-Robinson, Sarah E.; Veras, Dimitri; Ford, Eric B.; Beichman, C. A.

    2009-12-10

    The recent discoveries of massive planets on ultra-wide orbits of HR 8799 and Fomalhaut present a new challenge for planet formation theorists. Our goal is to figure out which of three giant planet formation mechanisms-core accretion (with or without migration), scattering from the inner disk, or gravitational instability-could be responsible for Fomalhaut b, HR 8799 b, c and d, and similar planets discovered in the future. This paper presents the results of numerical experiments comparing the long-period planet formation efficiency of each possible mechanism in model A star, G star, and M star disks. First, a simple core accretion simulation shows that planet cores forming beyond 35 AU cannot reach critical mass, even under the most favorable conditions one can construct. Second, a set of N-body simulations demonstrates that planet-planet scattering does not create stable, wide-orbit systems such as HR 8799. Finally, a linear stability analysis verifies previous work showing that global spiral instabilities naturally arise in high-mass disks. We conclude that massive gas giants on stable orbits with semimajor axes a approx> 35 AU form by gravitational instability in the disk. We recommend that observers examine the planet detection rate as a function of stellar age, controlling for the planets' dimming with time. Any age trend would indicate that planets on wide orbits are transient relics of scattering from the inner disk. If planet detection rate is found to be independent of stellar age, it would confirm our prediction that gravitational instability is the dominant mode of producing detectable planets on wide orbits. We also predict that the occurrence ratio of long-period to short-period gas giants should be highest for M dwarfs due to the inefficiency of core accretion and the expected small fragment mass (approx10 M {sub Jup}) in their disks.

  12. FORMATION AND SURVIVABILITY OF GIANT PLANETS ON WIDE ORBITS

    SciTech Connect

    Vorobyov, Eduard I.; Basu, Shantanu E-mail: basu@astro.uwo.c

    2010-05-01

    Motivated by the recent discovery of massive planets on wide orbits, we present a mechanism for the formation of such planets via disk fragmentation in the embedded phase of star formation. In this phase, the forming disk intensively accretes matter from the natal cloud core and undergoes several fragmentation episodes. However, most fragments are either destroyed or driven into the innermost regions (and probably onto the star) due to angular momentum exchange with spiral arms, leading to multiple FU-Ori-like bursts and disk expansion. Fragments that are sufficiently massive and form in the late embedded phase (when the disk conditions are less extreme) may open a gap and evolve into giant planets on typical orbits of several tens to several hundreds of AU. For this mechanism to work, the natal cloud core must have sufficient mass and angular momentum to trigger the burst mode and also form extended disks of the order of several hundreds of AU. When mass loading from the natal cloud core diminishes and the main fragmentation phase ends, such extended disks undergo a transient episode of contraction and density increase, during which they may give birth to a last and survivable set of giant planets on wide and relatively stable orbits.

  13. The first known Uranian Trojan and the frequency of temporary giant-planet co-orbitals

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Alexandersen, M.; Gladman, B.; Kavelaars, J.; Petit, J.; Gwyn, S.

    2013-10-01

    We report the first discovery of a Uranian Trojan (2011 QF99) in 2011-2012 CFHT Megacam imaging taken for a 20 square degree outer Solar System survey designed to detect and track Trans-Neptunian Objects and Centaurs. The orbit of the newly discovered object was constrained with 29 astrometric measurements over 7 dark runs with a total arc of 419 days. Numerical integrations of both the nominal orbit and all other orbits within the (already small) orbital uncertainties show 2011 QF99 oscillates around the L4 Lagrange point 60 degrees ahead of Uranus for >70 kyr and remains co-orbital (in 1:1 resonance) for ~1 Myr before becoming a Centaur. We performed additional orbital integrations to investigate the possibility the object could have evolved to its current orbit from a nearby, stable niche of phase-space. However, test particles started on orbits in the small region of phase-space surrounding the nominal orbit remained co-orbital for <100 Myr, most for <10 Myr. This leads to the conclusion that 2011 QF99 must be a temporary co-orbital instead of being a primordial Trojan. To investigate the frequency and duration (to factor of two accuracy) of temporary co-orbital captures with Uranus and Neptune, we construct a model of Centaurs supplied from the transneptunian region over 1 Gyr, building a relative orbital distribution for the a<34 AU region. The simulation output interval of 300 yr for the planets and all a<34 AU particles allows the 1:1 resonant argument to be well sampled; to our knowledge, this is the first time such a meticulous search for short-term co-orbitals of giant planets has been performed for an armada of incoming scattering objects. Analysis of the particle histories showed that at any given time, significant fractions (0.4% and 2.8%) of the a<34 AU Centaur population will be Uranian and Neptunian co-orbitals, respectively. We show for the first time that the high fraction 3%) of the transient co-orbital Centaurs in the IAU Minor Planet Center

  14. Direct neutron decay of the isoscalar giant dipole resonance

    SciTech Connect

    Hunyadi, M. Berg, A. M. van den; Davids, B.; Harakeh, M. N.; Huu, M. A. de; Woertche, H. J.; Csatlos, M.; Gulyas, J.; Krasznahorkay, A.; Sohler, D.; Garg, U.; Fujiwara, M.; Blasi, N.

    2007-08-15

    The direct and statistical neutron decay of the isoscalar giant dipole resonance has been studied in {sup 90}Zr, {sup 116}Sn, and {sup 208}Pb using the ({alpha}, {alpha}' n) reaction at a bombarding energy of 200 MeV. The spectra of fast decay neutrons populating valence hole states of the Z, N - 1 nuclei were analyzed, and estimates for the branching ratios were determined. The observation of the nucleon-direct-decay channels helped to select giant-resonance strengths and suppress the underlying background and continuum, which led to an indication of the existence of a new mode with L 2 character, presumably the overtone of the isoscalar giant quadrupole resonance.

  15. Quantum chaotic resonances from short periodic orbits.

    PubMed

    Novaes, M; Pedrosa, J M; Wisniacki, D; Carlo, G G; Keating, J P

    2009-09-01

    We present an approach to calculating the quantum resonances and resonance wave functions of chaotic scattering systems, based on the construction of states localized on classical periodic orbits and adapted to the dynamics. Typically only a few such states are necessary for constructing a resonance. Using only short orbits (with periods up to the Ehrenfest time), we obtain approximations to the longest-living states, avoiding computation of the background of short living states. This makes our approach considerably more efficient than previous ones. The number of long-lived states produced within our formulation is in agreement with the fractal Weyl law conjectured recently in this setting. We confirm the accuracy of the approximations using the open quantum baker map as an example.

  16. A possible giant planet orbiting the cataclysmic variable LX Ser

    NASA Astrophysics Data System (ADS)

    Li, Kai; Hu, Shaoming; Zhou, Jilin; Wu, Donghong; Guo, Difu; Jiang, Yunguo; Gao, Dongyang; Chen, Xu; Wang, Xianyu

    2017-04-01

    LX Ser is a deeply eclipsing cataclysmic variable with an orbital period of 0.1584325 d. 62 new eclipse times were determined by our observations and the AAVSO International Data base. Combining all available eclipse times, we analyzed the O - C behavior of LX Ser. We found that the O - C diagram of LX Ser shows a sinusoidal oscillation with a period of 22.8 yr and an amplitude of 0.00035 d. Two mechanisms (i.e., the Applegate mechanism and the light-travel time effect) are applied to explain the cyclic modulation. We found that it is difficult to apply the Applegate mechanism to explain the cyclic oscillation in the orbital period. Therefore, the cyclic period change is most likely to be caused by the light-travel time effect due to the presence of a third body. The mass of the tertiary component was determined to be M3 ∼ 7.5 MJup. We supposed that the tertiary companion is plausibly a giant planet. The stability of the giant planet was checked, and we found that the multiple system is stable.

  17. A possible giant planet orbiting the cataclysmic variable LX Ser

    NASA Astrophysics Data System (ADS)

    Li, Kai; Hu, Shaoming; Zhou, Jilin; Wu, Donghong; Guo, Difu; Jiang, Yunguo; Gao, Dongyang; Chen, Xu; Wang, Xianyu

    2017-02-01

    LX Ser is a deeply eclipsing cataclysmic variable with an orbital period of 0.1584325 d. 62 new eclipse times were determined by our observations and the AAVSO International Data base. Combining all available eclipse times, we analyzed the O - C behavior of LX Ser. We found that the O - C diagram of LX Ser shows a sinusoidal oscillation with a period of 22.8 yr and an amplitude of 0.00035 d. Two mechanisms (i.e., the Applegate mechanism and the light-travel time effect) are applied to explain the cyclic modulation. We found that it is difficult to apply the Applegate mechanism to explain the cyclic oscillation in the orbital period. Therefore, the cyclic period change is most likely to be caused by the light-travel time effect due to the presence of a third body. The mass of the tertiary component was determined to be M3 ∼ 7.5 MJup. We supposed that the tertiary companion is plausibly a giant planet. The stability of the giant planet was checked, and we found that the multiple system is stable.

  18. Isoscalar giant resonance strength in {sup 28}Si

    SciTech Connect

    Youngblood, D. H.; Lui, Y.-W.; Clark, H. L.

    2007-08-15

    Data taken previously covering the giant resonance region from 9 MeV giant resonance peaks containing 74 {+-} 7% of the isoscalar E0 energy weighted sum rule (EWSR), 102 {+-} 11% of the E2 EWSR, and 84 {+-} 8% of the E3 EWSR were identified.

  19. Internal Pair Decay of Giant Resonances in Hot LEAD-200.

    NASA Astrophysics Data System (ADS)

    Adami, Susan

    Electron-positron pairs emitted during the de -excitation of the hot ^{200}Pb were detected with the Stony Brook pair detector, a phoswich array, in order to observe the internal pair decay of giant resonances (GR) built on excited states. These collective excitations are particularly well defined in heavy nuclei, and the full GR sum rule had been found in the ground state excitations of both the giant dipole resonance and the isoscalar monopole resonance. The excited compound nucleus was formed by bombarding a ^{181} Ta target with a 95 MeV pulsed ^ {19}F beam. While the gamma-decay from giant resonances of multipolarities L >=q 1 results in cross-sections 3-4 orders of magnitudes bigger than the internal pair decay, the decay of giant monopole resonances via a collective E0 transition can only be observed in the e^+ - e^ --decay channel. Another advantage of investigating electro-magnetic transitions via the pair decay channel is the fact that the correlation angle (and also the energy sharing) between the electron and the positron provides insight in the multipolarity of the observed transition. Especially the angular correlation distribution of an L = 0 transition is easily distinguished from the L >=q 1 cases. In the data analysis, the pair spectra were compared to calculations using the statistical model code CASCADE, which was modified to include the internal pair decay of giant resonances from the compound nucleus as well as from the fission fragments. In addition, gamma measurements from the same reaction at a comparable excitation energy (93 MeV) were available. The extracted pair spectra confirmed the CASCADE prediction that the giant dipole resonance dominates the pair decay from a hot, heavy nucleus. Superior statistics would be necessary in order to extract weaker modes like the monopole or quadrupole resonances and due to the lack in statistics this work can only offer a rough estimate for the width and position of the isoscalar giant monopole

  20. THE PROPOSED GIANT PLANET ORBITING VB 10 DOES NOT EXIST

    SciTech Connect

    Bean, Jacob L.; Seifahrt, Andreas; Reiners, Ansgar; Dreizler, Stefan; Hartman, Henrik; Nilsson, Hampus; Henry, Todd J.; Wiedemann, Guenter

    2010-03-01

    We present high-precision relative radial velocities of the very low mass star VB 10 that were obtained over a time span of 0.61 years as part of an ongoing search for planets around stars at the end of the main sequence. The radial velocities were measured from high-resolution near-infrared spectra obtained using the CRIRES instrument on the Very Large Telescope with an ammonia gas cell. The typical internal precision of the measurements is 10 m s{sup -1}. These data do not exhibit significant variability and are essentially constant at a level consistent with the measurement uncertainties. Therefore, we do not detect the radial velocity variations of VB 10 expected due to the presence of an orbiting giant planet similar to that recently proposed by Pravdo and Shaklan based on apparent astrometric perturbations. In addition, we do not confirm the {approx}1 km s{sup -1} radial velocity variability of the star tentatively detected by Zapatero Osorio and colleagues with lower precision measurements. Our measurements rule out planets with M {sub p} > 3 M {sub Jup} and the orbital period and inclination suggested by Pravdo and Shaklan at better than 5{sigma} confidence. We conclude that the planet detection claimed by Pravdo and Shaklan is spurious on the basis of this result. Although the outcome of this work is a non-detection, it illustrates the potential of using ammonia cell radial velocities to detect planets around very low mass stars.

  1. Mercury's resonant rotation from secular orbital elements

    NASA Astrophysics Data System (ADS)

    Stark, Alexander; Oberst, Jürgen; Hussmann, Hauke

    2015-11-01

    We used recently produced Solar System ephemerides, which incorporate 2 years of ranging observations to the MESSENGER spacecraft, to extract the secular orbital elements for Mercury and associated uncertainties. As Mercury is in a stable 3:2 spin-orbit resonance, these values constitute an important reference for the planet's measured rotational parameters, which in turn strongly bear on physical interpretation of Mercury's interior structure. In particular, we derive a mean orbital period of (87.96934962 ± 0.00000037) days and (assuming a perfect resonance) a spin rate of (6.138506839± 0.000000028)°/day. The difference between this rotation rate and the currently adopted rotation rate (Archinal et al. in Celest Mech Dyn Astron 109(2):101-135, 2011. doi:10.1007/s10569-010-9320-4), corresponds to a longitudinal displacement of approx. 67 m per year at the equator. Moreover, we present a basic approach for the calculation of the orientation of the instantaneous Laplace and Cassini planes of Mercury. The analysis allows us to assess the uncertainties in physical parameters of the planet, when derived from observations of Mercury's rotation.

  2. Extreme orbital evolution from hierarchical secular coupling of two giant planets

    SciTech Connect

    Teyssandier, Jean; Naoz, Smadar; Lizarraga, Ian; Rasio, Frederic A.

    2013-12-20

    Observations of exoplanets over the last two decades have revealed a new class of Jupiter-size planets with orbital periods of a few days, the so-called 'hot Jupiters'. Recent measurements using the Rossiter-McLaughlin effect have shown that many (∼50%) of these planets are misaligned; furthermore, some (∼15%) are even retrograde with respect to the stellar spin axis. Motivated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations consisting of a star-planet inner pair with another giant planet, or brown dwarf, in a much wider orbit. Recently, it was shown that in such a system, the inner planet's orbit can flip back and forth from prograde to retrograde and can also reach extremely high eccentricities. Here we map a significant part of the parameter space of dynamical outcomes for these systems. We derive strong constraints on the orbital configurations for the outer perturber (the tertiary) that could lead to the formation of hot Jupiters with misaligned or retrograde orbits. We focus only on the secular evolution, neglecting other dynamical effects such as mean-motion resonances, as well as all dissipative forces. For example, with an inner Jupiter-like planet initially on a nearly circular orbit at 5 AU, we show that a misaligned hot Jupiter is likely to be formed in the presence of a more massive planetary companion (>2 M{sub J} ) within ∼140 AU of the inner system, with mutual inclination >50° and eccentricity above ∼0.25. This is in striking contrast to the test particle approximation, where an almost perpendicular configuration can still cause large-eccentricity excitations, but flips of an inner Jupiter-like planet are much less likely to occur. The constraints we derive can be used to guide future observations and, in particular, searches for more distant companions in systems containing a hot Jupiter.

  3. Giant dipole resonance parameters with uncertainties from photonuclear cross sections

    NASA Astrophysics Data System (ADS)

    Plujko, V. A.; Capote, R.; Gorbachenko, O. M.

    2011-09-01

    Updated values and corresponding uncertainties of isovector giant dipole resonance (IVGDR or GDR) model parameters are presented that are obtained by the least-squares fitting of theoretical photoabsorption cross sections to experimental data. The theoretical photoabsorption cross section is taken as a sum of the components corresponding to excitation of the GDR and quasideuteron contribution to the experimental photoabsorption cross section. The present compilation covers experimental data as of January 2010.

  4. Isoscalar giant resonance strength in {sup 24}Mg

    SciTech Connect

    Youngblood, D. H.; Lui, Y.-W.; Chen, X. F.; Clark, H. L.

    2009-12-15

    The giant resonance region from 9 MeV

  5. Isobar giant resonance formation in self-conjugate nuclei

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Deutchman, P. A.

    1981-03-01

    The production of isobars with concomitant giant resonance excitations due to peripheral collisions of relativistic heavy ions is investigated. The interaction is described by a modified form of the central term in the one-pion-exchange potential (OPEP) where the projectile ordinary spin operator is replaced by a transition spin operator which describes the creation of an isobar from a nucleon. The scattering is analyzed using time-dependent harmonic perturbation theory to determine the reaction total cross sections. The results obtained, which are valid for reactions involving self-conjugate nuclei, are applied to the specific collison of 2.1 {GeV}/{nucleon}16O projectiles with 12C targets at rest. Cross sections are investigated using two different models for the nuclear spin states. In the first model, the many-body nuclear spin state is reduced, in the spirit of a particle-hole state, to an equivalent two-body state called a particle-core state. In the second model, the many-body spin states are described by unsymmetrized products of individual particle spins. Properties of the spin giant resonance and isobar giant resonance states are investigated. Finally, isobar decay and isobar/pion absorption effects are discussed.

  6. Integral characteristic parameters of the giant {ital M}1 resonance

    SciTech Connect

    Bastrukov, S.I.; Molodtsova, I.V.; Shilov, V.M.

    1995-08-01

    The dipole magnetization of a heavy spherical nucleus is studied with macroscopic standpoint. The semiclassical model under consideration focuses on the giant {ital M}1 resonance as a result of long wavelength oscillations of the collective magnetization current induced in the surface massive layer of finite depth. The macroscopic picture of the excited collective flow is found to be like that for the torsional elastic vibrations of the peripheral layer against the central spherical region inert with respect to external perturbation. The emphasis is placed on calculation of scaling behavior of integral characteristic parameters of magnetic dipole resonance.

  7. Bodily tides near spin-orbit resonances

    NASA Astrophysics Data System (ADS)

    Efroimsky, Michael

    2012-03-01

    Spin-orbit coupling can be described in two approaches. The first method, known as the "MacDonald torque", is often combined with a convenient assumption that the quality factor Q is frequency-independent. This makes the method inconsistent, because derivation of the expression for the MacDonald torque tacitly fixes the rheology of the mantle by making Q scale as the inverse tidal frequency. Spin-orbit coupling can be treated also in an approach called "the Darwin torque". While this theory is general enough to accommodate an arbitrary frequency-dependence of Q, this advantage has not yet been fully exploited in the literature, where Q is often assumed constant or is set to scale as inverse tidal frequency, the latter assertion making the Darwin torque equivalent to a corrected version of the MacDonald torque. However neither a constant nor an inverse-frequency Q reflect the properties of realistic mantles and crusts, because the actual frequency-dependence is more complex. Hence it is necessary to enrich the theory of spin-orbit interaction with the right frequency-dependence. We accomplish this programme for the Darwin-torque-based model near resonances. We derive the frequency-dependence of the tidal torque from the first principles of solid-state mechanics, i.e., from the expression for the mantle's compliance in the time domain. We also explain that the tidal torque includes not only the customary, secular part, but also an oscillating part. We demonstrate that the lmpq term of the Darwin-Kaula expansion for the tidal torque smoothly passes zero, when the secondary traverses the lmpq resonance (e.g., the principal tidal torque smoothly goes through nil as the secondary crosses the synchronous orbit). Thus, we prepare a foundation for modeling entrapment of a despinning primary into a resonance with its secondary. The roles of the primary and secondary may be played, e.g., by Mercury and the Sun, correspondingly, or by an icy moon and a Jovian planet. We also

  8. Orbitally-driven giant phonon anharmonicity in SnSe

    SciTech Connect

    Li, Chen W.; Hong, Jiawang; May, Andrew F.; Bansal, Dipanshu; Chi, Songxue; Hong, Tao; Ehlers, Georg; Delaire, Olivier A.

    2015-10-19

    We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. We show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.

  9. Orbitally-driven giant phonon anharmonicity in SnSe

    DOE PAGES

    Li, Chen W.; Hong, Jiawang; May, Andrew F.; ...

    2015-10-19

    We understand that elementary excitations and their couplings in condensed matter systems is critical to develop better energy-conversion devices. In thermoelectric materials, the heat-to-electricity conversion efficiency is directly improved by suppressing the propagation of phonon quasiparticles responsible for macroscopic thermal transport. The material with the current record for thermoelectric conversion efficiency, SnSe, achieves an ultra-low thermal conductivity, but the mechanism enabling this strong phonon scattering remains largely unknown. Using inelastic neutron scattering measurements and first-principles simulations, we mapped the four-dimensional phonon dispersion surfaces of SnSe, and revealed the origin of ionic-potential anharmonicity responsible for the unique properties of SnSe. Wemore » show that the giant phonon scattering arises from an unstable electronic structure, with orbital interactions leading to a ferroelectric-like lattice instability. Our results provide a microscopic picture connecting electronic structure and phonon anharmonicity in SnSe, and offers precious insights on how electron-phonon and phononphonon interactions may lead to the realization of ultra-low thermal conductivity.« less

  10. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning.

    PubMed

    Ćuk, Matija; Stewart, Sarah T

    2012-11-23

    A common origin for the Moon and Earth is required by their identical isotopic composition. However, simulations of the current giant impact hypothesis for Moon formation find that most lunar material originated from the impactor, which should have had a different isotopic signature. Previous Moon-formation studies assumed that the angular momentum after the impact was similar to that of the present day; however, Earth-mass planets are expected to have higher spin rates at the end of accretion. Here, we show that typical last giant impacts onto a fast-spinning proto-Earth can produce a Moon-forming disk derived primarily from Earth's mantle. Furthermore, we find that a faster-spinning early Earth-Moon system can lose angular momentum and reach the present state through an orbital resonance between the Sun and Moon.

  11. Structure and evolution of transiting giant planets: a Bayesian homogeneous determination of orbital and physical parameters

    NASA Astrophysics Data System (ADS)

    Bonomo, A. S.; Desidera, S.; Damasso, M.; Lanza, A. F.; Sozzetti, A.; Benatti, S.; Borsa, F.; Crespi, S.; GAPS Team

    2015-10-01

    We present a Bayesian homogeneous determination of orbital and physical parameters of a large sample of 211 giant transiting planets with masses between 0.1 and 24 M_{Jup} and precision on mass estimates better than 30%. We analyse new high-precision radial velocities for forty-five of them obtained with the HARPS-N@TNG spectrograph to improve and, in some cases, to revise the measure of their orbital eccentricity, and to search for long-period companions. From the updated orbital eccentricities we put constraints on the modified tidal quality factors of giant planets and their host stars. Our comprehensive study 1) allows for improved understanding of orbital evolution and migration scenarios for giant planets, and 2) provides the much needed benchmark statistics for thorough investigations of the diversity of giant planet densities and interior structures.

  12. Giant resonances in {sup 112}Sn and {sup 124}Sn: Isotopic dependence of monopole resonance energies

    SciTech Connect

    Lui, Y.-W.; Youngblood, D.H.; Tokimoto, Y.; Clark, H.L.; John, B.

    2004-07-01

    The giant resonance region from 10 MeVgiant monopole resonance energies was found to be consistent with relativistic and nonrelativistic calculations for interactions with K{sub NM}{approx}220-240 MeV.

  13. CBERS Satellites: Resonant Orbital Motions in LEO Region

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Sampaio, J. C.; da Silva Fernandes, S.; Wnuk, E.

    2013-05-01

    Abstract (2,250 Maximum Characters): The space between the Earth and the Moon has several artificial satellites and space debris in some resonance. Synchronous satellites in circular or elliptical orbits have been studied in literature, including the analysis of resonant orbits characterizing the dynamics of these satellites. In general, some resonant angles associated to the exact resonance are considered in the numerical integration, with the purpose to describe the resonance defined by the commensurability between the mean motion of the object and the Earth’s rotation angular velocity. However, the tesseral harmonics Jlm produce multiple resonances in the exact resonance and in the neighborhood of the exact resonance, and, some disturbances in the orbital motions of objects are not described. In this work, the TLE (Two-Line Elements) of the NORAD (North American Defense) are studied observing the resonant objects orbiting the Earth in LEO (Low Earth Orbit) region. Analyzing the cataloged objects, the CBERS satellites are studied observing resonance effects which compose your orbits. The time behavior of the orbital elements, resonant period and resonant angles are considered and possible regular and irregular motions are analyzed. About 60 space debris produced by the CBERS-1 satellite mission are studied analyzing the reentry of these objects in the Planet.

  14. Crystal ball studies of giant resonance gamma decay

    NASA Astrophysics Data System (ADS)

    Beene, J. R.; Bertrand, F. E.; Halbert, M. L.

    1985-01-01

    We have carried out coincidence experiments to investigate the photon and neutron emission from the giant resonance region in 208Pb and 90Zr using the ORNL Spin Spectrometer, a 72-segment NaI detector system. States in 208Pb and 90Zr were excited by inelastic scattering of 380-MeV 17O. We have determined the total gamma-decay probability, the ground-state gamma branching ratio, and the branching ratios to a number of low-lying stats as a function of excitation energy in 208Pb to ˜15 MeV. Especially interesting observations include the absence of a significant branch from the giant quadrupole resonance to the 3- state at 2.6 MeV, a strong branch from this resonance to a 3- state at 4.9 MeV, and the dominance of decays to various 1- states at 5-7 MeV from the region around 14 MeV of excitation (E0 resonances). Comparable but less complete data were also obtained on 90Zr.

  15. Fourteen years of resonance of Vanguard orbits

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.

    1975-01-01

    Tracking of Vanguard 3 and the Vanguard 2 rocket with Baker-Nunn cameras and the U.S. Navy's Space Surveillance (radio interferometer) system over a 14 year period revealed resonant fluctuations of up to 0.035 deg in inclination (peak to peak). Six geopotential terms (lumped coefficients) of 11th order and three of 22nd order were measured using orbit inclinations derived from this tracking record. The terms of 11th order are significantly smaller than Kaula's rule. (The lumped coefficients are sensitive to geopotential effects as high as 37th degree.) These observed terms are compatible with a recent 27-satellite geopotential solution whose formal coefficient errors are increased by a factor of 3.3.

  16. Long-lived Chaotic Orbital Evolution of Exoplanets in Mean Motion Resonances with Mutual Inclinations

    NASA Astrophysics Data System (ADS)

    Barnes, Rory; Deitrick, Russell; Greenberg, Richard; Quinn, Thomas R.; Raymond, Sean N.

    2015-01-01

    Mean motion resonances, in which two orbital frequencies are close to an integer multiple of each other, are common throughout the Solar System and exoplanetary systems. We present N-body simulations of resonant planets with inclined orbits and show that orbital eccentricities and inclinations can evolve chaotically for at least 10 Gyr. A wide range of behavior is possible, ranging from fast, low amplitude variations to a complete sampling of all parameter space, i.e. eccentricities reach 0.999 and inclinations 179.9 degrees. While the orbital elements evolve chaotically, at least one resonant argument librates, the traditional metric for identifying resonant behavior. This chaotic evolution is possible in the 2:1, 3:1 and 3:2 resonances, and for a range of planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several Gyr, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar type stars. We also re-examine simulations of planet-planet scattering and find that they produce planets in inclined resonances that evolve chaotically in about 0.5% of cases. Our results suggest that 1) approximate methods for identifying unstable orbital architectures may have limited applicability, 2) some short-period exoplanets may be formed during tidal circularization when the eccentricity is large, 3) those exoplanets' orbital planes may be misaligned with the host star spin axis, 4) on average, systems with resonances may be systematically younger than those without, 5) the distribution of period ratios of adjacent planets detected via transit may be skewed, and 6) potentially habitable planets may have dramatically different climatic evolution than the Earth. We show that the known systems HD 73526, HD 45364 and HD 60532 system may be in chaotically-evolving resonances. The GAIA spacecraft is capable of discovering giant planets in these types of planetary systems.

  17. Enhancement of Giant Magento-Impedance Effect Using LC Resonance

    NASA Astrophysics Data System (ADS)

    Wu, Z. M.; Zhao, Z. J.; Liu, L. P.; Lin, H.; Cheng, J. K.; Yang, J. X.; Yang, X. L.

    In this study, resonance enhancement of giant magneto-impedance (GMI) effect in Fe-based Fe73.5Cu1Nb3Si13.5B9 glass-coated microwires was investigated. A new method was adopted by sputtering a copper layer in the outside of the Fe-based glass-coated wire. A capacitance forms between the ferromagnetic core and outer copper layer, where the glass insulator works as a dielectric layer. Therefore, the composite wire forms an LC resonance circuit (which consists of an inductor, represented by the letter L, and a capacitor, presented by the letter C) itself, resulting in an increase of GMI ratio from 250% to 330%. Meanwhile, the influence of resonance frequency on the GMI effect was discussed.

  18. A giant planet orbiting the 'extreme horizontal branch' star V 391 Pegasi.

    PubMed

    Silvotti, R; Schuh, S; Janulis, R; Solheim, J-E; Bernabei, S; Østensen, R; Oswalt, T D; Bruni, I; Gualandi, R; Bonanno, A; Vauclair, G; Reed, M; Chen, C-W; Leibowitz, E; Paparo, M; Baran, A; Charpinet, S; Dolez, N; Kawaler, S; Kurtz, D; Moskalik, P; Riddle, R; Zola, S

    2007-09-13

    After the initial discoveries fifteen years ago, over 200 extrasolar planets have now been detected. Most of them orbit main-sequence stars similar to our Sun, although a few planets orbiting red giant stars have been recently found. When the hydrogen in their cores runs out, main-sequence stars undergo an expansion into red-giant stars. This expansion can modify the orbits of planets and can easily reach and engulf the inner planets. The same will happen to the planets of our Solar System in about five billion years and the fate of the Earth is matter of debate. Here we report the discovery of a planetary-mass body (Msini = 3.2M(Jupiter)) orbiting the star V 391 Pegasi at a distance of about 1.7 astronomical units (au), with a period of 3.2 years. This star is on the extreme horizontal branch of the Hertzsprung-Russell diagram, burning helium in its core and pulsating. The maximum radius of the red-giant precursor of V 391 Pegasi may have reached 0.7 au, while the orbital distance of the planet during the stellar main-sequence phase is estimated to be about 1 au. This detection of a planet orbiting a post-red-giant star demonstrates that planets with orbital distances of less than 2 au can survive the red-giant expansion of their parent stars.

  19. Orbital Resonances in the Solar Nebula: Strengths and Weaknesses

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1993-01-01

    A planetesimal moving in the Solar Nebula experiences an aero- dynamic drag which causes its orbit to circularize and shrink. However, resonant perturbations from a protoplanet interior to the planetesimal's orbit ran counteract both the orbital decay and the damping of the eccentricity: the planetesimal can be captured into an orbital resonance and its eccentricity pumped up to a modestly high equilibrium value. Thus, orbital resonances constitute (partial) barriers to the delivery of planetesimals into the feeding zone of the protoplanet. We have established the characteristics of the phenomenon of resonance capture by gas drag in the circular restricted three-body approximation. We have determined the strengths of the equilibrium resonant orbits with respect to impulsive velocity perturbations. We conclude that planetesimals captured in orbital resonances are quite vulnerable to being dislocated from these orbits by mutual planetesimal interactions, but that the resonances are effective in slowing down the rate of orbital decay of planetesimals. Only very small bodies, less or approx. equal to 100 m, are able to reach a approx. 1 mass of the earth protoplanet without being slowed down by resonances.

  20. The Pan-Pacific Planet Search III: five companions orbiting giant stars

    NASA Astrophysics Data System (ADS)

    Wittenmyer, R. A.; Butler, R. P.; Wang, L.; Bergmann, C.; Salter, G. S.; Tinney, C. G.; Johnson, J. A.

    2016-01-01

    We report a new giant planet orbiting the K giant HD 155233, as well as four stellar-mass companions from the Pan-Pacific Planet Search, a Southern hemisphere radial velocity survey for planets orbiting nearby giants and sub-giants. We also present updated velocities and a refined orbit for HD 47205b (7 CMa b), the first planet discovered by this survey. HD 155233b has a period of 885 ± 63 d, eccentricity e = 0.03 ± 0.20, and m sin i = 2.0 ± 0.5 MJup. The stellar-mass companions range in m sin i from 0.066 to 0.33 M⊙. Whilst HD 104358B falls slightly below the traditional 0.08 M⊙ hydrogen-burning mass limit, and is hence a brown-dwarf candidate, we estimate only a 50 per cent a priori probability of a truly sub-stellar mass.

  1. Extrasolar Giant Planet in Earth-like Orbit

    NASA Astrophysics Data System (ADS)

    1999-07-01

    companion . iota Hor b has an orbital period of 320 days. From this period, the known mass of the central star (1.03 solar masses) and the amplitude of the velocity changes, a mass of at least 2.26 times that of planet Jupiter is deduced for the planet. It revolves around the host star in a somewhat elongated orbit (the eccentricity is 0.16). If it were located in our own solar system, this orbit would stretch from just outside the orbit of Venus (at 117 million km or 0.78 Astronomical Units from the Sun) to just outside the orbit of the Earth (the point farthest from the Sun, at 162 million km or 1.08 Astronomical Units) The new giant planet is thus moving in an orbit not unlike that of the Earth. In fact, of all the planets discovered so far, the orbit of iota Hor b is the most Earth-like. Also, with a spectral type of G0 V , its host star is quite similar to the Sun (G2 V). iota Hor b is, however, at least 720 times more massive than the Earth and it is probably more similar to planet Jupiter in our own solar system. While the radial velocity technique described above only determines a minimum value for the planet's mass, an analysis of the velocity with which the star turns around its own axis suggests that the true mass of iota Hor b is unlikely to be much higher. A difficult case Natural phenomena with periods near one solar year always present a particular challenge to astronomers. This is one of the reasons why it has been necessary to observe the iota Hor system for such a long time to be absolutely sure about the present result. First, special care must be taken to verify that the radial velocity variations found in the data are not an artefact of the Earth's movement around the Sun. In any case, the effect of this movement on the measurements must be accurately accounted for; it reaches about ± 30 km/sec over one year, i.e. much larger than the effect of the new planet. In the present case of iota Hor , this was thoroughly tested and any residual influence of

  2. The Giant Dipole Resonance at Very High Temperatures

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Le Faou, J. H.; Blumenfeld, Y.; Piattelli, P.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Montironi, S.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1995-02-01

    Gamma-rays emitted from hot nuclei of mass around 115 and excitation energies above 300 MeV, formed in the 36Ar + 90Zr at 27 MeV/u, 36Ar + 94Zr at 32 MeV/u and 36Ar + 98Mo at 37 MeV/u, have been measured with the MEDEA multidetector in coincidence with evaporation residues. The γ-ray yield from the decay of the Giant Dipole Resonance is independent of excitation energy and of bombarding energy.

  3. Giant dipole resonance in 201Tl at low temperature

    NASA Astrophysics Data System (ADS)

    Dang, N. Dinh; Hung, N. Quang

    2012-10-01

    The thermal pairing gap obtained by embedding the exact solutions of the pairing problem into the canonical ensemble is employed to calculate the width and strength function of the giant dipole resonance (GDR) within the phonon damping model. The results of calculations describe reasonably well the data for the GDR width as well as the GDR linearized strength function, recently obtained for 201Tl in the temperature region between 0.8 and 1.2 MeV, for which other approaches that neglect the effect of nonvanishing thermal pairing fail to describe.

  4. Excitation-energy dependence of the giant dipole resonance width

    NASA Astrophysics Data System (ADS)

    Enders, G.; Berg, F. D.; Hagel, K.; Kühn, W.; Metag, V.; Novotny, R.; Pfeiffer, M.; Schwalb, O.; Charity, R. J.; Gobbi, A.; Freifelder, R.; Henning, W.; Hildenbrand, K. D.; Holzmann, R.; Mayer, R. S.; Simon, R. S.; Wessels, J. P.; Casini, G.; Olmi, A.; Stefanini, A. A.

    1992-07-01

    High-energy γ rays have been measured in coincidence with heavy fragents in deeply inelastic reactions of 136Xe+48Ti at 18.5 MeV/nucleon. The giant dipole resonance (GDR) strength function is deduced from an analysis of the photon spectra within the statistical model. The GDR width Γ is studied as a function of the fragment excitation energy E*. A saturation at about Γ=10 MeV is observed for E*/A>=1.0 MeV/nucleon.

  5. Giant M1 resonance in /sup 140/Ce

    SciTech Connect

    Laszewski, R.M.; Rullhusen, P.; Hoblit, S.D.; LeBrun, S.F.

    1986-11-01

    Highly polarized tagged photons were used to measure the distribution of M1 transition strength in /sup 140/Ce at excitations between 6.7 and 8.7 MeV. A strength of summationgGAMMA/sub 0//sup 2/(M1)/GAMMA = 11.2/sub -3.1/ /sup +4.5/ eV corresponding to a B(M1up-arrow) of about 7.5..mu../sub 0//sup 2/ was observed centered at an excitation of 7.95 MeV. This distribution of M1 strength can account for the giant magnetic dipole resonance predicted in /sup 140/Ce.

  6. Investigation of the isoscalar giant dipole resonance in Pb-208

    NASA Astrophysics Data System (ADS)

    Davis, Benny Fay

    1997-11-01

    An investigation of the Isoscalar Giant Dipole Resonance in 208Pb is described in the present dissertation. The 208Pb(/alpha,/alpha/sp/prime) reaction was employed using a high resolution spectrometer (K600) and a 200 MeV α beam at the Indiana University Cyclotron Facility in Bloomington, Indiana. The K600 spectrometer yielded measurements of particle identification (ΔE vs. E), energy/momentum, timing with the cyclotron frequency and slope of the particle track. This latter characteristic permitted us to perform ray-tracing back through the spectrometer to the Lead target and hence, learn the scattering angle associated with each event. The 2o acceptance of the spectrometer and software cuts allowed us to measure angular distributions around 0o. Based on the present study, we have identified a previously known but unresolved Isoscalar Giant Dipole Resonance (ISGDR). This ISGDR remained unresolved for years due to the fact that a competing resonance, namely the High Energy Octupole Resonance (HEOR), sat at roughly the same energy in all of the finite angle spectra taken previously. Our method solved the problem by utilizing the fact that the only differences in angular distributions of a dipole (L = 1) and an octupole (L = 3) resonance occur around a scattering angle of 0o. In the 0o to 2o angular range, the angular distribution of the HEOR is nearly flat. Therefore, the HEOR's contribution can be removed using a 'difference-of- spectra' technique where a 0o to 1o angular cut is subtracted from a 1o to 2o angular cut (normalized for solid angle differences) removing any effect in the spectra possessing a flat angular distribution, namely the HEOR and most of the experimental background. From these measurements, we have obtained the first conclusive evidence for the ISGDR and have extracted the value of KA, the incompressibility of nuclear matter.

  7. Giant Hidrocystoma of the Orbit Presenting with Inversion and Ptosis of the Upper Eyelid

    PubMed Central

    Palamar, Melis; Yaman, Banu; Akalın, Taner; Yağcı, Ayşe

    2017-01-01

    A case of giant hidrocystoma of the orbit in a 57-year-old female causing pain, epiphora and ptosis is reported. The cystic mass was totally excised as a whole. Histopathologic examination revealed eccrine hidrocystoma of the orbit. Hidrocystoma must be considered in the differential diagnosis of patients presenting with periocular masses causing pain and ptosis. PMID:28405487

  8. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene

    NASA Astrophysics Data System (ADS)

    Qin, Guangzhao; Zhang, Xiaoliang; Yue, Sheng-Ying; Qin, Zhenzhen; Wang, Huimin; Han, Yang; Hu, Ming

    2016-10-01

    Two-dimensional (2D) phosphorene, which possesses fascinating physical and chemical properties distinctively different from other 2D materials, calls for a fundamental understanding of thermal transport properties for its rapidly growing applications in nano- and optoelectronics and thermoelectrics. However, even the basic phonon property, for example, the exact value of the lattice thermal conductivity (κ ) of phosphorene reported in the literature, can differ unacceptably by one order of magnitude. More importantly, the fundamental physics underlying its unique properties such as strong phonon anharmonicity and unusual anisotropy remains largely unknown. In this paper, based on the analysis of electronic structure and lattice dynamics from first principles, we report that the giant phonon anharmonicity in phosphorene is associated with the soft transverse optical (TO) phonon modes and arises from the long-range interactions driven by the orbital governed resonant bonding. We also provide a microscopic picture connecting the anisotropic and low κ of phosphorene to the giant directional phonon anharmonicity and long-range interactions, which are further traced back to the asymmetric resonant orbital occupations of electrons and characteristics of the hinge-like structure. The unambiguously low κ of phosphorene obtained consistently by three independent ab initio methods confirms the phonon anharmonicity to a large extent and is expected to end the confusing huge deviations in previous studies. This work further pinpoints the necessity of including van der Waals interactions to accurately describe the interatomic interactions in phosphorene. We propose in 2D material that resonant bonding leads to low thermal conductivity, despite that it is originally found in three-dimensional (3D) thermoelectric and phase-change materials. Our study offers insights into phonon transport from the view of orbital states, which would be of great significance to the design of

  9. LONG-LIVED CHAOTIC ORBITAL EVOLUTION OF EXOPLANETS IN MEAN MOTION RESONANCES WITH MUTUAL INCLINATIONS

    SciTech Connect

    Barnes, Rory; Deitrick, Russell; Quinn, Thomas R.; Greenberg, Richard; Raymond, Sean N.

    2015-03-10

    We present N-body simulations of resonant planets with inclined orbits that show chaotically evolving eccentricities and inclinations that can persist for at least 10 Gyr. A wide range of behavior is possible, from fast, low amplitude variations to systems in which eccentricities reach 0.9999 and inclinations 179.°9. While the orbital elements evolve chaotically, at least one resonant argument always librates. We show that the HD 73526, HD 45364, and HD 60532 systems may be in chaotically evolving resonances. Chaotic evolution is apparent in the 2:1, 3:1, and 3:2 resonances, and for planetary masses from lunar- to Jupiter-mass. In some cases, orbital disruption occurs after several gigayears, implying the mechanism is not rigorously stable, just long-lived relative to the main sequence lifetimes of solar-type stars. Planet-planet scattering appears to yield planets in inclined resonances that evolve chaotically in about 0.5% of cases. These results suggest that (1) approximate methods for identifying unstable orbital architectures may have limited applicability, (2) the observed close-in exoplanets may be produced during epochs of high eccentricit induced by inclined resonances, (3) those exoplanets' orbital planes may be misaligned with the host star's spin axis, (4) systems with resonances may be systematically younger than those without, (5) the distribution of period ratios of adjacent planets detected via transit may be skewed due to inclined resonances, and (6) potentially habitable planets may have dramatically different climatic evolution than Earth. The Gaia spacecraft is capable of discovering giant planets in these types of orbits.

  10. TERRESTRIAL PLANET FORMATION DURING THE MIGRATION AND RESONANCE CROSSINGS OF THE GIANT PLANETS

    SciTech Connect

    Lykawka, Patryk Sofia; Ito, Takashi

    2013-08-10

    The newly formed giant planets may have migrated and crossed a number of mutual mean motion resonances (MMRs) when smaller objects (embryos) were accreting to form the terrestrial planets in the planetesimal disk. We investigated the effects of the planetesimal-driven migration of Jupiter and Saturn, and the influence of their mutual 1:2 MMR crossing on terrestrial planet formation for the first time, by performing N-body simulations. These simulations considered distinct timescales of MMR crossing and planet migration. In total, 68 high-resolution simulation runs using 2000 disk planetesimals were performed, which was a significant improvement on previously published results. Even when the effects of the 1:2 MMR crossing and planet migration were included in the system, Venus and Earth analogs (considering both orbits and masses) successfully formed in several runs. In addition, we found that the orbits of planetesimals beyond a {approx} 1.5-2 AU were dynamically depleted by the strengthened sweeping secular resonances associated with Jupiter's and Saturn's more eccentric orbits (relative to the present day) during planet migration. However, this depletion did not prevent the formation of massive Mars analogs (planets with more than 1.5 times Mars's mass). Although late MMR crossings (at t > 30 Myr) could remove such planets, Mars-like small mass planets survived on overly excited orbits (high e and/or i), or were completely lost in these systems. We conclude that the orbital migration and crossing of the mutual 1:2 MMR of Jupiter and Saturn are unlikely to provide suitable orbital conditions for the formation of solar system terrestrial planets. This suggests that to explain Mars's small mass and the absence of other planets between Mars and Jupiter, the outer asteroid belt must have suffered a severe depletion due to interactions with Jupiter/Saturn, or by an alternative mechanism (e.g., rogue super-Earths)

  11. The resonant orbit of the Lost City meteorite

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1975-01-01

    An integration of the long-period perturbations of Jupiter and Saturn on the orbit of the Lost City meteorite shows that the average nodal rate of the meteorite was nearly the same as the nodal rates of Jupiter and Saturn. This near equality of rates led to a large resonant variation in the inclination of the meteorite's orbit with a period on the order of 1 million years. The resonance makes the orbital evolution too sensitive to the deficiencies of the perturbation calculations and to the values of the elements at impact to allow definitive calculations. It is shown that an orbit similar to the meteorite's orbit can spend approximately 88% of its time with an eccentricity too small to allow for intersections with the earth's orbit. The ordinary cosmic ray exposure age of the Lost City meteorite does not suggest that its collisional lifetime was unusual, but the role of resonances in determining the lifetime of typical meteorites is unknown.

  12. Tidal interactions of a Maclaurin spheroid - II. Resonant excitation of modes by a close, misaligned orbit

    NASA Astrophysics Data System (ADS)

    Braviner, Harry J.; Ogilvie, Gordon I.

    2015-02-01

    We model a tidally forced star or giant planet as a Maclaurin spheroid, decomposing the motion into the normal modes found by Bryan. We first describe the general prescription for this decomposition and the computation of the tidal power. Although this formalism is very general, forcing due to a companion on a misaligned, circular orbit is used to illustrate the theory. The tidal power is plotted for a variety of orbital radii, misalignment angles, and spheroid rotation rates. Our calculations are carried out including all modes of degree l ≤ 4, and the same degree of gravitational forcing. Remarkably, we find that for close orbits (a/R* ≈ 3) and rotational deformations that are typical of giant planets (e ≈ 0.4) the l = 4 component of the gravitational potential may significantly enhance the dissipation through resonance with surface gravity modes. There are also a large number of resonances with inertial modes, with the tidal power being locally enhanced by up to three orders of magnitude. For very close orbits (a/R* ≈ 3), the contribution to the power from the l = 4 modes is roughly the same magnitude as that due to the l = 3 modes.

  13. GIANT PLANETS ORBITING METAL-RICH STARS SHOW SIGNATURES OF PLANET-PLANET INTERACTIONS

    SciTech Connect

    Dawson, Rebekah I.; Murray-Clay, Ruth A.

    2013-04-20

    Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms deliver close-in giant planets: gentle disk migration, operating in environments with a range of metallicities, and violent planet-planet gravitational interactions, primarily triggered in metal-rich systems in which multiple giant planets can form. First, we show with 99.1% confidence that giant planets with semimajor axes between 0.1 and 1 AU orbiting metal-poor stars ([Fe/H] < 0) are confined to lower eccentricities than those orbiting metal-rich stars. Second, we show with 93.3% confidence that eccentric proto-hot Jupiters undergoing tidal circularization primarily orbit metal-rich stars. Finally, we show that only metal-rich stars host a pile-up of hot Jupiters, helping account for the lack of such a pile-up in the overall Kepler sample. Migration caused by stellar perturbers (e.g., stellar Kozai) is unlikely to account for the trends. These trends further motivate follow-up theoretical work addressing which hot Jupiter migration theories can also produce the observed population of eccentric giant planets between 0.1 and 1 AU.

  14. Resonant excitation of black holes by massive bosonic fields and giant ringings

    NASA Astrophysics Data System (ADS)

    Décanini, Yves; Folacci, Antoine; Ould El Hadj, Mohamed

    2014-04-01

    We consider the massive scalar field, the Proca field, and the Fierz-Pauli field in the Schwarzschild spacetime and we focus more particularly on their long-lived quasinormal modes. We show numerically that the associated excitation factors have a strong resonant behavior and we confirm this result analytically from semiclassical considerations based on the properties of the unstable circular geodesics on which a massive particle can orbit the black hole. The conspiracy of (i) the long-lived behavior of the quasinormal modes and (ii) the resonant behavior of their excitation factors induces intrinsic giant ringings, i.e., ringings of a huge amplitude. Such ringings, which are moreover slowly decaying, are directly constructed from the retarded Green function. If we describe the source of the black hole perturbation by an initial value problem with Gaussian initial data, i.e., if we consider the excitation of the black hole from an extrinsic point of view, we can show that these extraordinary ringings are still present. This suggests that physically realistic sources of perturbations should generate giant and slowly decaying ringings and that their existence could be used to constrain ultralight bosonic field theory interacting with black holes.

  15. Phase-space exploration in nuclear giant resonance decay

    SciTech Connect

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J. Institute of Nuclear Physics, PL-31-342 Krakow Department of Physics, University of Illinois at Urbana, Illinois 61801 College of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020 )

    1995-02-13

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in [sup 40]Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.

  16. Analytical model of a giant magnetostrictive resonance transducer

    NASA Astrophysics Data System (ADS)

    Sheykholeslami, M.; Hojjat, Y.; Ansari, S.; Cinquemani, S.; Ghodsi, M.

    2016-04-01

    Resonance transducers have been widely developed and studied, as they can be profitably used in many application such as liquid atomizing and sonar technology. The active element of these devices can be a giant magnetostrictive material (GMM) that is known to have significant energy density and good performance at high frequencies. The paper introduces an analytical model of GMM transducers to describe their dynamics in different working conditions and to predict any change in their performance. The knowledge of the transducer behavior, especially in operating conditions different from the ideal ones, is helpful in the design and fabrication of highly efficient devices. This transducer is design to properly work in its second mode of vibration and its working frequency is around 8000 Hz. Most interesting parameters of the device, such as quality factor, bandwidth and output strain are obtained from theoretical analysis.

  17. Giant resonances in {sup 46,48}Ti

    SciTech Connect

    Tokimoto, Y.; Lui, Y.-W.; Clark, H. L.; John, B.; Chen, X.; Youngblood, D. H.

    2006-10-15

    The giant resonance region from 9 MeV

  18. Orbital resonance in a dissipative medium. [planetary formation modeling

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1978-01-01

    Orbital characteristics of solar system bodies are reviewed with reference to their degree of circularity or eccentricity. Attention is given to orbital perturbations in the vicinity of Jupiter, Saturn, and the Asteroid Belt. The trapping of orbital periods is explained on the basis of relative velocity and gravitational interaction between particles. Enhancement of orbital eccentricity through resonance with other bodies is dampened by the drag-effect of small particles in the orbital path. This mechanism is seen operating in interactions between Titan and Hyperion, and between individual asteroids in the vicinity of Jupiter; with implications for the accretion dynamics of a proto-planetary nebula.

  19. Formation of Wide-orbit Gas Giants Near the Stability Limit in Multi-stellar Systems

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Ida, S.

    2017-09-01

    We have investigated the formation of a circumstellar wide-orbit gas giant planet in a multiple stellar system. We consider a model of orbital circularization for the core of a giant planet after it is scattered from an inner disk region by a more massive planet, which was proposed by Kikuchi et al. We extend their model for single star systems to binary (multiple) star systems, by taking into account tidal truncation of the protoplanetary gas disk by a binary companion. As an example, we consider a wide-orbit gas giant in a hierarchical triple system, HD131399Ab. The best-fit orbit of the planet is that with semimajor axis ˜80 au and eccentricity ˜0.35. As the binary separation is ˜350 au, it is very close to the stability limit, which is puzzling. With the original core location ˜20-30 au, the core (planet) mass ˜50 M E and the disk truncation radius ˜150 au, our model reproduces the best-fit orbit of HD131399Ab. We find that the orbit after the circularization is usually close to the stability limit against the perturbations from the binary companion, because the scattered core accretes gas from the truncated disk. Our conclusion can also be applied to wider or more compact binary systems if the separation is not too large and another planet with ≳20-30 Earth masses that scattered the core existed in inner region of the system.

  20. [Giant cavernous hemangioma of the orbit (case report)].

    PubMed

    Grusha, Ia O; Ismailova, D S; Eksarenko, O V; Fedorov, A A; Kharlap, S I

    2014-01-01

    The following case demonstrates a successful en bloc removal of a massive cavernous hemangioma of the orbit via vertical transpalpebral approach with postoperative improvement of optic nerve condition and optimal cosmetic result.

  1. Managing resonant-trapped orbits in our Galaxy

    NASA Astrophysics Data System (ADS)

    Binney, James

    2016-11-01

    Galaxy modelling is greatly simplified by assuming the existence of a global system of angle-action coordinates. Unfortunately, global angle-action coordinates do not exist because some orbits become trapped by resonances, especially where the radial and vertical frequencies coincide. We show that in a realistic Galactic potential such trapping occurs only on thick-disc and halo orbits (speed relative to the guiding centre ≳ 80 km s- 1). We explain how the TORUS MAPPER code (TM) behaves in regions of phase space in which orbits are resonantly trapped, and we extend TM so that trapped orbits can be manipulated as easily as untrapped ones. The impact that the resonance has on the structure of velocity space depends on the weights assigned to trapped orbits. The impact is everywhere small if each trapped orbit is assigned the phase space density equal to the time average along the orbit of the DF for untrapped orbits. The impact could be significant with a different assignment of weights to trapped orbits.

  2. The formation of giant planets in wide orbits by photoevaporation-synchronized migration

    NASA Astrophysics Data System (ADS)

    Guilera, O. M.; Miller Bertolami, M. M.; Ronco, M. P.

    2017-10-01

    The discovery of giant planets in wide orbits represents a major challenge for planet formation theory. In the standard core accretion paradigm, planets are expected to form at radial distances ≲20 au in order to form massive cores (with masses ≳10 M⊕) able to trigger the gaseous runaway growth before the dissipation of the disc. This has encouraged authors to find modifications of the standard scenario as well as alternative theories like the formation of planets by gravitational instabilities in the disc to explain the existence of giant planets in wide orbits. However, there is not yet consensus on how these systems are formed. In this Letter, we present a new natural mechanism for the formation of giant planets in wide orbits within the core accretion paradigm. If photoevaporation is considered, after a few Myr of viscous evolution a gap in the gaseous disc is opened. We found that, under particular circumstances planet migration becomes synchronized with the evolution of the gap, which results in an efficient outward planet migration. This mechanism is found to allow the formation of giant planets with masses Mp ≲ 1MJup in wide stable orbits as large as ˜130 au from the central star.

  3. Secular resonances between bodies on close orbits II: prograde and retrograde orbits for irregular satellites

    NASA Astrophysics Data System (ADS)

    Li, Daohai; Christou, Apostolos A.

    2017-09-01

    In extending the analysis of the four secular resonances between close orbits in Li and Christou (Celest Mech Dyn Astron 125:133-160, 2016) (Paper I), we generalise the semianalytical model so that it applies to both prograde and retrograde orbits with a one-to-one map between the resonances in the two regimes. We propose the general form of the critical angle to be a linear combination of apsidal and nodal differences between the two orbits b_1 Δ π + b_2 Δ Ω, forming a collection of secular resonances in which the ones studied in Paper I are among the strongest. Test of the model in the orbital vicinity of massive satellites with physical and orbital parameters similar to those of the irregular satellites Himalia at Jupiter and Phoebe at Saturn shows that {>}20 and {>}40% of phase space is affected by these resonances, respectively. The survivability of the resonances is confirmed using numerical integration of the full Newtonian equations of motion. We observe that the lowest order resonances with b_1+|b_2|≤ 3 persist, while even higher-order resonances, up to b_1+|b_2|≥ 7, survive. Depending on the mass, between 10 and 60% of the integrated test particles are captured in these secular resonances, in agreement with the phase space analysis in the semianalytical model.

  4. Connecting orbits for nonlinear differential equations at resonance

    NASA Astrophysics Data System (ADS)

    Kokocki, Piotr

    We study the existence of orbits connecting stationary points for the first order differential equations being at resonance at infinity, where the right hand side is the perturbations of a sectorial operator. Our aim is to prove an index formula expressing the Conley index of associated semiflow with respect to appropriately large ball, in terms of special geometrical assumptions imposed on the nonlinearity. We also prove that the geometrical assumptions are generalization of the well-known in literature Landesman-Lazer and strong resonance conditions. Obtained index formula will be used to derive the criteria determining the existence of orbits connecting stationary points for the heat equation being at resonance at infinity.

  5. Astrophysics of resonant orbits in the Kerr metric

    NASA Astrophysics Data System (ADS)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-04-01

    This paper gives a complete characterization of the location of resonant orbits in a Kerr spacetime for all possible black hole spins and orbital parameter values. A resonant orbit in this work is defined as a geodesic for which the longitudinal and radial orbital frequencies are commensurate. Our analysis is based on expressing the resonance condition in its most symmetric form using Carlson's elliptic integrals, which enable us to provide exact results together with a number of concise formulas characterizing the explicit dependence on the system parameters. The locations of resonant orbits identify regions where intriguing observable phenomena could occur in astrophysical situations when various sources of perturbation act on the binary system. Resonant effects may have observable implications for the inspirals of compact objects into a supermassive black hole. During a generic inspiral the slowly evolving orbital frequencies will pass through a series of low-order resonances where the ratio of orbital frequencies is equal to the ratio of two small integers. At these locations rapid changes in the orbital parameters could produce a measurable phase shift in the emitted gravitational and electromagnetic radiation. Resonant orbits may also capture gas or larger objects leading to further observable characteristic electromagnetic emission. According to the Kolmogorov-Arnold-Moser theorem, low-order resonant orbits demarcate the regions where the onset of geodesic chaos could occur when the Kerr Hamiltonian is perturbed. Perturbations are induced for example if the spacetime of the central object is non-Kerr, if gravity is modified, if the orbiting particle has large multipole moments, or if additional masses are nearby. We find that the 1 /2 and 2 /3 resonances occur at approximately 4 and 5.4 Schwarzschild radii (Rs) from the black hole's event horizon. For compact object inspirals into supermassive black holes (˜106M⊙ ) this region lies within the sensitivity

  6. Orbital resonances in the solar nebula - Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Davis, D. R.

    1985-01-01

    The influence of gas drag and gravitational perturbations by a planetary embryo on the orbit of a planetesimal in the solar nebula was examined. Non-Keplerian rotation of the gas causes secular decay of the orbit. If the planetesimal's orbit is exterior to the perturber's, resonant perturbations oppose this drag and can cause it to be trapped in a stable orbit at a commensurability of order j/(j + 1), where j is an integer. Numerical and analytical demonstrations show that resonant trapping occurs for wide ranges of perturbing mass, planetesimal size, and j. Induced eccentricities are large, causing overlap of orbits for bodies in different resonances with j greater than 2. Collisions between planetesimals in different resonances, or between resonant and nonresonant bodies, result in their disruption. Fragments smaller than a critical size can pass through resonances under the influence of drag and be accreted by the embryo. This effect speeds accretion and tends to prevent dynamical isolation of planetary embryos, making gas-rich scenarios for planetary formation more plausible.

  7. Pluto and Charon: A Case of Precession-Orbit Resonance?

    NASA Technical Reports Server (NTRS)

    Rubincam, David Parry; Smith, David E. (Technical Monitor)

    2000-01-01

    Pluto may be the only known case of precession-orbit resonance in the solar system. The Pluto-Charon system orbits the Sun with a period of 1 Plutonian year, which is 250.8 Earth years. The observed parameters of the system are such that Charon may cause Pluto to precess with a period near 250.8 Earth years. This gives rise to two possible resonances, heretofore unrecognized. The first is due to Pluto's orbit being highly eccentric, giving solar torques on Charon with a period of 1 Plutonian year. Charon in turn drives Pluto near its precession period. Volatiles, which are expected to shuttle across Pluto's surface between equator and pole as Pluto's obliquity oscillates, might change the planet's dynamical flattening enough so that Pluto crosses the nearby resonance, forcing the planet's equatorial plane to depart from Charon's orbital plane. The mutual tilt can reach as much as 2 deg after integrating over 5.6 x 10(exp 6) years, depending upon how close Pluto is to the resonance and the supply of volatiles. The second resonance is due to the Sun's traveling above and below Charon's orbital plane; it has a period half that of the eccentricity resonance. Reaching this half-Plutonian year resonance requires a much larger but still theoretically possible amount of volatiles. In this case the departure of Charon from an equatorial orbit is about 1 deg after integrating for 5.6 x 10(exp 6) years. The calculations ignore libration and tidal friction. It is not presently known how large the mutual tilt can grow over the age of the solar system, but if it remains only a few degrees, then observing such small angles from a Pluto flyby mission would be difficult. It is not clear why the parameters of the Pluto-Charon system are so close to the eccentricity resonance.

  8. Orbital order of spinless fermions near an optical Feshbach resonance

    SciTech Connect

    Hauke, Philipp; Zhao, Erhai; Goyal, Krittika; Deutsch, Ivan H.; Liu, W. Vincent; Lewenstein, Maciej

    2011-11-15

    We study the quantum phases of a three-color Hubbard model that arises in the dynamics of the p-band orbitals of spinless fermions in an optical lattice. Strong, color-dependent interactions are induced by an optical Feshbach resonance. Starting from the microscopic scattering properties of ultracold atoms, we derive the orbital exchange constants at 1/3 filling on the cubic optical lattice. Using this, we compute the phase diagram in a Gutzwiller ansatz. We find phases with ''axial orbital order'' in which p{sub z} and p{sub x}+ip{sub y} (or p{sub x}-ip{sub y}) orbitals alternate.

  9. Orbital resonances and planetary formation sites

    NASA Technical Reports Server (NTRS)

    Torbett, M.; Smoluchowski, R.; Greenberg, R.

    1982-01-01

    A cascaded resonance structure where planetesimal growth was accelerated at 2:1 interior and 1:2 exterior resonances, with an early-formed Jupiter producing runaway growth of planetary embryos, is hypothesized in a solar system formation model. The planetary embryos produce their own resonances, and these in turn lead to additional embryos in a process that successively propagates inwardly and outwardly to generate a resonant configuration of embryos. The early presence of Jupiter would in this way have imposed a harmonic structure on the accumulating planetesimal swarm. The positions of the planetary embryos can be moved into a degree of agreement with most of the present planetary positions which is comparable to that given by the Titius-Bode law, for the case of an accretion disk whose surface density obeys a power law of index -1.2.

  10. Jupiter: Giant of the solar system. [its solar orbits

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Jupiter, its relationship to the other planets in the solar system, its twelve natural satellites, solar orbit and the appearance of Jupiter in the sky, and the sightings and motions of Jupiter in 1973 are discussed. Educational study projects for students are also included.

  11. A SECOND GIANT PLANET IN 3:2 MEAN-MOTION RESONANCE IN THE HD 204313 SYSTEM

    SciTech Connect

    Robertson, Paul; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.; Brugamyer, Erik J.; Barnes, Stuart I.; Caldwell, Caroline; Horner, J.; Wittenmyer, Robert A.; Simon, Attila E.

    2012-07-20

    We present eight years of high-precision radial velocity (RV) data for HD 204313 from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is known to have a giant planet (Msin i = 3.5 M{sub J} ) on a {approx}1900 day orbit, and a Neptune-mass planet at 0.2 AU. Using our own data in combination with the published CORALIE RVs of Segransan et al., we discover an outer Jovian (Msin i = 1.6 M{sub J} ) planet with P {approx} 2800 days. Our orbital fit suggests that the planets are in a 3:2 mean motion resonance, which would potentially affect their stability. We perform a detailed stability analysis and verify that the planets must be in resonance.

  12. AN INTERPRETATION OF THE ORBITAL PERIOD DIFFERENCE BETWEEN HOT JUPITERS AND GIANT PLANETS ON LONG-PERIOD ORBITS

    SciTech Connect

    Jin Liping

    2010-09-10

    It is believed that a hot Jupiter (giant planet with a short period less than 10 days) forms in the outer region of a protoplanetary disk, then migrates inward to an orbit with a short period around 3 days, and stops there by a final stopping mechanism. The prominent problem is why hot Jupiters migrate inward to short-period orbits, while other extrasolar giant planets and Jovian planets in our solar system exist on long-period orbits. Here we show that this difference in orbital periods is caused by two populations of protoplanetary disks. One population experiences gravitational instability during some periods of their lifetime (GI disks), while the other does not (No-GI disks). In GI disks, planets can quickly migrate inward to short-period orbits to become hot Jupiters. In No-GI disks, the migration is so slow that planets can exist on long-period orbits. Protoplanetary disks are classified into the two populations because of the differences in properties of molecular cloud cores, from which disks from. We specifically compare our theory with observations. Our theory is supported by observations of extrasolar planets. We analyze the current status of our solar system and find that our solar nebula belongs to the population with a low migration rate. This is consistent with the observation that Jupiter and Saturn are indeed on long-period orbits. Our results further suggest that, in the future observations, a hot Jupiter cannot be found around a star with mass below a critical mass (0.14-0.28 M {sub sun}).

  13. The Orbital Nature of 81 Ellipsoidal Red Giant Binaries in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Nie, J. D.; Wood, P. R.; Nicholls, C. P.

    2017-02-01

    In this paper, we collect a sample of 81 ellipsoidal red giant binaries in the Large Magellanic Cloud (LMC), and we study their orbital natures individually and statistically. The sample contains 59 systems with circular orbits and 22 systems with eccentric orbits. We derive orbital solutions using the 2010 version of the Wilson–Devinney code. The sample is selection-bias corrected, and the orbital parameter distributions are compared to model predictions for the LMC and to observations in the solar vicinity. The masses of the red giant primaries are found to range from about 0.6 to 9 {M}ȯ with a peak at around 1.5 {M}ȯ , in agreement with studies of the star formation history of the LMC, which find a burst of star formation beginning around 4 Gyr ago. The observed distribution of mass ratios q={m}2/{m}1 is more consistent with the flat q distribution derived for the solar vicinity by Raghavan et al. than it is with the solar vicinity q distribution derived by Duquennoy & Mayor. There is no evidence for an excess number of systems with equal mass components. We find that about 20% of the ellipsoidal binaries have eccentric orbits, twice the fraction estimated by Soszynski et al. Our eccentricity evolution test shows that the existence of eccentric ellipsoidal red giant binaries on the upper parts of the red giant branch (RGB) can only be explained if tidal circularization rates are ∼1/100 the rates given by the usual theory of tidal dissipation in convective stars.

  14. Tidal dissipation in giant planets and the orbital evolution of their satellite systems

    NASA Astrophysics Data System (ADS)

    Ogilvie, G. I.

    2012-09-01

    Almost all the regular satellites of the giant planets in the solar system exert tidal forcing at frequencies within the range for which inertial waves can be excited inside the planet. The damping of inertial waves through their interaction with turbulent convection or magnetic fields, or through nonlinear processes, provides a mechanism of tidal dissipation and leads to the orbital migration of the satellites, allowing them in some cases to enter orbital resonances. Lainey et al. [1,2] have recently estimated the tidal dissipation in Jupiter and Saturn by fitting a dynamical model to observations of satellites over the last century or so. Using spectral numerical methods, we compute the linearized response of a uniformly rotating compressible fluid body to tidal forcing by the Y 2 2 spherical harmonic over the relevant range of tidal frequencies. Self-gravity and viscosity are included, while magnetic fields and non-adiabatic effects are neglected. The presence of convection is considered only to the extent that it establishes a (nearly) adiabatic stratification and provides an enhanced effective viscosity. Since the interior structure of giant planets is not fully understood, we use a variety of simplified and parametrized models to investigate the dependence of the dissipation rate on the interior structure. The efficiency of tidal dissipation is quantified by computing the frequency-dependent complex potential Love number k2 2(!) of the body. The negative imaginary part of this dimensionless quantity is inversely related to the tidal quality factor and bears a simple relation to the total viscous dissipation rate, which is verified numerically. The tidal response is complicated by the fact that, in the absence of viscosity, inertial waves do not form smooth eigenfunctions with a discrete spectrum, except in special cases where the density profile is smooth and the waves propagate in a full sphere. If the inertial waves are excluded from a solid or stably

  15. FORMATION OF GIANT PLANETS BY DISK INSTABILITY ON WIDE ORBITS AROUND PROTOSTARS WITH VARIED MASSES

    SciTech Connect

    Boss, Alan P.

    2011-04-10

    Doppler surveys have shown that more massive stars have significantly higher frequencies of giant planets inside {approx}3 AU than lower mass stars, consistent with giant planet formation by core accretion. Direct imaging searches have begun to discover significant numbers of giant planet candidates around stars with masses of {approx}1 M{sub sun} to {approx}2 M{sub sun} at orbital distances of {approx}20 AU to {approx}120 AU. Given the inability of core accretion to form giant planets at such large distances, gravitational instabilities of the gas disk leading to clump formation have been suggested as the more likely formation mechanism. Here, we present five new models of the evolution of disks with inner radii of 20 AU and outer radii of 60 AU, for central protostars with masses of 0.1, 0.5, 1.0, 1.5, and 2.0 M{sub sun}, in order to assess the likelihood of planet formation on wide orbits around stars with varied masses. The disk masses range from 0.028 M{sub sun} to 0.21 M{sub sun}, with initial Toomre Q stability values ranging from 1.1 in the inner disks to {approx}1.6 in the outer disks. These five models show that disk instability is capable of forming clumps on timescales of {approx}10{sup 3} yr that, if they survive for longer times, could form giant planets initially on orbits with semimajor axes of {approx}30 AU to {approx}70 AU and eccentricities of {approx}0 to {approx}0.35, with initial masses of {approx}1 M{sub Jup} to {approx}5 M{sub Jup}, around solar-type stars, with more protoplanets forming as the mass of the protostar (and protoplanetary disk) is increased. In particular, disk instability appears to be a likely formation mechanism for the HR 8799 gas giant planetary system.

  16. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    NASA Astrophysics Data System (ADS)

    Podlewska-Gaca, E.; Szuszkiewicz, E.

    2014-03-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet

  17. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  18. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  19. Gravitational harmonics from shallow resonant orbits

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Klosko, S. M.

    1977-01-01

    Gravitational constraint (lumped coefficient) equations are derived from GEOS-2 data and a detailed analysis of the shallow resonance problem. The equations follow from elementary perturbation theory and show that all such lumped coefficients are harmonic in the argument of perigee. The best along-track constraints derived from them account for all but about 2% of the 13th-order resonant information in the tracking data. The equations are also in good agreement with recent comprehensive gravity models which use substantial amounts of GEOS-2 data.

  20. Evolution of the giant dipole resonance properties with excitation energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.

    2006-10-01

    The studies of the evolution of the hot Giant Dipole Resonance (GDR) properties as a function of excitation energy are reviewed. The discussion will mainly focus on the A ˜ 100-120 mass region where a large amount of data concerning the width and the strength evolution with excitation energy are available. Models proposed to interpret the main features and trends of the experimental results will be presented and compared to the available data in order to extract a coherent scenario on the limits of the development of the collective motion in nuclei at high excitation energy. Experimental results on the GDR built in hot nuclei in the mass region A ˜ 60-70 will be also shown, allowing to investigate the mass dependence of the main GDR features. The comparison between limiting excitation energies for the collective motion and critical excitation energies extracted from caloric curve studies will suggest a possible link between the disappearance of collective motion and the liquid-gas phase transition.

  1. Role of pairing in the description of giant monopole resonances

    NASA Astrophysics Data System (ADS)

    Avogadro, Paolo; Bertulani, Carlos A.

    2013-10-01

    We compare the results obtained in the framework of the quasiparticle random-phase approximation on top of a Hartree-Fock-Bogoliubov with the most recent experiments on giant monopole resonances in Pb, Sn, Zr, Sm, Mo, and Cd. Our calculations are fully self-consistent and the density dependence of pairing interactions is, for the first time in this framework, properly taken into account. In the particle-hole (ph) channel we employ different Skyrme functionals (SLy5, SkM* and Skxs20) while in the particle-particle (pp) channel we make use of density-dependent contact interactions. We introduce in the pp channel the recently proposed contact interactions which take into account the neutron-proton asymmetry. We find that no single parametrization is able to reproduce with sufficient accuracy all the nuclei. Since about two-thirds of the nuclei under investigation are better explained with a soft parametrization, this tends to suggest that the currently accepted picture for the incompressibility might require modifications.

  2. Companion-driven dynamics: Trends in stellar companion fraction and giant exoplanet orbital properties.

    NASA Astrophysics Data System (ADS)

    Ngo, Henry; Knutson, Heather; Hinkley, Sasha; Levesque Bryan, Marta; Crepp, Justin; Bechter, Eric; Batygin, Konstantin; Howard, Andrew; Johnson, John Asher; Morton, Timothy; Muirhead, Philip Steven

    2015-12-01

    Many of the stars in the solar neighborhood are part of multiple star systems, which may affect the formation and subsequent orbital evolution of the planets in these systems. It has been suggested that such interactions might be responsible for hot Jupiter migration and/or the spin-orbit misalignments observed in many hot Jupiter systems. In order to investigate whether stellar companions can explain the present-day properties of the population of hot Jupiters, we carried out a high contrast imaging survey at Keck to determine the frequency of stellar companions around giant planet host stars. Here we present results from surveys of two giant planet populations. First, we present a new expanded sample of 80 stars with transiting hot Jupiters, which confirms and expands on the results from our previous survey. We find that the binary fraction of hot Jupiter host stars is enhanced by approximately a factor of two compared to that of field stars, suggesting that stellar companions may play an important role in these systems. We also find no correlation between misaligned hot Jupiters and the presence of a stellar companion. Second, we present results from a new imaging survey of 146 RV-detected giant planet host stars, including systems with planets at a range of orbital separations, which allow us to search for correlations between stellar multiplicity and the orbital parameters of the inner planets.

  3. HOW ECCENTRIC ORBITAL SOLUTIONS CAN HIDE PLANETARY SYSTEMS IN 2:1 RESONANT ORBITS

    SciTech Connect

    Anglada-Escude, Guillem; Chambers, John E.; Lopez-Morales, Mercedes E-mail: mercedes@dtm.ciw.ed

    2010-01-20

    The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect exoplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a single planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available data sets, finding that (1) around 35% of the published eccentric one-planet solutions are statistically indistinguishable from planetary systems in 2:1 orbital resonance, (2) another 40% cannot be statistically distinguished from a circular orbital solution, and (3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets.

  4. Orientation and resonance locks for satellites in the elliptic orbit.

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1972-01-01

    In order to achieve the maximum strength of higher resonance locks for satellites in the elliptic orbit, the condition of satellite orientation during the process of deployment is established. It is shown that for maximum strength locks the axis of the minimum moment of inertia of satellites should point toward the attracting body at plus or minus (5/8) pi and 0 values of the true anomaly f. This condition of deployment is applicable to all cases of resonance rotation regardless of the value of lock number k and orbit eccentricity e.

  5. Orientation and resonance locks for satellites in the elliptic orbit.

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1972-01-01

    In order to achieve the maximum strength of higher resonance locks for satellites in the elliptic orbit, the condition of satellite orientation during the process of deployment is established. It is shown that for maximum strength locks the axis of the minimum moment of inertia of satellites should point toward the attracting body at plus or minus (5/8) pi and 0 values of the true anomaly f. This condition of deployment is applicable to all cases of resonance rotation regardless of the value of lock number k and orbit eccentricity e.

  6. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  7. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  8. Orbit-orbit resonances in the solar system - Varieties and similarities

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1977-01-01

    Descriptions of various orbit-orbit resonance mechanisms in the solar system are brought together in such a manner that the physical processes underlying the traditional mathematical presentations are apparent. A simple qualitative model based on the resonance between Saturn's satellites Titan and Hyperion is presented, the same resonance is analyzed quantitatively, and the small-eccentricity mechanism is examined. The following resonances are investigated in detail: Enceladus-Dione, Mimas-Tethys, Neptune-Pluto, and Rhea-Titan (secular resonance). Coupled librations of several asteroids near mean motions commensurable with Jupiter's are modeled, the Laplace relation involving Io, Europa, and Ganymede is studied, and the 1:1 resonance between the Trojan asteroids and Jupiter is discussed. Some higher-order commensurabilities involving asteroids are considered, including the 3:1 resonance between Alinda and Jupiter, the 13:5 resonance of Toro with Venus, the 8:5 resonance of Toro with earth, and the 11:28 resonance of Ivar with earth.

  9. Orbit-orbit resonances in the solar system - Varieties and similarities

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1977-01-01

    Descriptions of various orbit-orbit resonance mechanisms in the solar system are brought together in such a manner that the physical processes underlying the traditional mathematical presentations are apparent. A simple qualitative model based on the resonance between Saturn's satellites Titan and Hyperion is presented, the same resonance is analyzed quantitatively, and the small-eccentricity mechanism is examined. The following resonances are investigated in detail: Enceladus-Dione, Mimas-Tethys, Neptune-Pluto, and Rhea-Titan (secular resonance). Coupled librations of several asteroids near mean motions commensurable with Jupiter's are modeled, the Laplace relation involving Io, Europa, and Ganymede is studied, and the 1:1 resonance between the Trojan asteroids and Jupiter is discussed. Some higher-order commensurabilities involving asteroids are considered, including the 3:1 resonance between Alinda and Jupiter, the 13:5 resonance of Toro with Venus, the 8:5 resonance of Toro with earth, and the 11:28 resonance of Ivar with earth.

  10. Orbital evolution of asteroids near the secular resonance nu6

    NASA Astrophysics Data System (ADS)

    Froeschle, Ch.; Scholl, H.

    1987-06-01

    The authors investigate the orbital evolutions of numbered asteroids which are supposed to be located near the secular resonance ν6 according to Williams' list (1979). The asteroidal orbits are integrated numerically over 1 Myr in the four-body model Sun-Jupiter-Saturn-asteroid. Only the two asteroids (759) Vinifera and (1222) Tina are found to be located deeply in the ν6 secular resonance. The asteroid (2368) Beltovata is at present also situated in this secular resonance. Presumably, Beltovata will be removed from the resonance due to a close approach to Jupiter. Beltovata is a possible candidate to become an Apollo asteroid. The dynamical topology of the ν6 secular resonance seems to be similar to the mean motion resonance. The authors conjecture that also for the ν6 resonance, a separatrix-like region separates librators from circulators. Only those parts of the ν6 secular resonance region, where libration with large amplitudes occurs, have to be considered as possible sources of meteorites.

  11. Dynamical coupling of pygmy and giant resonances in relativistic Coulomb excitation

    DOE PAGES

    Brady, N. S.; Aumann, T.; Bertulani, C. A.; ...

    2016-04-20

    We study the Coulomb excitation of pygmy dipole resonances (PDR) in heavy ion reactions at 100 MeV/nucleon and above. The reactions Ni-68 + Au-197 and Ni-68 + Pb-208 are taken as practical examples. Our goal is to address the question of the influence of giant resonances on the PDR as the dynamics of the collision evolves. We show that the coupling to the giant resonances affects considerably the excitation probabilities of the PDR, a result that indicates the need of an improved theoretical treatment of the reaction dynamics at these bombarding energies. (C) 2016 The Authors. Published by Elsevier B.V.

  12. Libration of arguments of circumbinary-planet orbits at resonance

    NASA Astrophysics Data System (ADS)

    Schubart, Joachim

    2017-02-01

    The paper refers to fictitious resonant orbits of planet type that surround both components of a binary system. In case of 16 studied examples a suitable choice of the starting values leads to a process of libration of special angular arguments and to an evolution with an at least temporary stay of the planet in the resonant orbit. The ratio of the periods of revolution of the binary and a planet is equal to 1:5. Eight orbits depend on the ratio 1:5 of the masses of the binary components, but two other ratios appear as well. The basis of this study is the planar, elliptic or circular restricted problem of three bodies, but remarks at the end of the text refer to a four-body problem.

  13. Libration of arguments of circumbinary-planet orbits at resonance

    NASA Astrophysics Data System (ADS)

    Schubart, Joachim

    2017-06-01

    The paper refers to fictitious resonant orbits of planet type that surround both components of a binary system. In case of 16 studied examples a suitable choice of the starting values leads to a process of libration of special angular arguments and to an evolution with an at least temporary stay of the planet in the resonant orbit. The ratio of the periods of revolution of the binary and a planet is equal to 1:5. Eight orbits depend on the ratio 1:5 of the masses of the binary components, but two other ratios appear as well. The basis of this study is the planar, elliptic or circular restricted problem of three bodies, but remarks at the end of the text refer to a four-body problem.

  14. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3.

    PubMed

    Zhang, Weifeng; Han, Wei; Yang, See-Hun; Sun, Yan; Zhang, Yang; Yan, Binghai; Parkin, Stuart S P

    2016-09-01

    There has been considerable interest in spin-orbit torques for the purpose of manipulating the magnetization of ferromagnetic elements for spintronic technologies. Spin-orbit torques are derived from spin currents created from charge currents in materials with significant spin-orbit coupling that propagate into an adjacent ferromagnetic material. A key challenge is to identify materials that exhibit large spin Hall angles, that is, efficient charge-to-spin current conversion. Using spin torque ferromagnetic resonance, we report the observation of a giant spin Hall angle [Formula: see text] of up to ~0.35 in (001)-oriented single-crystalline antiferromagnetic IrMn3 thin films, coupled to ferromagnetic permalloy layers, and a [Formula: see text] that is about three times smaller in (111)-oriented films. For (001)-oriented samples, we show that the magnitude of [Formula: see text] can be significantly changed by manipulating the populations of various antiferromagnetic domains through perpendicular field annealing. We identify two distinct mechanisms that contribute to [Formula: see text]: the first mechanism, which is facet-independent, arises from conventional bulk spin-dependent scattering within the IrMn3 layer, and the second intrinsic mechanism is derived from the unconventional antiferromagnetic structure of IrMn3. Using ab initio calculations, we show that the triangular magnetic structure of IrMn3 gives rise to a substantial intrinsic spin Hall conductivity that is much larger for the (001) than for the (111) orientation, consistent with our experimental findings.

  15. Giant facet-dependent spin-orbit torque and spin Hall conductivity in the triangular antiferromagnet IrMn3

    PubMed Central

    Zhang, Weifeng; Han, Wei; Yang, See-Hun; Sun, Yan; Zhang, Yang; Yan, Binghai; Parkin, Stuart S. P.

    2016-01-01

    There has been considerable interest in spin-orbit torques for the purpose of manipulating the magnetization of ferromagnetic elements for spintronic technologies. Spin-orbit torques are derived from spin currents created from charge currents in materials with significant spin-orbit coupling that propagate into an adjacent ferromagnetic material. A key challenge is to identify materials that exhibit large spin Hall angles, that is, efficient charge-to-spin current conversion. Using spin torque ferromagnetic resonance, we report the observation of a giant spin Hall angle θSHeff of up to ~0.35 in (001)-oriented single-crystalline antiferromagnetic IrMn3 thin films, coupled to ferromagnetic permalloy layers, and a θSHeff that is about three times smaller in (111)-oriented films. For (001)-oriented samples, we show that the magnitude of θSHeff can be significantly changed by manipulating the populations of various antiferromagnetic domains through perpendicular field annealing. We identify two distinct mechanisms that contribute to θSHeff: the first mechanism, which is facet-independent, arises from conventional bulk spin-dependent scattering within the IrMn3 layer, and the second intrinsic mechanism is derived from the unconventional antiferromagnetic structure of IrMn3. Using ab initio calculations, we show that the triangular magnetic structure of IrMn3 gives rise to a substantial intrinsic spin Hall conductivity that is much larger for the (001) than for the (111) orientation, consistent with our experimental findings. PMID:27704044

  16. Resonant Orbits and the High Velocity Peaks toward the Bulge

    NASA Astrophysics Data System (ADS)

    Molloy, Matthew; Smith, Martin C.; Evans, N. Wyn; Shen, Juntai

    2015-10-01

    We extract the resonant orbits from an N-body bar that is a good representation of the Milky Way, using the method recently introduced by Molloy et al. By decomposing the bar into its constituent orbit families, we show that they are intimately connected to the boxy-peanut shape of the density. We highlight the imprint due solely to resonant orbits on the kinematic landscape toward the Galactic center. The resonant orbits are shown to have distinct kinematic features and may be used to explain the cold velocity peak seen in the Apache Point Observatory Galactic Evolution Experiment commissioning data. We show that high velocity peaks are a natural consequence of the motions of stars in the 2:1 orbit family and that stars on other higher order resonances can contribute to the peaks. The locations of the peaks vary with bar angle and, with the tacit assumption that the observed peaks are due to the 2:1 family, we find that the locations of the high velocity peaks correspond to bar angles in the range {10}\\circ ≲ {θ }{bar}≲ 25^\\circ . However, some important questions about the nature of the peaks remain, such as their apparent absence in other surveys of the Bulge and the deviations from symmetry between equivalent fields in the north and south. We show that the absence of a peak in surveys at higher latitudes is likely due to the combination of a less prominent peak and a lower number density of bar supporting orbits at these latitudes.

  17. Orbital resonances in the inner neptunian system. II. Resonant history of Proteus, Larissa, Galatea, and Despina

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Hamilton, Douglas P.

    2008-01-01

    We investigate the orbital history of the small neptunian satellites discovered by Voyager 2. Over the age of the Solar System, tidal forces have caused the satellites to migrate radially, bringing them through mean-motion resonances with one another. In this paper, we extend our study of the largest satellites Proteus and Larissa [Zhang, K., Hamilton, D.P., 2007. Icarus 188, 386-399] by adding in mid-sized Galatea and Despina. We test the hypothesis that these moons all formed with zero inclinations, and that orbital resonances excited their tilts during tidal migration. We find that the current orbital inclinations of Proteus, Galatea, and Despina are consistent with resonant excitation if they have a common density 0.4<ρ¯<0.8 g/cm. Larissa's inclination, however, is too large to have been caused by resonant kicks between these four satellites; we suggest that a prior resonant capture event involving either Naiad or Thalassa is responsible. Our solution requires at least three past resonances with Proteus, which helps constrain the tidal migration timescale and thus Neptune's tidal quality factor: 9000resonant capture condition, and work out a resonant overlap criterion relevant to satellite orbital evolution around an oblate primary.

  18. Origin of the Moon's orbital inclination from resonant disk interactions

    PubMed

    Ward; Canup

    2000-02-17

    The Moon is generally believed to have formed from the debris disk created by a large body colliding with the early Earth. Recent models of this process predict that the orbit of the newly formed Moon should be in, or very near, the Earth's equatorial plane. This prediction, however, is at odds with the known history of the lunar orbit: the orbit is currently expanding, but can be traced back in time to reveal that, when the Moon formed, its orbital inclination relative to the Earth's equator was I approximately = 10 degrees. The cause of this initial inclination has been a mystery for over 30 years, as most dynamical processes (such as those that act to flatten Saturn's rings) will tend to decrease orbital inclinations. Here we show that the Moon's substantial orbital inclination is probably a natural result of its formation from an impact-generated disk. The mechanism involves a gravitational resonance between the Moon and accretion-disk material, which can increase orbital inclinations up to approximately 15 degrees.

  19. Giant Spin-Orbit Splitting in Inverted InAs/GaSb Double Quantum Wells.

    PubMed

    Nichele, Fabrizio; Kjaergaard, Morten; Suominen, Henri J; Skolasinski, Rafal; Wimmer, Michael; Nguyen, Binh-Minh; Kiselev, Andrey A; Yi, Wei; Sokolich, Marko; Manfra, Michael J; Qu, Fanming; Beukman, Arjan J A; Kouwenhoven, Leo P; Marcus, Charles M

    2017-01-06

    Transport measurements in inverted InAs/GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electronlike and holelike states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs/GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in e^{2}/h steps and a nontrivial Berry phase.

  20. Giant Spin-Orbit Splitting in Inverted InAs /GaSb Double Quantum Wells

    NASA Astrophysics Data System (ADS)

    Nichele, Fabrizio; Kjaergaard, Morten; Suominen, Henri J.; Skolasinski, Rafal; Wimmer, Michael; Nguyen, Binh-Minh; Kiselev, Andrey A.; Yi, Wei; Sokolich, Marko; Manfra, Michael J.; Qu, Fanming; Beukman, Arjan J. A.; Kouwenhoven, Leo P.; Marcus, Charles M.

    2017-01-01

    Transport measurements in inverted InAs /GaSb quantum wells reveal a giant spin-orbit splitting of the energy bands close to the hybridization gap. The splitting results from the interplay of electron-hole mixing and spin-orbit coupling, and can exceed the hybridization gap. We experimentally investigate the band splitting as a function of top gate voltage for both electronlike and holelike states. Unlike conventional, noninverted two-dimensional electron gases, the Fermi energy in InAs /GaSb can cross a single spin-resolved band, resulting in full spin-orbit polarization. In the fully polarized regime we observe exotic transport phenomena such as quantum Hall plateaus evolving in e2/h steps and a nontrivial Berry phase.

  1. Photon scattering studies of the giant dipole resonance in medium weight nuclei

    SciTech Connect

    Bowles, T.J.; Holt, R.J.; Jackson, H.E.; Laszewski, R.M.; McKeown, R.D.; Nathan, A.M.; Specht, J.R.

    1981-11-01

    Quasimonochromatic photons have been used to measure elastic and inelastic photon scattering cross sections in the giant dipole resonance region of /sup 52/Cr, Fe, /sup 60/Ni, /sup 92/Mo, and /sup 96/Mo in an experiment in which the elastic and inelastic scattering are resolved. The elastic scattering cross sections show clear evidence for isospin splitting of the giant dipole resonance. The inelastic scattering to low-lying vibrational levels, which is a measure of the coupling between the giant dipole resonance and collective surface vibrations, is in qualitative agreement with the predictions of the dynamic collective model. However, when examined in detail, this model does not provide an adequate description of the scattering data.

  2. Orbital trajectory of an acoustic bubble in a cylindrical resonator.

    PubMed

    Desjouy, Cyril; Labelle, Pauline; Gilles, Bruno; Bera, Jean-Christophe; Inserra, Claude

    2013-09-01

    Acoustic cavitation-induced microbubbles in a cylindrical resonator filled with water tend to concentrate into ring patterns due to the cylindrical geometry of the system. The shape of these ring patterns is directly linked to the Bjerknes force distribution in the resonator. Experimental observations showed that cavitation bubbles located in the vicinity of this ring may exhibit a spiraling behavior around the pressure nodal line. This spiraling phenomenon is numerically studied, the conditions for which a single cavitation bubble follows an orbital trajectory are established, and the influences of the acoustic pressure amplitude and the initial bubble radius are investigated.

  3. K2-97b: A (Re-?)Inflated Planet Orbiting a Red Giant Star

    NASA Astrophysics Data System (ADS)

    Grunblatt, Samuel K.; Huber, Daniel; Gaidos, Eric J.; Lopez, Eric D.; Fulton, Benjamin J.; Vanderburg, Andrew; Barclay, Thomas; Fortney, Jonathan J.; Howard, Andrew W.; Isaacson, Howard T.; Mann, Andrew W.; Petigura, Erik; Silva Aguirre, Victor; Sinukoff, Evan J.

    2016-12-01

    Strongly irradiated giant planets are observed to have radii larger than thermal evolution models predict. Although these inflated planets have been known for over 15 years, it is unclear whether their inflation is caused by the deposition of energy from the host star or the inhibited cooling of the planet. These processes can be distinguished if the planet becomes highly irradiated only when the host star evolves onto the red giant branch. We report the discovery of K2-97b, a 1.31 ± 0.11 R J, 1.10 ± 0.11 M J planet orbiting a 4.20 ± 0.14 R ⊙, 1.16 ± 0.12 M ⊙ red giant star with an orbital period of 8.4 days. We precisely constrained stellar and planetary parameters by combining asteroseismology, spectroscopy, and granulation noise modeling along with transit and radial velocity measurements. The uncertainty in planet radius is dominated by systematic differences in transit depth, which we measure to be up to 30% between different light-curve reduction methods. Our calculations indicate the incident flux on this planet was {170}-60+140 times the incident flux on Earth, while the star was on the main sequence. Previous studies suggest that this incident flux is insufficient to delay planetary cooling enough to explain the present planet radius. This system thus provides the first evidence that planets may be inflated directly by incident stellar radiation rather than by delayed loss of heat from formation. Further studies of planets around red giant branch stars will confirm or contradict this hypothesis and may reveal a new class of re-inflated planets.

  4. Study of dynamical processes at the final stages of planetary system formation: Resonance motion of giant planets

    NASA Astrophysics Data System (ADS)

    Emel'yanenko, V. V.

    2012-09-01

    According to current observational data, planets of many exoplanetary systems have resonant motion. The formation of resonance configurations is studied within a unified model of planetary migration. Planets in the observed systems 24 Sex, HD 37124, HD 73526, HD 82943, HD 128311, HD 160691, Kepler 9, NN Ser, which are moving in the 2: 1 resonance, could have been captured into this resonance due to both the Type I and II migration with a wide range of parameters. The migration conditions are defined for the formation of HD 45364 and HD 200964 that are in the 3: 2 and 4: 3 first-order resonances, correspondingly. The results obtained for HD 200964 show that planets can be captured in the first-order resonances, when the outer-to-inner orbital period ratios for the planets are less than 3: 2, only if Type I migration rates are large, and the mass of at least one planet is substantially less than the modern masses of the observed giant planets. The formation of the HD 102272, HD 108874, HD 181433 and HD 202206 systems with planets in high-order resonances is considered. The capture into these resonances can be realized with very slow Type II migration. Possible bounds for migration parameters are considered. In particular, it has been found that the capture of HD 108874 into the 4: 1 resonance is possible only if the angle between the plane of planetary orbits and the plane of sky is appreciably less than 90°, i.e., the planetary masses are a few times larger than the minimum values. The capture of HD 202206 into the 5: 1 resonance is possible at low migration rates; however, another mechanism is required to explain the high observed eccentricity of the inner planet (for example, strong gravitational interaction between the planets). Resonant configurations can be disrupted due to the interaction between planets and remaining fragments of the planetesimal disk as, for example, may occur in the three-planet system 47 UMa. The specific orbital features observed for

  5. THE PAN-PACIFIC PLANET SEARCH. I. A GIANT PLANET ORBITING 7 CMa

    SciTech Connect

    Wittenmyer, Robert A.; Tinney, C. G.; Endl, Michael; Wang Liang; Johnson, John Asher; O'Toole, S. J.

    2011-12-20

    We introduce the Pan-Pacific Planet Search, a survey of 170 metal-rich Southern Hemisphere subgiants using the 3.9 m Anglo-Australian Telescope. We report the first discovery from this program, a giant planet orbiting 7 CMa (HD 47205) with a period of 763 {+-} 17 days, eccentricity e = 0.14 {+-} 0.06, and msin i = 2.6 {+-} 0.6 M{sub Jup}. The host star is a K giant with a mass of 1.5 {+-} 0.3 M{sub Sun} and metallicity [Fe/H] = 0.21 {+-} 0.10. The mass and period of 7 CMa b are typical of planets which have been found to orbit intermediate-mass stars (M{sub *} > 1.3 M{sub Sun }). Hipparcos photometry shows this star to be stable to 0.0004 mag on the radial-velocity period, giving confidence that this signal can be attributed to reflex motion caused by an orbiting planet.

  6. The Pan-Pacific Planet Search. VI. Giant Planets Orbiting HD 86950 and HD 222076

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Jones, M. I.; Zhao, Jinglin; Marshall, J. P.; Butler, R. P.; Tinney, C. G.; Wang, Liang; Johnson, John Asher

    2017-02-01

    We report the detection of two new planets orbiting the K giants HD 86950 and HD 222076, based on precise radial velocities obtained with three instruments: AAT/UCLES, FEROS, and CHIRON. HD 86950b has a period of 1270 ± 57 days at a=2.72+/- 0.08 au, and m sin i=3.6+/- 0.7 {M}{Jup}. HD 222076b has P=871+/- 19 days at a=1.83+/- 0.03 au, and m sin i=1.56+/- 0.11 {M}{Jup}. These two giant planets are typical of the population of planets known to orbit evolved stars. In addition, we find a high-amplitude periodic velocity signal (K∼ 50 m s‑1) in HD 29399 and show that it is due to stellar variability rather than Keplerian reflex motion. We also investigate the relation between planet occurrence and host-star metallicity for the 164-star Pan-Pacific Planet Search (PPPS) sample of evolved stars. In spite of the small sample of PPPS detections, we confirm the trend of increasing planet occurrence as a function of metallicity found by other studies of planets orbiting evolved stars.

  7. The Spin-Orbit Resonances of the Solar System: A Mathematical Treatment Matching Physical Data

    NASA Astrophysics Data System (ADS)

    Antognini, Francesco; Biasco, Luca; Chierchia, Luigi

    2014-06-01

    In the mathematical framework of a restricted, slightly dissipative spin-orbit model, we prove the existence of periodic orbits for astronomical parameter values corresponding to all satellites of the Solar System observed in exact spin-orbit resonance.

  8. Spreading widths of giant resonances in spherical nuclei: Damped transient response

    NASA Astrophysics Data System (ADS)

    Severyukhin, A. P.; Åberg, S.; Arsenyev, N. N.; Nazmitdinov, R. G.

    2017-06-01

    We propose a general approach to describe spreading widths of monopole, dipole, and quadrupole giant resonances in heavy and superheavy spherical nuclei. Our approach is based on the ideas of the random matrix distribution of the coupling between one-phonon and two-phonon states generated in the random-phase approximation. We use the Skyrme interaction SLy4 as our model Hamiltonian to create a single-particle spectrum and to analyze excited states of the doubly magic nuclei 132Sn, 208Pb, and 310126. Our results demonstrate that the approach enables to us to describe a gross structure of the spreading widths of the giant resonances considered.

  9. Extreme nuclear shapes examined via giant dipole resonance lineshapes in hot light-mass systems

    SciTech Connect

    Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Banerjee, S. R.; De, A.; Gupta, D.

    2010-06-15

    The influence of alpha clustering on nuclear reaction dynamics is investigated using the giant dipole resonance (GDR) lineshape studies in the reactions {sup 20}Ne (E{sub lab}=145,160 MeV) + {sup 12}C and {sup 20}Ne (E{sub lab}=160 MeV) + {sup 27}Al, populating {sup 32}S and {sup 47}V, respectively. The GDR lineshapes from the two systems are remarkably different from each other. Whereas, the non-alpha-like {sup 47}V undergoes Jacobi shape transition and matches exceptionally well with the theoretical GDR lineshape estimated under the framework rotating liquid drop model (RLDM) and thermal shape fluctuation model (TSFM) signifying shape equilibration, for the alpha cluster {sup 32}S an extended prolate kind of shape is observed. This unusual deformation, seen directly via gamma decay for the first time, is predicted to be due to the formation of orbiting dinuclear configuration or molecular structure of {sup 16}O + {sup 16}O in the {sup 32}S superdeformed band.

  10. Diagnosing an atypical site of giant cell arteritis with magnetic resonance angiography: a case report.

    PubMed

    Tan, Boon L; Liu, Jonathan J; Yong, Tuck Y; Tan, Chrismin C; Li, Jordan Y

    2016-06-23

    Giant cell arteritis typically involves the temporal arteries, but can involve other cranial arteries. Temporal artery biopsy is the mainstay for the diagnosis of giant cell arteritis; however, biopsy may be problematic if giant cell arteritis involves other cranial arteries that are inaccessible for sampling. In these situations, magnetic resonance angiography is a useful, non-invasive adjunctive method in the diagnosis of giant cell arteritis. In this case report, we describe a case of giant cell arteritis involving only the occipital artery which was revealed by magnetic resonance angiography. A 67-year-old Caucasian man was admitted to our hospital with a 4-week history of malaise, fever, and mild occipital headaches. There were no other positive findings on physical examination. Laboratory studies were remarkable for normocytic anemia, raised inflammatory markers, and mildly deranged liver function tests. To exclude intracranial pathology, he underwent a cranial magnetic resonance imaging with gadolinium, which demonstrated a thickened wall and mural enhancement of his right occipital artery, consistent with giant cell arteritis. His temporal arteries were normal. His occipital arteries were not accessible for biopsy and he was commenced on high-dose prednisolone (60 mg daily). His symptoms resolved completely after a week of glucocorticoid steroid treatment and he was well on 5 mg of prednisolone once a day on follow-up. While magnetic resonance angiography may not replace the need for biopsy, it may have a diagnostic role in suspected giant cell arteritis, such as when the involved arteries are inaccessible for biopsy.

  11. Excitation and photon decay of giant multipole resonances - the role and future of medium-energy heavy ions

    SciTech Connect

    Bertrand, F.E.; Beene, J.R.; Horen, D.J.

    1988-01-01

    Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.

  12. Primary orbital melanoma combined with giant divided nevus of the eyelid.

    PubMed

    Ke, Yifeng; Ren, Xinjun; Zhu, Liming; Hao, Rui; Song, Wenjin; Liu, Xun; He, Yanjin

    2014-01-01

    The authors report a rare case of primary orbital melanoma (POM) combined with giant divided nevus of the eyelid. An 8-year-old Chinese girl is referred for evaluation of 2-month duration of exophthalmos with decreased vision, epiphora, and pain on her right eye. His presentation, imaging, biopsy, histopathology, and management are presented. The possible cellular origin of the POM and the relationship of POM and divided nevus are discussed. We presume that divided nevus may be one of rarely preexisting lesions of POM.

  13. [Orbital vasculonervous network and orbital surgical compartments by high field magnetic resonance].

    PubMed

    Hernández González, L C; Suárez Suárez, E; Dos Santos Bernardo, V; Junceda Moreno, J; Recio Rodríguez, M; Martínez De Vega, V; Viaño López, J

    2003-10-01

    To elucidate the possibilities and indications of high-resolution magnetic resonance imaging (MRI) in the study of the orbit and its contents. Orbital anatomy was studied in sliced specimens of fifteen fresh frozen cadavers and the results were compared with those obtained in thirty asymptomatic subjects who underwent a magnetic resonance with 1.5 Tesla equipment. The information obtained was used to interpret the findings in twenty-two patients with various orbital diseases. High-resolution MRI allows visualization of structures difficult to assess previously, like the cerebrospinal fluid (CSF) surrounding the optic nerve, the complete intraorbital route and the exit of the third cranial nerve, the ophthalmic artery and the intraorbital relationships of the sixth cranial nerve, which can be clearly differentiated from the lateral rectus muscle. High-resolution MRI is a very useful tool for the study of the orbit and its content. It provides accurate diagnoses through non-invasive procedures and facilitates the planning of the surgical approaches by improving the visualization of pathologic orbital structures. lcarlos@correo.uniovi.es

  14. Observation of global electromagnetic resonances by low- orbiting satellites

    NASA Astrophysics Data System (ADS)

    Surkov, V. V.

    2016-02-01

    Penetration of Schumann resonances energy from the Earth-ionosphere resonance cavity into the circumterrestrial space is examined. This study focuses on estimates of Alfvén wave amplitude and spectra in the frequency range of 7-50 Hz which can be observed by low-orbiting satellites. Differences in Schumann resonances observation conditions between the nighttime and sunlit sides of the ionosphere are analyzed. Particular emphasis has been placed on the ionospheric Alfvén resonator (IAR) excited by both global thunderstorm activity and individual lightning discharges. IAR spectra in the frequency range of 0.5-10 Hz are calculated for ionospheric altitudes. The calculated spectral amplitudes of IAR and Schumann resonances are compatible with C/NOFS satellite observations. To explain a shift of IAR resonant frequencies observed during C/NOFS satellite passage through terminator region, the IAR model is developed in which an interference of Alfvén waves reflected from the ionospheric E-layer and the IAR upper boundary is taken into account.

  15. N-BODY SIMULATIONS OF SATELLITE FORMATION AROUND GIANT PLANETS: ORIGIN OF ORBITAL CONFIGURATION OF THE GALILEAN MOONS

    SciTech Connect

    Ogihara, Masahiro; Ida, Shigeru E-mail: ida@geo.titech.ac.jp

    2012-07-01

    As the number of discovered extrasolar planets has been increasing, diversity of planetary systems requires studies of new formation scenarios. It is important to study satellite formation in circumplanetary disks, which is often viewed as analogous to formation of rocky planets in protoplanetary disks. We investigated satellite formation from satellitesimals around giant planets through N-body simulations that include gravitational interactions with a circumplanetary gas disk. Our main aim is to reproduce the observable properties of the Galilean satellites around Jupiter through numerical simulations, as previous N-body simulations have not explained the origin of the resonant configuration. We performed accretion simulations based on the work of Sasaki et al., in which an inner cavity is added to the model of Canup and Ward. We found that several satellites are formed and captured in mutual mean motion resonances outside the disk inner edge and are stable after rapid disk gas dissipation, which explains the characteristics of the Galilean satellites. In addition, owing to the existence of the disk edge, a radial compositional gradient of the Galilean satellites can also be reproduced. An additional objective of this study is to discuss orbital properties of formed satellites for a wide range of conditions by considering large uncertainties in model parameters. Through numerical experiments and semianalytical arguments, we determined that if the inner edge of a disk is introduced, a Galilean-like configuration in which several satellites are captured into a 2:1 resonance outside the disk inner cavity is almost universal. In fact, such a configuration is produced even for a massive disk {approx}> 10{sup 4} g cm{sup -2} and rapid type I migration. This result implies the inevitability of a Galilean satellite formation in addition to providing theoretical predictions for extrasolar satellites. That is, we can predict a substantial number of exomoon systems in the 2

  16. Spin-Orbit Resonances in Super-Earth Systems Close to Mean-motion Commensurabilities

    NASA Astrophysics Data System (ADS)

    Ribeiro, F. B.; Callegari, N., Jr.

    2014-10-01

    There is a great deal of planets in close-in orbits and low mass on order of magnitude less than 10 Earth mass. Valencia et al. (2006) call them Super-Earths. Recently, several efforts have been done in order to understand the dynamics of rotation of these planets, including spin-orbit resonance and spin tidal evolution (Rodríguez et al. (2012), Callegari and Rodríguez (2013)). In the referred papers, it is considered a single planet whose motion around the star is governed by the rules of the two-body problem. However, many Super-Earths are present in systems where other terrestrial or giant planets are present, and that problem must be checked. In this work we study the dynamical effects of mean-motion commensurabilities on rigid body rotation and spin-orbit resonances. Emphasis is given in the cases of the multi-planetary systems Kepler-11, KOI-55 and KOI-961, where the mean motions of several pairs of planets are commensurable. In some cases we have observed that the period associated to a particular commensurability is close to the period of the free libration of the rotation of one of the super-Earths. Thus, we investigate the role of the mean motion resonance on the synchronous rotation. Depending on the initial conditions inside the synchronous domain, the stable librations induced by the torque of the central star on the figure of the planet can lead to instabilities on its rotation which are not expected in such regular regions of rotational phase space. This phenomenon has been observed in the cases of Kepler-11 b (disturbed by Kepler-11 c), KOI-55 b (disturbed by KOI-55 c), KOI-961c (disturbed by KOI-961b and KOI-961d).

  17. Orbital migration of giant planets induced by gravitationally unstable gaps: the effect of planet mass

    NASA Astrophysics Data System (ADS)

    Cloutier, Ryan; Lin, Min-Kai

    2013-09-01

    It has been established that self-gravitating disc-satellite interaction can lead to the formation of a gravitationally unstable gap. Such an instability may significantly affect the orbital migration of gap-opening perturbers in self-gravitating discs. In this paper, we extend the two-dimensional hydrodynamic simulations of Lin & Papaloizou to investigate the role of the perturber or planet mass on the gravitational stability of gaps and its impact on orbital migration. We consider giant planets with planet-to-star mass ratio q ≡ Mp/M* ∈ [0.3, 3.0] × 10-3 (so that q = 10-3 corresponds to a Jupiter mass planet if M* = M⊙), in a self-gravitating disc with disc-to-star mass ratio Md/M* = 0.08, aspect ratio h = 0.05 and Keplerian Toomre parameter Qk0 = 1.5 at 2.5 times the planet's initial orbital radius. These planet masses correspond to tilde{q}in [0.9, 1.7], where tilde{q} is the ratio of the planet Hill radius to the local disc scale-height. Fixed-orbit simulations show that all planet masses we consider open gravitationally unstable gaps, but the instability is stronger and develops sooner with increasing planet mass. The disc-on-planet torques typically become more positive with increasing planet mass. In freely migrating simulations, we observe faster outward migration with increasing planet mass, but only for planet masses capable of opening unstable gaps early on. For q = 0.0003 (tilde{q}=0.9), the planet undergoes rapid inward type III migration before it can open a gap. For q = 0.0013 (tilde{q}=1.5) we find it is possible to balance the tendency for inward migration by the positive torques due to an unstable gap, but only for a few 10 s of orbital periods. We find the unstable outer gap edge can trigger outward type III migration, sending the planet to twice its initial orbital radius on dynamical time-scales. We briefly discuss the importance of our results in the context of giant planet formation on wide orbits through disc fragmentation.

  18. The Isoscalar Giant Dipole Resonance in {sup 20}Pb, {sup 90}Zr and the Nuclear Compressibility

    SciTech Connect

    Yildirim, Serbulent; Koeroglu, Ulas

    2008-11-11

    The isoscalar giant dipol resonance (ISGDR) in finite nuclei is studied within the framework of a relativistic transport approach. The excitation energies of spherical {sup 90}Zr and {sup 208}Pb nuclei are obtained for different quantum hydrodynamical Lagrangian parametrization. The sensitivity of ISGDR excitation energy on the nuclear bulk to surface properties are also investigated.

  19. Relativistic effects on giant resonances in electron-impact double ionization

    SciTech Connect

    Pindzola, M.S.

    1987-06-01

    The electron-impact double-ionization cross section for Fr/sup +/ is calculated in the distorted-wave Born approximation. A giant resonance in the 5d subshell ionization-autoionization contribution to the cross section is found to be quite sensitive to changes in the double-well potential caused by relativistic effects on bound-state wave functions.

  20. Magnetization switching through giant spin-orbit torque in the magnetically doped topological insulators

    NASA Astrophysics Data System (ADS)

    Fan, Yabin

    2015-03-01

    Recent demonstrations of magnetization switching induced by in-plane current in heavy metal/ferromagnetic heterostructures (HMFHs) have drawn great interest to spin torques arising from the large spin-orbit coupling (SOC)... in heavy metals. Considering the intrinsic strong SOC, topological insulators (TIs) are expected to be promising candidates for exploring spin-orbit torque (SOT)-related physics.... In this talk, we report the magnetization switching through giant SOT in the magnetically doped TI structures. In particular, we demonstrate the magnetization switching in a chromium-doped TI bilayer heterostructure, and the current induced SOT possibly has contribution from the spin-momentum locked surface states of TI. The critical current density for switching is below 8.9 × 104A/cm2 at 1.9 K. Moreover, we use second-harmonic methods to measure the spin torque efficiencies which are more than three orders of magnitude larger than those reported in heavy metals. The giant SOT and efficient current-induced magnetization switching exhibited by the bilayer heterostructure may lead to innovative spintronics applications such as ultralow power dissipation memory and logic devices. We are grateful to the support from the DARPA Meso program under Contract No. N66001-12-1-4034 and N66001-11-1-4105. We also acknowledge the support from the Western Institute of Nanoelectronics (WIN) and the support from the FAME center.

  1. DETECTION OF A GIANT EXTRASOLAR PLANET ORBITING THE ECLIPSING POLAR DP LEO

    SciTech Connect

    Qian, S.-B.; Liao, W.-P.; Zhu, L.-Y.; Dai, Z.-B.

    2010-01-01

    DP Leo is the first discovered eclipsing polar with a short period of 1.4967 hours. The period variation of the eclipsing binary was analyzed by using five new determined eclipse times together with those compiled from the literature. It is discovered that the O - C curve of DP Leo shows a cyclic variation with a period of 23.8 years and a semiamplitude of 31.5 s. The small-amplitude periodic change can be plausibly explained as the light-travel time effect due to the presence of a tertiary companion. The mass of the tertiary component is determined to be M {sub 3}sin i' = 0.00600({+-}0.00055) M {sub sun} = 6.28({+-}0.58) M {sub Jupiter} when a total mass of 0.69 M {sub sun} is adopted. If the tertiary companion is coplanar to the eclipsing binary (i.e., i' = 79.{sup 0}5), it should be a giant extrasolar planet with a mass of 6.39 M {sub Jupiter} at a distance of 8.6 astronomical units to the central binary. One of the most interesting things that we have learned about extrasolar planets over the last 17 years is that they can exist almost anywhere. The detection of a giant planet orbiting a polar would provide insight into the formation and evolution of circumbinary planets (planets orbiting both components of short-period binaries) as well as the late evolution of binary stars.

  2. A rare case of giant multicystic solitary fibrous tumor of the orbit.

    PubMed

    Alam, Shahid; Backiavathy, Varsha; Mukherjee, Bipasha; Subramanian, Krishnakumar

    2017-08-17

    Solitary fibrous tumor (SFT) is a rare spindle cell tumor of the orbit of mesenchymal origin. Though these tumors are mostly solid, partial or complete cystic changes can rarely occur. Only six such previous cases of cystic fibrous tumor of the orbit have been mentioned in the literature. We report a case of an elderly male who presented with a huge left sided medial orbital mass. Magnetic resonance imaging showed a predominant cystic orbital mass separated by septae and suggested a diagnosis of Hydatid cyst. The patient underwent complete excision of the mass and histopathology and immunohistochemistry were suggestive of cystic SFT. Cystic degeneration in SFT is extremely rare and can be a harbinger of malignancy, and pose risk of recurrence. Close follow up and monitoring is required for all such cases.

  3. Wigner time delay and spin-orbit activated confinement resonances

    NASA Astrophysics Data System (ADS)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  4. SELF-GRAVITY, RESONANCES AND ORBITAL DIFFUSION IN STELLAR DISKS

    SciTech Connect

    Fouvry, Jean-Baptiste; Pichon, Christophe; Binney, James

    2015-06-10

    Fluctuations in a stellar system's gravitational field cause the orbits of stars to evolve. The resulting evolution of the system can be computed with the orbit-averaged Fokker–Planck equation once the diffusion tensor is known. We present the formalism that enables one to compute the diffusion tensor from a given source of noise in the gravitational field when the system's dynamical response to that noise is included. In the case of a cool stellar disk we are able to reduce the computation of the diffusion tensor to a one-dimensional integral. We implement this formula for a tapered Mestel disk that is exposed to shot noise and find that we are able to explain analytically the principal features of a numerical simulation of such a disk. In particular the formation of narrow ridges of enhanced density in action space is recovered. As the disk's value of Toomre's Q is reduced and the disk becomes more responsive, there is a transition from a regime of heating in the inner regions of the disk through the inner Lindblad resonance to one of radial migration of near-circular orbits via the corotation resonance in the intermediate regions of the disk. The formalism developed here provides the ideal framework in which to study the long-term evolution of all kinds of stellar disks.

  5. Star-planet interactions. IV. Possibility of detecting the orbit-shrinking of a planet around a red giant

    NASA Astrophysics Data System (ADS)

    Meynet, Georges; Eggenberger, Patrick; Privitera, Giovanni; Georgy, Cyril; Ekström, Sylvia; Alibert, Yann; Lovis, Christophe

    2017-06-01

    The surface rotations of some red giants are so fast that they must have been spun up by tidal interaction with a close companion, either another star, a brown dwarf, or a planet. We focus here on the case of red giants that are spun up by tidal interaction with a planet. When the distance between the planet and the star decreases, the spin period of the star decreases, the orbital period of the planet decreases, and the reflex motion of the star increases. We study the change rate of these three quantities when the circular orbit of a planet of 15 MJ that initially orbits a 2 M⊙ star at 1 au shrinks under the action of tidal forces during the red giant phase. We use stellar evolution models coupled with computations of the orbital evolution of the planet, which allows us to follow the exchanges of angular momentum between the star and the orbit in a consistent way. We obtain that the reflex motion of the red giant star increases by more than 1 m s-1 per year in the last 40 yr before the planet engulfment. During this phase, the reflex motion of the star is between 660 and 710 m s-1. The spin period of the star increases by more than about 10 min per year in the last 3000 yr before engulfment. During this period, the spin period of the star is shorter than 0.7 yr. During this same period, the variation in orbital period, which is shorter than 0.18 yr, is on the same order of magnitude. Changes in reflex-motion and spin velocities are very small and thus most likely out of reach of being observed. The most promising way of detecting this effect is through observations of transiting planets, that is, through changes of the beginning or end of the transit. For the relatively long orbital periods expected around red giants, long observing runs of typically a few years are needed. Interesting star-planet systems that currently are in this stage of orbit-shrinking would be red giants with fast rotation (above typically 4-5 km s-1), a low surface gravity (log g lower

  6. Harmonic trap resonance enhanced synthetic atomic spin-orbit coupling.

    PubMed

    Wu, Ling-Na; Luo, Xin-Yu; Xu, Zhi-Fang; Ueda, Masahito; Wang, Ruquan; You, L

    2017-04-27

    Spin-orbit coupling (SOC) plays an essential role in many exotic and interesting phenomena in condensed matter physics. In neutral-atom-based quantum simulations, synthetic SOC constitutes a key enabling element. The strength of SOC realized so far is limited by various reasons or constraints. This work reports tunable SOC synthesized with a gradient magnetic field (GMF) for atoms in a harmonic trap. Nearly ten-fold enhancement is observed when the GMF is modulated near the harmonic-trap resonance in comparison with the free-space situation. A theory is developed that well explains the experimental results. Our work offers a clear physical insight into and analytical understanding of how to tune the strength of atomic SOC synthesized with GMF using harmonic trap resonance.

  7. Harmonic trap resonance enhanced synthetic atomic spin-orbit coupling

    PubMed Central

    Wu, Ling-Na; Luo, Xin-Yu; Xu, Zhi-Fang; Ueda, Masahito; Wang, Ruquan; You, L.

    2017-01-01

    Spin-orbit coupling (SOC) plays an essential role in many exotic and interesting phenomena in condensed matter physics. In neutral-atom-based quantum simulations, synthetic SOC constitutes a key enabling element. The strength of SOC realized so far is limited by various reasons or constraints. This work reports tunable SOC synthesized with a gradient magnetic field (GMF) for atoms in a harmonic trap. Nearly ten-fold enhancement is observed when the GMF is modulated near the harmonic-trap resonance in comparison with the free-space situation. A theory is developed that well explains the experimental results. Our work offers a clear physical insight into and analytical understanding of how to tune the strength of atomic SOC synthesized with GMF using harmonic trap resonance. PMID:28447670

  8. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Escher, J. E.; Arbanas, G.

    2014-04-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5-20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,γ)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,γ)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  9. Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances

    SciTech Connect

    Thompson, I J; Escher, Jutta E; Arbanas, Goran

    2013-01-01

    Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.

  10. Statistical Assignment of Neutron Orbital Angular Momentum to a Resonance

    SciTech Connect

    Oh, Soo-Youl; Chang, Jonghwa; Leal, Luiz C.

    2004-09-15

    We have derived formulas in a general form for suggesting the neutron orbital angular momentum quantum number l to each neutron resonance if it is not identified experimentally. By assuming the (2J + 1) law of level density, these general formulas are reduced to the formulas found in previous works. The suggestion of l is based on the probability that a resonance having a certain value of g{gamma}{sub n} is an l-wave resonance. The probability is calculated from the Bayes theorem on conditional probability. For each l, the probability density function (pdf) of g{gamma}{sub n} was derived from the {chi}{sup 2} distribution proposed by Porter and Thomas. The pdf takes into account two possible channel spins that result in the same total spin for a given l larger than zero. Meanwhile, regardless of the resolution of measurement, we suggest adopting the level density as the prior probability in the Bayesian approach, as Gyulassy et al. did. As a sample problem, we presented the result of l-assignment for {sup 109}Ag resonances. The SUGGEL code, in which the methodology is incorporated, correctly assigned l's for 67 among 70 resonances for which l's had been determined experimentally. The other test for {sup 27}Al showed the applicability of the code as a preanalysis tool, even though such applicability is limited to a certain extent for light nuclides. The use of the code SUGGEL is expected to reduce the number of repeated runs of a fitting code such as SAMMY, thus reducing time and effort for the extraction of resonance parameters from measurements.

  11. Orbital angular momentum analysis for giant spin splitting in solids and nanostructures.

    PubMed

    Oh, Sehoon; Choi, Hyoung Joon

    2017-05-17

    Giant spin splitting (GSS) of electronic bands, which is several orders of magnitude greater than the standard Rashba effect has been observed in various systems including noble-metal surfaces and thin films of transition-metal dichalcogenides. Previous studies reported that orbital angular momentum (OAM) is not quenched in some GSS materials and that the atomic spin-orbit interaction (SOI) generates spin splitting in some solid states via the interorbital hopping. Although the unquenched OAM may be closely related to the interorbital hopping, their relationship is hardly studied in the aspect of using the unquenched OAM as a control parameter of GSS. Here, we analyze OAM in GSS materials by using the interorbital-hopping mechanism and first-principles calculations. We report that the interatomic hopping between different-parity orbitals, which is generated by specific broken mirror symmetry, produces k-dependent OAM, resulting in valley-dependent GSS in WSe2 monolayer, Rashba-type GSS in Au (111) surface, and Dresselhaus-type GSS in bulk HgTe. We also demonstrate systematic control of OAM by pressure, external fields, and substrates, thereby controlling the spin splitting, and discuss the temperature dependence of OAM. Our results provide a simplified picture for systematic design and control of GSS materials.

  12. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Unruh, Y. C.; Koskinen, T. T.; Sanz-Forcada, J.

    2015-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet's neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun).

  13. Comparative orbital evolution of transient Uranian co-orbitals: exploring the role of ephemeral multibody mean motion resonances

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2014-07-01

    Uranus has three known co-orbitals: 83982 Crantor (2002 GO9), 2010 EU65 and 2011 QF99. All of them were captured in their current resonant state relatively recently. Here, we perform a comparative analysis of the orbital evolution of these transient co-orbitals to understand better how they got captured in the first place and what makes them dynamically unstable. We also look for additional temporary Uranian co-orbital candidates among known objects. Our N-body simulations show that the long-term stability of 2011 QF99 is controlled by Jupiter and Neptune; it briefly enters the 1:7 mean motion resonance with Jupiter and the 2:1 with Neptune before becoming a Trojan and prior to leaving its tadpole orbit. During these ephemeral two-body mean motion resonance episodes, apsidal corotation resonances are also observed. For known co-orbitals, Saturn is the current source of the main destabilizing force but this is not enough to eject a minor body from the 1:1 commensurability with Uranus. These objects must enter mean motion resonances with Jupiter and Neptune in order to be captured or become passing Centaurs. Asteroid 2010 EU65, a probable visitor from the Oort cloud, may have been stable for several Myr due to its comparatively low eccentricity. Additionally, we propose 2002 VG131 as the first transient quasi-satellite candidate of Uranus. Asteroid 1999 HD12 may signal the edge of Uranus' co-orbital region. Transient Uranian co-orbitals are often submitted to complex multibody ephemeral mean motion resonances that trigger the switching between resonant co-orbital states, making them dynamically unstable. In addition, we show that the orbital properties and discovery circumstances of known objects can be used to outline a practical strategy by which additional Uranus' co-orbitals may be found.

  14. Kepler-432 b: a massive planet in a highly eccentric orbit transiting a red giant

    NASA Astrophysics Data System (ADS)

    Ciceri, S.; Lillo-Box, J.; Southworth, J.; Mancini, L.; Henning, Th.; Barrado, D.

    2015-01-01

    We report the first disclosure of the planetary nature of Kepler-432 b (aka Kepler object of interest KOI-1299.01). We accurately constrained its mass and eccentricity by high-precision radial velocity measurements obtained with the CAFE spectrograph at the CAHA 2.2-m telescope. By simultaneously fitting these new data and Kepler photometry, we found that Kepler-432 b is a dense transiting exoplanet with a mass of Mp = 4.87 ± 0.48MJup and radius of Rp = 1.120 ± 0.036RJup. The planet revolves every 52.5 d around a K giant star that ascends the red giant branch, and it moves on a highly eccentric orbit with e = 0.535 ± 0.030. By analysing two near-IR high-resolution images, we found that a star is located at 1.1'' from Kepler-432, but it is too faint to cause significant effects on the transit depth. Together with Kepler-56 and Kepler-91, Kepler-432 occupies an almost-desert region of parameter space, which is important for constraining the evolutionary processes of planetary systems. RV data (Table A.1) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/L5

  15. Zero age planetary orbit of gas giant planets revisited: reinforcement of the link with stellar metallicity

    NASA Astrophysics Data System (ADS)

    Pinotti, R.; Boechat-Roberty, H. M.; Porto de Mello, G. F.

    2017-01-01

    In 2005, we suggested a relation between the optimal locus of gas giant planet formation, prior to migration, and the metallicity of the host star, based on the core accretion model, and radial profiles of dust surface density and gas temperature. At that time, less than 200 extrasolar planets were known, limiting the scope of our analysis. Here, we take into account the expanded statistics allowed by new discoveries, in order to check the validity of some premises. We compare predictions with the present available data and results for different stellar mass ranges. We find that the zero age planetary orbit (ZAPO) hypothesis continues to hold after an order of magnitude increase in discovered planets. In particular, the prediction that metal-poor stars harbour planets with average radii distinctively lower than metal-rich ones is still evident in the statistics, and cannot be explained by chaotic planetary formation mechanisms involving migration and gravitational interaction between planets. The ZAPO hypothesis predicts that in metal-poor stars the planets are formed near their host stars; as a consequence, they are more frequently engulfed by the stars during the migration process or stripped of their gaseous envelops. The depleted number of gas giant planets around metal-poor stars would then be the result of the synergy between low formation probability, as predicted by the core accretion model, and high destruction probability, for the ones that are formed.

  16. Giant Optical Polarization Rotation Induced by Spin-Orbit Coupling in Polarons

    NASA Astrophysics Data System (ADS)

    Casals, Blai; Cichelero, Rafael; García Fernández, Pablo; Junquera, Javier; Pesquera, David; Campoy-Quiles, Mariano; Infante, Ingrid C.; Sánchez, Florencio; Fontcuberta, Josep; Herranz, Gervasi

    2016-07-01

    We have uncovered a giant gyrotropic magneto-optical response for doped ferromagnetic manganite La2 /3Ca1 /3MnO3 around the near room-temperature paramagnetic-to-ferromagnetic transition. At odds with current wisdom, where this response is usually assumed to be fundamentally fixed by the electronic band structure, we point to the presence of small polarons as the driving force for this unexpected phenomenon. We explain the observed properties by the intricate interplay of mobility, Jahn-Teller effect, and spin-orbit coupling of small polarons. As magnetic polarons are ubiquitously inherent to many strongly correlated systems, our results provide an original, general pathway towards the generation of magnetic-responsive gigantic gyrotropic responses that may open novel avenues for magnetoelectric coupling beyond the conventional modulation of magnetization.

  17. Giant resonance tuning of micro and nanomechanical oscillators

    NASA Astrophysics Data System (ADS)

    Vitorino, Miguel V.; Carpentier, Simon; Panzarella, Alain; Rodrigues, Mario S.; Costa, Luca

    2015-01-01

    We present a method to tune the resonance frequency and the Q-factor of micro and nano-metric mechanical oscillators. A counteracting loop drives a capacitive force applied to the oscillator. The proportional and differential gains are used to shift the resonance frequency up to 75% and to tune the Q-factor of the oscillator, by changing its effective stiffness and damping ratio. The oscillator position is monitored in a large bandwidth with a fiber-optic based interferometer. We applied this simple operational scheme with different oscillators for modifying easily their dynamical properties. Compared to alternative methods requiring external fields, our method can either increase or decrease the resonance frequency in a frequency range much more extended. This opens up a wide range of applications, from force sensors with extremely low elastic constants but high quality factor to tunable energy harvesters or to high-frequency tuning of radio frequency filters. The control scheme can work in different media, and is then suitable to be applied to biological sensors and actuators.

  18. THE ANGLO-AUSTRALIAN PLANET SEARCH. XXI. A GAS-GIANT PLANET IN A ONE YEAR ORBIT AND THE HABITABILITY OF GAS-GIANT SATELLITES

    SciTech Connect

    Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy A.; Horner, J.; Butler, R. Paul; Jones, Hugh R. A.; O'Toole, Simon J.; Carter, Brad D.

    2011-05-01

    We have detected the Doppler signature of a gas-giant exoplanet orbiting the star HD 38283, in an eccentric orbit with a period of almost exactly one year (P = 363.2 {+-} 1.6 d, m sin i = 0.34 {+-} 0.02 M{sub Jup}, e = 0.41 {+-} 0.16). The detection of a planet with period very close to one year critically relied on year-round observation of this circumpolar star. Discovering a planet in a 1 AU orbit around a G dwarf star has prompted us to look more closely at the question of the habitability of the satellites of such planets. Regular satellites orbit all the giant planets in our solar system, suggesting that their formation is a natural by-product of the planet formation process. There is no reason for exomoon formation not to be similarly likely in exoplanetary systems. Moreover, our current understanding of that formation process does not preclude satellite formation in systems where gas giants undergo migration from their formation locations into the terrestrial planet habitable zone. Indeed, regular satellite formation and Type II migration are both linked to the clearing of a gap in the protoplanetary disk by a planet, and so may be inextricably linked. Migration would also multiply the chances of capturing both irregular satellites and Trojan companions sufficiently massive to be habitable. The habitability of such exomoons and exo-Trojans will critically depend on their mass, whether or not they host a magnetosphere, and (for the exomoon case) their orbital radius around the host exoplanet.

  19. Inner-shell photodetachment from N i- : A giant Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Dumitriu, I.; Bilodeau, R. C.; Gorczyca, T. W.; Walter, C. W.; Gibson, N. D.; Rolles, D.; Pešić, Z. D.; Aguilar, A.; Berrah, N.

    2017-08-01

    Inner-shell photodetachment from N i-([Ar ] 3 d94 s2) leading to N i+,N i2 + , and N i3 + ion production was studied near and above the 3 p excitation region, in the 60-90 eV photon energy range, using a merged ion-photon beam technique. The absolute photodetachment cross section of N i- leading to N i+ ion production was measured. The 3 p →3 d photoexcitation in N i- gives rise to a giant Feshbach resonance. In the near-threshold region, a Fano profile, modified by a Wigner s -wave (l =0 ) threshold law, accurately fits the N i- single-photodetachment cross section. A lower-order R -matrix calculation shows overall agreement with essential features of the experimental data, confirming the nature of the strong, asymmetric Fano profile of the giant 3 p →3 d photoexcitation-autodetachment resonance in N i- .

  20. Fluxes and spectra of quasimonochromatic annihilation photons for studying E1 giant resonances in nuclei

    SciTech Connect

    Dzhilavyan, L. Z.

    2014-12-15

    The fluxes and spectra of quasimonochromatic photons originating from the in-flight annihilation of positrons interacting with electrons of targets are analyzed in the energy region characteristic of the excitation of E1 giant resonances in nuclei. Targets of small thickness and low atomic number are used. The dependences of the spectra on the energy and angle (and their scatter) for positrons incident to the target, on the collimation angle for photons, and on the target thickness are studied.

  1. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-12-31

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus `motionally narrowed` GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following {sup 58}Ni {plus} {sup 92}Zr fusion. 22 refs.

  2. Recent results on giant dipole resonance decays in highly excited nuclei

    SciTech Connect

    Snover, K.A.

    1991-01-01

    Some recent results on Giant Dipole Resonance (GDR) decays in highly excited, equilibrated nuclei, are discussed based primarily on work done at Seattle. Four sections address the following topics: oblate shapes of rotating, highly excited Zr--Mo nuclei; adiabatic versus motionally narrowed' GDR decay; large spin-driven deformations observed in hot medium-mass nuclei; and search for entrance channel effects in GDR decay following [sup 58]Ni [plus] [sup 92]Zr fusion. 22 refs.

  3. Giant cell angiofibroma, a variant of solitary fibrous tumor, of the orbit in a 16-year-old girl.

    PubMed

    Demirci, Hakan; Shields, Carol L; Eagle, Ralph C; Shields, Jerry A

    2009-01-01

    A 16-year-old girl presented with diplopia and gradual-onset, painless proptosis of the left eye. Orbital CT showed a well-circumscribed, enhancing, extraconal mass in the superior orbit, and the surgical excision was performed. Histopathology was interpreted as capillary hemangioma. Five years later, her symptoms recurred, and she was referred to the Oncology Service, Wills Eye Institute. Repeat orbital MRI showed a well-defined, extraconal mass with loculated areas of enhancement in the left orbit superonasally. Complete surgical excision was performed. Histopathologic examination showed benign, patternless spindle-cell proliferation with prominent intrinsic vascularity and multinucleated giant cells, consistent with giant cell angiofibroma, a variant of solitary fibrous tumor. There was intense immunoreactivity for CD34. After 20 months follow-up, there was no recurrence or development of metastasis. Giant cell angiofibroma, a variant of solitary fibrous tumor, is a rare orbital tumor that presents as a well-circumscribed, enhancing mass and can be found in children.

  4. Possible detection of two giant extrasolar planets orbiting the eclipsing polar UZ Fornacis

    NASA Astrophysics Data System (ADS)

    Potter, Stephen B.; Romero-Colmenero, Encarni; Ramsay, Gavin; Crawford, Steven; Gulbis, Amanda; Barway, Sudhanshu; Zietsman, Ewald; Kotze, Marissa; Buckley, David A. H.; O'Donoghue, Darragh; Siegmund, O. H. W.; McPhate, J.; Welsh, B. Y.; Vallerga, John

    2011-09-01

    We present new high-speed, multi-observatory, multi-instrument photometry of the eclipsing polar UZ For in order to measure precise mid-eclipse times with the aim of detecting any orbital period variations. When combined with published eclipse times and archival data spanning ˜27 years, we detect departures from a linear and quadratic trend of ˜60 s. The departures are strongly suggestive of two cyclic variations of 16(3) and 5.25(25) years. The two favoured mechanisms to drive the periodicities are either two giant extrasolar planets as companions to the binary [with minimum masses of 6.3(1.5) and 7.7(1.2) MJup) or a magnetic cycle mechanism (e.g. Applegate's mechanism) of the secondary star. Applegate's mechanism would require the entire radiant energy output of the secondary and would therefore seem to be the least likely of the two, barring any further refinements in the effect of magnetic fields (e.g. those of Lanza et al.). The two-planet model can provide realistic solutions but it does not quite capture all of the eclipse times measurements. A highly eccentric orbit for the outer planet would fit the data nicely, but we find that such a solution would be unstable. It is also possible that the periodicities are driven by some combination of both mechanisms. Further observations of this system are encouraged. Based on observations made with the Southern African Large Telescope (SALT)

  5. Superconducting quantum spin-Hall systems with giant orbital g-factors

    NASA Astrophysics Data System (ADS)

    Hankiewicz, Ewelina; Reinthaler, Rolf; Tkachov, Grigory

    Topological aspects of superconductivity in quantum spin-Hall systems (QSHSs) such as thin layers of three-dimensional topological insulators (3D Tis) or two-dimensional Tis are in the focus of current research. Here, we describe a novel superconducting quantum spin-Hall effect (quantum spin Hall system in the proximity to the s-wave superconductor and in the orbital in-plane magnetic field), which is protected against elastic backscattering by combined time-reversal and particle-hole symmetry. This effect is characterized by spin-polarized edge states, which can be manipulated in weak magnetic fields due to a giant effective orbital g-factor, allowing the generation of spin currents. The phenomenon provides a novel solution to the outstanding challenge of detecting the spin-polarization of the edge states. Here we propose the detection of the edge polarization in the three-terminal junction using unusual transport properties of superconducting quantum Hall-effect: a non-monotonic excess current and a zero-bias conductance splitting. We thank for the financial support the German Science Foundation (DFG), Grants No HA 5893/4-1 within SPP 1666, HA5893/5-2 within FOR1162 and TK60/1-1 (G.T.), as well the ENB graduate school ``Topological insulators''.

  6. COUPLED EVOLUTION WITH TIDES OF THE RADIUS AND ORBIT OF TRANSITING GIANT PLANETS: GENERAL RESULTS

    SciTech Connect

    Ibgui, Laurent; Burrows, Adam E-mail: burrows@astro.princeton.edu

    2009-08-01

    Some transiting extrasolar giant planets (EGPs) have measured radii larger than predicted by the standard theory. In this paper, we explore the possibility that an earlier episode of tidal heating can explain such radius anomalies and apply the formalism we develop to HD 209458b as an example. We find that for strong enough tides the planet's radius can undergo a transient phase of inflation that temporarily interrupts canonical, monotonic shrinking due to radiative losses. Importantly, an earlier episode of tidal heating can result in a planet with an inflated radius, even though its orbit has nearly circularized. Moreover, we confirm that at late times, and under some circumstances, by raising tides on the star itself a planet can spiral into its host. We note that a 3x to 10x solar planet atmospheric opacity with no tidal heating is sufficient to explain the observed radius of HD 209458b. However, our model demonstrates that with an earlier phase of episodic tidal heating, we can fit the observed radius of HD 209458b even with lower (solar) atmospheric opacities. This work demonstrates that, if a planet is left with an appreciable eccentricity after early inward migration and/or dynamical interaction, coupling radius and orbit evolution in a consistent fashion that includes tidal heating, stellar irradiation, and detailed model atmospheres might offer a generic solution to the inflated radius puzzle for transiting EGPs such as WASP-12b, TrES-4, and WASP-6b.

  7. a Measurement of the Isovector Giant Quadrupole Resonance in LEAD-208 Using Elastic Polarized Photon Scattering

    NASA Astrophysics Data System (ADS)

    Dale, Daniel Stanton

    This experiment used highly polarized tagged photons to measure polarization asymmetries for elastic scattering in ^{208}Pb in the energy region of the isovector giant quadrupole resonance (IVGQR). These measurements were performed at excitation energies between 16 and 30 MeV. Photons with enhanced linear polarization were obtained from an off-axis tagged photon beam by making a kinematic selection on the post-bremsstrahlung electrons. Scattered photons were detected in two large NaI(Tl) crystals. The polarization asymmetries clearly show the signature for interference between the isovector giant quadrupole resonance and the underlying electric dipole strength. The gross features of the IVGQR strength distribution were obtained in a relatively model independent manner. An isovector giant quadrupole resonance was observed at an excitation energy of 20.1 +/- 0.5 MeV, with a width of 6.3 +/- 0.5 MeV, and an energy weighted strength of 1.4 +/- 0.3 isovector sum rule units.

  8. First measurement of isoscalar giant resonances in a stored-beam experiment

    NASA Astrophysics Data System (ADS)

    Zamora, J. C.; Aumann, T.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, Th.; Kuilman, M.; Litvinov, S.; Litvinov, Yu. A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; von Schmid, M.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zenihiro, J.

    2016-12-01

    A new technique developed for measuring nuclear reactions at low momentum transfer with stored beams in inverse kinematics was successfully used to study isoscalar giant resonances. The experiment was carried out at the experimental heavy-ion storage ring (ESR) at the GSI facility using a stored 58Ni beam at 100 MeV/u and an internal helium gas-jet target. In these measurements, inelastically scattered α-recoils at very forward center-of-mass angles (θcm ≤ 1.5 °) were detected with a dedicated setup, including ultra-high vacuum compatible detectors. Experimental results indicate a dominant contribution of the isoscalar giant monopole resonance at this very forward angular range. It was found that the monopole contribution exhausts 79-11+12% of the energy-weighted sum rule (EWSR), which agrees with measurements performed in normal kinematics. This opens up the opportunity to investigate the giant resonances in a large domain of unstable and exotic nuclei in the near future. It is a fundamental milestone towards new nuclear reaction studies with stored ion beams.

  9. Trapped 173Yb Fermi gas across an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2017-01-01

    Starting with the two-band description of an orbital Feshbach resonance, we study superfluid properties of a trapped 173Yb Fermi gas under the assumptions of a local-density approximation for the trapping potential and a mean-field approximation for the intraband Cooper pairings. In particular, we investigate the competition and interplay between the pair-breaking effect that is caused by the interband detuning energy, and the pair-breaking and thermal-broadening effects that are simultaneously caused by the temperature. We predict several experimental signatures that are directly caused by this interplay including a spatial separation of superfluid and normal phases within the trap, and could play decisive roles in probing two-band superfluidity in these systems.

  10. Earth-orbiting resonant-mass gravitational wave detectors

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1989-01-01

    Earth-based gravitational wave detectors suffer from the need to support the large antenna masses against the earth's gravity without transmitting a significant amount of seismic noise. Passive vibration isolation is difficult to achieve below 1 Hz on the earth. Vibration-free space environment thus gives an opportunity to extend the frequency window of gravitational wave detection to ultralow frequencies. The weightless condition of a space laboratory also enables construction of a highly symmetric multimode antenna which is capable of resolving the direction of the source and the polarization of the incoming wave without resorting to multiantenna coincidence. Two types of earth-orbiting resonant-mass gravitational wave detectors are considered. One is a skyhook gravitational wave detector, proposed by Braginsky and Thorne (1985). The other is a spherical detector, proposed by Forward (1971) and analyzed by Wagoner and Paik (1976).

  11. INTERACTION OF A GIANT PLANET IN AN INCLINED ORBIT WITH A CIRCUMSTELLAR DISK

    SciTech Connect

    Marzari, F.; Nelson, Andrew F. E-mail: andy.nelson@lanl.go

    2009-11-10

    We investigate the dynamical evolution of a Jovian-mass planet injected into an orbit highly inclined with respect to its nesting gaseous disk. Planet-planet scattering induced by convergent planetary migration and mean motion resonances may push a planet into such an out-of-plane configuration with inclinations as large as 20{sup 0}-30{sup 0}. In this scenario, the tidal interaction of the planet with the disk is more complex and, in addition to the usual Lindblad and corotation resonances, it also involves inclination resonances responsible for bending waves. We have performed three-dimensional hydrodynamic simulations of the disk and of its interactions with the planet with a smoothed particle hydrodynamics code. A main result is that the initial large eccentricity and inclination of the planetary orbit are rapidly damped on a timescale of the order of 10{sup 3} yr, almost independently of the initial semimajor axis and eccentricity of the planet. The disk is warped in response to the planet perturbations and it precesses. Inward migration also occurs when the planet is inclined, and it has a drift rate that is intermediate between type I and type II migration. The planet is not able to open a gap until its inclination becomes lower than approx10{sup 0}, when it also begins to accrete a significant amount of mass from the disk.

  12. Skyrme-Landau parameterization of effective interactions (II). Self-consistent description of giant multipole resonances

    NASA Astrophysics Data System (ADS)

    Liu, Keh-Fei; Luo, Hongde; Ma, Zhongyu; Shen, Qingbiao

    1991-11-01

    The positions and the transition strengths of giant multipole resonances (including electric, magnetic, Fermi and Gamow-Teller transitions of the spherical nuclei 16O, 40Ca, 48Ca, 90Zr, 208Pb) are calculated using the random phase approximation based on the Hartree-Fock ground states with our new extended Skyrme-Landau interaction - SL1. The method of calculating Green function in coordinate space is extended to included spin dependence; this makes it possible to calculate M1 and Gamow-Teller transitions. The predicted resonance positions agree well with the experimental results. The Thouless sum rules are checked to within 10-15% in most cases.

  13. Investigating the Orbital Period Valley of Giant Planets in Kepler Data

    NASA Astrophysics Data System (ADS)

    Thomas, Brianna P.; Birkby, Jayne L.

    2016-01-01

    Transit light curves contain a wealth of information about the basic properties of a planet, such as its radius, semi-major axis, and orbital period. For the latter property, there is a distinct lack of planets with periods between 10 to 100 days. This gap could be caused by something as simple as observational bias, or as prominent as planetary formation or migration. Here, we report an investigation into the atmosphere of planets within this orbital period valley, to search for differences that may indicate a different formation mechanism or migration path to those outside of it. We do this by searching for the secondary eclipse of planets in the valley in order to measure their albedos. We determined an optimal target for this: KOI-366 b (P ~ 75 days). However, we find that despite the exquisite precision of Kepler data, it cannot constrain the albedo for this long-orbit planet candidate. We measure a 1σ upper limit on the geometric albedo of Ag,1σ ≤ 2.0. We highlight that additional scatter in the light curve is likely caused by a ~ 2-day pulsation of the giant host star, and that further data is required to measure the secondary eclipse. KOI-366 is one of the best suited of all host stars with long period exoplanet candidates for follow-up due to its relatively bright magnitude (Kp = 11.7 mag), but the full investigation of the reflective properties of long period planets may require space-based observations from future instruments, such as WFIRST, that will be more sensitive to objects further away from their host stars. This work was supported in part by the NSF REU and DoD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

  14. Spacecraft transfer trajectory design exploiting resonant orbits in multi-body environments

    NASA Astrophysics Data System (ADS)

    Vaquero Escribano, Tatiana Mar

    Historically, resonant orbits have been employed in mission design for multiple planetary flyby trajectories and, more recently, as a source of long-term orbital stability. For instance, in support of a mission concept in NASA's Outer Planets Program, the Jupiter Europa Orbiter spacecraft is designed to encounter two different resonances with Europa during the 'endgame' phase, leading to Europa orbit insertion on the final pass. In 2011, the Interstellar Boundary Explorer spacecraft was inserted into a stable out-of-plane lunar-resonant orbit, the first of this type for a spacecraft in a long-term Earth orbit. However, resonant orbits have not yet been significantly explored as transfer mechanisms between non-resonant orbits in multi-body systems. This research effort focuses on incorporating resonant orbits into the design process to potentially enable the construction of more efficient or even novel transfer scenarios. Thus, the goals in this investigation are twofold: i) to expand the orbit architecture in multi-body environments by cataloging families of resonant orbits, and ii) to assess the role of such families in the design of transfer trajectories with specific patterns and itineraries. The benefits and advantages of employing resonant orbits in the design process are demonstrated through a variety of astrodynamics applications in several multi-body systems. In the Earth-Moon system, locally optimal transfer trajectories from low Earth orbit to selected libration point orbits are designed by leveraging conic arcs and invariant manifolds associated with resonant orbits. Resonant manifolds in the Earth-Moon system offer trajectories that tour the entire space within reasonable time intervals, facilitating the design of libration point orbit tours as well as Earth-Moon cyclers. In the Saturnian system, natural transitions between resonant and libration point orbits are sought and the problem of accessing Hyperion from orbits that are resonant with Titan is

  15. Quantum defect theory for the orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Cheng, Yanting; Zhang, Ren; Zhang, Peng

    2017-01-01

    In the ultracold gases of alkali-earth-metal-like atoms, a new type of Feshbach resonance, i.e., the orbital Feshbach resonance (OFR), has been proposed and experimentally observed in ultracold 173Yb atoms [R. Zhang et al., Phys. Rev. Lett. 115, 135301 (2015), 10.1103/PhysRevLett.115.135301]. When the OFR of the 173Yb atoms occurs, the energy gap between the open and closed channels is smaller by two orders of magnitude than the van der Waals energy. As a result, quantitative accurate results for the low-energy two-body problems can be obtained via multichannel quantum defect theory (MQDT), which is based on the exact solution of the Schrödinger equation with the van der Waals potential. In this paper we use MQDT to calculate the two-atom scattering length, effective range, and binding energy of two-body bound states for the systems with OFR. With these results we further study the clock-transition spectrum for the two-body bound states, which can be used to experimentally measure the binding energy. Our results are helpful for the quantitative theoretical and experimental research for the ultracold gases of alkali-earth-metal-like atoms with OFR.

  16. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  17. The role of solar apsidal resonance in the evolution of geostationary transfer orbits

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Gurfil, Pini

    2017-04-01

    Subjected to multiple perturbations and their complex interplay, the dynamical evolution of geostationary transfer orbits (GTOs) is sensitive to initial conditions and model parameters. As one of the most remarkable outcomes of multiple perturbations, the solar apsidal resonance, i.e., the 1:1 resonance between the solar orbital motion and the rotation of the orbital apsidal line caused by Earth's oblateness, is an important feature of the GTO evolution. It occurs when the semi-major axis is reduced by the atmospheric drag to the critical value, with which the rotation of the orbital apsidal line is commensurate with the solar orbital motion. In the present paper, we show that the solar apsidal resonance plays an important role in the evolution and decay of GTOs. To do so, we first explain the underlying dynamical mechanism of the solar apsidal resonance, which is the U-turn of the solar azimuth with respect to the orbital apsidal line and the resulting monotonic increase or decrease of the eccentricity. The resonance is then classified into three kinds, and their causes and effects are analyzed. Previous studies have regarded the solar apsidal resonance as a mechanism extending the orbital lifetime. However, we find that in most cases the GTO will re-enter Earth's atmosphere soon or only several years after the resonance, and so the solar apsidal resonance can be regarded as the prelude to the GTO final re-entry. Finally, the sensitivity of orbital dynamics is studied through numerical simulations. It is shown that the high sensitivity of the dynamics can be attributed to the resonance, which is difficult to predict or manage. With the initial state, it is possible to predict the orbit evolution of GTO only before the solar apsidal resonance. To predict the lifetime of GTO, new measurements on the orbit after the resonance are required.

  18. Limiting Temperatures for Collective Motion: The Giant Dipole Resonance in Very Hot Nuclei

    NASA Astrophysics Data System (ADS)

    Piattelli, P.; Blumenfeld, Y.; Le Faou, J. H.; Suomijärvi, T.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Loukachine, K.; Maiolino, C.; Migneco, E.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.

    1996-02-01

    The study of the Giant Dipole Resonance (GDR) excited in hot nuclei allows to follow the evolution of collective motion with increasing nuclear temperature. A brief review of the characteristics of the GDR excited in nuclei with excitation energies up to ˜ 500 MeV is given. The results of recent experiments in which very hot nuclei have been studied with a nearly 4π detector are presented. Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei of mass around 115 and excitation energies above 300 MeV, formed in the 36Ar + 90Zr at 27 MeV/u and 36Ar + 98Mo at 37 MeV/u reactions, have been measured with the MEDEA multidetector. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei has been found to be independent of excitation energy and bombarding energy. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures. The best agreement with the data is obtained by assuming a cut-off of the resonance γ-emission above an excitation energy of 250 MeV.

  19. Giant enhancement of second harmonic generation by engineering double plasmonic resonances at nanoscale.

    PubMed

    Ren, Ming-Liang; Liu, Si-Yun; Wang, Ben-Li; Chen, Bao-Qin; Li, Jiafang; Li, Zhi-Yuan

    2014-11-17

    We have investigated second harmonic generation (SHG) from Ag-coated LiNbO₃(LN) core-shell nanocuboids and found that giant SHG can occur via deliberately designed double plasmonic resonances. By controlling the aspect ratio, we can tune fundamental wave (FW) and SHG signal to match the longitudinal and transverse plasmonic modes simultaneously, and achieve giant enhancement of SHG by 3 × 10(5) in comparison to a bare LN nanocuboid and by about one order of magnitude to the case adopting only single plasmonic resonance. The underlying key physics is that the double-resonance nanoparticle enables greatly enhanced trapping and harvesting of incident FW energy, efficient internal transfer of optical energy from FW to the SHG signal, and much improved power to transport the SHG energy from the nanoparticle to the far-field region. The proposed double-resonance nanostructure can serve as an efficient subwavelength coherent light source through SHG and enable flexible engineering of light-matter interaction at nanoscale.

  20. Measurement of γ-rays from giant resonances of 12 C and 16 O

    NASA Astrophysics Data System (ADS)

    Ou, Iwa; RCNP E398 Collaboration

    2014-09-01

    Oxygen and carbon are the most common targets in neutrino experiments such as Super Kamiokande (H2O) and Daya-Bay (liquid scintillator). The γ-ray production from neutral current (NC) ν-16 O and ν-12 C (inelastic scattering) is applicable to the measurement of core-collapse supernova neutrinos. A core-collapse supernova emits all type of neutrino with mean energy of 10--20 MeV. In most neutrino detectors, the main signal is charged current event which can detect electron type neutrino only. While in NC event, mu and tau type neutrino can be detected. Therefore NC event is very important for the understanding of supernova mechanism. NC events will be identified by detecting the γ-rays emitted from giant resonances of 16O and 12C. But there is no experimental data for γ-ray production from these resonances. Our goal is to measure the γ-ray emission probability and energy spectrum from these resonances. We carried out an experiment to measure γ-rays from giant resonance of 16O and 12C using 400 MeV proton beam, magnetic spectrometer ``Grand Raiden'' and NaI(Tl) γ-detecter at Research Center for Nuclear Physics in Osaka University. In this talk, experimental setup and current analysis status will be presented.

  1. Precise radial velocities of giant stars. IX. HD 59686 Ab: a massive circumstellar planet orbiting a giant star in a 13.6 au eccentric binary system

    NASA Astrophysics Data System (ADS)

    Ortiz, Mauricio; Reffert, Sabine; Trifonov, Trifon; Quirrenbach, Andreas; Mitchell, David S.; Nowak, Grzegorz; Buenzli, Esther; Zimmerman, Neil; Bonnefoy, Mickaël; Skemer, Andy; Defrère, Denis; Lee, Man Hoi; Fischer, Debra A.; Hinz, Philip M.

    2016-10-01

    Context. For over 12 yr, we have carried out a precise radial velocity (RV) survey of a sample of 373 G- and K-giant stars using the Hamilton Échelle Spectrograph at the Lick Observatory. There are, among others, a number of multiple planetary systems in our sample as well as several planetary candidates in stellar binaries. Aims: We aim at detecting and characterizing substellar and stellar companions to the giant star HD 59686 A (HR 2877, HIP 36616). Methods: We obtained high-precision RV measurements of the star HD 59686 A. By fitting a Keplerian model to the periodic changes in the RVs, we can assess the nature of companions in the system. To distinguish between RV variations that are due to non-radial pulsation or stellar spots, we used infrared RVs taken with the CRIRES spectrograph at the Very Large Telescope. Additionally, to characterize the system in more detail, we obtained high-resolution images with LMIRCam at the Large Binocular Telescope. Results: We report the probable discovery of a giant planet with a mass of mp sin i = 6.92-0.24+0.18 MJup orbiting at ap = 1.0860-0.0007+0.0006 au from the giant star HD 59686 A. In addition to the planetary signal, we discovered an eccentric (eB = 0.729-0.003+0.004) binary companion with a mass of mB sin i = 0.5296-0.0008+0.0011 M⊙ orbiting at a close separation from the giant primary with a semi-major axis of aB = 13.56-0.14+0.18 au. Conclusions: The existence of the planet HD 59686 Ab in a tight eccentric binary system severely challenges standard giant planet formation theories and requires substantial improvements to such theories in tight binaries. Otherwise, alternative planet formation scenarios such as second-generation planets or dynamical interactions in an early phase of the system's lifetime need to be seriously considered to better understand the origin of this enigmatic planet. Based on observations collected at the Lick Observatory, University of California.Based on observations collected at the

  2. Double Photon Decay of the Electromagnetically Excited Double Giant Dipole Resonance in LEAD-208

    NASA Astrophysics Data System (ADS)

    Ritman, James Lambrecht

    In this work the electromagnetic excitation of high lying collective states has been studied in relativistic heavy ion collisions. The interaction in peripheral collisions is dominated by the exchange of high energy virtual photons. Heavy systems near 1cdotA GeV produce a virtual photon field that is highly luminous and of sufficiently short duration to enable the multiple excitation of Giant Resonances with high probability. In particular, the double excitation of the Giant Dipole Resonance (GDR) has been studied in this work by measuring the photons emitted in peripheral reactions with the system 1.A GeV ^ {209}Bi on ^{208} Pb. This study concentrated on the photon decay of Coulomb excited collective states. Despite the relatively small ground state gamma-decay branching ratio, investigation of this channel provides several advantages compared to measuring statistical particle decay. The most important advantage is the strong enhancement of E1 transitions with respect to higher multipolarities; therefore, study of gamma-decay provides a highly selective measurement of the GDR. Photons in the Giant Resonance region were measured both as singles and as gamma- gamma pairs. For symmetry reasons the target and projectile nuclei can be mutually Coulomb excited. In order to insure that both photons in the gamma -gamma pairs came from the same nucleus, the large Doppler shift of photons emitted from the moving projectile has been exploited. Appropriate placement of the gamma detectors permitted a complete separation of the GDR photons emitted by either the target or projectile nucleus. This work provides the first experimental evidence of the gamma-gamma decay of the Coulomb excited double GDR (GDR2). The position of the resonance indicates harmonicity of the T_{<} multi-GDR. However, the increase of the GDR2 width over the GDR's width by only about a factor of sqrt{2} is significantly less than expected. Finally, the GDR2 excitation cross section is compared with model

  3. The 15th order resonance on the decaying orbit of TETR-3

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Klosko, S. M.

    1973-01-01

    The orbit of TETR-3 (1971-83B), inclination: 33 deg, passed through resonance with 15th order geopotential terms in February 1972. The resonance caused the orbit inclination to increase by 0.015 deg. Analysis of 48 sets of mean Kepler elements for this satellite in 1971-1972 (across the resonance) has established strong constraints for high degree, 15th order gravitational terms (normalized). This result combined with previous results on high inclination 15th order and other resonant orbits suggests that the coefficients of the gravity field beyond the 16th degree are significantly smaller than Kaula's rule.

  4. Dipole Excitation of Soft and Giant Resonances in 132Sn and neighboring unstable nuclei

    NASA Astrophysics Data System (ADS)

    Boretzky, Konstanze

    2006-04-01

    The evolution of dipole-strength distributions above the one-neutron threshold was investigated for exotic neutron-rich nuclei in a series of experiments using the electromagnetic projectile excitation at beam energies around 500 MeV/u. For halo nuclei, the large observed dipole strength (shown here for 11Be) is explained within the direct-breakup model to be of non-collective character. For neutron-rich oxygen isotopes, the origin of the observed low-lying strength is concluded to be due to single-particle transitions on theoretical grounds. The dipole strength spectra for 130,132Sn exhibit resonance-like structures observed at energies around 10 MeV exhausting a few percent of the Thomas-Reiche-Kuhn (TRK) sum rule, separated clearly from the dominant Giant Dipole Resonance (GDR). The data agree with predictions for a new dipole mode related to the oscillation of excess neutrons versus the core nucleons ("pygmy resonance").

  5. Isoscalar giant resonances for nuclei with mass between 56 and 60

    SciTech Connect

    Lui, Y.-W.; Youngblood, D.H.; Clark, H.L.; Tokimoto, Y.; John, B.

    2006-01-15

    The giant resonance region from 10 MeV giant monopole energy between A=40 and 90 is compared to relativistic and nonrelativistic calculations for interactions with compressibility of nuclear matter K{sub NM}{approx}211-225 MeV.

  6. Giant dipole resonance in very hot nuclei of mass A~=115

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Blumenfeld, Y.; Piattelli, P.; Le Faou, J. H.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1996-05-01

    Gamma rays, light charged particles, and evaporation residues emitted from hot nuclei formed in the 36Ar+90Zr reaction at 27 MeV/nucleon have been measured at the GANIL facility with the 4π barium fluoride multidetector MEDEA. The combination of the residue and particle measurements shows that nuclei with masses around 115 and excitation energies between 350 and 550 MeV are produced. The γ spectra measured in coincidence with the evaporation residues exhibit three components: a low-energy statistical component, a high-energy contribution due to nucleon-nucleon bremsstrahlung during the initial stages of the collision, and a contribution from the decay of the giant dipole resonance built on highly excited states. The characteristics of the bremsstrahlung component are in agreement with previously published systematics. The γ yield from the decay of the giant dipole resonance remains constant over the excitation energy range studied. A comparison with other experiments shows that the N/Z asymmetry in the entrance channel does not affect the γ yield. Statistical calculations performed using the code CASCADE and supposing a fixed width and full sum rule strength for the dipole resonance strongly overpredict the data. The hypothesis of a continuously increasing width of the resonance with temperature gives a better agreement with experiment near the centroid of the resonance but overpredicts the γ spectra at higher energies. The best account of the data is given by assuming a cutoff of γ emission from the resonance above an excitation energy of approximately 250 MeV. This cutoff is discussed in terms of the time necessary to equilibrate the dipole oscillations with the hot compound nucleus. Finally, some evidence is given for a possible new low-energy component of the dipole strength at very high temperatures.

  7. Full-orbit atmospheric characterisation of a gas giant transiting an M dwarf

    NASA Astrophysics Data System (ADS)

    Triaud, Amaury; Gillon, Michael; Anderson, David R.; Maxted, Pierre; Ehrenreich, David; Heng, Kevin; Smith, Alexis M. S.; Queloz, Didier; Collier Cameron, Andrew; Hellier, Coel; Pollacco, Don

    2012-12-01

    The WASP (Wide Angle Search for Planets) consortium has identified a rare gas giant transiting a red dwarf. The combination of the size ratio and brightness contrast, along with the luminosity of the host star means that WASP-80b is one of the most practical target on which we can carry out an atmospheric characterisation. In addition, it gives us an opportunity to study a Jovian planet whose atmosphere is much less irradiated than the usual hot Jupiters. In order to confront theoretical predictions that have been made about heat redistribution and flux penetration in a temperature regime where they have not been tested yet, we aim to use the Spitzer Space telescope to observe and detect a full orbital phase curve. While its very deep transit is favourable to carry out transmission spectroscopy, the contrast between the planet and the star means we will have no issue detecting its emission spectrum. Our Spitzer observations mark the starting point of our campaign to characterise the atmosphere of a warm Jupiter which will lead to the construction of a full spectrum and a measure of its chemical abundances. This data will also be used to seek an additional transiting companion down to an inner Mars-sized planet.

  8. Correlations between Compositions and Orbits Established by the Giant Impact Era of Planet Formation

    NASA Astrophysics Data System (ADS)

    Dawson, Rebekah I.; Lee, Eve J.; Chiang, Eugene

    2016-05-01

    The giant impact phase of terrestrial planet formation establishes connections between super-Earths’ orbital properties (semimajor axis spacings, eccentricities, mutual inclinations) and interior compositions (the presence or absence of gaseous envelopes). Using N-body simulations and analytic arguments, we show that spacings derive not only from eccentricities, but also from inclinations. Flatter systems attain tighter spacings, a consequence of an eccentricity equilibrium between gravitational scatterings, which increase eccentricities, and mergers, which damp them. Dynamical friction by residual disk gas plays a critical role in regulating mergers and in damping inclinations and eccentricities. Systems with moderate gas damping and high solid surface density spawn gas-enveloped super-Earths with tight spacings, small eccentricities, and small inclinations. Systems in which super-Earths coagulate without as much ambient gas, in disks with low solid surface density, produce rocky planets with wider spacings, larger eccentricities, and larger mutual inclinations. A combination of both populations can reproduce the observed distributions of spacings, period ratios, transiting planet multiplicities, and transit duration ratios exhibited by Kepler super-Earths. The two populations, both formed in situ, also help to explain observed trends of eccentricity versus planet size, and bulk density versus method of mass measurement (radial velocities versus transit timing variations). Simplifications made in this study—including the limited time span of the simulations, and the approximate treatments of gas dynamical friction and gas depletion history—should be improved on in future work to enable a detailed quantitative comparison to the observations.

  9. The Orbit, Rotation, and Granulation of the G7 Giant β Her

    NASA Astrophysics Data System (ADS)

    Gray, David F.

    2016-11-01

    The G7 IIIa single-lined spectroscopic binary, β Her, is studied with high-resolution, high-signal-to-noise spectra taken over 10 seasons from 23MR2000 to 10MY2009. Absolute radial velocities, corrected for convective blueshifts, are determined and new orbital parameters are derived. Line-depth ratios are used to measure temperature variation ˜2 K. A Fourier analysis is done for the line broadening, yielding a projected rotation velocity of 3.27 ± 0.20 km s-1 and a radial-tangential macroturbulence dispersion of 6.43 ± 0.08 km s-1. The “C” shaped bisector of Fe i λ6253 has its blue-most point at a relative flux level of 0.52, consistent with what is expected from β Her’s absolute magnitude. The third-signature plot indicates granulation velocities 20% larger than the Sun’s. Mapping the λ6253 line bisector onto the third-signature curve results in a flux deficit of 12.6 ± 1.0% that can be interpreted as arising from a temperature difference between granules and inter-granular lanes of 132 K. The flux deficit peaks near 5.5 km s-1 from the line center, suggesting the velocity difference between granules and lanes is ˜20% larger than that found for recently analyzed K giants.

  10. Giant dipole resonance in proton capture reactions using an extended quantum molecular dynamics model

    NASA Astrophysics Data System (ADS)

    Wang, K.; Ma, Y. G.; Zhang, G. Q.; Cao, X. G.; He, W. B.; Shen, W. Q.

    2017-01-01

    Proton capture reaction is an important process concerning the astrophysical origin of the elements. In present work, we focus on giant dipole resonance (GDR) in proton capture reactions, such as 11B(p ,γ )12C , 27Al(p ,γ )28Si , 39K(p ,γ )40Ca , and 67Co(p ,γ )68Ni in a framework of an extended quantum molecular dynamics model. The systematic properties of GDR parameters including the peak energy, the strength, and full width at half maximum (FWHM) have been studied. The dependence of FWHM on temperature has also been discussed. Some comparisons with experimental data have been presented.

  11. Particle-hole optical model and strength functions for high-energy giant resonances

    SciTech Connect

    Urin, M. H.

    2010-08-15

    A formulation of the particle-hole optical model is proposed for describing the contribution of the fragmentation effect to the formation of strength functions for high-energy giant resonances. The model is based on the Bethe-Goldstone equation for the energy-averaged particle-hole Green's function. In this equation, the particle-hole interaction that is induced by a virtual excitation of multiquasiparticle configurations and in which, upon averaging over energy, an imaginary part is contained is taken into account. An analogy with the single-quasiparticle optical model is discussed.

  12. Giant Lipomatosis of the Sciatic Nerve: Unique Magnetic Resonance Imaging Findings.

    PubMed

    Sarp, Ali Firat; Pekcevik, Yeliz

    2016-04-01

    Lipomatosis of the nerve, also known as fibrolipomatous hamartoma, is characterized by the infiltration of the nerve by fibro-fatty tissue. The affected nerve becomes thicker, and it simulates a mass lesion. Lipomatosis usually affects the median nerve and lipomatosis of the sciatic nerve is extremely rare. Magnetic resonance imaging (MRI) is the key to diagnosis, and it is usually pathognomonic. In this report, MRI and diffusion-weighted MRI findings of a case of a giant sciatic nerve lipomatosis without macrodactyly are presented. The MRI findings are unique, and awareness of the MRI features of this rare soft tissue mass may prevent unnecessary biopsies and surgeries.

  13. Nucleon-nucleon symmetry potential term and giant dipole resonance {gamma}-ray emission

    SciTech Connect

    Giuliani, G.; Papa, M.

    2006-03-15

    A study of the dependence of the giant dipole resonance {gamma}-ray yield from different functional forms of the symmetry term for the nucleon-nucleon interaction potential has been performed through the semiclassical molecular dynamics approach CoMD-II. We studied central and midperipheral reactions in the charge/mass asymmetric system {sup 40}Ca+{sup 48}Ca at 45 MeV/nucleon. The calculations show that the balance between the dynamical and the statistical emission is very sensitive to the 'stiffness' of the symmetry term. This sensitivity could be highlighted by measuring the degree of coherence and the anisotropy ratio related to the dynamically emitted radiation.

  14. Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory

    2013-01-01

    Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.

  15. Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory

    2013-01-01

    Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.

  16. Inhomogeneous and intrinsic damping of giant dipole resonance in hot rotating nuclei with A ~ 150

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D. R.; Datar, V. M.; Kumar, Suresh; Mirgule, E. T.; Mitra, A.; Nanal, V.; Pillay, R. G.; Rout, P. C.

    2010-05-01

    High-energy gamma rays in the range of ~4-28 MeV were measured in the reaction 28Si+124Sn at E(28Si) ~ 185 MeV in coincidence with low-energy gamma ray multiplicities and evaporation residues. The centroid energy and width of the giant dipole resonance were extracted for various multiplicity windows from the statistical model analysis. These extracted widths, along with those from an earlier measurement at E(28Si) ~ 149 MeV, show a discrepancy with the results of a calculation under the thermal shape fluctuation model which describes the inhomogeneous damping of the resonance. An empirical form of the temperature and angular momentum dependence of the width, describing the data at both the beam energies, has been derived. The present results suggest that the contributions from both the inhomogeneous damping and the intrinsic collisional damping processes should be included.

  17. The Giant Dipole Resonance built on highly excited states — results of the MEDEA experiment

    NASA Astrophysics Data System (ADS)

    Suomijärvi, T.; Le Faou, J. H.; Blumenfeld, Y.; Piattelli, P.; Agodi, C.; Alamanos, N.; Alba, R.; Auger, F.; Bellia, G.; Chomaz, Ph.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Gaardhøje, J. J.; Garron, J. P.; Gillibert, A.; Lamehi-Rachti, M.; Liguori-Neto, R.; Maiolino, C.; Migneco, E.; Russo, G.; Roynette, J. C.; Santonocito, D.; Sapienza, P.; Scarpaci, J. A.; Smerzi, A.

    1994-03-01

    Gamma-rays, light charged particles and evaporation residues emitted from hot nuclei formed in the 36Ar + 90Zr reaction at 27 MeV/u have been measured with a nearly 4π barium fluoride multidetector. It is shown that hot Sn-like nuclei with a range of excitation energies between 300 and 600 MeV are produced. The γ-ray yield from the decay of the Giant Dipole Resonance in these nuclei is shown to remain constant over this excitation energy range. The measured γ-ray spectra are compared with statistical calculations encompassing several recent theoretical models for the quenching of gamma-ray emission from the dipole resonance at very high temperatures.

  18. First Measurement of the Giant Monopole and Quadrupole Resonances in a Short-Lived Nucleus: {sup 56}Ni

    SciTech Connect

    Monrozeau, C.; Khan, E.; Blumenfeld, Y.; Beaumel, D.; Ebran, J. P.; Frascaria, N.; Gupta, D.; Marechal, F.; Scarpaci, J-A.; Mittig, W.; Roussel-Chomaz, P.; Gelin, M.; Garg, U.; Gillibert, A.; Keeley, N.; Obertelli, A.

    2008-02-01

    The isoscalar giant monopole resonance (GMR) and giant quadrupole resonance (GQR) have been measured in the {sup 56}Ni unstable nucleus by inducing the {sup 56}Ni(d,d{sup '}) reaction at 50A MeV in the Maya active target at the GANIL facility. The GMR and GQR centroids are measured at 19.3{+-}0.5 MeV and 16.2{+-}0.5 MeV, respectively. The corresponding angular distributions are extracted from 3 deg. to 7 deg. A multipole decomposition analysis using distorted wave Born approximation with random phase approximation transition densities shows that both the GMR and the GQR exhaust a large fraction of the energy-weighted sum rule. The demonstration of this new method opens a broad range of giant resonance studies at intermediate-energy radioactive beam facilities.

  19. Nonlinear SU(2,1) Model of Multiple Giant Dipole Resonance Coulomb Excitation

    NASA Astrophysics Data System (ADS)

    Hussein, Mahir; de Toledo Piza, Antonio; Vorov, Oleg

    2000-10-01

    We construct a three-dimensional analytically soluble model of the nonlinear effects in Coulomb excitation of multiphonon Giant Dipole Resonances (GDR) based on the SU(2,1) algebra^1. Analytical expressions for the multi-phonon transition probabilities are derived. For reasonably small magnitude of nonlinearity x~= 0.15-0.3, the enhancement factor for the Double Giant Resonance excitation probabilities and the cross sections reaches values 1.3-2 compatible^1,2 with experimental data from relativistic ion collision experiments^3. The full 3-dimensional model predicts enhancement of the multiple GDR cross sections at low and high bombarding energies (with the minimum at ~= 1.3 GeV for the Pb+Pb colliding system). Enhancement factors for Double GDR measured in thirteen different processes with various projectiles and targets at different bombarding energies are well reproduced with the same value of the nonlinearity parameter with the exception of the anomalous case of ^136Xe which requires a larger value. The work has been supported by the FAPESP and by the CNPq. References ^1 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Ann. Phys. (N.Y.), 2000, to appear. ^2 M. S. Hussein, A. F. R. de Toledo Piza and O. K.Vorov, Phys. Rev. C59,R1242 (1999). ^3 T. Aumann, P.F. Bortignon, and H. Emling, Annu. Rev. Nucl. Part. Sci. 48, 351 (1998).

  20. Charged-particle Decay of the Isoscalar giant dipole resonance in ^58Ni

    NASA Astrophysics Data System (ADS)

    Li, Tao; Hunyadi, Matyas; Garg, Umesh; Hoffman, Joe; Nayak, B. K.; Fujiwara, M.; Hara, K.; Hashimoto, H.; Itoh, M.; Murakami, T.; Nakanishi, K.; Kishi, S.; Sakaguchi, H.; Terashima, S.; Uchida, M.; Yasuda, Y.; Yosoi, M.; Akimune, H.; Harakeh, M. N.

    2004-10-01

    The isoscalar giant dipole resonance(ISGDR) has been measured by single experiments with the use of inelastic α-scattering in many nuclei[1]. However, information on its decay properties is scarce. The decay properties, especially the relative population and total strength of hole states in the (A-1) nucleus resulting from particle decay of giant resonance in nuclei can provide crucial tests for the microscopic model calculations. Caculations based on continuum-RPA approach have recently become abailable and provide results on partial branching ratios for direct neutron and proton decay of ISGDR [2]. We report on a coincidence experiment searching for these direct particle decay branches from the ISGDR in the nucleus ^58Ni. The experiment was performed at the RCNP, Osaka University, using inelastic α-scattering at a beam energy of 400 MeV. The inelastically scattered α particles were detected by the magnetic spectrometer ``Grand Raiden'' at 2.5^rc, with the decay protons detected by a set of sixteen Si(Li) detectors with a thickness of 5.0 mm and an effective area of 400 mm^2 each placed at backward angles. The result for the observed final states in ^57Co will be presented and compared with the theoretical calculations. References: [1] M.Uchida et al., Phys.Rev. C 69, 051301 (2004), [2] M.L. Gorelik et al., Phys. Rev. C 69, 054322 (2004)

  1. Giant positive and negative Goos-Hänchen shift on dielectric gratings caused by guided mode resonance.

    PubMed

    Yang, Rui; Zhu, Wenkan; Li, Jingjing

    2014-01-27

    Giant positive and negative Goos-Hänchen shift more than 5000 times of the operating wavelength is observed when a beam is totally reflected from a substrate decorated by a dielectric grating. Different to the former studies where Goos-Hänchen shift is related to metamaterials or plasmonic materials with ohmic loss, here the giant shift is realized with unity reflectance without the loss. This is extremely advantageous for sensor applications. The Goos-Hänchen shift exhibits a strong resonant feature at the frequency of guided mode resonance, and is associated to the energy flow carried by the guided mode.

  2. A simple derivation of capture probabilities for the J + 1 : J and J + 2 : J orbit-orbit resonance problems

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Goldreich, P.

    1984-01-01

    Henrad's (1982) method, which is based on an extension of the theory of adiabatic invariants, is presently applied to a simplified analytic derivation of the capture probabilities for the j + 1 : j and j + 2 : j orbital resonances. The results originally obtained by Yoder (1979) are thereby recovered.

  3. The Influence of Orbital Resonances on the Water Transport to Objects in the Circumprimary Habitable Zone of Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Bancelin, David; Pilat-Lohinger, Elke; Maindl, Thomas I.; Ragossnig, Florian; Schäfer, Christoph

    2017-06-01

    We investigate the role of secular and mean motion resonances on the water transport from a belt of icy asteroids onto planets or embryos orbiting inside the circumprimary habitable zone (HZ) of a binary star system. In addition, the host-star has an accompanying gas giant planet. For a comparison, we perform two case studies where a secular resonance (SR) is located either inside the HZ close to 1.0 au (causing eccentric motion of a planet or embryos therein) or in the asteroid belt, beyond the snow line. In the latter case, a higher flux of icy objects moving toward the HZ is expected. Collisions between asteroids and objects in the HZ are treated analytically. Our purely dynamical study shows that the SR in the HZ boosts the water transport however, collisions can occur at very high impact speeds. In this paper, we treat for the first time, realistic collisions using a GPU 3D-SPH code to assess the water loss in the projectile. Including the water loss into the dynamical results, we get more realistic values for the water mass fraction of the asteroid during an impact. We highlight that collisions occurring at high velocities greatly reduce the water content of the projectile and thus the amount of water transported to planets or embryos orbiting inside the HZ. Moreover, we discuss other effects that could modify our results, namely the asteroid’s surface rate recession due to ice sublimation and the atmospheric drag contribution on the asteroids’ mass loss.

  4. Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other.

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Panel 1: A pulsating red giant star and a compact, hot white dwarf star orbit each other. Panel 2: The red giant sheds much of its outer layers in a stellar wind. The white dwarf helps concentrate the wind along a thin equatorial plane. The white dwarf accretes some of this escaping gas forming a disk around the itself. Panel 3: When enough gas accumulates on the white dwarf's surface it explodes as a nova outburst. Most of the hot gas forms a pair of expanding bubbles above and below the equatorial disk. Panel 4: A few thousand years after the bubbles expand into space, the white dwarf goes through another nova outburst and makes another pair of bubbles, which form a distinctive hourglass shape.

  5. Reaching a Fermi-superfluid state near an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Xu, Junjun; Zhang, Ren; Cheng, Yanting; Zhang, Peng; Qi, Ran; Zhai, Hui

    2016-09-01

    We propose to realize a strongly interacting Fermi superfluid near a narrow Feshbach resonance using the recently discovered "orbital Feshbach resonance." The orbital Feshbach resonance is a type of magnetic field tunable scattering resonance theoretically predicted and experimentally observed recently in the alkaline-earth-metal-like 173Yb atom. We first show that the orbital Feshbach resonance is a narrow resonance in energy, while it is hundreds Gauss wide in terms of magnetic field strength, taking the advantage that the magnetic moment difference between the open and closed channels is quite small. Therefore, this is an ideal platform for the experimental realization of a strongly interacting Fermi superfluid with narrow resonance. We further show that the transition temperature for the Fermi superfluid in this system, especially at the BCS side of the resonance, is even higher than that in a wide resonance, which is also due to the narrow character of this resonance. Our results will encourage experimental efforts to realize Fermi superfluid in the alikaline-earth-metal-like 173Yb system, the properties of which will be complementary to extensively studied Fermi superfluids nearby a wide resonance in alkali-metal 40K and 6Li systems.

  6. About Influence of Orbital Dynamic Resonances for Pecularity of Statistical Arrangement of Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Mushailov, B. R.; Teplitskaja, V. S.

    Some regularities in organization of comet's and asteroid's orbital characteristics were described. These objects dispose from 5 to 125 a.u. from Sun. It was established that more than half of them move according to resonance orbits, which were predicted earlier.

  7. 15th order resonance terms using the decaying orbit of TETR-3. [perturbation due to gravitation

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Klosko, S. M.

    1975-01-01

    Fifteenth-order commensurability of the orbit of TETR-3 (1971-83B) is studied. The study is designed to obtain good discrimination of 15th-order resonances through a better range of inclinations. The first low inclination orbit, 33 deg, is used for this purpose; it is very sensitive to the high degree terms which were rather poorly represented by previously analyzed orbits.

  8. 15th order resonance terms using the decaying orbit of TETR-3. [perturbation due to gravitation

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Klosko, S. M.

    1975-01-01

    Fifteenth-order commensurability of the orbit of TETR-3 (1971-83B) is studied. The study is designed to obtain good discrimination of 15th-order resonances through a better range of inclinations. The first low inclination orbit, 33 deg, is used for this purpose; it is very sensitive to the high degree terms which were rather poorly represented by previously analyzed orbits.

  9. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    SciTech Connect

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V.; Foreman-Mackey, Daniel

    2015-02-10

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M {sub Jup} planet orbiting a red giant star.

  10. Radial Velocity Observations and Light Curve Noise Modeling Confirm that Kepler-91b is a Giant Planet Orbiting a Giant Star

    NASA Astrophysics Data System (ADS)

    Barclay, Thomas; Endl, Michael; Huber, Daniel; Foreman-Mackey, Daniel; Cochran, William D.; MacQueen, Phillip J.; Rowe, Jason F.; Quintana, Elisa V.

    2015-02-01

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M Jup planet orbiting a red giant star. Based partly on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  11. Origin of the wide-orbit circumbinary giant planet HD 106906. A dynamical scenario and its impact on the disk

    NASA Astrophysics Data System (ADS)

    Rodet, L.; Beust, H.; Bonnefoy, M.; Lagrange, A.-M.; Galli, P. A. B.; Ducourant, C.; Teixeira, R.

    2017-06-01

    Context. A giant planet has been recently resolved at a projected distance of 730 au from the tight pair of young ( 13 Myr) intermediate-mass stars HD 106906AB in the Lower Centaurus Crux (LCC) group. The stars are surrounded by a debris disk which displays a ring-like morphology and strong asymmetries at multiple scales. Aims: We aim to study the likelihood of a scenario where the planet formed closer to the stars in the disk, underwent inward disk-induced migration, and got scattered away by the binary star before being stabilized by a close encounter (fly-by). Methods: We performed semi-analytical calculations and numerical simulations (Swift_HJS package) to model the interactions between the planet and the two stars. We accounted for the migration as a simple force. We studied the LCC kinematics to set constraints on the local density of stars, and therefore on the fly-by likelihood. We performed N-body simulations to determine the effects of the planet trajectories (ejection and secular effects) onto the disk morphology. Results: The combination of the migration and mean-motion resonances with the binary star (often 1:6) can eject the planet. Nonetheless, we estimate that the fly-by hypothesis decreases the scenario probability to less than 10-7 for a derived local density of stars of 0.11 stars/pc3. We show that the concomitant effect of the planet and stars trajectories induce spiral-features in the disk which may correspond to the observed asymmetries. Moreover, the present disk shape suggests that the planet is on an eccentric orbit. Conclusions: The scenario we explored is a natural hypothesis if the planet formed within a disk. Conversely, its low probability of occurrence and the fact that HD 106906 b shares some characteristics with other systems in Sco-Cen (e.g., HIP 78530, in terms of mass ratio and separation) may indicate an alternative formation pathway for those objects.

  12. The positions of secular resonance surfaces. [for major planet orbits

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Faulkner, J.

    1981-01-01

    The surfaces for the three strongest secular resonances have been located as a function of proper semimajor axis, eccentricity, and inclination for semimajor axes between 1.25 and 3.5 AU. The results are presented graphically. The nu5 resonance only occurs at high inclinations (approximately greater than 23 deg). The nu6 resonance passes through both the main belt and Mars-crossing space. The nu16 resonance starts near the inner edge of the belt and, at low inclinations at least, folds around a portion of the Mars-crossing space until it runs nearly parallel with the earth-crossing boundary.

  13. Possibility of giant enhancement of low-frequency non-resonant Rayleigh scattering by atomic systems within dense plasmas

    SciTech Connect

    Basu, Joyee Ray, Debasis

    2014-03-15

    In this paper, we demonstrate the possibility of electron density-induced giant growth of non-resonant Rayleigh scattering of electromagnetic radiation (in the low-frequency limit) by atomic systems within dense plasmas. Non-relativistic quantum mechanical calculation is performed under electric dipole approximation, for elastic scattering of radiation by the ground states 1s of plasma-embedded hydrogen-like atomic ions treated within the framework of the ion-sphere model. The results indicate giant enhancement of the non-resonant (photon frequency ω being much smaller than the lowest resonance frequency ω{sub 1s−2p}) Rayleigh cross-section by an order of magnitude, at (atomic system-specific) high enough plasma electron densities under present consideration. The Z{sup −8}-scaling of the non-resonant Rayleigh cross-section in free and isolated H-isoelectronic sequence of ions is shown to be broken in dense plasma environments.

  14. Search for magnetic dipole strength and giant spin-flip resonances in heavy nuclei. [120 to 200 MeV

    SciTech Connect

    Horen, D J

    1980-01-01

    A description is given of the use of high-resolution (n,n) scattering and the (p,n) reaction as tools to investigate highly excited states, with emphasis on information pertaining to magnetic dipole strength and giant spin-flip resonances in heavy nuclei. It is shown how the ability to determine uniquely the spins and parities of resonances observed in neutron scattering has been instrumental to an understanding of the distribution of M1 strength in /sup 207/ /sup 208/Pb. Some recent results of (p,n) studies with intermediate energy protons are discussed. Energy systematics of the giant Gamow-Teller (GT) resonance as well as new ..delta..l = ..delta..S = 1 resonance with J/sup ..pi../ = (1,2)/sup -/ are presented. It is shown how the (p,n) reaction might be useful in locating M1 strength in heavy nuclei. 20 figures.

  15. Orbital engineering of two-dimensional materials with hydrogenation: A realization of giant gap and strongly correlated topological insulators

    NASA Astrophysics Data System (ADS)

    Pham, Anh; Gil, Carmen J.; Smith, Sean C.; Li, Sean

    2015-07-01

    Orbital interaction plays an important role in topological insulators. Using first-principles calculations, we demonstrate that hydrogenation can change two-dimensional (2D) trivial insulator/semimetal-like Pb, Mo, and W to a Z2 topological insulator with giant gaps by filtering unwanted orbitals such as the pz orbital in Pb, and the d3 z2-r2 in Mo and W. For PbH, the large intrinsic spin-orbit coupling (SOC) confined in the in-plane orbitals px ,y results in a bulk gap of 1.07 eV. For the case of MoH and WH, hydrogenation results in a novel s d4 hybridization with a Dirac cone formed by the out-of-plane orbital dy z /x z orbitals. Furthermore, due to the electron-electron interaction and the strong SOC in the 4 d and 5 d elements, the bulk band gap is significantly enhanced with a value of 1.28 eV for MoH and 0.30 eV for WH. The strong correlation effect also induces several topological phase transitions in WH like the Dirac semimetal and Mott insulating phase, while MoH remains a topological insulator even with large correlation effect. We propose that these new strongly correlated 2D materials can be realized experimentally by using substrate such as the boron nitride sheet, which can exhibit various novel properties such as the Dirac semimetal phase with large spin-orbit energy splitting as well as the quantum spin Hall property.

  16. Giant cell myocarditis masquerading as orbital myositis with a rapid, fulminant course necessitating mechanical support and heart transplantation.

    PubMed

    Garg, Vinisha; Tan, Weiyi; Ardehali, Reza; Shah, Janki; Huynh, Tracy; Aksoy, Olcay

    2017-08-01

    Giant cell myocarditis (GCM), a rapidly progressive inflammation of the myocardium, is associated with fulminant heart failure, refractory ventricular arrhythmias, and conduction system abnormalities. Few case reports have noted orbital myositis as the initial clinical presentation. Our case demonstrates a unique presentation of GCM with only ocular symptoms, which unlike prior studies, rapidly progressed to heart failure, tachyarrhythmias, and conduction disease. Our case necessitated quick recognition and treatment with mechanical support making this the first known case of GCM with successful placement of biventricular assist devices and ultimately with heart transplantation. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  17. Communication: X-ray excited optical luminescence from TbCl3 at the giant resonance of terbium.

    PubMed

    Heigl, F; Jürgensen, A; Zhou, X-T; Hu, Y-F; Zuin, L; Sham, T K

    2013-02-14

    We have studied the optical recombination channels of TbCl(3) using x-ray excited optical luminescence at the N(4,5) absorption edge of Tb (giant resonance) in both the energy and time domain. The luminescence exhibits a relatively fast (5)D(3), and a slow (5)D(4) decay channel in the blue and green, respectively. The rather short lifetime of the (5)D(3) state indicates that the decay is mainly driven by Tb-Tb ion interaction via non-radiative energy transfer (cross-relaxation). At the giant resonance the X-ray Absorption Near Edge Structure (XANES) recorded using partial photoluminescence yield is inverted. In the pre-edge region the contrast of the spectral feature is significantly better in optical XANES than in total electron yield. Changes in the intensity of (5)D(3)-(7)F(5) (544 nm) and (5)D(4)-(7)F(6) (382 nm) optical transitions as the excitation energy is tuned across the giant resonance are also noted. The results provide detailed insight into the dynamics of the optical recombination channels and an alternative method to obtain high sensitivity, high energy resolution XANES at the giant resonance of light emitting rare-earth materials.

  18. Fine structure of the isoscalar giant quadrupole resonance in 28Si and 27Al

    NASA Astrophysics Data System (ADS)

    Usman, I. T.; Buthelezi, Z.; Carter, J.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; von Neumann-Cosel, P.; Neveling, R.; Papakonstantinou, P.; Pysmenetska, I.; Richter, A.; Roth, R.; Sideras-Haddad, E.; Smit, F. D.

    2016-08-01

    The isoscalar giant quadrupole resonance in 28Si and 27Al has been investigated with high-energy-resolution proton inelastic scattering at Ep=200 MeV and at scattering angles close to the maximum of Δ L =2 angular distributions with the K600 magnetic spectrometer of iThemba LABS, South Africa. Characteristic scales are extracted from the observed fine structure with a wavelet analysis and compared for 28Si with random-phase approximation and second random phase approximation calculations with an interaction derived from the Argonne V18 potential by a unitary transformation. A recent extension of the method to deformed nuclei provides the best description of the data, suggesting the significance of Landau damping.

  19. Neutron-skin thickness from the study of the anti-analog giant dipole resonance

    SciTech Connect

    Krasznahorkay, A.; Stuhl, L.; Csatlos, M.; Algora, A.; and others

    2012-10-20

    The {gamma}-decay of the anti-analog of the giant dipole resonance (AGDR) to the isobaric analog state has been measured following the p({sup 124}Sn,n) reaction at a beam energy of 600 MeV/nucleon. The energy of the transition was also calculated with state-of-the-art self-consistent relativistic random-phase approximation (RPA) and turned out to be very sensitive to the neutronskin thickness ({Delta}R{sub pn}). By comparing the theoretical results with the measured one, the {Delta}R{sub pn} value for {sup 124}Sn was deduced to be 0.21 {+-} 0.07 fm, which agrees well with the previous results. The present method offers new possibilities for measuring the neutron-skin thicknesses of very exotic isotopes.

  20. Fluctuation properties of the strength function associated with the giant quadrupole resonance in {sup 208}Pb

    SciTech Connect

    Aiba, Hirokazu; Matsuo, Masayuki; Nishizaki, Shigeru; Suzuki, Toru

    2011-02-15

    We performed fluctuation analysis by means of the local scaling dimension for the strength function of the isoscalar (IS) giant quadrupole resonance (GQR) in {sup 208}Pb where the strength function is obtained by the shell model calculation including 1p1h and 2p2h configurations. It is found that at almost all energy scales, fluctuation of the strength function obeys the Gaussian orthogonal ensemble (GOE) random matrix theory limit. This is contrasted with the results for the GQR in {sup 40}Ca, where at the intermediate energy scale of about 1.7 MeV, a deviation from the GOE limit was detected. It is found that the physical origin for this different behavior of the local scaling dimension is ascribed to the difference in the properties of the damping process.

  1. Proton decay from the isoscalar giant dipole resonance in {sup 58}Ni

    SciTech Connect

    Hunyadi, M.; Hashimoto, H.; Fujimura, H.; Fujiwara, M.; Hara, K.; Itoh, M.; Nakanishi, K.; Okumura, S.; Li, T.; Garg, U.; Hoffman, J.; Nayak, B. K.; Akimune, H.; Gacsi, Z.; Harakeh, M. N.

    2009-10-15

    Proton decay from the 3({Dirac_h}/2{pi}){omega} isoscalar giant dipole resonance (ISGDR) in {sup 58}Ni has been measured using the ({alpha},{alpha}{sup '}p) reaction at a bombarding energy of 386 MeV to investigate its decay properties. We have extracted the ISGDR strength under the coincidence condition between inelastically scattered {alpha} particles at forward angles and decay protons emitted at backward angles. Branching ratios for proton decay to low-lying states of {sup 57}Co have been determined, and the results compared with predictions of recent continuum-RPA calculations. The final-state spectra of protons decaying to the low-lying states in {sup 57}Co were analyzed for a more detailed understanding of the structure of the ISGDR. It is found that there are differences in the structure of the ISGDR as a function of excitation energy.

  2. Comment on "Thermal shape fluctuation model study of the giant dipole resonance in 152Gd"

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D. R.; Datar, V. M.

    2016-10-01

    A recent paper [A. K. Rhine Kumar and P. Arumugam, Phys. Rev. C 92, 044314 (2015), 10.1103/PhysRevC.92.044314] presented calculations of the giant dipole resonance width and γ -ray absorption cross sections for 152Gd at various temperatures and angular momenta and compared these with the experimental data. In the comparison of the cross sections, the authors used the linearized representations of the experimental spectra which actually represent the absorption cross sections divided by the γ -ray energy. In this Comment we make the comparison with the appropriate absorption cross sections derived from the data. The comparison shows a reasonable agreement if the higher value of the dipole-dipole interaction parameter, mentioned in the paper, is used in the calculation.

  3. Giant dipole resonance and shape transitions in hot and rotating 88Mo

    NASA Astrophysics Data System (ADS)

    Rhine Kumar, A. K.; Arumugam, P.; Dang, N. Dinh; Mazumdar, I.

    2017-08-01

    The giant dipole resonance (GDR) observables are calculated within the thermal shape fluctuation model by considering the probability distributions of different angular momentum (I ) and temperature (T ) values estimated recently in the deexcitation process of the compound nucleus 88Mo. These results are found to be very similar to the results obtained with the average T (Tave) and average I (Iave) corresponding to those distributions. The shape transitions in 88Mo at different T and I are also studied through the free energy surfaces calculated within the microscopic-macroscopic approach. The deformation of 88Mo is found to increase considerably with T and I , leading to the Jacobi shape transition at I ˜50 ℏ . The combined effect of increasing deformation, larger fluctuations at higher T , and larger Coriolis splitting of GDR components at higher I , leads to a rapid increase in the GDR width.

  4. Giant resonances in {sup 116}Sn from 240 MeV {sup 6}Li scattering

    SciTech Connect

    Chen, X.; Lui, Y.-W.; Clark, H. L.; Tokimoto, Y.; Youngblood, D. H.

    2009-02-15

    Giant resonances in {sup 116}Sn were measured by inelastic scattering of {sup 6}Li ions at E{sub {sup 6}Li}=240 MeV over the angle range 0 deg. - 6 deg. Isoscalar E0-E3 strength distributions were obtained with a double folding model analysis. A total of 106{sub -11}{sup +27}% of the E0 EWSR was found in the excitation energy range from 8 MeV to 30 MeV with a centroid (m{sub 1}/m{sub 0}) energy 15.39{sub -0.20}{sup +0.35} MeV in agreement with results obtained with {alpha} inelastic scattering.

  5. Formation of giant molecular clouds in global spiral structures: The role of orbital dynamics and cloud-cloud collisions

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.; Stewart, G. R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes.

  6. Study of Isoscalar Giant Resonances in Exotic Nuclei by Means of Inverse Reactions

    NASA Astrophysics Data System (ADS)

    Harakeh, M. N.

    2015-11-01

    Isoscalar giant resonances in exotic nuclei can be studied using inelastic alpha scattering in inverse kinematics. In particular, the compression modes, i.e. isoscalar giant monopole and dipole resonances, are very interesting because they can furnish information on the different terms of the nuclear incompressibility, especially if measured in long isotopic chains including nuclei far from the valley of stability. As beams of exotic nuclei have relatively low intensities thick targets have to be used in order to get a reasonable yield. However, this leads to degradation of the energy resolution and stops low-energy recoil particles. Two good alternatives exist. The first method is to use an active target, such as MAYA, which is a time-projection chamber and therefore can be used for detection of low-energy recoil particles. Furthermore, its thickness can be increased by increasing the length of the detection volume or the gas pressure without severe loss of energy resolution. The second method is to use a storage ring for storing the exotic nuclei, which then interact with target nuclei from a gas-jet target. Here, the luminosity and hence the yield are increased because the exotic nuclei circulate in the ring at a frequency of around 106 turns/s. Low-energy recoil particles traverse the gas-jet with little loss of energy and can be detected in solid-state detectors. Pioneering experiments with both methods have been performed for inelastic scattering of secondary 56Ni beam off helium nuclei. Here, preliminary results of the experiment with the active target MAYA will be presented.

  7. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IX. Spotted pairs with red giants

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Hełminiak, K. G.; Konacki, M.; Smith, A. M. S.; Kozłowski, S. K.; Espinoza, N.; Jordán, A.; Brahm, R.; Hempel, M.; Anderson, D. R.; Hellier, C.

    2016-09-01

    We present spectroscopic and photometric solutions for three spotted systems with red giant components. Absolute physical and orbital parameters for these double-lined detached eclipsing binary stars are presented for the first time. These were derived from the V-, and I-band ASAS and WASP photometry, and new radial velocities calculated from high quality optical spectra we obtained with a wide range of spectrographs and using the two-dimensional cross-correlation technique (TODCOR). All of the investigated systems (ASAS J184949-1518.7, BQ Aqr, and V1207 Cen) show the differential evolutionary phase of their components consisting of a main-sequence star or a subgiant and a red giant, and thus constitute very informative objects in terms of testing stellar evolution models. Additionally, the systems show significant chromospheric activity of both components. They can be also classified as classical RS CVn-type stars. Besides the standard analysis of radial velocities and photometry, we applied spectral disentangling to obtain separate spectra for both components of each analysed system which allowed for a more detailed spectroscopic study. We also compared the properties of red giant stars in binaries that show spots, with those that do not, and found that the activity phenomenon is substantially suppressed for stars with Rossby number higher than ˜1 and radii larger than ˜20 R⊙.

  8. Dynamics of Orbits near 3:1 Resonance in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald J.; Lebois, Ryan; Carrico, John P., Jr.

    2013-01-01

    The Interstellar Boundary Explorer (IBEX) spacecraft is currently in a highly elliptical orbit around Earth with a period near 3:1 resonance with the Moon. Its orbit is oriented so that apogee does not approach the Moon. Simulations show this orbit to be remarkably stable over the next twenty years. This article examines the dynamics of such orbits in the Circular Restricted 3-Body Problem (CR3BP). We look at three types of periodic orbits, each exhibiting a type of symmetry of the CR3BP. For each of the orbit types, we assess the local stability using Floquet analysis. Although not all of the periodic solutions are stable in the mathematical sense, any divergence is so slow as to produce practical stability over several decades. We use Poincare maps with twenty-year propagations to assess the nonlinear stability of the orbits, where the perturbation magnitudes are related to the orbit uncertainty for the IBEX mission. Finally we show that these orbits belong to a family of orbits connected in a bifurcation diagram that exhibits exchange of stability. The analysis of these families of period orbits provides a valuable starting point for a mission orbit trade study.

  9. Possible tidal resonance of the early Earth's ocean due to the lunar orbit evolution

    NASA Astrophysics Data System (ADS)

    Motoyama, M.; Tsunakawa, H.; Takahashi, F.

    2016-12-01

    The ocean tide is one of the most important factors affecting the Earth's surface environment and the evolution of the Earth-Moon system (e.g. Goldreich, 1966). According to the Giant Impact hypothesis, the Moon was formed very near the Earth 4.6 billion years ago (Hartmann and Davis, 1979). At that time, the tidal force would be about several thousand times as strong as the present. However previous studies pointed out that significant attenuation of tidal waves might have occurred due to mechanical response of water motion (e.g. Hansen, 1982; Abe and Ooe, 2001), resulting in relatively calm state like the present ocean.In the present study, we analyze tidal response of the ocean on the early Earth using a model of constant-depth ocean covering all the surface of the rigid Earth. The examined modes of response are not only M2 corresponding to spherical harmonics Y22 but also others such as Y21, since the lunar orbital plane would be inclined.First, estimated is an ocean depth for possible resonance of the individual mode. Eigen frequencies of the fluid on a rotating sphere with no friction are calculated on the basis of previous study (Longuet-Higgins, 1968). These frequencies depend on the Earth's rotation rate and the ocean depth. The Earth's rotation period is assumed to have changed from 5 hours to 24 hours for the past 4.6 billion years (e.g. Mignard, 1980; Stacey and Davis, 2008). It is found that resonance could occur for diurnal modes of Y21 and Y31 with reasonable depths of the ancient ocean (1300 - 5200 m).Then we obtain a 2D response function on a sphere with friction in order to estimate the tidal amplitude of the ocean for main modes . The response function in the present study shows good agreement with the numerical simulation result of the tidal torque response of M2 (Abe et al., 1997). The calculation results suggest that diurnal modes of Y21 and Y31 would grown on the early Earth, while the other modes would fairly be attenuated. In particular

  10. KEPLER-63b: A GIANT PLANET IN A POLAR ORBIT AROUND A YOUNG SUN-LIKE STAR

    SciTech Connect

    Sanchis-Ojeda, Roberto; Winn, Joshua N.; Albrecht, Simon; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Johnson, John Asher; Torres, Guillermo; Carter, Joshua A.; Dawson, Rebekah I.; Geary, John C.; Campante, Tiago L.; Chaplin, William J.; Davies, Guy R.; Lund, Mikkel N.; Buchhave, Lars A.; Everett, Mark E.; Fischer, Debra A.; Gilliland, Ronald L.; Horch, Elliott P.; and others

    2013-09-20

    We present the discovery and characterization of a giant planet orbiting the young Sun-like star Kepler-63 (KOI-63, m{sub Kp} = 11.6, T{sub eff} = 5576 K, M{sub *} = 0.98 M{sub ☉}). The planet transits every 9.43 days, with apparent depth variations and brightening anomalies caused by large starspots. The planet's radius is 6.1 ± 0.2 R{sub ⊕}, based on the transit light curve and the estimated stellar parameters. The planet's mass could not be measured with the existing radial-velocity data, due to the high level of stellar activity, but if we assume a circular orbit, then we can place a rough upper bound of 120 M{sub ⊕} (3σ). The host star has a high obliquity (ψ = 104°), based on the Rossiter-McLaughlin effect and an analysis of starspot-crossing events. This result is valuable because almost all previous obliquity measurements are for stars with more massive planets and shorter-period orbits. In addition, the polar orbit of the planet combined with an analysis of spot-crossing events reveals a large and persistent polar starspot. Such spots have previously been inferred using Doppler tomography, and predicted in simulations of magnetic activity of young Sun-like stars.

  11. The confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling

    PubMed Central

    Zhang, Yi-Cai; Song, Shu-Wei; Liu, Wu-Ming

    2014-01-01

    The confinement induced resonance provides an indispensable tool for the realization of the low-dimensional strongly interacting quantum system. Here, we investigate the confinement induced resonance in spin-orbit coupled cold atoms with Raman coupling. We find that the quasi-bound levels induced by the spin-orbit coupling and Raman coupling result in the Feshbach-type resonances. For sufficiently large Raman coupling, the bound states in one dimension exist only for sufficiently strong attractive interaction. Furthermore, the bound states in quasi-one dimension exist only for sufficient large ratio of the length scale of confinement to three dimensional s-wave scattering length. The Raman coupling substantially changes the confinement-induced resonance position. We give a proposal to realize confinement induced resonance through increasing Raman coupling strength in experiments. PMID:24862314

  12. Molecular Orbital Rule for Quantum Interference in Weakly Coupled Dimers: Low-Energy Giant Conductivity Switching Induced by Orbital Level Crossing.

    PubMed

    Nozaki, Daijiro; Lücke, Andreas; Schmidt, Wolf Gero

    2017-02-16

    Destructive quantum interference (QI) in molecular junctions has attracted much attention in recent years. It can tune the conductance of molecular devices dramatically, which implies numerous potential applications in thermoelectric and switching applications. There are several schemes that address and rationalize QI in single molecular devices. Dimers play a particular role in this respect because the QI signal may disappear, depending on the dislocation of monomers. We derive a simple rule that governs the occurrence of QI in weakly coupled dimer stacks of both alternant and nonalternant polyaromatic hydrocarbons (PAHs) and extends the Tada-Yoshizawa scheme. Starting from the Green's function formalism combined with the molecular orbital expansion approach, it is shown that QI-induced antiresonances and their energies can be predicted from the amplitudes of the respective monomer terminal molecular orbitals. The condition is illustrated for a toy model consisting of two hydrogen molecules and applied within density functional calculations to alternant dimers of oligo(phenylene-ethynylene) and nonalternant PAHs. Minimal dimer structure modifications that require only a few millielectronvolts and lead to an energy crossing of the essentially preserved monomer orbitals are shown to result in giant conductance switching ratios.

  13. How tidal heating in Io drives the Galilean orbital resonance locks

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    The mechanisms by which orbital resonance locks are maintained among Io, Europa and Ganymede are analyzed, and the effects of the dissipative tides in Jupiter and Io on their establishment and evolution are considered. According to the proposed model, initially all three satellites are in orbits far from the 2:1 commensurabilities or the three body lock. The tide raised on Io damps down the free eccentricity; only modest tidal heating occurs. Subsequently the dissipative tide raised on Jupiter by Io causes Io's orbit to spiral outwards; Io approaches the 2:1 commensurability with Europa. Io's forced eccentricity increases rapidly to a critical value, and thereafter the resonant interaction causes Europa's orbit to expand at half that of Io's orbit. A fluid core is probably formed as the result of tidal heating. Finally Europa approaches the 2:1 commensurability, angular momentum is transferred from Europa's orbit to Ganymede's, and a steady state is attained. On the basis of the observed three-body resonance amplitude (0.066 deg), it is concluded that three-body resonance may have formed less than 500 million years ago; a measurement of the rate of tidal heating in Io may determine the Q value of both Io and Jupiter. Upper and lower limits for the Jovian Q value of 2 million and 20,000 are suggested.

  14. The disruption of multiplanet systems through resonance with a binary orbit

    NASA Astrophysics Data System (ADS)

    Touma, Jihad R.; Sridhar, S.

    2015-08-01

    Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.

  15. The disruption of multiplanet systems through resonance with a binary orbit.

    PubMed

    Touma, Jihad R; Sridhar, S

    2015-08-27

    Most exoplanetary systems in binary stars are of S-type, and consist of one or more planets orbiting a primary star with a wide binary stellar companion. Planetary eccentricities and mutual inclinations can be large, perhaps forced gravitationally by the binary companion. Earlier work on single planet systems appealed to the Kozai-Lidov instability wherein a sufficiently inclined binary orbit excites large-amplitude oscillations in the planet's eccentricity and inclination. The instability, however, can be quenched by many agents that induce fast orbital precession, including mutual gravitational forces in a multiplanet system. Here we report that orbital precession, which inhibits Kozai-Lidov cycling in a multiplanet system, can become fast enough to resonate with the orbital motion of a distant binary companion. Resonant binary forcing results in dramatic outcomes ranging from the excitation of large planetary eccentricities and mutual inclinations to total disruption. Processes such as planetary migration can bring an initially non-resonant system into resonance. As it does not require special physical or initial conditions, binary resonant driving is generic and may have altered the architecture of many multiplanet systems. It can also weaken the multiplanet occurrence rate in wide binaries, and affect planet formation in close binaries.

  16. Analytical and numerical study of the ground-track resonances of Dawn orbiting Vesta

    NASA Astrophysics Data System (ADS)

    Delsate, N.

    2011-10-01

    The aim of Dawn mission is the acquisition of data from orbits around two bodies (4) Vesta and (1) Ceres, the two most massive asteroids. Due to the low thrust propulsion, Dawn will slowly cross and transit through ground-track resonances, where the perturbations on Dawn orbit may be significant. In this context, to safety go the Dawn mission from the approach orbit to the lowest science orbit, it is essential to know the properties of the crossed resonances. This paper analytically investigates the properties of the major ground-track resonances (1:1, 1:2, 2:3 and 3:2) appearing for Vesta orbiters: location of the equilibria, aperture of the resonances and period at the stable equilibria. We develop a general method using an averaged Hamiltonian formulation with a spherical harmonic approximation of the gravity field. If the values of the gravity field coefficient change, our method stays correct and applicable. We also discuss the effect of one uncertainty on the C20 and C22 coefficients on the properties of the 1:1 resonance. These results are checked by numerical tests. We determine that the increase of the eccentricity appearing in the 2:3 resonance is due to the C22 and S22 coefficients. Our method can be easily adapted to missions similar to Dawn because, contrarily to the numerical results, the analytical formalism stays the same and is valid for a wide range of physical parameters of the asteroid (namely the shape and the mass) as well as for different spacecraft orbits. Finally we numerically study the probability of the capture in resonance 1:1. Our paper reproduces, explains and supplements the results of Tricarico and Sykes (2010).

  17. Plasmonic amplifiers: engineering giant light enhancements by tuning resonances in multiscale plasmonic nanostructures.

    PubMed

    Chen, Aiqing; Miller, Ryan L; DePrince, A Eugene; Joshi-Imre, Alexandra; Shevchenko, Elena; Ocola, Leonidas E; Gray, Stephen K; Welp, Ulrich; Vlasko-Vlasov, Vitalii K

    2013-06-10

    The unique ability of plasmonic nanostructures to guide, enhance, and manipulate subwavelength light offers multiple novel applications in chemical and biological sensing, imaging, and photonic microcircuitry. Here the reproducible, giant light amplification in multiscale plasmonic structures is demonstrated. These structures combine strongly coupled components of different dimensions and topologies that resonate at the same optical frequency. A light amplifier is constructed using a silver mirror carrying light-enhancing surface plasmons, dielectric gratings forming distributed Bragg cavities on top of the mirror, and gold nanoparticle arrays self-assembled into the grating grooves. By tuning the resonances of the individual components to the same frequency, multiple enhancement of the light intensity in the nanometer gaps between the particles is achieved. Using a monolayer of benzenethiol molecules on this structure, an average SERS enhancement factor ∼10⁸ is obtained, and the maximum enhancement in the interparticle hot-spots is ∼3 × 10¹⁰, in good agreement with FDTD calculations. The high enhancement factor, large density of well-ordered hot-spots, and good fidelity of the SERS signal make this design a promising platform for quantitative SERS sensing, optical detection, efficient solid state lighting, advanced photovoltaics, and other emerging photonic applications.

  18. Unstable Resonant Orbits near Earth and Their Applications in Planetary Missions

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Lo, Martin W.

    2004-01-01

    This paper explores the uses of planar, simple-periodic symmetrical families of orbits in mission designs in the Earth-Moon system. This classification is defined as the planar periodic orbits that pierce the x-axis in the rotating frame exactly twice per orbit where each piercing is orthogonal to the x-axis. A continuation method has been used to explore several families of this class of orbit in the Earth-Moon restricted three-body system. The invariant manifolds of the unstable orbits in each of these families are then produced and several mission designs are discussed that take advantage of these manifolds. Focus is given to mission designs that implement resonant orbits that periodically fly by the moon.

  19. Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    NASA Astrophysics Data System (ADS)

    Michtchenko, T. A.; Vieira, R. S. S.; Barros, D. A.; Lépine, J. R. D.

    2017-01-01

    Context. Resonances in the stellar orbital motion under perturbations from the spiral arm structure can play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (in the context of nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped groove profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes of initial conditions are constructed numerically in order to characterize the phase-space structure and identify the precise location of the co-rotation and Lindblad resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach. We generalize the concept of Lindblad resonances and extend it to cases of resonant orbits with large radial excursions, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters (SSP) may evolve in dynamically distinct regions, either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a

  20. DETECTABILITY AND ERROR ESTIMATION IN ORBITAL FITS OF RESONANT EXTRASOLAR PLANETS

    SciTech Connect

    Giuppone, C. A.; Beauge, C.; Tadeu dos Santos, M.; Ferraz-Mello, S.; Michtchenko, T. A.

    2009-07-10

    We estimate the conditions for detectability of two planets in a 2/1 mean-motion resonance from radial velocity data, as a function of their masses, number of observations and the signal-to-noise ratio. Even for a data set of the order of 100 observations and standard deviations of the order of a few meters per second, we find that Jovian-size resonant planets are difficult to detect if the masses of the planets differ by a factor larger than {approx}4. This is consistent with the present population of real exosystems in the 2/1 commensurability, most of which have resonant pairs with similar minimum masses, and could indicate that many other resonant systems exist, but are currently beyond the detectability limit. Furthermore, we analyze the error distribution in masses and orbital elements of orbital fits from synthetic data sets for resonant planets in the 2/1 commensurability. For various mass ratios and number of data points we find that the eccentricity of the outer planet is systematically overestimated, although the inner planet's eccentricity suffers a much smaller effect. If the initial conditions correspond to small-amplitude oscillations around stable apsidal corotation resonances, the amplitudes estimated from the orbital fits are biased toward larger amplitudes, in accordance to results found in real resonant extrasolar systems.

  1. Analysis of giant resonances in proton, 3He, and α scattering and the spin-flip strength in 208Pb

    NASA Astrophysics Data System (ADS)

    Morsch, H. P.; Cha, D.; Wambach, J.

    1985-05-01

    In an attempt to study isovector spin-flip excitations and to find a consistent picture of giant resonances in 208Pb, we analyzed giant resonance data from 172 MeV α scattering, 140 MeV 3He scattering, and 200 MeV proton scattering. Using spectroscopic information from α scattering, a good description of recent 3He scattering data is obtained. A detailed analysis of results from different probes reveals differences between complex particle and proton spectra which are interpreted as due to spin-flip contributions. The spin-flip strength is estimated in a microscopic p-h model. At the scattering angles considered it gives resonant strength at ~9 MeV dominated by 2- excitations and further gives an increasing continuum yield towards higher excitation energies. The cross sections of these spin-flip excitations in (p,p') are comparable to giant resonance yields and have to be considered in order to obtain a description consistent with complex particle spectra. The continuum part of isoscalar excitations is rather different from that of isovector spin-flip excitations. These features are qualitatively understood from the nuclear matter response. Calculations using the semi-infinite nuclear slab model of Esbensen and Bertsch give an almost quantitative description of isoscalar and spin-isospin continuum.

  2. On the establishment and evolution of orbit-orbit resonances. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1973-01-01

    A theory which suggests that in the case of planetary satellites, a tidally induced torque acting on the satellites may play an essential role on the evolution of the observed resonances is investigated as it applies to the three resonances among pairs of satellites of Saturn. Three stages are investigated: a theoretical description of transition is developed for a simple time dependent pendulum plus constant applied torque; the two body gravitational interaction is expanded and reduced to a one dimensional time independent Hamiltonion; and the model is applied to Saturn resonances. Although the theory proves successful in the Saturn case, it is less successful in the Tital-Hyperion case in providing a resonable time scale for the damping of the amplitude of liberation.

  3. A Uranian Trojan and the Frequency of Temporary Giant-Planet Co-Orbitals

    NASA Astrophysics Data System (ADS)

    Alexandersen, Mike; Gladman, Brett; Greenstreet, Sarah; Kavelaars, J. J.; Petit, Jean-Marc; Gwyn, Stephen

    2013-08-01

    Trojan objects share a planet’s orbit, never straying far from the triangular Lagrangian points, 60° ahead of (L4) or behind (L5) the planet. We report the detection of a Uranian Trojan; in our numerical integrations, 2011 QF99 oscillates around the Uranian L4 Lagrange point for >70,000 years and remains co-orbital for ∼1 million years before becoming a Centaur. We constructed a Centaur model, supplied from the transneptunian region, to estimate temporary co-orbital capture frequency and duration (to a factor of 2 accuracy), finding that at any time 0.4 and 2.8% of the population will be Uranian and Neptunian co-orbitals, respectively. The co-orbital fraction (∼2.4%) among Centaurs in the International Astronomical Union Minor Planet Centre database is thus as expected under transneptunian supply.

  4. Origin of orbital ferromagnetism and giant magnetic anisotropy at the nanoscale.

    PubMed

    Hernando, A; Crespo, P; García, M A

    2006-02-10

    The origin of orbital magnetism recently observed in different nanostructured films and particles is discussed as a consequence of spin-orbit coupling. It is shown that contact potentials induced at the thin film surface by broken symmetries, as domain boundaries in self-assembled monolayers, lead to orbital states that in some cases are of large radius. The component of the angular momentum normal to the surface can reach very high values that decrease the total energy by decreasing spin-orbit interaction energy. Intraorbital ferromagnetic spin correlations induce orbital momenta alignment. The estimated values of the magnetic moments per atom are in good agreement with the experimental observations in thiol capped gold films and nanoparticles.

  5. Revisiting the Capture of Mercury into Its 3:2 Spin-orbit Resonance

    DTIC Science & Technology

    2014-01-01

    well before differentiation. Keywords. celestial mechanics, planets and satellites: individual ( Mercury ) 1. Previous studies In the literature hitherto...2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Revisiting the capture of Mercury into its 3:2 spin-orbit...Astronomical Union 2014 doi:10.1017/S1743921314007765 Revisiting the capture of Mercury into its 3:2 spin-orbit resonance Benôıt Noyelles1, Julien

  6. Harmonic oscillators and resonance series generated by a periodic unstable classical orbit

    NASA Technical Reports Server (NTRS)

    Kazansky, A. K.; Ostrovsky, Valentin N.

    1995-01-01

    The presence of an unstable periodic classical orbit allows one to introduce the decay time as a purely classical magnitude: inverse of the Lyapunov index which characterizes the orbit instability. The Uncertainty Relation gives the corresponding resonance width which is proportional to the Planck constant. The more elaborate analysis is based on the parabolic equation method where the problem is effectively reduced to the multidimensional harmonic oscillator with the time-dependent frequency. The resonances form series in the complex energy plane which is equidistant in the direction perpendicular to the real axis. The applications of the general approach to various problems in atomic physics are briefly exposed.

  7. Circular periodic orbits, resonance capture and inclination excitation during type II migration

    NASA Astrophysics Data System (ADS)

    Antoniadou, K. I.; Voyatzis, G.

    2017-03-01

    We consider planetary systems evolving under the effect of a Stokes-type dissipative force mimicking the outcome of a type II migration process. As inward migration proceeds and the planets follow the circular family (they start on circular orbits) and even though they are initially almost coplanar, resonance capture can be realized. Then, at the vertical critical orbits (VCOs), that the circular family possesses, the inclination excitation can abruptly take place. The planets are now guided by the spatial elliptic families, which bifurcate from those critical orbits. We herein, perform a direct link of mutually inclined stable planetary systems on circular orbits trapped in mean-motion resonance (MMR) with the existence of VCOs of high values of multiplicity. It is shown that the more the multiplicity of the periodic orbits of the circular family increases, the more VCOs (corresponding to more MMRs) appear. In this way, we can provide a justification for the existence of resonant planets on circular orbits, which could, even further to that, evolve stably if they were mutually inclined.

  8. Disruption of planetary orbits through evection resonance with an external companion: circumbinary planets and multiplanet systems

    NASA Astrophysics Data System (ADS)

    Xu, Wenrui; Lai, Dong

    2016-07-01

    Planets around binary stars and those in multiplanet systems may experience resonant eccentricity excitation and disruption due to perturbations from a distant stellar companion. This `evection resonance' occurs when the apsidal precession frequency of the planet, driven by the quadrupole associated with the inner binary or the other planets, matches the orbital frequency of the external companion. We develop an analytic theory to study the effects of evection resonance on circumbinary planets and multiplanet systems. We derive the general conditions for effective eccentricity excitation or resonance capture of the planet as the system undergoes long-term evolution. Applying to circumbinary planets, we show that inward planet migration may lead to eccentricity growth due to evection resonance with an external perturber, and planets around shrinking binaries may not survive the resonant eccentricity growth. On the other hand, significant eccentricity excitation in multiplanet systems occurs in limited parameter space of planet and binary semimajor axes, and requires the planetary migration to be sufficiently slow.

  9. Resonant capture of multiple planet systems under dissipation and stable orbital configurations

    NASA Astrophysics Data System (ADS)

    Voyatzis, G.

    2016-09-01

    Migration of planetary systems caused by the action of dissipative forces may lead the planets to be trapped in a resonance. In this work we study the conditions and the dynamics of such resonant trapping. Particularly, we are interested in finding out whether resonant capture ends up in a long-term stable planetary configuration. For two planet systems we associate the evolution of migration with the existence of families of periodic orbits in the phase space of the three-body problem. The family of circular periodic orbits exhibits a gap at the 2:1 resonance and an instability and bifurcation at the 3:1 resonance. These properties explain the high probability of 2:1 and 3:1 resonant capture at low eccentricities. Furthermore, we study the resonant capture of three-planet systems. We show that such a resonant capture is possible and can occur under particular conditions. Then, from the migration path of the system, stable three-planet configurations, either symmetric or asymmetric, can be determined.

  10. Resonant inelastic x-ray scattering operators for t2 g orbital systems

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Khaliullin, Giniyat

    2017-08-01

    We derive general expressions for resonant inelastic x-ray scattering (RIXS) operators for t2 g orbital systems, which exhibit a rich array of unconventional magnetism arising from unquenched orbital moments. Within the fast collision approximation, which is valid especially for 4 d and 5 d transition metal compounds with short core-hole lifetimes, the RIXS operators are expressed in terms of total spin and orbital angular momenta of the constituent ions. We then map these operators onto pseudospins that represent spin-orbit entangled magnetic moments in systems with strong spin-orbit coupling. Applications of our theory to such systems as iridates and ruthenates are discussed, with a particular focus on compounds based on d4 ions with Van Vleck-type nonmagnetic ground state.

  11. Intense {gamma}-Ray Source in the Giant-Dipole-Resonance Range Driven by 10-TW Laser Pulses

    SciTech Connect

    Giulietti, A.; Gamucci, A.; Gizzi, L. A.; Labate, L.; Bourgeois, N.; Marques, J. R.; Ceccotti, T.; Dobosz, S.; D'Oliveira, P.; Monot, P.; Popescu, H.; Reau, F.; Martin, P.; Galy, J.; Hamilton, D. J.; Giulietti, D.

    2008-09-05

    A {gamma}-ray source with an intense component around the giant dipole resonance for photonuclear absorption has been obtained via bremsstrahlung of electron bunches driven by a 10-TW tabletop laser. 3D particle-in-cell simulation proves the achievement of a nonlinear regime leading to efficient acceleration of several sequential electron bunches per each laser pulse. The rate of the {gamma}-ray yield in the giant dipole resonance region (8

  12. THE ANGLO-AUSTRALIAN PLANET SEARCH. XX. A SOLITARY ICE-GIANT PLANET ORBITING HD 102365

    SciTech Connect

    Tinney, C. G.; Wittenmyer, Robert A.; Bailey, Jeremy; Butler, R. Paul; Jones, Hugh R. A.; O'Toole, Simon; Carter, Brad D.

    2011-02-01

    We present 12 years of precision Doppler data for the very nearby G3 star HD 102365, which reveals the presence of a Neptune-like planet with a 16.0 M{sub Earth} minimum mass in a 122.1 day orbit. Very few 'Super Earth' planets have been discovered to date in orbits this large and those that have been found reside in multiple systems of between three and six planets. HD 102365 b, in contrast, appears to orbit its star in splendid isolation. Analysis of the residuals to our Keplerian fit for HD 102365 b indicates that there are no other planets with minimum mass above 0.3 M{sub Jup} orbiting within 5 AU and no other 'Super Earths' more massive than 10 M{sub Earth} orbiting at periods shorter than 50 days. At periods of less than 20 days these limits drop to as low as 6 M{sub Earth}. There are now 32 exoplanets known with minimum mass below 20 M{sub Earth}, and interestingly the period distributions of these low-mass planets seem to be similar whether they orbit M-, K-, or G-type dwarfs.

  13. Measurement of γ-rays from Giant Resonances of 16O and 12C with Application to Supernova Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Ou, Iwa; Yamada, Yoshiyuyki; Shirahige, Tetsuya; Fukuda, Daisuke; Yano, Takatomi; Mori, Takaaki; Koshio, Yusuke; Sakuda, Makoto; Dhir, Rohit; Tamii, Atsushi; Aoi, Nori; Yosoi, Masaru; Ideguchi, Eiji; Suzuki, Tomokazu; Iwamoto, Chihiro; Ito, Takeshi; Miura, Masaki; Yamamoto, Tetsuya; Kawabata, Takahiro; Adachi, Satoshi; Tsumura, Miho; Murata, Motoki; Furuno, Tatsuya; Akimune, Hidetoshi; Nakada, Hitoshi

    We report preliminary results on the detection of the γ-rays from giant resonances of 16O and 12C nuclei from the experiment carried out at Research Center for Nuclear Physics Osaka University. These γ-rays can be used to detect the μ and τ type neutrinos and anti-neutrinos, emitted from a core-collapse supernova, through neutral current reactions with 16O and 12C by large-scale neutrino detectors.

  14. Giant resonances in {sup 238}U within the quasiparticle random-phase approximation with the Gogny force

    SciTech Connect

    Peru, S.; Gosselin, G.; Martini, M.; Dupuis, M.; Hilaire, S.

    2011-01-15

    Fully consistent axially-symmetric deformed quasiparticle random-phase approximation (QRPA) calculations have been performed, using the same Gogny D1S effective force for both the Hartree-Fock-Bogolyubov mean field and QRPA matrix. New implementation of this approach leads to the applicability of QRPA to heavy deformed nuclei. Giant resonances and low-energy collective states for monopole, dipole, quadrupole, and octupole modes are predicted for the heavy deformed nucleus {sup 238}U and compared with experimental data.

  15. Separation of contributions of isovector E2 and E1 giant resonances in direct and inverse reactions with real and virtual photons

    NASA Astrophysics Data System (ADS)

    Dzhilavyan, L. Z.; Lapik, A. M.; Nedorezov, V. G.; Tulupov, B. A.

    2017-01-01

    A brief overview of the methods for separating the contributions of isovector electric quadrupole ( E2) and dominant dipole ( E1) giant resonances in atomic nuclei, which are excited in direct and inverse reactions with photons (real and virtual), is given. The basic parameters of isovector giant resonance E2, which were declared to date by applying some of these methods to the results with 208Pb, are also presented.

  16. Temperature dependence of quantal and thermal dampings of the hot giant dipole resonance

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh Dang; Arima, Akito

    1998-07-01

    A systematic study of the damping of the giant dipole resonance (GDR) in 90Zr, 120Sn and 208Pb as a function of temperature T is performed. The double-time Green function technique is employed to determine the single-particle and GDR dampings. The single-particle energies, obtained in the Woods-Saxon potential for these nuclei, are used in the calculations. The results show that the coupling of collective vibration to the pp and hh excitations, which causes the thermal damping width, is responsible for the enlargement of the total width with increasing temperature up to T ≈ 3MeV and its saturation at higher temperatures. The quantal width, which arises from the coupling of the collective mode to the ph excitations decreases slowly with increasing temperature. The effect of single-particle damping on the GDR width is small. The results are found in an overall agreement with the experimental data for the GDR width, obtained in the inelastic α scattering and heavy-ion fusion reactions at excitation energies E* ⩽ 450 MeV. At high excitation energies (E* > 400 MeV) a behavior similar to the transition from zero to ordinary sounds is observed.

  17. Contribution of higher-order processes to the damping of hot giant dipole resonance

    NASA Astrophysics Data System (ADS)

    Dinh Dang, Nguyen; Tanabe, Kosai; Arima, Akito

    1998-12-01

    A systematic study is presented for three characteristics of the giant dipole resonance (GDR): (i) its width, (ii) its shape, and (iii) the integrated yield of emitted γ rays in 120Sn and 208Pb as a function of temperature T. The double-time Green's function method has been used to derive a complete set of equations, which allow one to calculate explicitly the GDR width due to coupling to all forward-going processes up to two-phonon ones at most in the second order of the interaction strength. The numerical calculations have been performed using the single-particle energies defined from the Woods-Saxon potentials. An overall agreement between theory and experiment is found for all three characteristics. The results show that the total width of the GDR due to coupling of the GDR phonon to all ph, pp, and hh configurations increases sharply at low temperatures up to T~ 3 MeV and saturates at T~4-6 MeV. The quantal width ΓQ due to coupling to ph configurations decreases slowly with increasing T. It becomes almost independent of T only when the contribution of two-phonon processes at T≠0 is omitted. The observed saturation of the integrated yield above E*~300 MeV is reproduced in both the GDR region and the region above it.

  18. The temperature dependence of the width of the giant dipole resonance

    SciTech Connect

    Ormand, W.E. |; Bortignon, P.F. |; Broglia, R.A. ||

    1995-12-31

    A systematic study of the full-width-at-half-maximum (FWHM) of the giant-dipole resonance (GDR) as a function of temperature for the nuclei {sup 120}Sn and {sup 208}Pb confirms the overall theoretical picture of the GDR in hot nuclei; in particular, the role played by large-amplitude thermal fluctuations of the nuclear shape. This is confirmed by the good agreement between theory and experiment achieved over a range of temperatures from 1.25--32 MeV and by the differences in the behavior of the FWHM for {sup 120}Sn and {sup 208}Pb, which can be attributed to the presence of strong shell corrections favoring spherical shapes in {sup 208}Pb that are absent in {sup 120}Sn. Finally, the increase in the FWHM over that expected from thermal averaging at temperatures of the order 3.0 MeV is in accordance with the increase expected from the particle evaporation of the compound system.

  19. Giant dipole resonance width in nuclei near Sn at low temperature and high angular momentum

    SciTech Connect

    Bhattacharya, Srijit; Mukhopadhyay, S.; Pandit, Deepak; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Gupta, D.; Banerjee, S. R.

    2008-02-15

    High energy {gamma} rays in coincidence with low energy yrast {gamma} rays have been measured from {sup 113}Sb, at excitation energies of 109 and 122 MeV, formed by bombarding {sup 20}Ne on {sup 93}Nb at projectile energies of 145 and 160 MeV, respectively, to study the role of angular momentum (J) and temperature (T) over giant dipole resonance (GDR) width ({gamma}). The maximum populated angular momenta for fusion were 67({Dirac_h}/2{pi}) and 73({Dirac_h}/2{pi}), respectively, for the above-mentioned beam energies. The high energy photons were detected using a Large Area Modular BaF{sub 2} Detector Array (LAMBDA) along with a 24-element multiplicity filter. After pre-equilibrium corrections, the excitation energy E* was averaged over the decay steps of the compound nucleus (CN). The average values of temperature, angular momentum, CN mass, etc., have been calculated using the statistical model code CASCADE. Using those average values, results show the systematic increase of GDR width with T, which is consistent with Kusnezov parametrization and the thermal shape fluctuation model (TSFM). The rise of GDR width with temperature also supports the assumptions of adiabatic coupling in the TSFM. But the GDR widths and corresponding reduced plots with J are not consistent with those of the theoretical model at high spins.

  20. Temperature dependence of the giant dipole resonance width in 152Gd

    NASA Astrophysics Data System (ADS)

    Ghosh, C.; Mishra, G.; Rhine Kumar, A. K.; Dokania, N.; Nanal, V.; Pillay, R. G.; Kumar, Suresh; Rout, P. C.; Joshi, Sandeep; Arumugam, P.

    2016-07-01

    To investigate the dependence of giant dipole resonance (GDR) width on temperature (T ) and angular momentum (J ), high energy γ -ray spectra were measured in the reaction 28Si+124Sn at E28Si=135 MeV. The J information was deduced from multiplicity of low-energy γ rays. The GDR parameters, namely, the centroid energy and width are extracted using statistical model analysis. The observed variation of the GDR width for T ˜1.2 -1.37 MeV and J ˜20 ℏ -40 ℏ is consistent with the universal scaling given by Kusnezov et al., which is applicable in the liquid-drop regime. The GDR input cross sections extracted from the statistical model best fits are compared with thermal shape fluctuation model (TSFM) calculations and are found to be in good agreement. The TSFM calculations predominantly favor the noncollective oblate shape, while the statistical model fit with both prolate and oblate shapes describes the data. The present data together with earlier measurements indicate a very slow variation of the GDR width for T ˜1.2 to 1.5 MeV. The observed trend is well explained by the TSFM calculations, although the calculated values are ˜4 %-13% higher than the data.

  1. Experimental study of playback giant magnetic resonance head nonlinearity in perpendicular recording

    NASA Astrophysics Data System (ADS)

    Luo, P.; Stoev, K.; Liu, F.; Vadde, A.; Gibbons, M.; Lederman, M.; Re, M.

    2003-05-01

    In this article, nonlinear distortions of the playback giant magnetic resonance (GMR) sensor in perpendicular recording are characterized in both time and frequency domains. We use three perpendicular media with different Mrt (0.46, 0.6, and 0.8 emu/cm2) and two groups of similar magnetic-read width (MRW) but different junction type [contiguous junction (CJ) and lead-over-lay (LOL)] GMR heads. Square-wave patterns at moderate densities are recorded to minimize NLTS, partial erasure, and transition broadening effects. Both time- and frequency-domain measurements indicate that the LOL-type GMR heads show playback nonlinearity (7%-23%), while the CJ-type GMR heads do not. Micromagnetic simulation is utilized to understand the hard bias field with different junction designs. The result indicates that the hard bias (HB) field in LOL type (HB field ˜6.9 Oe) at the air bearing surface (ABS) and stripe center is much lower than that in CJ type (HB field ˜54.0 Oe). Therefore, the free layer with large HB-HB distance will be more susceptible to saturation.

  2. Quenching of the Giant Dipole Resonance Strength at High Excitation Energy

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Frascaria, N.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.

    2007-05-01

    The evolution with excitation energy of the Giant Dipole Resonance features in nuclei of mass A≈108-136 is reviewed. We first discuss the results of the experiments performed with MEDEA studying the GDR gamma decay from hot nuclei populated at excitation energies above 300 MeV. The focus of the paper is on the excitation energy region between 160 and 290 MeV. This region has been investigated through the study of the reactions 116Sn + 12C at 17 and 23 A MeV, and 116Sn + 24Mg at 17 A MeV. Gamma-rays were detected using MEDEA in coincidence with evaporation residues detected in MACISTE. The analysis of the gamma-ray spectra and their comparison with statistical calculations are presented. The comparison with γ-ray spectra from the reaction 36Ar + 98Mo at higher excitation energies shows a coherent scenario where a progressive reduction of γ multiplicity relative to predictions for 100% of the Energy Weighted Sum Rule is observed above 200 MeV excitation energy. Finally, the existence of a link between disappearance of collective motion and the liquid-gas phase transitions is discussed.

  3. Giant exciton Fano resonance in quasi-one-dimensional Ta2NiSe5

    NASA Astrophysics Data System (ADS)

    Larkin, T. I.; Yaresko, A. N.; Pröpper, D.; Kikoin, K. A.; Lu, Y. F.; Takayama, T.; Mathis, Y.-L.; Rost, A. W.; Takagi, H.; Keimer, B.; Boris, A. V.

    2017-05-01

    We report the complex dielectric function of the quasi-one-dimensional chalcogenide Ta2NiSe5 , which undergoes a structural phase transition presumably associated with exciton condensation below Tc=326 K [Y. Wakisaka et al., Phys. Rev. Lett. 103, 026402 (2009), 10.1103/PhysRevLett.103.026402; Y. F. Lu et al., Nat. Commun. 8, 14408 (2017), 10.1038/ncomms14408], and of the isostructural Ta2NiS5 , which does not exhibit such a transition. Using spectroscopic ellipsometry, we have detected exciton doublets with pronounced Fano line shapes in both the compounds. The exciton Fano resonances in Ta2NiSe5 display an order-of-magnitude higher intensity than those in Ta2NiS5 . In conjunction with prior theoretical work [E. Rashba, Sov. Phys. Semicond. 8, 807 (1975)], we attribute this observation to the giant oscillator strength of spatially extended exciton-phonon bound states in Ta2NiSe5 . The formation of exciton-phonon complexes in Ta2NiS5 and Ta2NiSe5 is confirmed by the pronounced temperature dependence of sharp interband transitions in the optical spectra, the peak energies and widths of which scale with the thermal population of optical phonon modes. The description of the optically excited states in terms of strongly overlapping exciton complexes is in good agreement with the hypothesis of an exciton insulator ground state.

  4. Giant dipole resonance studies in Ba isotopes at E /A ≈5 MeV

    NASA Astrophysics Data System (ADS)

    Ghosh, C.; Kumar, A. K. Rhine; Dey, Balaram; Nanal, V.; Pillay, R. G.; Arumugam, P.; Anoop, K. V.; Dokania, N.; Garai, Abhijit; Gupta, Ghnashyam; Mirgule, E. T.; Mishra, G.; Mondal, Debasish; Pal, S.; Pose, M. S.; Rout, P. C.

    2017-07-01

    Exclusive measurements of high-energy γ rays have been performed in 124Ba and 136Ba at the same excitation energy (˜49 MeV ) to study the properties of the giant dipole resonance (GDR) over a wide N /Z range. The high-energy γ rays are measured in coincidence with the multiplicity of low-energy γ rays to disentangle the effect of temperature (T ) and angular momentum (J ). The GDR parameters are extracted employing a simulated Monte Carlo statistical model analysis. The observed γ -ray spectra of 124Ba can be explained with prolate deformation, whereas a single-component Lorentzian function which corresponds to a spherical shape could explain the γ -ray spectra of 136Ba. The observed GDR width in 136Ba is narrower compared to that of 124Ba. The statistical model best-fit GDR cross sections are found to be in reasonable agreement with the thermal shape fluctuation model (TSFM) calculations. Further, it is shown that the variation of GDR width with T is well reproduced by the TSFM calculations over the temperature range of 1.1-1.7 MeV.

  5. Effects of thermal shape fluctuations and pairing fluctuations on the giant dipole resonance in warm nuclei

    NASA Astrophysics Data System (ADS)

    Rhine Kumar, A. K.; Arumugam, P.; Dang, N. Dinh

    2015-04-01

    Apart from the higher limits of isospin and temperature, the properties of atomic nuclei are intriguing and less explored at the limits of lowest but finite temperatures. At very low temperatures there is a strong interplay between the shell (quantal fluctuations), statistical (thermal fluctuations), and residual pairing effects as evidenced from the studies on giant dipole resonance (GDR). In our recent work [Phys. Rev. C 90, 044308 (2014), 10.1103/PhysRevC.90.044308], we have outlined some of our results from a theoretical approach for such warm nuclei where all these effects are incorporated along within the thermal shape fluctuation model (TSFM) extended to include the fluctuations in the pairing field. In this article, we present the complete formalism based on the microscopic-macroscopic approach for determining the deformation energies and a macroscopic approach which links the deformation to GDR observables. We discuss our results for the nuclei 97Tc,120Sn,179Au, and 208Pb, and corroborate with the experimental data available. The TSFM could explain the data successfully at low temperature only with a proper treatment of pairing and its fluctuations. More measurements with better precision could yield rich information about several phase transitions that can happen in warm nuclei.

  6. Signature of clustering in quantum many-body systems probed by the giant dipole resonance

    NASA Astrophysics Data System (ADS)

    Pandit, Deepak; Mondal, Debasish; Dey, Balaram; Bhattacharya, Srijit; Mukhopadhyay, S.; Pal, Surajit; De, A.; Banerjee, S. R.

    2017-03-01

    The present experimental study illustrates how large deformations attained by nuclei due to cluster formation are perceived through the giant dipole resonance (GDR) strength function. The high energy GDR γ rays have been measured from 32S at different angular momenta (J ) but similar temperatures in the reactions 4He(Elab=45 MeV )+28Si and 20Ne(Elab=145 MeV )+12C . The experimental data at lower J (˜10 ℏ ) suggests a normal deformation, similar to the ground state value, showing no potential signature of clustering. However, it is found that the GDR lineshape is fragmented into two prominent peaks at high J (˜20 ℏ ) providing a direct measurement of the large deformation developed in the nucleus. The observed lineshape is also completely different from the ones seen for Jacobi shape transition at high J pointing towards the formation of cluster structure in superdeformed states of 32S at such high spin. Thus, the GDR can be regarded as a unique tool to study cluster formation at high excitation energies and angular momenta.

  7. Experimental study of the isovector giant dipole resonance in 80Zr and 81Rb

    NASA Astrophysics Data System (ADS)

    Ceruti, S.; Camera, F.; Bracco, A.; Mentana, A.; Avigo, R.; Benzoni, G.; Blasi, N.; Bocchi, G.; Bottoni, S.; Brambilla, S.; Crespi, F. C. L.; Giaz, A.; Leoni, S.; Million, B.; Morales, A. I.; Nicolini, R.; Pellegri, L.; Riboldi, S.; Wieland, O.; Bazzacco, D.; Ciemala, M.; Farnea, E.; Gottardo, A.; Kmiecik, M.; Maj, A.; Mengoni, D.; Michelagnoli, C.; Modamio, V.; Montanari, D.; Napoli, D.; Recchia, F.; Sahin, E.; Ur, C.; Valiente-Dobón, J. J.; Wasilewska, B.; Zieblinski, M.

    2017-01-01

    The isovector giant dipole resonance (IVGDR) γ decay was measured in the compound nuclei 80Zr and 81Rb at an excitation energy of E*=54 MeV. The fusion reaction 40Ca+40Ca at Ebeam=136 MeV was used to form the compound nucleus 80Zr, while the reaction 37Cl+44Ca at Ebeam=95 MeV was used to form the compound nucleus 81Rb at the same excitation energy. The IVGDR parameters extracted from the analysis were compared with the ones found at higher excitation energy (E*=83 MeV). The comparison allows one to observe two different nuclear mechanisms: (i) the IVGDR intrinsic width remains constant with the excitation energy in the nucleus 81Rb; (ii) the isospin-violating spreading width (i.e., Coulomb spreading width) remains constant with the excitation energy in the nucleus 80Zr. The experimental setup used for the γ -ray detection was composed by the AGATA demonstrator array coupled to the large-volume LaBr3:Ce detectors of the HECTOR+ array.

  8. Cyclotron resonance of figure-of-eight orbits in a type-II Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Koshino, Mikito

    2016-07-01

    We study the cyclotron resonance in the electron-hole joint Fermi surface of a type-II Weyl semimetal. In magnetic field, the electron and hole pockets touching at the Weyl node are hybridized to form quantized Landau levels corresponding to semiclassical 8-shaped orbits. We calculate the dynamical conductivities for the electric fields oscillating in x and y directions and find that the resonant frequencies in x and y differ by a factor of two, reflecting the figure-of-eight electron motion in real space. The peculiar anisotropy in the cyclotron resonance serves as a unique characteristic of the dumbbell-like Fermi surface.

  9. Post Surgical Giant Epidermal Inclusion Cyst of the Lid and Orbit- A Rare Case.

    PubMed

    Mandal, Salil Kumar; Mandal, Aparna; Bandyopadhya, Arghya

    2015-09-01

    Epidermoid cyst within the lid and orbit is extremely rare. Epidermoid tumours are inclusion of ectodermal elements in the site not normally containing these structures. It is of two types; primary type related to implantation of ectoderm at the time of closure of the neural groove and secondary type caused by post traumatic inclusion of the surface epithelium. A 45-year-old male had complaint of swelling on the right upper lid and orbital region. It first appeared two years back. It was painless progressively increased in size and shape. There was difficulty in opening of eye lid due to large swelling, feeling of heaviness in the right upper lid and occasional headache. There was history of right eye ocular infection following vegetative matter injury three years back. Evisceration of right eye was done for aforementioned reason. USG report shows cystic encapsulated mass with calcification foci in right upper lid-orbital region with fat component. MRI right orbit shows fairly large hyperintense cystic lesion seen involving right orbit with posterior extension up to optic canal. No intracranial extension. FNAC confirmed epidermal inclusion cyst. We did upper lid reconstruction with removal of mass. We have successfully removed the mass without any complication and with one year follow-up there is no recurrence.

  10. The In Situ Formation of Giant Planets at Short Orbital Periods

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.; Gladman, Brett; Granados Contreras, A. Paula

    2016-05-01

    We propose that two of the most surprising results so far among exoplanet discoveries are related: the existences of both hot Jupiters and the high frequency of multi-planet systems with periods P < 200 days. In this paradigm, the vast majority of stars rapidly form along with multiple close-in planets in the mass range of Mars to super-Earths/mini-Neptunes. Such systems of tightly packed inner planets are metastable, with the time scale of the dynamical instability having a major influence on final planet types. In most cases, the planets consolidate into a system of fewer, more massive planets, but long after the circumstellar gas disk has dissipated. This can yield planets with masses above the traditional critical core of ~10 Mearth yielding short-period giants that lack abundant gas. A rich variety of physical states are also possible given the range of collisional outcomes and formation time of the close-in planets. However, when dynamical consolidation occurs before gas dispersal, a critical core can form that then grows via gas capture into a short-period gas giant. In this picture the majority of Hot and Warm Jupiters formed locally, rather than migrating down from larger distances.

  11. The In Situ Formation of Giant Planets at Short Orbital Periods

    NASA Astrophysics Data System (ADS)

    Boley, A. C.; Granados Contreras, A. P.; Gladman, B.

    2016-02-01

    We propose that two of the most surprising results so far among exoplanet discoveries are related: the existences of both hot Jupiters and the high frequency of multi-planet systems with periods P ≲ 200 days. In this paradigm, the vast majority of stars rapidly form along with multiple close-in planets in the mass range of Mars to super-Earths/mini-Neptunes. Such systems of tightly packed inner planets are metastable, with the time scale of the dynamical instability having a major influence on final planet types. In most cases, the planets consolidate into a system of fewer, more massive planets, but long after the circumstellar gas disk has dissipated. This can yield planets with masses above the traditional critical core of ∼10 M⊕, yielding short-period giants that lack abundant gas. A rich variety of physical states are also possible given the range of collisional outcomes and formation time of the close-in planets. However, when dynamical consolidation occurs before gas dispersal, a critical core can form that then grows via gas capture into a short-period gas giant. In this picture the majority of Hot and Warm Jupiters formed locally, rather than migrating down from larger distances.

  12. Numerical model of the evolution of asteroid orbits at the 2:5 resonance

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.

    1992-12-01

    The interrelations of the variations in the orbital elements of asteroids at the 2:5 resonance and in its vicinity are investigated.. These investigations are based on the numerical integration of the complete equations of motion of the three-body problem (sun-Jupiter-asteroid) for 500 model asteroids. The time interval under consideration for most versions of the calculations equaled 10(4) orbital periods of Jupiter. The limits of the variations in the orbital elements and the regions of initial data corresponding to different types of interrelations of the variations in the eccentricity and longitude of perihelion are examined. It is shown that thr 2:5 gap may play a larger role than other gaps in the replenishment of the Apollo and Amor groups. The time over which the argument of perihelion changed by 360 degrees was usually equal to two periods of variation in the orbital inclination. When this interrelation was not found, the time over which the longitude of the ascending node changed by 360 degrees was equal, as a rule, to one period of variation in this inclination. For some asteroids moving along orbits of small eccentricity and inclination, interrelations were found between the periods of variation in four orbital elements: eccentricity, inclination, argument of perihelion, and longitude of the ascending node. For initial inclinations i° = 40° of asteroid orbits, the maximum values of inclinations of some model asteroids reached 160 degrees. Such asteroids could reach the sun or nearly parabolic orbits.

  13. Orbital parameters of V 0332+53 from 2015 giant outburst data

    NASA Astrophysics Data System (ADS)

    Doroshenko, V.; Tsygankov, S.; Santangelo, A.

    2016-05-01

    We present the updated orbital solution for the transient Be X-ray binary V 0332+53, which we obtained by complementing historical measurements with the data from the gamma-ray burst monitor onboard Fermi. These were acquired during the outburst in June-October 2015. We modeled the observed changes in the spin-frequency of the pulsar and deduced the orbital parameters of the system. We significantly improved existing constrains and show that contrary to previous findings, no change in orbital parameters is required to explain the spin evolution of the source during the outbursts in 1983, 2005, and 2015. The reconstructed intrinsic spin-up of the neutron star during the latest outburst is found to be comparable with previously observed values and predictions of the accretion torque theory.

  14. Dressed photon-orbital states in a quantum dot: Intervalley spin resonance

    NASA Astrophysics Data System (ADS)

    Scarlino, P.; Kawakami, E.; Jullien, T.; Ward, D. R.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2017-04-01

    The valley degree of freedom is intrinsic to spin qubits in Si/SiGe quantum dots. It has been viewed alternately as a hazard, especially when the lowest valley-orbit splitting is small compared to the thermal energy, or as an asset, most prominently in proposals to use the valley degree of freedom itself as a qubit. Here we present experiments in which microwave electric field driving induces transitions between both valley-orbit and spin states. We show that this system is highly nonlinear and can be understood through the use of dressed photon-orbital states, enabling a unified understanding of the six microwave resonance lines we observe. Some of these resonances are intervalley spin transitions that arise from a nonadiabatic process in which both the valley and the spin degree of freedom are excited simultaneously. For these transitions, involving a change in valley-orbit state, we find a tenfold increase in sensitivity to electric fields and electrical noise compared to pure spin transitions, strongly reducing the phase coherence when changes in valley-orbit index are incurred. In contrast to this nonadiabatic transition, the pure spin transitions, whether arising from harmonic or subharmonic generation, are shown to be adiabatic in the orbital sector. The nonlinearity of the system is most strikingly manifest in the observation of a dynamical anticrossing between a spin-flip, intervalley transition and a three-photon transition enabled by the strong nonlinearity we find in this seemly simple system.

  15. Resonant mixing of optical orbital and spin angular momentum by using chiral silicon nanosphere clusters.

    PubMed

    Al-Jarro, Ahmed; Biris, Claudiu G; Panoiu, Nicolae C

    2016-04-04

    We present an in-depth analysis of the resonant intermixing between optical orbital and spin angular momentum of Laguerre-Gaussian (LG) beams, mediated by chiral clusters made of silicon nanospheres. In particular, we establish a relationship between the spin and orbital quantum numbers characterizing the LG beam and the order q of the rotation symmetry group q of the cluster of nanospheres for which resonantly enhanced coupling between the two components of the optical angular momentum is observed. Thus, similar to the case of diffraction grating-mediated transfer of linear momentum between optical beams, we demonstrate that clusters of nanospheres that are invariant to specific rotation transformations can efficiently transfer optical angular momentum between LG beams with different quantum numbers. We also discuss the conditions in which the resonant interaction between LG beams and a chiral cluster of nanospheres leads to the generation of superchiral light.

  16. CONDITIONS OF PASSAGE AND ENTRAPMENT OF TERRESTRIAL PLANETS IN SPIN-ORBIT RESONANCES

    SciTech Connect

    Makarov, Valeri V.

    2012-06-10

    The dynamical evolution of terrestrial planets resembling Mercury in the vicinity of spin-orbit resonances is investigated using comprehensive harmonic expansions of the tidal torque taking into account the frequency-dependent quality factors and Love numbers. The torque equations are integrated numerically with a small step in time, including the oscillating triaxial torque components but neglecting the layered structure of the planet and assuming a zero obliquity. We find that a Mercury-like planet with a current value of orbital eccentricity (0.2056) is always captured in 3:2 resonance. The probability of capture in the higher 2:1 resonance is approximately 0.23. These results are confirmed by a semi-analytical estimation of capture probabilities as functions of eccentricity for both prograde and retrograde evolutions of spin rate. As follows from analysis of equilibrium torques, entrapment in 3:2 resonance is inevitable at eccentricities between 0.2 and 0.41. Considering the phase space parameters at the times of periastron, the range of spin rates and phase angles for which an immediate resonance passage is triggered is very narrow, and yet a planet like Mercury rarely fails to align itself into this state of unstable equilibrium before it traverses 2:1 resonance.

  17. On Mercury's entrapment into the 3:2 spin-orbit resonance

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoit; Frouard, J.; Makarov, V.; Efroimsky, M.

    2013-10-01

    The rotational dynamics of Mercury is a peculiar case in the Solar System, since it is a supersynchronous, 3:2 resonant state, with the spin period being 2/3 of the orbital one. While it is widely accepted that the significant eccentricity (0.206) favours this configuration, the history of Mercury's despinning remains nonetheless a matter of discussion. At least three scenarios can be found in the scientific literature. The first one considers a homogeneous Mercury that was trapped after several crossings of the resonance, these crossings made possible by the chaotic evolution of the eccentricity (Correia & Laskar 2004). The second scenario includes friction at the core-mantle boundary, which increases the probabilities of capture during one crossing (Peale & Boss 1977, Correia & Laskar 2009). The third scenario assumes that Mercury had had a retrograde rotation, then a synchronous one, and only later came into the current 3:2 resonance. We here use a realistic model of tides, based on the Darwin-Kaula expansions combined with both the elastic rebound and anelastic creep of solids. Within this model, we find that the 3:2 spin-orbit resonance is the most probable for a homogeneous Mercury. Moreover, we find that leaving a resonance after being trapped is impossible or virtually impossible, thus excluding the possibility of a past 2:1 resonance. This also indicates that entrapment is likely to happen before the differentiation of Mercury takes place.

  18. ON THE ORBITAL EVOLUTION OF A GIANT PLANET PAIR EMBEDDED IN A GASEOUS DISK. II. A SATURN-JUPITER CONFIGURATION

    SciTech Connect

    Zhang Hui; Zhou Jilin

    2010-08-10

    We carry out a series of high-resolution (1024 x 1024) hydrodynamic simulations to investigate the orbital evolution of a Saturn-Jupiter pair embedded in a gaseous disk. This work extends the results of our previous work by exploring a different orbital configuration-Jupiter lies outside Saturn (q < 1, where q {identical_to} M{sub i} /M{sub o} is the mass ratio of the inner planet and the outer one). We focus on the effects of different initial separations (d) between the two planets and the various surface density profiles of the disk, where {sigma} {proportional_to} r {sup -}{alpha}. We also compare the results of different orbital configurations of the planet pair. Our results show that (1) when the initial separation is relatively large (d>d {sub iLr}, where d {sub iLr} is the distance between Jupiter and its first inner Lindblad resonance), the two planets undergo divergent migration. However, the inward migration of Saturn could be halted when Jupiter compresses the inner disk in which Saturn is embedded. (2) Convergent migration occurs when the initial separation is smaller (d < d {sub iLr}) and the density slope of the disk is nearly flat ({alpha} < 1/2). Saturn is then forced by Jupiter to migrate inward where the two planets are trapped into mean motion resonances (MMRs), and Saturn may get very close to the central star. (3) In the case of q < 1, the eccentricity of Saturn could be excited to a very high value (e{sub S} {approx} 0.4-0.5) by the MMRs and the system could maintain stability. These results explain the formation of MMRs in the exoplanet systems where the outer planet is more massive than the inner one. It also helps us to understand the origin of the 'hot Jupiter/Saturn' with a highly eccentric orbit.

  19. RESONANT X-RAY SCATTERING AS A PROBE OF ORBITAL AND CHARGE ORDERING.

    SciTech Connect

    NELSON,C.S.; HILL,J.P.; GIBBS,D.

    2002-05-13

    Resonant x-ray scattering is a powerful experimental technique for probing orbital and charge ordering. It involves tuning the incident photon energy to an absorption edge of the relevant ion and observing scattering at previously ''forbidden'' Bragg peaks, and it allows high-resolution, quantitative studies of orbital and charge order--even from small samples. Further, resonant x-ray scattering from orbitally ordered systems exhibits polarization- and azimuthal-dependent properties that provide additional information about the details of the orbital order that is difficult, or impossible, to obtain with any other technique. In the manganites, the sensitivity to charge and orbital ordering is enhanced when the incident photon energy is tuned near the Mn K absorption edge (6.539 keV), which is the lowest energy at which a 1s electron can be excited into an unoccupied state. In this process, the core electron is promoted to an intermediate excited state, which decays with the emission of a photon. The sensitivity to charge ordering is believed to be due to the small difference in K absorption edges of the Mn{sup 3+} and Mn{sup 4+} sites. For orbital ordering, the sensitivity arises from a splitting--or difference in the weight of the density of states [239]--of the orbitals occupied by the excited electron in the intermediate state. In the absence of such a splitting, there is no resonant enhancement of the scattering intensity. In principle, other absorption edges in which the intermediate state is anisotropic could be utilized, but the strong dipole transition to the Mn 4p levels--and their convenient energies for x-ray diffraction--make the K edge well-suited to studies of manganites. The Mn 4p levels are affected by the symmetry of the orbital ordering, which makes the technique sensitive to the orbital degree of freedom. Therefore resonant x-ray scattering can be used to obtain important quantitative information concerning the details of this electronic order

  20. Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab.

    PubMed

    Jiang, Mengjiang; Zhu, Wenguo; Guan, Heyuan; Yu, Jianhui; Lu, Huihui; Tan, Jieyuan; Zhang, Jun; Chen, Zhe

    2017-09-01

    An orbital angular momentum (OAM)-induced spin splitting is theoretically predicted when a higher-order Laguerre-Gaussian beam is transmitted through a metamaterial slab. The upper bound of this spin splitting is found to be |ℓ|w0/(|ℓ|+1)(1/2), where ℓ and w0 are the incident OAM and beam waist, respectively. By optimizing the structure parameter of the metamaterial, as well as the incident angle, the OAM-induced spin splitting can reach more than 0.99 of the upper bound in the cases of both the horizontal and vertical incident polarization states, and the transmitted light fields turn out to be full Poincaré beams. These findings provide a deeper insight into the spin-orbit interaction, and, thereby, facilitate the development of spin-based applications.

  1. Isoscalar monopole and dipole excitations of cluster states and giant resonances in 12C

    NASA Astrophysics Data System (ADS)

    Kanada-En'yo, Yoshiko

    2016-05-01

    The isoscalar monopole (ISM) and dipole (ISD) excitations in 12C are investigated theoretically with the shifted antisymmetrized molecular dynamics (AMD) plus 3 α -cluster generator coordinate method (GCM). The small-amplitude vibration modes are described by coherent one-particle one-hole excitations expressed by a small shift of single-nucleon Gaussian wave functions within the AMD framework, whereas the large-amplitude cluster modes are incorporated by superposing 3 α -cluster wave functions in the GCM. The coupling of the excitations in the intrinsic frame with the rotation and parity transformation is taken into account microscopically by the angular-momentum and parity projections. The present a calculation that describes the ISM and ISD excitations over a wide energy region covering cluster modes in the low-energy region and the giant resonances in the high-energy region, although the quantitative description of the high-energy part is not satisfactory. The low-energy ISM and ISD strengths of the cluster modes are enhanced by the distance motion between α clusters, and they split into a couple of states because of the angular motion of α clusters. The low-energy ISM strengths exhaust 26% of the energy-weighted sum rule, which is consistent with the experimental data for the 12C(02+; 7.65 MeV) and 12C(03+; 10.3 MeV) measured by (e ,e') ,(α ,α') , and (6Li,6Li' ) scatterings. In the calculated low-energy ISD strengths, two 1- states (the 11- and 12- states) with the significant strengths are obtained over E =10 -15 MeV. The results indicate that the ISD excitations can be a good probe to experimentally search for new cluster states such as the 12C(12-) obtained in the present calculation.

  2. Onset of quenching of the giant dipole resonance at high excitation energies

    NASA Astrophysics Data System (ADS)

    Santonocito, D.; Blumenfeld, Y.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Delaunay, F.; Del Zoppo, A.; Finocchiaro, P.; Hongmei, F.; Lima, V.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Scarpaci, J. A.; Wieland, O.

    2014-11-01

    The evolution of the giant dipole resonance (GDR) properties in nuclei of mass A =120 to 132 has been investigated in an excitation energy range between 150 and 270 MeV through the study of complete and nearly complete fusion reactions using 116Sn beams at 17 A and 23 A MeV from the cyclotron of the Laboratorio Nazionale del Sud impinging on 12C and 24Mg targets. γ rays and light charged particles were detected using the multi-element detector array MEDEA in coincidence with evaporation residues detected by using mass and charge identification spectrometry with telescope (MACISTE). Light-charged-particle energy spectra were analyzed within the framework of a multiple-source-emission scenario by using a fitting procedure to determine the amount of pre-equilibrium emission and deduce the excitation energies reached in the compound nuclei. A detailed analysis of the γ -ray spectra and their comparison with statistical model calculations is presented. Evidence of a quenching of the GDR gamma yield was found at 270 MeV excitation energy. The quenching effect becomes progressively more important with increasing excitation energy, as observed when the comparison is extended to data from the reaction 36Ar+96Mo at 37 A MeV where hot nuclei were populated up to 430 MeV excitation energy. A coherent scenario emerges indicating the existence of a limiting excitation energy for the collective motion of about E*/A =2.1 MeV for systems of mass A =105 to 111 while a slightly lower value was observed for nuclei of mass A ˜132 . The existence of a possible link between GDR disappearance and the liquid-gas phase transition is discussed.

  3. Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo

    2016-03-01

    Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.

  4. Global investigation of the fine structure of the isoscalar giant quadrupole resonance

    SciTech Connect

    Shevchenko, A.; Burda, O.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Sideras-Haddad, E.; Cooper, G. R. J.; Fearick, R. W.; Foertsch, S. V.; Lawrie, J. J.; Neveling, R.; Smit, F. D.; Fujita, H.; Fujita, Y.; Lacroix, D.

    2009-04-15

    Fine structure in the region of the isoscalar giant quadrupole resonance (ISGQR) in {sup 58}Ni, {sup 89}Y, {sup 90}Zr, {sup 120}Sn, {sup 166}Er, and {sup 208}Pb has been observed in high-energy-resolution ({delta}E{sub 1/2}{approx_equal}35-50 keV) inelastic proton scattering measurements at E{sub 0}=200 MeV at iThemba LABS. Calculations of the corresponding quadrupole excitation strength functions performed within models based on the random-phase approximation (RPA) reveal similar fine structure when the mixing of one-particle one-hole states with two-particle two-hole states is taken into account. A detailed comparison of the experimental data is made with results from the quasiparticle-phonon model (QPM) and the extended time-dependent Hartree-Fock (ETDHF) method. For {sup 208}Pb, additional theoretical results from second RPA and the extended theory of finite Fermi systems (ETFFS) are discussed. A continuous wavelet analysis of the experimental and the calculated spectra is used to extract dominant scales characterizing the fine structure. Although the calculations agree with qualitative features of these scales, considerable differences are found between the model and experimental results and amongst different models. Within the framework of the QPM and ETDHF calculations it is possible to decompose the model spaces into subspaces approximately corresponding to different damping mechanisms. It is demonstrated that characteristic scales mainly arise from the collective coupling of the ISGQR to low-energy surface vibrations.

  5. Effect of angular momentum on giant dipole resonance observables in the 28Si+116Cd reaction

    NASA Astrophysics Data System (ADS)

    Mukul, Ish; Roy, A.; Sugathan, P.; Gehlot, J.; Mohanto, G.; Madhavan, N.; Nath, S.; Dubey, R.; Mazumdar, I.; Gothe, D. A.; Kaur, Maninder; Kumar, A. K. Rhine; Arumugam, P.

    2013-08-01

    Background: Giant dipole resonance (GDR) has been used as an important tool for studying nuclear properties in hot rotating nuclei. Exclusive measurements using low-energy γ-ray multiplicity filters provide more control over angular momentum selection in such measurements.Purpose: Study the effect of angular momentum and temperature on nuclear deformations and GDR widths at high excitation energies in 144Sm.Methods: Exclusive measurements of GDR γ rays were carried out in the 28Si+116Cd reaction populated at two different excitation energies. Beam energies of 125 and 140 MeV pumped the nuclei to average temperatures of 1.1 to 1.5 MeV. The high-energy γ rays were measured using the large NaI(Tl) detector in coincidence with the sum-spin multiplicity filter consisting of 32 NaI(Tl) detectors covering nearly 4π sr of solid angle.Results: The average angular momentum spanned the range of 25ℏ to 60ℏ. The GDR centroid energies, widths, and deformation parameter (β) were extracted as a function of at three different bins of 1.1, 1.3, and 1.5 MeV. The thermal shape fluctuation model (TSFM) calculations have been performed incorporating the fluctuations induced due to temperature and deformation in the nucleus using a numerically exact method. The calculations showed evidence of deformation throughout the experimental range. The GDR width data have been interpreted in terms of reduced width as a function of reduced angular momentum.Conclusions: The nucleus evolves to a deformed shape from spherical shape in ground state in the extracted temperature range as predicted by the theoretical calculations. Kusnezov's parametrization also holds good for the large experimental J range.

  6. Asymmetric orbital distribution near mean motion resonance: Application to planets observed by Kepler and radial velocities

    SciTech Connect

    Xie, Ji-Wei E-mail: jwxie@astro.utoronto.ca

    2014-05-10

    Many multiple-planet systems have been found by the Kepler transit survey and various radial velocity (RV) surveys. Kepler planets show an asymmetric feature, namely, there are small but significant deficits/excesses of planet pairs with orbital period spacing slightly narrow/wide of the exact resonance, particularly near the first order mean motion resonance (MMR), such as 2:1 and 3:2 MMR. Similarly, if not exactly the same, an asymmetric feature (pileup wide of 2:1 MMR) is also seen in RV planets, but only for massive ones. We analytically and numerically study planets' orbital evolutions near and in the MMR. We find that their orbital period ratios could be asymmetrically distributed around the MMR center regardless of dissipation. In the case of no dissipation, Kepler planets' asymmetric orbital distribution could be partly reproduced for 3:2 MMR but not for 2:1 MMR, implying that dissipation might be more important to the latter. The pileup of massive RV planets just wide of 2:1 MMR is found to be consistent with the scenario that planets formed separately then migrated toward the MMR. The location of the pileup infers a K value of 1-100 on the order of magnitude for massive planets, where K is the damping rate ratio between orbital eccentricity and semimajor axis during planet migration.

  7. Orbit-based analysis of resonant excitations of Alfvén waves in tokamaks

    SciTech Connect

    Bierwage, Andreas; Shinohara, Kouji

    2014-11-15

    The exponential growth phase of fast-ion-driven Alfvénic instabilities is simulated and the resonant wave-particle interactions are analyzed numerically. The simulations are carried out in realistic magnetic geometry and with a realistic particle distribution for a JT-60U plasma driven by negative-ion-based neutral beams. In order to deal with the large magnetic drifts of the fast ions, two new mapping methods are developed and applied. The first mapping yields the radii and pitch angles at the points, where the unperturbed orbit of a particle intersects the mid-plane. These canonical coordinates allow to express analysis results (e.g., drive profiles and resonance widths) in a form that is easy to understand and directly comparable to the radial mode structure. The second mapping yields the structure of the wave field along the particle trajectory. This allows us to unify resonance conditions for trapped and passing particles, determine which harmonics are driven, and which orders of the resonance are involved. This orbit-based resonance analysis (ORA) method is applied to fast-ion-driven instabilities with toroidal mode numbers n = 1-3. After determining the order and width of each resonance, the kinetic compression of resonant particles and the effect of linear resonance overlap are examined. On the basis of the ORA results, implications for the fully nonlinear regime, for the long-time evolution of the system in the presence of a fast ion source, and for the interpretation of experimental observations are discussed.

  8. The quest for companions to post-common envelope binaries. IV. The 2:1 mean-motion resonance of the planets orbiting NN Serpentis

    NASA Astrophysics Data System (ADS)

    Beuermann, K.; Dreizler, S.; Hessman, F. V.

    2013-07-01

    We present 69 new mid-eclipse times of the young post-common envelope binary (PCEB) NN Ser, which was previously suggested to possess two circumbinary planets. We have interpreted the observed eclipse-time variations in terms of the light-travel time effect caused by two planets, exhaustively covering the multi-dimensional parameter space by fits in the two binary and ten orbital parameters. We supplemented the fits by stability calculations for all models with an acceptable χ2. An island of secularly stable 2:1 resonant solutions exists, which coincides with the global χ2 minimum. Our best-fit stable solution yields current orbital periods Po = 15.47 yr and Pi = 7.65 yr and eccentricities eo = 0.14 and ei = 0.22 for the outer and inner planets, respectively. The companions qualify as giant planets, with masses of 7.0 MJup and 1.7 MJup for the case of orbits coplanar with that of the binary. The two-planet model that starts from the present system parameters has a lifetime greater than 108 yr, which significantly exceeds the age of NN Ser of 106 yr as a PCEB. The resonance is characterized by libration of the resonant variable Θ1 and circulation of , the difference between the arguments of periapse of the two planets. No stable nonresonant solutions were found, and the possibility of a 5:2 resonance suggested previously by us is now excluded at the 99.3% confidence level. Table 1 is available in electronic form at http://www.aanda.org

  9. THE CALIFORNIA PLANET SURVEY IV: A PLANET ORBITING THE GIANT STAR HD 145934 AND UPDATES TO SEVEN SYSTEMS WITH LONG-PERIOD PLANETS

    SciTech Connect

    Katherina Feng, Y.; Wright, Jason T.; Nelson, Benjamin; Wang, Sharon X.; Ford, Eric B.; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2015-02-10

    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative of an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1 M {sub Jup} planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2 M {sub Jup} planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period greater than 5 yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems.

  10. Orbital-plane precessional resonances for binary black-hole systems

    NASA Astrophysics Data System (ADS)

    Kesden, Michael; Zhao, Xinyu; Gerosa, Davide

    2016-03-01

    We derive a new class of post-Newtonian precessional resonances for binary black holes (BBHs) with misaligned spins. According to the orbit-averaged spin-precession equations, the angle between the orbital angular momentum L and the total angular momentum J oscillates with a period τ during which time L precesses about J by an angle α. If α is a rational multiple of 2 π, the precession of L will be closed indicating a resonance between the polar and azimuthal evolution of L . If α is an integer multiple of 2 π, the misalignment between the angular momentum ΔL radiated over the period τ and J will be minimized, as will the opening angle of the cone about which J precesses in an inertial frame. However, the direction of ΔL will remain nearly fixed in an inertial frame over many precessional periods, causing the direction of J to tilt as inspiraling BBHs pass through such a resonance. Generic BBHs encounter many such resonances during an inspiral from large separations. We derive the evolution of J near a resonance and assess their detectability by gravitational-wave detectors and astrophysical implications.

  11. Magnetic resonance imaging findings of undifferentiated carcinoma with osteoclast-like giant cells of pancreas.

    PubMed

    Yang, Kyung Yoon; Choi, Joon-Il; Choi, Moon Hyung; Park, Michael Yong; Rha, Sung Eun; Byun, Jae Young; Jung, Eun Sun; Lall, Chandana

    2016-01-01

    Undifferentiated carcinoma with osteoclast-like giant cells is a rare pancreatic and periampullary neoplasm with less than 50 cases reported in the literature. Pathologically, this tumor mimics a giant cell tumor in bones. We report a case of undifferentiated carcinoma with osteoclast-like giant cells in a 55-year-old man presenting as a pancreatic mass with associated regional and distant lymphadenopathy. On T1- and T2-weighted images, the mass shows dark signal intensity which was atypical for a pancreatic adenocarcinoma.

  12. Resolving spin-orbit- and hyperfine-mediated electric dipole spin resonance in a quantum dot.

    PubMed

    Shafiei, M; Nowack, K C; Reichl, C; Wegscheider, W; Vandersypen, L M K

    2013-03-08

    We investigate the electric manipulation of a single-electron spin in a single gate-defined quantum dot. We observe that so-far neglected differences between the hyperfine- and spin-orbit-mediated electric dipole spin resonance conditions have important consequences at high magnetic fields. In experiments using adiabatic rapid passage to invert the electron spin, we observe an unusually wide and asymmetric response as a function of the magnetic field. Simulations support the interpretation of the line shape in terms of four different resonance conditions. These findings may lead to isotope-selective control of dynamic nuclear polarization in quantum dots.

  13. Kepler-539: A young extrasolar system with two giant planets on wide orbits and in gravitational interaction

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Lillo-Box, J.; Southworth, J.; Borsato, L.; Gandolfi, D.; Ciceri, S.; Barrado, D.; Brahm, R.; Henning, Th.

    2016-05-01

    We confirm the planetary nature of Kepler-539 b (aka Kepler object of interest K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star. The mass of Kepler-539 b was accurately derived thanks to a series of precise radial velocity measurements obtained with the CAFE spectrograph mounted on the CAHA 2.2-m telescope. A simultaneous fit of the radial-velocity data and Kepler photometry revealed that Kepler-539 b is a dense Jupiter-like planet with a mass of Mp = 0.97 ± 0.29 MJup and a radius of Rp = 0.747 ± 0.018 RJup, making a complete circular revolution around its parent star in 125.6 days. The semi-major axis of the orbit is roughly 0.5 au, implying that the planet is at ≈0.45 au from the habitable zone. By analysing the mid-transit times of the 12 transit events of Kepler-539 b recorded by the Kepler spacecraft, we found a clear modulated transit time variation (TTV), which is attributable to the presence of a planet c in a wider orbit. The few timings available do not allow us to precisely estimate the properties of Kepler-539 c and our analysis suggests that it has a mass between 1.2 and 3.6 MJup, revolving on a very eccentric orbit (0.4

  14. The theory of secondary resonances in the spin-orbit problem

    NASA Astrophysics Data System (ADS)

    Gkolias, Ioannis; Celletti, Alessandra; Efthymiopoulos, Christos; Pucacco, Giuseppe

    2016-06-01

    We study the resonant dynamics in a simple one degree of freedom, time dependent Hamiltonian model describing spin-orbit interactions. The equations of motion admit periodic solutions associated with resonant motions, the most important being the synchronous one in which most evolved satellites of the Solar system, including the Moon, are observed. Such primary resonances can be surrounded by a chain of smaller islands which one refers to as secondary resonances. Here, we propose a novel canonical normalization procedure allowing to obtain a higher order normal form, by which we obtain analytical results on the stability of the primary resonances as well as on the bifurcation thresholds of the secondary resonances. The procedure makes use of the expansion in a parameter, called the detuning, measuring the shift from the exact secondary resonance. Also, we implement the so-called `book-keeping' method, i.e. the introduction of a suitable separation of the terms in orders of smallness in the normal form construction, which deals simultaneously with all the small parameters of the problem. Our analytical computation of the bifurcation curves is in excellent agreement with the results obtained by a numerical integration of the equations of motion, thus providing relevant information on the parameter regions where satellites can be found in a stable configuration.

  15. Observation of orbital resonance Hall effect in (TMTSF)2ClO4.

    PubMed

    Kobayashi, Kaya; Satsukawa, H; Yamada, J; Terashima, T; Uji, S

    2014-03-21

    We report the observation of a Hall effect driven by orbital resonance in the quasi-1-dimensional (q1D) organic conductor (TMTSF)2ClO4. Although a conventional Hall effect is not expected in this class of materials due to their reduced dimensionality, we observed a prominent Hall response at certain orientations of the magnetic field B corresponding to lattice vectors of the constituent molecular chains, known as the magic angles (MAs). We show that this Hall effect can be understood as the response of conducting planes generated by an effective locking of the orbital motion of the charge carriers to the MA driven by an electron-trajectory resonance. This phenomenon supports a class of theories describing the rich behavior of MA phenomena in q1D materials based on altered dimensionality. Furthermore, we observed that the effective carrier density of the conducting planes is exponentially suppressed in large B, which indicates possible density wave formation.

  16. ORBITAL PHASE VARIATIONS OF THE ECCENTRIC GIANT PLANET HAT-P-2b

    SciTech Connect

    Lewis, Nikole K.; Showman, Adam P.; Knutson, Heather A.; Desert, Jean-Michel; Kao, Melodie; Cowan, Nicolas B.; Laughlin, Gregory; Fortney, Jonathan J.; Burrows, Adam; Bakos, Gaspar A.; Hartman, Joel D.; Deming, Drake; Crepp, Justin R.; Mighell, Kenneth J.; Agol, Eric; Charbonneau, David; Fischer, Debra A.; Hinkley, Sasha; Johnson, John Asher; Howard, Andrew W.; and others

    2013-04-01

    We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 {mu}m bands of the Spitzer Space Telescope. The 3.6 and 4.5 {mu}m data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 {mu}m that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 {+-} 0.28, 5.84 {+-} 0.39, and 4.68 {+-} 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% {+-} 0.0089%, 0.1162% {+-} 0.0080%, and 0.1888% {+-} 0.0072% in the 3.6, 4.5, and 8.0 {mu}m bands, respectively. Our measured secondary eclipse depths of 0.0996% {+-} 0.0072%, 0.1031% {+-} 0.0061%, 0.071%{sub -0.013%}{sup +0.029,} and 0.1392% {+-} 0.0095% in the 3.6, 4.5, 5.8, and 8.0 {mu}m bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 {+-} 0.00048) and argument of periapse ({omega} = 188. Degree-Sign 09 {+-} 0. Degree-Sign 39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear

  17. Orbital Phase Variations of the Eccentric Giant Planet HAT-P-2b

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole K.; Knutson, Heather A.; Showman, Adam P.; Cowan, Nicolas B.; Laughlin, Gregory; Burrows, Adam; Deming, Drake; Crepp, Justin R.; Mighell, Kenneth J.; Agol, Eric; Bakos, Gáspár Á.; Charbonneau, David; Désert, Jean-Michel; Fischer, Debra A.; Fortney, Jonathan J.; Hartman, Joel D.; Hinkley, Sasha; Howard, Andrew W.; Johnson, John Asher; Kao, Melodie; Langton, Jonathan; Marcy, Geoffrey W.

    2013-04-01

    We present the first secondary eclipse and phase curve observations for the highly eccentric hot Jupiter HAT-P-2b in the 3.6, 4.5, 5.8, and 8.0 μm bands of the Spitzer Space Telescope. The 3.6 and 4.5 μm data sets span an entire orbital period of HAT-P-2b (P = 5.6334729 d), making them the longest continuous phase curve observations obtained to date and the first full-orbit observations of a planet with an eccentricity exceeding 0.2. We present an improved non-parametric method for removing the intrapixel sensitivity variations in Spitzer data at 3.6 and 4.5 μm that robustly maps position-dependent flux variations. We find that the peak in planetary flux occurs at 4.39 ± 0.28, 5.84 ± 0.39, and 4.68 ± 0.37 hr after periapse passage with corresponding maxima in the planet/star flux ratio of 0.1138% ± 0.0089%, 0.1162% ± 0.0080%, and 0.1888% ± 0.0072% in the 3.6, 4.5, and 8.0 μm bands, respectively. Our measured secondary eclipse depths of 0.0996% ± 0.0072%, 0.1031% ± 0.0061%, 0.071%^{+0.029%}_{-0.013%}, and 0.1392% ± 0.0095% in the 3.6, 4.5, 5.8, and 8.0 μm bands, respectively, indicate that the planet cools significantly from its peak temperature before we measure the dayside flux during secondary eclipse. We compare our measured secondary eclipse depths to the predictions from a one-dimensional radiative transfer model, which suggests the possible presence of a transient day side inversion in HAT-P-2b's atmosphere near periapse. We also derive improved estimates for the system parameters, including its mass, radius, and orbital ephemeris. Our simultaneous fit to the transit, secondary eclipse, and radial velocity data allows us to determine the eccentricity (e = 0.50910 ± 0.00048) and argument of periapse (ω = 188.°09 ± 0.°39) of HAT-P-2b's orbit with a greater precision than has been achieved for any other eccentric extrasolar planet. We also find evidence for a long-term linear trend in the radial velocity data. This trend suggests the presence

  18. Orbit Determination and Analysis for 1970-97B at 14th-Order Resonance.

    DTIC Science & Technology

    1985-06-01

    I! D-AIM60 6 ORBIT DET4RNINATION AND ANALYSIS FOR lflS-97I AT 1/1 14TH-ORDER RESONANCE(U) ROYAL AIRCRAFT ESTABLISHNENT FRNDOROUGH ( ENGLAND ) A N...Aircraft Establishment, Farnborough, Hants, UK Sa. Sponsoring Agency’s Code 6a. Sponsoring Agency (Contract Authority) Name and Location N/A N/A * 7. Title

  19. Trapping in high-order orbital resonances and inclination excitation in extrasolar systems

    NASA Astrophysics Data System (ADS)

    Libert, A.-S.; Tsiganis, K.

    2009-12-01

    Exoplanetary systems in mean motion resonance (MMR) are thought to have been captured as a result of gas-induced (Type II) orbital migration, during their early evolution phases. Using three-dimensional numerical simulations, Thommes & Lissauer showed that resonant inclination excitation can occur, for a system of two planets that evolves into a 2/1 MMR by Type II migration. In this paper, we examine whether capture in higher order resonances can also result in inclination excitation. We undertake a parametric study, varying the masses and orbital parameters of the planets, as well as the migration rate and eccentricity damping rate. We show that captures in high-order resonances (such as the 3/1, 4/1 and 5/1) are also able to produce inclination excitation. The maximal mutual inclination between the two orbital planes reaches values between 20° and 70° during a simulation, depending on the masses of the planets. Inclination excitation is observed for all configurations as long as (i) the inner planet is not very massive and (ii) at least one of the planets develops an eccentricity e > 0.4. Thus, our simulations imply that inclination excitation is a common outcome, as long as eccentricity damping is not too strong. On the other hand, our results suggest that planets in the exosystems HD 60532 (3/1 MMR), HD 108874 (4/1 MMR) and HD 102272 (4/1 MMR) are most probably in coplanar orbits, since they do not meet the above two constraints. Indeed, this result was verified by a series of dedicated numerical simulations.

  20. The K2-ESPRINT Project V: A Short-period Giant Planet Orbiting a Subgiant Star*

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Albrecht, Simon; Gandolfi, Davide; Dai, Fei; Winn, Joshua N.; Hirano, Teriyuki; Narita, Norio; Bruntt, Hans; Prieto-Arranz, Jorge; Béjar, Víctor J. S.; Nowak, Grzegorz; Lund, Mikkel N.; Palle, Enric; Ribas, Ignasi; Sanchis-Ojeda, Roberto; Yu, Liang; Arriagada, Pamela; Butler, R. Paul; Crane, Jeffrey D.; Handberg, Rasmus; Deeg, Hans; Jessen-Hansen, Jens; Johnson, John A.; Nespral, David; Rogers, Leslie; Ryu, Tsuguru; Shectman, Stephen; Shrotriya, Tushar; Slumstrup, Ditte; Takeda, Yoichi; Teske, Johanna; Thompson, Ian; Vanderburg, Andrew; Wittenmyer, Robert

    2016-11-01

    We report on the discovery and characterization of the transiting planet K2-39b (EPIC 206247743b). With an orbital period of 4.6 days, it is the shortest-period planet orbiting a subgiant star known to date. Such planets are rare, with only a handful of known cases. The reason for this is poorly understood but may reflect differences in planet occurrence around the relatively high-mass stars that have been surveyed, or may be the result of tidal destruction of such planets. K2-39 (EPIC 206247743) is an evolved star with a spectroscopically derived stellar radius and mass of {3.88}-0.42+0.48 {R}⊙ and {1.53}-0.12+0.13 {M}⊙ , respectively, and a very close-in transiting planet, with a/{R}\\star =3.4. Radial velocity (RV) follow-up using the HARPS, FIES, and PFS instruments leads to a planetary mass of {50.3}-9.4+9.7 {M}\\oplus . In combination with a radius measurement of 8.3+/- 1.1 {R}\\oplus , this results in a mean planetary density of {0.50}-0.17+0.29 g cm-3. We furthermore discover a long-term RV trend, which may be caused by a long-period planet or stellar companion. Because K2-39b has a short orbital period, its existence makes it seem unlikely that tidal destruction is wholly responsible for the differences in planet populations around subgiant and main-sequence stars. Future monitoring of the transits of this system may enable the detection of period decay and constrain the tidal dissipation rates of subgiant stars. Based on observations made with the NOT telescope under program ID. 50-022/51-503, 50-213(CAT), 52-201 (CAT), 52-108 (OPTICON), 51-211 (CAT), and ESOs 3.6 m telescope at the La Silla Paranal Observatory under program ID 095.C-0718(A).

  1. Photosynthetic potential of planets in 3 : 2 spin-orbit resonances

    NASA Astrophysics Data System (ADS)

    Brown, S. P.; Mead, A. J.; Forgan, D. H.; Raven, J. A.; Cockell, C. S.

    2014-10-01

    Photosynthetic life requires sufficient photosynthetically active radiation to metabolize. On Earth, plant behaviour, physiology and metabolism are sculpted around the night-day cycle by an endogenous biological circadian clock. The evolution of life was influenced by the Earth-Sun orbital dynamic, which generates the photo-environment incident on the planetary surface. In this work, the unusual photo-environment of an Earth-like planet (ELP) in 3 : 2 spin-orbit resonance is explored. Photo-environments on the ELP are longitudinally differentiated, in addition to differentiations related to latitude and depth (for aquatic organisms) which are familiar on Earth. The light environment on such a planet could be compatible with Earth's photosynthetic life although the threat of atmospheric freeze-out and prolonged periods of darkness would present significant challenges. We emphasize the relationship between the evolution of life on a planetary body with its orbital dynamics.

  2. Dressed photon-orbital states in a quantum dot: Intervalley spin resonance

    DOE PAGES

    Scarlino, P.; Kawakami, E.; Jullien, T.; ...

    2017-04-19

    Because of the symmetry in silicon quantum wells, silicon quantum dots have an extra degree of freedom leading to a small energy splitting called the valley splitting. This degree of freedom has been viewed alternately as a hazard, especially when the lowest valley-orbit splitting is small compared to the thermal energy, or as an asset, most prominently in proposals to use the valley degree of freedom itself as a qubit. Here we present experiments in which microwave electric field driving induces transitions between both valley-orbit and spin states. We show that this system is highly nonlinear and can be understoodmore » through the use of dressed photon-orbital states, enabling a unified understanding of six resonance lines we observe in these experiments.« less

  3. Secular resonant dressed orbital diffusion - II. Application to an isolated self-similar tepid galactic disc

    NASA Astrophysics Data System (ADS)

    Fouvry, Jean-Baptiste; Pichon, Christophe

    2015-05-01

    The main orbital signatures of the secular evolution of an isolated self-gravitating stellar Mestel disc are recovered using a dressed Fokker-Planck formalism in angle-action variables. The shot-noise-driven formation of narrow ridges of resonant orbits is recovered in the WKB limit of tightly wound transient spirals, for a tepid Toomre-stable tapered disc. The relative effect of the bulge, the halo, the disc temperature and the spectral properties of the shot noise are investigated in turn. For such galactic discs all elements seem to impact the locus and direction of the ridge. For instance, when the halo mass is decreased, we observe a transition between a regime of heating in the inner regions of the disc through the inner Lindblad resonance to a regime of radial migration of quasi-circular orbits via the corotation resonance in the outer part of the disc. The dressed secular formalism captures both the nature of collisionless systems (via their natural frequencies and susceptibility), and their nurture via the structure of the external perturbing power spectrum. Hence it provides the ideal framework in which to study their long-term evolution.

  4. Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics.

    PubMed

    Koon, Wang Sang; Lo, Martin W.; Marsden, Jerrold E.; Ross, Shane D.

    2000-06-01

    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L(1) and the other around L(2), with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L(1) and L(2) as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the "interior" and "exterior" Hill's regions and other resonant phenomena. (c) 2000 American Institute of Physics.

  5. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron

    NASA Astrophysics Data System (ADS)

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-12-01

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor.

  6. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron.

    PubMed

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-12-14

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor.

  7. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron

    PubMed Central

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-01-01

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598

  8. Role of deformation on giant resonances within the quasiparticle random-phase approximation and the Gogny force

    SciTech Connect

    Peru, S.; Goutte, H.

    2008-04-15

    Fully consistent axially-symmetric-deformed quasiparticle random phase approximation (QRPA) calculations have been performed, in which the same Gogny D1S effective force has been used for both the Hartree-Fock-Bogolyubov mean field and the QRPA approaches. Giant resonances calculated in deformed {sup 26-28}Si and {sup 22-24}Mg nuclei as well as in the spherical {sup 30}Si and {sup 28}Mg isotopes are presented. Theoretical results for isovector-dipole and isoscalar monopole, quadrupole, and octupole responses are presented and the impact of the intrinsic nuclear deformation is discussed.

  9. Photovoltage detection of edge magnetoplasmon oscillations and giant magnetoplasmon resonances in a two-dimensional hole system

    NASA Astrophysics Data System (ADS)

    Mi, Jian; Wang, Jianli; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Zhang, Chi

    2016-09-01

    In our high mobility p -type AlGaAs/GaAs two-dimensional hole samples, we originally observe the B -periodic oscillation induced by microwave (MW) in photovoltage (PV) measurements. In the frequency range of our measurements (5-40 GHz), the period (Δ B ) is inversely proportional to the microwave frequency (f ). The distinct oscillations come from the edge magnetoplasmon (EMP) in the high quality heavy hole system. Simultaneously, we observe the giant plasmon resonance signals in our measurements on the shallow two-dimensional hole system (2DHS).

  10. Observation of orbiting resonances in He(3S1) + NH3 Penning ionization

    NASA Astrophysics Data System (ADS)

    Jankunas, Justin; Jachymski, Krzysztof; Hapka, Michał; Osterwalder, Andreas

    2015-04-01

    Resonances are among the clearest quantum mechanical signatures of scattering processes. Previously, shape resonances and Feshbach resonances have been observed in inelastic and reactive collisions involving atoms or diatomic molecules. Structure in the integral cross section has been observed in a handful of elastic collisions involving polyatomic molecules. The present paper presents the observation of shape resonances in the reactive scattering of a polyatomic molecule, NH3. A merged-beam study of the gas phase He(3S1) + NH3 Penning ionization reaction dynamics is described in the collision energy range 3.3 μeV < Ecoll < 10 meV. In this energy range, the reaction rate is governed by long-range attraction. Peaks in the integral cross section are observed at collision energies of 1.8 meV and 7.3 meV and are assigned to ℓ = 15,16 and ℓ = 20,21 partial wave resonances, respectively. The experimental results are well reproduced by theoretical calculations with the short-range reaction probability Psr = 0.035. No clear signature of the orbiting resonances is visible in the branching ratio between NH3+ and NH2+ formation.

  11. WGM resonators for studying orbital angular momentum of a photon, and methods

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B. (Inventor); Savchenkov, Anatoliy A. (Inventor); Maleki, Lute (Inventor); Strekalov, Dmitry V. (Inventor)

    2009-01-01

    An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.

  12. The role of secondary resonances in the orbital history of Miranda

    NASA Astrophysics Data System (ADS)

    Malhotra, R.; Dermott, S. F.

    1990-06-01

    A simple 'perturbed pendulum' model is developed in order to ascertain the origin and dynamics of the secondary resonances in the tidal evolution of Miranda and Umbriel through the 1:3 mean motion commensurability. Long-term evolution is addressed on the basis of the computation-accelerating method of algebraic mappings. It is found that the present 4.34-deg value of Miranda's orbital inclination is probably a result of capture into the primary resonance, as well as subsequent capture into the 3/1 secondary resonance. The damping of an eccentricity as high as 0.035 by tidal dissipation in the satellite may account for the surface features of Miranda.

  13. Computed Tomography and Magnetic Resonance Anatomy of the Normal Orbit and Eye of the Horse.

    PubMed

    D'Août, C; Nisolle, J F; Navez, M; Perrin, R; Launois, T; Brogniez, L; Clegg, P; Hontoir, F; Vandeweerd, J M

    2015-10-01

    Traumatic and infectious diseases of the eye and orbit can occur in horses. For diagnosis and monitoring of such diseases, medical imaging is useful including computed tomography (CT) and magnetic resonance imaging (MRI). The aim of the current study was to describe CT and MRI anatomy of the equine orbit and ocular globe. The heads from four adult horses were scanned with a 6-slice Emotion 6 CT (Siemens, Erlangen), and a 3.0 Tesla Siemens Verio 6 MRI using T1 and T2-weighted sequences. To validate CT and MR reference images, these were compared with anatomical models and gross anatomical sections. The bony limits of the orbital cavity, the relationship of the orbit with sinuses and foramina of the skull were well identified by CT. MRI was useful to observe soft tissues and was able to identify adnexae of the ocular globe (eyelids, periorbital fat, extraocular muscles, lacrymal and tarsal glands). Although MRI was able to identify all components of the eye (including the posterior chamber), it could not differentiate sclera from choroid and retina. The only nerve identified was the optic nerve. Vessels were not seen in this series of cadaver heads. This study showed that CT and MRI are useful techniques to image the equine orbit and eye that can have clinical applications. © 2014 Blackwell Verlag GmbH.

  14. YOUNG SOLAR SYSTEM's FIFTH GIANT PLANET?

    SciTech Connect

    Nesvorny, David

    2011-12-15

    Studies of solar system formation suggest that the solar system's giant planets formed and migrated in the protoplanetary disk to reach the resonant orbits with all planets inside {approx}15 AU from the Sun. After the gas disk's dispersal, Uranus and Neptune were likely scattered by the gas giants, and approached their current orbits while dispersing the transplanetary disk of planetesimals, whose remains survived to this time in the region known as the Kuiper Belt. Here we performed N-body integrations of the scattering phase between giant planets in an attempt to determine which initial states are plausible. We found that the dynamical simulations starting with a resonant system of four giant planets have a low success rate in matching the present orbits of giant planets and various other constraints (e.g., survival of the terrestrial planets). The dynamical evolution is typically too violent, if Jupiter and Saturn start in the 3:2 resonance, and leads to final systems with fewer than four planets. Several initial states stand out in that they show a relatively large likelihood of success in matching the constraints. Some of the statistically best results were obtained when assuming that the solar system initially had five giant planets and one ice giant, with the mass comparable to that of Uranus and Neptune, and which was ejected to interstellar space by Jupiter. This possibility appears to be conceivable in view of the recent discovery of a large number of free-floating planets in interstellar space, which indicates that planet ejection should be common.

  15. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; Martin, Steven; Rowland, Douglas; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  16. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    SciTech Connect

    Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas; Takahashi, Yukihiro; Yair, Yoav

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  17. Deciphering the Hot Giant Atmospheres Orbiting Nearby Extrasolar Systems with JWST

    NASA Astrophysics Data System (ADS)

    Afrin Badhan, Mahmuda; Batalha, Natasha; Deming, Drake; Domagal-Goldman, Shawn; HEBRARD, Eric; Kopparapu, Ravi Kumar; Irwin, Patrick Gerard Joseph

    2016-10-01

    Unique and exotic planets give us an opportunity to understand how planetary systems form and evolve over their lifetime, by placing our own planetary system in the context of the vastly different extrasolar systems that are being continually discovered by present space missions. With orbital separations that are less than one-tenth of the Mercury-Sun distance, these close-in planets provide us with valuable insights about the host stellar atmosphere and planetary atmospheres subjected to their enormous stellar insolation. Observed spectroscopic signatures reveal all spectrally active species in a planet, along with information about its thermal structure and dynamics, allowing us to characterize the planet's atmosphere. NASA's upcoming missions will give us the high-resolution spectra necessary to constrain the atmospheric properties with unprecedented accuracy. However, to interpret the observed signals from exoplanetary transit events with any certainty, we need reliable atmospheric retrieval tools that can model the expected observables adequately. In my work thus far, I have built a Markov Chain Monte Carlo (MCMC) convergence scheme, with an analytical radiative equilibrium formulation for the thermal structures, within the NEMESIS atmospheric modeling tool, to allow sufficient (and efficient) exploration of the parameter space. I also augmented the opacity tables to improve the speed and reliability of retrieval models. I then utilized this upgraded version to infer the pressure-temperature (P-T) structures and volume-mixing ratios (VMRs) of major gas species in hot Jupiter dayside atmospheres, from their emission spectra. I have employed a parameterized thermal structure to retrieve plausible P-T profiles, along with altitude-invariant VMRs. Here I show my retrieval results on published datasets of HD189733b, and compare them with both medium and high spectral resolution JWST/NIRSPEC simulations. In preparation for the upcoming JWST mission, my current work

  18. Diversity and Origin of 2:1 Orbital Resonances in Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Lee, M. H.; Peale, S. J.

    2003-12-01

    The 2:1 orbital resonances of the two planets about GJ 876 can be easily established by the differential migration of the planets due to planet-disk interactions. A wide variety of stable 2:1 resonance configurations can be reached by differential migration of planets with constant masses and initially coplanar and nearly circular orbits. These include configurations with librations of θ 1 = λ 1 - 2λ 2 + ϖ1 (where λ i and ϖi are the mean longitudes and the longitudes of periapse) about 0o and θ 2 = λ 1 - 2λ 2 + ϖ2 about 180o (as in the Io-Europa pair), configurations with librations of both θ 1 and θ 2 about 0o (as in the GJ 876 system), and configurations with asymmetric librations of θ 1 and θ 2 tens of degrees from either 0o or 180o. There are, however, stable resonance configurations with symmetric (θ 1 ≈ θ 2 ≈ 0o), anti-symmetric (θ 1 ≈ 180o and θ 2 ≈ 0o), and asymmetric librations that cannot be reached by differential migration of planets with constant masses and initially coplanar and nearly circular orbits. If real systems with these configurations are ever found, their origin would require (1) a change in the mass ratio m1/m_2 during migration, (2) multiple-planet scattering in crowded planetary systems (Adams & Laughlin 2003), or (3) a migration scenario involving inclination resonances (Thommes & Lissauer 2003). The θ 1 ≈ 180o and θ 2 ≈ 0o configuration can only be reached by the latter two mechanisms.

  19. Giant dipole resonance built on hot rotating nuclei produced during evaporation of light particles from the 88Mo compound nucleus

    NASA Astrophysics Data System (ADS)

    Ciemała, M.; Kmiecik, M.; Maj, A.; Mazurek, K.; Bracco, A.; Kravchuk, V. L.; Casini, G.; Barlini, S.; Baiocco, G.; Bardelli, L.; Bednarczyk, P.; Benzoni, G.; Bini, M.; Blasi, N.; Brambilla, S.; Bruno, M.; Camera, F.; Carboni, S.; Cinausero, M.; Chbihi, A.; Chiari, M.; Corsi, A.; Crespi, F. C. L.; D'Agostino, M.; Degerlier, M.; Fornal, B.; Giaz, A.; Gramegna, F.; Krzysiek, M.; Leoni, S.; Marchi, T.; Matejska-Minda, M.; Mazumdar, I.; Meczyński, W.; Million, B.; Montanari, D.; Morelli, L.; Myalski, S.; Nannini, A.; Nicolini, R.; Pasquali, G.; Piantelli, S.; Prete, G.; Roberts, O. J.; Schmitt, Ch.; Styczeń, J.; Szpak, B.; Valdré, S.; Wasilewska, B.; Wieland, O.; Wieleczko, J. P.; Ziebliński, M.; Dudek, J.; Dinh Dang, N.

    2015-05-01

    High-energy giant dipole resonance (GDR) γ rays were measured following the decay of the hot, rotating compound nucleus of 88Mo, produced at excitation energies of 124 and 261 MeV. The reaction 48Ti + 40Ca at 300 and 600 MeV bombarding energies has been used. The data were analyzed using the statistical model Monte Carlo code gemini++. It allowed extracting the giant dipole resonance parameters by fitting the high-energy γ -ray spectra. The extracted GDR widths were compared with the available data at lower excitation energy and with theoretical predictions based on (i) The Lublin-Strasbourg drop macroscopic model, supplemented with thermal shape fluctuations analysis, and (ii) The phonon damping model. The theoretical predictions were convoluted with the population matrices of evaporated nuclei from the statistical model gemini++. Also a comparison with the results of a phenomenological expression based on the existing systematics, mainly for lower temperature data, is presented and discussed. A possible onset of a saturation of the GDR width was observed around T =3 MeV.

  20. Probing nuclear shapes close to the fission limit with the giant dipole resonance in {sup 216}Rn

    SciTech Connect

    Kmiecik, M.; Maj, A.; Brekiesz, M.; Krolas, W.; Meczynski, W.; Styczen, J.; Zieblinski, M.; Million, B.; Bracco, A.; Camera, F.; Benzoni, G.; Leoni, S.; Wieland, O.; Brambilla, S.; Herskind, B.; Kicinska-Habior, M.; Dubray, N.; Dudek, J.; Schunck, N.

    2004-12-01

    The gamma-ray decay of the giant dipole resonance (GDR) in the compound nucleus {sup 216}Rn formed with the reaction {sup 18}O+{sup 198}Pt at the bombarding energy of 96 MeV was investigated. High-energy gamma-ray spectra in coincidence with both prompt and delayed low-energy transitions were measured. The obtained GDR width at the average temperature {approx_equal}1 MeV was found to be larger than that at T=0 MeV and to be approximately constant as a function of spin. The measured width value of 7 MeV is found to be consistent with the predictions based on calculations of the nuclear shape distribution using the newest approach for the treatment of the fission barrier within the liquid drop model. The present study is the first investigation of the giant dipole resonance width from the fusion-evaporation decay channel in this nuclear mass range.

  1. No Difference in Orbital Parameters of RV-detected Giant Planets between 0.1 and 5 au in Single versus Multi-stellar Systems

    NASA Astrophysics Data System (ADS)

    Ngo, Henry; Knutson, Heather A.; Bryan, Marta L.; Blunt, Sarah; Nielsen, Eric L.; Batygin, Konstantin; Bowler, Brendan P.; Crepp, Justin R.; Hinkley, Sasha; Howard, Andrew W.; Mawet, Dimitri

    2017-06-01

    Our Keck/NIRC2 imaging survey searches for stellar companions around 144 systems with radial velocity (RV) detected giant planets to determine whether stellar binaries influence the planets’ orbital parameters. This survey, the largest of its kind to date, finds eight confirmed binary systems and three confirmed triple systems. These include three new multi-stellar systems (HD 30856, HD 86081, and HD 207832) and three multi-stellar systems with newly confirmed common proper motion (HD 43691, HD 116029, and HD 164509). We combine these systems with seven RV planet-hosting multi-stellar systems from the literature in order to test for differences in the properties of planets with semimajor axes ranging between 0.1 and 5 au in single versus multi-stellar systems. We find no evidence that the presence or absence of stellar companions alters the distribution of planet properties in these systems. Although the observed stellar companions might influence the orbits of more distant planetary companions in these systems, our RV observations currently provide only weak constraints on the masses and orbital properties of planets beyond 5 au. In order to aid future efforts to characterize long-period RV companions in these systems, we publish our contrast curves for all 144 targets. Using four years of astrometry for six hierarchical triple star systems hosting giant planets, we fit the orbits of the stellar companions in order to characterize the orbital architecture in these systems. We find that the orbital plane of the secondary and tertiary companions are inconsistent with an edge-on orbit in four out of six cases.

  2. (. pi. sup +- ,. pi. sup +- prime N) reactions on sup 12 C and sup 208 Pb near the giant resonance region

    SciTech Connect

    Yoo, Sung Hoon.

    1990-05-01

    Angular distributions for the {sup 12}C({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} p) and {sup 208}Pb({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} p or n) reactions near the giant resonance region have been measured at T{sub {pi}} = 180 MeV, and found different between {pi}{sup +} and {pi}{sup {minus}} data. This observation is interpreted as evidence for different excitation mechanisms dominating the {pi}{sup {minus}}-nucleus and {pi}{sup +}-nucleus interactions in the giant resonance region of these targets. A comparison with the single-nucleon knock-out distorted-wave impulse approximation calculations shows, even though these calculations underestimate ({pi}{sup {plus minus}}, {pi}{sup {plus minus}}{prime} N) data for both targets, the dominance of direct process for ({pi}{sup +}, {pi}{sup {plus}}{prime} p) or ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} n) in contrast to ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} p) or ({pi}{sup +}, {pi}{sup +}{prime} n). In the ({pi}{sup +}, {pi}{sup +}{prime} p) reaction proton-proton hole states are excited directly and appear to have a large probability for direct decay with escape width, whereas in ({pi}{sup {minus}}, {pi}{sup {minus}}{prime} p) the preferentially excited neutron-neutron hole doorway states couple to resonance states and decay with spreading width. This interpretation led us to suggest that the ratio of cross-sections for inelastic scattering to the giant resonance region should be written in terms of an incoherent sum of cross-sections to neutron and proton doorway states. In a heavy nucleus such as {sup 208}Pb, neutron and proton doorway states. In a heavy nucleus such as {sup 208}Pb, neutron and proton doorway states contribute incoherently because the different decay processes do not populate the same final states of the residual nucleus.

  3. Use of the ( e , e prime n ) reaction to study the giant multipole resonances in sup 116 Sn

    SciTech Connect

    Miskimen, R.A.; Ammons, E.A.; Arruda-Neto, J.D.T.; Bolme, G.O.; Cardman, L.S.; Cole, P.L.; Deininger, J.R.; Dolfini, S.M.; Linzey, A.J.; Mandeville, J.B.; Miller, B.L.; Mueller, P.E.; Papanicolas, C.N.; Serdarevic, A.; Williamson, S.E. )

    1991-04-01

    The giant multipole resonances in {sup 116}Sn have been studied using the ({ital e},{ital e}{prime}{ital n}) reaction. Data were taken at effective momentum transfers of 0.37, 0.45, and 0.55 fm{sup {minus}1} and a multipole analysis of the data was performed. The inferred multipole strength functions identify the {ital E}2 and {ital E}0 resonances as distinct peaks at 12.2 and 17.9 MeV, respectively. The energy-weighted sum-rule strengths for the {ital E}2 and {ital E}0 resonances, obtained using a Lorentzian fit to the data, are 34{plus minus}13% and 93{plus minus}37%. When compared with results from alpha scattering and pion scattering the sum-rule strengths exhibit approximate agreement, but the {ital E}0 strength identified in this measurement lies at higher excitation energy, consistent with the trend observed in heavier nuclei. The ({ital e},{ital e}{prime}{ital n}) data are compared with a continuum random phase approximation (RPA) calculation of the {ital E}2 and {ital E}0 strengths, and with an open-shell RPA calculation of the {ital E}2 strength. Both calculations disagree with the data in the region of the {ital E}2 resonance.

  4. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators.

    PubMed

    Kenig, Eyal; Tsarin, Yuriy A; Lifshitz, Ron

    2011-07-01

    We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by G. Kovačič and S. Wiggins [Physica D 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Šilnikov orbits are confirmed numerically.

  5. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators

    NASA Astrophysics Data System (ADS)

    Kenig, Eyal; Tsarin, Yuriy A.; Lifshitz, Ron

    2011-07-01

    We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by G. Kovačič and S. Wiggins [Physica DPDNPDT0167-278910.1016/0167-2789(92)90092-2 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Šilnikov orbits are confirmed numerically.

  6. Numerical modeling of the evolution of asteroid-type orbits at the 2:5 resonance

    NASA Astrophysics Data System (ADS)

    Ipatov, S. I.

    1992-12-01

    Relationships of asteroidal orbital elements are investigated for the 2:5 Jovian commensurability and also for a certain neighborhood of this resonance. The investigation is based on computer simulation results of the numerical integration of the full equations of the three-body problem (Sun-Jupiter-asteroid) for 500 fictitious asteroids. The limits of variations in orbital elements and the regions of initial data for different types of relationships between variations in asteroidal eccentricity and longitude of perihelion are considered. It is shown that the role of the 2:5 Kirkwood gap in the replenishment of the Apollo and Amor groups may be even greater than the role of other gaps.

  7. Photoassociation of Trilobite Rydberg Molecules via Resonant Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Kleinbach, K. S.; Meinert, F.; Engel, F.; Kwon, W. J.; Löw, R.; Pfau, T.; Raithel, G.

    2017-06-01

    We report on a novel method for the photoassociation of strongly polar trilobite Rydberg molecules. This exotic ultralong-range dimer, consisting of a ground-state atom bound to the Rydberg electron via electron-neutral scattering, inherits its polar character from the admixture of high-angular-momentum electronic orbitals. The absence of low-L character hinders standard photoassociation techniques. Here, we show that for suitable principal quantum numbers the resonant coupling of the orbital motion with the nuclear spin of the perturber, mediated by electron-neutral scattering, hybridizes the trilobite molecular potential with the more conventional S -type molecular state. This provides a general path to associate trilobite molecules with large electric dipole moments, as demonstrated via high-resolution spectroscopy. We find a dipole moment of 135(45) D for the trilobite state. Our results are compared to theoretical predictions based on a Fermi model.

  8. Separating hyperfine from spin-orbit interactions in organic semiconductors by multi-octave magnetic resonance using coplanar waveguide microresonators

    SciTech Connect

    Joshi, G.; Miller, R.; Ogden, L.; Kavand, M.; Jamali, S.; Ambal, K.; Malissa, H.; Boehme, C.; Venkatesh, S.; Schurig, D.; Lupton, J. M.

    2016-09-05

    Separating the influence of hyperfine from spin-orbit interactions in spin-dependent carrier recombination and dissociation processes necessitates magnetic resonance spectroscopy over a wide range of frequencies. We have designed compact and versatile coplanar waveguide resonators for continuous-wave electrically detected magnetic resonance and tested these on organic light-emitting diodes. By exploiting both the fundamental and higher-harmonic modes of the resonators, we cover almost five octaves in resonance frequency within a single setup. The measurements with a common π-conjugated polymer as the active material reveal small but non-negligible effects of spin-orbit interactions, which give rise to a broadening of the magnetic resonance spectrum with increasing frequency.

  9. A KECK HIRES DOPPLER SEARCH FOR PLANETS ORBITING METAL-POOR DWARFS. II. ON THE FREQUENCY OF GIANT PLANETS IN THE METAL-POOR REGIME

    SciTech Connect

    Sozzetti, Alessandro; Torres, Guillermo; Latham, David W.; Stefanik, Robert P.; Korzennik, Sylvain G.; Boss, Alan P.; Carney, Bruce W.; Laird, John B. E-mail: gtorres@cfa.harvard.edu E-mail: skorzennik@cfa.harvard.edu E-mail: boss@dtm.ciw.edu E-mail: laird@bgsu.edu

    2009-05-20

    We present an analysis of three years of precision radial velocity (RV) measurements of 160 metal-poor stars observed with HIRES on the Keck 1 telescope. We report on variability and long-term velocity trends for each star in our sample. We identify several long-term, low-amplitude RV variables worthy of followup with direct imaging techniques. We place lower limits on the detectable companion mass as a function of orbital period. Our survey would have detected, with a 99.5% confidence level, over 95% of all companions on low-eccentricity orbits with velocity semiamplitude K {approx}> 100 m s{sup -1}, or M{sub p} sin i {approx}> 3.0 M {sub J}(P/yr){sup (1/3)}, for orbital periods P {approx}< 3 yr. None of the stars in our sample exhibits RV variations compatible with the presence of Jovian planets with periods shorter than the survey duration. The resulting average frequency of gas giants orbiting metal-poor dwarfs with -2.0{approx}<[Fe/H]{approx}<-0.6 is f{sub p} < 0.67% (at the 1{sigma} confidence level). We examine the implications of this null result in the context of the observed correlation between the rate of occurrence of giant planets and the metallicity of their main-sequence solar-type stellar hosts. By combining our data set with the Fischer and Valenti (2005) uniform sample, we confirm that the likelihood of a star to harbor a planet more massive than Jupiter within 2 AU is a steeply rising function of the host's metallicity. However, the data for stars with -1.0{approx}<[Fe/H]{approx}<0.0 are compatible, in a statistical sense, with a constant occurrence rate f{sub p} {approx_equal} 1%. Our results can usefully inform theoretical studies of the process of giant-planet formation across two orders of magnitude in metallicity.

  10. Conditions of Passage and Entrapment of Terrestrial Planets in Spin-Orbit Resonances

    DTIC Science & Technology

    2012-06-10

    for smaller-mass, rocky exoplanets , especially those orbiting M dwarfs in their habitable zones. Although the exact rheology of exoplanets will remain...5.79 × 1010 m e 0.20563 (B − A)/C 1.2 × 10−4 n 26.088 yr−1 τM 500 yr μ 0.8 × 1011 kg m−1 s−2 α 0.2 taken into account for rocky exoplanets whose...resonance is approximately 0.3. This fast way of computing capture probabilities can be applied to exoplanets of terrestrial composition, keeping in

  11. Orbital alignment effects in near-resonant Rydberg atoms-rare gas collisions

    SciTech Connect

    Isaacs, W.A.; Morrison, M.A.

    1993-05-01

    Recent experimental and theoretical studies of near-resonant energy transfer collisions involving rare-gas atoms and alkali or alkaline earth atoms which have been initially excited to an aligned state via one or more linearly polarized rasters have yielded a wealth of insight into orbital alignment and related effects. We have extended this inquiry to initially aligned Rydberg states, examining state-to-state and alignment-selected cross sections using quantum collision theory augmented by approximations appropriate to the special characteristics of the Rydberg state (e.g., the quasi-free-electron model and the impulse approximation).

  12. Chariklo's ring system 3. Exploration of possible Chariklo spin/ring orbit resonances

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; El Moutamid, Maryame; Leiva, Rodrigo; Berard, Diane; Renner, Stéfan

    2016-10-01

    Two dense and narrow rings orbit the Centaur object Chariklo at respective radii of 391±3 and 405±3 km (Braga-Ribas et al., Nature 508, 72, 2014).With a rotation period of PC = 7.004 ± 0.036 h (Fornasier et al. A.&A. 568, L11, 2014), Chariklo may adopt either a MacLaurin spheroid or a Jacobi ellipsoid shape, depending on density (and assuming hydrostatic equilibrium). Moreover, being a small icy body, Chariklo is prone to topographic features at several-kilometer scales.Meanwhile, scarce information on Chariklo's size and shape is presently available from occultation works, as only five chords have been obtained during three occultations that have been observed in 2013 and 2014. Those data are consistent with a MacLaurin shape with axes a, b, c ~ 133x133x110 km and mass MC ~ (1-2)x1019 kg, or with a Jacobi shape with a, b, c ~ 167x133x124 km and MC ~ 0.6-0.7x1019 kg, see the companion paper by Leiva et al.Those values imply a corotation radius between 190 and 280 km, depending on the adopted value of MC. This is well inside the ring radii, ruling out the corotation resonance as the main driver for the ring orbital dynamics.The ring orbital period could lie between Pr ~12 and 22 h, depending on MC, thus allowing possible resonances with Chariklo's spin rate ΩC. Two models will be explored. One model assumes a MacLaurin shape with a topographic feature of mass m that acts as perturbing satellites with orbital radius and period a and PC, respectively. This creates 1st order Linblad-type resonances of the kind Pr/PC = m+1/m (m integer) whose possible effects on the ring structure will be evaluated.The other model assumes a Jacobi shape that creates a perturbing potential GMc/r3 [(A+B-2C)2 + (3/2)(A-B).cos(2θ)] with θ= λ-ΩC.t in Chariklo's equatorial plane, where A, B, C are the moments of inertia around a, b, c, respectively, and λ is the mean longitude. This creates qth order Linblad-type resonances of the kind Pr/PC = q+2/q (q integer) that will also be

  13. The California Planet Survey IV: A Planet Orbiting the Giant Star HD 145934 and Updates to Seven Systems with Long-period Planets

    NASA Astrophysics Data System (ADS)

    Feng, Y. Katherina; Wright, Jason T.; Nelson, Benjamin; Wang, Sharon X.; Ford, Eric B.; Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.

    2015-02-01

    We present an update to seven stars with long-period planets or planetary candidates using new and archival radial velocities from Keck-HIRES and literature velocities from other telescopes. Our updated analysis better constrains orbital parameters for these planets, four of which are known multi-planet systems. HD 24040 b and HD 183263 c are super-Jupiters with circular orbits and periods longer than 8 yr. We present a previously unseen linear trend in the residuals of HD 66428 indicative of an additional planetary companion. We confirm that GJ 849 is a multi-planet system and find a good orbital solution for the c component: it is a 1 M Jup planet in a 15 yr orbit (the longest known for a planet orbiting an M dwarf). We update the HD 74156 double-planet system. We also announce the detection of HD 145934 b, a 2 M Jup planet in a 7.5 yr orbit around a giant star. Two of our stars, HD 187123 and HD 217107, at present host the only known examples of systems comprising a hot Jupiter and a planet with a well constrained period greater than 5 yr, and with no evidence of giant planets in between. Our enlargement and improvement of long-period planet parameters will aid future analysis of origins, diversity, and evolution of planetary systems. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology.

  14. Spin-orbit-induced resonances and threshold anomalies in a reduced-dimension Fermi gas

    NASA Astrophysics Data System (ADS)

    Wang, Su-Ju; Greene, Chris H.

    2016-11-01

    We calculate the reflection and transmission probabilities in a one-dimensional Fermi gas with an equal mixing of the Rashba and Dresselhaus spin-orbit coupling (RD-SOC) produced by an external Raman laser field. These probabilities are computed over multiple relevant energy ranges within the pseudopotential approximation. Strong scattering resonances are found whenever the incident energy approaches either a scattering threshold or a quasibound state attached to one of the energetically closed higher dispersion branches. A striking difference is demonstrated between two very different regimes set by the Raman laser intensity, namely, between scattering for the single-minimum dispersion versus the double-minimum dispersion at the lowest threshold. The presence of RD-SOC together with the Raman field fundamentally changes the scattering behavior and enables the realization of very different one-dimensional theoretical models in a single experimental setup when combined with a confinement-induced resonance.

  15. Revisiting the capture of Mercury into its 3:2 spin-orbit resonance

    NASA Astrophysics Data System (ADS)

    Noyelles, Benoît; Frouard, Julien; Makarov, Valeri V.; Efroimsky, Michael

    2014-07-01

    We simulate the despinning of Mercury, with or without a fluid core, and with a frequency-dependent tidal model employed. The tidal model incorporates the viscoelastic (Maxwell) rebound at low frequencies and a predominantly inelastic (Andrade) creep at higher frequencies. It is combined with a statistically relevant set of histories of Mercury's eccentricity. The tidal model has a dramatic influence on the behaviour of spin histories near spin-orbit resonances. The probabilities of capture into high-order resonances are greatly enhanced. Exploring several scenarios, we conclude that the present 3:2 spin state was achieved by entrapment of an initially prograde cold Mercury when its age was less than 20 Myr, i.e., well before differentiation.

  16. Dynamical evolution of interplanetary dust particles trapped in Earth's horseshoe and quasi-satellite co-orbital resonance regions

    NASA Astrophysics Data System (ADS)

    Kortenkamp, Stephen J.

    2016-10-01

    We use numerical integrations to model the orbital evolution of IDPs decaying from the asteroid belt into the inner solar system under the influence of radiation pressure, Poynting-Roberston light drag, and solar wind drag. In our models the ratio of radiation pressure to solar gravity ranges from 0.0025 up to 0.02, corresponding to IDP diameters ranging from about 200 microns down to about 25 microns, respectively. In this size range nearly 100% of IDPs become temporarily trapped in mean-motion resonances just outside Earth's orbit. While trapped in these outer resonances the orbital eccentricities of IDPs significantly increases. This causes most IDPs to eventually escape the resonances, allowing their orbits to continue decaying inwards past 1 AU. We've shown previously (Kortenkamp, Icarus 226, 1550-1558, 2013) that significant fractions of IDPs in this size range can subsequently become trapped in Earth's co-orbital horseshoe and quasi-satellite resonance regions, with semi-major axes just inside of 1 AU. Here, we present new results on the long-term effects of Earth's varying orbital eccentricity and inclination on the trapping and evolution of these co-orbital IDPs.

  17. Steady state obliquity of a rigid body in the spin-orbit resonant problem: application to Mercury

    NASA Astrophysics Data System (ADS)

    Lhotka, Christoph

    2017-09-01

    We investigate the stable Cassini state 1 in the p : q spin-orbit resonant problem. Our study includes the effect of the gravitational potential up to degree and order 4 and p : q spin-orbit resonances with p,q≤ 8 and p≥ q . We derive new formulae that link the gravitational field coefficients with its secular orbital elements and its rotational parameters. The formulae can be used to predict the orientation of the spin axis and necessary angular momentum at exact resonance. We also develop a simple pendulum model to approximate the dynamics close to resonance and make use of it to predict the libration periods and widths of the oscillatory regime of motions in phase space. Our analytical results are based on averaging theory that we also confirm by means of numerical simulations of the exact dynamical equations. Our results are applied to a possible rotational history of Mercury.

  18. Study of multipole giant resonances in /sup 90/Zr and /sup 120/Sn in scattering of 93-MeV /sup 6/Li ions

    SciTech Connect

    Venikov, N.I.; Glukhov, Y.A.; Dem'yanova, A.S.; Drozdov, S.I.; Novatskii, V.G.; Ogloblin, A.A.; Sakuta, S.B.; Stepanov, D.N.; Unezhev, V.N.; Yupinov, Y.L.; Brynkush, M.; Grama, K.; Lazer, I.

    1981-04-01

    In the inelastic scattering of /sup 6/Li ions with energy 93 MeV we have investigated the regions of quadrupole and octupole giant isoscalar resonances (E/sub x/approx.63A/sup -1/3/ and E/sub x/approx.30A/sup -13/ MeV, respectively) in the nuclei /sup 90/Zr and /sup 120/Sn. The angular distributions of the resonance groups obtained in the region of angles 12--24/sup 0/ are analyzed by the distorted wave Born approximation. Detailed study of the group at E/sub x/approx.63A/sup -1/3/ favors existence of a monopole giant resonance which is located at an excitation energy approx.76A/sup -1/3/ MeV on the left wing of the quadrupole resonance.

  19. ON THE ORBITAL EVOLUTION OF A GIANT PLANET PAIR EMBEDDED IN A GASEOUS DISK. I. JUPITER-SATURN CONFIGURATION

    SciTech Connect

    Zhang Hui; Zhou Jilin

    2010-05-01

    We carry out a series of high-resolution (1024 x 1024) hydrodynamical simulations to investigate the orbital evolution of Jupiter and Saturn embedded in a gaseous protostellar disk. Our work extends the results in the classical papers of Masset and Snellgrove and Morbidelli and Crida by exploring various surface density profiles ({sigma}), where {sigma} {proportional_to} r {sup -{alpha}}. The stability of the mean motion resonances (MMRs) caused by the convergent migration of the two planets is studied as well. Our results show that (1) the gap formation process of Saturn is greatly delayed by the tidal perturbation of Jupiter. These perturbations cause inward or outward runaway migration of Saturn, depending on the density profiles on the disk. (2) The convergent migration rate increases as {alpha} increases and the type of MMRs depends on {alpha} as well. When 0 < {alpha} < 1, the convergent migration speed of Jupiter and Saturn is relatively slow, thus they are trapped into 2:1 MMR. When {alpha}>4/3, Saturn passes through the 2:1 MMR with Jupiter and is captured into the 3:2 MMR. (3) The 3:2 MMR turns out to be unstable when the eccentricity of Saturn (e{sub s} ) increases too high. The critical value above which instability will set in is e{sub s} {approx} 0.15. We also observe that the two planets are trapped into 2:1 MMR after the break of 3:2 MMR. This process may provide useful information for the formation of orbital configuration between Jupiter and Saturn in the solar system.

  20. On the Orbital Evolution of a Giant Planet Pair Embedded in a Gaseous Disk. I. Jupiter-Saturn Configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zhou, Ji-Lin

    2010-05-01

    We carry out a series of high-resolution (1024 × 1024) hydrodynamical simulations to investigate the orbital evolution of Jupiter and Saturn embedded in a gaseous protostellar disk. Our work extends the results in the classical papers of Masset & Snellgrove and Morbidelli & Crida by exploring various surface density profiles (σ), where σ vprop r -α. The stability of the mean motion resonances (MMRs) caused by the convergent migration of the two planets is studied as well. Our results show that (1) the gap formation process of Saturn is greatly delayed by the tidal perturbation of Jupiter. These perturbations cause inward or outward runaway migration of Saturn, depending on the density profiles on the disk. (2) The convergent migration rate increases as α increases and the type of MMRs depends on α as well. When 0 < α < 1, the convergent migration speed of Jupiter and Saturn is relatively slow, thus they are trapped into 2:1 MMR. When α>4/3, Saturn passes through the 2:1 MMR with Jupiter and is captured into the 3:2 MMR. (3) The 3:2 MMR turns out to be unstable when the eccentricity of Saturn (es ) increases too high. The critical value above which instability will set in is es ~ 0.15. We also observe that the two planets are trapped into 2:1 MMR after the break of 3:2 MMR. This process may provide useful information for the formation of orbital configuration between Jupiter and Saturn in the solar system.

  1. Complete spontaneous regression of giant focal nodular hyperplasia of the liver: Magnetic resonance imaging evaluation with hepatobiliary contrast media.

    PubMed

    Mamone, Giuseppe; Caruso, Settimo; Cortis, Kelvin; Miraglia, Roberto

    2016-12-21

    Focal nodular hyperplasia (FNH) of the liver is a benign lesion occurring in 0.6%-3% of the general population that probably reflects a local hyperplastic response of hepatocytes to a vascular abnormality. Most lesions are diagnosed incidentally and the natural history of the disease remains largely unknown. It has been shown that most FNH remain stable, or even regress, over a long follow-up period. We present a patient with FNH of the liver who was followed up for 7 years. A 26-year-old woman with a 5-year history of oral contraceptive use was referred to our hospital in February 2005 for further examination of a liver tumour. The diagnosis of FNH was made using magnetic resonance (MR) imaging with hepatospecific contrast media; this technique allows a correct diagnosis, in particular distinguishing FNH from hepatic adenoma, avoiding an invasive procedure such as the lesion biopsy. After 7-year from the diagnosis, we observed the complete spontaneous regression of the lesion by enhanced MR scanning. In this patient, discontinuation of oral contraceptive use and two childbirths may have influenced the natural history of FNH. To our knowledge, in the English literature there is no report illustrating a complete regression of giant FNH but only studies of decreasing in size. The present case suggests that a young patient with giant FNH should be managed conservatively rather than by resection, because FNH has the potential for spontaneous regression.

  2. Neutron-skin thickness of 208Pb from the energy of the anti-analogue giant dipole resonance

    NASA Astrophysics Data System (ADS)

    Krasznahorkay, A.; Paar, N.; Vretenar, D.; Harakeh, M. N.

    2013-05-01

    The energy of the charge-exchange anti-analogue giant dipole resonance (AGDR) has been calculated for the 208Pb isotope using the state-of-the-art fully self-consistent relativistic proton-neutron quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. It is shown that the AGDR centroid energy is very sensitively related to the corresponding neutron-skin thickness. The neutron-skin thickness of 208Pb has been determined very precisely by comparing the theoretical results with the available experimental data on E(AGDR). The result ΔRpn = 0.161 ± 0.042 agrees nicely with the previous experimental results.

  3. Giant resonances in {sup 24}Mg and {sup 28}Si from 240 MeV {sup 6}Li scattering

    SciTech Connect

    Chen, X.; Lui, Y.-W.; Clark, H. L.; Tokimoto, Y.; Youngblood, D. H.

    2009-07-15

    Elastic and inelastic scattering of 240 MeV {sup 6}Li particles from {sup 24}Mg and {sup 28}Si were measured with the MDM spectrometer. Optical potential parameters for {sup 6}Li+{sup 24}Mg and {sup 6}Li+{sup 28}Si scattering systems were obtained by fitting elastic scattering with two different folding model potentials as well as W-S potentials. E0-E3 giant resonance strength distributions for {sup 28}Si and {sup 24}Mg were obtained. E0 strength corresponding to 106{sub -24}{sup +34}% of the EWSR was identified in {sup 24}Mg and 80{sub -20}{sup +35}% was found for {sup 28}Si between E{sub x}=8.0 to 40.0 MeV.

  4. Direct mapping of spin and orbital entangled wave functions under interband spin-orbit coupling of giant Rashba spin-split surface states

    NASA Astrophysics Data System (ADS)

    Noguchi, Ryo; Kuroda, Kenta; Yaji, K.; Kobayashi, K.; Sakano, M.; Harasawa, A.; Kondo, Takeshi; Komori, F.; Shin, S.

    2017-01-01

    We use spin- and angle-resolved photoemission spectroscopy (SARPES) combined with a polarization-variable laser and investigate the spin-orbit coupling effect under interband hybridization of Rashba spin-split states for the surface alloys Bi/Ag(111) and Bi/Cu(111). In addition to the conventional band mapping of photoemission for Rashba spin splitting, the different orbital and spin parts of the surface wave function are directly imaged into energy-momentum space. It is unambiguously revealed that the interband spin-orbit coupling modifies the spin and orbital character of the Rashba surface states leading to the enriched spin-orbital entanglement and the pronounced momentum dependence of the spin polarization. The hybridization thus strongly deviates the spin and orbital characters from the standard Rashba model. The complex spin texture under interband spin-orbit hybridization proposed by first-principles calculation is experimentally unraveled by SARPES with a combination of p - and s -polarized light.

  5. Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars

    NASA Astrophysics Data System (ADS)

    Adibekyan, V. Zh.; Benamati, L.; Santos, N. C.; Alves, S.; Lovis, C.; Udry, S.; Israelian, G.; Sousa, S. G.; Tsantaki, M.; Mortier, A.; Sozzetti, A.; De Medeiros, J. R.

    2015-06-01

    We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search programme. To date, only one of these stars is known to harbour a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analysed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an local thermodynamic equilibrium (LTE) abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations, both a purely kinematical approach and a chemical method were applied. We confirm the overabundance of Na in giant stars compared to the field FGK dwarfs. This enhancement might have a stellar evolutionary character, but departures from LTE may also produce a similar enhancement. Our chemical separation of stellar populations also suggests a `gap' in metallicity between the thick-disc and high-α metal-rich stars, as previously observed in dwarfs sample from HARPS. The present sample, as most of the giant star samples, also suffers from the B - V colour cut-off, which excludes low-log g stars with high metallicities, and high-log g star with low [Fe/H]. For future studies of planet occurrence dependence on stellar metallicity around these evolved stars, we suggest to use a subsample of stars in a `cut-rectangle' in the log g-[Fe/H] diagram to overcome the aforementioned issue.

  6. Globular cluster scale sizes in giant galaxies: The case of M87 and the role of orbital anisotropy and tidal filling

    SciTech Connect

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2013-12-20

    We present new Hubble Space Telescope imaging of the outer regions of M87 in order to study its globular cluster (GC) population out to large galactocentric distances. We discuss, particularly, the relationship between GC effective radii r{sub h} and projected galactocentric distance R {sub gc}. The observations suggest a shallow trend r{sub h}∝R{sub gc}{sup 0.14} out to R {sub gc} ∼ 100 kpc, in agreement with studies of other giant elliptical galaxies. To theoretically reproduce this relationship, we simulate GC populations with various distributions of orbits. For an isotropic distribution of cluster orbits, we find a steeper trend of r{sub h}∝R{sub gc}{sup 0.4}. Instead, we suggest that (1) if the cluster system has an orbital anisotropy profile, where orbits become preferentially radial with increasing galactocentric distance, and (2) if clusters become more tidally underfilling with galactocentric distance, then the observed relationship can be recovered. We also apply this approach to the red and blue GC populations separately and predict that red clusters are preferentially underfilling at large R {sub gc} and have a more isotropic distribution of orbits than blue clusters.

  7. Orbital magnetic resonance imaging is useful in age-related distance esotropia.

    PubMed

    Gómez de Liaño Sanchez, Pilar; Olavarri González, Gloria; Merino Sanz, Pilar; Escribano Villafruela, Jose C

    2017-06-07

    To describe findings for orbital magnetic resonance imaging (MRI) in patients with age-related distance esotropia (ARDE). We compared 31 orbital MRI from patients with ARDE (77±7 SD years) with 2 control groups: 32 orbits from individuals aged 18-50 years (33±8 SD years) and 16 orbits from individuals aged >60 years (77±7 SD years). MRI scans were acquired using 3D fast field echo in T1 sequence without fat saturation. Exclusion criteria for all groups were neurological or thyroid disease and a relevant ophthalmological history (e.g., high myopia, diplopia from another etiology, complicated cataract surgery, etc.). Muscle displacement and characteristics of the lateral rectus-superior rectus (LR-SR) intermuscular band were analyzed. The analysis of the muscles and angles revealed a series of statistically significant differences (p<0.07) between the groups. Subjects with ARDE had LR pulley positions 1.32±0.19mm lower than in younger controls, and the medial rectus (MR) pulley positions were 0.68±0.19mm lower than in younger. Older controls had LR and MR pulley positions 0.85±0.20mm and 0.49±0.23mm lower than in younger. ARDE subjects had LR pulley positions 0.46±0.26mm lower than in older control group. The LR-SR band was absent in 35.5% of ARDE patients and in 12.5% of older control group (p=0.168). MRI showed that displacements of LR and LR-SR band degeneration could facilitate the diagnosis of patients with ARDE. Copyright © 2017 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  8. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  9. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  10. Narrow heavy-hole cyclotron resonances split by the cubic Rashba spin-orbit interaction in strained germanium quantum wells

    NASA Astrophysics Data System (ADS)

    Failla, M.; Myronov, M.; Morrison, C.; Leadley, D. R.; Lloyd-Hughes, J.

    2015-07-01

    The spin-orbit interaction was found to split the cyclotron resonance of heavy holes confined in high-mobility, compressively strained germanium quantum wells. The interference between coherent spin-split cyclotron resonances was tracked on picosecond time scales using terahertz time-domain spectroscopy. Analysis in the time domain, or using a time-frequency decomposition based on the Gabor-Morlet wavelet, was necessary when the difference between cyclotron frequencies was comparable to the linewidth. The cubic Rashba spin-orbit coefficient β was determined via two methods: (i) the magnetic-field dependence of the cyclotron frequencies, and (ii) the spin-resolved subband densities. An enhanced β and spin polarization was created by tailoring the strain to enhance the spin-orbit interaction. The amplitude modulation of the narrow, interfering cyclotron resonances is a signature of spin coherences persisting for more than 10 ps.

  11. Dynamical study of the Hilda asteroids. I - Resonant orbital motion of the PLS objects from the Palomar-Leiden Survey

    NASA Technical Reports Server (NTRS)

    Ip, W.-H.

    1976-01-01

    Schubart's (1968) model of a planar elliptic restricted three-body problem is used to study the orbital motion of the Hilda asteroids from the Palomar-Leiden Survey. The 3:2 resonant coupling to Jupiter of some of these small asteroids is found to be stable. However, some of the small asteroids with absolute magnitude greater than 15 have large amplitude of variation in their orbital elements in one libration period. Since the lifetime scales against catastrophic collision of the Hilda asteroids are estimated to be several times larger than those of the main-belt objects, a significant portion of these resonant asteroids could be the original members of the Hilda group. From this point of view, it is suggested that such 'size dependence' of resonant orbital motions might be the result of cosmogonic effects of jet-stream accretion.

  12. The orbital evolution of real asteroids near the 4:1 mean-motion resonance with Jupiter

    NASA Technical Reports Server (NTRS)

    Dahlgren, Mats; Hahn, Gerhard; Lagerkvist, C.-I.; Lundstroem, M.

    1992-01-01

    Numerical integrations of the orbits of ten asteroids with osculating elements near the 4:1 mean-motion resonance with Jupiter have been performed over 200,000 years into the future. A variety of orbital evolutions was found, depending on the start values of the semi-major axis. The orbit of asteroid 1983 RJ4, which lies almost exactly at the resonance center, experiences large variations in eccentricity, evolving into an Earth-crosser on a time-scale of a few 10(exp 4) years. This makes this region a potential source for Apollo objects and meteoritic material, although the width of the resonance region in semi-major axis seems to be very narrow.

  13. The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone

    NASA Astrophysics Data System (ADS)

    Díaz, R. F.; Rey, J.; Demangeon, O.; Hébrard, G.; Boisse, I.; Arnold, L.; Astudillo-Defru, N.; Beuzit, J.-L.; Bonfils, X.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Deleuil, M.; Delfosse, X.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Mayor, M.; Moutou, C.; Pepe, F.; Queloz, D.; Santerne, A.; Santos, N. C.; Sahlmann, J.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2016-07-01

    We report the discovery of three new substellar companions to solar-type stars, HD 191806, HD 214823, and HD 221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD 16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 MJup and 19 MJup. Additionally, we find that the star HD 191806 is experiencing a secular acceleration of over 11 m s-1 per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD 221585, whose companion must be substellar. With the exception of HD 191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France by the SOPHIE Consortium (programme 07A.PNP.CONS to 15A.PNP.CONS).

  14. Atom Resonance Lines for Modeling Atmosphere: Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.

    2005-01-01

    We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.

  15. Resonant soft X-ray scattering—a new probe of charge, spin and orbital ordering in the manganites

    NASA Astrophysics Data System (ADS)

    Hatton, P. D.; Wilkins, S. B.; Beale, T. A. W.; Johal, T. K.; Prabhakaran, D.; Boothroyd, A. T.

    2005-04-01

    Soft X-ray resonant diffraction is a new technique pioneered by our group. We have published examples of the huge resonant enhancements of charge and magnetic scattering that can be obtained at the L-edges of 3d transition metal oxides. In this paper we will also show how resonant soft X-ray scattering enables direct observation of orbital ordering. We have studied the low temperature phase of La0.5Sr1.5MnO4 that displays charge, spin and orbital ordering. We have employed resonant soft X-ray scattering at the manganese L edges which provide a direct measurement of the orbital ordering. Energy scans at constant wavevector have been compared to theoretical predictions and show that at all temperatures there are two separate contributions to the observed scattering, direct Goodenough orbital ordering and strong cooperative Jahn-Teller distortions of the Mn ions. Finally, we will show how that the spin and orbital degrees of freedom are strongly correlated in these materials.

  16. Mercury's capture into the 3/2 spin-orbit resonance as a result of its chaotic dynamics.

    PubMed

    Correia, Alexandre C M; Laskar, Jacques

    2004-06-24

    Mercury is locked into a 3/2 spin-orbit resonance where it rotates three times on its axis for every two orbits around the sun. The stability of this equilibrium state is well established, but our understanding of how this state initially arose remains unsatisfactory. Unless one uses an unrealistic tidal model with constant torques (which cannot account for the observed damping of the libration of the planet) the computed probability of capture into 3/2 resonance is very low (about 7 per cent). This led to the proposal that core-mantle friction may have increased the capture probability, but such a process requires very specific values of the core viscosity. Here we show that the chaotic evolution of Mercury's orbit can drive its eccentricity beyond 0.325 during the planet's history, which very efficiently leads to its capture into the 3/2 resonance. In our numerical integrations of 1,000 orbits of Mercury over 4 Gyr, capture into the 3/2 spin-orbit resonant state was the most probable final outcome of the planet's evolution, occurring 55.4 per cent of the time.

  17. Bodily tides near the 1:1 spin-orbit resonance: correction to Goldreich's dynamical model

    NASA Astrophysics Data System (ADS)

    Williams, James G.; Efroimsky, Michael

    2012-12-01

    Spin-orbit coupling is often described in an approach known as " the MacDonald torque", which has long become the textbook standard due to its apparent simplicity. Within this method, a concise expression for the additional tidal potential, derived by MacDonald (Rev Geophys 2:467-541, 1994), is combined with a convenient assumption that the quality factor Q is frequency-independent (or, equivalently, that the geometric lag angle is constant in time). This makes the treatment unphysical because MacDonald's derivation of the said formula was, very implicitly, based on keeping the time lag frequency-independent, which is equivalent to setting Q scale as the inverse tidal frequency. This contradiction requires the entire MacDonald treatment of both non-resonant and resonant rotation to be rewritten. The non-resonant case was reconsidered by Efroimsky and Williams (Cel Mech Dyn Astron 104:257-289, 2009), in application to spin modes distant from the major commensurabilities. In the current paper, we continue this work by introducing the necessary alterations into the MacDonald-torque-based model of falling into a 1-to-1 resonance. (The original version of this model was offered by Goldreich (Astron J 71:1-7, 1996). Although the MacDonald torque, both in its original formulation and in its corrected version, is incompatible with realistic rheologies of minerals and mantles, it remains a useful toy model, which enables one to obtain, in some situations, qualitatively meaningful results without resorting to the more rigorous (and complicated) theory of Darwin and Kaula. We first address this simplified model in application to an oblate primary body, with tides raised on it by an orbiting zero-inclination secondary. (Here the role of the tidally-perturbed primary can be played by a satellite, the perturbing secondary being its host planet. A planet may as well be the perturbed primary, its host star acting as the tide-raising secondary). We then extend the model to a

  18. π-π orbital resonance in twisting duplex DNA: Dynamical phyllotaxis and electronic structure effects

    NASA Astrophysics Data System (ADS)

    Maciá, Enrique

    2009-09-01

    The presence of synchronized, collective twist motions of the Watson-Crick base pairs in DNA duplexes (helicoidal standing waves) can efficiently enhance the π-π orbital overlapping between nonconsecutive base pairs via a long-range, phonon-correlated tunneling effect. The resulting structural patterns are described within the framework of dynamical phyllotaxis, providing a realistic treatment which takes into account both the intrinsic three-dimensional, helicoidal geometry of DNA, and the coupling between the electronic degrees of freedom and double-helix DNA molecular dynamics at low frequencies. The main features of the resulting electronic band structures are discussed for several resonance frequencies of interest, highlighting the possible biophysical implications of the obtained results.

  19. Spin orbit splitting of the photon induced Fano resonance in an oscillating graphene electrostatic barrier

    SciTech Connect

    Biswas, R.; Sinha, C.

    2014-04-07

    We investigate theoretically the effect of a time dependent oscillating potential on the transport property of the Dirac Fermion through a monolayer graphene electrostatic barrier under the influence of the Rashba spin orbit interaction. The time dependent problem is solved in the frame work of the non-perturbative Floquet approach. It is noted that the dynamic condition of the barrier may be controlled by tuning the Rashba parameter. Introduction of the spin orbit interaction causes splitting of the Fano resonance (FR), a characteristic feature in photon assisted tunneling. The separation between the spin split FR's gives an indirect measure of the fine structure of the quasi-hole bound state inside the barrier. The present findings on the Rashba splitting of the FR and its external control by tuning the oscillating field parameters might have potential for applications in spintronic devices, especially in the spin field effect transistors. The spin polarization of different Floquet sidebands is found to be quite sensitive to the spin-pseudospin interaction.

  20. Orbital

    NASA Astrophysics Data System (ADS)

    Hanson, Robert M.

    2003-06-01

    ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).

  1. On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets

    NASA Astrophysics Data System (ADS)

    Barker, Adrian J.

    2016-08-01

    The spin axis of a rotationally deformed planet is forced to precess about its orbital angular momentum vector, due to the tidal gravity of its host star, if these directions are misaligned. This induces internal fluid motions inside the planet that are subject to a hydrodynamic instability. We study the turbulent damping of precessional fluid motions, as a result of this instability, in the simplest local computational model of a giant planet (or star), with and without a weak internal magnetic field. Our aim is to determine the outcome of this instability, and its importance in driving tidal evolution of the spin-orbit angle in precessing planets (and stars). We find that this instability produces turbulent dissipation that is sufficiently strong that it could drive significant tidal evolution of the spin-orbit angle for hot Jupiters with orbital periods shorter than about 10-18 d. If this mechanism acts in isolation, this evolution would be towards alignment or anti-alignment, depending on the initial angle, but the ultimate evolution (if other tidal mechanisms also contribute) is expected to be towards alignment. The turbulent dissipation is proportional to the cube of the precession frequency, so it leads to much slower damping of stellar spin-orbit angles, implying that this instability is unlikely to drive evolution of the spin-orbit angle in stars (either in planetary or close binary systems). We also find that the instability-driven flow can act as a system-scale dynamo, which may play a role in producing magnetic fields in short-period planets.

  2. Density functional resonance theory: complex density functions, convergence, orbital energies, and functionals.

    PubMed

    Whitenack, Daniel L; Wasserman, Adam

    2012-04-28

    Aspects of density functional resonance theory (DFRT) [D. L. Whitenack and A. Wasserman, Phys. Rev. Lett. 107, 163002 (2011)], a recently developed complex-scaled version of ground-state density functional theory (DFT), are studied in detail. The asymptotic behavior of the complex density function is related to the complex resonance energy and system's threshold energy, and the function's local oscillatory behavior is connected with preferential directions of electron decay. Practical considerations for implementation of the theory are addressed including sensitivity to the complex-scaling parameter, θ. In Kohn-Sham DFRT, it is shown that almost all θ-dependence in the calculated energies and lifetimes can be extinguished via use of a proper basis set or fine grid. The highest occupied Kohn-Sham orbital energy and lifetime are related to physical affinity and width, and the threshold energy of the Kohn-Sham system is shown to be equal to the threshold energy of the interacting system shifted by a well-defined functional. Finally, various complex-scaling conditions are derived which relate the functionals of ground-state DFT to those of DFRT via proper scaling factors and a non-Hermitian coupling-constant system.

  3. Perspectives in spintronics: magnetic resonant tunneling, spin-orbit coupling, and GaMnAs

    NASA Astrophysics Data System (ADS)

    Ertler, C.; Matos-Abiague, A.; Gmitra, M.; Turek, M.; Fabian, J.

    2008-10-01

    Spintronics has attracted wide attention by promising novel functionalities derived from both the electron charge and spin. While branching into new areas and creating new themes over the past years, the principal goals remain the spin and magnetic control of the electrical properties—essentially the I-V characteristics—and vice versa. There are great challenges ahead to meet these goals. One challenge is to find niche applications for ferromagnetic semiconductors, such as GaMnAs. Another is to develop further the science of hybrid ferromagnetic metal/semiconductor heterostructures, as alternatives to all-semiconductor room temperature spintronics. Here we present our representative recent efiorts to address such challenges. We show how to make a digital magnetoresistor by combining two magnetic resonant diodes, or how introducing ferromagnetic semiconductors as active regions in resonant tunneling diodes leads to novel efiects of digital magnetoresistance and of magnetoelectric current oscillations. We also discuss the phenomenon of tunneling anisotropic magnetoresistance in Fe/GaAs junctions by introducing the concept of the spin-orbit coupling field, as an analog of such fields in all-semiconductor junctions. Finally, we look at fundamental electronic and optical properties of GaMnAs by employing reasonable tight-binding models to study disorder efiects.

  4. Nuclear Magnetic Resonance Studies of Topological Insulators and Materials with a Large Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Nisson, David Mark

    Nuclear magnetic resonance (NMR) studies were performed on large single crystals of the topological insulator materials Bi2Se 3 and Bi2Te2Se, as well as the doped topological superconductor candidate CuxBi2Se3. Samples were grown using the facilities of the Department of Physics at the University of California, Davis. Bi2Se3 crystals were grown under different conditions to control the intrinsic concentration of carrier electrons, which arises from an inherent tendency for Se vacancies to form during growth. The electrical properties, including carrier concentration of each sample, were then characterized by electrical transport measurements. Frequency swept 209Bi spectra for these samples reveal a relatively weak electric field gradient producing a splitting of about 160 kHz, and a shift that depends on the carrier concentration. The correlation between shift and intrinsic carrier concentration determines the hyperfine coupling strength between the Bi nuclei and the bulk carrier electrons. The spin-lattice relaxation rate T1--1 was also measured as a function of temperature. It is mostly temperature-independent, indicating that in samples of Bi2Se3 grown by the Bridgman method, relaxation may occur by spin diffusion to impurities rather than by previously reported mechanisms. Nuclear magnetic resonance measurements were also performed on single crystals of Bi2Se3 as a function of the angle between the field and the c-axis of the crystal lattice. These frequency-swept measurements revealed anomalous behavior that deviated significantly from what would be expected of the angular dependence of the resonance spectrum. Powder samples reveal spectra that differ still from the expectations from the single-crystal data. These phenomena are explained in part by the fact that the nutation time tpi/2) depends on the angle as a result of overlap between the central and satellite transitions, but may in addition be the result of screening of the radiofrequency field by the

  5. Calculations of the giant-dipole-resonance photoneutrons using a coupled EGS4-morse code

    SciTech Connect

    Liu, J.C.; Nelson, W.R.; Kase, K.R.; Mao, X.S.

    1995-10-01

    The production and transport of the photoneutrons from the giant-dipoleresonance reaction have been implemented in a coupled EGS4-MORSE code. The total neutron yield (including both the direct neutron and evaporation neutron components) is calculated by folding the photoneutron yield cross sections with the photon track length distribution in the target. Empirical algorithms based on the measurements have been developed to estimate the fraction and energy of the direct neutron component for each photon. The statistical theory in the EVAP4 code, incorporated as a MORSE subroutine, is used to determine the energies of the evaporation neutrons. These represent major improvements over other calculations that assumed no direct neutrons, a constant fraction of direct neutrons, monoenergetic direct neutron, or a constant nuclear temperature for the evaporation neutrons. It was also assumed that the slow neutrons (< 2.5 MeV) are emitted isotropically and the fast neutrons are emitted anisotropically in the form of 1+Csin{sup 2}{theta}, which have a peak emission at 900. Comparisons between the calculated and the measured photoneutron results (spectra of the direct, evaporation and total neutrons; nuclear temperatures; direct neutron fractions) for materials of lead, tungsten, tantalum and copper have been made. The results show that the empirical algorithms, albeit simple, can produce reasonable results over the interested photon energy range.

  6. Giant Goos-Hänchen effect and Fano resonance at photonic crystal surfaces.

    PubMed

    Soboleva, I V; Moskalenko, V V; Fedyanin, A A

    2012-03-23

    The Goos-Hänchen effect and Fano resonance are studied in photonic crystals that are considered Fourier counterparts in wave-vector-coordinate space. The Goos-Hänchen effect, which is enhanced by the excitation of Bloch surface electromagnetic waves, is visualized using far-field microscopy and measured at the surface of photonic crystals by angular spectroscopy. The maximal Goos-Hänchen shift is observed to be 66  μm.

  7. SUGGEL: A Program Suggesting the Orbital Angular Momentum of a Neutron Resonance from the Magnitude of its Neutron Width

    SciTech Connect

    Oh, S.Y.

    2001-02-02

    The SUGGEL computer code has been developed to suggest a value for the orbital angular momentum of a neutron resonance that is consistent with the magnitude of its neutron width. The suggestion is based on the probability that a resonance having a certain value of g{Gamma}{sub n} is an l-wave resonance. The probability is calculated by using Bayes' theorem on the conditional probability. The probability density functions (pdf's) of g{Gamma}{sub n} for up to d-wave (l=2) have been derived from the {chi}{sup 2} distribution of Porter and Thomas. The pdf's take two possible channel spins into account. This code is a tool which evaluators will use to construct resonance parameters and help to assign resonance spin. The use of this tool is expected to reduce time and effort in the evaluation procedure, since the number of repeated runs of the fitting code (e.g., SAMMY) may be reduced.

  8. REFINING THE PARALLAX IN VISUAL DOUBLE STARS USING ORBITAL AND SPECTRAL DATA: APPLICATION TO THE SYSTEM OF THE K0 GIANTS, A 1808

    SciTech Connect

    Docobo, J. A.; Tamazian, V. S.; Andrade, M.; Melikian, N. D.; Karapetian, A. A. E-mail: oatamaz@usc.es E-mail: nmelikia@bao.sci.am

    2008-08-15

    In this paper, we show how Hipparcos parallaxes of distant visual binaries ({pi}{sub Hip} {approx}< 10 mas) can be refined. This is accomplished by using relevant orbital and spectral data. To this end, we study the pair of K0 giants, A 1808. A revised orbit of this system is presented that was calculated by taking into account a set of interferometric and visual measurements covering almost one orbital revolution. In addition, by analyzing its spectrum obtained with the 2.6 m telescope of the Byurakan Astrophysical Observatory (Armenia), we confirm the MK spectral type, K0III. On the basis of B - V photometric data, we derived the extinction A{sub V} = 0.23 {+-} 0.08 mag as well as obtained a spectroscopic parallax ({pi}{sub sp} = 3.19 {+-} 0.21 mas) with a much smaller relative uncertainty of 6.6% compared with that of Hipparcos (42.1%; {pi}{sub Hip} = 2.43 {+-} 1.00 mas). Accordingly, this system is now placed at 313 {+-} 21 pc. With the obtained spectroscopic parallax, a dynamical mass of 4.52{sup +1.24}{sub -0.90} M{sub sun} is obtained, which agrees well with that expected from standard calibrations.

  9. Giant peak to valley ratio in a GaN based resonant tunnel diode with barrier width modulation

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Sandeep; Saha, Dipankar

    2016-10-01

    A barrier width modulated GaN based resonant tunnel diode is theoretically proposed which exhibits a giant peak to valley current ratio as high as 60 and a high negative differential conductance (NDC) of 1.77 × 106 S/cm2 with very low valley current density of 3 mA/cm2. This is achieved by the unique characteristic of the device current which monotonically decreases for applied voltages greater than the valley voltage in our simulation window. This is in contrast to all the other negative differential conductance based devices which experience an immediate exponential increase in current after the NDC region. The proposed device is also the first bidirectional tunneling diode which shows negative differential conductance for both polarity of the applied bias which is normally not observed with the conventional GaN/AlGaN double barrier structures due to the strong asymmetry arising from the internal electric fields due to polarization. The unique characteristics of the device can be attributed to the use of a modulated barrier width which is made possible by a polarization modulating InGaN layer and efficient utilization of internal electric fields in III-nitrides.

  10. Isomeric ratios in photonuclear reactions of molybdenum isotopes induced by bremsstrahlung in the giant dipole resonance region

    NASA Astrophysics Data System (ADS)

    Thiep, Tran Duc; An, Truong Thi; Cuong, Phan Viet; Vinh, Nguyen The; Hue, Bui Minh; Belov, A. G.; Maslov, O. D.; Mishinsky, G. V.; Zhemenik, V. I.

    2017-01-01

    We have determined the isomeric ratios of isomeric pairs 97m,gNb, 95m,gNb and 91m,gMo produced in 98Mo(γ, p)97m,gNb, 96Mo(γ, p)95m,gNb and 92Mo(γ, n)91m,gMo photonuclear reactions in the giant dipole resonance (GDR) region by the activation method. The results were analyzed, discussed and compared with the similar data from literature to examine the role of excitation energy, neutron configuration, channel effect and direct and pre-equilibrium processes in (γ, p) photonuclear reactions. In this work the isomeric ratios for 97m,gNb from 14 to 19 MeV, for 195m,gNb from14 to 24 MeV except 20 and 23.5 MeV and for 91m,gMo at 14 and 15 MeV are the first time measurements.

  11. Superfluid-Normal Phase Transition in Finite Systems and its Effect on Damping of Hot Giant Resonances

    NASA Astrophysics Data System (ADS)

    Dang, Nguyen Dinh

    2007-04-01

    Thermal fluctuations of quasiparticle number are included making use of the secondary Bogolyubov's transformation, which turns quasiparticles operators into modified-quasiparticle ones. This restores the unitarity relation for the generalized single-particle density operator, which is violated within the Hartree-Fock-Bogolyubov (HFB) theory at finite temperature. The resulting theory is called the modified HFB (MHFB) theory, whose limit of a constant pairing interaction yields the modified BCS (MBCS) theory. Within the MBCS theory, the pairing gap never collapses at finite temperature T as it does within the BCS theory, but decreases monotonously with increasing T. It is demonstrated that this non-vanishing thermal pairing is the reason why the width of the giant dipole resonance (GDR) does not increase with T up to T ~ 1 MeV. At higher T, when the thermal pairing is small, the GDR width starts to increase with T. The calculations within the phonon-damping model yield the results in good agreement with the most recent experimental systematic for the GDR width as a function of T. A similar effect, which causes a small GDR width at low T, is also seen after thermal pairing is included in the thermal fluctuation model.

  12. Giant Dipole Resonance in the hot and thermalized 132Ce nucleus: damping of collective modes at finite temperature

    SciTech Connect

    Wieland, O; Bracco, A; Camera, F; Benzoni, G; Blasi, N; Brambilla, S; Crespi, F; Giussani, A; Leoni, S; Million, B; Moroni, A; Barlini, S; Kravchuk, V L; Gramegna, F; Lanchais, A; Mastinu, P; Maj, A; Brekiesz, M; Kmiecik, M; Bruno, M; Geraci, E; Vannini, G; Casini, G; Chiari, M; Nannini, A; Ordine, A; Ormand, W E

    2006-06-16

    The {gamma} decay of the Giant Dipole Resonance in the {sup 132}Ce compound nucleus with temperature up to {approx} 4 MeV has been measured. The symmetric {sup 64}Ni + {sup 68}Zn at E{sub beam} = 300, 400, 500 MeV and the asymmetric reaction {sup 16}O + {sup 116}Sn at E{sub beam} = 130, 250 MeV have been investigated. Light charged particles and {gamma} rays have been detected in coincidence with the recoiling compound system. In the case of the mass symmetric {sup 64}Ni induced reaction the {gamma} and charged particle spectral shapes are found to be consistent with the emission from a fully equilibrated compound nuclei and the GDR parameters are extracted from the data using a statistical model analysis. The GDR width is found to increase almost linear with temperature. This increase is rather well reproduced within a model which includes both the thermal fluctuation of the nuclear shape and the lifetime of the compound nucleus.

  13. Two Transiting Earth-size Planets Near Resonance Orbiting a Nearby Cool Star

    NASA Astrophysics Data System (ADS)

    Petigura, Erik A.; Schlieder, Joshua E.; Crossfield, Ian J. M.; Howard, Andrew W.; Deck, Katherine M.; Ciardi, David R.; Sinukoff, Evan; Allers, Katelyn N.; Best, William M. J.; Liu, Michael C.; Beichman, Charles A.; Isaacson, Howard; Hansen, Brad M. S.; Lépine, Sébastien

    2015-10-01

    Discoveries from the prime Kepler mission demonstrated that small planets (<3 {R}\\oplus ) are common outcomes of planet formation. While Kepler detected many such planets, all but a handful orbit faint, distant stars and are not amenable to precise follow up measurements. Here, we report the discovery of two small planets transiting K2-21, a bright (K = 9.4) M0 dwarf located 65+/- 6 pc from Earth. We detected the transiting planets in photometry collected during Campaign 3 of NASA’s K2 mission. Analysis of transit light curves reveals that the planets have small radii compared to their host star, {R}P/{R}\\star = 2.60+/- 0.14% and 3.15+/- 0.20%, respectively. We obtained follow up NIR spectroscopy of K2-21 to constrain host star properties, which imply planet sizes of 1.59 ± 0.43 {R}\\oplus and 1.92 ± 0.53 {R}\\oplus , respectively, straddling the boundary between high-density, rocky planets and low-density planets with thick gaseous envelopes. The planets have orbital periods of 9.32414 days and 15.50120 days, respectively, and a period ratio {P}c/{P}b = 1.6624, very near to the 5:3 mean motion resonance, which may be a record of the system’s formation history. Transit timing variations due to gravitational interactions between the planets may be detectable using ground-based telescopes. Finally, this system offers a convenient laboratory for studying the bulk composition and atmospheric properties of small planets with low equilibrium temperatures.

  14. Projection of excited orbitals into kinetic energies of emitted electrons in resonant Si KLL Auger decays of SiF{sub 4}

    SciTech Connect

    Suzuki, I. H.; Kono, Y.; Ikeda, A.; Nagaoka, S.; Ouchi, T.; Ueda, K.; Takahashi, O.; Higuchi, I.; Tamenori, Y.

    2010-10-15

    Spectator resonant Auger-electron spectra have been measured in the Si 1s photoexcitation region of SiF{sub 4} using an electron spectroscopic technique combined with undulator radiation. A transition with the highest intensity in the total ion yield spectrum, which comes from excitation of a 1s electron into the 6t{sub 2} valence orbital, generates resonant Auger decays in which the excited electron remains predominantly in the valence orbital or is partly shaken up into a high-lying Rydberg orbital. The higher-lying peak generated through excitation into Rydberg orbitals induces resonant Auger decays in which the excited Rydberg electron is partly shaken up to a higher-lying Rydberg orbital or shaken down to a lower-lying valence molecular orbital. These findings exhibit a clear disentanglement effect among excited orbitals which are smeared out in the 1s electron excitation spectrum.

  15. Application of Magnetic Resonance Imaging and Three-Dimensional Treatment Planning in the Treatment of Orbital Lymphoma

    SciTech Connect

    Rudoltz, Marc S.; Ayyangar, Komanduri; Mohiuddin, Mohammed

    2015-01-15

    Radiotherapy for lymphoma of the orbit must be individualized for each patient and clinical setting. Most techniques focus on optimizing the dose to the tumor while sparing the lens. This study describes a technique utilizing magnetic resonance imaging (MRI) and three dimensional (3D) planning in the treatment of orbital lymphoma. A patient presented with an intermediate grade lymphoma of the right orbit. The prescribed tumor dose was 4050 cGy in 18 fractions. Three D planning was carried out and tumor volumes, retina, and lens were subsequently outlined. Dose calculations including dose volume histograms of the target, retina, and lens were then performed. Part of the retina was outside of the treatment volume while 50% of the retina received 90% or more of the prescribed dose. The patient was clinically NED when last seen 2 years following therapy with no treatment-related morbidity. Patients with lymphomas of the orbit can be optimally treated using MRI based 3D treatment planning.

  16. Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei

    NASA Astrophysics Data System (ADS)

    Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet

    2010-12-01

    In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B(E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.

  17. Electric dipole strength distribution below the E1 giant resonance in N = 82 nuclei

    NASA Astrophysics Data System (ADS)

    Guliyev, Ekber; Kuliev, Ali; Guner, Mehmet

    2010-12-01

    In this study quasiparticle random-phase approximation with the translational invariant Hamiltonian using deformed mean field potential has been conducted to describe electric dipole excitations in 136Xe, 138Ba, 140Ce, 142Nd, 144Sm and 146Gd isotones. The distribution of the calculated E1 strength shows a resonance like structure at energies between 6-8 MeV exhausting up to 1% of the isovector electric dipole Energy Weighted Sum Rule and in some aspects nicely confirms the experimental data. It has been shown that the main part of E1 strength, observed below the threshold in these nuclei may be interpreted as main fragments of the Pygmy Dipole resonance. The agreement between calculated mean excitation energies as well as summed B( E1) value of the 1- excitations and the available experimental data is quite good. The calculations indicate the presence of a few prominent positive parity 1+ States in heavy N = 82 isotones in the energy interval 6-8 MeV which shows not all dipole excitations were of electric character in this energy range.

  18. Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics.

    PubMed

    Eremeev, S V; Nechaev, I A; Echenique, P M; Chulkov, E V

    2014-11-04

    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.

  19. Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics

    NASA Astrophysics Data System (ADS)

    Eremeev, S. V.; Nechaev, I. A.; Echenique, P. M.; Chulkov, E. V.

    2014-11-01

    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.

  20. Spin-helical Dirac states in graphene induced by polar-substrate surfaces with giant spin-orbit interaction: a new platform for spintronics

    PubMed Central

    Eremeev, S. V.; Nechaev, I. A.; Echenique, P. M.; Chulkov, E. V.

    2014-01-01

    Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications. PMID:25365945

  1. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond.

    PubMed

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-26

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 10(20) N m(-3). This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  2. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    NASA Astrophysics Data System (ADS)

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  3. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    PubMed Central

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-01-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m−3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics. PMID:27225287

  4. Measurement of Resonance Parameters of Orbitally Excited Narrow B^0 Mesons

    SciTech Connect

    Aaltonen, : T.

    2008-09-01

    The authors report a measurement of resonance parameters of the orbitally excited (L = 1) narrow B{sup 0} mesons in decays to B{sup (*)+}{pi}{sup -} using 1.7 fb{sup -1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B*{sub 2}{sup 0} state are measured to be m(B*{sub 2}{sup 0}) = 5740.2{sub -1.8}{sup +1.7}(stat.){sub -0.8}{sup +0.9}(syst.) MeV/c{sup 2} and {Lambda}(B*{sub 2}{sup 0}) = 22.7{sub -3.2}{sup +3.8}(stat.){sub -10.2}{sup +3.2}(syst.) MeV/c{sub 2}. The mass difference between the B*{sub 2}{sup 0} and B{sub 1}{sup 0} states is measured to be 14.9{sub -2.5}{sup +2.2}(stat.){sub -1.4}{sup +1.2}(syst.) MeV/c{sup 2}, resulting in a B{sub 1}{sup 0} mass of 5725.3{sub -2.2}{sup +1.6}(stat.){sub -1.5}{sup +1.4}(syst.) MeV/c{sup 2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B*{sub 2}{sup 0} width.

  5. Measurement of resonance parameters of orbitally excited narrow B0 mesons.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; da Costa, J Guimaraes; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-13

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B;{(*)+}pi;{-} using 1.7 fb;{-1} of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B_{2};{*0} state are measured to be m(B_{2};{*0})=5740.2_{-1.8};{+1.7}(stat)-0.8+0.9(syst) MeV/c;{2} and Gamma(B_{2};{*0})=22.7_{-3.2};{+3.8}(stat)-10.2+3.2(syst) MeV/c;{2}. The mass difference between the B_{2};{*0} and B10 states is measured to be 14.9_{-2.5};{+2.2}(stat)-1.4+1.2(syst) MeV/c;{2}, resulting in a B10 mass of 5725.3_{-2.2};{+1.6}(stat)-1.5+1.4(syst) MeV/c;{2}. This is currently the most precise measurement of the masses of these states and the first measurement of the B_{2};{*0} width.

  6. Resonant Ultrasound studies of spin- and orbital ordering transitions in RVO3

    NASA Astrophysics Data System (ADS)

    Koehler, M.; Yan, J.-Q.; Ren, Y.; Sales, B. C.; Mandrus, D.; Keppens, V.

    2013-03-01

    RVO3 perovskites (R = rare earth) have been shown to undergo multiple spin and orbital transitions due to the Jahn-Teller active V3+ electrons. We have initiated a study of the elastic response of RVO3, (R = Dy, Gd, Ce) as well as Y1-xLaxVO3 (x = 0.05, 0.3, 1) using resonant ultrasound spectroscopy. The temperature-dependence of the elastic response is dominated by the ordering transitions, with transition temperatures that change with the size of the rare earth. For CeVO3 and LaVO3, two transitions are observed, separated by 17K and 2K, respectively. DyVO3 and Y0.95La0.05VO3 show three transitions below 220K while GdVO3 only shows one. The full elastic tensor of Y0 . 7 La0.3VO3 has also been determined from 300K to 50K, yielding the temperature dependence of the 9 orthorhombic elastic moduli. Work at ORNL was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  7. Measurement of Resonance Parameters of Orbitally Excited Narrow B0 Mesons

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M. G.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzurri, P.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Almenar, C. Cuenca; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlok, J.; Fernandez, P. Movilla; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Griso, S. Pagan; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Rekovic, V.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Wynne, S. M.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2009-03-01

    We report a measurement of resonance parameters of the orbitally excited (L=1) narrow B0 mesons in decays to B(*)+π- using 1.7fb-1 of data collected by the CDF II detector at the Fermilab Tevatron. The mass and width of the B2*0 state are measured to be m(B2*0)=5740.2-1.8+1.7(stat)-0.8+0.9(syst)MeV/c2 and Γ(B2*0)=22.7-3.2+3.8(stat)-10.2+3.2(syst)MeV/c2. The mass difference between the B2*0 and B10 states is measured to be 14.9-2.5+2.2(stat)-1.4+1.2(syst)MeV/c2, resulting in a B10 mass of 5725.3-2.2+1.6(stat)-1.5+1.4(syst)MeV/c2. This is currently the most precise measurement of the masses of these states and the first measurement of the B2*0 width.

  8. Evaluation of multiatlas label fusion for in vivo magnetic resonance imaging orbital segmentation

    PubMed Central

    Panda, Swetasudha; Asman, Andrew J.; Khare, Shweta P.; Thompson, Lindsey; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2014-01-01

    Abstract. Multiatlas methods have been successful for brain segmentation, but their application to smaller anatomies remains relatively unexplored. We evaluate seven statistical and voting-based label fusion algorithms (and six additional variants) to segment the optic nerves, eye globes, and chiasm. For nonlocal simultaneous truth and performance level estimation (STAPLE), we evaluate different intensity similarity measures (including mean square difference, locally normalized cross-correlation, and a hybrid approach). Each algorithm is evaluated in terms of the Dice overlap and symmetric surface distance metrics. Finally, we evaluate refinement of label fusion results using a learning-based correction method for consistent bias correction and Markov random field regularization. The multiatlas labeling pipelines were evaluated on a cohort of 35 subjects including both healthy controls and patients. Across all three structures, nonlocal spatial STAPLE (NLSS) with a mixed weighting type provided the most consistent results; for the optic nerve NLSS resulted in a median Dice similarity coefficient of 0.81, mean surface distance of 0.41 mm, and Hausdorff distance 2.18 mm for the optic nerves. Joint label fusion resulted in slightly superior median performance for the optic nerves (0.82, 0.39 mm, and 2.15 mm), but slightly worse on the globes. The fully automated multiatlas labeling approach provides robust segmentations of orbital structures on magnetic resonance imaging even in patients for whom significant atrophy (optic nerve head drusen) or inflammation (multiple sclerosis) is present. PMID:25558466

  9. Investigation of probabilistic orbital evolution of near-Earth asteroids moving in the vicinity of resonances with Mercury

    NASA Astrophysics Data System (ADS)

    Galushina, T. Yu.; Titarenko, E. Yu

    2014-12-01

    The purpose of this work is the investigation of probabilistic orbital evolution of near-Earth asteroids (NEA) moving in the vicinity of resonances with Mercury. In order to identify such objects the equations of all NEA motion have been integrated on the time interval (1000, 3000 years). The initial data has been taken from the E. Bowell catalog on February 2014. The motion equations have been integrated numerically by Everhart method. The resonance characteristics are critical argument that defines the connection longitude of the asteroid and the planet and its time derivative, called resonance "band". The study has identified 15 asteroids moving in the vicinity of different resonances with Mercury. Six of them (52381 1993 HA, 172034 2001 WR1, 2008 VB1, 2009 KT4, 2013 CQ35, 2013 TH) move in the vicinity of the resonance 1/6, five of them (142561 2002 TX68, 159608 2002 AC2, 241370 2008 LW8, 2006 UR216, 2009 XB2) move in the vicinity of the resonance 1/9 and one by one asteroid moves in the vicinity of resonances 1/3, 1/7, 1/8 and 2/7 (2006 SE6, 2002 CV46, 2013 CN35 and 2006 VY2 respectively). The orbits of all identified asteroids have been improved by least square method using the available optical observations and probabilistic orbital evolution has been investigated. Improvement have been carried out at the time of the best conditionality in accounting perturbations from the major planets, Pluto, Moon, Ceres, Pallas and Vesta, the relativistic effects from the Sun and the Solar oblateness. The estimation of the nonlinearity factor has showed that for all the considered NEA it does not exceed the critical value of 0.1, which makes it possible to use the linear method for constructing the initial probability domain. The domain has been built in the form of an ellipsoid in six-dimensional phase space of coordinates and velocity components on the base of the full covariance matrix, the center of ellipsoid is the nominal orbit obtained by improving. The 10 000

  10. Kepler-432 b: a massive warm Jupiter in a 52-day eccentric orbit transiting a giant star

    NASA Astrophysics Data System (ADS)

    Ortiz, Mauricio; Gandolfi, Davide; Reffert, Sabine; Quirrenbach, Andreas; Deeg, Hans J.; Karjalainen, Raine; Montañés-Rodríguez, Pilar; Nespral, David; Nowak, Grzegorz; Osorio, Yeisson; Palle, Enric

    2015-01-01

    We study the Kepler object Kepler-432, an evolved star ascending the red giant branch. By deriving precise radial velocities from multi-epoch high-resolution spectra of Kepler-432 taken with the CAFE spectrograph at the 2.2 m telescope of Calar Alto Observatory and the FIES spectrograph at the Nordic Optical Telescope of Roque de Los Muchachos Observatory, we confirm the planetary nature of the object Kepler-432 b, which has a transit period of 52 days. We find a planetary mass of Mp = 5.84 ± 0.05MJup and a high eccentricity of e = 0.478 ± 0.004. With a semi-major axis of a = 0.303 ± 0.007 AU, Kepler-432 b is the first bona fide warm Jupiter detected to transit a giant star. We also find a radial velocity linear trend of γ˙ = 0.44 ± 0.04 m s-1 d-1, which suggests the presence of a third object in the system. Current models of planetary evolution in the post-main-sequence phase predict that Kepler-432 b will be most likely engulfed by its host star before the latter reaches the tip of the red giant branch. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (Heidelberg) and the Instituto de Astrofísica de Andalucía (IAA-CSIC, Granada).Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Table 3 is available in electronic form at http://www.aanda.org

  11. A DISK AROUND THE PLANETARY-MASS COMPANION GSC 06214-00210 b: CLUES ABOUT THE FORMATION OF GAS GIANTS ON WIDE ORBITS

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Kraus, Adam L.; Mann, Andrew W.; Ireland, Michael J.

    2011-12-20

    We present Keck OSIRIS 1.1-1.8 {mu}m adaptive optics integral field spectroscopy of the planetary-mass companion to GSC 06214-00210, a member of the {approx}5 Myr Upper Scorpius OB association. We infer a spectral type of L0 {+-} 1, and our spectrum exhibits multiple signs of youth. The most notable feature is exceptionally strong Pa{beta} emission (EW = -11.4 {+-} 0.3 A), which signals the presence of a circumplanetary accretion disk. The luminosity of GSC 06214-00210 b combined with its age yields a model-dependent mass of 14 {+-} 2 M{sub Jup}, making it the lowest-mass companion to show evidence of a disk. With a projected separation of 320 AU, the formation of GSC 06214-00210 b and other very low mass companions on similarly wide orbits is unclear. One proposed mechanism is formation at close separations followed by planet-planet scattering to much larger orbits. Since that scenario involves a close encounter with another massive body, which is probably destructive to circumplanetary disks, it is unlikely that GSC 06214-00210 b underwent a scattering event in the past. This implies that planet-planet scattering is not solely responsible for the population of gas giants on wide orbits. More generally, the identification of disks around young planetary companions on wide orbits offers a novel method to constrain the formation pathway of these objects, which is otherwise notoriously difficult to do for individual systems. We also refine the spectral type of the primary from M1 to K7 and detect a mild (2{sigma}) excess at 22 {mu}m using Wide-Field Infrared Survey Explorer photometry.

  12. Adiabatic invariants and phase equilibria for first-order orbital resonances. [solar mass change effect on asteroid orbits

    NASA Technical Reports Server (NTRS)

    Heppenheimer, T. A.

    1975-01-01

    In the planar circular restricted three-body problem, the evolution of near-commensurable orbits is studied under change in the mass ratio, mu. The evolution involves preservation of two adiabatic invariants. Transition from circulation to libration may occur; such transitions are of two types. Type I transition occurs when the evolutionary track in phase space passes through near-zero eccentricity; as in the ordinary case (no transition), pre- and post-evolutionary states are linked by solution of a two-point boundary-value problem. Type II transition occurs when the evolutionary track encounters an unstable phase equilibrium or periodic orbit. There is then a discontinuous change in one adiabatic invariant, and pre- and post-evolutionary states are linked by solution of a three-point boundary-value problem. No evolutionary track can encounter a stable phase equilibrium, but the class of all stable phase equilibria is mapped into itself under mu change.

  13. Emerging giant resonant exciton induced by Ta substitution in anatase TiO2: A tunable correlation effect

    NASA Astrophysics Data System (ADS)

    Yong, Z.; Trevisanutto, P. E.; Chiodo, L.; Santoso, I.; Barman, A. R.; Asmara, T. C.; Dhar, S.; Kotlov, A.; Terentjevs, A.; Della Sala, F.; Olevano, V.; Rübhausen, M.; Venkatesan, T.; Rusydi, A.

    2016-05-01

    Titanium dioxide (TiO2) has rich physical properties with potential implications for both fundamental physics and new applications. To date, the main focus of applied research is to tune its optical properties, which is usually done via doping and/or nanoengineering. However, understanding the role of d electrons in materials and possible functionalization of d -electron properties are still major challenges. Herewith, within a combination of an innovative experimental technique, high-energy optical conductivity, and state-of-the-art ab initio electronic structure calculations, we report an emerging, novel resonant exciton in the deep ultraviolet region of the optical response. The resonant exciton evolves upon low-concentration Ta substitution in anatase TiO2 films. It is surprisingly robust and related to strong electron-electron and electron-hole interactions. The d - and f -orbital localization, due to Ta substitution, plays an unexpected role, activating strong electronic correlations and dominating the optical response under photoexcitation. Our results shed light on a new optical phenomenon in anatase TiO2 films and on the possibility of tuning electronic properties by Ta substitution.

  14. Condensate fraction of a resonant Fermi gas with spin-orbit coupling in three and two dimensions

    SciTech Connect

    Dell'Anna, L.; Mazzarella, G.; Salasnich, L.

    2011-09-15

    We study the effects of laser-induced Rashba-like spin-orbit coupling along the Bardeen-Cooper-Schrieffer-Bose-Einstein condensate (BCS-BEC) crossover of a Feshbach resonance for a two-spin-component Fermi gas. We calculate the condensate fraction in three and two dimensions and find that this quantity characterizes the crossover better than other quantities, like the chemical potential or the pairing gap. By considering both the singlet and the triplet pairings, we calculate the condensate fraction and show that a large-enough spin-orbit interaction enhances the singlet condensate fraction in the BCS side while suppressing it on the BEC side.

  15. Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of GJ 667C

    DTIC Science & Technology

    2014-01-10

    reserved. Printed in the U.S.A. DYNAMICAL EVOLUTION AND SPIN-ORBIT RESONANCES OF POTENTIALLY HABITABLE EXOPLANETS . THE CASE OF GJ 667C Valeri V. Makarov...Earth GJ 667Cc in the multiple system of at least two exoplanets orbiting a nearby M dwarf. The published radial velocities for this star are re-analyzed...0.41+0.54−0.13 per host star (Bonfils et al. 2013). In exoplanet research, super- Earths usually designate planets appreciably more massive than

  16. Dynamical evolution and spin-orbit resonances of potentially habitable exoplanets. The case of GJ 667C

    SciTech Connect

    Makarov, Valeri V.; Berghea, Ciprian

    2014-01-10

    We investigate the spin-orbital evolution of the potentially habitable super-Earth GJ 667Cc in the multiple system of at least two exoplanets orbiting a nearby M dwarf. The published radial velocities for this star are re-analyzed and evidence is found for additional periodic signals, which could be taken for two additional planets on eccentric orbits making the system dynamically inviable. Limiting the scope to the two originally detected planets, we assess the dynamical stability of the system and find no evidence for bounded chaos in the orbital motion. The orbital eccentricity of the planets b and c is found to change cyclically in the range 0.06-0.28 and 0.05-0.25, respectively, with a period of approximately 0.46 yr. Taking the eccentricity variation into account, numerical integrations are performed of the spin-orbit interactions of the planet GJ 667Cc with its host star, assuming a terrestrial composition of its mantle. Depending on the interior temperature of the planet, it is likely to be entrapped in the 3:2 (probability 0.51) or even higher spin-orbit resonance. It is less likely to reach the 1:1 resonance (probability 0.24). The estimated characteristic spin-down times are quite short for the two planets, i.e., within 1 Myr for planet c and even shorter for planet b. The rate of tidal dissipation of energy in the planets of GJ 667 is estimated at 10{sup 23.7} and 10{sup 26.7} J yr{sup –1} for c and b, respectively. This raises a question of how such relatively massive, close super-Earths could survive overheating and destruction.

  17. Forced resonant migration of Pluto's outer satellites by Charon.

    PubMed

    Ward, William R; Canup, Robin M

    2006-08-25

    Two small moons of Pluto have been discovered in low-eccentricity orbits exterior to Pluto's large satellite, Charon. All three satellite orbits are nearly coplanar, implying a common origin. It has been argued that Charon formed as a result of a giant impact with primordial Pluto. The orbital periods of the two new moons are nearly integer multiples of Charon's period, suggesting that they were driven outward by resonant interactions with Charon during its tidal orbital expansion. This could have been accomplished if Charon's orbit was eccentric during most of this orbital evolution, with the small moons originating as debris from the collision that produced Charon.

  18. Planets around Giant Stars: Results from the Lick Survey

    NASA Astrophysics Data System (ADS)

    Quirrenbach, Andreas; Reffert, Sabine; Trifonov, Trifon; Bergmann, Christoph; Schwab, Christian

    2015-12-01

    We present results from a radial-velocity survey of 373 giant stars at Lick Observatory, which started in 1999. We have detected planets around 15 of these stars; an additional 20 stars host planet candidates. Companions with up to 25 Jupiter masses are rather commonly found around stars with about 2 Solar masses. The frequency of detected planetary companions appears to increase with metallicity. No planets or planet candidates are found around stars with more than 2.7 Solar masses, although our sample contains 113 such stars. We conclude that the occurrence rate of giant planets as a function of Stellar mass peaks around 2 Solar masses. This has important consequences for our understanding of giant planet formation.The stars 91 Aqr and tau Gem have companions with orbits that are among those with the lowest eccentricities of all known exoplanets, perhaps due to tidal circularization during the RGB phase. If confirmed, this would be the first evidence of planetary orbits modified through stellar evolution.We have discovered several multiple systems in our sample. An extensive dynamical analysis of the eta Cet system indicates that it contains two massive planets in a 2:1 orbital resonance. The star nu Oph is orbited by two brown dwarf companions in a 6:1 resonance. It is likely that they arrived in this resonance through migration in a circumstellar disk, arguing strongly that objects with more than 20 Jupiter masses can be formed in disks around Herbig Ae stars.

  19. Kinetic temperatures toward X1/X2 orbit interceptions regions and giant molecular loops in the Galactic center region

    NASA Astrophysics Data System (ADS)

    Riquelme, D.; Amo-Baladrón, M. A.; Martín-Pintado, J.; Mauersberger, R.; Martín, S.; Bronfman, L.

    2013-01-01

    Context. It is well known that the kinetic temperatures, Tkin, of the molecular clouds in the Galactic center region are higher than in typical disk clouds. However, the Tkin of the molecular complexes found at higher latitudes towards the giant molecular loops in the central region of the Galaxy is so far unknown. The gas of these high-latitude molecular clouds (hereafter referred to as "halo clouds") is located in a region where the gas in the disk may interact with the gas in the halo in the Galactic center region. Aims: To derive Tkin in the molecular clouds at high latitude and understand the physical process responsible for the heating of the molecular gas both in the central molecular zone (the concentration of molecular gas in the inner ~500 pc) and in the giant molecular loops. Methods: We measured the metastable inversion transitions of NH3 from (J,K) = (1,1) to (6,6) toward six positions selected throughout the Galactic central disk and halo. We used rotational diagrams and large velocity gradient (LVG) modeling to estimate the kinetic temperatures toward all the sources. We also observed other molecules like SiO, HNCO, CS, C34S, C18O, and 13CO, to derive the densities and to trace different physical processes (shocks, photodissociation, dense gas) expected to dominate the heating of the molecular gas. Results: We derive for the first time Tkin of the high-latitude clouds interacting with the disk in the Galactic center region. We find high rotational temperatures in all the observed positions. We derive two kinetic temperature components (~150 K and ~40 K) for the positions in the central molecular zone, and only the warm kinetic temperature component for the clouds toward the giant molecular loops. The fractional abundances derived from the different molecules suggest that shocks provide the main heating mechanism throughout the Galactic center, also at high latitudes. Appendices A and B are available in electronic form at http://www.aanda.org

  20. The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. IV. Gravitational instability rarely forms wide, giant planets

    NASA Astrophysics Data System (ADS)

    Vigan, A.; Bonavita, M.; Biller, B.; Forgan, D.; Rice, K.; Chauvin, G.; Desidera, S.; Meunier, J.-C.; Delorme, P.; Schlieder, J. E.; Bonnefoy, M.; Carson, J.; Covino, E.; Hagelberg, J.; Henning, T.; Janson, M.; Lagrange, A.-M.; Quanz, S. P.; Zurlo, A.; Beuzit, J.-L.; Boccaletti, A.; Buenzli, E.; Feldt, M.; Girard, J. H. V.; Gratton, R.; Kasper, M.; Le Coroller, H.; Mesa, D.; Messina, S.; Meyer, M.; Montagnier, G.; Mordasini, C.; Mouillet, D.; Moutou, C.; Reggiani, M.; Segransan, D.; Thalmann, C.

    2017-06-01

    Understanding the formation and evolution of giant planets (≥1 MJup) at wide orbital separation (≥5 AU) is one of the goals of direct imaging. Over the past 15 yr, many surveys have placed strong constraints on the occurrence rate of wide-orbit giants, mostly based on non-detections, but very few have tried to make a direct link with planet formation theories. In the present work, we combine the results of our previously published VLT/NaCo large program with the results of 12 past imaging surveys to constitute a statistical sample of 199 FGK stars within 100 pc, including three stars with sub-stellar companions. Using Monte Carlo simulations and assuming linear flat distributions for the mass and semi-major axis of planets, we estimate the sub-stellar companion frequency to be within 0.75-5.70% at the 68% confidence level (CL) within 20-300 AU and 0.5-75 MJup, which is compatible with previously published results. We also compare our results with the predictions of state-of-the-art population synthesis models based on the gravitational instability (GI) formation scenario with and without scattering. We estimate that in both the scattered and non-scattered populations, we would be able to detect more than 30% of companions in the 1-75 MJup range (95% CL). With the threesub-stellar detections in our sample, we estimate the fraction of stars that host a planetary system formed by GI to be within 1.0-8.6% (95% CL). We also conclude that even though GI is not common, it predicts a mass distribution of wide-orbit massive companions that is much closer to what is observed than what the core accretion scenario predicts. Finally, we associate the present paper with the release of the Direct Imaging Virtual Archive (DIVA), a public database that aims at gathering the results of past, present, and future direct imaging surveys. Based on observations collected at the European Southern Observatory, Chile (ESO Large Program 184.C-0157 and Open Time 089.C-0137A and 090.C-0252

  1. Topological Fulde-Ferrell states in alkaline-earth-metal-like atoms near an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Wang, Su; Pan, Jian-Song; Cui, Xiaoling; Zhang, Wei; Yi, Wei

    2017-04-01

    We study the effects of synthetic spin-orbit coupling on the pairing physics in quasi-one-dimensional ultracold Fermi gases of alkaline-earth-metal-like atoms near an orbital Feshbach resonance (OFR). The interplay between spin-orbit coupling and pairing interactions near the OFR leads to an interesting topological Fulde-Ferrell state, where the nontrivial topology of the state is solely encoded in the closed channel with a topologically trivial Fulde-Ferrell pairing in the open channel. We confirm the topological property of the system by characterizing the Zak phase and the edge states. The topological Fulde-Ferrell state can be identified by the momentum-space density distribution obtained from time-of-flight images.

  2. X-Ray Detected Magnetic Resonance: A Unique Probe of the Precession Dynamics of Orbital Magnetization Components

    PubMed Central

    Goulon, Jośe; Rogalev, Andrei; Goujon, Gérard; Wilhelm, Fabrice; Ben Youssef, Jamal; Gros, Claude; Barbe, Jean-Michel; Guilard, Roger

    2011-01-01

    X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD) is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR). Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence. PMID:22272105

  3. One-dimensional quantum antiferromagnetism in the p -orbital CsO2 compound revealed by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Knaflič, Tilen; Klanjšek, Martin; Sans, Annette; Adler, Peter; Jansen, Martin; Felser, Claudia; Arčon, Denis

    2015-05-01

    Recently, it was proposed that the orbital ordering of πx,y * molecular orbitals in the superoxide CsO2 compound leads to the formation of spin-1/2 chains below the structural phase transition occurring at Ts 1=61 K on cooling. Here we report a detailed X -band electron paramagnetic resonance (EPR) study of this phase in CsO2 powder. The EPR signal appears as a broad line below Ts 1, which is replaced by the antiferromagnetic resonance below the Néel temperature TN=8.3 K . The temperature dependence of the EPR linewidth between Ts 1 and TN agrees with the predictions for the one-dimensional Heisenberg antiferromagnetic chain of S =1 /2 spins in the presence of symmetric anisotropic exchange interaction. Complementary analysis of the EPR line shape, linewidth, and the signal intensity within the Tomonaga-Luttinger liquid (TLL) framework allows for a determination of the TLL exponent K =0.48 . Present EPR data thus fully comply with the quantum antiferromagnetic state of spin-1/2 chains in the orbitally ordered phase of CsO2, which is therefore a unique p -orbital system where such a state could be studied.

  4. Orbital selective neutron spin resonance in underdoped superconducting NaFe0.985Co0.015As

    NASA Astrophysics Data System (ADS)

    Wang, Weiyi; Park, J. T.; Yu, Rong; Li, Yu; Song, Yu; Zhang, Zongyuan; Ivanov, Alexandre; Kulda, Jiri; Dai, Pengcheng

    2017-03-01

    We use neutron scattering to study the electron-doped superconducting NaFe0.985Co0.015As (Tc=14 K), which has coexisting static antiferromagnetic (AF) order (TN=31 K) and exhibits two neutron spin resonances (Er 1≈3.5 meV and Er 2≈6 meV) at the in-plane AF ordering wave vector QAF=Q1=(1 ,0 ) in reciprocal space. In the twinned state below the tetragonal-to-orthorhombic structural transition Ts, both resonance modes appear at Q1 but cannot be distinguished from Q2=(0 ,1 ) . By detwinning the single crystal with uniaxial pressure along the orthorhombic b axis, we find that both resonances appear only at Q1 with vanishing intensity at Q2. Since electronic bands of the orbital dx z and dy z characters split below Ts with the dx z band sinking ˜10 meV below the Fermi surface, our results indicate that the neutron spin resonances in NaFe0.985Co0.015As arise mostly from quasiparticle excitations between the hole and electron Fermi surfaces with the dy z orbital character.

  5. Observation of orbiting resonances in He({sup 3}S{sub 1}) + NH{sub 3} Penning ionization

    SciTech Connect

    Jankunas, Justin; Osterwalder, Andreas; Jachymski, Krzysztof; Hapka, Michał

    2015-04-28

    Resonances are among the clearest quantum mechanical signatures of scattering processes. Previously, shape resonances and Feshbach resonances have been observed in inelastic and reactive collisions involving atoms or diatomic molecules. Structure in the integral cross section has been observed in a handful of elastic collisions involving polyatomic molecules. The present paper presents the observation of shape resonances in the reactive scattering of a polyatomic molecule, NH{sub 3}. A merged-beam study of the gas phase He({sup 3}S{sub 1}) + NH{sub 3} Penning ionization reaction dynamics is described in the collision energy range 3.3 μeV < E{sub coll} < 10 meV. In this energy range, the reaction rate is governed by long-range attraction. Peaks in the integral cross section are observed at collision energies of 1.8 meV and 7.3 meV and are assigned to ℓ = 15,16 and ℓ = 20,21 partial wave resonances, respectively. The experimental results are well reproduced by theoretical calculations with the short-range reaction probability P{sub sr} = 0.035. No clear signature of the orbiting resonances is visible in the branching ratio between NH{sub 3}{sup +} and NH{sub 2}{sup +} formation.

  6. 1 to 2.4 microns spectrum and orbital properties of the Giant Planet Beta Pictoris b obtained with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Chilcote, Jeffrey; Millar-Blanchaer, Max; Barman, Travis; Fitzgerald, Michael P.; Graham, James R.; Larkin, James; Kalas, Paul G.; dawson, Rebekah; Wang, Jason; Perrin, Marshall; Moon, Dae-Sik; Macintosh, Bruce

    2015-12-01

    We present a low-resolution multi-band spectrum of the planetary companion to the nearby young star beta Pictoris using the Gemini Planet Imager (GPI). GPI is designed to image and provide low-resolution spectra of Jupiter sized, self-luminous planetary companions around young nearby stars. While H-bandis the primary workhorse for the GPI Exoplanet Survey, the instrument is capable of observing in the near infrared covering Y, J, H, and K bands. These observations of Beta Pic Pictoris b were taken covering multiple bands as part of GPI’s verification and commissioning phase in 2013 and 2014. Using atmospheric models along with the H-band data we recently reported an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). A similar exercise was also carried out by an independent team using the J band data, and did yield similar conclusions. These values agree well with ”hot-start” predictions from planetary evolution models for a gas giant with mass between 10 and 12 M Jup and age between 10 and 20 Myr. Here we revisit these conclusions in light of a joint analysis of these two datasets along with the longer wavelength GPI spectrum in K band, and present refined constraints on the atmospheric properties of this giant planet. In addition, we present an updated orbit for Beta Pictoris b based on astrometric measurements taken using commissioning and subsequent monitoring observations, spanning 14 months. The planet has a semi-major axis of 9.2 (+1.5 -0.4) AU, with an eccentricity e≤ 0.26. The position angle of the ascending node is Ω=31.75 deg±0.15, offset from both the outer main disk and the inner disk seen in the GPI image. We finally discuss these properties in the context of planet-disk dynamical interactions.

  7. Extreme secular excitation of eccentricity inside mean motion resonance. Small bodies driven into star-grazing orbits by planetary perturbations

    NASA Astrophysics Data System (ADS)

    Pichierri, Gabriele; Morbidelli, Alessandro; Lai, Dong

    2017-09-01

    Context. It is well known that asteroids and comets fall into the Sun. Metal pollution of white dwarfs and transient spectroscopic signatures of young stars like β-Pic provide growing evidence that extra solar planetesimals can attain extreme orbital eccentricities and fall into their parent stars. Aims: We aim to develop a general, implementable, semi-analytical theory of secular eccentricity excitation of small bodies (planetesimals) in mean motion resonances with an eccentric planet valid for arbitrary values of the eccentricities and including the short-range force due to General Relativity. Methods: Our semi-analytic model for the restricted planar three-body problem does not make use of series expansion and therefore is valid for any eccentricity value and semi-major axis ratio. The model is based on the application of the adiabatic principle, which is valid when the precession period of the longitude of pericentre of the planetesimal is much longer than the libration period in the mean motion resonance. In resonances of order larger than 1 this is true except for vanishingly small eccentricities. We provide prospective users with a Mathematica notebook with implementation of the model allowing direct use. Results: We confirm that the 4:1 mean motion resonance with a moderately eccentric (e' ≲ 0.1) planet is the most powerful one to lift the eccentricity of planetesimals from nearly circular orbits to star-grazing ones. However, if the planet is too eccentric, we find that this resonance is unable to pump the planetesimal's eccentricity to a very high value. The inclusion of the General Relativity effect imposes a condition on the mass of the planet to drive the planetesimals into star-grazing orbits. For a planetesimal at 1 AU around a solar mass star (or white dwarf), we find a threshold planetary mass of about 17 Earth masses. We finally derive an analytical formula for this critical mass. Conclusions: Planetesimals can easily fall into the central star

  8. Purely one-dimensional bands with a giant spin-orbit splitting: Pb nanoribbons on Si(553) surface

    PubMed Central

    Kopciuszyński, Marek; Krawiec, Mariusz; Zdyb, Ryszard; Jałochowski, Mieczysław

    2017-01-01

    We report on a giant Rashba type splitting of metallic bands observed in one-dimensional structures prepared on a vicinal silicon substrate. A single layer of Pb on Si(553) orders this vicinal surface making perfectly regular distribution of monatomic steps. Although there is only one layer of Pb, the system reveals very strong metallic and purely one-dimensional character, which manifests itself in multiple surface state bands crossing the Fermi level in the direction parallel to the step edges and a small band gap in the perpendicular direction. As shown by spin-polarized photoemission and density functional theory calculations these surface state bands are spin-polarized and completely decoupled from the rest of the system. The experimentally observed spin splitting of 0.6 eV at room temperature is the largest found to now in the silicon-based metallic nanostructures, which makes the considered system a promising candidate for application in spintronic devices. PMID:28383078

  9. Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - VIII. The totally eclipsing double-giant system HD 187669

    NASA Astrophysics Data System (ADS)

    Hełminiak, K. G.; Graczyk, D.; Konacki, M.; Pilecki, B.; Ratajczak, M.; Pietrzyński, G.; Sybilski, P.; Villanova, S.; Gieren, W.; Pojmański, G.; Konorski, P.; Suchomska, K.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; LaCluyze, A. P.

    2015-04-01

    We present the first full orbital and physical analysis of HD 187669, recognized by the All-Sky Automated Survey (ASAS) as the eclipsing binary ASAS J195222-3233.7. We combined multi-band photometry from the ASAS and SuperWASP public archives and 0.41-m PROMPT robotic telescopes with our high-precision radial velocities from the HARPS spectrograph. Two different approaches were used for the analysis: (1) fitting to all data simultaneously with the WD code and (2) analysing each light curve (with JKTEBOP) and radial velocities separately and combining the partial results at the end. This system also shows a total primary (deeper) eclipse, lasting for about 6 d. A spectrum obtained during this eclipse was used to perform atmospheric analysis with the MOOG and SME codes to constrain the physical parameters of the secondary. We found that ASAS J195222-3233.7 is a double-lined spectroscopic binary composed of two evolved, late-type giants, with masses of M1 = 1.504 ± 0.004 and M2 = 1.505 ± 0.004 M⊙, and radii of R1 = 11.33 ± 0.28 and R2 = 22.62 ± 0.50 R⊙. It is slightly less metal abundant than the Sun, and has a P = 88.39 d orbit. Its properties are well reproduced by a 2.38-Gyr isochrone, and thanks to the metallicity estimation from the totality spectrum and high precision of the masses, it was possible to constrain the age down to 0.1 Gyr. It is the first so evolved Galactic eclipsing binary measured with such good accuracy, and as such it is a unique benchmark for studying the late stages of stellar evolution.

  10. Atmosphere expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material

    SciTech Connect

    Shaikhislamov, I. F.; Khodachenko, M. L.; Sasunov, Yu. L.; Lammer, H.; Kislyakova, K. G.; Erkaev, N. V.

    2014-11-10

    In the present series of papers we propose a consistent description of the mass loss process. To study in a comprehensive way the effects of the intrinsic magnetic field of a close-orbit giant exoplanet (a so-called hot Jupiter) on atmospheric material escape and the formation of a planetary inner magnetosphere, we start with a hydrodynamic model of an upper atmosphere expansion in this paper. While considering a simple hydrogen atmosphere model, we focus on the self-consistent inclusion of the effects of radiative heating and ionization of the atmospheric gas with its consequent expansion in the outer space. Primary attention is paid to an investigation of the role of the specific conditions at the inner and outer boundaries of the simulation domain, under which different regimes of material escape (free and restricted flow) are formed. A comparative study is performed of different processes, such as X-ray and ultraviolet (XUV) heating, material ionization and recombination, H{sub 3}{sup +} cooling, adiabatic and Lyα cooling, and Lyα reabsorption. We confirm the basic consistency of the outcomes of our modeling with the results of other hydrodynamic models of expanding planetary atmospheres. In particular, we determine that, under the typical conditions of an orbital distance of 0.05 AU around a Sun-type star, a hot Jupiter plasma envelope may reach maximum temperatures up to ∼9000 K with a hydrodynamic escape speed of ∼9 km s{sup –1}, resulting in mass loss rates of ∼(4-7) · 10{sup 10} g s{sup –1}. In the range of the considered stellar-planetary parameters and XUV fluxes, that is close to the mass loss in the energy-limited case. The inclusion of planetary intrinsic magnetic fields in the model is a subject of the follow-up paper (Paper II).

  11. First Detection of a Dust Disk around Iota Horologii, a Southern Star Orbitted by an Extrasolar Giant Planet

    NASA Astrophysics Data System (ADS)

    Pantin, E.; Els, S.; Marchis, F.; Endl, M.; Kürster, M.; Sterzik, M.

    2000-12-01

    The link between the presence of debris dust disks (Vega phenomenon) and planetary formation is still unclear; are they: excluding children, siamese twins, or just casual neighbours? Recenly, Trilling et al. (1999), thanks to coronograph observations in the Northern hemisphere, showed that 3 out of 6 stars with known planetary companions harbour a tenuous dust disk, probably some precursors to the analogues of our Solar System Kuiper belt and zodiacal disk. We have started to conduct a similar program in the southern hemisphere at the ESO 3.6m telescope using the adaptive optics system ADONIS. H band images taken in coronographic mode during good observing conditions reveal the presence of a tenuous dust disk around the star Iota Horologii. This star is know to have a planetary companion of 2.26 M.sin i Jupiter masses on a 1 AU orbit, revealed by radial velocities analysis. The ADONIS images show that the disk has an inclination with a tilt angle of 40 degrees with respect to the edge-on configuration. This information allows to remove the degeneracy on the estimation of the mass of the planet due to the unknown inclination of the orbit. Taking this value into account, we find that the planet mass is 3.41 Jupiter masses. In our ADONIS observations, the disk extends 3.7 arcsec from the star, i.e. about 65 AU taking into account the distance of 17 parcsecs of this system. Modelling of light scattering by dust particles are shown and compared to the observations in order to deduce the disk density profile. This density profile is compared to previous results on disks around Beta Pic and HD 100546.

  12. Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, X.; Xie, L.; Hu, Z.; Lin, H.; Zhou, Z.; Nan, T.; Yang, X.; Howe, B. M.; Jones, J. G.; Brown, G. J.; Sun, N. X.

    2016-06-01

    It has been challenging to achieve combined strong magnetoelectric coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175 Oe and narrow FMR linewidth of 40 Oe were observed in FeCoSiB/Si/SiO2/PMN-PT heterostructures with substrate clamping effect minimized through removing the Si substrate. As a comparison, FeCoSiB/PMN-PT heterostructures with FeCoSiB film directly deposited on PMN-PT showed a comparable voltage induced effective magnetic field but a significantly larger FMR linewidth of 283 Oe. These multiferroic heterostructures exhibiting combined giant magnetoelectric coupling and narrow ferromagnetic resonance linewidth offer great opportunities for integrated voltage tunable RF magnetic devices.

  13. Indirect Interlayer Bonding in Graphene-Topological Insulator van der Waals Heterostructure: Giant Spin-Orbit Splitting of the Graphene Dirac States.

    PubMed

    Rajput, Shivani; Li, Yao-Yi; Weinert, Michael; Li, Lian

    2016-09-27

    van der Waals (vdW) heterostructures of two-dimensional materials exhibit properties and functionalities that can be tuned by stacking order and interlayer coupling. Although direct covalent bonding is not expected at the heterojunction, the formation of an interface nevertheless breaks the symmetries of the layers, and the orthogonal requirement of the wave functions can lead to indirect interfacial coupling, creating new properties and functionalities beyond their constituent layers. Here, we fabricate graphene/topological insulator vdW heterostructure by transferring chemical vapor deposited graphene onto Bi2Se3 grown by molecular beam epitaxy. Using scanning tunneling microscopy/spectroscopy, we observe a giant spin-orbit splitting of the graphene Dirac states up to 80 meV. Density functional theory calculations further reveal that this splitting of the graphene bands is a consequence of the breaking of inversion symmetry and the orthogonalization requirement on the overlapping wave functions at the interface, rather than simple direct bonding. Our findings reveal two intrinsic characteristics-the symmetry breaking and orthogonalization of the wave functions at the interface-that underlines the properties of vdW heterostructures.

  14. Giant Magnetoresistance in a FeCr_2(001) Superlattice: Effect of Spin-orbit Coupling Induced Spin-channel Mixing^*

    NASA Astrophysics Data System (ADS)

    Rao, Fangyi; Freeman, A. J.

    1997-03-01

    The giant magnetoresistance (GMR) in a FeCr_2(001) superlattice is investigated from first principles by evaluating the Kubo-Greenwood formula with the electronic band states determined by the local density full-potential linearized augmented plane wave (FLAPW) method^1. The resistivity is assumed to be caused by bulk impurity scattering which is introduced by giving a phenomenological life-time (0.05 eV-1) to the single-particle Green's functions. The spin-orbit coupling (SOC) induced spin-flip effect is taken into account by treating the SOC Hamiltonian in a second variational approach. The MR ratio - defined as σ_F/σ_A-1 where σF and σA are the electrical conductivities for ferromagnetic and anti-ferromagnetic phases - is found to be reduced by the SOC by about 6% for the current-in-plane (CIP) and 3% for the current-perpendicular-to-the-plane (CPP) geometries. With increasing strength of the SOC, both the CIP and CPP MR decrease. These results are consistent with the two-current model of electron transport in magnetic multilayer systems. ^1 E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, Phys. Rev. B 24,864 (1981). ^* Supported by the DOE (Grant No. DE-FG02-88ER45372)

  15. Orbital states of V trimers in BaV10O15 detected by resonant x-ray scattering

    NASA Astrophysics Data System (ADS)

    Takubo, K.; Kanzaki, T.; Yamasaki, Y.; Nakao, H.; Murakami, Y.; Oguchi, T.; Katsufuji, T.

    2012-08-01

    BaV10O15 shows a structural phase transition associated with the trimerization of V ions at Ts=123 K. We investigated the orbital states of V trimers using the technique of resonant x-ray scattering (RXS) near the V K-edge absorption energy. The ratio of the intensity between the pre-edge structure (1s to 3d transition) and the main-edge structure (1s to 4p transition) strongly depends on the reciprocal Q position of the scattering. We found that the Q position dependence is consistent with the model of orbital ordering proposed by Pen , [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.78.1323 78, 1323 (1997)].

  16. DYNAMICAL EVOLUTION AND SPIN-ORBIT RESONANCES OF POTENTIALLY HABITABLE EXOPLANETS: THE CASE OF GJ 581d

    SciTech Connect

    Makarov, Valeri V.; Berghea, Ciprian; Efroimsky, Michael E-mail: ciprian.berghea@usno.navy.mil

    2012-12-20

    GJ 581d is a potentially habitable super-Earth in the multiple system of exoplanets orbiting a nearby M dwarf. We investigate this planet's long-term dynamics with an emphasis on its probable final rotation states acquired via tidal interaction with the host. The published radial velocities for the star are re-analyzed with a benchmark planet detection algorithm to confirm that there is no evidence for the recently proposed two additional planets (f and g). Limiting the scope to the four originally detected planets, we assess the dynamical stability of the system and find bounded chaos in the orbital motion. For the planet d, the characteristic Lyapunov time is 38 yr. Long-term numerical integration reveals that the system of four planets is stable, with the eccentricity of the planet d changing quasi-periodically in a tight range around 0.27, and with its semimajor axis varying only a little. The spin-orbit interaction of GJ 581d with its host star is dominated by the tides exerted by the star on the planet. We model this interaction, assuming a terrestrial composition of the mantle. Besides the triaxiality-caused torque and the secular part of the tidal torque, which are conventionally included in the equation of motion, we also include the tidal torques' oscillating components. It turns out that, depending on the mantle temperature, the planet gets trapped into the 2:1 or an even higher spin-orbit resonance. It is very improbable that the planet could have reached the 1:1 resonance. This improves the possibility of the planet being suitable for sustained life.

  17. Zero-conductance resonances and spin polarizations in three-terminal rings in the presence of spin-orbit coupling

    SciTech Connect

    Zhai, Li-Xue; Wang, Yan; Liu, Jian-Jun

    2014-11-28

    Spin dependent transport in one-dimensional (1D) three-terminal rings is investigated in the presence of the Rashba spin-orbit coupling (RSOC). We focus on zero-conductance resonances and spin polarizations. For these purposes, the transmission functions are derived analytically. The total conductances are analyzed in the complex energy plane with a focus on the zero-pole structure characteristic of transmission (anti)resonances. The spin polarizations in symmetrically and asymmetrically coupled three-terminal rings are studied as a function of the incident electron energy. It is found that in the absence of the RSOC there are three kinds of conductance zeros. In the presence of the RSOC, the zeros of the first and the third kinds are lifted, while some of the second kind persist. The lifting of the conductance zeros is related to the breaking of the spin-reversal symmetry, and the lifted conductance zeros evolve into spin polarization zeros.

  18. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    SciTech Connect

    Krishtopenko, S. S.

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  19. An eccentric companion at the edge of the brown dwarf desert orbiting the 2.4 M⊙ giant star HIP 67537

    NASA Astrophysics Data System (ADS)

    Jones, M. I.; Brahm, R.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Melo, C. H. F.; Vos, J.; Rojo, P.

    2017-06-01

    We report the discovery of a substellar companion around the giant star HIP 67537. Based on precision radial velocity measurements from CHIRON and FEROS high-resolution spectroscopic data, we derived the following orbital elements for HIP 67537 b: mb sin i = 11.1+0.4-1.1Mjup, a =4.9+0.14-0.13 AU and e = 0.59+0.05-0.02 . Considering random inclination angles, this object has ≳65% probability to be above the theoretical deuterium-burning limit, thus it is one of the few known objects in the planet to brown-dwarf (BD) transition region. In addition, we analyzed the Hipparcos astrometric data of this star, from which we derived a minimum inclination angle for the companion of 2 deg. This value corresponds to an upper mass limit of 0.3 M⊙, therefore the probability that HIP 67537 b is stellar in nature is ≲7%. The large mass of the host star and the high orbital eccentricity makes HIP 67537 b a very interesting and rare substellar object. This is the second candidate companion in the brown dwarf desert detected in the sample of intermediate-mass stars targeted by the EXoPlanets aRound Evolved StarS (EXPRESS) radial velocity program, which corresponds to a detection fraction of f = +2.0-0.5 %. This value is larger than the fraction observed in solar-type stars, providing new observational evidence of an enhanced formation efficiency of massive substellar companions in massive disks. Finally, we speculate about different formation channels for this object. Based on observations collected at La Silla - Paranal Observatory under programs ID's 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345 and through the Chilean Telescope Time under programs ID's CN-12A-073, CN-12B-047, CN-13A-111, CN-2013B-51, CN-2014A-52, CN-15A-48, CN-15B-25 and CN-16A-13.

  20. Giant Electric Field Control of Magnetism and Narrow Ferromagnetic Resonance Linewidth in FeCoSiB/Si/SiO2/PMN PT Multiferroic Heterostructures (Open Access Author’s Manuscript)

    DTIC Science & Technology

    2016-06-06

    1 Giant electric field control of magnetism and narrow ferromagnetic resonance linewidth in FeCoSiB/Si/SiO2/PMN-PT multiferroic heterostructures...c) 1Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, 02115, USA 2Materials and Manufacturing...coupling and narrow ferromagnetic resonance (FMR) linewidth in multiferroic heterostructures. Electric field induced large effective field of 175Oe

  1. Investigation of giant-dipole-resonance decay in the ({gamma}, n) reactions on {sup 52}Cr and {sup 51}V nuclei

    SciTech Connect

    Verbitsky, S. S.; Lapic, A.M. Ratner, B. S.; Rusakov, A. V.; Tikanov, M. A.; Tulupov, B. A.; Tzelebrovsky, A. N.

    2009-03-15

    The cross sections for the emission of fast neutrons ({epsilon}{sub n} > 3.7 MeV) in the reactions {sup 52}Cr({gamma}, n){sup 51}Cr and {sup 51}V({gamma}, n){sup 50}V at incident-photon energies in the range between 16.0 and 25.8 MeV were studied. The neutron energy spectra were measured at the bremsstrahlung-photon endpoint energies of 18.5, 21.0, and 23.0 MeV for the {sup 52}Cr and {sup 51}V nuclei and at the bremsstrahlung-photon energy of 25.5 MeV for the {sup 51}V nucleus. Special features of giant-dipole-resonance decay that are associated with the existence of a structure in photoneutron cross sections and spectra are discussed.

  2. Light Charged Particles Emission and the Giant Dipole Resonance in Highly Excited Ce Nucleus Formed in Reactions with Different Mass Asymmetries

    SciTech Connect

    Barlini, S.; Kravchuk, V. L.; Gramegna, F.; Lanchais, A.; Mastinu, P. F.; Wieland, O.; Bracco, A.; Airoldi, A.; Benzoni, G.; Blasi, N.; Brambilla, S.; Camera, F.; Leoni, S.; Million, B.; Moroni, A.; Sacchi, R.; Brekiesz, M.; Kmiecik, M.; Maj, A.; Bruno, M.

    2006-08-14

    Recent measurements have been performed at the National Laboratoty of Legnaro using mass-symmetric (400, 500 MeV 64Ni + 68Zn) and mass-asymmetric (250 MeV 16O + 116Sn) entrance channel reactions to form {sup 132}Ce compound nucleus at different excitation energies (E*=150, 200 and 200 MeV, respectively). The decay of the composite system has been followed studying the {gamma}-rays and Light Charged Particles (LCP) spectra emitted in coincidence with the Evaporation Residues (ER). In this way the emission mechanism of the LCP, depending on the mass-asymmetry at the entrance channel and on the projectile energy, and the results of the Full Width Half-Maximum (FWHM) of the Giant Dipole Resonance as a function of the nuclear temperature have been studied.

  3. Observation of the Isovector Giant Monopole Resonance via the 28Si (10Be, 10B* [1.74 MeV ]) Reaction at 100 A MeV

    NASA Astrophysics Data System (ADS)

    Scott, M.; Zegers, R. G. T.; Almus, R.; Austin, Sam M.; Bazin, D.; Brown, B. A.; Campbell, C.; Gade, A.; Bowry, M.; Galès, S.; Garg, U.; Harakeh, M. N.; Kwan, E.; Langer, C.; Loelius, C.; Lipschutz, S.; Litvinova, E.; Lunderberg, E.; Morse, C.; Noji, S.; Perdikakis, G.; Redpath, T.; Robin, C.; Sakai, H.; Sasamoto, Y.; Sasano, M.; Sullivan, C.; Tostevin, J. A.; Uesaka, T.; Weisshaar, D.

    2017-04-01

    The (10Be, 10B* [1.74 MeV ] ) charge-exchange reaction at 100 A MeV is presented as a new probe for isolating the isovector (Δ T =1 ) nonspin-transfer (Δ S =0 ) response of nuclei, with 28Si being the first nucleus studied. By using a secondary 10Be beam produced by fast fragmentation of 18O nuclei at the NSCL Coupled Cyclotron Facility, applying the dispersion-matching technique with the S800 magnetic spectrometer to determine the excitation energy in 28Al, and performing high-resolution γ -ray tracking with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA) to identify the 1022-keV γ ray associated with the decay from the 1.74-MeV T =1 isobaric analog state in 10B, a Δ S =0 excitation-energy spectrum in 28Al was extracted. Monopole and dipole contributions were determined through a multipole-decomposition analysis, and the isovector giant dipole resonance and isovector giant monopole resonance (IVGMR) were identified. The results show that this probe is a powerful tool for studying the elusive IVGMR, which is of interest for performing stringent tests of modern density functional theories at high excitation energies and for constraining the bulk properties of nuclei and nuclear matter. The extracted distributions were compared with theoretical calculations based on the normal-modes formalism and the proton-neutron relativistic time-blocking approximation. Calculated cross sections based on these strengths underestimate the data by about a factor of 2, which likely indicates deficiencies in the reaction calculations based on the distorted wave Born approximation.

  4. Short periodic orbit approach to resonances and the fractal Weyl law.

    PubMed

    Pedrosa, J M; Wisniacki, D; Carlo, G G; Novaes, M

    2012-03-01

    We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced [Novaes, Pedrosa, Wisniacki, Carlo, and Keating, Phys. Rev. E 80, 035202(R) (2009)]. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law. The method also reproduces the projectors |ψ(n)(R)><ψ(n)(L)|, which involves the right and left states associated with a given eigenvalue and is supported on the classical phase-space repeller.

  5. Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-07-01

    We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.

  6. Constraining the primordial orbits of the terrestrial planets

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Walsh, K. J.; Nesvorný, D.

    2013-08-01

    Evidence in the Solar system suggests that the giant planets underwent an epoch of radial migration that was very rapid, with an e-folding time-scale shorter than 1 Myr. It is probable that the cause of this migration was that the giant planets experienced an orbital instability that caused them to encounter each other, resulting in radial migration. A promising and heavily studied way to accomplish such a fast migration is for Jupiter to have scattered one of the ice giants outwards; this event has been called the `jumping Jupiter' scenario. Several works suggest that this dynamical instability occurred `late', long after all the planets had formed and the solar nebula had dissipated. Assuming that the terrestrial planets had already formed, then their orbits would have been affected by the migration of the giant planets as many powerful resonances would sweep through the terrestrial planet region. This raises two questions. First, what is the expected increase in dynamical excitement of the terrestrial planet orbits caused by late and very fast giant planet migration? And secondly, assuming that the migration occurred late, can we use this migration of the giant planets to obtain information on the primordial orbits of the terrestrial planets? In this work, we attempt to answer both of these questions using numerical simulations. We directly model a large number of terrestrial planet systems and their response to the smooth migration of Jupiter and Saturn, and also two jumping Jupiter simulations. We study the total dynamical excitement of the terrestrial planet system with the angular momentum deficit (AMD) value, including the way it is shared among the planets. We conclude that to reproduce the current AMD with a reasonable probability (˜20 per cent) after late rapid giant planet migration and a favourable jumping Jupiter evolution, the primordial AMD should have been lower than ˜70 per cent of the current value, but higher than 10 per cent. We find that a

  7. Gravity and tectonic patterns of Mercury: Effect of tidal deformation, spin-orbit resonance, nonzero eccentricity, despinning, and reorientation

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Nimmo, F.

    2009-01-01

    We consider the effect of spin-orbit resonance, nonzero eccentricity, despinning, and reorientation on Mercury's gravity and tectonic pattern. Large variations of the gravity and shape coefficients from the synchronous rotation and zero eccentricity values, J 2/C 22 = 10/3 and (b - c)/(a - c) = 1/4, arise because of nonsynchronous rotation and nonzero eccentricity even in the absence of reorientation or despinning. Reorientation or despinning induces additional variations. The large gravity coefficients J 2 = (6 +/- 2) × 10-5 and C 22 = (1 +/- 0.5) × 10-5 estimated from the Mariner 10 flybys cannot be attributed to Caloris alone since the required mass excess in this case would have caused Caloris to migrate to one of Mercury's hot poles. Similarly, a large remnant bulge due to a smaller semimajor axis and spin-orbit resonance can be dismissed since the required semimajor axis is unphysically small (<0.1 AU). Reorientation of a large remnant bulge recording an epoch of faster rotation (without significant semimajor axis variations) can explain the large gravity coefficients. This requires initial rotation rates $\\gtrsim$20 times the present value and a positive gravity anomaly associated with Caloris capable of driving ~10°-45° equatorward reorientation. The required gravity anomaly can be explained by infilling of the basin with material of thicknesses $\\gtrsim$7 km or an annulus of volcanic plains emplaced around the basin with an annulus width ~1200 km and fill thicknesses $\\gtrsim$2 km. The predicted tectonic pattern due to these despinning and reorientation scenarios, including some radial contraction, is in good agreement with the lobate scarp pattern observed by Mariner 10. We also predict that lobate scarps will follow a NE-SW orientation in the eastern hemisphere and a positive gravity anomaly (of a few hundred mGal) associated with Caloris.

  8. Resonating valence bond wave function with molecular orbitals: application to first-row molecules.

    PubMed

    Marchi, Mariapia; Azadi, Sam; Casula, Michele; Sorella, Sandro

    2009-10-21

    We introduce a method for accurate quantum chemical calculations based on a simple variational wave function, defined by a single geminal that couples all the electrons into singlet pairs, combined with a real space correlation factor. The method uses a constrained variational optimization, based on an expansion of the geminal in terms of molecular orbitals. It is shown that the most relevant nondynamical correlations are correctly reproduced once an appropriate number n of molecular orbitals is considered. The value of n is determined by requiring that, in the atomization limit, the atoms are described by Hartree-Fock Slater determinants with Jastrow correlations. The energetics, as well as other physical and chemical properties, are then given by an efficient variational approach based on standard quantum Monte Carlo techniques. We test this method on a set of homonuclear (Be(2), B(2), C(2), N(2), O(2), and F(2)) and heteronuclear (LiF and CN) dimers for which strong nondynamical correlations and/or weak van der Waals interactions are present.

  9. Current-induced spin torque resonance of magnetic insulators affected by field-like spin-orbit torques and out-of-plane magnetizations

    SciTech Connect

    Chiba, Takahiro Takahashi, Saburo; Schreier, Michael; Bauer, Gerrit E. W.

    2015-05-07

    The spin-torque ferromagnetic resonance (ST-FMR) in a bilayer system consisting of a magnetic insulator such as Y{sub 3}Fe{sub 5}O{sub 12} and a normal metal with spin-orbit interaction such as Pt is addressed theoretically. We model the ST-FMR for all magnetization directions and in the presence of field-like spin-orbit torques based on the drift-diffusion spin model and quantum mechanical boundary conditions. ST-FMR experiments may expose crucial information about the spin-orbit coupling between currents and magnetization in the bilayers.

  10. [Magnetic resonance imaging and ultrasonography in dogs and cats with ocular and orbital diseases. Part 1: Ocular diseases].

    PubMed

    von Krosigk, F; Steinmetz, A; Ellenberger, C; Oechtering, G

    2012-01-01

    This two-part study describes the clinical usefulness and value of ultrasound and magnetic resonance imaging (MRI) in dogs and cats with ocular (n=30) and orbital diseases (n=31). MRI and ultrasonography characteristics are described in single cases with ocular and orbital disease. Ultrasonography and MRI were performed in 15 dogs and 15 cats with intraocular neoplasia or intraocular inflammatory disease. In all patients with intraocular neoplasia, sonography revealed masses with increased echogenicity and fairly uniform echotexture, thus allowing the tentative diagnosis of an intraocular tumour. In these cases, MRI often proved to be a valuable diagnostic tool in showing the complete extent of intraocular lesion. An additional benefit of MRI was seen in the tissue characterization of tumours based on MRI signal characteristics and pattern of contrast enhancement. Discreet intraocular inflammatory alterations, in particular to the anterior and posterior segment of the eyeball, were more clearly shown by ultrasound than by MRI. Neoplasia could be excluded and inflammatory disease was successfully diagnosed using MRI due to the different image sequences with or without contrast medium administration. Traumatic ruptures of the lens capsule and the globe after trauma were depicted more clearly with MRI. When opacity of the anterior eye segment is present, various intraocular changes can be quickly diagnosed by ultrasound with high accuracy, without requiring anaesthesia of the patient. MRI of the globe allows differentiation of diverse pathologies, gives detailed information of infiltration in orbital structures and the exact degree of ocular lesions after trauma. This additional evidence often makes it easier to predict the correct prognosis and choose the best therapy.

  11. Constraints on Planet Nine’s Orbit and Sky Position within a Framework of Mean-motion Resonances

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Laughlin, Gregory

    2017-03-01

    A number of authors have proposed that the statistically significant orbital alignment of the most distant Kuiper Belt Objects (KBOs) is evidence of an as-yet undetected planet in the outer solar system, now referred to colloquially as “Planet Nine.” Dynamical simulations by Batygin & Brown have provided constraints on the range of the planet’s possible orbits and sky locations. We extend these investigations by exploring the suggestion of Malhotra et al. that Planet Nine is in small integer ratio mean-motion resonances (MMRs) with several of the most distant KBOs. We show that the observed KBO semimajor axes present a set of commensurabilities with an unseen planet at ∼654 au (P ∼ 16,725 years) that has a greater than 98% chance of stemming from a sequence of MMRs rather than from a random distribution. We describe and implement a Monte-Carlo optimization scheme that drives billion-year dynamical integrations of the outer solar system to pinpoint the orbital properties of perturbers that are capable of maintaining the KBOs’ apsidal alignment. This optimization exercise suggests that the unseen planet is most consistently represented with mass, m ∼ 6–12 M ⊕, semimajor axis, a ∼ 654 au, eccentricity, e ∼ 0.45, inclination, i ∼ 30°, argument of periastron, ω ∼ 150°, longitude of ascending node, Ω ∼ 50°, and mean anomaly, M ∼ 180°. A range of sky locations relative to this fiducial ephemeris are possible. We find that the region 30° ≲ R.A. ≲ 50°, ‑20° ≲ decl. ≲ 20° is promising.

  12. Final Version: Orbital Specificity in the Unoccupied States of UO2 from Resonant Inverse Photoelectron Spectroscopy

    SciTech Connect

    Tobin, J G; Yu, S W

    2012-03-12

    One of the crucial questions of all actinide electronic structure determinations is the issue of 5f versus 6d character and the distribution of these components across the density of states. Here, a break-though experiment is discussed, which has allowed the direct determination of the U5f and U6d contributions to the unoccupied density of states (UDOS) in Uranium Dioxide. A novel Resonant Inverse Photoelectron (RIPES) and X-ray Emission Spectroscopy (XES) investigation of UO{sub 2} is presented. It is shown that the U5f and U6d components are isolated and identified unambiguously.

  13. Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3.

    PubMed

    Jamali, Mahdi; Lee, Joon Sue; Jeong, Jong Seok; Mahfouzi, Farzad; Lv, Yang; Zhao, Zhengyang; Nikolić, Branislav K; Mkhoyan, K Andre; Samarth, Nitin; Wang, Jian-Ping

    2015-10-14

    Three-dimensional (3D) topological insulators are known for their strong spin-orbit coupling (SOC) and the existence of spin-textured surface states that might be potentially exploited for "topological spintronics." Here, we use spin pumping and the inverse spin Hall effect to demonstrate successful spin injection at room temperature from a metallic ferromagnet (CoFeB) into the prototypical 3D topological insulator Bi2Se3. The spin pumping process, driven by the magnetization dynamics of the metallic ferromagnet, introduces a spin current into the topological insulator layer, resulting in a broadening of the ferromagnetic resonance (FMR) line width. Theoretical modeling of spin pumping through the surface of Bi2Se3, as well as of the measured angular dependence of spin-charge conversion signal, suggests that pumped spin current is first greatly enhanced by the surface SOC and then converted into a dc-voltage signal primarily by the inverse spin Hall effect due to SOC of the bulk of Bi2Se3. We find that the FMR line width broadens significantly (more than a factor of 5) and we deduce a spin Hall angle as large as 0.43 in the Bi2Se3 layer.

  14. Short periodic orbit approach to resonances and the fractal Weyl law

    NASA Astrophysics Data System (ADS)

    Pedrosa, J. M.; Wisniacki, D.; Carlo, G. G.; Novaes, M.

    2012-03-01

    We investigate the properties of the semiclassical short periodic orbit approach for the study of open quantum maps that was recently introduced [Novaes, Pedrosa, Wisniacki, Carlo, and Keating, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.035202 80, 035202(R) (2009)]. We provide solid numerical evidence, for the paradigmatic systems of the open baker and cat maps, that by using this approach the dimensionality of the eigenvalue problem is reduced according to the fractal Weyl law. The method also reproduces the projectors |ψnR><ψnL|, which involves the right and left states associated with a given eigenvalue and is supported on the classical phase-space repeller.

  15. Spin orbit driven ferromagnetic resonance and torques in single ferromagnetic layers

    NASA Astrophysics Data System (ADS)

    Maciá, Ferran; Pépin, Charles; Kent, A. D.

    2012-02-01

    The coupling of spin and charge may convert electrical currents into spin currents in non-magnetic metals. In non-magnetic metals with strong spin orbit (SO) interaction in combination with magnetic metals one can also us the effect to excite magnetization dynamics; electrical currents in the non-magnetic metal transform to spin currents and the spin currents diffuse to the magnetic metal interacting with the magnetic moments. The combination of non-magnetic metals and magnetic metals has been recently used to determine spin hall angles. Here we demonstrate that spin currents in a ferromagnetic layer associated with SO interactions can excite ferromagnetic precession in the same layer. We have studied Co|Ni multilayers with both in-plane anisotropy and weak out-of-plane anisotropy. Results show that the samples have strong SO interactions. We have injected microwaves into patterned samples with several geometries and measured the mixed voltage in the same leads. Oscillatory currents drive FMR in the thin-film layer. We show that SO torques are primarily responsible for the magnetic excitations in samples with strong SO interactions, whereas samples with a weaker SO barely respond to the injected microwaves and show asymmetric components from charge current induced Oersted fields.

  16. TWO SUPER-EARTHS ORBITING THE SOLAR ANALOG HD 41248 ON THE EDGE OF A 7:5 MEAN MOTION RESONANCE

    SciTech Connect

    Jenkins, J. S.; Tuomi, M.; Brasser, R.; Ivanyuk, O.; Murgas, F.

    2013-07-01

    There are a growing number of multi-planet systems known to be orbiting their host stars with orbital periods that place them in mean motion resonances (MMRs). These systems are generally in first-order resonances and dynamical studies have focused their efforts on understanding the origin and evolution of such dynamically resonant commensurabilities. Here we report the discovery of two super-Earths that are close to a second-order dynamical resonance orbiting the metal-poor ([Fe/H] = -0.43 dex) and inactive G2V star HD 41428. We analyzed 62 HARPS archival radial velocities for this star that, until now, exhibited no evidence for planetary companions. Using our new Bayesian Doppler signal detection algorithm, we find two significant signals in the data, with periods of 18.357 days and 25.648 days, indicating they could be part of a 7:5 second-order MMR. Both semi-amplitudes are below 3 m s{sup -1} and the minimum masses of the pair are 12.3 and 8.6 M{sub Circled-Plus }, respectively. Our simulations found that apsidal alignment stabilizes the system, and even though libration of the resonant angles was not seen, the system is affected by the presence of the resonance and could still occupy the 7:5 commensurability, which would be the first planetary configuration in such a dynamical resonance. Given the multitude of low-mass multi-planet systems that will be discovered in the coming years, we expect that more of these second-order resonant configurations will emerge from the data, highlighting the need for a better understanding of the dynamical interactions between forming planetesimals.

  17. Special Features in the Structure of Resonant Perturbations of Uncontrollable Objects of Glonass and GPS Navigating Systems. Influence on the Orbital Evolution

    NASA Astrophysics Data System (ADS)

    Tomilova, I. V.; Bordovitsyna, T. V.

    2017-08-01

    Results of investigation into the resonant structure of perturbations and long-term orbital evolution of space vehicles of GLONASS and GPS global navigating satellite systems (GNSS) under assumption that all of them have lost control on 08/01/2015 are presented. It is demonstrated that the majority of the examined objects are in the range of action of the secular resonances of various types. In addition, practically all satellites of the GPS system are within the scope of the 2:1 orbital resonance with rotation of the Earth. Results of the MEGNO analysis demonstrate that the motion of all objects of the GLONASS system during the 100-year period is regular, whereas the motion of the majority of objects of the GPS system is subject to chaotization.

  18. [Giant retroperitoneal liposarcoma].

    PubMed

    Mezzour, Mohamed Hicham; El Messaoudi, Yasser Arafat; Fekak, Hamid; Rabii, Redouane; Marnissi, Farida; Karkouri, Mehdi; Salam, Siham; Iraki, Moulay Ahmed; Joual, Abdenbi; Meziane, Fathi

    2006-02-01

    The authors report a case of giant retroperitoneal liposarcoma. The diagnosis was suspected after scanography and magnetic resonance imaging and confirmed by the histological analysis of the extracted piece after surgical treatment. Postoperative evolution was favourable after one year without recurrence or distant metastasis. The authors discuss the pathologic and therapeutic aspects and the prognosis of retroperitoneal liposarcoma.

  19. There might be giants: unseen Jupiter-mass planets as sculptors of tightly packed planetary systems

    NASA Astrophysics Data System (ADS)

    Hands, T. O.; Alexander, R. D.

    2016-03-01

    The limited completeness of the Kepler sample for planets with orbital periods ≳1 yr leaves open the possibility that exoplanetary systems may host undetected giant planets. Should such planets exist, their dynamical interactions with the inner planets may prove vital in sculpting the final orbital configurations of these systems. Using an N-body code with additional forces to emulate the effects of a protoplanetary disc, we perform simulations of the assembly of compact systems of super-Earth-mass planets with unseen giant companions. The simulated systems are analogous to Kepler-11 or Kepler-32 in that they contain four or five inner super-Earths, but our systems also contain longer-period giant companions which are unlikely to have been detected by Kepler. We find that giant companions tend to break widely spaced first-order mean-motion resonances, allowing the inner planets to migrate into tighter resonances. This leads to more compact architectures and increases the occurrence rate of Laplace resonant chains.

  20. Optical conductivity renormalization of graphene on SrTiO 3 due to resonant excitonic effects mediated by Ti 3 d orbitals

    NASA Astrophysics Data System (ADS)

    Gogoi, Pranjal Kumar; Trevisanutto, Paolo E.; Yang, Ming; Santoso, Iman; Asmara, Teguh Citra; Terentjevs, Aleksandrs; Della Sala, Fabio; Breese, Mark B. H.; Venkatesan, T.; Feng, Yuan Ping; Loh, Kian Ping; Neto, Antonio H. Castro; Rusydi, Andrivo

    2015-01-01

    We present evidence of a drastic renormalization of the optical conductivity of graphene on SrTiO 3 resulting in almost full transparency in the ultraviolet region. These findings are attributed to resonant excitonic effects further supported by ab initio Bethe-Salpeter equation and density functional theory calculations. The (π ,π *) orbitals of graphene and Ti-3 d t2 g orbitals of SrTiO 3 are strongly hybridized and the interactions of electron-hole states residing in those orbitals play dominant role in the graphene optical conductivity. These interactions are present much below the optical band gap of bulk SrTiO 3. These results open a possibility of manipulating interaction strengths in graphene via d orbitals, which could be crucial for optical applications.

  1. A Quick Method to Identify Secular Resonances in Multi-planet Systems with a Binary Companion

    NASA Astrophysics Data System (ADS)

    Pilat-Lohinger, E.; Bazsó, A.; Funk, B.

    2016-11-01

    Gravitational perturbations in multi-planet systems caused by an accompanying star are the subject of this investigation. Our dynamical model is based on the binary star HD 41004 AB where a giant planet orbits HD 41004 A. We modify the orbital parameters of this system and analyze the motion of a hypothetical test planet surrounding HD 41004 A on an interior orbit to the detected giant planet. Our numerical computations indicate perturbations due to mean motion and secular resonances (SRs). The locations of these resonances are usually connected to high eccentricity and highly inclined motion depending strongly on the binary-planet architecture. As the positions of mean motion resonances can easily be determined, the main purpose of this study is to present a new semi-analytical method to determine the location of an SR without huge computational effort.

  2. Torsional Alfv\\xE9n resonances as an efficient damping mechanism for non-radial oscillations in red giant stars

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Papaloizou, John C. B.

    2017-05-01

    Stars are self-gravitating fluids in which pressure, buoyancy, rotation and magnetic fields provide the restoring forces for global modes of oscillation. Pressure and buoyancy energetically dominate, while rotation and magnetism are generally assumed to be weak perturbations and often ignored. However, observations of anomalously weak dipole mode amplitudes in red giant stars suggest that a substantial fraction of these are subject to an additional source of damping localized to their core region, with indirect evidence pointing to the role of a deeply buried magnetic field. It is also known that in many instances, the gravity-mode character of affected modes is preserved, but so far, no effective damping mechanism has been proposed that accommodates this aspect. Here we present such a mechanism, which damps the oscillations of stars harbouring magnetised cores via resonant interactions with standing Alfvén modes of high harmonic index. The damping rates produced by this mechanism are quantitatively on par with those associated with turbulent convection, and in the range required to explain observations, for realistic stellar models and magnetic field strengths. Our results suggest that magnetic fields can provide an efficient means of damping stellar oscillations without needing to disrupt the internal structure of the modes, and lay the groundwork for an extension of the theory of global stellar oscillations that incorporates these effects.

  3. X-ray excited photoluminescence near the giant resonance in solid-solution Gd(1-x)Tb(x)OCl nanocrystals and their retention upon solvothermal topotactic transformation to Gd(1-x)Tb(x)F3.

    PubMed

    Waetzig, Gregory R; Horrocks, Gregory A; Jude, Joshua W; Zuin, Lucia; Banerjee, Sarbajit

    2016-01-14

    Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb(3+) centers upon excitation in proximity to the giant resonance of the host Gd(3+) ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb(3+) centers upon X-ray excitation near the giant resonance of the host Gd(3+) ions.

  4. On the Nature and Timing of Giant Planet Migration in the Solar System

    NASA Astrophysics Data System (ADS)

    Agnor, Craig B.

    2016-05-01

    Giant planet migration is a natural outcome of gravitational scattering and planet formation processes (Fernandez & Ip 1984). There is compelling evidence that the solar system's giant planets experienced large-scale migration involving close approaches between planets as well as smooth radial migration via planetesimal scattering. Aspects of giant planet migration have been invoked to explain many features of the outer solar system including the resonant structure of the Kuiper Belt (e.g., Malhotra 1993, Levison et al. 2008), the eccentricities of Jupiter and Saturn (Tsiganis et al. 2005, Morbidelli et al. 2009), the capture of Jupiter's Trojan companions (Morbidelli et al. 2005) and the capture of irregular planetary satellites (e.g., Nesvorny et al. 2007) to name a few. If this migration epoch occurred after the formation of the inner planets, then it may also explain the so-called lunar Late Heavy Bombardment (Gomes et al. 2005). This scenario necessarily requires coeval terrestrial and migrating giant planets. Recent N-body integrations exploring this issue have shown that giant planet migration may excite the terrestrial system via nodal and apsidal secular resonances (e.g., Brasser et al. 2013), may drive the terrestrial planets to crossing orbits (Kaib & Chambers 2016) or alternatively leave the inner solar system in a state closely resembling the observed one (Roig et al. 2016). The factors accounting for the large range of outcomes remain unclear. Using linear secular models and N-body simulations I am identifying and characterising the principal aspects of giant planet migration that excite the terrestrial planets' orbits. I will present these results and discuss how they inform the nature and timing of giant planet migration in the solar system.

  5. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure.

    PubMed

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-11

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  6. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-03-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area.

  7. Localized surface plasmon resonances dominated giant lateral photovoltaic effect observed in ZnO/Ag/Si nanostructure

    PubMed Central

    Zhang, Ke; Wang, Hui; Gan, Zhikai; Zhou, Peiqi; Mei, Chunlian; Huang, Xu; Xia, Yuxing

    2016-01-01

    We report substantially enlarged lateral photovoltaic effect (LPE) in the ZnO/Ag/Si nanostructures. The maximum LPE sensitivity (55.05 mv/mm) obtained in this structure is about seven times larger than that observed in the control sample (7.88 mv/mm) of ZnO/Si. We attribute this phenomenon to the strong localized surface plasmon resonances (LSPRs) induced by nano Ag semicontinuous films. Quite different from the traditional LPE in PN junction type structures, in which light-generated carriers contributed to LPE merely depends on direct excitation of light in semiconductor, this work firstly demonstrates that, by introducing a super thin metal Ag in the interface between two different kinds of semiconductors, the nanoscale Ag embedded in the interface will produce strong resonance of localized field, causing extra intraband excitation, interband excitation and an enhanced direct excitation. As a consequence, these LSPRs dominated contributions harvest much more carriers, giving rise to a greatly enhanced LPE. In particular, this LSPRs-driven mechanism constitutes a sharp contrast to the traditional LPE operation mechanism. This work suggests a brand new LSPRs approach for tailoring LPE-based devices and also opens avenues of research within current photoelectric sensors area. PMID:26965713

  8. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  9. Theories of Giant Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Young, Richard E. (Technical Monitor)

    1998-01-01

    An overview of current theories of planetary formation, with emphasis on giant planets, is presented. The most detailed models are based upon observations of our own Solar System and of young stars and their environments. While these models predict that rocky planets should form around most single stars, the frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Most models for extrasolar giant planets suggest that they formed as did Jupiter and Saturn (in nearly circular orbits, far enough from the star that ice could), and subsequently migrated to their current positions, although some models suggest in situ formation.

  10. A new class of long-term stable lunar resonance orbits: Space weather applications and the Interstellar Boundary Explorer

    NASA Astrophysics Data System (ADS)

    McComas, D. J.; Carrico, J. P.; Hautamaki, B.; Intelisano, M.; Lebois, R.; Loucks, M.; Policastri, L.; Reno, M.; Scherrer, J.; Schwadron, N. A.; Tapley, M.; Tyler, R.

    2011-11-01

    NASA's Interstellar Boundary Explorer (IBEX) mission was recently maneuvered into a unique long-term stable Earth orbit, with apogee at ˜50 Earth radii (RE). The Moon's (˜65 RE) gravity disrupts most highly elliptical Earth orbits, leading to (1) chaotic orbital solutions, (2) the inability to predict orbital positions more than a few years into the future, and ultimately (3) mission-ending possibilities of atmospheric reentry or escape from Earth orbit. By synchronizing the satellite's orbital period to integer fractions of the Moon's sidereal period, PM = 27.3 days (e.g., PM/2 = 13.6 days, PM/3 = 9.1 days), and phasing apogee to stay away from the Moon, very long term stability can be achieved. Our analysis indicates orbital stability for well over a decade, and these IBEX-like orbits represent a new class of Earth orbits that are stable far longer than typical satellite lifetimes. These orbits provide cost-effective and nearly ideal locations for long-term space weather observations from spacecraft that can remotely image the Earth's magnetosphere from outside its boundaries while simultaneously providing external (solar wind or magnetosheath) observation over most of their orbits. Utilized with multiple spacecraft, such orbits would allow continuous and simultaneous monitoring of the magnetosphere in order to help predict and mitigate adverse space weather-driven effects.

  11. Evolutionary outcomes for pairs of planets undergoing orbital migration and circularization: second-order resonances and observed period ratios in Kepler's planetary systems

    NASA Astrophysics Data System (ADS)

    Xiang-Gruess, M.; Papaloizou, J. C. B.

    2015-05-01

    In order to study the origin of the architectures of low-mass planetary systems, we perform numerical surveys of the evolution of pairs of coplanar planets in the mass range (1-4) M⊕. These evolve for up to 2 × 107 yr under a range of orbital migration torques and circularization rates assumed to arise through interaction with a protoplanetary disc. Near the inner disc boundary, significant variations of viscosity, interaction with density waves or with the stellar magnetic field could occur and halt migration, but allow circularization to continue. This was modelled by modifying the migration and circularization rates. Runs terminated without an extended period of circularization in the absence of migration torques gave rise to either a collision, or a system close to a resonance. These were mostly first order with a few per cent terminating in second-order resonances. Both planetary eccentricities were small <0.1 and all resonant angles liberated. This type of survey produced only a limited range of period ratios and cannot reproduce Kepler observations. When circularization alone operates in the final stages, divergent migration occurs causing period ratios to increase. Depending on its strength the whole period ratio range between 1 and 2 can be obtained. A few systems close to second-order commensurabilities also occur. In contrast to when arising through convergent migration, resonant trapping does not occur and resonant angles circulate. Thus, the behaviour of the resonant angles may indicate the form of migration that led to near resonance.

  12. Quantum states and linear response in dc and electromagnetic fields for the charge current and spin polarization of electrons at the Bi/Si interface with the giant spin-orbit coupling

    SciTech Connect

    Khomitsky, D. V.

    2012-05-15

    An expansion of the nearly free-electron model constructed by Frantzeskakis, Pons, and Grioni [1] describing quantum states at the Bi/Si(111) interface with the giant spin-orbit coupling is developed and applied for the band structure and spin polarization calculation, as well as for the linear response analysis of the charge current and induced spin caused by a dc field and by electromagnetic radiation. It is found that the large spin-orbit coupling in this system may allow resolving the spin-dependent properties even at room temperature and at a realistic collision rate. The geometry of the atomic lattice combined with spin-orbit coupling leads to an anisotropic response for both the current and spin components related to the orientation of the external field. The in-plane dc electric field produces only the in-plane components of spin in the sample, while both the in-plane and out-of-plane spin components can be excited by normally propagating electromagnetic wave with different polarizations.

  13. Delocalization and occupancy effects of 5f orbitals in plutonium intermetallics using L3-edge resonant X-ray emission spectroscopy

    SciTech Connect

    Booth, C. H.; Medling, S. A.; Jiang, Yu; Bauer, E. D.; Tobash, P. H.; Mitchell, J. N.; Veirs, D. K.; Wall, M. A.; Allen, P. G.; Kas, J. J.; Sokaras, D.; Nordlund, D.; Weng, T. -C.

    2014-06-24

    Although actinide (An) L3 -edge X-ray absorption near-edge structure (XANES) spectroscopy has been very effective in determining An oxidation states in insulating, ionically bonded materials, such as in certain coordination compounds and mineral systems, the technique fails in systems featuring more delocalized 5f orbitals, especially in metals. Recently, actinide L3-edge resonant X-ray emission spec- troscopy (RXES) has been shown to be an effective alternative. This technique is further demonstrated here using a parameterized partial unoccupied density of states method to quantify both occupancy and delocalization of the 5f orbital in ?-Pu, ?-Pu, PuCoGa5 , PuCoIn5 , and PuSb2. These new results, supported by FEFF calculations, highlight the effects of strong correlations on RXES spectra and the technique?s ability to differentiate between f-orbital occupation and delocalization.

  14. Spin observables for the isovector spin-dipole giant resonance excited in (p,n) reactions at medium energies.

    NASA Astrophysics Data System (ADS)

    Watson, J. W.

    1996-10-01

    For charge-exchange reactions at medium energies, one of the dominant features of small-angle spectra is the excitation of the ΔT = 1, ΔL = 1, ΔS = 1 isovector "spin-dipole" resonance (SDR). We describe how polarization-transfer measurements can be used to identify the overlapping J^π = 0^-, 1^-, and 2^- components of the SDR. Results for ^16O(p,n) and ^40Ca(p,n) using data (J. W. Watson et al.), Nucl. Phys. A577, 79c (1994). (J. W. Watson et al.), Nucl. Phys. A599, 211c (1996). for the transverse polarization-transfer coefficient D_NN' are presented and compared with distorted-wave impulse approximation (DWIA) calculations with theory of finite Fermi systems (TFFS) wavefunctions. (F. A. Gareev et al.), Sov. J. Part. Nucl. 19, 373 (1988). Future experiments will utilize complete sets of polarization-transfer data to extract the longitudinal and transverse spin responses,(M. Ichimura and K. Kawahigashi, Phys. Rev. C45), 1822 (1992). which will provide a more definitive separation of the different J^πs in the SDR. footnote Supported by NSF PHY 94-09265

  15. Gravitational scattering by giant planets

    NASA Astrophysics Data System (ADS)

    Laakso, T.; Rantala, J.; Kaasalainen, M.

    2006-09-01

    We seek to characterize giant-planet systems by their gravitational scattering properties. We do this to a given system by integrating it numerically along with a large number of hypothetical small bodies that are initially in eccentric habitable zone (HZ)-crossing orbits. Our analysis produces a single number, the escape rate, which represents the rate at which the small-body flux is perturbed away by the giant planets into orbits that no longer pose a threat to terrestrial planets inside the HZ. Obtaining the escape rate this way is similar to computing the largest Liapunov exponent as the exponential rate of divergence of two nearby orbits. For a terrestrial planet inside the HZ, the escape rate value quantifies the "protective" effect that the studied giant-planet system offers. Therefore, escape rates could provide information on whether certain giant-planet configurations produce a more desirable environment for life than the others. We present some computed escape rates on selected planetary systems, focusing on effects of varying the masses and semi-major axes of the giant planets. In the case of our Solar System we find rather surprisingly that Jupiter, in its current orbit, may provide a minimal amount of protection to the Earth.

  16. Magnetic resonance imaging: an accurate, radiation-free, alternative to computed tomography for the primary imaging and three-dimensional reconstruction of the bony orbit.

    PubMed

    Schmutz, Beat; Rahmel, Benjamin; McNamara, Zeb; Coulthard, Alan; Schuetz, Michael; Lynham, Anthony

    2014-03-01

    To determine the extent to which the accuracy of magnetic resonance imaging (MRI) based virtual 3-dimensional (3D) models of the intact orbit can approach that of the gold standard, computed tomography (CT) based models. The goal was to determine whether MRI is a viable alternative to CT scans in patients with isolated orbital fractures and penetrating eye injuries, pediatric patients, and patients requiring multiple scans in whom radiation exposure is ideally limited. Patients who presented with unilateral orbital fractures to the Royal Brisbane and Women's Hospital from March 2011 to March 2012 were recruited to participate in this cross-sectional study. The primary predictor variable was the imaging technique (MRI vs CT). The outcome measurements were orbital volume (primary outcome) and geometric intraorbital surface deviations (secondary outcome) between the MRI- and CT-based 3D models. Eleven subjects (9 male) were enrolled. The patients' mean age was 30 years. On average, the MRI models underestimated the orbital volume of the CT models by 0.50 ± 0.19 cm(3). The average intraorbital surface deviation between the MRI and CT models was 0.34 ± 0.32 mm, with 78 ± 2.7% of the surface within a tolerance of ±0.5 mm. The volumetric differences of the MRI models are comparable to reported results from CT models. The intraorbital MRI surface deviations are smaller than the accepted tolerance for orbital surgical reconstructions. Therefore, the authors believe that MRI is an accurate radiation-free alternative to CT for the primary imaging and 3D reconstruction of the bony orbit. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Orbits Around Black Holes in Triaxial Nuclei

    NASA Astrophysics Data System (ADS)

    Merritt, David; Vasiliev, Eugene

    2011-01-01

    We discuss the properties of orbits within the influence sphere of a supermassive black hole (BH), in the case that the surrounding star cluster is non-axisymmetric. There are four major orbit families; one of these, the pyramid orbits, have the interesting property that they can approach arbitrarily closely to the BH. We derive the orbit-averaged equations of motion and show that in the limit of weak triaxiality, the pyramid orbits are integrable: the motion consists of a two-dimensional libration of the major axis of the orbit about the short axis of the triaxial figure, with eccentricity varying as a function of the two orientation angles and reaching unity at the corners. Because pyramid orbits occupy the lowest angular momentum regions of phase space, they compete with collisional loss cone repopulation and with resonant relaxation (RR) in supplying matter to BHs. General relativistic advance of the periapse dominates the precession for sufficiently eccentric orbits, and we show that relativity imposes an upper limit to the eccentricity: roughly the value at which the relativistic precession time is equal to the time for torques to change the angular momentum. We argue that this upper limit to the eccentricity should also apply to evolution driven by RR, with potentially important consequences for the rate of extreme-mass-ratio inspirals in low-luminosity galaxies. In giant galaxies, we show that capture of stars on pyramid orbits can dominate the feeding of BHs, at least until such a time as the pyramid orbits are depleted; however this time can be of order a Hubble time.

  18. ORBITS AROUND BLACK HOLES IN TRIAXIAL NUCLEI

    SciTech Connect

    Merritt, David; Vasiliev, Eugene E-mail: eugvas@lpi.ru

    2011-01-10

    We discuss the properties of orbits within the influence sphere of a supermassive black hole (BH), in the case that the surrounding star cluster is non-axisymmetric. There are four major orbit families; one of these, the pyramid orbits, have the interesting property that they can approach arbitrarily closely to the BH. We derive the orbit-averaged equations of motion and show that in the limit of weak triaxiality, the pyramid orbits are integrable: the motion consists of a two-dimensional libration of the major axis of the orbit about the short axis of the triaxial figure, with eccentricity varying as a function of the two orientation angles and reaching unity at the corners. Because pyramid orbits occupy the lowest angular momentum regions of phase space, they compete with collisional loss cone repopulation and with resonant relaxation (RR) in supplying matter to BHs. General relativistic advance of the periapse dominates the precession for sufficiently eccentric orbits, and we show that relativity imposes an upper limit to the eccentricity: roughly the value at which the relativistic precession time is equal to the time for torques to change the angular momentum. We argue that this upper limit to the eccentricity should also apply to evolution driven by RR, with potentially important consequences for the rate of extreme-mass-ratio inspirals in low-luminosity galaxies. In giant galaxies, we show that capture of stars on pyramid orbits can dominate the feeding of BHs, at least until such a time as the pyramid orbits are depleted; however this time can be of order a Hubble time.

  19. LONG RANGE OUTWARD MIGRATION OF GIANT PLANETS, WITH APPLICATION TO FOMALHAUT b

    SciTech Connect

    Crida, Aurelien; Masset, Frederic

    2009-11-10

    Recent observations of exoplanets by direct imaging reveal that giant planets orbit at a few dozens to more than a hundred AU from their central star. The question of the origin of these planets challenges the standard theories of planet formation. We propose a new way of obtaining such far planets, by outward migration of a pair of planets formed in the 10 AU region. Two giant planets in mean motion resonance in a common gap in the protoplanetary disk migrate outward, if the inner one is significantly more massive than the outer one. Using hydrodynamical simulations, we show that their semimajor axes can increase by almost 1 order of magnitude. In a flared disk, the pair of planets should reach an asymptotic radius. This mechanism could account for the presence of Fomalhaut b; then, a second, more massive planet, should be orbiting Fomalhaut at about 75 AU.

  20. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  1. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  2. Effect of giant charge-transfer resonance σCT 109 barn on operation of magnetic fusion reactor below ``critical energy.''

    NASA Astrophysics Data System (ADS)

    Hester, Timothy; Maglich, Bogdan; Scott, Dan; Vaucher, Alexander

    2016-10-01

    Charge transfer (CT) reactivity was assumed to be negligible compared to ionization (IO) before Belfast measurements1-3 revealed the opposite: CT predominance over IO, σCT 109 b , σCT /σIO U 100 , below critical `atomic unit of velocity', vo = 2.2 ×108cms-1 , which is orbital velocity of e in H atom. Near vo, U = 1 , i.e. σCT σIO . Critical ion energy is T0 (lab) = k 25 M [ KeV ] = 200 KeV for [ ERR : md : MbegChr = 0 x 2329 , MendChr = 0 x 232 A , nParams = 1 ] = ion mass [ amu ] = 4 for DT mix ; k = 2 . ``Burnout'' pumping that requires U << 1 is inoperable in the U >> 1 regime whereas CT continually acts like compressor increasing operating vacuum pressure during neutral beam discharge to 10-3 Torr/0.3 s; this, in turn, sets upper limits to ion life-time against neutralization to τ =10-6 s. τ is 105 times shorter than thermalization time constant; hence plasma cannot be created. Lawson4 was unaware of CT resonance; his ``critical temperature'' (30 KeV for DT) should be replaced with T0.

  3. Doorway-state analysis of the fine structure in the giant quadrupole resonance in 208Pb observed in inelastic electron scattered

    NASA Astrophysics Data System (ADS)

    Winchenbach, J.; Pingel, K.; Holzwarth, G.; Kühner, G.; Richter, A.

    1983-11-01

    The fine structure observed in high resolution inelastic electron scattering data obtained at DALINAC for 208Pb in the excitation energy range of the giant quadrupole resonance (GQR) has been analysed under the assumption that the measured strongly fragmented E2 strength distribution is due to the coupling of one or two doorway states to a large number of more complicated states. The coupling matrix elements derived from the analysis allow the determination of the escape and spreading widths Γ ↑ and Γ ↓, the excitation energies Ed, the energy shifts ΔEd, and their energy dependence, for the underlying doorways.

  4. Iterated finite-orbit Monte Carlo simulations with full-wave fields for modeling tokamak ion cyclotron resonance frequency wave heating experiments

    SciTech Connect

    Choi, M.; Chan, V. S.; Lao, L. L.; Pinsker, R. I.; Green, D.; Berry, L. A.; Jaeger, F.; Park, J. M.; Heidbrink, W. W.; Liu, D.; Podesta, M.; Harvey, R.; Smithe, D. N.; Bonoli, P.

    2010-05-15

    The five-dimensional finite-orbit Monte Carlo code ORBIT-RF[M. Choi et al., Phys. Plasmas 12, 1 (2005)] is successfully coupled with the two-dimensional full-wave code all-orders spectral algorithm (AORSA) [E. F. Jaeger et al., Phys. Plasmas 13, 056101 (2006)] in a self-consistent way to achieve improved predictive modeling for ion cyclotron resonance frequency (ICRF) wave heating experiments in present fusion devices and future ITER [R. Aymar et al., Nucl. Fusion 41, 1301 (2001)]. The ORBIT-RF/AORSA simulations reproduce fast-ion spectra and spatial profiles qualitatively consistent with fast ion D-alpha [W. W. Heidbrink et al., Plasma Phys. Controlled Fusion 49, 1457 (2007)] spectroscopic data in both DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono et al., Nucl. Fusion 41, 1435 (2001)] high harmonic ICRF heating experiments. This work verifies that both finite-orbit width effect of fast-ion due to its drift motion along the torus and iterations between fast-ion distribution and wave fields are important in modeling ICRF heating experiments.

  5. Iterated finite-orbit Monte Carlo simulations with full-wave fields for modeling tokamak ion cyclotron resonance frequency wave heating experiments

    SciTech Connect

    Choi, M.; Green, David L; Heidbrink, W. W.; Harvey, R. W.; Liu, D.; Chan, V. S.; Berry, Lee A; Jaeger, Erwin Frederick; Lao, L.L.; Pinsker, R. I.; Podesta, M.; Smithe, D. N.; Park, J. M.; Bonoli, P.

    2010-01-01

    The five-dimensional finite-orbit Monte Carlo code ORBIT-RF [M. Choi , Phys. Plasmas 12, 1 (2005)] is successfully coupled with the two-dimensional full-wave code all-orders spectral algorithm (AORSA) [E. F. Jaeger , Phys. Plasmas 13, 056101 (2006)] in a self-consistent way to achieve improved predictive modeling for ion cyclotron resonance frequency (ICRF) wave heating experiments in present fusion devices and future ITER [R. Aymar , Nucl. Fusion 41, 1301 (2001)]. The ORBIT-RF/AORSA simulations reproduce fast-ion spectra and spatial profiles qualitatively consistent with fast ion D-alpha [W. W. Heidbrink , Plasma Phys. Controlled Fusion 49, 1457 (2007)] spectroscopic data in both DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and National Spherical Torus Experiment [M. Ono , Nucl. Fusion 41, 1435 (2001)] high harmonic ICRF heating experiments. This work verifies that both finite-orbit width effect of fast-ion due to its drift motion along the torus and iterations between fast-ion distribution and wave fields are important in modeling ICRF heating experiments. (C) 2010 American Institute of Physics. [doi:10.1063/1.3314336

  6. A resonant chain of four transiting, sub-Neptune planets.

    PubMed

    Mills, Sean M; Fabrycky, Daniel C; Migaszewski, Cezary; Ford, Eric B; Petigura, Erik; Isaacson, Howard

    2016-05-26

    Surveys have revealed many multi-planet systems containing super-Earths and Neptunes in orbits of a few days to a few months. There is debate whether in situ assembly or inward migration is the dominant mechanism of the formation of such planetary systems. Simulations suggest that migration creates tightly packed systems with planets whose orbital periods may be expressed as ratios of small integers (resonances), often in a many-planet series (chain). In the hundreds of multi-planet systems of sub-Neptunes, more planet pairs are observed near resonances than would generally be expected, but no individual system has hitherto been identified that must have been formed by migration. Proximity to resonance enables the detection of planets perturbing each other. Here we report transit timing variations of the four planets in the Kepler-223 system, model these variations as resonant-angle librations, and compute the long-term stability of the resonant chain. The architecture of Kepler-223 is too finely tuned to have been formed by scattering, and our numerical simulations demonstrate that its properties are natural outcomes of the migration hypothesis. Similar systems could be destabilized by any of several mechanisms, contributing to the observed orbital-period distribution, where many planets are not in resonances. Planetesimal interactions in particular are thought to be responsible for establishing the current orbits of the four giant planets in the Solar System by disrupting a theoretical initial resonant chain similar to that observed in Kepler-223.

  7. Asteroid 2015 DB216: a recurring co-orbital companion to Uranus

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, C.; de la Fuente Marcos, R.

    2015-10-01

    Minor bodies trapped in 1:1 co-orbital resonances with a host planet could be relevant to explain the origin of captured satellites. Among the giant planets, Uranus has one of the smallest known populations of co-orbitals, three objects, and all of them are short-lived. Asteroid 2015 DB216 has an orbital period that matches well that of Uranus, and here we investigate its dynamical state. Direct N-body calculations are used to assess the current status of this object, reconstruct its immediate dynamical past, and explore its future orbital evolution. A covariance matrix-based Monte Carlo scheme is presented and applied to study its short-term stability. We find that 2015 DB216 is trapped in a temporary co-orbital resonance with Uranus, the fourth known minor body to do so. A detailed analysis of its dynamical evolution shows that it is an unstable but recurring co-orbital companion to Uranus. It currently follows an asymmetric horseshoe trajectory that will last for at least 10 kyr, but it may remain inside Uranus' co-orbital zone for millions of years. As in the case of other transient Uranian co-orbitals, complex multibody ephemeral mean motion resonances trigger the switching between the various resonant co-orbital states. The new Uranian co-orbital exhibits a secular behaviour markedly different from that of the other known Uranian co-orbitals because of its higher inclination, nearly 38°. Given its rather unusual discovery circumstances, the presence of 2015 DB216 hints at the existence of a relatively large population of objects moving in similar orbits.

  8. Study of leading strange meson resonances and spin-orbit splittings in K/sup -/p. -->. K/sup -/. pi. /sup +/n at 11 GeV/c

    SciTech Connect

    Honma, A.K.

    1980-11-01

    The results from a high-statistics study of K..pi.. elastic scattering in the reaction K/sup -/p ..-->.. K/sup -/..pi../sup +/n are presented. The data for this analysis are taken from an 11-GeV/c K/sup -/p experiment performed on the Large Aperture Solenoidal Spectrometer (LASS) facility at the Stanford Linear Accelerator Center (SLAC). By selecting the very forward produced K/sup -/..pi../sup +/ events, a sample consisting of data for the K..pi.. ..-->.. K..pi.. elastic scattering reaction was extracted. The angular distribution for this meson-meson scattering is studied by use of both a spherical harmonic moments analysis and a partial-wave analysis (PWA). The previously established leading natural spin-parity strange meson resonances (the J/sup P/ = 1/sup -/ K*(895), the 2/sup +/ K*(1430), and the 3/sup -/ K*(1780)) are observed in the results from both the moments analysis and the PWA. In addition, evidence for a new spin 4/sup -/ K* resonance with a mass of 2080 MeV and a width of about 225 MeV is presented. The results from the PWA confirm the existence of a 0/sup +/ kappa (1490) and propose the existence of a second scalar meson resonance, the 0/sup +/ kappa' (1900). Structure in the P-wave amplitude indicates resonance behavior in the mass region near 1700 MeV. In two of the four ambiguous solutions for the mass region above 1800 MeV, there is strong evidence for another P-wave resonant structure near 2100 MeV. The observed strange meson resonances are found to have a natural interpretation in terms of states predicted by the quark model. In particular, the mass splittings of the leading trajectory natural spin-parity strange meson states and the mass splittings between the spin-orbit triplet states are discussed. 59 figures, 17 tables.

  9. The Origin of Pluto's Orbit: Implications for the Solar System Beyond Neptune

    NASA Technical Reports Server (NTRS)

    Malhotra, Renu

    1995-01-01

    The origin of the highly eccentric, inclined, and resonance-locked orbit of Pluto has long been a puzzle. A possible explanation has been proposed recently which suggests that these extraordinary orbital properties may be a natural consequence of the formation and early dynamical evolution of the outer solar system. A resonance capture mechanism is possible during the clearing of the residual planetesimal debris and the formation of the Oort Cloud of comets by planetesimal mass loss from the vicinity of the giant planets. If this mechanism were in operation during the early history of the planetary system, the entire region between the orbit of Neptune and approximately 50 AU would have been swept by first-order mean motion resonances. Thus, resonance capture could occur not only for Pluto, but quite generally for other trans-Neptunian small bodies. Some consequences of this evolution for the present-day dynamical structure of the trans-Neptunian region are (1) most of the objects in the region beyond Neptune and up to approximately 50 AU exist in very narrow zones located at orbital resonances with Neptune (particularly the 3:2 and the 2:1 resonances); and (2) these resonant objects would have significantly large eccentricities. The distribution of objects in the Kuiper Belt as predicted by this theory is presented here.

  10. Coupled orbital-thermal evolution of the early Earth-Moon system with a fast-spinning Earth

    NASA Astrophysics Data System (ADS)

    Tian, ZhenLiang; Wisdom, Jack; Elkins-Tanton, Linda

    2017-01-01

    Several new scenarios of the Moon-forming giant impact have been proposed to reconcile the giant impact theory with the recent recognition of the volatile and refractory isotopic similarities between Moon and Earth. Two scenarios leave the post-impact Earth spinning much faster than what is inferred from the present Earth-Moon system's angular momentum. The evection resonance has been proposed to drain the excess angular momentum, but the lunar orbit stays at high orbital eccentricities for long periods in the resonance, which would cause large tidal heating in the Moon. A limit cycle related to the evection resonance has also been suggested as an alternative mechanism to reduce the angular momentum, which keeps the lunar orbit at much lower eccentricities, and operates in a wider range of parameters. In this study we use a coupled thermal-orbital model to determine the effect of the change of the Moon's thermal state on the Earth-Moon system's dynamical history. The evection resonance no longer drains angular momentum from the Earth-Moon system since the system rapidly exits the resonance. Whereas the limit cycle works robustly to drain as much angular momentum as in the non-thermally-coupled model, though the Moon's tidal properties change throughout the evolution.

  11. Giant Cell Arteritis

    MedlinePlus

    ... Patient / Caregiver Diseases & Conditions Giant Cell Arteritis Giant Cell Arteritis Fast Facts Giant cell arteritis (GCA) is ... polymyalgia rheumatica (also called PMR). What is giant cell arteritis? GCA is a type of vasculitis or ...

  12. The Obliquities of the Giant Planets

    NASA Astrophysics Data System (ADS)

    Hamilton, D. P.; Ward, Wm. R.

    2002-09-01

    Jupiter has by far the smallest obliquity ( ~ 3o) of the planets (not counting tidally de-spun Mercury and Venus) which may be reflective of its formation by hydrodynamic gas flow rather than stochastic impacts. Saturn's obliquity ( ~ 26o), however, seems to belie this simple formation picture. But since the spin angular momentum of any planet is much smaller than its orbital angular momentum, post-formation obliquity can be strongly modified by passing through secular spin-orbit resonances, i.e., when the spin axis precession rate of the planet matches one of the frequencies describing the precession of the orbit plane. Spin axis precession is due to the solar torque on both the oblate figure of the planet and any orbiting satellites. In the case of Jupiter, the torque on the Galilean satellites is the principal cause of its 4.5*105 year precession; Saturn's precession of 1.8*106 years is dominated by Titan. In the past, the planetary spin axis precession rates should have been much faster due to the massive circumplanetary disks from which the current satellites condensed. The regression of the orbital node of a planet is due to the gravitational perturbations of the other planets. Nodal regression is not uniform, but is instead a composite of the planetary system's normal modes. For Jupiter and Saturn, the principal frequency is the nu16, with a period of ~ 49,000 years; the amplitude of this term is I ~ 0o.36 for Jupiter and I ~ 0o.90 for Saturn. In spite of the small amplitudes, slow adiabatic passages through this resonance (due to circumplanetary disk dispersal) could increase planetary obliquities from near zero to ~ [tan1/3 I] ~ 10o. We will discuss scenarios in which giant planet obliquities are affected by this and other resonances, and will use Jupiter's low obliquity to constrain the mass and duration of a satellite precursor disk. DPH acknowledges support from NSF Career Grant AST 9733789 and WRW is grateful to the NASA OSS and PGG programs.

  13. Characterizing the Neptune Trojan Orbit Distribution

    NASA Astrophysics Data System (ADS)

    Parker, Alex H.

    2013-10-01

    The Neptune Trojan swarms are large, stable minor planet populations, and their orbit distribution encodes information about Neptune's late-stage migration and the properties of the planetesimal disk that Neptune encountered. However, extracting a meaningful model of the Neptune Trojans' orbit distribution is made difficult by the uncharacterized biases present in the very small observed sample. I will describe a survey-agnostic statistical method for quantifying the range of plausible orbit distribution models for the Neptune Trojans, using priors gleaned from other resonant minor planet populations, and present quantitative limits on the orbital properties of Neptune Trojans. I will also discuss the results of a suite of Neptune Trojan capture simulations designed to explore the implications of their measured present-day orbital properties; I find that migrating Neptune into a pre-heated disk is required to reproduce the inclinations seen in the extant Trojans, and that capture efficiency remains high even as disk excitation increases. This indicates that some process was responsible for pre-heating the planetesimal disk prior to Neptune's arrival, such as an earlier epoch of interactions with a giant planet.

  14. Exploring atmospheres of hot mini-Neptune and extrasolar giant planets orbiting different stars with application to HD 97658b, WASP-12b, CoRoT-2b, XO-1b, and HD 189733b

    SciTech Connect

    Miguel, Y.; Kaltenegger, L.

    2014-01-10

    We calculated an atmospheric grid for hot mini-Neptune and giant exoplanets that links astrophysical observable parameters—orbital distance and stellar type—with the chemical atmospheric species expected. The grid can be applied to current and future observations to characterize exoplanet atmospheres and serves as a reference to interpret atmospheric retrieval analysis results. To build the grid, we developed a one-dimensional code for calculating the atmospheric thermal structure and linked it to a photochemical model that includes disequilibrium chemistry (molecular diffusion, vertical mixing, and photochemistry). We compare the thermal profiles and atmospheric composition of planets at different semimajor axes (0.01 AU ≤ a ≤ 0.1 AU) orbiting F, G, K, and M stars. Temperature and UV flux affect chemical species in the atmosphere. We explore which effects are due to temperature and which are due to stellar characteristics, showing the species most affected in each case. CH{sub 4} and H{sub 2}O are the most sensitive to UV flux, H displaces H{sub 2} as the most abundant gas in the upper atmosphere for planets receiving a high UV flux. CH{sub 4} is more abundant for cooler planets. We explore vertical mixing, to inform degeneracies on our models and in the resulting spectral observables. For lower pressures, observable species like H{sub 2}O or CO{sub 2} can indicate the efficiency of vertical mixing, with larger mixing ratios for a stronger mixing. By establishing the grid, testing the sensitivity of the results, and comparing our model to published results, our paper provides a tool to estimate what observations could yield. We apply our model to WASP-12b, CoRoT-2b, XO-1b, HD189733b, and HD97658b.

  15. Extrinsic spin Hall effect induced by resonant skew scattering in graphene.

    PubMed

    Ferreira, Aires; Rappoport, Tatiana G; Cazalilla, Miguel A; Castro Neto, A H

    2014-02-14

    We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis of the single impurity scattering problem shows that intrinsic and Rashba spin-orbit local couplings enhance the spin Hall effect via skew scattering of charge carriers in the resonant regime. The solution of the transport equations for a random ensemble of spin-orbit impurities reveals that giant spin Hall currents are within the reach of the current state of the art in device fabrication. The spin Hall effect is robust with respect to thermal fluctuations and disorder averaging.

  16. Orbitocranial wooden foreign body diagnosed by magnetic resonance imaging. Dry wood can be isodense with air and orbital fat by computed tomography.

    PubMed

    Specht, C S; Varga, J H; Jalali, M M; Edelstein, J P

    1992-01-01

    In computed tomographic (CT) scans, a wooden foreign body can appear as a lucency with nearly the same density as air or fat, and it can be indistinguishable from orbital adipose tissue. Magnetic resonance imaging (MRI) can localize these wooden foreign bodies in the orbit. We studied a case in which a wooden golf tee lodged in the right optic canal of a nine-year-old boy. The head portion lodged in the orbital apex and the tip entered the interpeduncular fossa. Clinical examination revealed a right paranasal laceration; the right eye had no light perception and a peripapillary hemorrhage, but was otherwise normal. Surgical exploration and evaluation by CT failed to locate the foreign body. However, the golf tee was demonstrated by MRI as a low intensity image. Although it was removed by craniotomy with good neurological results, bacterial panophthalmitis led to enucleation of the eye. This case emphasizes the diagnostic value of MRI and the hazards of retained wooden foreign bodies.

  17. Tilting Saturn without Tilting Jupiter or Ejecting an Ice Giant: Constraints on migration

    NASA Astrophysics Data System (ADS)

    McNeil, Douglas S.; Lee, M. H.

    2010-10-01

    The obliquities of the giant planets preserve information about their migration and encounter histories. Are the classic Nice models (Tsiganis et al. 2005) or the resonant Nice models (Morbidelli et al. 2007) compatible with Jupiter's 3 degree tilt and Saturn's 27? Here we consider the obliquity evolution of the giants during the planetesimal-driven migration phase using two methods: (1) a purely secular integration of the Laplace-Lagrange equations with spin, and (2) a hybrid N-body scheme with full interactions between the Sun and the giants but imposed prescriptions for migration and eccentricity and inclination damping. We find that it is difficult to reproduce today's obliquity values as migration timescales sufficient to tilt Saturn via the Hamilton & Ward (2004) secular spin-orbit resonance mechanism generally suffice to tilt Jupiter more than is observed. Moreover, long migration timescales which make tilting Saturn easier simultaneously reduce the survival fraction (to below 20% for timescales longer than 20 Myr.) We discuss the constraints these observations provide on the dynamical history of the giant planets, and the remaining possibility of tilting Saturn during a late very slow migration of Neptune to its present location after the main phase of migration is complete. [This work was supported by Hong Kong RGC grant HKU 7024/08P.

  18. Orbital perturbations of the Galilean satellites during planetary encounters

    SciTech Connect

    Deienno, Rogerio; Nesvorný, David; Vokrouhlický, David; Yokoyama, Tadashi

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný and Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný and Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  19. Orbital Perturbations of the Galilean Satellites during Planetary Encounters

    NASA Astrophysics Data System (ADS)

    Deienno, Rogerio; Nesvorný, David; Vokrouhlický, David; Yokoyama, Tadashi

    2014-08-01

    The Nice model of the dynamical instability and migration of the giant planets can explain many properties of the present solar system, and can be used to constrain its early architecture. In the jumping-Jupiter version of the Nice model, required from the terrestrial planet constraint and dynamical structure of the asteroid belt, Jupiter has encounters with an ice giant. Here, we study the survival of the Galilean satellites in the jumping-Jupiter model. This is an important concern because the ice-giant encounters, if deep enough, could dynamically perturb the orbits of the Galilean satellites and lead to implausible results. We performed numerical integrations where we tracked the effect of planetary encounters on the Galilean moons. We considered three instability cases from Nesvorný & Morbidelli that differed in the number and distribution of encounters. We found that in one case, where the number of close encounters was relatively small, the Galilean satellite orbits were not significantly affected. In the other two, the orbital eccentricities of all moons were excited by encounters, Callisto's semimajor axis changed, and, in a large fraction of trials, the Laplace resonance of the inner three moons was disrupted. The subsequent evolution by tides damps eccentricities and can recapture the moons in the Laplace resonance. A more important constraint is represented by the orbital inclinations of the moons, which can be excited during the encounters and not appreciably damped by tides. We find that one instability case taken from Nesvorný & Morbidelli clearly does not meet this constraint. This shows how the regular satellites of Jupiter can be used to set limits on the properties of encounters in the jumping-Jupiter model, and help us to better understand how the early solar system evolved.

  20. Multichannel molecular state and rectified short-range boundary condition for spin-orbit-coupled ultracold fermions near p -wave resonances

    NASA Astrophysics Data System (ADS)

    Cui, Xiaoling

    2017-03-01

    We study the interplay of spin-orbit coupling (SOC) and strong p -wave interactions to the scattering property of spin-1/2 ultracold Fermi gases. Based on a two-channel square-well potential generating p -wave resonance, we show that the presence of an isotropic SOC, even for its length being much longer than the potential range, can greatly modify the p -wave short-range boundary condition (BC). As a result, the conventional p -wave BC cannot predict the induced molecules near p -wave resonances, which can be fully destroyed due to strong interference between the s - and p -wave channels. By analyzing the intrinsic reasons for the breakdown of the conventional BC, we propose a p -wave BC that can excellently reproduce the exact molecule solutions and also equally apply for a wide class of single-particle potentials besides SOC. This work reveals the significant effect of SOC on both the short- and long-range properties of fermions near p -wave resonances, paving the way for future explorations of interesting few- and many-body physics in such systems.

  1. Kuiper Prize: Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Ingersoll, Andrew P.

    2007-10-01

    The study of giant planet atmospheres is near and dear to me, for several reasons. First, the giant planets are photogenic; the colored clouds are great tracers, and one can make fantastic movies of the atmosphere in motion. Second, the giant planets challenge us with storms that last for hundreds of years and winds that blow faster the farther you go from the sun. Third, they remind us of Earth with their hurricanes, auroras, and lightning, but they also are the link to the 200 giant planets that have been discovered around other stars. This talk will cover the past, present, and future (one hopes) of giant planet research. I will review the surprises of the Voyager and Galileo eras, and will discuss what we are learning now from the Cassini orbiter. I will review the prospects for answering the outstanding questions like: Where's the water? What is providing the colors of the clouds? How deep do the features extend? Where do the winds get their energy? What is the role of the magnetic field? Finally, I will briefly discuss how extrasolar giant planets compare with objects in our own solar system.

  2. Hot super-Earths and giant planet cores from different migration histories

    NASA Astrophysics Data System (ADS)

    Cossou, Christophe; Raymond, Sean N.; Hersant, Franck; Pierens, Arnaud

    2014-09-01

    Planetary embryos embedded in gaseous protoplanetary disks undergo Type I orbital migration. Migration can be inward or outward depending on the local disk properties but, in general, only planets more massive than several M⊕ can migrate outward. Here we propose that an embryo's migration history determines whether it becomes a hot super-Earth or the core of a giant planet. Systems of hot super-Earths (or mini-Neptunes) form when embryos migrate inward and pile up at the inner edge of the disk. Giant planet cores form when inward-migrating embryos become massive enough to switch direction and migrate outward. We present simulations of this process using a modified N-body code, starting from a swarm of planetary embryos. Systems of hot super-Earths form in resonant chains with the innermost planet at or interior to the disk inner edge. Resonant chains are disrupted by late dynamical instabilities triggered by the dispersal of the gaseous disk. Giant planet cores migrate outward toward zero-torque zones, which move inward and eventually disappear as the disk disperses. Giant planet cores migrate inward with these zones and are stranded at ~1-5 AU. Our model reproduces several properties of the observed extra-solar planet populations. The frequency of giant planet cores increases strongly when the mass in solids is increased, consistent with the observed giant exoplanet - stellar metallicity correlation. The frequency of hot super-Earths is not a function of stellar metallicity, also in agreement with observations. Our simulations can reproduce the broad characteristics of the observed super-Earth population.

  3. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: A Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Han, C.; Udalski, A.; Gould, A.; Bozza, V.; Jung, Y. K.; Albrow, M. D.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Shin, I.-G.; KMTNet Collaboration; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration

    2016-10-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite the fact that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, and matter and velocity distributions, combined with information on the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass {0.72}-0.07+0.65 {M}{{J}} and it is orbiting a low-mass M-dwarf host with a projected separation {d}\\perp =0.73+/- 0.08 {{au}}. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  4. Early Solar System Bombardment: Exploring the Echos of Planetary Migration and Lost Ice Giants

    NASA Astrophysics Data System (ADS)

    Bottke, William

    2017-01-01

    Heavily cratered surfaces on the Moon, Mars, Mercury show the terrestrial planets were battered by an intense bombardment during their first billion years or more, but the timing, sources, and dynamical implications of these impacts are controversial. The Late Heavy Bombardment refers to impact events that occurred after stabilization of planetary lithospheres such that they could be preserved as craters. Lunar melt rocks and meteorite shock ages point toward a discrete episode of elevated impact flux between ~3.5 to ~4.2 Ga and a relative quiescence between ~4.0-4.2 to ~4.4 Ga. Evidence from Precambrian impact spherule layers suggest a long-lived tail of terrestrial impactors lasted to ~2.0-2.5 Ga.Dynamical models that include populations residual from primary accretion and destabilized by giant planet migration can potentially account for observations, although all have pros and cons. The most parsimonious solution to match constraints is a hybrid model with discrete early, post-accretion and later, planetary instability-driven impactor populations.For the latter, giant planet instability models can successfully reproduce the orbits of the giant planets, the origin/properties of Jupiter/Neptune Trojans, irregular satellites, the structure of the main asteroid and Kuiper belts, and the presence of comet-like bodies in the main belt, Hilda, and Trojan asteroid populations. The best solutions, however, postulate there were once five giant planets: Jupiter, Saturn, and three ice giants, one that was eventually ejected out of the Solar System by a Jupiter encounter. Intriguing evidence for this “lost” ice giant planet can be found in the orbital properties of bodies captured in the main asteroid belt.The applicability of giant planet instabilities to exoplanet systems seems likely, with the initial configuration of giant planet orbits a byproduct of their early migration and subsequent capture into mutual mean motion resonances. The question is how long can a

  5. Spectral signatures of the ionospheric Alfvén resonator to be observed by low-Earth orbit satellite

    NASA Astrophysics Data System (ADS)

    Surkov, V. V.; Pilipenko, V. A.

    2016-03-01

    Interference of an incident and reflected Alfvén pulses propagating inside the ionospheric Alfvén resonator (IAR) is studied on the basis of a simple one-dimensional model. Particular emphasis has been placed on the analysis of spectral features of ultralow frequency (˜1-15 Hz) electric perturbations recently observed by Communications/Navigation Outage Forecasting System satellite. This "fingerprint" multiband spectral structure was observed when satellite descended in the terminator vicinity. Among factors affecting spectral structure the satellite position and distance from the IAR boundaries are most significant. It is concluded that the observed spectrograms exhibit modulation with "period" depending on propagation delay time of reflected Alfvén pulses in such a way that this effect can mask a spectral resonance structure resulted from excitation of IAR eigenmodes. The proposed interference effect is capable to produce a spectral pattern resembling a fingerprint which is compatible with the satellite observations.

  6. Perturbations of non-resonant satellite orbits due to a rotating earth. [tesseral harmonics and the Von Ziepel method

    NASA Technical Reports Server (NTRS)

    Mueller, A.

    1978-01-01

    The dominant perturbations of the motion of a satellite near the earth are due to atmospheric drag and the non-symmetrical gravitational field. Atmospheric drag perturbation continually pulls the satellite in and out of the different long period resonant frequencies. The result is that the resonances never become apparent and may be neglected. The tesseral harmonics have no true secular perturbation but the periodicities in the mean motion induce a secular perturbation in the mean anomaly. This secular perturbation may be determined by simply using the average mean motion instead of the osculating mean motion. The Von Ziepel method is used to determine tesseral perturbations. The solution is found first in the singular DS phi elements and then rewritten in the PS phi elements to remove singularities. The notation used in the development is described in the appendix.

  7. Exotic Earths: forming habitable worlds with giant planet migration.

    PubMed

    Raymond, Sean N; Mandell, Avi M; Sigurdsson, Steinn

    2006-09-08

    Close-in giant planets (e.g., "hot Jupiters") are thought to form far from their host stars and migrate inward, through the terrestrial planet zone, via torques with a massive gaseous disk. Here we simulate terrestrial planet growth during and after giant planet migration. Several-Earth-mass planets also form interior to the migrating jovian planet, analogous to recently discovered "hot Earths." Very-water-rich, Earth-mass planets form from surviving material outside the giant planet's orbit, often in the habitable zone and with low orbital eccentricities. More than a third of the known systems of giant planets may harbor Earth-like planets.

  8. Sizing Up Red-Giant Twins

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high

  9. Oscillating spin-orbit interaction in two-dimensional superlattices: Sharp transmission resonances and time-dependent spin-polarized currents

    NASA Astrophysics Data System (ADS)

    Szaszkó-Bogár, Viktor; Peeters, F. M.; Földi, Péter

    2015-06-01

    We consider ballistic transport through a lateral, two-dimensional superlattice with experimentally realizable, sinusoidally oscillating, Rashba-type spin-orbit interaction (SOI). The periodic structure of the rectangular lattice produces a spin-dependent miniband structure for static SOI. Using Floquet theory, transmission peaks are shown to appear in the mini-bandgaps as a consequence of the additional, time-dependent SOI. A detailed analysis shows that this effect is due to the generation of harmonics of the driving frequency, via which, e.g., resonances that cannot be excited in the case of static SOI become available. Additionally, the transmitted current shows space- and time-dependent partial spin polarization, in other words, polarization waves propagate through the superlattice.

  10. Unilateral blindness with third cranial nerve palsy and abnormal enhancement of extraocular muscles on magnetic resonance imaging of orbit after the ingestion of methanol.

    PubMed

    Chung, Tae Nyoung; Kim, Sun Wook; Park, Yoo Seok; Park, Incheol

    2010-05-01

    Methanol is generally known to cause visual impairment and various systemic manifestations. There are a few reported specific findings for methanol intoxication on magnetic resonance imaging (MRI) of the brain. A case is reported of unilateral blindness with third cranial nerve palsy oculus sinister (OS) after the ingestion of methanol. Unilateral damage of the retina and optic nerve were confirmed by fundoscopy, flourescein angiography, visual evoked potential and electroretinogram. The optic nerve and extraocular muscles (superior rectus, medial rectus, inferior rectus and inferior oblique muscle) were enhanced by gadolinium-DTPA on MRI of the orbit. This is the first case report of permanent monocular blindness with confirmed unilateral damage of the retina and optic nerve, combined with third cranial nerve palsy after methanol ingestion.

  11. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-08-07

    Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.

  12. Negative differential resistance in a hybrid silicon-molecular system: resonance between the intrinsic surface-states and the molecular orbital.

    PubMed

    Wang, Weihua; Ji, Yongfei; Zhang, Hui; Zhao, Aidi; Wang, Bing; Yang, Jinlong; Hou, J G

    2012-08-28

    It has been a long-term desire to fabricate hybrid silicon-molecular devices by taking advantages of organic molecules and the existing silicon-based technology. However, one of the challenging tasks is to design applicable functions on the basis of the intrinsic properties of the molecules, as well as the silicon substrates. Here we demonstrate a silicon-molecular system that produces negative differential resistance (NDR) by making use of the well-defined intrinsic surface-states of the Si (111)-√3 × √3-Ag (R3-Ag/Si) surface and the molecular orbital of cobalt(II)-phthalocyanine (CoPc) molecules. From our experimental results obtained using scanning tunneling microscopy/spectroscopy, we find that NDR robustly appears at the Co(2+) ion centers of the CoPc molecules, independent of the adsorption configuration of the CoPc molecules and irrespective of doping type and doping concentration of the silicon substrates. Joint with first principle calculations, we conclude that NDR is originated from the resonance between the intrinsic surface-state band S(1) of the R3-Ag/Si surface and the localized unoccupied Co(2+)d(z(2)) orbital of the adsorbed CoPc molecules. We expect that such a mechanism can be generally used in other silicon-molecular systems.

  13. Resonant soft x-ray scattering investigation of orbital and magnetic ordering in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}

    SciTech Connect

    Wilkins, S.B.; Stojic, N.; Binggeli, N.; Beale, T.A.W.; Hatton, P.D.; Castleton, C.W.M.; Prabhakaran, D.; Boothroyd, A.T.; Altarelli, M.

    2005-06-15

    We report resonant x-ray scattering data of the orbital and magnetic ordering at low temperatures at the Mn L{sub 2,3} edges in La{sub 0.5}Sr{sub 1.5}MnO{sub 4}. The orderings display complex energy features close to the Mn absorption edges. Systematic modeling with atomic multiplet crystal field calculations was used to extract meaningful information regarding the interplay of spin, orbital, and Jahn-Teller order. These calculations provide a good general agreement with the observed energy dependence of the scattered intensity for a dominant orbital ordering of the d{sub x{sup 2}}{sub -z{sup 2}}/d{sub y{sup 2}}{sub -z{sup 2}} type. In addition, the origins of various spectral features are identified. The temperature dependence of the orbital and magnetic ordering was measured and suggests a strong interplay between the magnetic and orbital order parameters.

  14. Detection and Characterization of Extrasolar Planets through Mean-motion Resonances. II. The Effect of the Planet’s Orbital Eccentricity on Debris Disk Structures

    NASA Astrophysics Data System (ADS)

    Tabeshian, Maryam; Wiegert, Paul A.

    2017-09-01

    Structures observed in debris disks may be caused by gravitational interaction with planetary or stellar companions. These perturbed disks are often thought to indicate the presence of planets and offer insights into the properties of both the disk and the perturbing planets. Gaps in debris disks may indicate a planet physically p