A Simple MO Treatment of Metal Clusters.
ERIC Educational Resources Information Center
Sahyun, M. R. V.
1980-01-01
Illustrates how a qualitative description of the geometry and electronic characteristics of homogeneous metal clusters can be obtained using semiempirical MO (molecular orbital theory) methods. Computer applications of MO methods to inorganic systems are also described. (CS)
Dudding, Travis; Houk, Kendall N
2004-04-20
The catalytic asymmetric thiazolium- and triazolium-catalyzed benzoin condensations of aldehydes and ketones were studied with computational methods. Transition-state geometries were optimized by using Morokuma's IMOMO [integrated MO (molecular orbital) + MO method] variation of ONIOM (n-layered integrated molecular orbital method) with a combination of B3LYP/6-31G(d) and AM1 levels of theory, and final transition-state energies were computed with single-point B3LYP/6-31G(d) calculations. Correlations between experiment and theory were found, and the origins of stereoselection were identified. Thiazolium catalysts were predicted to be less selective then triazolium catalysts, a trend also found experimentally.
NASA Astrophysics Data System (ADS)
Svensson, Mats; Humbel, Stéphane; Morokuma, Keiji
1996-09-01
The integrated MO+MO (IMOMO) method, recently proposed for geometry optimization, is tested for accurate single point calculations. The principle idea of the IMOMO method is to reproduce results of a high level MO calculation for a large ``real'' system by dividing it into a small ``model'' system and the rest and applying different levels of MO theory for the two parts. Test examples are the activation barrier of the SN2 reaction of Cl-+alkyl chlorides, the C=C double bond dissociation of olefins and the energy of reaction for epoxidation of benzene. The effects of basis set and method in the lower level calculation as well as the effects of the choice of model system are investigated in detail. The IMOMO method gives an approximation to the high level MO energetics on the real system, in most cases with very small errors, with a small additional cost over the low level calculation. For instance, when the MP2 (Møller-Plesset second-order perturbation) method is used as the lower level method, the IMOMO method reproduces the results of very high level MO method within 2 kcal/mol, with less than 50% of additional computer time, for the first two test examples. When the HF (Hartree-Fock) method is used as the lower level method, it is less accurate and depends more on the choice of model system, though the improvement over the HF energy is still very significant. Thus the IMOMO single point calculation provides a method for obtaining reliable local energetics such as bond energies and activation barriers for a large molecular system.
ERIC Educational Resources Information Center
Johnson, Adam R.
2013-01-01
A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…
Neary, Michelle C; Parkin, Gerard
2017-02-06
The molecular structures of CpMo(PMe 3 )(CO) 2 H and CpMo(PMe 3 ) 2 (CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3 )(CO) 2 H and CpMo(PMe 3 ) 2 (CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H-Mo-CO moiety are displaced towards the hydride ligand. While Cp R Mo(PMe 3 ) 3-x (CO) x H (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts for the release of H 2 from formic acid, the carbonyl derivatives, Cp R Mo(CO) 3 H, are also observed to form dinuclear formate compounds, namely, [Cp R Mo(μ-O)(μ-O 2 CH)] 2 . The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2 CH)] 2 and [Cp*Mo(μ-O)(μ-O 2 CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2 CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO-1) orbitals. The σ 2 δ* 2 configuration thus corresponds to a formal direct Mo-Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo-Mo bond, whereas a Mo═Mo double bond is required in the absence of lone-pair donation.
Dudding, Travis; Houk, Kendall N.
2004-01-01
The catalytic asymmetric thiazolium- and triazolium-catalyzed benzoin condensations of aldehydes and ketones were studied with computational methods. Transition-state geometries were optimized by using Morokuma's IMOMO [integrated MO (molecular orbital) + MO method] variation of ONIOM (n-layered integrated molecular orbital method) with a combination of B3LYP/6–31G(d) and AM1 levels of theory, and final transition-state energies were computed with single-point B3LYP/6–31G(d) calculations. Correlations between experiment and theory were found, and the origins of stereoselection were identified. Thiazolium catalysts were predicted to be less selective then triazolium catalysts, a trend also found experimentally. PMID:15079058
NASA Astrophysics Data System (ADS)
Sharma, Maneesha; Gangan, Abhijeet; Chakraborty, Brahmananda; Sekhar Rout, Chandra
2017-11-01
We report the growth of monoclinic MoO3 nanorods by a simple and highly reproducible hydrothermal method. Structural and morphological studies provide significant insights about the phase and crystalline structure of the synthesized samples. Further, the non-enzymatic glucose sensing properties were investigated and the MoO3 nanorods exhibited a sensitivity of 15.4 µA µM-1 cm-2 in the 5-175 µM linear range. Also, a quick response time of 8 s towards glucose molecules was observed, exhibiting an excellent electrochemical activity. We have also performed density functional theory (DFT) simulations to qualitatively support our experimental observations by investigating the interactions and charge-transfer mechanism of glucose on MoO3. There is a strong interaction between glucose and the MoO3 surface due to charge transfer from a bonded O atom of glucose to a Mo atom of MoO3 resulting in a strong hybridization between the p orbital of O and d orbital of Mo. Thus, the MoO3 nanorod-based electrodes are found to be good glucose sensing materials for practical industrial applications.
Ultra-broadband nonlinear saturable absorption of high-yield MoS2 nanosheets
NASA Astrophysics Data System (ADS)
Wei, Rongfei; Zhang, Hang; Hu, Zhongliang; Qiao, Tian; He, Xin; Guo, Qiangbing; Tian, Xiangling; Chen, Zhi; Qiu, Jianrong
2016-07-01
High-yield MoS2 nanosheets with strong nonlinear optical (NLO) responses in a broad near-infrared range were synthesized by a facile hydrothermal method. The observation of saturable absorption, which was excited by the light with photon energy smaller than the gap energy of MoS2, can be attributed to the enhancement of the hybridization between the Mo d-orbital and S p-orbital by the oxygen incorporation into MoS2. High-yield MoS2 nanosheets with high modulation depth and large saturable intensity generated a stable, passively Q-switched fiber laser pulse at 1.56 μm. The high output power of 1.08 mW can be attained under a very low pump power of 30.87 mW. Compared to recently reported passively Q-switched fiber lasers utilizing exfoliated MoS2 nanosheets, the efficiency of the laser for our passive Q-switching operation is larger and reaches 3.50%. This research may extend the understanding on the NLO properties of MoS2 and indicate the feasibility of the high-yield MoS2 nanosheets to passively Q-switched fiber laser effectively at low pump strengths.
NASA Astrophysics Data System (ADS)
Chisholm, M. H.; Cotton, F. A.; Fang, A.; Kober, E. C.
1983-09-01
The electronic structure of a Mo3(Mu sub 3-0) (Mu sub 3-OR) (Mu sub 2-OR)3(OR)6 molecule with R = H, and C3v symmetry, which serves as a model for real molecules in which R = H CH2C(CH)3 or CH(CH3)2 has been calculated by the molecular orbital method of Hall and Fenske. The calculations have been performed not only on the entire molecule, but on the Mo3(12+), Mo3O(OH)(9+) and Mo3O(OH)4(6+) fragments and the metal-metal bonding tracked through these successive stages by the ''clusters in molecules' formalism. In the full molecule, the HOMO is an e orbital that carries most of the e-type M-M bonding, while the a1-type is carried by two MO's, one of which is quite stable. The LUMO is also an e type orbital and the HOMO-LUMO gap is small (ca. 1.5 eV). It is predicted that the Mo3O(OR)10 molecules of this type will have readily accessible redox chemistry in which both oxidation and reduction steps might be slowed or irreversible judging by the character of the HOMO and LUMO of the Mo3O(OR)10 molecule. Experimental observations on Mo3O(ONe)10, Ne = CH2C(CH3)3, are in harmony with this. In addition, the absorption spectrum of Mo3O(ONe)10 has been observed and an assignment based on the calculations in proposed.
Bayse, Craig A; Ortwine, Kristine N
2007-08-16
Green's functions calculations are presented for several complexes of molybdenum and tungsten, two metals that are similar structurally but display subtle, but significant, differences in electronic structure. Outer valence Green's functions IPs for M(CO)6, M(Me)6, MH6, [MCl4O](-), and [MO4](-) (M = Mo, W) are generally within +/-0.2 eV of available experimental photoelectron spectra. The calculations show that electrons in M-L bonding orbitals are ejected at lower energies for Mo while the detachment energy for electrons in d orbitals varies with metal and complex. For the metal carbonyls, the quasiparticle picture assumed in OVGF breaks down for the inner valence pi CO molecular orbitals due to the coupling of two-hole-one-particle charge transfer states to the one-hole states. Incorporation of the 2h1p states through a Tamm-Dancoff approximation calculation accurately represents the band due to detachment from these molecular orbitals. Though the ordering of IPs for Green's functions methods and DFT Koopmans' theorem IPs is similar for the highest IPs for most compounds considered, the breakdown of the quasiparticle picture for the metal carbonyls suggests that scaling of the latter values may result in a fortuitous or incorrect assignment of experimental VDEs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neary, Michelle C.; Parkin, Gerard
Here, the molecular structures of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe 3) 3–x(CO) xH (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts formore » the release of H 2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [Cp RMo(μ-O)(μ-O 2CH)] 2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2CH)] 2 and [Cp*Mo(μ-O)(μ-O 2CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ 2δ *2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.« less
Neary, Michelle C.; Parkin, Gerard
2017-01-19
Here, the molecular structures of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H have been determined by X-ray diffraction, thereby revealing four-legged piano-stool structures in which the hydride ligand is trans to CO. However, in view of the different nature of the four basal ligands, the geometries of CpMo(PMe 3)(CO) 2H and CpMo(PMe 3) 2(CO)H deviate from that of an idealized four-legged piano stool, such that the two ligands that are orthogonal to the trans H–Mo–CO moiety are displaced towards the hydride ligand. While CpRMo(PMe 3) 3–x(CO) xH (Cp R = Cp, Cp*; x = 1, 2, 3) are catalysts formore » the release of H 2 from formic acid, the carbonyl derivatives, CpRMo(CO)3H, are also observed to form dinuclear formate compounds, namely, [Cp RMo(μ-O)(μ-O 2CH)] 2. The nature of the Mo···Mo interactions in [CpMo(μ-O)(μ-O 2CH)] 2 and [Cp*Mo(μ-O)(μ-O 2CH)] 2 have been addressed computationally. In this regard, the two highest occupied molecular orbitals of [CpMo(μ-O)(μ-O 2CH)] 2 correspond to metal-based δ* (HOMO) and σ (HOMO–1) orbitals. The σ 2δ *2 configuration thus corresponds to a formal direct Mo–Mo bond order of zero. The preferential occupation of the δ* orbital rather than the δ orbital is a consequence of the interaction of the latter orbital with p orbitals of the bridging oxo ligands. In essence, lone-pair donation from oxygen increases the electron count so that the molybdenum centers can achieve an 18-electron configuration without the existence of a Mo–Mo bond, whereas a Mo=Mo double bond is required in the absence of lone-pair donation.« less
NASA Astrophysics Data System (ADS)
Sotiriou-Leventis, Chariklia; Hanna, Samir B.; Leventis, Nicholas
1996-04-01
The well-accepted practice of generating a pair of molecular orbitals, one of lower energy and another of higher energy than the original pair of overlapping atomic orbitals, and the concept of a particle in a one-dimensional box are implemented in a simplified, nonmathematical method that explains the relative stabilities and reactivities of alkenes with conjugated versus isolated double bonds. In this method, Huckel-type MO's of higher polyenes are constructed by energy rules of linear combination of atomic orbitals. One additional rule is obeyed: bonding molecular orbitals overlap only with bonding molecular orbitals, and antibonding molecular orbitals overlap only with antibonding molecular orbitals.
Computer Series, 114: MO Theory Made Visible.
ERIC Educational Resources Information Center
Mealli, Carlo; Proserpio, Davide M.
1990-01-01
A collection of Molecular Orbital (MO) programs that have been integrated into routines and programs to illustrate MO theory are presented. Included are discussions of Computer Aided Composition of Atomic Orbitals (CACAO) and Walsh diagrams. (CW)
NASA Astrophysics Data System (ADS)
Zahedi, Ehsan; Hojamberdiev, Mirabbos
2017-08-01
The crystal structures, electro-optical properties, and charge carrier effective masses of Cs2TeW3O12 and Cs2TeMo3O12 with hexagonal, polar and non-centrosymmetric crystal structure were investigated based on density functional theory. Cs2TeW3O12 and Cs2TeMo3O12 are found to be indirect K (1/3, 1/3, 0) → G (0, 0, 0) band gap semiconductors (Eg > 3 eV) with small effective masses of photogenerated charge carriers. The mixing of octahedrally coordinated d° transition metal cations (W6+ and Mo6+) with the filled p orbitals of the oxygen ligands leads to the formation of some W5+/Mo5+ sites and splitting of d orbitals into the partially filled t2g (dxy, dyz, and dzx) orbitals and empty eg (dz2 and dx2-y2) orbitals. The top of the valence bond is mainly contributed by O 2p orbital of the oxygen ligands mixed with the partially filled t2g orbitals of W 5d/Mo 4d, while the conduction band mainly consists of empty eg orbitals of W 5d/Mo 4d with a little contribution of O 2p orbitals. The dielectric function exhibits a slight anisotropic behavior and optical absorption peak for Cs2TeW3O12 and Cs2TeMo3O12 belonging to the strong electronic transition O 2p → W 5d/Mo 4d within the octahedral units. According to the estimated valence band and conduction band edges, Cs2TeW3O12 and Cs2TeMo3O12 can be applied as visible-light-responsive photocatalysts for the decomposition of organic pollutants and dye molecules. Also, Cs2TeMo3O12 can be used in water splitting for hydrogen generation but Cs2TeW3O12 requires further experimental studies to confirm its ability for water splitting.
Magliozzi, Patrizio; Strianese, Diego; Bonavolontà, Paola; Ferrara, Mariantonia; Ruggiero, Pasquale; Carandente, Raffaella; Bonavolontà, Giulio; Tranfa, Fausto
2015-01-01
AIM To describe a series of Italian patients with orbital metastasis focusing on the outcomes in relation to the different primary site of malignancy. METHODS Retrospective chart review of 93 patients with orbital metastasis collected in a tertiary referral centre in a period of 38y and review of literature. RESULTS Out of 93 patients, 52 were females and 41 were males. Median age at diagnosis was 51y (range 1 to 88y). The patients have been divided into four groups on the basis of the year of diagnosis. The frequency of recorded cases had decreased significantly (P<0.05) during the last 9.5y. Primary tumor site was breast in 36 cases (39%), kidney in 10 (11%), lung in 8 (9%), skin in 6 (6%); other sites were less frequent. In 16 case (17%) the primary tumor remained unknown. The most frequent clinical findings were proptosis (73%), limited ocular motility (55%), blepharoptosis (46%) and blurred vision (43%). The diagnosis were established by history, ocular and systemic evaluation, orbital imaging studies and open biopsy or fine needle aspiration biopsy (FNAB). Treatment included surgical excision, irradiation, chemotherapy, hormone therapy, or observation. Ninety-one percent of patients died of metastasis with an overall mean survival time (OMST) after the orbital diagnosis of 13.5mo. CONCLUSION Breast, kidney and lung are the most frequent primary sites of cancer leading to an orbital metastasis. When the primary site is unknown, gastrointestinal tract should be carefully investigated. In the last decade a decrease in the frequency of orbital metastasis has been observed. Surgery provides a local palliation. Prognosis remains poor with a OMST of 13.5mo ranging from the 3mo in the lung cancer to 24mo in the kidney tumor. PMID:26558220
Molecular orbital study of some eight-coordinate sulfur chelate complexes of molybdenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, P.G.; Schultz, F.A.
1983-03-30
A number of molybdenum complexes involving the formal oxidation states Mo(IV) and Mo(V) have been studied by a self-consistent-field molecular orbital technique. All the complexes were of dodecahedral geometry and had eight sulfurs chelated to the central metal atom. In all, a series of five tetrakis complexes was studied, including the ligands dithiocarbamate (dtc), thioxanthate (txn), 1,1-dicyano-2,2-ethylenedithiolate (i-mnt), 1-cyano-1-carbethoxy-2,2-ethylenedithiolate (ced), and 1,1-dicarbethoxy-2,2-ethylenedithiolate (ded). The 4d orbitals were included on molybdenum, and the empty 3d levels on all sulfur atoms. The results show that the highest occupied molecular orbital in each case has over 90% metal d/sub xy/ character. Further, themore » energy of this orbital is linearly related to the reversible half-wave potentials for Mo(IV) ..-->.. Mo(V) and Mo(V) ..-->.. Mo(VI) oxidations of the complexes. A further irreversible oxidation observed experimentally also is closely related to the calculated energy levels. Relationships between the calculated results and Mo 3d/sub 5///sub 2/ X-ray photoelectron binding energies, EPR parameters, and charge-transfer absorption energies are discussed. Electrochemical and spectroscopic properties of these MoS/sub 8/ complexes can be understood in terms of a manifold of orbital energies that retain approximately constant spacings between one another and that move up or down in absolute energy in response to the charge donated or withdrawn by the ligands.« less
The power of exact conditions in electronic structure theory
NASA Astrophysics Data System (ADS)
Bartlett, Rodney J.; Ranasinghe, Duminda S.
2017-02-01
Once electron correlation is included in an effective one-particle operator, one has a correlated orbital theory (COT). One such theory is Kohn-Sham density functional theory (KS-DFT), but there are others. Such methods have the prospect to redefine traditional Molecular Orbital (MO) theory by building a quantitative component upon its conceptual framework. This paper asks the question what conditions should such a theory satisfy and can this be accomplished? One such condition for a COT is that the orbital eigenvalues should satisfy an ionization theorem that generalizes Koopmans' approximation to the exact principal ionization potentials for every electron in a molecule. Guided by this principle, minimal parameterizations of KS-DFT are made that provide a good approximation to a quantitative MO theory.
Block-localized wavefunction (BLW) method at the density functional theory (DFT) level.
Mo, Yirong; Song, Lingchun; Lin, Yuchun
2007-08-30
The block-localized wavefunction (BLW) approach is an ab initio valence bond (VB) method incorporating the efficiency of molecular orbital (MO) theory. It can generate the wavefunction for a resonance structure or diabatic state self-consistently by partitioning the overall electrons and primitive orbitals into several subgroups and expanding each block-localized molecular orbital in only one subspace. Although block-localized molecular orbitals in the same subspace are constrained to be orthogonal (a feature of MO theory), orbitals between different subspaces are generally nonorthogonal (a feature of VB theory). The BLW method is particularly useful in the quantification of the electron delocalization (resonance) effect within a molecule and the charge-transfer effect between molecules. In this paper, we extend the BLW method to the density functional theory (DFT) level and implement the BLW-DFT method to the quantum mechanical software GAMESS. Test applications to the pi conjugation in the planar allyl radical and ions with the basis sets of 6-31G(d), 6-31+G(d), 6-311+G(d,p), and cc-pVTZ show that the basis set dependency is insignificant. In addition, the BLW-DFT method can also be used to elucidate the nature of intermolecular interactions. Examples of pi-cation interactions and solute-solvent interactions will be presented and discussed. By expressing each diabatic state with one BLW, the BLW method can be further used to study chemical reactions and electron-transfer processes whose potential energy surfaces are typically described by two or more diabatic states.
Gan, Xiaorong; Zhao, Huimin; Wong, Kwok-Yin; Lei, Dang Yuan; Zhang, Yaobin; Quan, Xie
2018-05-15
Surface functionalization is an effective strategy in the precise control of electronic surface states of two-dimensional materials for promoting their applications. In this study, based on the strong coordination interaction between the transition-metal centers and N atoms, the surface functionalization of few-layer MoS 2 nanosheets was successfully prepared by liquid phase exfoliation method in N, N-dimethylformamide (DMF), 1-methyl-2-pyrrolidinone, and formamide. The cytotoxicity of surface-functionalized MoS 2 nanosheets was for the first time evaluated by the methylthiazolyldiphenyl-tetrazoliumbromide assays. An electrochemical sensor was constructed based on glass carbon electrode (GCE) modified by MoS 2 nanosheets obtained in DMF, which exhibits relatively higher sensitivity to Cd 2+ detection and lower cytotoxicity against MCF-7 cells. The mechanisms of surface functionalization and selectively detecting Cd 2+ were investigated by density functional theory calculations together with various spectroscopic measurements. It was found that surface-functionalized MoS 2 nanosheets could be generated through Mo-N covalent bonds due to the orbital hybridization between the 5 s orbitals of Mo atoms and the 2p orbitals of N atoms of the solvent molecules. The high selectivity of the sensor is attributed to the coordination reaction between Cd 2+ and O donor atoms of DMF adsorbed on MoS 2 nanosheets. The robust anti-interference is ascribed to the strong binding energy of Cd 2+ and O atoms of DMF. Under the optimum conditions, the electrochemical sensor exhibits highly sensitive and selective assaying of Cd 2+ with a measured detection limit of 0.2 nM and a linear range from 2 nM to 20 μM. Copyright © 2018 Elsevier B.V. All rights reserved.
Olson, Angela C; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Daly, Scott R; Kozimor, Stosh A; MacInnes, Molly M; Martin, Richard L; Scott, Brian L
2014-12-14
Herein, we have evaluated relative changes in M-S electronic structure and orbital mixing in Group 6 MS4(2-) dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as (1)A1 → (1)T2 transitions. For MoS4(2-), both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS4(2-), solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO4(2-) dianions, which allowed M-S and M-O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M-E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M-S bonds, but increased appreciably for M-O interactions. For the t orbitals (σ* + π*), mixing decreased slightly for M-S bonding and increased only slightly for the M-O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME4(2-) (E = O, S) dianions.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Tang, Fu-Ling; Xue, Hong-Tao; Lu, Wen-Jiang; Liu, Jiang-Fei; Huang, Min
2015-02-01
Using first-principles plane-wave calculations within density functional theory, we theoretically studied the atomic structure, bonding energy and electronic properties of the perfect Mo (110)/MoSe2 (100) interface with a lattice mismatch less than 4.2%. Compared with the perfect structure, the interface is somewhat relaxed, and its atomic positions and bond lengths change slightly. The calculated interface bonding energy is about -1.2 J/m2, indicating that this interface is very stable. The MoSe2 layer on the interface has some interface states near the Fermi level, the interface states are mainly caused by Mo 4d orbitals, while the Se atom almost have no contribution. On the interface, Mo-5s and Se-4p orbitals hybridize at about -6.5 to -5.0 eV, and Mo-4d and Se-4p orbitals hybridize at about -5.0 to -1.0 eV. These hybridizations greatly improve the bonding ability of Mo and Se atom in the interface. By Bader charge analysis, we find electron redistribution near the interface which promotes the bonding of the Mo and MoSe2 layer.
Waller, Sarah E; Mann, Jennifer E; Hossain, Ekram; Troyer, Mary; Jarrold, Caroline C
2012-07-14
Vibrationally-resolved photoelectron spectra of AlMoO(y)(-) (y = 1-4) are presented and analyzed in conjunction with density functional theory computational results. The structures determined for the AlMoO(y) anion and neutral clusters suggest ionic bonding between Al(+) and a MoO(y)(-) or MoO(y)(-2) moiety, and point to the relative stability of Mo=O versus Al=O bonds. The highest occupied and partially occupied orbitals in the anions and neutrals can be described as Mo atomic-like orbitals, so while the Mo is in a higher oxidation state than Al, the most energetically accessible electrons are localized on the molybdenum center.
NASA Astrophysics Data System (ADS)
Gili, Pedro; Tsipis, Athanassios C.
Molecular and electronic structures of multiply charged mononuclear [CrS4]2-/3-, [MoOxS4-x]2-/3- (x = 0-4) and [WS4]2-/3- anionic species, and their heterobimetallic dinuclear and trinuclear clusters formulated as [MoOS3(CuCl)]2-, [WOS3(CuCl)]2-, [MoS4{Cu(CN)}]2-, [(CN)Cu(?-CrS4)Cu(CN)]2-, [(CN)Cu(?-MoS4)Cu(CN)]2-, [ClCu(?-MoS4)CuCl]2-, [Cl2Fe(?-MoS4)CuCl2]2-, and [(CN)Cu(?-WS4)Cu(CN)]2- have been investigated using electronic structure calculation (HF, MP4SDQ and DFT) methods. For the discrete mononuclear anions HF/lanl2dz(M)?6-31+G*(S,O) method provided the best description of their molecular structures, while for the heterobimetallic dinuclear and trinuclear clusters the B3LYP/lanl2dz(M)?6-31+G* method gave equilibrium geometries closely resembling the experimental ones. Electronic and spectroscopic (IR, UV-Vis) properties of the thiometalates are discussed in relation to their structures, while the bonding mechanism was analyzed in the framework of the natural bond orbital (NBO) approach. The nature of the highest occupied molecular orbitals (HOMOs) of all thiometalates indicated their ability to act as ligands coordinated with metal centers and forming clusters of higher nuclearity. The lowest-lying vertical one-electron detachment processes from the ground state of the [CrS4]2/3-, [MoOxS4-x]2/3- (x = 0-4) and [WS4]2/3- anions have been calculated using the outer valence Green's function (OVGF) method. Interestingly, in the heterobimetallic dinuclear and trinuclear clusters intemetallic M?M? interactions exist corresponding to d10 ? d0 dative bonding. Finally, the complete energetic and geometric profile of the successive acid-catalyzed formation reactions:and the reverse hydrolysis reactions have been delineated and details of the mechanism have been furnished.
Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.
Cuny, Jérôme; Furet, Eric; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J; d'Espinose de Lacaillerie, Jean-Baptiste
2009-12-21
The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge-including projector augmented-wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition-metal nucleus. The effects of ultra-soft pseudo-potential parameters, exchange-correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.
ERIC Educational Resources Information Center
Halpern, Arthur M.; Glendening, Eric D.
2013-01-01
A three-part project for students in physical chemistry, computational chemistry, or independent study is described in which they explore applications of valence bond (VB) and molecular orbital-configuration interaction (MO-CI) treatments of H[subscript 2]. Using a scientific spreadsheet, students construct potential-energy (PE) curves for several…
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; ...
2017-11-27
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-beta decay of Mo-100 have been determined by measuring cross sections in (d, p), (p, d), (He-3, a), and (He-3, d) reactions on Mo-98,Mo-100 and Ru-100,Ru-102 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-beta decay of the Mo-100 system.
Band structure and orbital character of monolayer MoS2 with eleven-band tight-binding model
NASA Astrophysics Data System (ADS)
Shahriari, Majid; Ghalambor Dezfuli, Abdolmohammad; Sabaeian, Mohammad
2018-02-01
In this paper, based on a tight-binding (TB) model, first we present the calculations of eigenvalues as band structure and then present the eigenvectors as probability amplitude for finding electron in atomic orbitals for monolayer MoS2 in the first Brillouin zone. In these calculations we are considering hopping processes between the nearest-neighbor Mo-S, the next nearest-neighbor in-plan Mo-Mo, and the next nearest-neighbor in-plan and out-of-plan S-S atoms in a three-atom based unit cell of two-dimensional rhombic MoS2. The hopping integrals have been solved in terms of Slater-Koster and crystal field parameters. These parameters are calculated by comparing TB model with the density function theory (DFT) in the high-symmetry k-points (i.e. the K- and Γ-points). In our TB model all the 4d Mo orbitals and the 3p S orbitals are considered and detailed analysis of the orbital character of each energy level at the main high-symmetry points of the Brillouin zone is described. In comparison with DFT calculations, our results of TB model show a very good agreement for bands near the Fermi level. However for other bands which are far from the Fermi level, some discrepancies between our TB model and DFT calculations are observed. Upon the accuracy of Slater-Koster and crystal field parameters, on the contrary of DFT, our model provide enough accuracy to calculate all allowed transitions between energy bands that are very crucial for investigating the linear and nonlinear optical properties of monolayer MoS2.
47 CFR 1.1156 - Schedule of regulatory fees and filing locations for international services.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Stations (Geostationary Orbit) $122,400 FCC, International, P.O. Box 979084, St. Louis, MO 63197-9000. Space Stations (Non-Geostationary Orbit) 132,850 FCC, International, P.O. Box 979084, St. Louis, MO...
47 CFR 1.1156 - Schedule of regulatory fees and filing locations for international services.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Stations (Geostationary Orbit) $139,100 FCC, International, P.O. Box 979084, St. Louis, MO 63197-9000. Space Stations (Non-Geostationary Orbit) 149,875 FCC, International, P.O. Box 979084, St. Louis, MO...
47 CFR 1.1156 - Schedule of regulatory fees and filing locations for international services.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Stations (Geostationary Orbit) $132,875 FCC, International, P.O. Box 979084, St. Louis, MO 63197-9000. Space Stations (Non-Geostationary Orbit) 143,150 FCC, International, P.O. Box 979084, St. Louis, MO...
Orbital Dimer Model for the Spin-Glass State in Y 2 Mo 2 O 7
Thygesen, Peter M. M.; Paddison, Joseph A. M.; Zhang, Ronghuan; ...
2017-02-08
The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y 2Mo 2O 7-in which magnetic Mo 4+ ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-rayabsorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo 4+ ions displace accordingmore » to a local "two-in-two-out" rule on each Mo 4 tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo 4+ ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O 2- displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. In conclusion, our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.« less
Orbital Dimer Model for the Spin-Glass State in Y_{2}Mo_{2}O_{7}.
Thygesen, Peter M M; Paddison, Joseph A M; Zhang, Ronghuan; Beyer, Kevin A; Chapman, Karena W; Playford, Helen Y; Tucker, Matthew G; Keen, David A; Hayward, Michael A; Goodwin, Andrew L
2017-02-10
The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y_{2}Mo_{2}O_{7}-in which magnetic Mo^{4+} ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-ray-absorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo^{4+} ions displace according to a local "two-in-two-out" rule on each Mo_{4} tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo^{4+} ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O^{2-} displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. Our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.
Electron Spectroscopic Methods in Teaching.
ERIC Educational Resources Information Center
Allan, Michael
1987-01-01
Discusses electron-loss spectroscopy and the experimentally observed excitation energies in terms of qualitative MO theory. Reviews information on photoelectron spectroscopy and electron transmission spectroscopy and their relation to the occupied and unoccupied orbital levels. Focuses on teaching applications. (ML)
Electronic structure description of the cis-MoOS unit in models for molybdenum hydroxylases.
Doonan, Christian J; Rubie, Nick D; Peariso, Katrina; Harris, Hugh H; Knottenbelt, Sushilla Z; George, Graham N; Young, Charles G; Kirk, Martin L
2008-01-09
The molybdenum hydroxylases catalyze the oxidation of numerous aromatic heterocycles and simple organics and, unlike other hydroxylases, utilize water as the source of oxygen incorporated into the product. The electronic structures of the cis-MoOS units in CoCp2[TpiPrMoVOS(OPh)] and TpiPrMoVIOS(OPh) (TpiPr = hydrotris(3-isopropylpyrazol-1-yl)borate), new models for molybdenum hydroxylases, have been studied in detail using S K-edge X-ray absorption spectroscopy, vibrational spectroscopy, and detailed bonding calculations. The results show a highly delocalized Mo=S pi* LUMO redox orbital that is formally Mo(dxy) with approximately 35% sulfido ligand character. Vibrational spectroscopy has been used to quantitate Mo-Ssulfido bond order changes in the cis-MoOS units as a function of redox state. Results support a redox active molecular orbital that has a profound influence on MoOS bonding through changes to the relative electro/nucleophilicity of the terminal sulfido ligand accompanying oxidation state changes. The bonding description for these model cis-MoOS systems supports enzyme mechanisms that are under orbital control and dominantly influenced by the unique electronic structure of the cis-MoOS site. The electronic structure of the oxidized enzyme site is postulated to play a role in polarizing a substrate carbon center for nucleophilic attack by metal activated water and acting as an electron sink in the two-electron oxidation of substrates.
Azar, R Julian; Horn, Paul Richard; Sundstrom, Eric Jon; Head-Gordon, Martin
2013-02-28
The problem of describing the energy-lowering associated with polarization of interacting molecules is considered in the overlapping regime for self-consistent field wavefunctions. The existing approach of solving for absolutely localized molecular orbital (ALMO) coefficients that are block-diagonal in the fragments is shown based on formal grounds and practical calculations to often overestimate the strength of polarization effects. A new approach using a minimal basis of polarized orthogonal local MOs (polMOs) is developed as an alternative. The polMO basis is minimal in the sense that one polarization function is provided for each unpolarized orbital that is occupied; such an approach is exact in second-order perturbation theory. Based on formal grounds and practical calculations, the polMO approach is shown to underestimate the strength of polarization effects. In contrast to the ALMO method, however, the polMO approach yields results that are very stable to improvements in the underlying AO basis expansion. Combining the ALMO and polMO approaches allows an estimate of the range of energy-lowering due to polarization. Extensive numerical calculations on the water dimer using a large range of basis sets with Hartree-Fock theory and a variety of different density functionals illustrate the key considerations. Results are also presented for the polarization-dominated Na(+)CH4 complex. Implications for energy decomposition analysis of intermolecular interactions are discussed.
NASA Astrophysics Data System (ADS)
Freeman, S. J.; Sharp, D. K.; McAllister, S. A.; Kay, B. P.; Deibel, C. M.; Faestermann, T.; Hertenberger, R.; Mitchell, A. J.; Schiffer, J. P.; Szwec, S. V.; Thomas, J. S.; Wirth, H.-F.
2017-11-01
The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double-β decay of 100Mo have been determined by measuring cross sections in (d ,p ), (p ,d ), (3He,α ), and (3He,d ) reactions on Mo,10098 and Ru,102100 targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double-β decay of the 100Mo system.
J1-J2 square lattice antiferromagnetism in the orbitally quenched insulator MoOPO4
NASA Astrophysics Data System (ADS)
Yang, L.; Jeong, M.; Babkevich, P.; Katukuri, V. M.; Náfrádi, B.; Shaik, N. E.; Magrez, A.; Berger, H.; Schefer, J.; Ressouche, E.; Kriener, M.; Živković, I.; Yazyev, O. V.; Forró, L.; Rønnow, H. M.
2017-07-01
We report magnetic and thermodynamic properties of a 4 d1 (Mo5 +) magnetic insulator MoOPO4 single crystal, which realizes a J1-J2 Heisenberg spin-1 /2 model on a stacked square lattice. The specific-heat measurements show a magnetic transition at 16 K which is also confirmed by magnetic susceptibility, ESR, and neutron diffraction measurements. Magnetic entropy deduced from the specific heat corresponds to a two-level degree of freedom per Mo5 + ion, and the effective moment from the susceptibility corresponds to the spin-only value. Using ab initio quantum chemistry calculations, we demonstrate that the Mo5 + ion hosts a purely spin-1 /2 magnetic moment, indicating negligible effects of spin-orbit interaction. The quenched orbital moments originate from the large displacement of Mo ions inside the MoO6 octahedra along the apical direction. The ground state is shown by neutron diffraction to support a collinear Néel-type magnetic order, and a spin-flop transition is observed around an applied magnetic field of 3.5 T. The magnetic phase diagram is reproduced by a mean-field calculation assuming a small easy-axis anisotropy in the exchange interactions. Our results suggest 4 d molybdates as an alternative playground to search for model quantum magnets.
Study on Silver-plated Molybdenum Interconnected Materials for LEO Solar Cell Array
NASA Astrophysics Data System (ADS)
Zhu, Jia-jun; Hu, Yu-hao; Xu, Meng; Yang, Wu-lin; Fu, Li-cai; Li, De-yi; Zhou, Ling-ping
2017-09-01
Atomic oxygen (AO) is one of the most important environmental factors that affected the performance of low earth orbit spacecraft in orbit. In which, silver was the most common materials as the interconnected materials. However, with the poor AO resistance of silver, the interconnectors could be failure easier, and the lifetime of the spacecraft was also reduced. In this paper, the silver-plated molybdenum interconnected materials made by Ag thin films deposited on the Mo foils by vacuum deposition methods was studied. And the effects of the preparation process on the micro-structure of the Ag thin films, the interfacial adhesive strength and the electrical conductivity of the composites were investigated. It was found that the Ag thin films deposited on the Mo substrates coated the Ag thin films by ion beam assisted deposition(IBAD) methods exhibited a perfectly (200) preferred orientation. The interfacial adhesive strength had been increased to 18.58MPa. And the composites also have excellent electrical performance.
Olson, Angela C.; Keith, Jason M.; Batista, Enrique R.; Boland, Kevin S.; Daly, Scott R.; Kozimor, Stosh A.; MacInnes, Molly M.; Martin, Richard L.; Scott, Brian L.
2014-01-01
Herein, we have evaluated relative changes in M–S electronic structure and orbital mixing in Group 6 MS42- dianions using solid- and solution-phase S K-edge X-ray absorption spectroscopy (XAS; M = Mo, W), as well as density functional theory (DFT; M = Cr, Mo, W) and time-dependent density functional theory (TDDFT) calculations. To facilitate comparison with solution measurements (conducted in acetonitrile), theoretical models included gas-phase calculations as well as those that incorporated an acetonitrile dielectric, the latter of which provided better agreement with experiment. Two pre-edge features arising from S 1s → e* and t2* electron excitations were observed in the S K-edge XAS spectra and were reasonably assigned as 1A1 → 1T2 transitions. For MoS42-, both solution-phase pre-edge peak intensities were consistent with results from the solid-state spectra. For WS42-, solution- and solid-state pre-edge peak intensities for transitions involving e* were equivalent, while transitions involving the t2* orbitals were less intense in solution. Experimental and computational results have been presented in comparison to recent analyses of MO42- dianions, which allowed M–S and M–O orbital mixing to be evaluated as the principle quantum number (n) for the metal valence d orbitals increased (3d, 4d, 5d). Overall, the M–E (E = O, S) analyses revealed distinct trends in orbital mixing. For example, as the Group 6 triad was descended, e* (π*) orbital mixing remained constant in the M–S bonds, but increased appreciably for M–O interactions. For the t2* orbitals (σ* + π*), mixing decreased slightly for M–S bonding and increased only slightly for the M–O interactions. These results suggested that the metal and ligand valence orbital energies and radial extensions delicately influenced the orbital compositions for isoelectronic ME42- (E = O, S) dianions. PMID:25311904
Many-body expansion of the Fock matrix in the fragment molecular orbital method
NASA Astrophysics Data System (ADS)
Fedorov, Dmitri G.; Kitaura, Kazuo
2017-09-01
A many-body expansion of the Fock matrix in the fragment molecular orbital method is derived up to three-body terms for restricted Hartree-Fock and density functional theory in the atomic orbital basis and compared to the expansion in the basis of fragment molecular orbitals (MOs). The physical nature of many-body corrections is revealed in terms of charge transfer terms. An improvement of the fragment MO expansion is proposed by adding exchange to the embedding. The accuracy of all developed methods is demonstrated in comparison to unfragmented results for polyalanines, a water cluster, Trp-cage (PDB: 1L2Y) and crambin (PDB: 1CRN) proteins, a zeolite cluster, a Si nano-wire, and a boron nitride ribbon. The physical nature of metallicity is discussed, and it is shown what kinds of metallic systems can be treated by fragment-based methods. The density of states is calculated for a fully closed and a partially open nano-ring of boron nitride with a diameter of 105 nm.
Strict Correlation of HOMO Topology and Magnetic Aromaticity Indices in d-Block Metalloaromatics.
Mauksch, Michael; Tsogoeva, Svetlana B
2018-05-16
Magnetic aromaticity and antiaromaticity of closed shell metalloaromatics with 4d transition metals (Nb, Tc, Rh) is strictly correlated with orbital topology (Möbius or Hückel) of their π-HOMO, investigated computationally with DFT methods. A surprisingly simple rule emerged: the metallacycle is aromatic (antiaromatic) when the number of π MO's is even and the π-HOMO is of Möbius (Hückel) topology - and vice versa when the number of π MO's is odd. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A study on the stability of O{sub 2} on oxometalloporphyrins by the first principles calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubota, Yoshiyuki; Escano, Mary Clare Sison; Dy, Eben Sy
2007-05-21
The authors investigated the interaction of oxometalloporphyrins (MO(por))--specifically, MoO(por), WO(por), TiO(por), VO(por), and CrO(por)--with O{sub 2} by using first principles calculations. MoO(por) and WO(por) undergo reactions with O{sub 2}; on the other hand, TiO(por), VO(por), and CrO(por) do not. Next, they compared the interaction of MoO(por) and WO(por) with O{sub 2}. Activation barriers for the reactions of MoO(por) and WO(por) with a side-on O{sub 2} are small. For MoO(por)(O{sub 2}), the activation barrier for the reverse reaction that liberates O{sub 2} is also small; however, that for WO(por)(O{sub 2}) is large. The experimental results that photoirradiation with visible light ormore » heating of Mo {sup VI}O(tmp)(O{sub 2}) regenerates Mo {sup VI}O(tmp) by liberating O{sub 2} while W {sup VI}O(tmp)(O{sub 2}) does not [J. Tachibana, T. Imamura, and Y. Sasaki, Bull. Chem. Soc. Jpn. 71, 363 (1998)] are explained by the difference in activation barriers of the reverse reactions. This means that bonds formed between the W atom and O{sub 2} are stronger than those between the Mo atom and O{sub 2}. The bond strengths can be explained by differences in the energy levels between the highest occupied molecular orbital of MoO(por) and WO(por), which are mainly formed from the a orbitals of the central metal atom and {pi}{sup *} orbitals of O{sub 2}.« less
NASA Astrophysics Data System (ADS)
Bieniek, Maciej; Korkusiński, Marek; Szulakowska, Ludmiła; Potasz, Paweł; Ozfidan, Isil; Hawrylak, Paweł
2018-02-01
We present here the minimal tight-binding model for a single layer of transition metal dichalcogenides (TMDCs) MX 2(M , metal; X , chalcogen) which illuminates the physics and captures band nesting, massive Dirac fermions, and valley Landé and Zeeman magnetic field effects. TMDCs share the hexagonal lattice with graphene but their electronic bands require much more complex atomic orbitals. Using symmetry arguments, a minimal basis consisting of three metal d orbitals and three chalcogen dimer p orbitals is constructed. The tunneling matrix elements between nearest-neighbor metal and chalcogen orbitals are explicitly derived at K ,-K , and Γ points of the Brillouin zone. The nearest-neighbor tunneling matrix elements connect specific metal and sulfur orbitals yielding an effective 6 ×6 Hamiltonian giving correct composition of metal and chalcogen orbitals but not the direct gap at K points. The direct gap at K , correct masses, and conduction band minima at Q points responsible for band nesting are obtained by inclusion of next-neighbor Mo-Mo tunneling. The parameters of the next-nearest-neighbor model are successfully fitted to MX 2(M =Mo ; X =S ) density functional ab initio calculations of the highest valence and lowest conduction band dispersion along K -Γ line in the Brillouin zone. The effective two-band massive Dirac Hamiltonian for MoS2, Landé g factors, and valley Zeeman splitting are obtained.
EPR/ENDOR and Theoretical Study of the Jahn-Teller-Active [HIPTN3N]MoVL Complexes (L = N-, NH).
Sharma, Ajay; Roemelt, Michael; Reithofer, Michael; Schrock, Richard R; Hoffman, Brian M; Neese, Frank
2017-06-19
The molybdenum trisamidoamine (TAA) complex [Mo] {[3,5-(2,4,6-i-Pr 3 C 6 H 2 ) 2 C 6 H 3 NCH 2 CH 2 N]Mo} carries out catalytic reduction of N 2 to ammonia (NH 3 ) by protons and electrons at room temperature. A key intermediate in the proposed [Mo] nitrogen reduction cycle is nitridomolybdenum(VI), [Mo(VI)]N. The addition of [e - /H + ] to [Mo(VI)]N to generate [Mo(V)]NH might, in principle, follow one of three possible pathways: direct proton-coupled electron transfer; H + first and then e - ; e - and then H + . In this study, the paramagnetic Mo(V) intermediate {[Mo]N} - and the [Mo]NH transfer product were generated by irradiating the diamagnetic [Mo]N and {[Mo]NH} + Mo(VI) complexes, respectively, with γ-rays at 77 K, and their electronic and geometric structures were characterized by electron paramagnetic resonance and electron nuclear double resonance spectroscopies, combined with quantum-chemical computations. In combination with previous X-ray studies, this creates the rare situation in which each one of the four possible states of [e - /H + ] delivery has been characterized. Because of the degeneracy of the electronic ground states of both {[Mo(V)]N} - and [Mo(V)]NH, only multireference-based methods such as the complete active-space self-consistent field (CASSCF) and related methods provide a qualitatively correct description of the electronic ground state and vibronic coupling. The molecular g values of {[Mo]N} - and [Mo]NH exhibit large deviations from the free-electron value g e . Their actual values reflect the relative strengths of vibronic and spin-orbit coupling. In the course of the computational treatment, the utility and limitations of a formal two-state model that describes this competition between couplings are illustrated, and the implications of our results for the chemical reactivity of these states are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minasian, Stefan G.; Keith, Jason M.; Batista, Enrique R.
Advancing theories of how metal oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal peroxyanions, MO4x-, have formed the basis for new M O bonding theories. Herein, relative changes in M O orbital mixing in MO42- (M = Cr, Mo, W) and MO41- (M = Mn, Tc, Re) are evaluated for the first time by non-resonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and linear-response density functional theory. The results suggest that moving from Groupmore » 6 to Group 7 or down the triads increases M O e () mixing. Meanwhile, t2 mixing ( + ) remains relatively constant within the same Group. These unexpected changes in frontier orbital energy and composition are evaluated in terms of periodic trends in d orbital energy and radial extension.« less
Diverse forms of bonding in two-dimensional Si allotropes: Nematic orbitals in the MoS2 structure
NASA Astrophysics Data System (ADS)
Gimbert, Florian; Lee, Chi-Cheng; Friedlein, Rainer; Fleurence, Antoine; Yamada-Takamura, Yukiko; Ozaki, Taisuke
2014-10-01
The interplay of sp2- and sp3-type bonding defines silicon allotropes in two- and three-dimensional forms. A two-dimensional phase bearing structural resemblance to a single MoS2 layer is found to possess a lower total energy than low-buckled silicene and to be stable in terms of its phonon dispersion relations. A set of cigar-shaped nematic orbitals originating from the Si sp2 orbitals realizes bonding with a sixfold coordination of the inner Si atoms of the layer. The identification of these nematic orbitals advocates diverse Si bonding configurations different from those of C atoms.
Kurokawa, Yusaku I; Nakao, Yoshihide; Sakaki, Shigeyoshi
2012-03-08
Inverted sandwich type complexes (ISTCs) of 4d metals, (μ-η(6):η(6)-C(6)H(6))[M(DDP)](2) (DDPH = 2-{(2,6-diisopropylphenyl)amino}-4-{(2,6-diisopropylphenyl)imino}pent-2-ene; M = Y, Zr, Nb, Mo, and Tc), were investigated with density functional theory (DFT) and MRMP2 methods, where a model ligand AIP (AIPH = (Z)-1-amino-3-imino-prop-1-ene) was mainly employed. When going to Nb (group V) from Y (group III) in the periodic table, the spin multiplicity of the ground state increases in the order singlet, triplet, and quintet for M = Y, Zr, and Nb, respectively, like 3d ISTCs reported recently. This is interpreted with orbital diagram and number of d electrons. However, the spin multiplicity decreases to either singlet or triplet in ISTC of Mo (group VI) and to triplet in ISTC of Tc (group VII), where MRMP2 method is employed because the DFT method is not useful here. These spin multiplicities are much lower than the septet of ISTC of Cr and the nonet of that of Mn. When going from 3d to 4d, the position providing the maximum spin multiplicity shifts to group V from group VII. These differences arise from the size of the 4d orbital. Because of the larger size of the 4d orbital, the energy splitting between two d(δ) orbitals of M(AIP) and that between the d(δ) and d(π) orbitals are larger in the 4d complex than in the 3d complex. Thus, when occupation on the d(δ) orbital starts, the low spin state becomes ground state, which occurs at group VI. Hence, the ISTC of Nb (group V) exhibits the maximum spin multiplicity.
Electron-positron momentum density in Tl 2Ba 2CuO 6
NASA Astrophysics Data System (ADS)
Barbiellini, B.; Gauthier, M.; Hoffmann, L.; Jarlborg, T.; Manuel, A. A.; Massidda, S.; Peter, M.; Triscone, G.
1994-08-01
We present calculations of the electron-positron momentum density for the high- Tc superconductor Tl 2Ba 2CuO 6, together with some preliminary two-dimensional angular correlation of the annihilation radiation (2D-ACAR) measurements. The calculations are based on the first-principles electronic structure obtained using the full-potential linearized augmented plane wave (FLAPW) and the linear muffin-tin orbital (LMTO) methods. We also use a linear combination of the atomic orbitals-molecular orbital method (LCAO-MO) to discuss orbital contributions to the anisotropies. Some agreement between calculated and measured 2D-ACAR anisotropies encourage sample improvement for further Fermi surface investigations. Indeed, our results indicate a non-negligle overlap of the positron wave function with the CuOo 2 plane electrons. Therefore, this compound may be well suited for investigating the relevant CuO 2 Fermi surface by 2D-ACAR.
Morikami, Kenji; Itezono, Yoshiko; Nishimoto, Masahiro; Ohta, Masateru
2014-01-01
Compounds with a medium-sized flexible ring often show atropisomerism that is caused by the high-energy barriers between long-lived conformers that can be isolated and often have different biological properties to each other. In this study, the frequency of the transition between the two stable conformers, aS and aR, of thienotriazolodiazepine compounds with flexible 7-membered rings was estimated computationally by Monte Carlo (MC) simulations and validated experimentally by NMR experiments. To estimate the energy barriers for transitions as precisely as possible, the potential energy (PE) surfaces used in the MC simulations were calculated by molecular orbital (MO) methods. To accomplish the MC simulations with the MO-based PE surfaces in a practical central processing unit (CPU) time, the MO-based PE of each conformer was pre-calculated and stored before the MC simulations, and then only referred to during the MC simulations. The activation energies for transitions calculated by the MC simulations agreed well with the experimental ΔG determined by the NMR experiments. The analysis of the transition trajectories of the MC simulations revealed that the transition occurred not only through the transition states, but also through many different transition paths. Our computational methods gave us quantitative estimates of atropisomerism of the thienotriazolodiazepine compounds in a practical period of time, and the method could be applicable for other slow-dynamics phenomena that cannot be investigated by other atomistic simulations.
Seniority Number in Valence Bond Theory.
Chen, Zhenhua; Zhou, Chen; Wu, Wei
2015-09-08
In this work, a hierarchy of valence bond (VB) methods based on the concept of seniority number, defined as the number of singly occupied orbitals in a determinant or an orbital configuration, is proposed and applied to the studies of the potential energy curves (PECs) of H8, N2, and C2 molecules. It is found that the seniority-based VB expansion converges more rapidly toward the full configuration interaction (FCI) or complete active space self-consistent field (CASSCF) limit and produces more accurate PECs with smaller nonparallelity errors than its molecular orbital (MO) theory-based analogue. Test results reveal that the nonorthogonal orbital-based VB theory provides a reverse but more efficient way to truncate the complete active Hilbert space by seniority numbers.
Colabello, Diane M; Camino, Fernando E; Huq, Ashfia; Hybertsen, Mark; Khalifah, Peter G
2015-01-28
The structure of the novel compound La2MoO5 has been solved from powder X-ray and neutron diffraction data and belongs to the tetragonal space group P4/m (no. 83) with a = 12.6847(3) Å and c = 6.0568(2) Å and with Z = 8. It consists of equal proportions of bioctahedral (Mo2O10) and square prismatic (Mo2O8) dimers, both of which contain direct Mo-Mo bonds and are arranged in 1D chains. The Mo-Mo bond length in the Mo2O10 dimers is 2.684(8) Å, while there are two types of Mo2O8 dimers with Mo-Mo bonds lengths of 2.22(2) and 2.28(2) Å. Although the average Mo oxidation state in La2MoO5 is 4+, the very different Mo-Mo distances reflect the fact that the Mo2O10 dimers contain only Mo(5+) (d(1)), while the prismatic Mo2O8 dimers only contain Mo(3+) (d(3)), a result directly confirmed by density function theory calculations. This is due to the complete disproportionation of Mo(4+), a phenomenon which has not previously been observed in solid-state compounds. La2MoO5 is diamagnetic, behavior which is not expected for a nonmetallic transition-metal oxide whose cation sites have an odd number of d-electrons. The resistivity displays the Arrhenius-type activated behavior expected for a semiconductor with a band gap of 0.5 eV, exhibiting an unusually small transport gap relative to other diamagnetic oxides. Diffuse reflectance studies indicate that La2MoO5 is a rare example of a stable oxide semiconductor with strong infrared absorbance. It is shown that the d-orbital splitting associated with the Mo2O8 and Mo2O10 dimeric units can be rationalized using simple molecular orbital bonding concepts.
Towards a multiconfigurational method of increments
NASA Astrophysics Data System (ADS)
Fertitta, E.; Koch, D.; Paulus, B.; Barcza, G.; Legeza, Ö.
2018-06-01
The method of increments (MoI) allows one to successfully calculate cohesive energies of bulk materials with high accuracy, but it encounters difficulties when calculating dissociation curves. The reason is that its standard formalism is based on a single Hartree-Fock (HF) configuration whose orbitals are localised and used for the many-body expansion. In situations where HF does not allow a size-consistent description of the dissociation, the MoI cannot be guaranteed to yield proper results either. Herein, we address the problem by employing a size-consistent multiconfigurational reference for the MoI formalism. This leads to a matrix equation where a coupling derived by the reference itself is employed. In principle, such an approach allows one to evaluate approximate values for the ground as well as excited states energies. While the latter are accurate close to the avoided crossing only, the ground state results are very promising for the whole dissociation curve, as shown by the comparison with density matrix renormalisation group benchmarks. We tested this two-state constant-coupling MoI on beryllium rings of different sizes and studied the error introduced by the constant coupling.
Regan, P. H.; Wheldon, C.; Yamamoto, A. D.; ...
2005-04-01
The near-yrast states of 42 101Mo 59 and 44 103,4Ru 59,60 have been studied following their population via heavy-ion multinucleon transfer reactions between a 136 Xe beam and a thin, self-supporting 100Mo target. The ground state sequence in 104Ru can be understood as demonstrating a simple evolution from a quasi-vibrational structure at lower spins to statically deformed, quasi-rotational excitation involving the population of a pair of low-Ω h 11/2 neutron orbitals. The effect of the decoupled h 11/2 orbital on this vibration-to-rotational evolution is demonstrated by an extension of the "E-GOS" prescription to include odd-A nuclei. The experimental results aremore » also compared with self-consistent Total Routhian Surface calculations which also highlight the polarising role of the highly aligned neutron h 11/2 orbital in these nuclei.« less
NASA Astrophysics Data System (ADS)
Saravanan, L.; Raja, M. Manivel; Prabhu, D.; Pandiyarasan, V.; Ikeda, H.; Therese, H. A.
2018-05-01
Perpendicular Magnetic Anisotropy (PMA) was realized in as-deposited Mo(10)/Co2FeAl0.5Si0.5(CFAS)(3)/MgO(0.5)/Mo multilayer stacks with large perpendicular magnetic anisotropy energy (Keff). PMA of this multilayer is found to be strongly dependent on the thickness of the individual CFAS (tCFAS), Mo (tMo) and MgO (tMgO) layers and annealing temperatures. The interactions at the Mo/CFAS/MgO interfaces are critical to induce PMA and are tuned by the interfacial oxidation. The major contribution to PMA is due to iron oxide at the CFAS/MgO interface. X-ray diffraction (XRD) and infrared spectroscopic (FT-IR) studies further ascertain this. However, an adequate oxidation of MgO and the formation of (0 2 4) and (0 1 8) planes of α-Fe2O3 at the optimal Mo buffer layer thickness is mainly inducing PMA in Mo/CFAS/MgO/Mo stack. Microstructural changes in the films are observed by atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) demonstrates the oxidation of CFAS/MgO interface and the formation of Fe-O bonds confirming that the real origin of PMA in Mo/CFAS/MgO is due to hybridization of Fe (3dz2) and O (2pz) orbitals and the resulted spin-orbit interaction at their interface. The half-metallic nature CFAS with Mo layer exhibiting PMA can be a potential candidate as p-MTJs electrodes for the new generation spintronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thygesen, Peter M. M.; Paddison, Joseph A. M.; Zhang, Ronghuan
The formation of a spin glass generally requires that magnetic exchange interactions are both frustrated and disordered. Consequently, the origin of spin-glass behavior in Y 2Mo 2O 7-in which magnetic Mo 4+ ions occupy a frustrated pyrochlore lattice with minimal compositional disorder-has been a longstanding question. Here, we use neutron and x-ray pair-distribution function (PDF) analysis to develop a disorder model that resolves apparent incompatibilities between previously reported PDF, extended x-rayabsorption fine structure spectroscopy, and NMR studies, and provides a new and physical explanation of the exchange disorder responsible for spin-glass formation. We show that Mo 4+ ions displace accordingmore » to a local "two-in-two-out" rule on each Mo 4 tetrahedron, driven by orbital dimerization of Jahn-Teller active Mo 4+ ions. Long-range orbital order is prevented by the macroscopic degeneracy of dimer coverings permitted by the pyrochlore lattice. Cooperative O 2- displacements yield a distribution of Mo-O-Mo angles, which in turn introduces disorder into magnetic interactions. In conclusion, our study demonstrates experimentally how frustration of atomic displacements can assume the role of compositional disorder in driving a spin-glass transition.« less
NASA Astrophysics Data System (ADS)
Liu, Chien-Nan; Le, Anh-Thu; Morishita, Toru; Esry, B. D.; Lin, C. D.
2003-05-01
A theory for ion-atom collisions at low energies based on the hyperspherical close-coupling (HSCC) method is presented. In hyperspherical coordinates the wave function is expanded in analogy to the Born-Oppenheimer approximation where the adiabatic channel functions are calculated with B-spline basis functions while the coupled hyperradial equations are solved by a combination of R-matrix propagation and the slow/smooth variable discretization method. The HSCC method is applied to calculate charge-transfer cross sections for He2++H(1s)→He+(n=2)+H+ reactions at center-of-mass energies from 10 eV to 4 keV. The results are shown to be in general good agreement with calculations based on the molecular orbital (MO) expansion method where electron translation factors (ETF’s) or switching functions have been incorporated in each MO. However, discrepancies were found at very low energies. It is shown that the HSCC method can be used to study low-energy ion-atom collisions without the need to introduce the ad hoc ETF’s, and the results are free from ambiguities associated with the traditional MO expansion approach.
Colabello, Diane M.; Camino, Fernando E.; Huq, Ashfia; ...
2014-12-31
The structure of the novel compound La 2MoO 5 has been solved from powder X-ray and neutron diffraction data and belongs to the tetragonal space group P4/m (no. 83) with a = 12.6847(3) Å and c = 6.0568(2) Å and with Z = 8. It consists of equal proportions of bioctahedral (Mo 2O 10) and square prismatic (Mo 2O 8) dimers, both of which contain direct Mo-Mo bonds and are arranged in 1D chains. The Mo-Mo bond length in the Mo 2O 10dimers is 2.684(8) Å, while there are two types of Mo 2O 8 dimers with Mo-Mo bonds lengthsmore » of 2.22(2) and 2.28(2) Å. Although the average Mo oxidation state in La 2MoO 5 is 4+, the very different Mo-Mo distances reflect the fact that the Mo 2O 10 dimers contain only Mo5+ (d(1)), while the prismatic Mo2O8 dimers only contain Mo 3+ (d 3), a result directly confirmed by density function theory calculations. This is due to the complete disproportionation of Mo 4+, a phenomenon which has not previously been observed in solid-state compounds. La 2MoO 5 is diamagnetic, behavior which is not expected for a nonmetallic transition-metal oxide whose cation sites have an odd number of d-electrons. The resistivity displays the Arrhenius-type activated behavior expected for a semiconductor with a band gap of 0.5 eV, exhibiting an unusually small transport gap relative to other diamagnetic oxides. Diffuse reflectance studies indicate that La 2MoO 5 is a rare example of a stable oxide semiconductor with strong infrared absorbance. Lastly, we show that the d-orbital splitting associated with the Mo 2O 8 and Mo 2O 10 dimeric units can be rationalized using simple molecular orbital bonding concepts.« less
NASA Astrophysics Data System (ADS)
Arce, J. C.; Perdomo-Ortiz, A.; Zambrano, M. L.; Mujica-Martínez, C.
2011-03-01
A conceptually appealing and computationally economical course-grained molecular-orbital (MO) theory for extended quasilinear molecular heterostructures is presented. The formalism, which is based on a straightforward adaptation, by including explicitly the vacuum, of the envelope-function approximation widely employed in solid-state physics leads to a mapping of the three-dimensional single-particle eigenvalue equations into simple one-dimensional hole and electron Schrödinger-like equations with piecewise-constant effective potentials and masses. The eigenfunctions of these equations are envelope MO's in which the short-wavelength oscillations present in the full MO's, associated with the atomistic details of the molecular potential, are smoothed out automatically. The approach is illustrated by calculating the envelope MO's of high-lying occupied and low-lying virtual π states in prototypical nanometric heterostructures constituted by oligomers of polyacetylene and polydiacetylene. Comparison with atomistic electronic-structure calculations reveals that the envelope-MO energies agree very well with the energies of the π MO's and that the envelope MO's describe precisely the long-wavelength variations of the π MO's. This envelope MO theory, which is generalizable to extended systems of any dimensionality, is seen to provide a useful tool for the qualitative interpretation and quantitative prediction of the single-particle quantum states in mesoscopic molecular structures and the design of nanometric molecular devices with tailored energy levels and wavefunctions.
Metal-metal bonding and aromaticity in [M2(NHCHNH)3]2 (μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh).
Yan, Xiuli; Meng, Lingpeng; Sun, Zheng; Li, Xiaoyan
2016-02-01
The nature of M-M bonding and aromaticity of [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh) was investigated using atoms in molecules (AIM) theory, electron localization function (ELF), natural bond orbital (NBO) and molecular orbital analysis. These analyses led to the following main conclusions: in [M2(NHCHNH)3]2(μ-E)2 (E = O, S; M = Nb, Mo, Tc, Ru, Rh), the Nb-Nb, Ru-Ru, and Rh-Rh bonds belong to "metallic" bonds, whereas Mo-Mo and Tc-Tc drifted toward the "dative" side; all these bonds are partially covalent in character. The Nb-Nb, Mo-Mo, and Tc-Tc bonds are stronger than Ru-Ru and Rh-Rh bonds. The M-M bonds in [M2(NHCHNH)3]2(μ-S)2 are stronger than those in [M2(NHCHNH)3]2(μ-O)2 for M = Nb, Mo, Tc, and Ru. The NICS(1)ZZ values show that all of the studied molecules, except [Ru2(NHCHNH)3]2(μ-O)2, are aromaticity molecules. O-bridged compounds have more aromaticity than S-bridged compounds. Graphical Abstract Left Molecular graph, and right electron localization function (ELF) isosurface of [M2(NHCHNH)3]2(μ-E)2(E = O, S; M = Nb, Mo, Tc, Ru, Rh).
Driving magnetization dynamics with interfacial spin-orbit torques (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hoffmann, Axel F.; Zhang, Wei; Sklenar, Joseph; Jungfleisch, Matthias Benjamin; Jiang, Wanjun; Hsu, Bo; Xiao, Jiao; Pearson, John E.; Fradin, Frank Y.; Liu, Yaohua; Ketterson, John B.; Yang, Zheng
2016-10-01
Bulk spin Hall effects are well know to provide spin orbit torques, which can be used to drive magnetization dynamics [1]. But one of the reoccurring questions is to what extend spin orbit torques may also originate at the interface between materials with strong spin orbit coupling and the ferromagnets. Using spin torque driven ferromagnetic resonance we show for two systems, where interfacial torques dominate, that they can be large enough to be practically useful. First, we show spin transfer torque driven magnetization dynamics based on Rashba-Edelstein effects at the Bi/Ag interface [2]. Second, we will show that combining permalloy with monolayer MoS2 gives rise to sizable spin-orbit torques. Given the monolayer nature of MoS2 it is clear that bilk spin Hall effects are negligible and therefore the spin transfer torques are completely interfacial in nature. Interestingly the spin orbit torques with MoS2 show a distinct dependence on the orientation of the magnetization in the permalloy, and become strongly enhanced, when the magnetization is pointing perpendicular to the interfacial plane. This work was supported by the U.S. Department of Energy, Office of Science, Materials Science and Engineering Division. [1] A. Hoffmann, IEEE Trans. Mag. 49, 5172 (2013). [2] W. Zhang et al., J. Appl. Phys. 117, 17C727 (2015). [3] M. B. Jungfleisch et al., arXiv:1508.01410.
All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature
NASA Astrophysics Data System (ADS)
Dankert, André; Dash, Saroj
Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.
Methylation of zebularine investigated using density functional theory calculations.
Selvam, Lalitha; Chen, Fang Fang; Wang, Feng
2011-07-30
Deoxyribonucleic acid (DNA) methylation is an epigenetic phenomenon, which adds methyl groups into DNA. This study reveals methylation of a nucleoside antibiotic drug 1-(β-D-ribofuranosyl)-2-pyrimidinone (zebularine or zeb) with respect to its methylated analog, 1-(β-D-ribofuranosyl)-5-methyl-2-pyrimidinone (d5) using density functional theory calculations in valence electronic space. Very similar infrared spectra suggest that zeb and d5 do not differ by types of the chemical bonds, but distinctly different Raman spectra of the nucleoside pair reveal that the impact caused by methylation of zeb can be significant. Further valence orbital-based information details on valence electronic structural changes caused by methylation of zebularine. Frontier orbitals in momentum space and position space of the molecules respond differently to methylation. Based on the additional methyl electron density concentration in d5, orbitals affected by the methyl moiety are classified into primary and secondary contributors. Primary methyl contributions include MO8 (57a), MO18 (47a), and MO37 (28a) of d5, which concentrates on methyl and the base moieties, suggest certain connection to their Frontier orbitals. The primary and secondary methyl affected orbitals provide useful information on chemical bonding mechanism of the methylation in zebularine. Copyright © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lou, R.; Xu, Y. F.; Zhao, L.-X.; Han, Z.-Q.; Guo, P.-J.; Li, M.; Wang, J.-C.; Fu, B.-B.; Liu, Z.-H.; Huang, Y.-B.; Richard, P.; Qian, T.; Liu, K.; Chen, G.-F.; Weng, H. M.; Ding, H.; Wang, S.-C.
2017-12-01
While recent advances in band theory and sample growth have expanded the series of extremely large magnetoresistance (XMR) semimetals in transition-metal dipnictides T m P n2 (T m =Ta , Nb; P n =P , As, Sb), the experimental study on their electronic structure and the origin of XMR is still absent. Here, using angle-resolved photoemission spectroscopy combined with first-principles calculations and magnetotransport measurements, we performed a comprehensive investigation on MoAs2, which is isostructural to the T m P n2 family and also exhibits quadratic XMR. We resolve a clear band structure well agreeing with the predictions. Intriguingly, the unambiguously observed Fermi surfaces (FSs) are dominated by an open-orbit topology extending along both the [100] and [001] directions in the three-dimensional Brillouin zone. We further reveal the trivial topological nature of MoAs2 by bulk parity analysis. Based on these results, we examine the proposed XMR mechanisms in other semimetals, and conclusively ascribe the origin of quadratic XMR in MoAs2 to the carriers motion on the FSs with dominant open-orbit topology, innovating in the understanding of quadratic XMR in semimetals.
Estes, Deven P; Gordon, Christopher P; Fedorov, Alexey; Liao, Wei-Chih; Ehrhorn, Henrike; Bittner, Celine; Zier, Manuel Luca; Bockfeld, Dirk; Chan, Ka Wing; Eisenstein, Odile; Raynaud, Christophe; Tamm, Matthias; Copéret, Christophe
2017-12-06
Molybdenum-based molecular alkylidyne complexes of the type [MesC≡Mo{OC(CH 3 ) 3-x (CF 3 ) x } 3 ] (MoF 0 , x = 0; MoF 3 , x = 1; MoF 6 , x = 2; MoF 9 , x = 3; Mes = 2,4,6-trimethylphenyl) and their silica-supported analogues are prepared and characterized at the molecular level, in particular by solid-state NMR, and their alkyne metathesis catalytic activity is evaluated. The 13 C NMR chemical shift of the alkylidyne carbon increases with increasing number of fluorine atoms on the alkoxide ligands for both molecular and supported catalysts but with more shielded values for the supported complexes. The activity of these catalysts increases in the order MoF 0 < MoF 3 < MoF 6 before sharply decreasing for MoF 9 , with a similar effect for the supported systems (MoF 0 ≈ MoF 9 < MoF 6 < MoF 3 ). This is consistent with the different kinetic behavior (zeroth order in alkyne for MoF 9 derivatives instead of first order for the others) and the isolation of stable metallacyclobutadiene intermediates of MoF 9 for both molecular and supported species. Detailed solid-state NMR analysis of molecular and silica-supported metal alkylidyne catalysts coupled with DFT/ZORA calculations rationalize the NMR spectroscopic signatures and discernible activity trends at the frontier orbital level: (1) increasing the number of fluorine atoms lowers the energy of the π*(M≡C) orbital, explaining the more deshielded chemical shift values; it also leads to an increased electrophilicity and higher reactivity for catalysts up to MoF 6 , prior to a sharp decrease in reactivity for MoF 9 due to the formation of stable metallacyclobutadiene intermediates; (2) the silica-supported catalysts are less active than their molecular analogues because they are less electrophilic and dynamic, as revealed by their 13 C NMR chemical shift tensors.
Jones, Robert M.; Inscore, Frank E.; Hille, Russ; Kirk, Martin L.
1999-11-01
Freeze-quench magnetic circular dichroism spectroscopy (MCD) has been used to trap and study the excited-state electronic structure of the Mo(V) active site in a xanthine oxidase intermediate generated with substoichiometric concentrations of the slow substrate 2-hydroxy-6-methylpurine. EPR spectroscopy has shown that the intermediate observed in the MCD experiment is the "very rapid" intermediate, which lies on the main catalytic pathway. The low-energy (< approximately 30 000 cm(-1)) C-term MCD of this intermediate is remarkably similar to that of the model compound LMoO(bdt) (L = hydrotris(3,5-dimethyl-1-pyrazolyl)borate; bdt = 1,2-benzenedithiolate), and the MCD bands have been assigned as dithiolate S(ip) --> Mo d(xy) and S(op) --> Mo d(xz,yz) LMCT transitions. These transitions result from a coordination geometry of the intermediate where the Mo=O bond is oriented cis to the ene-1,2-dithiolate of the pyranopterin. Since X-ray crystallography has indicated that a terminal sulfido ligand is oriented cis to the ene-1,2-dithiolate in oxidized xanthine oxidase related Desulfovibrio gigas aldehyde oxidoreductase, we have suggested that a conformational change occurs upon substrate binding. The substrate-mediated conformational change is extremely significant with respect to electron-transfer regeneration of the active site, as covalent interactions between the redox-active Mo d(xy) orbital and the S(ip) orbitals of the ene-1,2-dithiolate are maximized when the oxo ligand is oriented cis to the dithiolate plane. This underlies the importance of the ene-1,2-dithiolate portion of the pyranopterin in providing an efficient superexchange pathway for electron transfer. The results of this study indicate that electron-transfer regeneration of the active site may be gated by the orientation of the Mo=O bond relative to the ene-1,2-dithiolate chelate. Poor overlap between the Mo d(xy) orbital and the S(ip) orbitals of the dithiolate in the oxidized enzyme geometry may provide a means of preventing one-electron reduction of the active site, resulting in enzyme inhibition with respect to the two-electron oxidation of native substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhequan; Chen, Liang; Yoon, Mina
2016-11-08
In this paper, we investigate the role of interfacial electronic properties on the phonon transport in two-dimensional MoS 2 adsorbed on metal substrates (Au and Sc) using first-principles density functional theory and the atomistic Green’s function method. Our study reveals that the different degree of orbital hybridization and electronic charge distribution between MoS 2 and metal substrates play a significant role in determining the overall phonon–phonon coupling and phonon transmission. The charge transfer caused by the adsorption of MoS 2 on Sc substrate can significantly weaken the Mo–S bond strength and change the phonon properties of MoS 2, which resultmore » in a significant change in thermal boundary conductance (TBC) from one lattice-stacking configuration to another for same metallic substrate. In a lattice-stacking configuration of MoS 2/Sc, weakening of the Mo–S bond strength due to charge redistribution results in decrease in the force constant between Mo and S atoms and substantial redistribution of phonon density of states to low-frequency region which affects overall phonon transmission leading to 60% decrease in TBC compared to another configuration of MoS 2/Sc. Strong chemical coupling between MoS 2 and the Sc substrate leads to a significantly (~19 times) higher TBC than that of the weakly bound MoS 2/Au system. Our findings demonstrate the inherent connection among the interfacial electronic structure, the phonon distribution, and TBC, which helps us understand the mechanism of phonon transport at the MoS 2/metal interfaces. Finally, the results provide insights for the future design of MoS 2-based electronics and a way of enhancing heat dissipation at the interfaces of MoS 2-based nanoelectronic devices.« less
Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2.
Xiao, Jin; Long, Mengqiu; Li, Xinmei; Zhang, Qingtian; Xu, Hui; Chan, K S
2014-10-08
The modification of the electronic structure of bilayer MoS2 by an external electric field can have potential applications in optoelectronics and valleytronics. Nevertheless, the underlying physical mechanism is not clearly understood, especially the effects of the van der Waals interaction. In this study, the spin orbit-coupled electronic structure of bilayer MoS2 has been investigated using the first-principle density functional theory. We find that the van der Waals interaction as well as the interlayer distance has significant effects on the band structure. When the interlayer distance of bilayer MoS2 increases from 0.614 nm to 0.71 nm, the indirect gap between the Γ and Λ points increases from 1.25 eV to 1.70 eV. Meanwhile, the energy gap of bilayer MoS2 transforms from an indirect one to a direct one. An external electric field can shift down (up) the energy bands of the bottom (top) MoS2 layer and also breaks the inversion symmetry of bilayer MoS2. As a result, the electric field can affect the band gaps, the spin-orbit interaction and splits the valance bands into two groups. The present study can help us understand more about the electronic structures of MoS2 materials for potential applications in electronics and optoelectronics.
Electronic properties of hybrid monolayer-multilayer MoS2 nanostructured materials
NASA Astrophysics Data System (ADS)
Mlinar, Vladan
2017-12-01
The remarkable, layer-dependent properties of molybdenum disulphide (MoS2), such as an appropriately small and sizable bandgap or interplay between spin and the valley degrees of freedom, make it an attractive candidate for photodetectors, electrominescent devices, valleytronic devices, etc. Using nanostructuring to manipulate the size in lateral direction or number of layers of MoS2, we are opening a new playground for exploring and tuning properties of such systems. Here, we theoretically study the electronic properties of nanostructured MoS2 systems consisting of monolayer and multilayer MoS2 regions. In our analysis we consider hybrid systems in which monolayer region is surrounded by multilayer region and vice versa. We show how energy spectra and localization of carriers are influenced by the size and shape of the regions in lateral direction, number of MoS2 layers in the multilayer region, and the edge structure. Finally, we demonstrate how to control localization of carriers in these hybrid systems, which could make them appealing candidates for optoelectronic devices. Our findings are extracted from a tight-binding model that includes non-orthogonal sp3d5 orbitals, nearest-neighbor hopping matrix elements, and spin-orbit coupling.
On the physical interpretation of the nuclear molecular orbital energy.
Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés
2017-06-07
Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zongtang; Both, Johan; Li, Shenggang
The heats of formation and the normalized clustering energies (NCEs) for the group 4 and group 6 transition metal oxide (TMO) trimers and tetramers have been calculated by the Feller-Peterson-Dixon (FPD) method. The heats of formation predicted by the FPD method do not differ much from those previously derived from the NCEs at the CCSD(T)/aT level except for the CrO3 nanoclusters. New and improved heats of formation for Cr3O9 and Cr4O12 were obtained using PW91 orbitals instead of Hartree-Fock (HF) orbitals. Diffuse functions are necessary to predict accurate heats of formation. The fluoride affinities (FAs) are calculated with the CCSD(T)more » method. The relative energies (REs) of different isomers, NCEs, electron affinities (EAs), and FAs of (MO2)n ( M = Ti, Zr, Hf, n = 1 – 4 ) and (MO3)n ( M = Cr, Mo, W, n = 1 – 3) clusters have been benchmarked with 55 exchange-correlation DFT functionals including both pure and hybrid types. The absolute errors of the DFT results are mostly less than ±10 kcal/mol for the NCEs and the EAs, and less than ±15 kcal/mol for the FAs. Hybrid functionals usually perform better than the pure functionals for the REs and NCEs. The performance of the two types of functionals in predicting EAs and FAs is comparable. The B1B95 and PBE1PBE functionals provide reliable energetic properties for most isomers. Long range corrected pure functionals usually give poor FAs. The standard deviation of the absolute error is always close to the mean errors and the probability distributions of the DFT errors are often not Gaussian (normal). The breadth of the distribution of errors and the maximum probability are dependent on the energy property and the isomer.« less
Effect of molecular intercalation on the local structure of superconducting Nax(NH3)yMoSe2 system
NASA Astrophysics Data System (ADS)
Simonelli, L.; Paris, E.; Wakita, T.; Marini, C.; Terashima, K.; Miao, X.; Olszewski, W.; Ramanan, N.; Heinis, D.; Kubozono, Y.; Yokoya, T.; Saini, N. L.
2017-12-01
We have studied the local structure of layered Nax(NH3)yMoSe2 system by Mo K-edge extended X-ray absorption fine structure (EXAFS) measurements performed as a function of temperature. We find that molecular intercalation in MoSe2 largely affects the Mo-Se network while Mo-Mo seems to sustain small changes. The Einstein temperature (ΘE) of Mo-Mo distance hardly changes (∼264 K) indicating that bond strength of this distance remains unaffected by intercalation. On the other hand, Mo-Se distance suffers a softening, revealed by the decrease of ΘE from ∼364 K to ∼350 K. The results indicate that Na+ ion transported by NH3 molecules may enter between the two MoSe-layers resulting reduced Se-Se coupling. Therefore, increased hybridization between Se 4p and Mo 4d orbitals due to inter-layer disorder is the likely reason of metallicity in intercalated MoSe2 and superconductivity at low temperature.
Impact of MoO3 interlayer on the energy level alignment of pentacene-C60 heterostructure.
Zou, Ye; Mao, Hongying; Meng, Qing; Zhu, Daoben
2016-02-28
Using in situ ultraviolet photoelectron spectroscopy, the electronic structure evolutions at the interface between pentacene and fullerene (C60), a classical organic donor-acceptor heterostructure in organic electronic devices, on indium-tin oxide (ITO) and MoO3 modified ITO substrates have been investigated. The insertion of a thin layer MoO3 has a significant impact on the interfacial energy level alignment of pentacene-C60 heterostructure. For the deposition of C60 on pentacene, the energy difference between the highest occupied molecular orbital of donor and the lowest unoccupied molecular orbital of acceptor (HOMO(D)-LUMO(A)) offset of C60/pentacene heterostructure increased from 0.86 eV to 1.54 eV after the insertion of a thin layer MoO3 on ITO. In the inverted heterostructrure where pentacene was deposited on C60, the HOMO(D)-LUMO(A) offset of pentacene/C60 heterostructure increased from 1.32 to 2.20 eV after MoO3 modification on ITO. The significant difference of HOMO(D)-LUMO(A) offset shows the feasibility to optimize organic electronic device performance through interfacial engineering approaches, such as the insertion of a thin layer high work function MoO3 films.
A new approach to the method of source-sink potentials for molecular conduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha
2015-11-21
We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue ofmore » the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.« less
Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions
Mester, Dávid
2017-01-01
A reduced-cost density fitting (DF) linear-response second-order coupled-cluster (CC2) method has been developed for the evaluation of excitation energies. The method is based on the simultaneous truncation of the molecular orbital (MO) basis and the auxiliary basis set used for the DF approximation. For the reduction of the size of the MO basis, state-specific natural orbitals (NOs) are constructed for each excited state using the average of the second-order Møller–Plesset (MP2) and the corresponding configuration interaction singles with perturbative doubles [CIS(D)] density matrices. After removing the NOs of low occupation number, natural auxiliary functions (NAFs) are constructed [M. Kállay, J. Chem. Phys. 141, 244113 (2014)], and the NAF basis is also truncated. Our results show that, for a triple-zeta basis set, about 60% of the virtual MOs can be dropped, while the size of the fitting basis can be reduced by a factor of five. This results in a dramatic reduction of the computational costs of the solution of the CC2 equations, which are in our approach about as expensive as the evaluation of the MP2 and CIS(D) density matrices. All in all, an average speedup of more than an order of magnitude can be achieved at the expense of a mean absolute error of 0.02 eV in the calculated excitation energies compared to the canonical CC2 results. Our benchmark calculations demonstrate that the new approach enables the efficient computation of CC2 excitation energies for excited states of all types of medium-sized molecules composed of up to 100 atoms with triple-zeta quality basis sets. PMID:28527453
Joshi, Hemant K; Cooney, J Jon A; Inscore, Frank E; Gruhn, Nadine E; Lichtenberger, Dennis L; Enemark, John H
2003-04-01
Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur pi-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin MoW enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp(2)Mo(bdt) (compound 2), and Cp(2)Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is eta(5)- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d(1), d(2), and d(0), respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A "dithiolate-folding-effect" involving an interaction of the metal in-plane and sulfur-pi orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes.
NASA Astrophysics Data System (ADS)
Gao, Bin; Weng, Yakui; Zhang, Jun-Jie; Zhang, Huimin; Zhang, Yang; Dong, Shuai
2017-03-01
Oxides with 4d/5d transition metal ions are physically interesting for their particular crystalline structures as well as the spin-orbit coupled electronic structures. Recent experiments revealed a series of 4d/5d transition metal oxides R 3 MO7 (R: rare earth; M: 4d/5d transition metal) with unique quasi-one-dimensional M chains. Here first-principles calculations have been performed to study the electronic structures of La3OsO7 and La3RuO7. Our study confirm both of them to be Mott insulating antiferromagnets with identical magnetic order. The reduced magnetic moments, which are much smaller than the expected value for ideal high-spin state (3 t 2g orbitals occupied), are attributed to the strong p - d hybridization with oxygen ions, instead of the spin-orbit coupling. The Ca-doping to La3OsO7 and La3RuO7 can not only modulate the nominal carrier density but also affect the orbital order as well as the local distortions. The Coulombic attraction and particular orbital order would prefer to form polarons, which might explain the puzzling insulating behavior of doped 5d transition metal oxides. In addition, our calculations predict that the Ca-doping can trigger ferromagnetism in La3RuO7 but not in La3OsO7.
Spin-resolved photoemission study of epitaxially grown MoSe 2 and WSe 2 thin films
Mo, Sung-Kwan; Hwang, Choongyu; Zhang, Yi; ...
2016-09-12
Few-layer thick MoSe 2 and WSe 2 possess non-trivial spin textures with sizable spin splitting due to the inversion symmetry breaking embedded in the crystal structure and strong spin–orbit coupling. Here, we report a spin-resolved photoemission study of MoSe 2 and WSe 2 thin film samples epitaxially grown on a bilayer graphene substrate. Furthermore, we only found spin polarization in the single- and trilayer samples—not in the bilayer sample—mostly along the out-of-plane direction of the sample surface. The measured spin polarization is found to be strongly dependent on the light polarization as well as the measurement geometry, which reveals intricatemore » coupling between the spin and orbital degrees of freedom in this class of material.« less
Semiempirical UNO-CAS and UNO-CI: method and applications in nanoelectronics.
Dral, Pavlo O; Clark, Timothy
2011-10-20
Unrestricted Natural Orbital-Complete Active Space Configuration Interaction, abbreviated as UNO-CAS, has been implemented for NDDO-based semiempirical molecular-orbital (MO) theory. A computationally more economic technique, UNO-CIS, in which we use a configuration interaction (CI) calculation with only single excitations (CIS) to calculate excited states, has also been implemented and tested. The class of techniques in which unrestricted natural orbitals (UNOs) are used as the reference for CI calculations is denoted UNO-CI. Semiempirical UNO-CI gives good results for the optical band gaps of organic semiconductors such as polyynes and polyacenes, which are promising materials for nanoelectronics. The results of these semiempirical UNO-CI techniques are generally in better agreement with experiment than those obtained with the corresponding conventional semiempirical CI methods and comparable to or better than those obtained with far more computationally expensive methods such as time-dependent density-functional theory. We also show that symmetry breaking in semiempirical UHF calculations is very useful for predicting the diradical character of organic compounds in the singlet spin state.
NASA Astrophysics Data System (ADS)
Chen, Dajin; Lu, Song; Li, Huanhuan; Li, Can; Li, Lei; Gong, Yinyan; Niu, Lengyuan; Liu, Xinjuan; Wang, Tao
2017-03-01
To investigate the effects of local bond relaxations on the electronic and photocatalysis performances of MoS2 photocatalyst, the thermodynamic, electronic and optical performances of nonmetal doped 3R-MoS2 have been calculated using density functional theory. Results shown that the positive or negative charges of impurity ions are decided by the Pauling electronegativity differences between Mo (or S) and nonmetal atoms, the H, B, Si, Cl, Br and I ions priority to occupy the interstitial site and the other ones tend to occupy the substitutional site. The localized electrons around NM ions are caused by the relaxed Mo-NM and S1-NM bonds, which can effectively affect the electronic and photocatalytic performances of specimens. The optical performances have been altered by the slightest changes of band gap and the newly formed impurity levels; the active sites have been also changed based on the different distributions of the highest occupied molecular orbital and the lowest unoccupied molecular orbital. In brief, the B, N, F, Si, P, Cl, As, Se, Te and Br ions contribute to the separation of photogenerated e-/h+ pairs and enhance the photocatalysis efficiency, but the H, C, O, and I ions will become the recombination centers of photogenerated e-/h+ pairs and should be avoided adding into 3R-MoS2.
RDM lifetime measurements in 107Cd
NASA Astrophysics Data System (ADS)
Andgren, K.; Ashley, S. F.; Regan, P. H.; McCutchan, E. A.; Zamfir, N. V.; Amon, L.; Cakirli, R. B.; Casten, R. F.; Clark, R. M.; Gürdal, G.; Keyes, K. L.; Meyer, D. A.; Erduran, M. N.; Papenberg, A.; Pietralla, N.; Plettner, C.; Rainovski, G.; Ribas, R. V.; Thomas, N. J.; Vinson, J.; Warner, D. D.; Werner, V.; Williams, E.
2005-10-01
Lifetimes for decays linking near-yrast states in 107Cd have been measured using the recoil distance method (RDM). The nucleus of interest was populated via the 98Mo(12C,3n)107Cd fusion-evaporation reaction at an incident beam energy of 60 MeV. From the measured lifetimes, transition probabilities have been deduced and compared with the theoretical B(E2) values for limiting cases of harmonic vibrational and axially deformed rotational systems. Our initial results suggest a rotor-like behaviour for the structure based on the unnatural-parity, h11/2 orbital in 107Cd, providing further evidence for the role of this 'shape-polarizing' orbital in stabilizing the nuclear deformation in the A ~ 100 transitional region.
Vibrational modes in thymine molecule from an ab initio MO calculation
NASA Astrophysics Data System (ADS)
Aida, Misako; Kaneko, Motohisa; Dupuis, Michel; Ueda, Toyotoshi; Ushizawa, Koichi; Ito, Gen; Kumakura, Akiko; Tsuboi, Masamichi
1997-03-01
Ab initio self-consistent field molecular orbital (SCF MO) calculations have been made of the thymine molecule for the equilibrium geometry, harmonic force constants, vibrational frequencies, vibrational modes, infrared intensities, and Raman intensities. The results have been correlated with the observed Raman and infrared spectra of thymine crystalline powder.
Joshi, Hemant K.; Cooney, J. Jon A.; Inscore, Frank E.; Gruhn, Nadine E.; Lichtenberger, Dennis L.; Enemark, John H.
2003-01-01
Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the interactions between the sulfur π-orbitals of arene dithiolates and high-valent transition metals as minimum molecular models of the active site features of pyranopterin Mo/W enzymes. The compounds (Tp*)MoO(bdt) (compound 1), Cp2Mo(bdt) (compound 2), and Cp2Ti(bdt) (compound 3) [where Tp* is hydrotris(3,5-dimethyl-1-pyrazolyl)borate, bdt is 1,2-benzenedithiolate, and Cp is η5- cyclopentadienyl] provide access to three different electronic configurations of the metal, formally d1, d2, and d0, respectively. The gas-phase photoelectron spectra show that ionizations from occupied metal and sulfur based valence orbitals are more clearly observed in compounds 2 and 3 than in compound 1. The observed ionization energies and characters compare very well with those calculated by density functional theory. A “dithiolate-folding-effect” involving an interaction of the metal in-plane and sulfur-π orbitals is proposed to be a factor in the electron transfer reactions that regenerate the active sites of molybdenum and tungsten enzymes. PMID:12655066
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2003-07-01
A new method for relativistically corrected nuclear magnetic resonance (NMR) chemical shifts is developed by combining the individual gauge for the localized orbital approach for density functional theory with the normalized elimination of a small component using an effective potential. The new method is used for the calculation of the NMR chemical shifts of 95Mo and 183W in various molybdenum and tungsten compounds. It is shown that quasirelativistic corrections lead to an average improvement of calculated NMR chemical shift values by 300 and 120 ppm in the case of 95Mo and 183W, respectively, which is mainly due to improvements in the paramagnetic contributions. The relationship between electronic structure of a molecule and the relativistic paramagnetic corrections is discussed. Relativistic effects for the diamagnetic part of the magnetic shielding caused by a relativistic contraction of the s,p orbitals in the core region concern only the shielding values, however, have little consequence for the shift values because of the large independence from electronic structure and a cancellation of these effects in the shift values. It is shown that the relativistic corrections can be improved by level shift operators and a B3LYP hybrid functional, for which Hartree-Fock exchange is reduced to 15%.
Sulfur-vacancy-dependent geometric and electronic structure of bismuth adsorbed on Mo S2
NASA Astrophysics Data System (ADS)
Park, Youngsin; Li, Nannan; Lee, Geunsik; Kim, Kwang S.; Kim, Ki-Jeong; Hong, Soon Cheol; Han, Sang Wook
2018-03-01
Through Bi deposition on the single-crystalline Mo S2 surface, we find that the density of the sulfur vacancy is a critical parameter for the growth of the crystalline Bi overlayer or cluster at room temperature. Also, the Mo S2 band structure is significantly modified near Γ due to the orbital hybridization with an adsorbed Bi monolayer. Our experimental observations and analysis in combination with density functional theory calculation suggest the importance of controlling the sulfur vacancy concentration in realizing an exotic quantum phase based on the van der Waals interface of Bi and Mo S2 .
Xu, Enhua; Li, Shuhua
2013-11-07
The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.
NASA Astrophysics Data System (ADS)
Fengler, S.; Dittrich, Th.; Rusu, M.
2015-07-01
Electronic transitions at interfaces between MoO3 layers and organic layers of C60, SubPc, MgPc, and nano-composite layers of SubPc:C60 and MgPc:C60 have been studied by modulated surface photovoltage (SPV) spectroscopy. For all systems, time dependent and modulated SPV signals pointed to dissociation of excitons at the MoO3/organic layer interfaces with a separation of holes towards MoO3. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps (EHL) of C60, SubPc, and MgPc and the effective EHL of SubPc:C60 and MgPc:C60 were measured. The offsets between the LUMO (ΔEL) or HOMO (ΔEH) bands were obtained with high precision and amounted to 0.33 or 0.73 eV for SubPc:C60, respectively, and to -0.33 or 0.67 eV for MgPc:C60, respectively. Exponential tails below EHL and most pronounced sub-bandgap transitions were characterized and ascribed to disorder and transitions from HOMO bands to unoccupied defect states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Di; Department of Optical Science and Engineering, Key Laboratory of Micro and Nano Photonic Structures; Yu, Guoqiang, E-mail: guoqiangyu@ucla.edu
2016-05-23
We study spin-orbit-torque (SOT)-driven magnetization switching in perpendicularly magnetized Ta/Mo/Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB)/MgO films. The thermal tolerance of the perpendicular magnetic anisotropy (PMA) is enhanced, and the films sustain the PMA at annealing temperatures of up to 430 °C, due to the ultra-thin Mo layer inserted between the Ta and CoFeB layers. More importantly, the Mo insertion layer also allows for the transmission of the spin current generated in the Ta layer due to spin Hall effect, which generates a damping-like SOT and is able to switch the perpendicular magnetization. When the Ta layer is replaced by a Pt layer,more » i.e., in a Pt/Mo/CoFeB/MgO multilayer, the direction of the SOT-induced damping-like effective field becomes opposite because of the opposite sign of spin Hall angle in Pt, which indicates that the SOT-driven switching is dominated by the spin current generated in the Ta or Pt layer rather than the Mo layer. Quantitative characterization through harmonic measurements reveals that the large SOT effective field is preserved for high annealing temperatures. This work provides a route to applying SOT in devices requiring high temperature processing steps during the back-end-of-line processes.« less
Tenderholt, Adam L.; Szilagyi, Robert K.; Holm, Richard H.; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.
2009-01-01
Molybdenum- or tungsten-containing enzymes catalyze oxygen atom transfer reactions involved in carbon, sulfur, or nitrogen metabolism. It has been observed that reduction potentials and oxygen atom transfer rates are different for W relative to Mo enzymes and the isostructural Mo/W complexes. Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations on [MoVO(bdt)2]− and [WVO(bdt)2]−, where bdt = benzene-1,2-dithiolate(2−), have been used to determine that the energies of the half-filled redox-active orbital, and thus the reduction potentials and M=O bond strengths, are different for these complexes due to relativistic effects in the W sites. PMID:17720249
Magic Clusters of MoS2 by Edge S2 Interdimer Spacing Modulation.
Ryou, Junga; Kim, Yong-Sung
2018-05-17
Edge atomic and electronic structures of S-saturated Mo-edge triangular MoS 2 nanoclusters are investigated using density functional theory calculations. The edge electrons described by the S 2 -p x p x π* (S 2 -Π x ) and Mo-d xy orbitals are found to interplay to pin the S 2 -Π x Fermi wavenumber at k F = 2/5 as the nanocluster size increases, and correspondingly, the ×5 Peierls edge S 2 interdimer spacing modulation is induced. For the particular sizes of N = 5 n - 2 and 5 n, where N is the number of Mo atoms at one edge representing the nanocluster size and n is a positive integer, the effective ×5 interdimer spacing modulation stabilizes the nanoclusters, which are identified here to be the magic S-saturated Mo-edge triangular MoS 2 nanoclusters. With the S 2 -Π x Peierls gap, the MoS 2 nanoclusters become far-edge S 2 -Π x semiconducting and subedge Mo-d xy metallic as N → ∞.
Carbon Fibers Conductivity Studies
NASA Technical Reports Server (NTRS)
Yang, C. Y.; Butkus, A. M.
1980-01-01
In an attempt to understand the process of electrical conduction in polyacrylonitrile (PAN)-based carbon fibers, calculations were carried out on cluster models of the fiber consisting of carbon, nitrogen, and hydrogen atoms using the modified intermediate neglect of differential overlap (MINDO) molecular orbital (MO) method. The models were developed based on the assumption that PAN carbon fibers obtained with heat treatment temperatures (HTT) below 1000 C retain nitrogen in a graphite-like lattice. For clusters modeling an edge nitrogen site, analysis of the occupied MO's indicated an electron distribution similar to that of graphite. A similar analysis for the somewhat less stable interior nitrogen site revealed a partially localized II electron distribution around the nitrogen atom. The differences in bonding trends and structural stability between edge and interior nitrogen clusters led to a two-step process proposed for nitrogen evolution with increasing HTT.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2017-11-15
Spin-orbit contributions to the zero-field splitting (ZFS) tensor (D SO tensor) of M III (acac) 3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson-Khanna (PK) and natural orbital-based Pederson-Khanna (NOB-PK)) methods, focusing on the behaviour of DFT-based approaches to the D SO tensors against the valence d-electron configurations of the transition metal ions in octahedral coordination. Both the DFT-based approaches reproduce trends in the D tensors. Significantly, the differences between the theoretical and experimental D (D = D ZZ - (D XX + D YY )/2) values are smaller in NOB-PK than in PK, emphasising the usefulness of the natural orbital-based approach to the D tensor calculations of transition metal ion complexes. In the case of d 2 and d 4 electronic configurations, the D SO (NOB-PK) values are considerably underestimated in the absolute magnitude, compared with the experimental ones. The D SO tensor analysis based on the orbital region partitioning technique (ORPT) revealed that the D SO contributions attributed to excitations from the singly occupied region (SOR) to the unoccupied region (UOR) are significantly underestimated in the DFT-based approaches to all the complexes under study. In the case of d 3 and d 5 configurations, the (SOR → UOR) excitations contribute in a nearly isotropic manner, which causes fortuitous error cancellations in the DFT-based D SO values. These results indicate that more efforts to develop DFT frameworks should be directed towards the reproduction of quantitative D SO tensors of transition metal complexes with various electronic configurations and local symmetries around metal ions.
The Synergistic Effects of MoS2 and Liquid Lubrication
NASA Astrophysics Data System (ADS)
Buttery, M.; Roberts, E.; Stanley, S.; Murer, J.
2015-09-01
We present an overview of a three-stage program on the potential for hybrid lubrication of MoS2 and PFPE fluids (Fomblin Z25 & Braycote 601EF) performed at the European Space Tribology Laboratory (ESTL).Tests were performed using a spiral orbit tribometer (SOT) and a pin-on-disc tribometer (POD), demonstrating encouraging results. Hybrid lubrication allows for extended periods of in-air running of MoS2 with no detrimental effect to the subsequent in-vacuum lifetime. In addition, hybrid lubrication was shown to be synergistic, with the lifetime of the hybrid fluid/MoS2 lubrication extended in comparison to the individual constituents, with no detriment to the friction.
Research Update: Spin transfer torques in permalloy on monolayer MoS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Wei; Sklenar, Joseph; Hsu, Bo
2016-03-01
We observe current induced spin transfer torque resonance in permalloy (Py) grown on monolayer MoS2. By passing rf current through the Py/MoS2 bilayer, field-like and damping-like torques are induced which excite the ferromagnetic resonance of Py. The signals are detected via a homodyne voltage from anisotropic magnetoresistance of Py. In comparison to other bilayer systems with strong spin-orbit torques, the monolayer MoS2 cannot provide bulk spin Hall effects and thus indicates the purely interfacial nature of the spin transfer torques. Therefore our results indicate the potential of two-dimensional transition-metal dichalcogenide for the use of interfacial spin-orbitronics applications.
Research update: Spin transfer torques in permalloy on monolayer MoS 2
Zhang, Wei; Sklenar, Joseph; Hsu, Bo; ...
2016-03-03
We observe current induced spin transfertorque resonance in permalloy (Py) grown on monolayer MoS 2. By passing rf current through the Py/MoS 2 bilayer, field-like and damping-like torques are induced which excite the ferromagnetic resonance of Py. The signals are detected via a homodyne voltage from anisotropic magnetoresistance of Py. In comparison to other bilayer systems with strong spin-orbit torques, the monolayer MoS 2 cannot provide bulk spin Hall effects and thus indicates the purely interfacial nature of the spin transfer torques. Furthermore, our results indicate the potential of two-dimensional transition-metal dichalcogenide for the use of interfacial spin-orbitronics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Kuang-I, E-mail: kilin@mail.ncku.edu.tw; Chen, Yen-Jen; Wang, Bo-Yan
2016-03-21
Room-temperature photoreflectance (PR) and reflectance (R) spectroscopy are utilized to investigate the near-band-edge transitions of molybdenum disulfide (MoS{sub 2}) thin films grown on sapphire substrates by a hot-wall chemical vapor deposition system. The layer thickness and optical properties of the MoS{sub 2} thin films are confirmed by Raman spectroscopy, atomic force microscope, and photoluminescence (PL) analysis. The B exciton shows relatively weak PL intensity in comparing with the A exciton even for monolayer MoS{sub 2} films. In the R spectrum of few‐layer MoS{sub 2}, it is not possible to clearly observe exciton related features. The PR spectra have two sharp,more » derivative-like features on a featureless background. Throughout the PR lineshape fitting, the transition energies are designated as the A and B excitons at the K-point of the Brillouin zone, but at room temperature there seems to be no distinguishable feature corresponding to an H‐point transition for the mono- and few-layer MoS{sub 2} films unlike in bulk. These transition energies are slightly larger than those obtained by PL, which is attributed to the Stokes shifts related to doping level. The obtained values of valence-band spin-orbit splitting are in good agreement with those from other experimental methods. By comparing the PR lineshapes, the dominant modulation mechanism is attributed to variations of the exciton transition energies due to change in the built-in electric field. On the strength of this study, PR spectroscopy is demonstrated as a powerful technique for characterizing the near-band-edge transitions of MoS{sub 2} from monolayer to bulk.« less
An efficient linear-scaling CCSD(T) method based on local natural orbitals.
Rolik, Zoltán; Szegedy, Lóránt; Ladjánszki, István; Ladóczki, Bence; Kállay, Mihály
2013-09-07
An improved version of our general-order local coupled-cluster (CC) approach [Z. Rolik and M. Kállay, J. Chem. Phys. 135, 104111 (2011)] and its efficient implementation at the CC singles and doubles with perturbative triples [CCSD(T)] level is presented. The method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys. 131, 114109 (2009)] with frozen natural orbital (NO) techniques. To break down the unfavorable fifth-power scaling of our original approach a two-level domain construction algorithm has been developed. First, an extended domain of localized molecular orbitals (LMOs) is assembled based on the spatial distance of the orbitals. The necessary integrals are evaluated and transformed in these domains invoking the density fitting approximation. In the second step, for each occupied LMO of the extended domain a local subspace of occupied and virtual orbitals is constructed including approximate second-order Mo̸ller-Plesset NOs. The CC equations are solved and the perturbative corrections are calculated in the local subspace for each occupied LMO using a highly-efficient CCSD(T) code, which was optimized for the typical sizes of the local subspaces. The total correlation energy is evaluated as the sum of the individual contributions. The computation time of our approach scales linearly with the system size, while its memory and disk space requirements are independent thereof. Test calculations demonstrate that currently our method is one of the most efficient local CCSD(T) approaches and can be routinely applied to molecules of up to 100 atoms with reasonable basis sets.
NASA Astrophysics Data System (ADS)
Zhang, Qingyun; Schwingenschlögl, Udo
2018-04-01
Using first-principles calculations, we investigate the electronic properties of the two-dimensional Ga X /MX 2 (M = Mo, W; X = S, Se, Te) heterostructures. Orbital hybridization between Ga X and MX 2 is found to result in Rashba splitting at the valence-band edge around the Γ point, which grows for increasing strength of the spin-orbit coupling in the p orbitals of the chalcogenide atoms. The location of the valence-band maximum in the Brillouin zone can be tuned by strain and application of an out-of-plane electric field. The coexistence of Rashba splitting (in-plane spin direction) and band splitting at the K and K' valleys (out-of-plane spin direction) makes Ga X /MX 2 heterostructures interesting for spintronics and valleytronics. They are promising candidates for two-dimensional spin-field-effect transistors and spin-valley Hall effect devices. Our findings shed light on the spin-valley coupling in van der Waals heterostructures.
NASA Astrophysics Data System (ADS)
Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang
2018-04-01
Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.
Size Dependence of S-bonding on (111) Facets of Cu Nanoclusters
Boschen, Jeffery S.; Lee, Jiyoung; Windus, Theresa L.; ...
2016-04-21
We demonstrate a strong damped oscillatory size dependence of the adsorption energy for sulfur on the (111) facets of tetrahedral Cu nanoclusters up to sizes of ~300 atoms. This behavior reflects quantum size effects. Consistent results are obtained from density functional theory analyses utilizing either atomic orbital or plane-wave bases and using the same Perdew–Burke–Ernzerhof functional. Behavior is interpreted via molecular orbitals (MO), density of states (DOS), and crystal orbital Hamilton population (COHP) analyses.
NASA Astrophysics Data System (ADS)
Cho, Weejee; Platt, Christian; McKenzie, Ross H.; Raghu, Srinivas
2015-10-01
The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin-triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has more sign changes than required by the point-group symmetry.
NASA Astrophysics Data System (ADS)
Platt, Christian; Cho, Weejee; McKenzie, Ross H.; Raghu, Sri
The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four Molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has accidental nodes, i.e. it has more sign changes than required by the point-group symmetry.
Waters, Tom; Wang, Xue-Bin; Yang, Xin; Zhang, Lianyi; O'Hair, Richard A J; Wang, Lai-Sheng; Wedd, Anthony G
2004-04-28
Photodetachment photoelectron spectroscopy was used to investigate the electronic structure of the doubly charged complexes [MIVO(mnt)2]2- (M = Mo, W; mnt = 1,2-dicyanoethenedithiolato). These dianions are stable in the gas phase and are minimal models for the active sites of the dimethyl sulfoxide reductase family of molybdenum enzymes and of related tungsten enzymes. Adiabatic and vertical electron binding energies for both species were measured, providing detailed information about molecular orbital energy levels of the parent dianions as well as the ground and excited states of the product anions [MVO(mnt)2]-. Density functional theory calculations were used to assist assignment of the detachment features. Differences in energy between these features provided the energies of ligand-to-metal charge-transfer transitions from S(pi) and S(sigma) molecular orbitals to the singly occupied metal-based orbital of the products [MVO(mnt)2]-. These unique data for the M(V) species were obtained at the C(2)(v)() geometry of the parent M(IV) dianions. However, theoretical calculations and available condensed phase data suggested that a geometry featuring differentially folded dithiolene ligands (Cs point symmetry) was slightly lower in energy. The driving force for ligand folding is a favorable covalent interaction between the singly occupied metal-based molecular orbital (a1 in C2v) point symmetry; highest occupied molecular orbital (HOMO)) and the least stable of the occupied sulfur-based molecular orbitals (b1 in C2v point symmetry, HOMO-1) that is only possible upon reduction to the lower symmetry. This ligand folding induces a large increase in the intensity predicted for the a' S(pi) --> a' dx2 - y2 charge-transfer transition originating from the HOMO-2 of [MVO(mnt)2](-) under Cs point symmetry. Electronic absorption spectra are available for the related species [MoVO(bdt)2]- (bdt = 1,2-benzenedithiolato) and for the oxidized form of dimethyl sulfoxide reductase. The intense absorptions at approximately 1.7 eV have been assigned previously to S(sigma) --> Mo transitions, assuming C2v geometry. The present work indicates that the alternative a' S(pi) --> a' dx2 - y2 of Cs geometry must be considered. Overall, this study confirms that the electronic structure of the M-dithiolene units are exquisitely sensitive to dithiolene ligand folding, reinforcing the proposal that these units are tunable conduits for electron transfer in enzyme systems.
Extraordinary attributes of 2-dimensional MoS2 nanosheets
NASA Astrophysics Data System (ADS)
Rao, C. N. R.; Maitra, Urmimala; Waghmare, Umesh V.
2014-08-01
The discovery of the amazing properties of graphene has stimulated exploration of single- and few-layer structures of layered inorganic materials. Of all the inorganic 2D nanosheet structures, those of MoS2 have attracted great attention because of their novel properties such as the presence of a direct bandgap, good field-effect transistor characteristics, large spin-orbit splitting, intense photoluminescence, catalytic properties, magnetism, superconductivity, ferroelectricity and several other properties with potential applications in electronics, optoelectronics, energy devices and spintronics. MoS2 nanosheets have been used in lithium batteries, supercapacitors and to generate hydrogen. Highlights of the impressive properties of MoS2 nanosheets, along with their structural and spectroscopic features are presented in this Letter. MoS2 typifies the family of metal dichalcogenides such as MoSe2 and WS2 and there is much to be done on nanosheets of these materials. Linus Pauling would have been pleased to see how molybdenite whose structure he studied in 1923 has become so important today.
NASA Astrophysics Data System (ADS)
Kumar, Kishor; Heda, N. L.; Jani, A. R.; Ahuja, B. L.
2017-08-01
In this paper, we present energy bands, density of states and Mulliken's population (MP) data using the linear combination of atomic orbitals (LCAO) method. To compare the theoretical momentum densities, we have also employed 100 mCi 241Am Compton spectrometer to measure the Compton profiles of Cr0.5X0.5Se2 (X=Mo and W). The experimental Compton data have been used to check the performance of various exchange and correlation energies for the present mixed dichalcogenides within the LCAO scheme. It is seen that CPs based on the hybridization of Hartree-Fock and density functional theory give a better agreement with the experimental data than other schemes employed in the present investigations. All theoretical approximations show an indirect band gap between the Γ and K points of the Brillouin zone. Further, equal-valence-electron-density scaled experimental data predict a more ionic character in Cr0.5W0.5Se2 than in Cr0.5Mo0.5Se2, which is in tune with our MP data. Going beyond the computation of electronic properties using LCAO, we have also reported accurate electronic and optical properties using the modified Becke-Johnson (mBJ) potential within the full potential augmented plane wave (FP-LAPW) method. Optical properties computed using the FP-LAPW-mBJ method show the feasibility of using both the mixed dichalcogenides in photovoltaic devices.
Networks consolidation program: Maintenance and Operations (M&O) staffing estimates
NASA Technical Reports Server (NTRS)
Goodwin, J. P.
1981-01-01
The Mark IV-A consolidate deep space and high elliptical Earth orbiter (HEEO) missions tracking and implements centralized control and monitoring at the deep space communications complexes (DSCC). One of the objectives of the network design is to reduce maintenance and operations (M&O) costs. To determine if the system design meets this objective an M&O staffing model for Goldstone was developed which was used to estimate the staffing levels required to support the Mark IV-A configuration. The study was performed for the Goldstone complex and the program office translated these estimates for the overseas complexes to derive the network estimates.
The Mars mapper science and mission planning tool
NASA Technical Reports Server (NTRS)
Lo, Martin W.
1993-01-01
The Mars Mapper Program (MOm) is an interactive tool for science and mission design developed for the Mars Observer Mission (MO). MOm is a function of the Planning and Sequencing Element of the MO Ground Data System. The primary users of MOm are members of the science and mission planning teams. Using MOm, the user can display digital maps of Mars in various projections and resolutions ranging from 1 to 256 pixels per degree squared. The user can overlay the maps with ground tracks of the MO spacecraft (S/C) and footprints and swaths of the various instruments on-board the S/C. Orbital and instrument geometric parameters can be computed on demand and displayed on the digital map or plotted in XY-plots. The parameter data can also be saved into files for other uses. MOm is divided into 3 major processes: Generator, Mapper, Plotter. The Generator Process is the main control which spawns all other processes. The processes communicate via sockets. At any one time, only 1 copy of MOm may operate on the system. However, up to 5 copies of each of the major processes may be invoked from the Generator. MOm is developed on the Sun SPARCStation 2GX with menu driven graphical user interface (GUI). The map window and its overlays are mouse-sensitized to permit on-demand calculations of various parameters along an orbit. The program is currently under testing and will be delivered to the MO Mission System Configuration Management for distribution to the MO community in 3/93.
Friction and Environmental Sensitivity of Molybdenum Disulfide: Effects of Microstructure
NASA Astrophysics Data System (ADS)
Curry, John F.
For nearly a century, molybdenum disulfide has been employed as a solid lubricant to reduce the friction and wear between surfaces. MoS2 is in a class of unique materials, transition metal dichalcogens (TMDC), that have a single crystal structure forming lamellae that interact via weak van der Waals forces. This dissertation focuses on the link between the microstructure of MoS2 and the energetics of running film formation to reduce friction, and effects of environmental sensitivities on performance. Nitrogen impinged MoS2 films are utilized as a comparator to amorphous PVD deposited MoS2 in many of the studies due to the highly ordered surface parallel basal texture of sprayed films. Comparisons showed that films with a highly ordered structure can reduce high friction behavior during run-in. It is thought that shear induced reorientation of amorphous films contributes to typically high initial friction during run-in. In addition to a reduction in initial friction, highly ordered MoS2 films are shown to be more resistant to penetration from oxidative aging processes. High sensitivity, low-energy ion scattering (HS-LEIS) enabled depth profiles that showed oxidation limited to the first monolayer for ordered films and throughout the depth (4-5 nm) for amorphous films. X-ray photoelectron spectroscopy supported these findings, showing far more oxidation in amorphous films than ordered films. Many of these results show the benefits of a well run-in coating, yet transient increases in initial friction can still be noticed after only 5 - 10 minutes. It was found that the transient return to high initial friction after dwell times past 5 - 10 minutes was not due to adsorbed species such as water, but possibly an effect of basal plane relaxation to a commensurate state. Additional techniques and methods were developed to study the effect of adsorbed water and load on running film formation via spiral orbit XRD studies. Spiral orbit experiments enabled large enough worn areas for study in the XRD. Diffraction patterns for sputtered coatings at high loads (1N) showed more intense signals for surface parallel basal plane representation than lower loads (100mN). Tests run in dry and humid nitrogen (20% RH), however, showed no differences in reorientation of basal planes. Microstructure was found to be an important factor in determining the tribological performance of MoS2 films in a variety of testing conditions and environments. These findings will be useful in developing a mechanistic framework that better understands the energetics of running film formation and how different environments play a role.
NASA Astrophysics Data System (ADS)
Chen, Dachang; Zhang, Xiaoxing; Tang, Ju; Cui, Hao; Li, Yi
2018-02-01
We explored the adsorption of SO2, SOF2, and SO2F2 on Pt- or Au-doped MoS2 monolayer based on density functional theory. The adsorption energy, adsorption distance, charge transfer as well as density of states were discussed. SO2 and SOF2 exhibit strong chemical interactions with Pt-doped MoS2 based on large adsorption energy, charge transfer, and changes of electron orbitals in gas molecule. SO2 also shows obvious chemisorption on Au-doped MoS2 with apparent magnetism transfer from Au to gas molecules. The adsorption of SO2F2 on Pt-MoS2 and SOF2 on Au-MoS2 exhibits weaker chemical interactions and SO2F2 losses electrons when adsorbed on Pt-MoS2 which is different from other gas adsorption. The adsorption of SO2F2 on Au-MoS2 represents no obvious chemical interaction but physisorption. The gas-sensing properties are also evaluated based on DFT results. This work could provide prospects and application value for typical noble metal-doped MoS2 as gas-sensing materials.
Lesson learned from FORMOSAT-2 mission operations
NASA Astrophysics Data System (ADS)
Chern, Jeng-Shing; Wu, An-Ming; Lin, Shin-Fa
2006-07-01
The mission operations (MO) of FORMOSAT-2 (formerly called ROCSAT-2) started from 17:47:03 UTC on 20 May 2004 after the satellite had been launch from Vandenberg, California. It took 3 days to check the performance and function of all subsystems of satellite bus, and 11 days to raise the satellite from 723 km parking orbit to 888 km mission orbit. Then the primary payload, a remote sensing instrument (RSI), was turned on and the first image was taken on 4 June 2004. In June and July of 2004, the acceptance criteria verification for bus and RSI was performed using the pre-programmed maneuver and images taken. Started from late June 2004, the secondary payload was turned on. It is an imager for sprites and upper atmospheric lightning (ISUAL). A red sprite was captured on 4 July 2004. This is the first time to observe the upward lightning phenomena between thundercloud and ionoshpere from space. The verification and validation of FORMOSAT-2 satellite including bus and payloads were completed in early August 2004. It follows the normal MO phase. During the 1 year 4 months MO from May 2004 to September 2005, a couple hundreds of anomalies (in both satellite and ground systems) and several automatic reconfiguration orders (AROs) (in satellite system) occurred. Shortly after satellite launch, the number of anomalies increases drastically. Also, the planning and scheduling system (PSS) for the RSI operation is not very efficient, and is not compatible with the very unique and advantageous capability of daily revisit of FORMOSAT-2. Some of the AROs were caused by the improper MO timeline design and results in violating satellite constraint. Almost all problems have been solved or avoided by the MO team of the National Space Organization (NSPO). In June 2005, NSPO organized a working group to review the status of health (SOH). It has been concluded that FORMOSAT-2 is in good condition except there is some shift in its orbit. We have learned many lessons from this practice. It is the purpose of this paper to share our experiences.
Haranosono, Yu; Ueoka, Hiroki; Kito, Gakushi; Nemoto, Shingo; Kurata, Masaaki; Sakaki, Hideyuki
2018-01-01
Most of the α-halo carbonyl (AHC) compounds tend to be predicted as mutagenic by structure-activity relationship based on structural category only, because they have an alkyl halide structure as a structural alert of mutagenicity. However, some AHC compounds are not mutagenic. We hypothesized that AHC reacts with DNA by S N 2 reaction, and the reactivity relates to mutagenicity. As an index of S N 2 reactivity, we focused on molecular orbitals (MOs), as the direction and position of two molecules in collision are important in the S N 2 reaction. The MOs suitable for S N 2 reaction (SN2MOs) were selected by chemical-visual inspection based on the shape of the MO. We used the level gap and the energy gap between SN2MO and the lowest unoccupied molecular orbital as the descriptors of S N 2 reactivity. As the results, S N 2 reactivity related to mutagenicity and we were able to predict mutagenicity of 20 AHC compounds with 95.0% concordance. It was suggested that S N 2 reaction is a reaction mechanism of AHC compounds and DNA in the mutagenic process. The method allows for discrimination among structurally similar compounds by combination with quantitative structure-activity relationships. The combination approach is expected to be useful for the mutagenic assessment of pharmaceutical impurities.
NASA Astrophysics Data System (ADS)
Zhao, Xin; Geskin, Victor; Stadler, Robert
2017-03-01
Destructive quantum interference (DQI) in single molecule electronics is a purely quantum mechanical effect and is entirely defined by the inherent properties of the molecule in the junction such as its structure and symmetry. This definition of DQI by molecular properties alone suggests its relation to other more general concepts in chemistry as well as the possibility of deriving simple models for its understanding and molecular device design. Recently, two such models have gained a wide spread attention, where one was a graphical scheme based on visually inspecting the connectivity of the carbon sites in conjugated π systems in an atomic orbital (AO) basis and the other one puts the emphasis on the amplitudes and signs of the frontier molecular orbitals (MOs). There have been discussions on the range of applicability for these schemes, but ultimately conclusions from topological molecular Hamiltonians should not depend on whether they are drawn from an AO or a MO representation, as long as all the orbitals are taken into account. In this article, we clarify the relation between both models in terms of the zeroth order Green's function and compare their predictions for a variety of systems. From this comparison, we conclude that for a correct description of DQI from a MO perspective, it is necessary to include the contributions from all MOs rather than just those from the frontier orbitals. The cases where DQI effects can be successfully predicted within a frontier orbital approximation we show them to be limited to alternant even-membered hydrocarbons, as a direct consequence of the Coulson-Rushbrooke pairing theorem in quantum chemistry.
Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges
NASA Astrophysics Data System (ADS)
Chen, Qiao; Li, L. L.; Peeters, F. M.
2018-02-01
Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.
Ide, Yasuhiro; Shibahara, Takashi
2007-01-22
A seven-electron cluster [Mo3(mu3-S){mu3-SC(CO(2)CH(3))=C(CO(2)CH(3))S}{mu-SC(CO(2)CH(3))=CH(CO(2)CH(3))}(dtp)3(mu-OAc)] [2, S2P(OC(2)H(5))2-; dtp = diethyldithiophosphate] and an organometallic cluster [Mo3(mu3-S){mu3-SC(CO(2)CH(3))=C(CO(2)CH(3))S}{mu-SC(CO(2)CH(3))CH(OCH(3))(CO2)}(dtp)2(CH(3)OH)(mu-OAc)](Mo-C) (3) were obtained by reaction in methanol of the sulfur-bridged trinuclear complex [Mo3(mu3-S)(mu-S)3(dtp)3(CH(3)CN)(mu-OAc)] (1) with dimethylacetylenedicarboxylate (DMAD). The X-ray structures of 2 and 3 revealed the adduct formation of two DMAD molecules to the respective Mo(3)S(4) cores. 2 is paramagnetic and obeys the Curie-Weiss law: the mu(eff) value at 300 K is 1.90 muB. The electron spin resonance signal was observed at 173 K. The density functional theory calculation of 2 demonstrated that the main components of the singly occupied molecular orbitals of alpha and beta spins are Mo d electrons and the main components of lowest unoccupied molecular orbitals are of Mo and the olefin moiety with one C-S bond. A one-electron reversible oxidation process of 2 was observed at E1/2 = -0.11 V vs Fc/Fc+. The electronic spectrum of 2 has a peak at 468 nm (epsilon = 2170 M(-1) cm(-1)) and shoulders at 640 (918) and 797 (605) nm, and 3 has shoulders at 441 (1740) and 578 (625) nm and a distinct peak at 840 (467) nm. An intermediate [Mo3(mu3-S){mu3-SC(CO(2)CH(3))=C(CO(2)CH(3))S}{mu-SC(CO(2)CH(3))=CH(CO(2)CH(3))}(dtp)3(mu-OAc)]+ (4) is tentatively suggested: a one-electron reduction of 4 gives 2, and a nucleophilic conjugate addition of CH(3)O- to the alpha,beta-unsaturated carbonyl group of 4 gives 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Shuang-Shuang; Huang, Wei-Qing, E-mail: wqhuang@hnu.edu.cn, E-mail: gfhuang@hnu.edu.cn; Yang, Yin-Cai
2016-05-28
The enhanced photocatalytic performance of various MoS{sub 2}-based nanomaterials has recently been observed, but the role of monolayer MoS{sub 2} is still not well elucidated at the electronic level. Herein, focusing on a model system, hybrid MoS{sub 2}/SnO{sub 2} nanocomposite, we first present a theoretical elucidation of the dual role of monolayer MoS{sub 2} as a sensitizer and a co-catalyst by performing density functional theory calculations. It is demonstrated that a type-II, staggered, band alignment of ∼0.49 eV exists between monolayer MoS{sub 2} and SnO{sub 2} with the latter possessing the higher electron affinity, or work function, leading to the robustmore » separation of photoexcited charge carriers between the two constituents. Under irradiation, the electrons are excited from Mo 4d orbitals to SnO{sub 2}, thus enhancing the reduction activity of latter, indicating that the monolayer MoS{sub 2} is an effective sensitizer. Moreover, the Mo atoms, which are catalytically inert in isolated monolayer MoS{sub 2}, turn into catalytic active sites, making the monolayer MoS{sub 2} to be a highly active co-catalyst in the composite. The dual role of monolayer MoS{sub 2} is expected to arise in other MoS{sub 2}-semiconductor nanocomposites. The calculated absorption spectra can be rationalized by available experimental results. These findings provide theoretical evidence supporting the experimental reports and pave the way for developing highly efficient MoS{sub 2}-based photocatalysts.« less
Scanning tunneling spectroscopy of MoS2 monolayer in presence of ethanol gas
NASA Astrophysics Data System (ADS)
Hosseini, Seyed Ali; Iraji zad, Azam; Berahman, Masoud; Aghakhani Mahyari, Farzaneh; Shokouh, Seyed Hossein Hosseini
2018-04-01
Due to high surface to volume ratio and tunable band gap, two dimensional (2D) layered materials such as MoS2, is good candidate for gas sensing applications. This research mainly focuses on variation of Density of States (DOS) of MoS2 monolayes caused by ethanol adsorption. The nanosheets are synthesized by liquid exfoliation, and then using Scanning Tunneling Spectroscopy (STS) and Density Functional Theory (DFT), local electronic characteristic such as DOS and band gap in non-vacuum condition are analyzed. The results show that ethanol adsorption enhances DOS and deform orbitals near the valence and conduction bands that increase transport of carriers on the sheet.
NASA Astrophysics Data System (ADS)
Semkova, Jordanka; Koleva, Rositza; Benghin, Victor; Dachev, Tsvetan; Matviichuk, Yuri; Tomov, Borislav; Krastev, Krasimir; Maltchev, Stephan; Dimitrov, Plamen; Mitrofanov, Igor; Malahov, Alexey; Golovin, Dmitry; Mokrousov, Maxim; Sanin, Anton; Litvak, Maxim; Kozyrev, Andrey; Tretyakov, Vladislav; Nikiforov, Sergey; Vostrukhin, Andrey; Fedosov, Fedor; Grebennikova, Natalia; Zelenyi, Lev; Shurshakov, Vyacheslav; Drobishev, Sergey
2018-03-01
ExoMars is a joint ESA-Rosscosmos program for investigating Mars. Two missions are foreseen within this program: one consisting of the Trace Gas Orbiter (TGO), that carries scientific instruments for the detection of trace gases in the Martian atmosphere and for the location of their source regions, plus an Entry, Descent and landing demonstrator Module (EDM), launched on March 14, 2016; and the other, featuring a rover and a surface platform, with a launch date of 2020. On October 19, 2016 TGO was inserted into high elliptic Mars' orbit. The dosimetric telescope Liulin-MO for measuring the radiation environment onboard the ExoMars 2016 TGO is a module of the Fine Resolution Epithermal Neutron Detector (FREND). Here we present first results from measurements of the charged particle fluxes, dose rates, Linear Energy Transfer (LET) spectra and estimation of dose equivalent rates in the interplanetary space during the cruise of TGO to Mars and first results from dosimetric measurements in high elliptic Mars' orbit. A comparison is made with the dose rates obtained by RAD instrument onboard Mars Science Laboratory during the cruise to Mars in 2011-2012 and with the Galactic Cosmic Rays (GCR) count rates provided by other particle detectors currently in space. The average measured dose rate in Si from GCR during the transit to Mars for the period April 22-September 15, 2016 is 372 ± 37 μGy d-1 and 390 ± 39 μGy d-1 in two perpendicular directions. The dose equivalent rate from GCR for the same time period is about 2 ± 0.3 mSv d-1. This is in good agreement with RAD results for radiation dose rate in Si from GCR in the interplanetary space, taking into account the different solar activity during the measurements of both instruments. About 10% increase of the dose rate, and 15% increase of the dose equivalent rate for 10.5 months flight is observed. It is due to the increase of Liulin-MO particle fluxes for that period and corresponds to the overall GCR intensity increase during the declining phase of the solar activity. Data show that during the cruise to Mars and back (6 months in each direction), taken during the declining of solar activity, the crewmembers of future manned flights to Mars will accumulate at least 60% of the total dose limit for the cosmonaut's/astronaut's career in case their shielding conditions are close to the average shielding of Liulin-MO detectors-about 10 g cm-2. The dosimetric measurements in high elliptic Mars' orbit demonstrate strong dependence of the GCR fluxes near the TGO pericenter on satellite's field of view shadowed by Mars.
Mobility spectrum analytical approach for the type-II Weyl semimetal Td-MoTe2
NASA Astrophysics Data System (ADS)
Pei, Q. L.; Luo, X.; Chen, F. C.; Lv, H. Y.; Sun, Y.; Lu, W. J.; Tong, P.; Sheng, Z. G.; Han, Y. Y.; Song, W. H.; Zhu, X. B.; Sun, Y. P.
2018-02-01
The extreme magnetoresistance (XMR) in orthorhombic W/MoTe2 arises from the combination of the perfect electron-hole (e-h) compensation effect and the unique orbital texture topology, which have comprised an intriguing research field in materials physics. Herein, we apply a special analytical approach as a function of mobility (μ-spectrum) without any hypothesis. Based on the interpretations of longitudinal and transverse electric transport of Td-MoTe2, the types and the numbers of carriers can be obtained. There are three observations: the large residual resistivity ratio can be observed in the MoTe2 single crystal sample, which indicates that the studied crystal is of high quality; we observed three electron-pockets and three hole-ones from the μ-spectrum and that the ratio of h/e is much less than 1, which shows that MoTe2 is more e-like; different from the separated peaks obtained from the hole-like μ-spectrum, those of the electron-like one are continuous, which may indicate the topological feature of electron-pockets in Td-MoTe2. The present results may provide an important clue to understanding the mechanism of the XMR effect in Td-MoTe2.
Tunable magnetic coupling in Mn-doped monolayer MoS2 under lattice strain
NASA Astrophysics Data System (ADS)
Miao, Yaping; Huang, Yuhong; Bao, Hongwei; Xu, Kewei; Ma, Fei; Chu, Paul K.
2018-05-01
First-principles calculations are conducted to study the electronic and magnetic states of Mn-doped monolayer MoS2 under lattice strain. Mn-doped MoS2 exhibits half-metallic and ferromagnetic (FM) characteristics in which the majority spin channel exhibits metallic features but there is a bandgap in the minority spin channel. The FM state and the total magnetic moment of 1 µ B are always maintained for the larger supercells of monolayer MoS2 with only one doped Mn, no matter under tensile or compressive strain. Furthermore, the FM state will be enhanced by the tensile strain if two Mo atoms are substituted by Mn atoms in the monolayer MoS2. The magnetic moment increases up to 0.50 µ B per unit cell at a tensile strain of 7%. However, the Mn-doped MoS2 changes to metallic and antiferromagnetic under compressive strain. The spin polarization of Mn 3d orbitals disappears gradually with increasing compressive strain, and the superexchange interaction between Mn atoms increases gradually. The results suggest that the electronic and magnetic properties of Mn-doped monolayer MoS2 can be effectively modulated by strain engineering providing insight into application to electronic and spintronic devices.
NASA Astrophysics Data System (ADS)
Fraser, Roan; van Rooyen, Petrus H.; Landman, Marilé
2016-02-01
Bi- and trimetallic carbene complexes of group VI and VII transition metals (Cr, Mo, W, Mn and Re), with CpMn(CO)3 as the initial synthon, have been synthesised according to the classical Fischer methodology. Crystal structures of the novel carbene complexes with general formula [Mx(CO)y-1{C(OEt)(MnCp(CO)3)}], where x = 1 then y = 3 or 6; x = 2 then y = 10, of the complexes are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the polymetallic complexes. Application of the second-order perturbation theory (SOPT) of the natural bond orbital (NBO) method revealed stabilizing interactions between the methylene C-H bonds and the carbonyl ligands of the carbene metal moiety. These stabilization interactions show a linear decrease for the group VI metal carbene complexes down the group.
NASA Astrophysics Data System (ADS)
Schaugaard, Richard N.; Topolski, Josey E.; Ray, Manisha; Raghavachari, Krishnan; Jarrold, Caroline Chick
2018-02-01
Recent studies on reactions between MoxOy- cluster anions and H2O/C2H4 mixtures revealed a complex web of addition, hydrogen evolution, and chemifragmentation reactions, with chemifragments unambiguously connected to cluster reactions with C2H4. To gain insight into the molecular-scale interactions along the chemifragmentation pathways, the anion photoelectron (PE) spectra of MoC2H2-, MoC4H4-, MoOC2H2-, and MoO2C2H2- formed directly in MoxOy- + C2H4 (x > 1; y ≥ x) reactions, along with supporting CCSD(T) and density functional theory calculations, are presented and analyzed. The complexes have spectra that are all consistent with η2-acetylene complexes, though for all but MoC4H4-, the possibility that vinylidene complexes are also present cannot be definitively ruled out. Structures that are consistent with the PE spectrum of MoC2H2- differ from the lowest energy structure, suggesting that the fragment formation is under kinetic control. The PE spectrum of MoO2C2H2- additionally exhibits evidence that photodissociation to MoO2- + C2H2 may be occurring. The results suggest that oxidative dehydrogenation of ethylene is initiated by Lewis acid/base interactions between the Mo centers in larger clusters and the π orbitals in ethylene.
The effects of surface polarity and dangling bonds on the electronic properties of MoS2 on SiO2
NASA Astrophysics Data System (ADS)
Sung, Ha-Jun; Choe, Duk-Hyun; Chang, Kee Joo
2015-03-01
MoS2 has recently attracted much attention due to its intriguing physical phenomena and possible applications for the next generation electronic devices. In pristine monolayer MoS2, strong spin-orbit coupling and inversion symmetry breaking allow for an effective coupling between the spin and valley degrees of freedom, inducing valley polarization at the K valleys. However, the spin-valley coupling disappears in bilayer MoS2 because the inversion symmetry is restored. In this work, we investigate the effects of surface polarity and dangling bonds on the electronic properties of MoS2 on α-quartz SiO2 through first-principles calculations. In monolayer MoS2, a transition can take place from the direct-gap to indirect-gap semiconductor in the presence of O dangling bonds. In bilayer MoS2, O dangling bonds induce dipole fields across the interface and thus break the inversion symmetry, resulting in the valley polarization, similar to that of pristine monolayer MoS2. Based on the results, we discuss the origin of the valley polarization observed in MoS2 deposited on SiO2 This work was supported by National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and by Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Re, Suyong; Morokuma, Keiji
2001-07-07
The reliability of the two-layered ONIOM (our own N-layered molecular orbital + molecular mechanics) method was examined for the investigation of the SN2 reaction pathway (reactants, reactant complexes, transition states, product complexes, and products) between CH3Cl and an OH- ion in microsolvation clusters with one or two water molecules. Only the solute part, CH3Cl and OH-, was treated at a high level of molecular orbital (MO) theory, and all solvent water molecules were treated at a low MO level. The ONIOM calculation at the MP2 (Moller-Plesset second order perturbation)/aug-cc-pVDZ (augmented correlation-consistent polarized valence double-zeta basis set) level of theory asmore » the high level coupled with the B3LYP (Becke 3 parameter-Lee-Yag-Parr)/6-31+G(d) as the low level was found to reasonably reproduce the "target"geometries at the MP2/aug-cc-pVDZ level of theory. The energetics can be further improved to an average absolute error of <1.0 kcal/mol per solvent water molecule relative to the target CCSD(T) (coupled cluster singles and doubles with triples by perturbation)/aug-cc-pVDZ level by using the ONIOM method in which the high level was CCSD(T)/aug-cc-pVDZ level with the low level of MP2/aug-cc-pVDZ. The present results indicate that the ONIOM method would be a powerful tool for obtaining reliable geometries and energetics for chemical reactions in larger microsolvated clusters with a fraction of cost of the full high level calculation, when an appropriate combination of high and low level methods is used. The importance of a careful test is emphasized.« less
47 CFR 1.1156 - Schedule of regulatory fees and filing locations for international services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... applies for the listed services: Fee category Fee amount Address Space Stations (Geostationary Orbit) $131,375 FCC, International, P.O. Box 979084,St. Louis, MO 63197-9000. Space Stations (Non-Geostationary...
47 CFR 1.1156 - Schedule of regulatory fees and filing locations for international services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... applies for the listed services: Fee category Fee amount Address Space Stations (Geostationary Orbit) $127,925 FCC, International, P.O. Box 979084, St. Louis, MO 63197-9000 Space Stations (Non-Geostationary...
A comparison of the bonding in organoiron clusters
NASA Astrophysics Data System (ADS)
Buhl, Margaret L.; Long, Gary J.
1994-12-01
The Mössbauer effect hyperfine parameters and the results of the Fenske-Hall molecular orbit (mo) calculations have been used to study the electronic properties of trinuclear iron, tetranuclear iron butterfly, Fe-Co, and Fe-Cu carbonyl clusters. The more negative Fe charge and the larger Fe 4s population in an Fe(CO)4 fragment as compared with that in an Fe(CO)3 or an Fe(CO)2 fragment is a result of the CO ligands rather than the near-neighbor metals. The clusters which contain heterometals have more negative isomer shifts. The isomer shift correlated well with the sum of the Fe 4s orbital population and the Zeff these electrons experience. The mo wave functions and the atomic charges generally give a larger calculated Δ E Q than is observed, indicating the need to include Sternheimer factors in the calculation. The valence contribution dominates the EFG.
NASA Astrophysics Data System (ADS)
Kawabata, Hiroshi; Iyama, Tetsuji; Tachikawa, Hiroto
2008-01-01
Hybrid density functional theory (DFT) calculations have been carried out for the lithium adsorbed on a fluorinated graphene surface (F-graphene, C96F24) to elucidate the effect of fluorination of amorphous carbon on the diffusion mechanism of lithium ion. Also, direct molecular orbital-molecular dynamics (MO-MD) calculation [H. Tachikawa and A. Shimizu: J. Phys. Chem. B 109 (2005) 13255] was applied to diffusion processes of the Li+ ion on F-graphene. The B3LYP/LANL2MB calculation showed that the Li+ ion is most stabilized around central position of F-graphene, and the energy was gradually instabilized for the edge region. The direct MO-MD calculations showed that the Li+ ion diffuses on the bulk surface region of F-graphite at 300 K. The nature of the interaction between Li+ and F-graphene was discussed on the basis of theoretical results.
NASA Astrophysics Data System (ADS)
Gövdeli, Nezafet; Karakaş, Duran
2018-07-01
Quantum chemical calculations at B3LYP/LANL2DZ/6-31G(d) level were made on anti-eclipsed, anti-staggered, syn-eclipsed, syn-staggered conformers of hypothetical Fischer type Mo(CO)5[C(OEt)Me] and Mo(CO)5[C(OMe)Et] carbene complexes in the gas phase. The most stable conformer of the complexes was found to be anti-staggered according to the total energy values calculated at given level. Structural parameters, vibration spectra, charge distributions, molecular orbital energy diagrams, contour diagrams of frontier orbitals, molecular electrostatic potential maps and some electronic structure descriptors were obtained for the most stable conformers. NMR spectra of the most stable conformers were calculated at GIAO/B3LYP/LANL2DZ level. The most stable conformer geometry was found to be distorted octahedral. IR and NMR spectra of the complexes are consistent with their geometry. HOMOs of the complexes were found to be center-atomic character and LUMOs were carbene-carbon character. From the calculated charge analysis and molecular electrostatic potential maps, it is found that carbene-carbon acts as electrofil and metal center nucleophile. It is suggested that the catalytic properties of the carbene complexes may be due to the fact that the carbene-carbon behave as electrophile and metal center nucleophile. Some electronic structure descriptors of the complexes were calculated and the molecular properties were estimated.
NASA Astrophysics Data System (ADS)
Foggiatto, Alexandre L.; Sakurai, Takeaki
2018-03-01
The energy-level alignment of boron subphthalocyanine chloride (SubPc)/α-sexithiophene (6T) grown on MoO3 was investigated using ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). We demonstrated that the p-doping effect generated by the MoO3 layer can induce charge transfer at the organic-organic heterojunction interface. After the deposition of 6T on MoO3, the fermi level becomes pinned close to the 6T highest occupied molecular orbital (HOMO) level and when SubPc is deposited, owing to its tail states, charge transfer occurs in order to achieve thermodynamic equilibrium. We also demonstrated that the charge transfer can be reduced by annealing the film. We suggested that the reduction of the misalignment on the film induces a reduction in the density of gap states, which controls the charge transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, Tom; Huang, Xin; Wang, Xue B.
2006-09-21
Two polyoxometalate Keggin-type anions, a-PM12O403- (M = Mo, W), were transferred to the gas phase by electrospray; their electronic structure and stability were probed by photoelectron spectroscopy. These triply charged anions were found to be highly stable in the gas phase with large adiabatic electron detachment energies of 1.7 and 2.1 eV for M = Mo and W, respectively. The magnitude of the repulsive Coulomb barrier was measured as ~3.4 eV for both anions, providing an experimental estimate for the intramolecular Coulomb repulsion present in these highly charged anions. Density functional theory calculations were carried out and compared with themore » experimental data, providing insight into the electronic structure and valence molecular orbitals of the two Keggin anions. The calculations indicated that the highest occupied molecular orbital and other frontier orbitals for PM12O403- are localized primarily on the u2-oxo bridging ligands of the polyoxometalate framework, consistent with the reactivity on the u2-oxo sites observed in solution. It was shown that the HOMO of PW12O403- is stabilized relative to that of PMo12O403- by ~0.35 eV. The experimental adiabatic electron detachment energies of PM12O403- (i.e., the electron affinities of PM12O402-) are combined with recent calculations on the proton affinity of PM12O403- to yield O-H bond dissociation energies in PM12O39(OH)2- as ~5.1 eV« less
NASA Astrophysics Data System (ADS)
Novita, Mega; Nagoshi, Hikari; Sudo, Akiho; Ogasawara, Kazuyoshi
2018-01-01
In this study, we performed an investigation on α-Al2O3: V3+ material, or the so-called color change sapphire, based on first-principles calculations without referring to any experimental parameter. The molecular orbital (MO) structure was estimated by the one-electron MO calculations using the discrete variational-Xα (DV-Xα) method. Next, the absorption spectra were estimated by the many-electron calculations using the discrete variational multi-electron (DVME) method. The effect of lattice relaxation on the crystal structures was estimated based on the first-principles band structure calculations. We performed geometry optimizations on the pure α-Al2O3 and with the impurity V3+ ion using Cambridge Serial Total Energy Package (CASTEP) code. The effect of energy corrections such as configuration dependence correction and correlation correction was also investigated in detail. The results revealed that the structural change on the α-Al2O3: V3+ resulted from the geometry optimization improved the calculated absorption spectra. By a combination of both the lattice relaxation-effect and the energy correction-effect improve the agreement to the experiment fact.
Pichierri, Fabio; Matsuo, Yo
2002-08-01
Semiempirical molecular orbital (MO) calculations with an implicit treatment of the water environment were employed in order to assess whether the sialyl Lewis(X) (sLe(X)) tetrasaccharide binds to E-selectin in the anionic or neutral (i.e., protonated) state. The analysis of the frontier molecular orbitals, electrostatic potential surfaces, and conformational behavior of the sugar indicates that its neutral form possesses the necessary characteristics for binding. In particular, the LUMO level of the neutral sLe(X) molecule is localized both on the carboxylic group of the N-acetyl neuraminic acid (NeuNAc) residue and on the nearby glycosidic linkage. These two moieties interact with the Arg97 residue of E-selectin, as revealed by a recent crystal structure analysis of the E-selectin/sLe(X) complex. The energetics of this specific interaction was investigated with the aid of ab initio Hartree-Fock MO calculations, which resulted in a BSSE-corrected binding energy of 16.63 kcal/mol. Our observations could open up new perspectives in the design of sLe(X) mimics.
NASA Astrophysics Data System (ADS)
Wang, Meiyan; Wang, Wei; Ji, Min; Cheng, Xinlu
2018-05-01
Using density functional theory (DFT), we present a theoretical investigation of phenol (C6H5OH) and hydrazine (N2H4) on pristine and decorated MoS2 monolayer. In our work, we first focus on the interactions between several metal atoms and MoS2 monolayer and then choose the MoS2 nanosheet decorated by Sc, Ti, Cr and Mn to be the substrate. Furthermore, the properties of phenol and N2H4 on pure and X-doped (X = Sc, Ti, Cr and Mn) MoS2 base materials are discussed in terms of adsorption energy, adsorption distance, charge transfer, charge density difference, HOMO and LUMO molecular orbitals and density of states (DOS). The results predict that the adsorption of phenol and hydrazine upon X-decorated MoS2 monolayers are more favorable than the adsorption on isolated ones, which demonstrating that Sc, Ti, Cr and Mn doping help to improve the adsorption abilities. Calculations also show shorter adsorption distance and more charge transfer for Sc-, Ti-, Cr- and Mn-doped systems than the pristine one. The results confirm that X-doped MoS2 monolayer can be used as effective and potential adsorbents for toxic phenol and hydrazine.
Development of spontaneous magnetism and half-metallicity in monolayer MoS2
NASA Astrophysics Data System (ADS)
Rahman, Altaf Ur; Rahman, Gul; García-Suárez, Víctor M.
2017-12-01
Half-metallic behavior and ferromagnetism are predicted in strained MoS2 with different light elements adsorbed using density functional theory. We find that strain increases the density of states at the Fermi energy for Y doping (Y = H, Li, and F) at the S sites and strain-driven magnetism develops in agreement with the Stoner mean field model. Strain-driven magnetism requires less strain (∼3%) for H doping as compared with F and Li doping. No saturation of the spin-magnetic moment is observed in Li-doped MoS2 due to less charge transfer from the Mo d electrons and the added atoms do not significantly increase the Spin-orbit coupling. Half-metallic ferromagnetism is predicted in H and F-doped MoS2. Fixed magnetic moments calculations are also performed, and the DFT computed data is fitted with the Landau mean field theory to investigate the emergence of spontaneous magnetism in Y-doped MoS2. We predict spontaneous magnetism in systems with large (small) mag netic moments for H/F (Li) atoms. The large (small) magnetic moments are atttributed to the electronegativity difference between S and Y atoms. These results suggest that H and F adsorbed monolayer MoS2 is a good candidate for spin-based electronic devices.
Khan, M A; Leuenberger, Michael N
2018-04-18
Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS 2 , has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS 2 is magnetic in nature with a magnetic moment μ of ∼2 [Formula: see text] and, remarkably, exhibits an exceptionally large atomic scale MAE [Formula: see text] of ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin-orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 [Formula: see text] and 3 [Formula: see text] by varying the Fermi energy [Formula: see text], which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to ∼1 eV with n-type doping of the MoS 2 :Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS 2 and could provide a route to nanoscale spintronic devices.
NASA Astrophysics Data System (ADS)
Khan, M. A.; Leuenberger, Michael N.
2018-04-01
Room-temperature superparamagnetism due to a large magnetic anisotropy energy (MAE) of a single atom magnet has always been a prerequisite for nanoscale magnetic devices. Realization of two dimensional (2D) materials such as single-layer (SL) MoS2, has provided new platforms for exploring magnetic effects, which is important for both fundamental research and for industrial applications. Here, we use density functional theory (DFT) to show that the antisite defect (Mo S ) in SL MoS2 is magnetic in nature with a magnetic moment μ of ∼2 μB and, remarkably, exhibits an exceptionally large atomic scale MAE =\\varepsilon\\parallel-\\varepsilon\\perp of ∼500 meV. Our calculations reveal that this giant anisotropy is the joint effect of strong crystal field and significant spin–orbit coupling (SOC). In addition, the magnetic moment μ can be tuned between 1 μB and 3 μB by varying the Fermi energy \\varepsilonF , which can be achieved either by changing the gate voltage or by chemical doping. We also show that MAE can be raised to ∼1 eV with n-type doping of the MoS2:Mo S sample. Our systematic investigations deepen our understanding of spin-related phenomena in SL MoS2 and could provide a route to nanoscale spintronic devices.
Spin-Orbit Dimers and Noncollinear Phases in d1 Cubic Double Perovskites
NASA Astrophysics Data System (ADS)
Romhányi, Judit; Balents, Leon; Jackeli, George
2017-05-01
We formulate and study a spin-orbital model for a family of cubic double perovskites with d1 ions occupying a frustrated fcc sublattice. A variational approach and a complementary analytical analysis reveal a rich variety of phases emerging from the interplay of Hund's rule and spin-orbit coupling. The phase digram includes noncollinear ordered states, with or without a net moment, and, remarkably, a large window of a nonmagnetic disordered spin-orbit dimer phase. The present theory uncovers the physical origin of the unusual amorphous valence bond state experimentally suggested for Ba2B Mo O6 (B =Y , Lu) and predicts possible ordered patterns in Ba2B Os O6 (B =Na , Li) compounds.
Photoelectron imaging spectroscopy of MoC{sup −} and NbN{sup −} diatomic anions: A comparative study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Qing-Yu; Li, Zi-Yu; He, Sheng-Gui, E-mail: shengguihe@iccas.ac.cn, E-mail: chenh@iccas.ac.cn
2015-04-28
The isoeletronic diatomic MoC{sup −} and NbN{sup −} anions have been prepared by laser ablation and studied by photoelectron imaging spectroscopy combined with quantum chemistry calculations. The photoelectron spectra of NbN{sup −} can be very well assigned on the basis of literature reported optical spectroscopy of NbN. In contrast, the photoelectron spectra of MoC{sup −} are rather complex and the assignments suffered from the presence of many electronically hot bands and limited information from the reported optical spectroscopy of MoC. The electron affinities of NbN and MoC have been determined to be 1.450 ± 0.003 eV and 1.360 ± 0.003more » eV, respectively. The good resolution of the imaging spectroscopy provided a chance to resolve the Ω splittings of the X{sup 3}Σ{sup −} (Ω = 0 and 1) state of MoC and the X{sup 4}Σ{sup −} (Ω = 1/2 and 3/2) state of MoC{sup −} for the first time. The spin-orbit splittings of the X{sup 2}Δ state of NbN{sup −} and the a{sup 2}Δ state of MoC{sup −} were also determined. The similarities and differences between the electronic structures of the NbN and MoC systems were discussed.« less
NASA Astrophysics Data System (ADS)
Zou, Yunlong; Holmes, Russell
2013-03-01
Transition metal oxides including molybdenum oxide (MoOx) are characterized by large work functions and deep energy levels relative to the organic semiconductors used in photovoltaic cells (OPVs). These materials have been used in OPVs as interlayers between the indium-tin-oxide anode and the active layers to increase the open-circuit voltage (VOC) and power conversion efficiency. We examine the role of MoOx in determining the maximum achievable VOC in planar heterojunction OPVs based on the donor-acceptor pairing of boron subphthalocyanine chloride (SubPc) and C60. While causing minor changes in VOC at room temperature, the inclusion of MoOx significantly changes the temperature dependence of VOC. Devices containing no interlayer show a maximum VOC\\ of 1.2 V, while devices containing MoOx show no saturation in VOC, reaching a value of >1.4 V at 110 K. We propose that the MoOx-SubPc interface forms a dissociating Schottky junction that provides an additional contribution to VOC at low temperature. Separate measurements of photoluminescence confirm that excitons in SubPc can be quenched by MoOx. Charge transfer at this interface is by hole extraction from SubPc to MoOx, and this mechanism favors donors with a deep highest occupied molecular orbital (HOMO) energy level. Consistent with this expectation, the temperature dependence of VOC for devices constructed using a donor with a shallower HOMO level, e.g. copper phthalocyanine, is independent of the presence of MoOx.
Equine orbital neoplasia: a review of 10 cases (1983-1998).
Baptiste, K E; Grahn, B H
2000-01-01
The clinical manifestations, laboratory findings, and survival times of 10 horses with orbital neoplasms are reported. In all cases, orbital neoplasms were malignant and locally invasive with no defined surgical circumscribed edges. It was often difficult to identify the primary cell type of the neoplasia in histologic specimens due to the poorly differentiated, anaplastic nature of the majority of cases. All except one horse were eventually euthanized 2 mo to 5 y after diagnosis due to poor response to treatment, metastasis, or unrelenting orbital neoplasia. Mean survival time increased with surgical treatment, but no significant difference was found among no treatment, chemotherapy, surgical mass removal, or exenteration/enucleation. Equine practitioners should be aware of the marked difference in prognosis of orbital neoplasms compared with ocular or localized eyelid neoplasia. Images Figure 1. Figure 2. Figure 3. PMID:10769765
Magneto-optical Kerr spectroscopy of noble metals
NASA Astrophysics Data System (ADS)
Uba, L.; Uba, S.; Antonov, V. N.
2017-12-01
Magneto-optical (MO) response of the noble metals Cu, Ag, and Au in the joint experimental and ab initio theoretical study is reported. The magneto-optical polar Kerr effect (MOKE) spectra of the noble-metal films were measured with the high sensitivity in the applied magnetic field of 1.5 T over the photon energy range 0.74-5.8 eV. Complete set of the optical conductivity tensor elements was determined precisely from the MOKE and the optical spectra measured at the same energy points. The importance of the off-diagonal intraband Drude-type transitions is demonstrated explicitly for each noble metal and found to be a substantial contribution to the observed spectra. It is shown that the first-principles calculations using the spin-polarized fully relativistic Dirac linear-muffin-tin-orbital method with the inclusion of correlation effects by GGA+U approach reproduce well the experimental spectra and allow to explain the microscopic origin of the noble metals' magneto-optical response in terms of interband transitions. Although the energy band structures of Cu, Ag, and Au are very similar, there are some distinctive differences in bandwidths and the energy positions of the bands (especially in X and L symmetry points), mainly due to different spin-orbit splitting and differences in the spatial extent of 3 d , 4 d , and 5 d valence wave functions of noble metals. It was found that the small differences in the band positions lead to significant differences in the MO properties of three noble metals. Although the spin-orbit interaction in Au is about six times larger than in Cu, and approximately two times larger than in Ag, the absolute value of Kerr rotation in Au is of the same magnitude as in Cu and one order of magnitude smaller as compared to Ag. The sharp Kerr effect spectral peak in Ag is not due to the electronic interband transitions, but rather to the plasma-edge splitting. The band-by-band decomposition of the Cu, Ag, and Au MO spectra is presented and the interband transitions responsible for the prominent structures in the spectra are identified. It has been found that main magneto-optical activity of noble metals in external magnetic field originates from interband transitions at well-defined small-volume regions of Brillouin zone located near the "neck" and "belly" of the Fermi surface.
NASA Astrophysics Data System (ADS)
Hoffmann, Stanisław K.; Goslar, Janina; Lijewski, Stefan; Zalewska, Alina
2013-11-01
Pseudotetrahedral CuS4 complexes of Cu(dmit)2 compound in DMF solution were studied by EPR, UV-Vis and electron spin echo methods. After rapid freezing at 77 K a good glassy state is formed and the CuS4 complex has a D2d symmetry of a compressed tetrahedron with xy ground state and spin-Hamiltonian parameters g|| = 2.089, g⊥ = 2.026, A|| = 146 × 10-4 cm-1 and A⊥ = 30 × 10-4 cm-1. The complex is not deformed in the glassy state and is very rigid as indicated by the echo detected spectrum and by electron spin relaxation which is governed by reorientations of methyl groups of surrounding DMF molecules as shown by electron spin echo envelope modulation (ESEEM) spectrum. The g|| and A|| of Cu(dmit)2 and other CuS4 complexes collected in Peisach-Blumberg correlation diagram were analyzed using extended Molecular Orbital theory. We explain why the correlation line for copper-sulfur complexes has larger slope compared to the CuO4 and CuN4 tetrahedra. Along the correlation line the delocalization of unpaired electron density onto ligand is constant and varies from β = 0.78-0.83 for g|| in the range 2.06-2.10 of correlation diagram. The slope of the line is determined by the product of MO-coefficients αc1, where α is a parameter characterizing delocalization of unpaired electron in x2-y2 and c1 < 1 is a mixing parameter decreasing when 4p contribution grows. We found, unexpectedly, that αc1≈0.7 for all CuS4 complexes suggesting a correlation between degree of tetrahedral deformation and MO-parameters. MO-coefficients for Cu(dmit)2 are α = 0.753, β = 0.752 and c1 = 0.930 confirming a strong delocalization of unpaired electron in xy and x2-y2 orbitals.
.sup.100Mo compounds as accelerator targets for production of .sup.99mTc
Richards, Vernal; Lapi, Suzanne
2016-09-20
Methods of synthesizing .sup.100Mo.sub.2C and .sup.99mTcO.sub.4.sup.- are disclosed. Methods of .sup.100Mo.sub.2C generation involve thermally carburizing .sup.100MoO.sub.3. Methods of .sup.99mTcO.sub.4 generation involve proton bombardment of .sup.100Mo.sub.2C in a cyclotron. Yields of .sup.99mTcO.sub.4 can be increased by sintering .sup.100Mo.sub.2C prior to bombardment. The methods also include recycling of .sup.100Mo.sub.2C to form .sup.100MoO.sub.3. SPECT images obtained using .sup.99mTcO.sub.4 generated by the disclosed methods are also presented.
A two-dimensional spin field-effect switch
NASA Astrophysics Data System (ADS)
Yan, Wenjing; Txoperena, Oihana; Llopis, Roger; Dery, Hanan; Hueso, Luis E.; Casanova, Fèlix
2016-11-01
Future development in spintronic devices will require an advanced control of spin currents, for example by an electric field. Here we demonstrate an approach that differs from previous proposals such as the Datta and Das modulator, and that is based on a van de Waals heterostructure of atomically thin graphene and semiconducting MoS2. Our device combines the superior spin transport properties of graphene with the strong spin-orbit coupling of MoS2 and allows switching of the spin current in the graphene channel between ON and OFF states by tuning the spin absorption into the MoS2 with a gate electrode. Our proposal holds potential for technologically relevant applications such as search engines or pattern recognition circuits, and opens possibilities towards electrical injection of spins into transition metal dichalcogenides and alike materials.
Rashba-type spin splitting and the electronic structure of ultrathin Pb/MoTe2 heterostructure
NASA Astrophysics Data System (ADS)
Du, X.; Wang, Z. Y.; Huang, G. Q.
2016-11-01
The spin-polarized band structures of the Pb(111)/MoTe2 heterostructure are studied by the first-principles calculations. Due to strong spin-orbit coupling and space inversion asymmetry, large Rashba spin splitting of electronic bands appears in this hybrid system. The spin splitting is completely out-of-plane and opposite at \\bar{K} and {\\bar{K}}\\prime points. Rashba spin splitting also appears along the in-plane momentum direction around the \\bar{{{Γ }}} point due to the existence of surface potential gradient induced by charge transfer at interface. Furthermore, our calculations show that the spin-polarized bands closely approach the Fermi level in Pb/MoTe2 heterostructure, showing that this heterostructure may be a good candidate in valleytronics or spintronics.
Electronic and magnetic properties of RMnO3/AMnO3 heterostructures
NASA Astrophysics Data System (ADS)
Yu, Rong; Yunoki, Seiji; Dong, Shuai; Dagotto, Elbio
2009-09-01
The ground-state properties of RMnO3/AMnO3 (RMO/AMO) heterostructures (with R=La,Pr,… , a trivalent rare-earth cation and A=Sr,Ca,… , a divalent alkaline cation) are studied using a two-orbital double-exchange model including the superexchange coupling and Jahn-Teller lattice distortions. To describe the charge transfer across the interface, the long-range Coulomb interaction is taken into account at the mean-field level, by self-consistently solving the Poisson’s equation. The calculations are carried out numerically on finite clusters. We find that the state stabilized near the interface of the heterostructure is similar to the state of the bulk compound (R,A)MO at electronic density close to 0.5. For instance, a charge and orbitally ordered CE state is found at the interface if the corresponding bulk (R,A)MO material is a narrow-to-intermediate bandwidth manganite. But instead the interface regime accommodates an A-type antiferromagnetic state with a uniform x2-y2 orbital order, if the bulk (R,A)MO corresponds to a wide bandwidth manganite. We argue that these results explain some of the properties of long-period (RMO)m/(AMO)n superlattices, such as (PrMnO3)m/(CaMnO3)n and (LaMnO3)m/(SrMnO3)n . We also remark that the intermediate states in between the actual interface and the bulklike regimes of the heterostructure are dependent on the bandwidth and the screening of the Coulomb interaction. In these regions of the heterostructures, states are found that do not have an analog in experimentally known bulk phase diagrams. These new states of the heterostructures provide a natural interpolation between magnetically ordered states that are stable in the bulk at different electronic densities.
ERIC Educational Resources Information Center
Batt, Russell H., Ed.
1988-01-01
Notes two uses of computer spreadsheets in the chemistry classroom. Discusses the general use of the spreadsheet to easily provide changing parameters of equations and then replotting the results on the screen. Presents a molecular orbital spreadsheet calculation of the LCAO-MO approach. Supplies representative printouts and graphs. (MVL)
Magnetotransport properties of MoP 2
Wang, Aifeng; Graf, D.; Stein, Aaron; ...
2017-11-02
We report magnetotransport and de Haas–van Alphen (dHvA) effect studies on MoP 2 single crystals, predicted to be a type- II Weyl semimetal with four pairs of robust Weyl points located below the Fermi level and long Fermi arcs. The temperature dependence of resistivity shows a peak before saturation, which does not move with magnetic field. Large nonsaturating magnetoresistance (MR) was observed, and the field dependence of MR exhibits a crossover from semiclassical weak-field B 2 dependence to the high-field linear-field dependence, indicating the presence of Dirac linear energy dispersion. In addition, a systematic violation of Kohler's rule was observed,more » consistent with multiband electronic transport. Strong spin-orbit coupling splitting has an effect on dHvA measurements whereas the angular-dependent dHvA orbit frequencies agree well with the calculated Fermi surface. The cyclotron effective mass ~1.6m e indicates the bands might be trivial, possibly since the Weyl points are located below the Fermi level.« less
The continuous and discrete molecular orbital x-ray bands from Xe(q+) (12≤q≤29) +Zn collisions.
Guo, Yipan; Yang, Zhihu; Hu, Bitao; Wang, Xiangli; Song, Zhangyong; Xu, Qiumei; Zhang, Boli; Chen, Jing; Yang, Bian; Yang, Jie
2016-07-29
In this paper, the x-ray emissions are measured by the interaction of 1500-3500 keV Xe(q+) (q = 12, 15, 17, 19, 21, 23, 26 and 29) ions with Zn target. When q < 29, we observe Ll, Lα, Lβ1, Lβ2 and Lγ characteristic x-rays from Xe(q+) ions and a broad M-shell molecular orbital (MO) x-ray band from the transient quasi-molecular levels. It is found that their yields quickly increase with different rates as the incident energy increases. Besides, the widths of the broad MO x-ray bands are about 0.9-1.32 keV over the energy range studied and are proportional to v(1/2) (v = projectile velocity). Most remarkably, when the projectile charge state is 29, the broad x-ray band separates into several narrow discrete spectra, which was never observed before in this field.
Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces
NASA Technical Reports Server (NTRS)
Cross, Jon B.
1990-01-01
Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.
On the Highest Oxidation States of Metal Elements in MO4 Molecules (M = Fe, Ru, Os, Hs, Sm, and Pu).
Huang, Wei; Xu, Wen-Hua; Schwarz, W H E; Li, Jun
2016-05-02
Metal tetraoxygen molecules (MO4, M = Fe, Ru, Os, Hs, Sm, Pu) of all metal atoms M with eight valence electrons are theoretically studied using density functional and correlated wave function approaches. The heavier d-block elements Ru, Os, Hs are confirmed to form stable tetraoxides of Td symmetry in (1)A1 electronic states with empty metal d(0) valence shell and closed-shell O(2-) ligands, while the 3d-, 4f-, and 5f-elements Fe, Sm, and Pu prefer partial occupation of their valence shells and peroxide or superoxide ligands at lower symmetry structures with various spin couplings. The different geometric and electronic structures and chemical bonding types of the six iso-stoichiometric species are explained in terms of atomic orbital energies and orbital radii. The variations found here contribute to our general understanding of the periodic trends of oxidation states across the periodic table.
On Valence-Band Splitting in Layered MoS2.
Zhang, Youwei; Li, Hui; Wang, Haomin; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun
2015-08-25
As a representative two-dimensional semiconducting transition-metal dichalcogenide (TMD), the electronic structure in layered MoS2 is a collective result of quantum confinement, interlayer interaction, and crystal symmetry. A prominent energy splitting in the valence band gives rise to many intriguing electronic, optical, and magnetic phenomena. Despite numerous studies, an experimental determination of valence-band splitting in few-layer MoS2 is still lacking. Here, we show how the valence-band maximum (VBM) splits for one to five layers of MoS2. Interlayer coupling is found to contribute significantly to phonon energy but weakly to VBM splitting in bilayers, due to a small interlayer hopping energy for holes. Hence, spin-orbit coupling is still predominant in the splitting. A temperature-independent VBM splitting, known for single-layer MoS2, is, thus, observed for bilayers. However, a Bose-Einstein type of temperature dependence of VBM splitting prevails in three to five layers of MoS2. In such few-layer MoS2, interlayer coupling is enhanced with a reduced interlayer distance, but thermal expansion upon temperature increase tends to decouple adjacent layers and therefore decreases the splitting energy. Our findings that shed light on the distinctive behaviors about VBM splitting in layered MoS2 may apply to other hexagonal TMDs as well. They will also be helpful in extending our understanding of the TMD electronic structure for potential applications in electronics and optoelectronics.
Interlayer excitons in MoSe2/WSe2 heterostructures from first principles
NASA Astrophysics Data System (ADS)
Gillen, Roland; Maultzsch, Janina
2018-04-01
Based on ab initio theoretical calculations of the optical spectra of vertical heterostructures of MoSe2 (or MoS2) and WSe2 sheets, we reveal two spin-orbit-split Rydberg series of excitonic states below the A excitons of MoSe2 and WSe2 with a significant binding energy on the order of 250 meV for the first excitons in the series. At the same time, we predict from accurate many-body G0W0 calculations that crystallographically aligned MoSe2/WSe2 heterostructures exhibit an indirect fundamental band gap. Due to the type-II nature of the MoSe2/WSe2 heterostructure, the indirect transition and the exciton Rydberg series corresponding to a direct transition exhibit a distinct interlayer nature with spatial charge separation of the coupled electrons and holes. Our calculations confirm the recent experimental observation of a doublet nature of the long-lived states in photoluminescence spectra of Mo X2/W Y2 heterostructures, and we attribute these two contributions to momentum-direct interlayer excitons at the K point of the hexagonal Brillouin zone and to momentum-indirect excitons at the indirect fundamental band gap. Our calculations further suggest a noticeable effect of stacking order on the electronic band gaps and on the peak energies of the interlayer excitons and their oscillation strengths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, G.R.; Brunette, A.A.; McDonell, A.C.
1981-04-22
The series of crystalline, mononuclear B/sup +/(MO(XR)/sub 4/)/sup -/ and triply bridged binuclear B/sup +/(M/sub 2/O/sub 2/(XR)/sub 6/(OMe))/sup -/(M = Mo, W; X = S, Se; R = aryl; B = quaternary cation) salts have been isolated and the anions (MoO(SR)/sub 4/)/sup -/ (R = Et, CH/sub 2/Ph) stabilized in solution at -60/sup 0/C. The mononuclear anions are intensely colored due to a ligand-to-metal charge-transfer transition which is absent in the binuclear species. The magnetic susceptibilities of (Et/sub 4/N)(MO(SPh)/sub 4/) show a Curie dependence in the range 300 to 4.2 K with minor deviations in the tungsten compound. The behaviormore » is essentially that of magnetically dilute 4d/sup 1/ and 5d/sup 1/ systems exhibiting a tetragonal ligand field and greatly reduced spin-orbit coupling on the metal. The presence of strong spin-spin coupling in the binuclear compounds leads to magnetic moments close to 0. ESR spectra (at X- and Q-band frequencies) of the mononuclear anions exhibit axial symmetry, and /sup 98/Mo and /sup 95/Mo isotope substitution and computer simulation permit accurate extraction of the g and hyperfine tensor anisotropies. Exceptionally arrow line widths permit observation of /sup 17/O-superhyperfine coupling in /sup 17/O-enriched (/sup 98/MoO(SPh)/sub 4/)/sup -/(a = 2.2 x 10/sup -4/cm/sup -1/).« less
NASA Astrophysics Data System (ADS)
Kishi, Ryohei; Minami, Takuya; Fukui, Hitoshi; Takahashi, Hideaki; Nakano, Masayoshi
2008-06-01
The core molecule dependence of energy (exciton) migration in phenylacetylene nanostar dendrimers is investigated using the ab initio molecular orbital (MO)-configuration interaction based quantum master equation approach. We examine three kinds of core molecular species, i.e., benzene, anthracene, and pentacene, with different highest occupied MO-lowest unoccupied MO (HOMO-LUMO) gaps, which lead to different orbital interactions between the dendron parts and the core molecule. The nanostars bearing anthracene and pentacene cores are characterized by multistep exciton states with spatially well-segmented distributions: The exciton distributions of high-lying exciton states are spatially localized well in the periphery region, whereas those of low-lying exciton states are done in the core region. On the other hand, for the nanostar bearing benzene core, which also has multistep exciton states, the spatial exciton distributions of low-lying exciton states are delocalized over the dendron and the core regions. It is found that the former nanostars exhibit nearly complete exciton migration from the periphery to the core molecule in contrast to the latter one, in which significant exciton distribution remains in the dendron parts attached to the core after the exciton relaxation, although all these dendrimers exhibit fast exciton relaxation from the initially populated states. It is predicted from the analysis based on the MO correlation diagrams and the relative relaxation factor that the complete exciton migration to the core occurs not only when the HOMO-LUMO gap of the core molecule is nearly equal to that of the dendron parts attached to the core (anthracene case) but also when fairly smaller than that (pentacene case), whereas the complete migration is not achieved when the HOMO-LUMO gap of the core is larger than that of the dendron parts (benzene case). These results suggest that the fast and complete exciton migration of real dendrimers could be realized by adjusting the HOMO-LUMO gap of the core molecule to be smaller than that of dendron parts, although there exist more complicated relaxation processes as compared to simple dendritic aggregate models studied so far.
STS-57 crewmembers train in JSC's FB Shuttle Mission Simulator (SMS)
NASA Technical Reports Server (NTRS)
1993-01-01
STS-57 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist 2 (MS2) Nancy J. Sherlock, holding computer diskettes and procedural checklist, discusses equipment operation with Commander Ronald J. Grabe on the middeck of JSC's fixed based (FB) shuttle mission simulator (SMS). Payload Commander (PLC) G. David Low points to a forward locker location as MS3 Peter J.K. Wisoff switches controls on overhead panels MO42F and MO58F, and MS4 Janice E. Voss looks on. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
Bonding between graphene and MoS 2 monolayers without and with Li intercalation
Ahmed, Towfiq; Modine, N. A.; Zhu, Jian-Xin
2015-07-27
We performed density functional theory (DFT) calculations for a bi-layered heterostructure combining a graphene layer with a MoS 2 layer with and without intercalated Li atoms. Our calculations demonstrate the importance of the van der Waals (vdW) interaction, which is crucial for forming stable bonding between the layers. Our DFT calculation correctly reproduces the linear dispersion, or Dirac cone, feature at the Fermi energy for the isolated graphene monolayer and the band gap for the MoS 2 monolayer. For the combined graphene/MoS 2 bi-layer, we observe interesting electronic structure and density of states (DOS) characteristics near the Fermi energy, showingmore » both the gap like features of the MoS 2 layer and in-gap states with linear dispersion contributed mostly by the graphene layer. Our calculated total DOS in this vdW heterostructure reveals that the graphene layer significantly contributes to pinning the Fermi energy at the center of the band gap of MoS 2. We also find that intercalating Li ions in between the layers of the graphene/MoS2 heterostructure enhances the binding energy through orbital hybridizations between cations (Li adatoms) and anions (graphene and MoS 2 monolayers). Moreover, we calculate the dielectric function of the Li intercalated graphene/MoS 2 heterostructure, the imaginary component of which can be directly compared with experimental measurements of optical conductivity in order to validate our theoretical prediction. We observe sharp features in the imaginary component of the dielectric function, which shows the presence of a Drude peak in the optical conductivity, and therefore metallicity in the lithiated graphene/MoS 2 heterostructure.« less
2D transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras
2017-08-01
Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.
A two-dimensional spin field-effect switch
Yan, Wenjing; Txoperena, Oihana; Llopis, Roger; ...
2016-11-11
Future development in spintronic devices will require an advanced control of spin currents, for example by an electric field. Here we demonstrate an approach that differs from previous proposals such as the Datta and Das modulator, and that is based on a van de Waals heterostructure of atomically thin graphene and semiconducting MoS 2. Our device combines the superior spin transport properties of graphene with the strong spin–orbit coupling of MoS 2 and allows switching of the spin current in the graphene channel between ON and OFF states by tuning the spin absorption into the MoS 2 with a gatemore » electrode. Lastly, our proposal holds potential for technologically relevant applications such as search engines or pattern recognition circuits, and opens possibilities towards electrical injection of spins into transition metal dichalcogenides and alike materials.« less
Optoelectronics of supported and suspended 2D semiconductors
NASA Astrophysics Data System (ADS)
Bolotin, Kirill
2014-03-01
Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.
Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2.
Zhang, Renyan; Tsai, I-Ling; Chapman, James; Khestanova, Ekaterina; Waters, John; Grigorieva, Irina V
2016-01-13
Superconducting layered transition metal dichalcogenides (TMDs) stand out among other superconductors due to the tunable nature of the superconducting transition, coexistence with other collective electronic excitations (charge density waves), and strong intrinsic spin-orbit coupling. Molybdenum disulfide (MoS2) is the most studied representative of this family of materials, especially since the recent demonstration of the possibility to tune its critical temperature, Tc, by electric-field doping. However, just one of its polymorphs, band-insulator 2H-MoS2, has so far been explored for its potential to host superconductivity. We have investigated the possibility to induce superconductivity in metallic polytypes, 1T- and 1T'-MoS2, by potassium (K) intercalation. We demonstrate that at doping levels significantly higher than that required to induce superconductivity in 2H-MoS2, both 1T and 1T' phases become superconducting with Tc = 2.8 and 4.6 K, respectively. Unusually, K intercalation in this case is responsible both for the structural and superconducting phase transitions. By adding new members to the family of superconducting TMDs, our findings open the way to further manipulate and enhance the electronic properties of these technologically important materials.
Gupta, Tulika; Rajeshkumar, Thayalan; Rajaraman, Gopalan
2014-07-28
Density functional studies have been performed on ten different {Gd(III)-radical} complexes exhibiting both ferro and antiferromagnetic exchange interaction with an aim to assess a suitable exchange-correlation functional within DFT formalism. This study has also been extended to probe the mechanism of magnetic coupling and to develop suitable magneto-structural correlations for this pair. Our method assessments reveal the following order of increasing accuracy for the evaluation of J values compared to experimental coupling constants: B(40HF)LYP < BHandHLYP < TPSSH < PW91 < PBE < BP86 < OLYP < BLYP < PBE0 < X3LYP < B3LYP < B2PLYP. Grimme's double-hybrid functional is found to be superior compared to other functionals tested and this is followed very closely by the conventional hybrid B3LYP functional. At the basis set front, our calculations reveal that the incorporation of relativistic effect is important in these calculations and the relativistically corrected effective core potential (ECP) basis set is found to yield better Js compared to other methods. The supposedly empty 5d/6s/6p orbitals of Gd(III) are found to play an important role in the mechanism of magnetic coupling and different contributions to the exchange terms are probed using Molecular Orbital (MO) and Natural Bond Orbital (NBO) analysis. Magneto-structural correlations for Gd-O distances, Gd-O-N angles and Gd-O-N-C dihedral angles are developed where the bond angles as well as dihedral angle parameters are found to dictate the sign and strength of the magnetic coupling in this series.
COMPARATIVE ASSESSMENT OF THE COMPOSITION AND CHARGE STATE OF NITROGENASE FeMo-COFACTOR
Harris, Travis V.; Szilagyi, Robert K.
2011-01-01
A significant limitation in our understanding of the molecular mechanism of biological nitrogen fixation is the uncertain composition of the FeMo-cofactor (FeMo-co) of nitrogenase. In this study we present a systematic, density functional theory-based evaluation of spin coupling schemes, iron oxidation states, ligand protonation states, and interstitial ligand composition using a wide range of experimental criteria. The employed functionals and basis sets were validated with molecular orbital information from X-ray absorption spectroscopic data of relevant iron-sulfur clusters. Independently from the employed level of theory, the electronic structure with the greatest number of antiferromagnetic interactions corresponds to the lowest energy state for a given charge and oxidation state distribution of the iron ions. The relative spin state energies of resting and oxidized FeMo-co already allowed the exclusion of certain iron oxidation state distributions and interstitial ligand compositions. Geometry optimized FeMo-co structures of several models further eliminated additional states and compositions, while reduction potentials indicated a strong preference for the most likely charge state of FeMo-co. Mössbauer and ENDOR parameter calculations were found to be remarkably dependent on the employed training set, density functional and basis set. Overall, we found that a more oxidized [MoIV-2FeII-5FeIII-9S2−-C4−] composition with a hydroxyl-protonated homocitrate ligand satisfies all of the available experimental criteria, and is thus favored over the currently preferred composition of [MoIV-4FeII-3FeIII-9S2−-N3−] from the literature. PMID:21545160
Zhang, Shuqu; Wang, Longlu; Liu, Chengbin; Luo, Jinming; Crittenden, John; Liu, Xia; Cai, Tao; Yuan, Jili; Pei, Yong; Liu, Yutang
2017-09-15
It is attractive to photocatalytically purify wastewater and simultaneously convert solar energy into clean hydrogen energy. However, it is still a challenge owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, we synthesized a molybdenum disulfide (MoS 2 ) quantum dot-decorated 3D nanoarchitecture (MoS 2 QDs) of indium zinc sulfide (ZnIn 2 S 4 ) and reduced grapheme oxide (MoS 2 QDs@ZnIn 2 S 4 @RGO) photocatalyst using a simple solvothermal method. The RGO promotes the electron transfer, and the highly dispersed MoS 2 QDs provides numerous catalytic sites. The photocatalytic purification of rhodamine B (RhB), eosin Y (EY), fulvic acid (FA), methylene blue (MB) and p-nitrophenol (PNP) in simulated wastewaters were further tested. The degradation efficiencies and TOC removal were 91% and 75% for PNP, 92.2% and 72% for FA, 98.5% and 80% for MB, 98.6% and 84% for EY, and 98.8% and 88% for RhB, respectively (C organics = 20 mg/L, C catalyst = 1.25 g/L, t = 12 h, I light = 3.36 × 10 -5 E L -1 s -1 ). Among these tests, the highest hydrogen production was achieved (45 μmol) during RhB degradation. Both experimental and calculational results prove that lower LUMO (lowest unoccupied molecular orbit) level of organic molecules was available for transferring electrons to catalysts, resulting in more efficient hydrogen production. Significantly, the removal efficiencies of natural organic substances in actual river water reached 76.3-98.4%, and COD reduced from 32 to 16 mg/L with 13.8 μmol H 2 production after 12 h. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Kitagawa, Masahiro; Takui, Takeji
2014-05-21
The CASSCF and the hybrid CASSCF-MRMP2 methods are applied to the calculations of spin-spin and spin-orbit contributions to the zero-field splitting tensors (D tensors) of the halogen-substituted spin-septet 2,4,6-trinitrenopyridines, focusing on the heavy atom effects on the spin-orbit term of the D tensors (D(SO) tensors). The calculations reproduced experimentally determined |D| values within an error of 15%. Halogen substitutions at the 3,5-positions are less influential in the spin-spin dipolar (D(SS)) term of 2,4,6-trinitrenopyridines, although the D(SO) terms are strongly affected by the introduction of heavier halogens. The absolute sign of the D(SO) value (D = D(ZZ) - (D(XX) + D(YY))/2) of 3,5-dibromo derivative 3 is predicted to be negative, which contradicts the Pederson-Khanna (PK) DFT result previously reported. The large negative contributions to the D(SO) value of 3 arise from the excited spin-septet states ascribed mainly to the excitations of in-plane lone pair of bromine atoms → SOMO of π nature. The importance of the excited states involving electron transitions from the lone pair orbital of the halogen atom is also confirmed in the D(SO) tensors of halogen-substituted para-phenylnitrenes. A new scheme based on the orbital region partitioning is proposed for the analysis of the D(SO) tensors as calculated by means of the PK-DFT approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkova, P., E-mail: Petya232@abv.bg; Vasilev, P.; Mustafa, M.
2016-04-21
In this work, the absorption spectra of the undoped and doped with 0.1% and 0.2% CuO{sub 2} glasses with the composition (80-x)Sb{sub 2}O{sub 3}-20Li{sub 2}O-xMoO{sub 3} are measured in the spectral region 1300-1800 nm. The optical structure of Cu{sup 2+} is investigated and the energies of the electron transitions in this metal cation are determined. The spin-orbit interaction, Lattice Compatibility Theory (LCT) analyses and the influence of molybdenum are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenggong; Wang, Congcong; Kauppi, John
2015-08-28
Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.
First-principles studies of chromium line-ordered alloys in a molybdenum disulfide monolayer
NASA Astrophysics Data System (ADS)
Andriambelaza, N. F.; Mapasha, R. E.; Chetty, N.
2017-08-01
Density functional theory calculations have been performed to study the thermodynamic stability, structural and electronic properties of various chromium (Cr) line-ordered alloy configurations in a molybdenum disulfide (MoS2) hexagonal monolayer for band gap engineering. Only the molybdenum (Mo) sites were substituted at each concentration in this study. For comparison purposes, different Cr line-ordered alloy and random alloy configurations were studied and the most thermodynamically stable ones at each concentration were identified. The configurations formed by the nearest neighbor pair of Cr atoms are energetically most favorable. The line-ordered alloys are constantly lower in formation energy than the random alloys at each concentration. An increase in Cr concentration reduces the lattice constant of the MoS2 system following the Vegard’s law. From density of states analysis, we found that the MoS2 band gap is tunable by both the Cr line-ordered alloys and random alloys with the same magnitudes. The reduction of the band gap is mainly due to the hybridization of the Cr 3d and Mo 4d orbitals at the vicinity of the band edges. The band gap engineering and magnitudes (1.65 eV to 0.86 eV) suggest that the Cr alloys in a MoS2 monolayer are good candidates for nanotechnology devices.
Valley- and spin-polarized oscillatory magneto-optical absorption in monolayer MoS2 quantum rings
NASA Astrophysics Data System (ADS)
Oliveira, D.; Villegas-Lelovsky, L.; Soler, M. A. G.; Qu, Fanyao
2018-03-01
Besides optical valley selectivity, strong spin-orbit interaction along with Berry curvature effects also leads to unconventional valley- and spin-polarized Landau levels in monolayer transition metal dichalcogenides (TMDCs) under a perpendicular magnetic field. We find that these unique properties are inherited to the magneto-optical absorption spectrum of the TMDC quantum rings (QRs). In addition, it is robust against variation of the magnetic flux and of the QR geometry. In stark contrast to the monolayer bulk material, the MoS2 QRs manifest themselves in both the optical valley selectivity and unprecedented size tunability of the frequency of the light absorbed. We also find that when the magnetic field setup is changed, the phase transition from Aharonov-Bohm (AB) quantum interference to aperiodic oscillation of magneto-optical absorption spectrum takes place. The exciton spectrum in a realistic finite thickness MoS2 QR is also discussed.
Astronaut Charles Conrad as test subject for Lower Body Negative Pressure
1973-06-09
S73-27707 (9 June 1973) --- Astronaut Charles Conrad Jr., Skylab 2 commander, serves as test subject for the Lower Body Negative Pressure (MO92) Experiment, as seen in this reproduction taken from a color television transmission made by a TV camera aboard the Skylab 1/2 space station cluster in Earth orbit. Scientist-astronaut Joseph P. Kerwin, Skylab 2 science pilot, assists Conrad into the LBNP device. Kerwin served as monitor for the experiment. The purpose of the MO92 experiment is to provide information concerning the time course of cardiovascular adaptation during flight, and to provide inflight data for predicting the degree of orthostatic intolerance and impairment of physical capacity to be expected upon return to Earth environment. The data collected in support of MO92 blood pressure, heart rate, body temperature, vectorcardiogram, LBNPD pressure, leg volume changes, and body weight. Photo credit: NASA
Linear and nonlinear magneto-optical properties of monolayer MoS2
NASA Astrophysics Data System (ADS)
Nguyen, Chuong V.; Hieu, Nguyen N.; Muoi, Do; Duque, Carlos A.; Feddi, Elmustapha; Nguyen, Hieu V.; Phuong, Le T. T.; Hoi, Bui D.; Phuc, Huynh V.
2018-01-01
In this work, using the compact density matrix approach, we study the linear and nonlinear magneto-optical properties of monolayer molybdenum disulfide (MoS2) via an investigation of the absorption coefficients (MOACs) and refractive index changes (RICs). The results are presented as functions of photon energy and external magnetic field. Our results show that the MOACs and the RICs appear as a series of peaks in the inter-band transitions between Landau levels, while the intra-band transitions result in only one peak. Because of the strong spin-orbit coupling, the peaks caused by the spin-up and -down states are different. With the increase in the magnetic field, both MOACs and RICs give a blue-shift and reduce in their amplitudes. These results suggest a potential application of monolayer MoS2 in the optoelectronic technology, magneto-optical, valleytronic, and spintronic devices.
Bellec, Nathalie; Vacher, Antoine; Barrière, Frédéric; Xu, Zijun; Roisnel, Thierry; Lorcy, Dominique
2015-05-18
Tetrathiafulvalenes (TTF) and bis(cyclopentadienyl) molybdenum dithiolene complexes, Cp2Mo(dithiolene) complexes, are known separately to act as good electron donor molecules. For an investigation of the interaction between both electrophores, two types of complexes were synthesized and characterized. The first type has one Cp2Mo fragment coordinated to one TTF dithiolate ligand, and the second type has one TTF bis(dithiolate) bridging two Cp2Mo fragments. Comparisons of the electrochemical properties of these complexes with those of models of each separate electrophore provide evidence for their mutual influence. All of these complexes act as very good electron donors with a first oxidation potential 430 mV lower than the tetrakis(methylthio)TTF. DFT calculations suggest that the HOMO of the neutral complex and the SOMO of the cation are delocalized across the whole TTF dithiolate ligand. The X-ray crystal structure analyses of the neutral and the mono-oxidized Cp2Mo(dithiolene)(bismethylthio)TTF complexes are consistent with the delocalized assignment of the highest occupied frontier molecular orbitals. UV-vis-NIR spectroelectrochemical investigations confirm this electronic delocalization within the TTF dithiolate ligand.
Wu, Yanbing; Huang, Zongyu; Liu, Huating; He, Chaoyu; Xue, Lin; Qi, Xiang; Zhong, Jianxin
2018-06-15
We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.
Robust spin-valley polarization in commensurate Mo S2 /graphene heterostructures
NASA Astrophysics Data System (ADS)
Du, Luojun; Zhang, Qian; Gong, Benchao; Liao, Mengzhou; Zhu, Jianqi; Yu, Hua; He, Rui; Liu, Kai; Yang, Rong; Shi, Dongxia; Gu, Lin; Yan, Feng; Zhang, Guangyu; Zhang, Qingming
2018-03-01
The investigation and control of quantum degrees of freedom (DoFs) of carriers lie at the heart of condensed-matter physics and next-generation electronics/optoelectronics. van der Waals heterostructures stacked from distinct two-dimensional (2D) crystals offer an unprecedented platform for combining the superior properties of individual 2D materials and manipulating spin, layer, and valley DoFs. Mo S2 /graphene heterostructures, harboring prominent spin-transport properties of graphene, giant spin-orbit coupling, and spin-valley polarization of Mo S2 , are predicted as a perfect venue for optospintronics. Here, we report the epitaxial growth of commensurate Mo S2 on graphene with high quality by chemical vapor deposition, and demonstrate robust temperature-independent spin-valley polarization at off-resonant excitation. We further show that the helicity of B exciton is larger than that of A exciton, allowing the manipulation of spin bits in the commensurate heterostructures by both optical helicity and wavelength. Our results open a window for controlling spin DoF by light and pave a way for taking spin qubits as information carriers in the next-generation valley-controlled optospintronics.
MoS2 thin films prepared by sulfurization
NASA Astrophysics Data System (ADS)
Sojková, M.; Chromik, Å.; Rosová, A.; Dobročka, E.; Hutár, P.; Machajdík, D.; Kobzev, A. P.; Hulman, M.
2017-08-01
Sulfurization of a Mo layer is one of the most used methods for preparation of thin MoS2 films. In the method, a sulfur powder and Mo covered substrate are placed in different positions within a furnace, and heated separately. This requires a furnace having at least two zones. Here, we present a simplified version of the method where a one-zone tube furnace was used. A molybdenum film on a substrate and a sulfur powder were placed in the center of the furnace and heated at temperatures above 800°C. Mo films transform into MoS2 in vapors of sulphur at high temperatures. As-prepared films were characterized by number of techniques including X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman, Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS). It appears that one-zone sulfurization, with just one annealing temperature used, is a suitable method for fabrication of MoS2 thin films. This method is fast, cheap and easy to scale up.
A strategy to rotate the Mars Observer orbit node line to advance the mapping schedule
NASA Technical Reports Server (NTRS)
Pernicka, Henry J.; Sweetser, Theodore H.; Roncoli, Ralph B.
1993-01-01
The Mars Observer (MO) spacecraft was successfully launched on September 25, 1992 and will arrive at Mars on August 24, 1993. At Mars, the spacecraft will study the planet's surface, atmosphere, and gravitational and magnetic fields. In order to achieve these scientific objectives, MO will be placed in a 2 PM (descending node) sun-synchronous orbit. Upon arrival at Mars, however, the longitude of the descending node will be approximately 15 deg greater than the desired value. The baseline plan requires a 59 day `waiting' period for the correct solar orientation to occur. During this period, 28 days are required for scientific experimentation but the remaining 30.6 days potentially could be eliminated. The strategy developed in this study examined the possibility of using any `excess' Delta-V available at Mars arrival to rotate the node line to the desired value and thus allow mapping to begin earlier. A preliminary analysis completed prior to launch is described that examined the entire launch period including the required Delta-V to perform the needed nodal rotation. A more detailed study performed after launch is also summarized.
NASA Astrophysics Data System (ADS)
Takagi, Hiroshi; Wu, Wenjie
2016-03-01
Even though the maximum wind radius (R
The role of spin-orbit coupling in topologically protected interface states in Dirac materials
NASA Astrophysics Data System (ADS)
Abergel, D. S. L.; Edge, Jonathan M.; Balatsky, Alexander V.
2014-06-01
We highlight the fact that two-dimensional (2D) materials with Dirac-like low energy band structures and spin-orbit coupling (SOC) will produce linearly dispersing topologically protected Jackiw-Rebbi modes at interfaces where the Dirac mass changes sign. These modes may support persistent spin or valley currents parallel to the interface, and the exact arrangement of such topologically protected currents depends crucially on the details of the SOC in the material. As examples, we discuss buckled 2D hexagonal lattices such as silicene or germanene, and transition metal dichalcogenides such as Mo{{S}_{2}}.
NASA Astrophysics Data System (ADS)
Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun
2016-02-01
Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices. Electronic supplementary information (ESI) available: Detailed computational method; structural data of T'' MoS2; DOS of the T'' MoS2 phase under different strains; orbital energy of T'' MoS2 under different strains; electronic structures for all other five MX2 in the T'' phase; edge states of T'' MoS2. See DOI: 10.1039/c5nr07715j
Electron tomography and fractal aspects of MoS2 and MoS2/Co spheres.
Ramos, Manuel; Galindo-Hernández, Félix; Arslan, Ilke; Sanders, Toby; Domínguez, José Manuel
2017-09-26
A study was made by a combination of 3D electron tomography reconstruction methods and N 2 adsorption for determining the fractal dimension for nanometric MoS 2 and MoS 2 /Co catalyst particles. DFT methods including Neimarke-Kiselev's method allowed to determine the particle porosity and fractal arrays at the atomic scale for the S-Mo-S(Co) 2D- layers that conform the spherically shaped catalyst particles. A structural and textural correlation was sought by further characterization performed by x-ray Rietveld refinement and Radial Distribution Function (RDF) methods, electron density maps, computational density functional theory methods and nitrogen adsorption methods altogether, for studying the structural and textural features of spherical MoS 2 and MoS 2 /Co particles. Neimark-Kiselev's equations afforded the evaluation of a pore volume variation from 10 to 110 cm 3 /g by cobalt insertion in the MoS 2 crystallographic lattice, which induces the formation of cavities and throats in between of less than 29 nm, with a curvature radius r k < 14.4 nm; typical large needle-like arrays having 20 2D layers units correspond to a model consisting of smooth surfaces within these cavities. Decreasing D P , D B , D I and D M values occur when Co atoms are present in the MoS 2 laminates, which promote the formation of smoother edges and denser surfaces that have an influence on the catalytic properties of the S-Mo-S(Co) system.
Paraskevopoulou, Patrina; Makedonas, Christodoulos; Psaroudakis, Nikolaos; Mitsopoulou, Christiana A; Floros, Georgios; Seressioti, Andriana; Ioannou, Marinos; Sanakis, Yiannis; Rath, Nigam; Gómez García, Carlos J; Stavropoulos, Pericles; Mertis, Konstantinos
2010-03-01
The novel trimolybdenum cluster [Mo(3)(mu(3)-Br)(2)(mu-Br)(3)Br(6)](2-) (1, {Mo(3)}(9+), 9 d-electrons) has been isolated from the reaction of [Mo(CO)(6)] with 1,2-C(2)H(4)Br(2) in refluxing PhCl. The compound has been characterized in solution by electrospray ionization mass spectrometry (ESI-MS), UV-vis spectroscopy, cyclic voltammetry, and in the solid state by X-ray analysis (counter-cations: (n-Bu)(4)N(+) (1), Et(4)N(+), Et(3)BzN(+)), electron paramagnetic resonance (EPR), magnetic susceptibility measurements, and infrared spectroscopy. The least disordered (n-Bu)(4)N(+) salt crystallizes in the monoclinic space group C2/c, a = 20.077(2) A, b = 11.8638(11) A, c = 22.521(2) A, alpha = 90 deg, beta = 109.348(4) deg, gamma = 90 deg, V = 5061.3(9) A(3), Z = 4 and contains an isosceles triangular metal arrangement, which is capped by two bromine ligands. Each edge of the triangle is bridged by bromine ions. The structure is completed by six terminal bromine ligands. According to the magnetic measurements and the EPR spectrum the trimetallic core possesses one unpaired electron. Electrochemical data show that oxidation by one electron of 1 is reversible, thus proceeding with retention of the trimetallic core, while the reduction is irreversible. The effective magnetic moment of 1 (mu(eff), 1.55 mu(B), r.t.) is lower than the spin-only value (1.73 mu(B)) for S = 1/2 systems, most likely because of high spin-orbit coupling of Mo(III) and/or magnetic coupling throughout the lattice. The ground electronic state of 1 was studied using density functional theory techniques under the broken symmetry formalism. The ground state is predicted to exhibit strong antiferromagnetic coupling between the three molybdenum atoms of the core. Moreover, our calculated data predict two broken symmetry states that differ only by 0.4 kcal/mol (121 cm(-1)). The antiferromagnetic character is delocalized over three magnetic orbitals populated by three electrons. The assignment of the infrared spectra is also provided.
Masuda, Yosuke; Yoshida, Tomoki; Yamaotsu, Noriyuki; Hirono, Shuichi
2018-01-01
We recently reported that the Gibbs free energy of hydrolytic water molecules (ΔG wat ) in acyl-trypsin intermediates calculated by hydration thermodynamics analysis could be a useful metric for estimating the catalytic rate constants (k cat ) of mechanism-based reversible covalent inhibitors. For thorough evaluation, the proposed method was tested with an increased number of covalent ligands that have no corresponding crystal structures. After modeling acyl-trypsin intermediate structures using flexible molecular superposition, ΔG wat values were calculated according to the proposed method. The orbital energies of antibonding π* molecular orbitals (MOs) of carbonyl C=O in covalently modified catalytic serine (E orb ) were also calculated by semi-empirical MO calculations. Then, linear discriminant analysis (LDA) was performed to build a model that can discriminate covalent inhibitor candidates from substrate-like ligands using ΔG wat and E orb . The model was built using a training set (10 compounds) and then validated by a test set (4 compounds). As a result, the training set and test set ligands were perfectly discriminated by the model. Hydrolysis was slower when (1) the hydrolytic water molecule has lower ΔG wat ; (2) the covalent ligand presents higher E orb (higher reaction barrier). Results also showed that the entropic term of hydrolytic water molecule (-TΔS wat ) could be used for estimating k cat and for covalent inhibitor optimization; when the rotational freedom of the hydrolytic water molecule is limited, the chance for favorable interaction with the electrophilic acyl group would also be limited. The method proposed in this study would be useful for screening and optimizing the mechanism-based reversible covalent inhibitors.
NASA Astrophysics Data System (ADS)
Liu, Zhiyong; Wang, Ning; Fu, Yan
2016-12-01
The solution processable electron extraction layer (EEL) is crucial for polymer solar cells (PSCs). Here, we investigated titanium (diisopropoxide) bis(2,4-pentanedionate) (TIPD) as an EEL and fabricated inverted PSCs with a blend of poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) acting as the photoactive layer, with a structure of ITO/TIPD/P3HT:ICBA/MoO3/Ag. After thermal annealing treatment at 150 °C for 15 min, the PSC performances increased from 3.85% to 6.84% and they achieve stable power conversion efficiency (PCE), with a similar PCE compared with TiO2 as an EEL by the vacuum evaporated method. Fourier transform infrared spectroscopy (FTIR) and ultraviolet photoelectron spectroscopy (UPS) confirmed that the TIPD decomposed and formed the Tidbnd O bond, and the energy level of the lowest unoccupied molecular orbital and the highest occupied molecular orbital increased. The space charge limited current (SCLC) measurements further confirmed the improvement in electron collection and the transport ability using TIPD as the EEL and thermal annealing.
Tachikawa, Hiroto; Shimizu, Akira
2005-07-14
Diffusion processes of the Li+ ion on a model surface of amorphous carbon (Li+C96H24 system) have been investigated by means of the direct molecular orbital (MO) dynamics method at the semiempirical AM1 level. The total energy and energy gradient on the full-dimensional AM1 potential energy surface were calculated at each time step in the dynamics calculation. The optimized structure, where Li+ is located in the center of the cluster, was used as the initial structure at time zero. The dynamics calculation was carried out in the temperature range 100-1000 K. The calculations showed that the Li+ ion vibrates around the equilibrium point below 200 K, while the Li+ ion moves on the surface above 250 K. At intermediate temperatures (300 K < T < 400 K), the ion moves on the surface and falls in the edge regions of the cluster. At higher temperatures (600 K < T), the Li+ ion transfers freely on the surface and edge regions. The diffusion pathway of the Li+ ion was discussed on the basis of theoretical results.
Selectivity in Ketenimine Cycloadditions. Photoelectron Hel Spectra of Ketenimines
NASA Astrophysics Data System (ADS)
Bernardi, Fernando; Bottoni, Andrea; Ballaglia, Arturo; Distefano, Giuseppe; Dondoni, Alessandro
1980-05-01
The first few bands in the photoelectron (Hel) spectra of ketenimines R1R2C-C=NR3(R1,R2=H, CH3, C5H6, CH2=CH; R3=alkyl or aryl group) are assigned to the corresponding molecular orbitals. The assignment is based on SCF-MO calculations made at three different levels (CNDO/2, ab-initio STO-3C and 4-31G) coupled with perturbational molecular orbital analyses. The π-orbitals of the unsaturated substituents are found to interact with one of the two perpendicular π-electron systems of the>C=C=N- residue, the critical factor being the position of attack of the substituent. The relevance of these results on the site selectivity observed in cycloaddition reactions of these species is discussed.
The In-Orbit Battery Reconditioning Experience On Board the Orion 1 Spacecraft
NASA Technical Reports Server (NTRS)
Hoover, S. A.; Daughtridge, S.; Johnson, P. J.; King, S. T.
1997-01-01
The Orion 1 spacecraft is a three-axis stabilized geostationary earth orbiting commercial communications satellite which was launched on November 29, 1994 aboard an Atlas II launch vehicle. The power subsystem is a dual bus, dual battery semi-regulated system with one 78 Ampere-hour nickel-hydrogen battery per bus. The batteries were built and tested by Eagle Picher Industries, Inc., of Joplin, MO and were integrated into the spacecraft by its manufacturer, Matra Marconi Space UK Ltd. This paper presents the results obtained during the first four in-orbit reconditioning cycles and compares the battery performance to ground test data. In addition, the on-station battery management strategy and implementation constraints are described. Battery performance has been nominal throughout each reconditioning cycle and subsequent eclipse season.
NASA Astrophysics Data System (ADS)
Whaley, Louis
The fundamental structural component of perovskite-related phases is the octahedrally coordinated transition metal ion, symbolized as BO6 . Corner-sharing networks of BO6 octahedra are present in perovskites and related Ruddlesden-Popper Phases, ABO3 and AO(ABO 3)n, respectively. Face-sharing octahedra arranged into columns are characteristic of hexagonal, perovskite-related phases, and the relationship will be described in detail in Chapter 1. Edge sharing octahedra are characteristic of Keggin- and Lindquist-type polyoxometallates, which at first glance, seem unconnected from perovskites. However, Chapter 1 will show the deep connections among all of the phases mentioned above, by starting with perovskite phases. Temperature- and field-dependent, magnetic and electronic transitions are linked to the structure by overlap of metal d-orbitals with oxygen 2p orbitals, and (in special cases) direct d-d overlap. A mixed-transition metal oxide with two or more type of B ions provides an environment in which dissimilar B-ion orbitals can interact via exchange of charge carriers (hole or electron transport). The general goal in choosing two B ions is to provide an opportunity for the large combined magnetic moment and a low barrier to hopping of charge carriers, achieved by pairing a 3d-ion having 3 to 5 unpaired d-electrons, with a 4d or 5d transition metal ion, having 1 or 2 unpaired electrons, such as Fe(III) and Mo(V), which have compatible reduction potentials (i.e., they can co-exist in the same oxide, and exchange takes place with a low barrier). This research includes the following systems: an n = 2 Ruddlesden-Popper (RP) phase, Sr3Fe5/4Mo3/4O6.9, containing 3-7% Sr2FeMoO6, as intergrowths (not separate crystal grains, by high-resolution transmission electron microscopy), and G-type antiferromagnetism below 150°K and a "partial spin-reorientation transition" by powder neutron diffraction (PND), not previously reported for n = 2 RP phases in the Sr-Fe-Mo-O system; A B-site ordered double perovskite with an unusual a+b+c+ Glazer octahedral tilt system was synthesized, SrFe1/4Re3/4O 3; single crystals of two anhydrous 1-ethyl-3-methylimidazolium (EMI) salts, EMI octamolybdate, (C6H11N2) 4Mo8O26; and EMI decatungstate, (C6H 11N2)4W10O32; and single crystals of an incommensurate modulated phase, "Sr3CoRh2O 9-delta", with a structure comprising two interpenetrating modulated lattices. Properties of the phases are also reported.
NASA Astrophysics Data System (ADS)
Pham, Thanh-Truc; Kang, Sung Gu; Shin, Eun Woo
2017-07-01
In this study, molybdenum (Mo)-doped nickel titanate (NiTiO3) materials were successfully synthesized as a function of Mo content through a modified Pechini method followed by a solvothermal treatment process. Various characterization methods were employed to investigate the optical and structural properties of the materials. XRD patterns clearly showed that the NiTiO3 structure maintained a single phase with no observed crystalline structure transformations, even after the addition of 10 wt.% Mo. In the Raman spectra and XRD patterns, peak positions shifted with a change in Mo content, confirming that the NiTiO3 lattice was doped with Mo. On the other hand, Mo doping of NiTiO3 materials changed their optical properties. DRS-UV demonstrated that the addition of Mo increased photon absorption within the UV region. Relaxation processes were inhibited by Mo doping, which was evident in the PL spectra. Structural properties of the prepared materials were studied via FE-SEM and HR-TEM. The measured surface area increased proportionally with Mo content due to a reduction in grain size of the materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breshears, Andrew T.; Brown, M. Alex; Bloom, Ira
We report a new method of crystal growth and synthesis based on liquid-liquid partitioning that allows for isolation and in-depth characterization of molybdenyl bis(formohydroxamate), Mo-FHA, molybdenyl bis(acetohydroxamate), Mo-AHA, and molybdenyl deferoxamine, Mo-DFO, for the first time. This novel approach affords shorter crystal growth time (hourly timeframe) without sacrificing crystal size or integrity when other methods of crystallization were unsuccessful. All three Mo complexes are characterized in solution via FTIR, NMR, UV-vis, and EXAFS spectroscopy. Mo-AHA and Mo-FHA structures are resolved by single crystal X-ray diffraction. Using the molybdenyl hydroxamate structural information, the speciation of Mo in a siderophore complex (Mo-DFO)more » is determined via complimentary spectroscopic methods and confirmed by DFT calculations. ESI-MS verifies that a complex of 1:1 molybdenum to deferoxamine is present in solution. Additionally, the Mo solution speciation in the precursor organic phase, MoO2(NO3)2HEH[EHP]2 (where HEH[EHP] is 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester), is characterized by FTIR and EXAFS spectroscopy as well as DFT calculations.« less
Disfani, Fatemeh Miri; Hsu, Wei-Lun; Mizianty, Marcin J.; Oldfield, Christopher J.; Xue, Bin; Dunker, A. Keith; Uversky, Vladimir N.; Kurgan, Lukasz
2012-01-01
Motivation: Molecular recognition features (MoRFs) are short binding regions located within longer intrinsically disordered regions that bind to protein partners via disorder-to-order transitions. MoRFs are implicated in important processes including signaling and regulation. However, only a limited number of experimentally validated MoRFs is known, which motivates development of computational methods that predict MoRFs from protein chains. Results: We introduce a new MoRF predictor, MoRFpred, which identifies all MoRF types (α, β, coil and complex). We develop a comprehensive dataset of annotated MoRFs to build and empirically compare our method. MoRFpred utilizes a novel design in which annotations generated by sequence alignment are fused with predictions generated by a Support Vector Machine (SVM), which uses a custom designed set of sequence-derived features. The features provide information about evolutionary profiles, selected physiochemical properties of amino acids, and predicted disorder, solvent accessibility and B-factors. Empirical evaluation on several datasets shows that MoRFpred outperforms related methods: α-MoRF-Pred that predicts α-MoRFs and ANCHOR which finds disordered regions that become ordered when bound to a globular partner. We show that our predicted (new) MoRF regions have non-random sequence similarity with native MoRFs. We use this observation along with the fact that predictions with higher probability are more accurate to identify putative MoRF regions. We also identify a few sequence-derived hallmarks of MoRFs. They are characterized by dips in the disorder predictions and higher hydrophobicity and stability when compared to adjacent (in the chain) residues. Availability: http://biomine.ece.ualberta.ca/MoRFpred/; http://biomine.ece.ualberta.ca/MoRFpred/Supplement.pdf Contact: lkurgan@ece.ualberta.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22689782
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roemelt, Michael, E-mail: michael.roemelt@theochem.rub.de
Spin Orbit Coupling (SOC) is introduced to molecular ab initio density matrix renormalization group (DMRG) calculations. In the presented scheme, one first approximates the electronic ground state and a number of excited states of the Born-Oppenheimer (BO) Hamiltonian with the aid of the DMRG algorithm. Owing to the spin-adaptation of the algorithm, the total spin S is a good quantum number for these states. After the non-relativistic DMRG calculation is finished, all magnetic sublevels of the calculated states are constructed explicitly, and the SOC operator is expanded in the resulting basis. To this end, spin orbit coupled energies and wavefunctionsmore » are obtained as eigenvalues and eigenfunctions of the full Hamiltonian matrix which is composed of the SOC operator matrix and the BO Hamiltonian matrix. This treatment corresponds to a quasi-degenerate perturbation theory approach and can be regarded as the molecular equivalent to atomic Russell-Saunders coupling. For the evaluation of SOC matrix elements, the full Breit-Pauli SOC Hamiltonian is approximated by the widely used spin-orbit mean field operator. This operator allows for an efficient use of the second quantized triplet replacement operators that are readily generated during the non-relativistic DMRG algorithm, together with the Wigner-Eckart theorem. With a set of spin-orbit coupled wavefunctions at hand, the molecular g-tensors are calculated following the scheme proposed by Gerloch and McMeeking. It interprets the effective molecular g-values as the slope of the energy difference between the lowest Kramers pair with respect to the strength of the applied magnetic field. Test calculations on a chemically relevant Mo complex demonstrate the capabilities of the presented method.« less
Production of radionuclide molybdenum 99 in a distributed and in situ fashion
Gentile, Charles A.; Cohen, Adam B.; Ascione, George
2016-04-19
A method and apparatus for producing Mo-99 from Mo-100 for the use of the produced Mo-99 in a Tc-99m generator without the use of uranium is presented. Both the method and apparatus employ high energy gamma rays for the transformation of Mo-100 to Mo-99. The high energy gamma rays are produced by exposing a metal target to a moderated neutron output of between 6 MeV and 14 MeV. The resulting Mo-99 spontaneously decays into Tc-99m and can therefore be used in a Tc-99m generator.
Enhanced photocatalytic activity and synthesis of ZnO nanorods/MoS2 composites
NASA Astrophysics Data System (ADS)
Li, Hui; Shen, Hao; Duan, Libing; Liu, Ruidi; Li, Qiang; Zhang, Qian; Zhao, Xiaoru
2018-05-01
A stable and recyclable organic degradation catalyst based on MoS2 functionalized ZnO nanorods was introduced. ZnO nanorods were synthesized on the glass substrates (2 cm*2 cm) by sol-gel method and hydrothermal method and functionalized with MoS2 via an argon flow annealing method. The structure and morphology of the as-prepared samples were characterized by XRD, SEM and TEM. Results showed that a small amount of MoS2 was successfully wrapped on the surfaces of ZnO nanorods. XPS analyses showed the existence of Zn-S between ZnO and MoS2, indicating that the MoS2 was combined with ZnO through chemical bonds and formed the ZnO/MoS2 heterostructure. PL results revealed that ZnO/MoS2 had lower fluorescence spectra indicating an electron transport channel between ZnO and MoS2 which separated electrons and holes. Photocatalytic experiment showed that ZnO/MoS2 composites showed a better photodegradation performance of Rhodamine B (RhB) after functionalized with MoS2 under the UV light irradiation which could be attributed to the separation and transfer of photogenerated electrons and holes between ZnO and MoS2. Meanwhile, the high active adsorption sites on the edges of MoS2 also accelerated the degradation process. Furthermore, the scavengers were used to investigate the major active species and results indicated that h+ was the major reactive species for the degradation.
NASA Astrophysics Data System (ADS)
Hamard1a, C.; Auffret, V.; Peña, O.; Le Floch, M.; Nowak, B.; Wojakowski, A.
2000-09-01
The Chevrel-phase solid solution Mo 6Se 8-Mo 6Te 8 was studied by X-ray diffraction, AC and DC magnetic susceptibility and 77Se and 125Te NMR spectroscopy. From the smooth evolution of the lattice parameters and superconducting critical temperatures, a progressive substitution of selenium atoms by tellurium is shown, on the whole range of composition 0⩽ x⩽8, in the formulation Mo 6Se 8- xTe x: the unit-cell volume increases linearly because of the larger ionic size of tellurium, while Tc decreases rapidly (from 6.45 down to 0 K) because of the different formal oxidation states of the anions and a probable evolution of the Fermi level in the density of states. Results of magnetic susceptibility support this model and suggest the inhibition of the intrinsic metallic behavior with increasing x. The NMR spectra of the binaries Mo 6Se 8 and Mo 6Te 8 reveal two significant features, attributed to two different chalcogen positions in the R 3¯ symmetry. At low Se contents in Mo 6Se 8- xTe x ( x=7.5, 7 and 6), selenium first fills the two X(2) sites along the three-fold axis (2c positions), and then it becomes statistically distributed over the general 6f positions, leading to broad 77Se NMR lines. On the other hand, substitution of Te atoms in Mo 6Se 8 seems to occur in a random way, creating large perturbations on the 125Te NMR spectra, over the whole range of x. Theoretical analysis based on the presence of two anisotropic lines (of axial and non-axial symmetries, respectively) allowed us to estimate their anisotropy factors and to perfectly simulate the frequency response of both Mo 6Se 8 and Mo 6Te 8 binaries. Analysis of the Knight shift anisotropy leads us to conclude about the importance of the molybdenum z 2 molecular orbital contribution which controls the Mo-X dipolar interactions.
Vibrational and optical properties of MoS2: From monolayer to bulk
NASA Astrophysics Data System (ADS)
Molina-Sánchez, Alejandro; Hummer, Kerstin; Wirtz, Ludger
2015-12-01
Molybdenum disulfide, MoS2, has recently gained considerable attention as a layered material where neighboring layers are only weakly interacting and can easily slide against each other. Therefore, mechanical exfoliation allows the fabrication of single and multi-layers and opens the possibility to generate atomically thin crystals with outstanding properties. In contrast to graphene, it has an optical gap of ~1.9 eV. This makes it a prominent candidate for transistor and opto-electronic applications. Single-layer MoS2 exhibits remarkably different physical properties compared to bulk MoS2 due to the absence of interlayer hybridization. For instance, while the band gap of bulk and multi-layer MoS2 is indirect, it becomes direct with decreasing number of layers. In this review, we analyze from a theoretical point of view the electronic, optical, and vibrational properties of single-layer, few-layer and bulk MoS2. In particular, we focus on the effects of spin-orbit interaction, number of layers, and applied tensile strain on the vibrational and optical properties. We examine the results obtained by different methodologies, mainly ab initio approaches. We also discuss which approximations are suitable for MoS2 and layered materials. The effect of external strain on the band gap of single-layer MoS2 and the crossover from indirect to direct band gap is investigated. We analyze the excitonic effects on the absorption spectra. The main features, such as the double peak at the absorption threshold and the high-energy exciton are presented. Furthermore, we report on the the phonon dispersion relations of single-layer, few-layer and bulk MoS2. Based on the latter, we explain the behavior of the Raman-active A1g and E2g1 modes as a function of the number of layers. Finally, we compare theoretical and experimental results of Raman, photoluminescence, and optical-absorption spectroscopy.
NASA Astrophysics Data System (ADS)
Oh-ishi, Katsuyoshi; Nagumo, Kenta; Tateishi, Kazuya; Takafumi, Ohnishi; Yoshikane, Kenta; Sugiyama, Machiko; Oka, Kengo; Kobayashi, Ryota
2017-01-01
Mo-Re-C compounds containing Mo7Re13C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo7Re13C with the β-Mn structure using the solid state method. Almost single-phase Mo7Re13C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with a pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K.
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
NASA Astrophysics Data System (ADS)
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-Ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-04-01
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g-1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g-1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Zhou, Wenzhe; Yang, Zhixiong; Wu, Shoujian; Ouyang, Fangping; Xu, Hui
2017-12-01
Based on the first principles calculation, the electrical properties and optical properties of monolayer molybdenum disulfide (MoS2) substitutionally doped by the VB and VIIB transition metal atoms (V, Nb, Ta, Mn, Tc, Re) were investigated. It is found that n-type doping or p-type doping tunes the Fermi level into the conduction band or the valence band respectively, leading to the degenerate semiconductor, while the compensatorily doped systems where the number of valence electrons is not alerted remain direct band gap ranging from 0.958 eV to 1.414 eV. According to the analysis on densities of states, the LUMO orbitals of donor impurities play the crucial role in band gap tuning. Hence, the band gap and optical properties of doped MoS2 are dominated by the species of the donor. Due to the reduction of the band gap, doped MoS2 have a lower threshold energy of photon absorption and an enhanced absorption in near infrared region. These results provide a significant guidance for the design of new 2D optoelectronic materials based on transition metal disulfide.
Probing the Fermi surface and magnetotransport properties of MoAs2
NASA Astrophysics Data System (ADS)
Singha, Ratnadwip; Pariari, Arnab; Gupta, Gaurav Kumar; Das, Tanmoy; Mandal, Prabhat
2018-04-01
Transition-metal dipnictides (TMDs) have recently been identified as possible candidates to host a topology-protected electronic band structure. These materials belong to an isostructural family and show several exotic transport properties. Especially, the large values of magnetoresistance (MR) and carrier mobility have drawn significant attention from the perspective of technological applications. In this paper, we investigate the magnetotransport and Fermi surface properties of single-crystalline MoAs2, another member of this group of compounds. A field-induced resistivity plateau and a large MR have been observed, which are comparable to those in several topological systems. Interestingly, in contrast to other isostructural materials, the carrier density in MoAs2 is quite high and shows single-band-dominated transport. The Fermi pockets, which have been identified from the quantum oscillation, are the largest among the members of this group and have significant anisotropy with crystallographic direction. Our first-principles calculations reveal a substantial difference between the band structures of MoAs2 and that of other TMDs. The calculated Fermi surface consists of one electron pocket and another "open-orbit" hole pocket, which has not been observed in TMDs so far.
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode.
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-04-18
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na(1/3)Ru(2/3)]O2 slabs delivers a capacity of 180 mAh g(-1) (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g(-1) (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes.
Mars Lower Thermosphere Variability from Odyssey and MRO Aerobraking Measurements
NASA Astrophysics Data System (ADS)
Forbes, J. M.; Zhang, X.
2017-12-01
During the aerobraking phases of the Mars Odyssey (MO) and Mars Reconnaissance Orbiter (MRO) missions, accelerometer measurements of total mass density at periapsis altitudes near 105 km were made in Mars' polar regions (> 75o latitude) during Northern Hemisphere winter (MO, Ls = 288-297) and Southern Hemisphere winter (MRO, Ls = 69-87). These measurements cover overlapping local times spanning nearly 8 hours. Prior to the local time transition, the MO and MRO accelerometers sample the high-latitude regions at nearly the same latitudes (70-85o) and same local times (1800-1900), and after the transition periapsis precesses relatively quickly (over roughly 20-30 sols) from 80o to 20o latitude in each hemisphere while keeping the local time constant near 0200-0300 LT. These observations offer the unprecedented opportunity to compare and contrast the behaviors of Mars' polar and middle latitude regions under similar geographic, altitude and local time conditions in the two hemispheres (albeit during different years), which is the focus of this paper. Particularly noteworthy are the slow (mostly eastward) migrations of longitudinal features in both MO and MRO data, which suggest modulations of non-migrating tides by planetary waves with periods of order 15-20 days.
Sequential structural and optical evolution of MoS2 by chemical synthesis and exfoliation
NASA Astrophysics Data System (ADS)
Kim, Ju Hwan; Kim, Jungkil; Oh, Si Duck; Kim, Sung; Choi, Suk-Ho
2015-06-01
Various types of MoS2 structures are successfully obtained by using economical and facile sequential synthesis and exfoliation methods. Spherically-shaped lumps of multilayer (ML) MoS2 are prepared by using a conventional hydrothermal method and were subsequently 1st-exfoliated in hydrazine while being kept in autoclave to be unrolled and separated into five-to-six-layer MoS2 pieces of several-hundred nm in size. The MoS2 MLs are 2nd-exfoliated in sodium naphthalenide under an Ar ambient to finally produce bilayer MoS2 crystals of ~100 nm. The sequential exfoliation processes downsize MoS2 laterally and reduce its number of layers. The three types of MoS2 allotropes exhibit particular optical properties corresponding to their structural differences. These results suggest that two-dimensional MoS2 crystals can be prepared by employing only chemical techniques without starting from high-pressure-synthesized bulk MoS2 crystals.
Pauling, Linus
1978-01-01
An equation for the bond angles OC—M—CO for tetracarbonyl groups in which the transition metal atom M is enneacovalent, derived from the simple theory of hybrid sp3d5 bond orbitals, is tested by comparison of the calculated values of the angles with the experimental values reported for many compounds containing M(CO)4 groups, especially those with M = Fe, Mn, Re, Cr, or Mo. The importance of the energy of resonance of single bonds and double bonds in stabilizing octahedral complexes of chromium and manganese with carbonyl, phosphine, arsine, and thio groups is also discussed. PMID:16592490
Molybdenum disulfide and water interaction parameters
NASA Astrophysics Data System (ADS)
Heiranian, Mohammad; Wu, Yanbin; Aluru, Narayana R.
2017-09-01
Understanding the interaction between water and molybdenum disulfide (MoS2) is of crucial importance to investigate the physics of various applications involving MoS2 and water interfaces. An accurate force field is required to describe water and MoS2 interactions. In this work, water-MoS2 force field parameters are derived using the high-accuracy random phase approximation (RPA) method and validated by comparing to experiments. The parameters obtained from the RPA method result in water-MoS2 interface properties (solid-liquid work of adhesion) in good comparison to the experimental measurements. An accurate description of MoS2-water interaction will facilitate the study of MoS2 in applications such as DNA sequencing, sea water desalination, and power generation.
Identifying the Unique Properties of α-Bi 2Mo 3O 12 for the Activation of Propene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licht, Rachel B.; Getsoian, Andrew; Bell, Alexis T.
In order to understand the remarkable activity of α-Bi 2Mo 3O 12 for selective oxidation and ammoxidation of propene, the propene activation ability of four molybdenum-based mixed metal oxides - Bi 2Mo 3O 12, PbMoO 4, Bi 2Pb 5Mo 8O 32, and MoO 3 - was investigated using density functional theory. Propene activation is considered to occur via abstraction of a hydrogen atom from the methyl group of physisorbed propene by lattice oxygen. For each material, the apparent activation energy was estimated by summing the heat of adsorption of propene, the C-H bond dissociation energy, and the hydrogen attachment energymore » (HAE) for hydrogen addition to lattice oxygen; this sum provides a lower bound for the apparent activation energy. It was found that two structural features of oxide surfaces are essential to achieve low activation barriers: under-coordinated surface cation sites enable strong propene adsorption, and suitable 5- or 6-coordinate geometries at molybdenum result in favorable HAEs. The impact of molybdenum coordination on HAE was elucidated by carrying out a molecular orbital analysis using a cluster model of the molybdate unit. This effort revealed that, in 5- and 6-coordinate molybdates, oxygen donor atoms trans to molybdenyl oxo atoms destabilize the molybdate prior to H addition but stabilize the molybdate after H addition, thereby providing an HAE ~15 kcal/mol more favorable than that on 4-coordinate molybdate oxo atoms. Bi 3+ cations in Bi 2Mo 3O 12 thus promote catalytic activity by providing both strong adsorption sites for propene and forcing molybdate into 5-coordinate geometries that lead to particularly favorable values of the HAE. (Graph Presented).« less
Identifying the Unique Properties of α-Bi 2Mo 3O 12 for the Activation of Propene
Licht, Rachel B.; Getsoian, Andrew; Bell, Alexis T.
2016-12-30
In order to understand the remarkable activity of α-Bi 2Mo 3O 12 for selective oxidation and ammoxidation of propene, the propene activation ability of four molybdenum-based mixed metal oxides - Bi 2Mo 3O 12, PbMoO 4, Bi 2Pb 5Mo 8O 32, and MoO 3 - was investigated using density functional theory. Propene activation is considered to occur via abstraction of a hydrogen atom from the methyl group of physisorbed propene by lattice oxygen. For each material, the apparent activation energy was estimated by summing the heat of adsorption of propene, the C-H bond dissociation energy, and the hydrogen attachment energymore » (HAE) for hydrogen addition to lattice oxygen; this sum provides a lower bound for the apparent activation energy. It was found that two structural features of oxide surfaces are essential to achieve low activation barriers: under-coordinated surface cation sites enable strong propene adsorption, and suitable 5- or 6-coordinate geometries at molybdenum result in favorable HAEs. The impact of molybdenum coordination on HAE was elucidated by carrying out a molecular orbital analysis using a cluster model of the molybdate unit. This effort revealed that, in 5- and 6-coordinate molybdates, oxygen donor atoms trans to molybdenyl oxo atoms destabilize the molybdate prior to H addition but stabilize the molybdate after H addition, thereby providing an HAE ~15 kcal/mol more favorable than that on 4-coordinate molybdate oxo atoms. Bi 3+ cations in Bi 2Mo 3O 12 thus promote catalytic activity by providing both strong adsorption sites for propene and forcing molybdate into 5-coordinate geometries that lead to particularly favorable values of the HAE. (Graph Presented).« less
Tunable, Highly Stable Lasers for Coherent Lidar
NASA Technical Reports Server (NTRS)
Henderson, Sammy W.; Hale, Charley P.; EEpagnier, David M.
2006-01-01
Practical space-based coherent laser radar systems envisioned for global winds measurement must be very efficient and must contend with unique problems associated with the large platform velocities that the instruments experience in orbit. To compensate for these large platform-induced Doppler shifts in space-based applications, agile-frequency offset-locking of two single-frequency Doppler reference lasers was thoroughly investigated. Such techniques involve actively locking a frequency-agile master oscillator (MO) source to a comparatively static local oscillator (LO) laser, and effectively producing an offset between MO (the lidar slave oscillator seed source, typically) and heterodyne signal receiver LO that lowers the bandwidth of the receiver data-collection system and permits use of very high-quantum-efficiency, reasonably- low-bandwidth heterodyne photoreceiver detectors and circuits. Recent work on MO/LO offset locking has focused on increasing the offset locking range, improving the graded-InGaAs photoreceiver performance, and advancing the maturity of the offset locking electronics. A figure provides a schematic diagram of the offset-locking system.
Rahneshin, Vahid; Khosravi, Farhad; Ziolkowska, Dominika A.; Jasinski, Jacek B.; Panchapakesan, Balaji
2016-01-01
The ability to convert photons of different wavelengths directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Here, using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2H-MoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. Applying uniaxial tensile strains to the semiconducting few-layer 2H-MoS2 crystals in the nanocomposite resulted in spatially varying energy levels inside the nanocomposite that enhanced the broadband optical absorption up to 2.3 eV and subsequent mechanical response. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies that is not achievable using conventional thin film semiconductors. PMID:27713550
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Lijuan; Xu, Haiyan; Zhang, Dingke
2014-07-01
Highlights: • Hexagonal phase of MoS{sub 2} nanosheets was synthesized by a facile hydrothermal method. • FE-SEM and TEM images show the sheets-like morphology of MoS{sub 2}. • Bilayer MoS{sub 2} can be grown under the optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. • The MoS{sub 2} nanosheets possess high methyl orange adsorption capacity due to the large surface area. - Abstract: Molybdenum disulfide (MoS{sub 2}) nanosheets have received significant attention recently due to the potential applications for exciting physics and technology. Here we show that MoS{sub 2} nanosheets can be prepared by amore » facile hydrothermal method. The study of the properties of the MoS{sub 2} nanosheets prepared at different conditions suggests that the mole ratio of precursors and hydrothermal time significantly influences the purity, crystalline quality and thermal stability of MoS{sub 2}. X-ray diffraction, Raman spectra and transmission electron microscopy results indicate that bilayer MoS{sub 2} can be grown under an optimized mole ratio of 2:1 of S:Mo at 180 °C for 50 h. Moreover, such ultrathin nanosheets exhibit a prominent photoluminescence and possess high methyl orange adsorption capacity due to the large surface area, which can be potentially used in photodevice and photochemical catalyst.« less
Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P
2017-03-01
Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.
Understanding topological phase transition in monolayer transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Choe, Duk-Hyun; Sung, Ha-Jun; Chang, K. J.
2016-03-01
Despite considerable interest in layered transition metal dichalcogenides (TMDs), such as M X2 with M =(Mo ,W ) and X =(S ,Se ,Te ) , the physical origin of their topological nature is still poorly understood. In the conventional view of topological phase transition (TPT), the nontrivial topology of electron bands in TMDs is caused by the band inversion between metal d - and chalcogen p -orbital bands where the former is pulled down below the latter. Here, we show that, in TMDs, the TPT is entirely different from the conventional speculation. In particular, M S2 and M S e2 exhibits the opposite behavior of TPT such that the chalcogen p -orbital band moves down below the metal d -orbital band. More interestingly, in M T e2 , the band inversion occurs between the metal d -orbital bands. Our findings cast doubts on the common view of TPT and provide clear guidelines for understanding the topological nature in new topological materials to be discovered.
NASA Astrophysics Data System (ADS)
Bozkaya, Uǧur
2011-12-01
In this research, orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order Møller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order Møller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O4 +, O3, and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O4 +, the OMP3 prediction, 1343 cm-1, for ω6 (b3u) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm-1, and OD, 1193 cm-1, methods (the experimental value is 1320 cm-1). For O3, the predictions of SCS-OMP3 (1143 cm-1) and SOS-OMP3 (1165 cm-1) are remarkably better than the more robust OD method (1282 cm-1); the experimental value is 1089 cm-1. For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, |Δωe| = 44 and |Δωe| = 35 cm-1, respectively, while for OD, |Δωe| = 161 cm-1and CCSD |Δωe| = 106 cm-1. Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the best methods for the symmetry-breaking cases, based on present application results. The OMP3 method offers certain advantages: it provides reliable vibrational frequencies in case of symmetry-breaking problems, especially with spin-scaling tricks, its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, and the computation of one-electron properties are easier because there is no response contribution to the particle density matrices. The OMP3 has further advantages over standard MP3, making it promising for excited state properties via linear response theory.
NASA Astrophysics Data System (ADS)
Agarwal, A.; Khasa, S.; Seth, V. P.; Sanghi, S.; Arora, M.
2014-02-01
Alkali molybdo-borate glasses having composition xMoO3·(30 - x)M2O·70B2O3 and xMoO3·(70 - x)B2O3·30M2O (M = Li, Na, K) with 0 ⩽ x ⩽ 15 (mol%) doped with 2.0 mol% of V2O5 have been prepared in order to study the influence of MoO3 on electrical conductivity, electron paramagnetic resonance (EPR) and optical spectra. From EPR studies it is observed that V4+ ions in these samples exist as VO2+ ions in octahedral coordination with a tetragonal compression and belong to C4V symmetry. The tetragonal nature and octahedral symmetry of V4+O6 complex increase as well as decrease depending upon the composition of glasses with increase in MoO3 but 3dxy orbit of unpaired electron in the VO2+ ion expands in all the glasses. The decrease in optical band gap suggests that there is an increase in the concentration of non-bridging oxygen's. From the study of optical transmission spectra it is observed that for all the glasses the degree of covalency of the σ-bonding decreases with increase in MoO3 content and the degree of covalency of the π-bonding also varies. These results based on optical spectroscopy are in agreement with EPR findings. It is found that dc conductivity decreases and activation energy increases with increase in MoO3:M2O (M = Li, Na, K) ratio in MoO3·M2O·B2O3 glasses, whereas the conductivity increases and activation energy decreases with increase in MoO3:B2O3 ratio in xMoO3·B2O3·M2O glasses, which is governed by the increase in nonbridging oxygen's. The variation in theoretical optical basicity, Λth is also studied.
Current rectification by self-assembled molecular quantum dots from first principles
NASA Astrophysics Data System (ADS)
Larade, Brian; Bratkovsky, Alexander
2003-03-01
We present results of first-principles calculations of the current rectification by self-assembled molecular quantum dots. Molecules of that kind should be synthesized with a central conjugated (narrow band-gap) part, and two peripheral saturated (wide band-gap) barrier groups of substantially different lengths L1 and L_2. The peripheral groups must end with chemical Â"anchorÂ" groups, enabling attachment of the molecule to the electrodes. In such molecules, if they are not longer than about 2-3 nm, the electron transport is likely to proceed by resonant tunneling through molecular orbitals (MO) centered on the conjugated part of the molecule (Â"quantum dotÂ") [1,2]. Generally, either LUMO (lowest unoccupied MO) or HOMO (highest occupied MO) will be most transparent to the tunneling electrons because of their different coupling to electrodes. We have studied (i) single benzene ring C6H6 [2] and (ii) naphthalene C10H8, separated from gold electrodes by alkane chains of different lengths with the use of the non-equilibrium Green's function method and self-consistent density-functional theory. The results show significant changes in electron density and potential distribution in the vicinity of molecule-electrode contact. In the case of a naphthalene quantum dot, separated from electrodes by asymmetric alkane groups (CH2)2 and (CH2)6, the I-V curve shows current rectification on the order of ˜ 10^2. [1] A.M. Bratkovsky and P.E. Kornilovitch, Phys. Rev. B (2002), to be published. [2] P. E. Kornilovitch, A.M. Bratkovsky, and R.S. Williams, Phys. Rev. B 66, 165436 (2002).
Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions
NASA Astrophysics Data System (ADS)
Cuba Torres, Christian Martin
On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.
Plasma-assisted synthesis of MoS2
NASA Astrophysics Data System (ADS)
Campbell, Philip M.; Perini, Christopher J.; Chiu, Johannes; Gupta, Atul; Ray, Hunter S.; Chen, Hang; Wenzel, Kevin; Snyder, Eric; Wagner, Brent K.; Ready, Jud; Vogel, Eric M.
2018-03-01
There has been significant interest in transition metal dichalcogenides (TMDs), including MoS2, in recent years due to their potential application in novel electronic and optical devices. While synthesis methods have been developed for large-area films of MoS2, many of these techniques require synthesis temperatures of 800 °C or higher. As a result of the thermal budget, direct synthesis requiring high temperatures is incompatible with many integrated circuit processes as well as flexible substrates. This work explores several methods of plasma-assisted synthesis of MoS2 as a way to lower the synthesis temperature. The first approach used is conversion of a naturally oxidized molybdenum thin film to MoS2 using H2S plasma. Conversion is demonstrated at temperatures as low as 400 °C, and the conversion is enabled by hydrogen radicals which reduce the oxidized molybdenum films. The second method is a vapor phase reaction incorporating thermally evaporated MoO3 exposed to a direct H2S plasma, similar to chemical vapor deposition (CVD) synthesis of MoS2. Synthesis at 400 °C results in formation of super-stoichiometric MoS2 in a beam-interrupted growth process. A final growth method relies on a cyclical process in which a small amount of Mo is sputtered onto the substrate and is subsequently sulfurized in a H2S plasma. Similar results could be realized using an atomic layer deposition (ALD) process to deposit the Mo film. Compared to high temperature synthesis methods, the lower temperature samples are lower quality, potentially due to poor crystallinity or higher defect density in the films. Temperature-dependent conductivity measurements are consistent with hopping conduction in the plasma-assisted synthetic MoS2, suggesting a high degree of disorder in the low-temperature films. Optimization of the plasma-assisted synthesis process for slower growth rate and better stoichiometry is expected to lead to high quality films at low growth temperature.
Magnetic anisotropy of [Mo(CN)7]4- anions and fragments of cyano-bridged magnetic networks.
Chibotaru, Liviu F; Hendrickx, Marc F A; Clima, Sergiu; Larionova, Joulia; Ceulemans, Arnout
2005-08-18
Quantum chemistry calculations of CASSCF/CASPT2 level together with ligand field analysis are used for the investigation of magnetic anisotropy of [Mo(CN)7]4- complexes. We have considered three types of heptacyano environments: two ideal geometries, a pentagonal bipyramid and a capped trigonal prism, and the heptacyanomolybdate fragment of the cyano-bridged magnetic network K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O. At all geometries the first excited Kramers doublet is found remarkably close to the ground one due to a small orbital energy gap in the ligand field spectrum, which ranges between a maximal value in the capped trigonal prism (800 cm(-1)) and zero in the pentagonal bipyramid. The small value of this gap explains (i) the axial form of the g tensor and (ii) the strong magnetic anisotropy even in strongly distorted complexes. Comparison with available experimental data for the g tensor of the mononuclear precursors reveals good agreement with the present calculations for the capped trigonal prismatic complex and a significant discrepancy for the pentagonal bipyramidal one. The calculations for the heptacyanomolybdate fragment of K2[Mn(H2O)2]3[Mo(CN)7]2.6H2O give g(perpendicular)/g(parallel) approximately 0.5 and the orientation of the local anisotropy axis close to the symmetry axis of an idealized pentagonal bipyramid. These findings are expected to be important for the understanding of the magnetism of anisotropic Mo(III)-Mn(II) cyano-bridged networks based on the [Mo(CN)7]4- building block.
Theoretical study of the potential energy surfaces and dynamics of CaNC/CaCN
NASA Astrophysics Data System (ADS)
Nanbu, Shinkoh; Minamino, Satoshi; Aoyagi, Mutsumi
1997-05-01
Potential energy surfaces for the ground and two low-lying electronically excited states of CaNC/CaCN, are calculated using the ab initio molecular orbital (MO) configuration interaction (CI) method. The absorption and emission spectra of the system are computed by performing time-dependent quantum dynamical calculations on these surfaces. The most stable geometries for the two lowest lying 12Σ+ and 12Π electronic states correspond to the calcium isocyanide (CaNC) structure. These two states are characterized by ionic bonding and the potential energy curves along the bending coordinate are relatively isotropic. The result of our wave packet dynamics shows that the characteristics of the experimental spectra observed by the laser-induced fluorescence spectroscopy can be explained by the Renner-Teller splitting.
NASA Astrophysics Data System (ADS)
Saleem, H.; Subashchandrabose, S.; Ramesh Babu, N.; Syed Ali Padusha, M.
2015-05-01
The FT-IR, FT-Raman and UV-Vis spectra of the Schiff base compound (E)-N‧-(4-methoxybenzylidene) benzohydrazide (MBBH) have been recorded and analyzed. The optimized geometrical parameters were calculated. The complete vibrational assignments were performed on the basis of TED of the vibrational modes, calculated with the help of SQM method. NBO analysis has been carried out to explore the hyperconjugative interactions and their second order stabilization energy within the molecule. The molecular orbitals (MO's) and its energy gap were studied. The first order hyperpolarizability (β0) and related properties (β, α0, Δα) of MBBH are also calculated. All theoretical calculations were performed on the basis of B3LYP/6-311++G(d,p) level of theory.
Integral processing in beyond-Hartree-Fock calculations
NASA Technical Reports Server (NTRS)
Taylor, P. R.
1986-01-01
The increasing rate at which improvements in processing capacity outstrip improvements in input/output performance of large computers has led to recent attempts to bypass generation of a disk-based integral file. The direct self-consistent field (SCF) method of Almlof and co-workers represents a very successful implementation of this approach. This paper is concerned with the extension of this general approach to configuration interaction (CI) and multiconfiguration-self-consistent field (MCSCF) calculations. After a discussion of the particular types of molecular orbital (MO) integrals for which -- at least for most current generation machines -- disk-based storage seems unavoidable, it is shown how all the necessary integrals can be obtained as matrix elements of Coulomb and exchange operators that can be calculated using a direct approach. Computational implementations of such a scheme are discussed.
Baeg, Kang-Jun; Bae, Gwang-Tae; Noh, Yong-Young
2013-06-26
Here we report high-performance polymer OFETs with a low-cost Mo source/drain electrode by efficient charge injection through the formation of a thermally deposited V2O5 thin film interlayer. A thermally deposited V2O5 interlayer is formed between a regioregular poly(3-hexylthiophene) (rr-P3HT) or a p-type polymer semiconductor containing dodecyl-substituted thienylenevinylene (TV) and dodecylthiophene (PC12TV12T) and the Mo source/drain electrode. The P3HT or PC12TV12T OFETs with the bare Mo electrode exhibited lower charge carrier mobility than those with Au owing to a large barrier height for hole injection (0.5-1.0 eV). By forming the V2O5 layer, the P3HT or PC12TV12T OFETs with V2O5 on the Mo electrode exhibited charge carrier mobility comparable to that of a pristine Au electrode. Best P3HT or PC12TV12T OFETs with 5 nm thick V2O5 on Mo electrode show the charge carrier mobility of 0.12 and 0.38 cm(2)/(V s), respectively. Ultraviolet photoelectron spectroscopy results exhibited the work-function of the Mo electrode progressively changed from 4.3 to 4.9 eV with an increase in V2O5 thickness from 0 to 5 nm, respectively. Interestingly, the V2O5-deposited Mo exhibits comparable Rc to Au, which mainly results from the decreased barrier height for hole carrier injection from the low-cost metal electrode to the frontier molecular orbital of the p-type polymer semiconductor after the incorporation of the transition metal oxide hole injection layer, such as V2O5. This enables the development of large-area, low-cost electronics with the Mo electrodes and V2O5 interlayer.
NASA Astrophysics Data System (ADS)
Jiang, Minhong; Wang, Baowei; Yao, Yuqin; Li, Zhenhua; Ma, Xinbin; Qin, Shaodong; Sun, Qi
2013-11-01
The CeO2-Al2O3 supports prepared with impregnation (IM), deposition precipitation (DP), and solution combustion (SC) methods for MoO3/CeO2-Al2O3 catalyst were investigated in the sulfur-resistant methanation. The supports and catalysts were characterized by N2-physisorption, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy (RS), and temperature-programmed reduction (TPR). The N2-physisorption results indicated that the DP method was favorable for obtaining better textural properties. The TEM and RS results suggested that there is a CeO2 layer on the surface of the support prepared with DP method. This CeO2 layer not only prevented the interaction between MoO3 and γ-Al2O3 to form Al2(MoO4)3 species, but also improved the dispersion of MoO3 in the catalyst. Accordingly, the catalysts whose supports were prepared with DP method exhibited the best catalytic activity. The catalysts whose supports were prepared with SC method had the worst catalytic activity. This was caused by the formation of Al2(MoO4)3 and crystalline MoO3. Additionally, the CeO2 layer resulted in the instability of catalysts in reaction process. The increasing of calcination temperature of supports reduced the catalytic activity of all catalysts. The decrease extent of the catalysts whose supports were prepared with DP method was the lowest as the CeO2 layer prevented the interaction between MoO3 and γ-Al2O3.
The global SMOS Level 3 daily soil moisture and brightness temperature maps
NASA Astrophysics Data System (ADS)
Bitar, Ahmad Al; Mialon, Arnaud; Kerr, Yann H.; Cabot, François; Richaume, Philippe; Jacquette, Elsa; Quesney, Arnaud; Mahmoodi, Ali; Tarot, Stéphane; Parrens, Marie; Al-Yaari, Amen; Pellarin, Thierry; Rodriguez-Fernandez, Nemesio; Wigneron, Jean-Pierre
2017-06-01
The objective of this paper is to present the multi-orbit (MO) surface soil moisture (SM) and angle-binned brightness temperature (TB) products for the SMOS (Soil Moisture and Ocean Salinity) mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS) makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD) compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD) using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive) TB. The Level 3 SM V300 product is compared to the single-orbit (SO) retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM) are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an open licence and free of charge using a web application (https://www.catds.fr/sipad/). The RE04 products, versions 300 and 310, used in this paper are also available at ftp://ext-catds-cpdc:catds2010@ftp.ifremer.fr/Land_products/GRIDDED/L3SM/RE04/.
Synthesis and Characterization of Molybdenum Doped ZnO Thin Films by SILAR Deposition Method
NASA Astrophysics Data System (ADS)
Radha, R.; Sakthivelu, A.; Pradhabhan, D.
2016-08-01
Molybdenum (Mo) doped zinc oxide (ZnO) thin films were deposited on the glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) deposition method. The effect of Mo dopant concentration of 5, 6.6 and 10 mol% on the structural, morphological, optical and electrical properties of n-type Mo doped ZnO films was studied. The X-ray diffraction (XRD) results confirmed that the Mo doped ZnO thin films were polycrystalline with wurtzite structure. The field emission scanning electron microscopy (FESEM) studies shows that the surface morphology of the films changes with Mo doping. A blue shift of the optical band gap was observed in the optical studies. Effect of Mo dopant concentration on electrical conductivity was studied and it shows comparatively high electrical conductivity at 10 mol% of Mo doping concentration.
NASA Astrophysics Data System (ADS)
Aruffo, Eleonora; Biancofiore, Fabio; Di Carlo, Piero; Busilacchio, Marcella; Verdecchia, Marco; Tomassetti, Barbara; Dari-Salisburgo, Cesare; Giammaria, Franco; Bauguitte, Stephane; Lee, James; Moller, Sarah; Hopkins, James; Punjabi, Shalini; Andrews, Stephen J.; Lewis, Alistair C.; Palmer, Paul I.; Hyer, Edward; Le Breton, Michael; Percival, Carl
2016-11-01
Total peroxy nitrate (
Astronaut Owen Garriott lies in Lower Body Negative Pressure Device
1973-08-06
SL3-108-1278 (July-September 1973) --- Scientist-astronaut Owen K. Garriott, science pilot of the Skylab 3 mission, lies in the Lower Body Negative Pressure Device in the work and experiments area of the Orbital Workshop (OWS) crew quarters of the Skylab space station cluster in Earth orbit. This picture was taken with a hand-held 35mm Nikon camera. Astronauts Garriott, Alan L. Bean and Jack R. Lousma remained with the Skylab space station in orbit for 59 days conducting numerous medical, scientific and technological experiments. The LBNPD (MO92) Experiment is to provide information concerning the time course of cardiovascular adaptation during flight, and to provide in-flight data for predicting the degree of orthostatic intolerance and impairment of physical capacity to be expected upon return to Earth environment. The bicycle ergometer is in the right foreground. Photo credit: NASA
Development of MoSi2 coating with Al doping by using high energy milling method
NASA Astrophysics Data System (ADS)
Simanjuntak, C. M. S.; Hastuty, S.; Izzuddin, H.; Sundawa, R.; Sudiro, T.; Sukarto, A.; Thosin, K. A. Z.
2018-03-01
MoSi2 is well known as a material for high temperature application because it has high oxidation and corrosion resistance. The aim of this research is to develop MoSi2 coating with Al doping on Stainless Steel 316 (SS316) substrate using High-Energy Milling method. Aluminium is added to the coating as a dopant to increase formation of MoSi2 coating layer on the substrate. The variations used here based on the concentrations of doping Al (at.%) and duration of milling. Results show that the MoSi2 coatings with variations of 30 and 50 at.% of Al doping and 3 and 6 hours of milling times were successfully coated on the surface of SS 316 using the high-energy milling method. The most optimum coating result after oxidation test at 1100 °C for 100 hours is shown by MoSi2-30%Al with 3 hours of milling times. From the oxidation results, the Al doping into MoSi2 coating was able to increase the oxidation resistance of the SS 316 substrate.
Physical properties of monolithic U8 wt.%-Mo
NASA Astrophysics Data System (ADS)
Hengstler, R. M.; Beck, L.; Breitkreutz, H.; Jarousse, C.; Jungwirth, R.; Petry, W.; Schmid, W.; Schneider, J.; Wieschalla, N.
2010-07-01
As a possible high density fuel for research reactors, monolithic U8 wt.%-Mo ("U8Mo") was examined with regard to its structural, thermal and electric properties. X-ray diffraction by the Bragg-Brentano method was used to reveal the tetragonal lattice structure of rolled U8Mo. The specific heat capacity of cast U8Mo was determined by differential scanning calorimetry, its thermal diffusivity was measured by the laser flash method and its mass density by Archimedes' principle. From these results, the thermal conductivity of U8Mo in the temperature range from 40 °C to 250 °C was calculated; in the measured temperature range, it is in good accordance with literature data for UMo with 8 and 9 wt.% Mo, is higher than for 10 wt.% Mo and lower than for 5 wt.% Mo. The electric conductivity of rolled and cast U8Mo was measured by a four-wire method and the electron based part of the thermal conductivity calculated by the Wiedemann-Frantz law. Rolled and cast U8Mo was irradiated at about 150 °C with 80 MeV 127I ions to receive the same iodine ion density in the damage peak region as the fission product density in the fuel of a typical high flux reactor after the targeted nuclear burn-up. XRD analysis of irradiated U8Mo showed a change of the lattice parameters as well as the creation of UO 2 in the superficial sample regions; however, a phase change by irradiation was not observed. The determination of the electron based part of the thermal conductivity of the irradiated samples failed due to high measurement errors which are caused by the low thickness of the damage region in the ion irradiated samples.
NASA Astrophysics Data System (ADS)
Mahmood, Asif; Ramay, Shahid M.; Rafique, Hafiz Muhammad; Al-Zaghayer, Yousef; Khan, Salah Ud-Din
2014-05-01
In this paper, first-principles calculations of structural, electronic, optical and thermoelectric properties of AgMO3 (M = V, Nb and Ta) have been carried out using full potential linearized augmented plane wave plus local orbitals method (FP - LAPW + lo) and BoltzTraP code within the framework of density functional theory (DFT). The calculated structural parameters are found to agree well with the experimental data, while the electronic band structure indicates that AgNbO3 and AgTaO3 are semiconductors with indirect bandgaps of 1.60 eV and 1.64 eV, respectively, between the occupied O 2p and unoccupied d states of Nb and Ta. On the other hand, AgVO3 is found metallic due to the overlapping behavior of states across the Fermi level. Furthermore, optical properties, such as dielectric function, absorption coefficient, optical reflectivity, refractive index and extinction coefficient of AgNbO3 and AgTaO3, are calculated for incident photon energy up to 50 eV. Finally, we calculate thermo power for AgNbO3 and AgTaO3 at fixed doping 1019 cm-3. Electron doped thermo power of AgNbO3 shows significant increase over AgTaO3 with temperature.
Structure of positive parity bands and observation of magnetic rotation in 108Ag
NASA Astrophysics Data System (ADS)
Sethi, Jasmine; Palit, R.
2015-10-01
The interplay of nuclear forces among the neutron particles (holes) and proton holes (particles) in the odd-odd nuclei gives rise to a variety of shapes and hence novel modes of excitations. The odd-odd nuclei in the A ~ 110 region have proton holes in the g9/2 orbital and the neutron particles in the h11/2 orbitals. A systematic study of shears mechanism in A ~ 110 region indicates the presence of magnetic rotation (MR) phenomenon in Ag and In isotopes. Therefore, the structure of doubly odd 108Ag nucleus was probed in two different reactions, i.e, 100Mo(11B, 4n)108Ag at 39 MeV and 94Zr(18O, p3n)108Ag at 72 MeV beam energies. The emitted γ-rays were detected using the Indian National Gamma Array (INGA) at TIFR, Mumbai. A significant number of new transitions and energy levels were identified. Lifetime measurements, using the Doppler shift attenuation method, have been carried out for a positive parity dipole band. Tilted Axis Cranking (TAC) calculations have been performed for two positive parity dipole bands.
NASA Astrophysics Data System (ADS)
Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd
2016-09-01
Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M = Mo, W; X = S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
Mortemard de Boisse, Benoit; Liu, Guandong; Ma, Jiangtao; Nishimura, Shin-ichi; Chung, Sai-Cheong; Kiuchi, Hisao; Harada, Yoshihisa; Kikkawa, Jun; Kobayashi, Yoshio; Okubo, Masashi; Yamada, Atsuo
2016-01-01
Sodium-ion batteries are attractive energy storage media owing to the abundance of sodium, but the low capacities of available cathode materials make them impractical. Sodium-excess metal oxides Na2MO3 (M: transition metal) are appealing cathode materials that may realize large capacities through additional oxygen redox reaction. However, the general strategies for enhancing the capacity of Na2MO3 are poorly established. Here using two polymorphs of Na2RuO3, we demonstrate the critical role of honeycomb-type cation ordering in Na2MO3. Ordered Na2RuO3 with honeycomb-ordered [Na1/3Ru2/3]O2 slabs delivers a capacity of 180 mAh g−1 (1.3-electron reaction), whereas disordered Na2RuO3 only delivers 135 mAh g−1 (1.0-electron reaction). We clarify that the large extra capacity of ordered Na2RuO3 is enabled by a spontaneously ordered intermediate Na1RuO3 phase with ilmenite O1 structure, which induces frontier orbital reorganization to trigger the oxygen redox reaction, unveiling a general requisite for the stable oxygen redox reaction in high-capacity Na2MO3 cathodes. PMID:27088834
Transport properties and device-design of Z-shaped MoS2 nanoribbon planar junctions
NASA Astrophysics Data System (ADS)
Zhang, Hua; Zhou, Wenzhe; Liu, Qi; Yang, Zhixiong; Pan, Jiangling; Ouyang, Fangping; Xu, Hui
2017-09-01
Based on MoS2 nanoribbons, metal-semiconductor-metal planar junction devices were constructed. The electronic and transport properties of the devices were studied by using density function theory (DFT) and nonequilibrium Green's functions (NEGF). It is found that a band gap about 0.4 eV occurs in the planar junction. The electron and hole transmissions of the devices are mainly contributed by the Mo atomic orbitals. The electron transport channel is located at the edge of armchair MoS2 nanoribbon, while the hole transport channel is delocalized in the channel region. The I-V curve of the two-probe device shows typical transport behavior of Schottky barrier, and the threshold voltage is of about 0.2 V. The field effect transistors (FET) based on the planar junction turn out to be good bipolar transistors, the maximum current on/off ratio can reach up to 1 × 104, and the subthreshold swing is 243 mV/dec. It is found that the off-state current is dependent on the length and width of the channel, while the on-state current is almost unaffected. The switching performance of the FET is improved with increasing the length of the channel, and shows oscillation behavior with the change of the channel width.
Mann, Jennifer E; Waller, Sarah E; Jarrold, Caroline Chick
2012-07-28
The anion photoelectron spectra of WAlO(y)(-) (y = 2-4) are presented and assigned based on results of density functional theory calculations. The WAlO(2)(-) and WAlO(3)(-) spectra are both broad, with partially resolved vibrational structure. In contrast, the WAlO(4)(-) spectrum features well-resolved vibrational structure with contributions from three modes. There is reasonable agreement between experiment and theory for all oxides, and calculations are in particular validated by the near perfect agreement between the WAlO(4)(-) photoelectron spectrum and a Franck-Condon simulation based on computationally determined spectroscopic parameters. The structures determined from this study suggest strong preferential W-O bond formation, and ionic bonding between Al(+) and WO(y)(-2) for all anions. Neutral species are similarly ionic, with WAlO(2) and WAlO(3) having electronic structure that suggests Al(+) ionically bound to WO(y)(-) and WAlO(4) being described as Al(+2) ionically bound to WO(4)(-2). The doubly-occupied 3sp hybrid orbital localized on the Al center is energetically situated between the bonding O-local molecular orbitals and the anti- or non-bonding W-local molecular orbitals. The structures determined in this study are very similar to structures recently determined for the analogous MoAlO(y)(-)/MoAlO(y) cluster series, with subtle differences found in the electronic structures [S. E. Waller, J. E. Mann, E. Hossain, M. Troyer, and C. C. Jarrold, J. Chem. Phys. 137, 024302 (2012)].
Synthesis of Monolayer MoS2 by Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Withanage, Sajeevi; Lopez, Mike; Dumas, Kenneth; Jung, Yeonwoong; Khondaker, Saiful
Finite and layer-tunable band gap of transition metal dichalcogenides (TMDs) including molybdenum disulfide (MoS2) are highlighted over the zero band gap graphene in various semiconductor applications. Weak interlayer Van der Waal bonding of bulk MoS2 allows to cleave few to single layer MoS2 using top-down methods such as mechanical and chemical exfoliation, however few micron size of these flakes limit MoS2 applications to fundamental research. Bottom-up approaches including the sulfurization of molybdenum (Mo) thin films and co-evaporation of Mo and sulfur precursors received the attention due to their potential to synthesize large area. We synthesized monolayer MoS2 on Si/SiO2 substrates by atmospheric pressure Chemical Vapor Deposition (CVD) methods using sulfur and molybdenum trioxide (MoO3) as precursors. Several growth conditions were tested including precursor amounts, growth temperature, growth time and flow rate. Raman, photoluminescence (PL) and atomic force microscopy (AFM) confirmed monolayer islands merging to create large area were observed with grain sizes up to 70 μm without using any seeds or seeding promoters. These studies provide in-depth knowledge to synthesize high quality large area MoS2 for prospective electronics applications.
NASA Technical Reports Server (NTRS)
Buttery, Michael
2010-01-01
We present the findings of the test program performed by The European Space Tribology Laboratory (ESTL) to evaluate the performance (friction and lifetime) of a number of space lubricants under vacuum using a Spiral Orbit Tribometer (SOT). Focus was given to a comparison of various popular space oils, a comparison study between the old and new MAPLUB grease formulations, and the performance of commonly used solid lubricants under various conditions. Tests demonstrated that the lifetimes of hydrocarbon NYE oils 2001 & 2001A outperformed those of the perfluroropolyalkylether (PFPE) oils Fomblin Z25 & Z60, though these pairs displayed similar behavior. This relationship was also generally seen for greases; with the lifetimes of the multiple alkylated cyclopentane (MAC)-based greases being extended in comparison to the PFPE-based greases. Testing on greases also demonstrated similar performance between the old (-a) and new (-b) formulations when considering PFPE-based MAPLUB greases, and indeed for all tested PFPE-based non-MAPLUB greases, but significantly shorter lifetimes for the new formulations when considering MAC-based MAPLUB greases. MAPLUB MAC greases containing molybdenum disulphide (MoS2) thickener were also found to display reduced lifetimes. For solid lubricants, lead displayed significantly extended lifetimes over MoS2, speculated to be caused by redistribution of lead from the ball onto all contact surfaces during the test. Friction coefficients were seen to be some 2.5x higher for lead than for MoS2 under similar conditions, a result that corresponds well with conventional bearing tests. The work described was performed under contract for the European Space Agency as part of the Tribology Applications Program, with all funding for testing and apparatus provided by European Space Agency (ESA).
Poincaré chaos and unpredictable functions
NASA Astrophysics Data System (ADS)
Akhmet, Marat; Fen, Mehmet Onur
2017-07-01
The results of this study are continuation of the research of Poincaré chaos initiated in the papers (M. Akhmet and M.O. Fen, Commun Nonlinear Sci Numer Simulat 40 (2016) 1-5; M. Akhmet and M.O. Fen, Turk J Math, doi:10.3906/mat-1603-51, in press). We focus on the construction of an unpredictable function, continuous on the real axis. As auxiliary results, unpredictable orbits for the symbolic dynamics and the logistic map are obtained. By shaping the unpredictable function as well as Poisson function we have performed the first step in the development of the theory of unpredictable solutions for differential and discrete equations. The results are preliminary ones for deep analysis of chaos existence in differential and hybrid systems. Illustrative examples concerning unpredictable solutions of differential equations are provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, Tom; Wang, Xue B.; Yang, Xin
2004-04-21
Photodetachment photoelectron spectroscopy was used to investigate the electronic structure of the doubly charged complexes [MIVO(mnt)2]2- (M=Mo, W;mnt=1,2 dicyanoethenedithiolato). These dianions are stable in the gas phase and are minimal models for the active sites of the dimethyl sulfoxide reductase family of molybdenum enzymes and of related tungsten enzymes. Adiabatic and vertical electron binding energies for both species were measured, providing detailed information about molecular orbital energy levels of the parent dianions as well as the ground and excited states of the product anions [MvO(mnt)2]. Density functional theory calculations were used to assist assignment of the detachment features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terryn, Raymond J.; Sriraman, Krishnan; Olson, Joel A., E-mail: jolson@fit.edu
A new simulator for scanning tunneling microscopy (STM) is presented based on the linear combination of atomic orbitals molecular orbital (LCAO-MO) approximation for the effective tunneling Hamiltonian, which leads to the convolution integral when applied to the tip interaction with the sample. This approach intrinsically includes the structure of the STM tip. Through this mechanical emulation and the tip-inclusive convolution model, dI/dz images for molecular orbitals (which are closely associated with apparent barrier height, ϕ{sub ap}) are reported for the first time. For molecular adsorbates whose experimental topographic images correspond well to isolated-molecule quantum chemistry calculations, the simulator makes accuratemore » predictions, as illustrated by various cases. Distortions in these images due to the tip are shown to be in accord with those observed experimentally and predicted by other ab initio considerations of tip structure. Simulations of the tunneling current dI/dz images are in strong agreement with experiment. The theoretical framework provides a solid foundation which may be applied to LCAO cluster models of adsorbate–substrate systems, and is extendable to emulate several aspects of functional STM operation.« less
Facile synthesis of high surface area molybdenum nitride and carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Aaron; Serov, Alexey; Artyushkova, Kateryna
2015-08-15
The synthesis of high surface area γ-Mo{sub 2}N and α-Mo{sub 2}C is reported (116 and 120 m{sup 2}/g) without the temperature programmed reduction of MoO{sub 3}. γ-Mo{sub 2}N was prepared in an NH{sub 3}-free synthesis using forming gas (7 at% H{sub 2}, N{sub 2}-balance) as the reactive atmosphere. Three precursors were studied ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O, (NH{sub 4}){sub 2} Mg(MoO{sub 4}){sub 2}, and MgMoO{sub 4}) along with the sacrificial support method (SSM) as a means of reducing the particle size of Mo{sub 2}N and Mo{sub 2}C. In situ X-ray diffraction (XRD) studies were carried out to identify reactionmore » intermediates, the temperature at which various intermediates form, and the average domain size of the Mo{sub 2}N products. Materials were synthesized in bulk and further characterized by XRD, HRTEM, XPS, and BET. - Highlights: • Facile synthesis of γ-Mo2N and α-Mo2C with surface area exceeding 100 m{sup 2}/g. • Sacrificial support method was used to achieve these high surface areas. • Materials can serve as catalysts or supports in (electro)chemical processes.« less
NASA Astrophysics Data System (ADS)
Zhang, Yan; Zang, Jianbing; Jia, Shaopei; Tian, Pengfei; Han, Chan; Wang, Yanhui
2017-08-01
Nickel and molybdenum carbide modified carbon black (Ni-MoCx/C) was synthesized by a two-step microwave-assisted deposition/carbonthermal reduction method and characterized by X-ray diffraction, transmission electron microscopy, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. The as-prepared Ni-MoCx/C supported Pt (10 wt%) electrocatalyst (10Pt/Ni-MoCx/C) was synthesized through a microwave-assisted reduction method and 10Pt/Ni-MoCx/C exhibited high electrocatalytic activity for methanol oxidation, oxygen reduction and hydrogen evolution reactions. Results showed that 10Pt/Ni-MoCx/C electrocatalyst had better electrocatalytic activity and stability performance than 20 wt% Pt/C (20Pt/C) electrocatalyst. Among them, the electrochemical surface area of 10Pt/Ni-MoCx/C reached 68.4 m2 g-1, which was higher than that of 20Pt/C (63.2 m2 g-1). The enhanced stability and activity of 10Pt/Ni-MoCx/C electrocatalyst were attributed to: (1) an anchoring effect of Ni and MoCx formed during carbonthermal reduction process; (2) a synergistic effect among Pt, Ni, MoOx and MoCx. These findings indicated that 10Pt/Ni-MoCx/C was a promising electrocatalyst for direct methanol fuel cells.
NASA Astrophysics Data System (ADS)
Liu, Xiaoliang; Yi, Shijuan; Wang, Chenggong; Wang, Congcong; Gao, Yongli
2014-04-01
The electronic structure evolution and energy level alignment have been investigated at interfaces comprising fullerene (C60)/4,4'-cyclohexylidenebis[N,N-bis(4-methylphenyl) benzenamine] (TAPC)/ molybdenum oxide (MoOx)/ indium tin oxide with ultraviolet photoemission spectroscopy and inverse photoemission spectroscopy. With deposition of TAPC upon MoOx, a dipole of 1.58 eV was formed at the TAPC/MoOx interface due to electron transfer from TAPC to MoOx. The highest occupied molecular orbital (HOMO) onset of TAPC was pinned closed to the Fermi level, leading to a p-doped region and thus increasing the carrier concentration at the very interface. The downward band bending and the resulting built-in field in TAPC were favorable for the hole transfer toward the TAPC/MoOx interface. The rigid downward shift of energy levels of TAPC indicated no significant interface chemistry at the interface. With subsequent deposition of C60 on TAPC, a dipole of 0.27 eV was observed at the C60/TAPC heterojunction due to the electron transfer from TAPC to C60. This led to a drop of the HOMO of TAPC near the C60/TAPC interface, and hence further enhanced the band bending in TAPC. The band bending behavior was also observed in C60, similarly creating a built-in field in C60 film and improving the electron transfer away from the C60/TAPC interface. It can be deduced from the interface analysis that a promising maximum open circuit voltage of 1.5 eV is achievable in C60/TAPC-based organic photovoltaic cells.
Xia, Zhiguo; Jin, Shuai; Sun, Jiayue; Du, Haiyan; Du, Peng; Liao, Libing
2011-11-01
This work focuses on the synthesis of morphology-controlled BaMoO4:Eu3+ micro-crystals such as microparticles and micro-rods using a facile molten salt method, and their morphology, structural characterization, and luminescent properties were comparatively investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and fluorescence spectra. The molten salt method synthesized products from a reaction of BaMoO4 precursor obtained by a co-precipitation method of BaCl2 and Na2MoO4 with an eutectic salt mixture of NaCl-KCl at 700 degrees C. Detailed studies revealed that the formation of the different morphologies of the micro-crystals was strongly dependent on the weight ratio of the salt (NaCl-KCl) to the BaMoO4 precursor, and the formation mechanism of the products in the present molten salt system was also investigated. Based on the investigations of the photoluminescence properties, the samples with different morphologies prepared by the molten salt method had the strongest red emission at 615 nm, corresponding to the Eu3+ 5D0-7F2 transition in the BaMoO4 host lattice, and the emission intensity of BaMoO4:Eu3+ microparticles was stronger than that of BaMoO4:Eu3+ micro-rods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh-ishi, Katsuyoshi, E-mail: oh-ishi@kc.chuo-u.ac.jp; Nagumo, Kenta; Tateishi, Kazuya
Mo-Re-C compounds containing Mo{sub 7}Re{sub 13}C with the β-Mn structure were synthesized with high-melting-temperature metals Mo, Re, and C powders using a conventional solid state method with a planetary ball milling machine instead of the arc melting method. Use of the ball milling machine was necessary to obtain Mo{sub 7}Re{sub 13}C with the β-Mn structure using the solid state method. Almost single-phase Mo{sub 7}Re{sub 13}C with a trace of impurity were obtained using the synthesis method. By XRF and lattice parameter measurements on the samples, Fe element existed in the compound synthesized using the planetary ball milling machine with amore » pot and balls made of steel, though Fe element was not detected in the compound synthesized using a pot and balls made of tungsten carbide. The former compound containg the Fe atom did not show superconductivity but the latter compound without the Fe atom showed superconductivity at 6.1 K. - Graphical abstract: Temperature dependence of the magnetic susceptibility measured under 10 Oe for the superconducting PBM-T samples without Fe element and non-superconducting PBM-S with Fe element. The inset is the enlarged view of the data for the PBM-S sample.« less
Single crystal structure and SHG of defect pyrochlores CsB{sup V}MoO{sub 6} (B{sup V}=Nb,Ta)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukina, D.G., E-mail: dianafuk@yandex.ru; Suleimanov, E.V.; Yavetskiy, R.P.
2016-09-15
The crystal structure and non-linear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} defect pyrochlores have been studied. The single crystals of these compounds grown by the flux method possess an octahedral faceting and reach up to 50 µm in size. The crystal structures of CsB{sup V}MoO{sub 6} (B{sup V}=Nb, Ta) were investigated by X-ray diffraction method. Both compounds crystallize in the cubic symmetry with noncentrosymmetric space group F-43m. The second harmonic generation of CsNbMoO{sub 6} and CsTaMoO{sub 6}was found to be 1.6×10{sup −2} and 8.5×10{sup −4} of lithium niobate, correspondingly. It has been determined that distortions of [MO{sub 6}]more » polyhedra (M=Nb, Ta, Mo) as well as polarizability and covalency of Nb–O and Ta–O bonds have a great effect on the second harmonic generation. - Highlights: • CsNbMoO{sub 6} and CsTaMoO{sub 6} homogeneous single crystals have been grown. • The crystal structure of CsTaMoO{sub 6} has been studied. • Nonlinear optical properties of CsNbMoO{sub 6} and CsTaMoO{sub 6} have been found. • The microscopic origin of the second harmonic generation (SHG) response have been identified.« less
Wong, Adrian; Black, Sandra E; Yiu, Stanley Y P; Au, Lisa W C; Lau, Alexander Y L; Soo, Yannie O Y; Chan, Anne Y Y; Leung, Thomas W H; Wong, Lawrence K S; Kwok, Timothy C Y; Cheung, Theodore C K; Leung, Kam-Tat; Lam, Bonnie Y K; Kwan, Joseph S K; Mok, Vincent C T
2018-05-01
The Montreal Cognitive Assessment (MoCA) is psychometrically superior over the Mini-mental State Examination (MMSE) for cognitive screening in stroke or transient ischemic attack (TIA). It is free for clinical and research use. The objective of this study is to convert scores from the MMSE to MoCA and MoCA-5-minute protocol (MoCA-5 min) and to examine the ability of the converted scores in detecting cognitive impairment after stroke or TIA. A total of 904 patients were randomly divided into training (n = 623) and validation (n = 281) samples matched for demography and cognition. MMSE scores were converted to MoCA and MoCA-5 min using (1) equipercentile method with log-linear smoothing and (2) Poisson regression adjusting for age and education. Receiver operating characteristics curve analysis was used to examine the ability of the converted scores in differentiating patients with cognitive impairment. The mean education was 5.8 (SD = 4.6; ranged 0-20) years. The entire spectrum of MMSE scores was converted to MoCA and MoCA-5 min using equipercentile method. Relationship between MMSE and MoCA scores was confounded by age and education, and a conversion equation with adjustment for age and education was derived. In the validation sample, the converted scores differentiated cognitively impaired patients with area under receiver operating characteristics curve 0.826 to 0.859. We provided 2 methods to convert scores from the MMSE to MoCA and MoCA-5 min based on a large sample of patients with stroke or TIA having a wide range of education and cognitive levels. The converted scores differentiated patients with cognitive impairment after stroke or TIA with high accuracy. Copyright © 2018 John Wiley & Sons, Ltd.
Encapsulation of Mo2C in MoS2 inorganic fullerene-like nanoparticles and nanotubes
NASA Astrophysics Data System (ADS)
Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef
2013-01-01
Mo2C nanoparticles encapsulated within MoS2 inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.
A NICMOS direct imaging search for giant planets around the seven single white dwarfs in the Hyades
NASA Astrophysics Data System (ADS)
Zinnecker, Hans
2003-07-01
We propose to use the NIC1 camera on HST to search for massive giant planets around the known seven single white dwarfs in the nearby Hyades cluster at sub-arcsec separations. At an age of 625 Myr, the white dwarfs had protogenitor masses of about 3 solar masses, and massive gaseous giant planets should have formed in the massive circumstellar disks around these ex Herbig A0 stars, probably at orbital separations similar or slightly larger than that of Jupiter {5 AU} in our own solar system. Such planets would have survived the post-Main Sequence mass loss of the parent star, and would have migrated outward adiabatically by a factor 4.5, equal to the ratio of initial to final stellar mass {3Mo/0.66Mo}, due to conservation of orbital angular momentum during the mass loss {AGB and PN} phase. Thus the orbital separation NOW would be 4.5 x 5 AU = 22.5 AU, which at the distance of the Hyades {45 pc} corresponds to 0.50 arcsec. Simulations with TinyTim then show that giant planets at this separation with masses in the range 6-12 Jupiter masses and apparent J and H magnitudes in the range 20.5-23.3 mag {from Baraffe or Burrows models} can be spatially resolved around the Hyades white dwarfs. Their J and H brightnesses are known to be 15 +/- 0.5 mag, implying a median star-planet brightness ratio of 1000:1 {7.5 mag}. This combination of dynamic range and orbital separation is observable with NICMOS, by subtracting images taken at two roll angles. Therefore, the proposed near-IR diffraction-limited observations in the F110W and F160W filters promise to resolve giant planets around low-mass stars for the first time. If successful, the observations would also prove that giant planets do form around early-type stars more massive than the Sun.
NASA Astrophysics Data System (ADS)
Hoi, Bui Dinh; Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos
2017-04-01
Dirac theory and Green's function technique are carried out to compute the spin dependent band structures and corresponding electronic heat capacity (EHC) of monolayer (ML) and AB-stacked bilayer (BL) molybdenum disulfide (MoS2) two-dimensional (2D) crystals. We report the influence of induced exchange magnetic field (EMF) by magnetic insulator substrates on these quantities for both structures. The spin-up (down) subband gaps are shifted with EMF from conduction (valence) band to valence (conduction) band at both Dirac points in the ML because of the spin-orbit coupling (SOC) which leads to a critical EMF in the K point and EHC returns to its initial states for both spins. In the BL case, EMF results split states and the decrease (increase) behavior of spin-up (down) subband gaps has been observed at both K and K‧ valleys which is due to the combined effect of SOC and interlayer coupling. For low and high EMFs, EHC of BL MoS2 does not change for spin-up subbands while increases for spin-down subbands.
Electronic structure of monolayer 1T'-MoTe2 grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Tang, Shujie; Zhang, Chaofan; Jia, Chunjing; Ryu, Hyejin; Hwang, Choongyu; Hashimoto, Makoto; Lu, Donghui; Liu, Zhi; Devereaux, Thomas P.; Shen, Zhi-Xun; Mo, Sung-Kwan
2018-02-01
Monolayer transition metal dichalcogenides (TMDCs) in the 1T' structural phase have drawn a great deal of attention due to the prediction of quantum spin Hall insulator states. The band inversion and the concomitant changes in the band topology induced by the structural distortion from 1T to 1T' phases are well established. However, the bandgap opening due to the strong spin-orbit coupling (SOC) is only verified for 1T'-WTe2 recently and still debated for other TMDCs. Here we report a successful growth of high-quality monolayer 1T'-MoTe2 on a bilayer graphene substrate through molecular beam epitaxy. Using in situ angle-resolved photoemission spectroscopy (ARPES), we have investigated the low-energy electronic structure and Fermi surface topology. The SOC-induced breaking of the band degeneracy points between the valence and conduction bands is clearly observed by ARPES. However, the strength of SOC is found to be insufficient to open a bandgap, which makes monolayer 1T'-MoTe2 on bilayer graphene a semimetal.
Electronic structure of monolayer 1T'-MoTe 2 grown by molecular beam epitaxy
Tang, Shujie; Zhang, Chaofan; Jia, Chunjing; ...
2017-11-14
Monolayer transition metal dichalcogenides (TMDCs) in the 1T' structural phase have drawn a great deal of attention due to the prediction of quantum spin Hall insulator states. The band inversion and the concomitant changes in the band topology induced by the structural distortion from 1T to 1T' phases are well established. However, the bandgap opening due to the strong spin-orbit coupling (SOC) is only verified for 1T'-WTe 2 recently and still debated for other TMDCs. Here we report a successful growth of high-quality monolayer 1T'-MoTe 2 on a bilayer graphene substrate through molecular beam epitaxy. Using in situ angle-resolved photoemissionmore » spectroscopy (ARPES), we have investigated the low-energy electronic structure and Fermi surface topology. The SOC-induced breaking of the band degeneracy points between the valence and conduction bands is clearly observed by ARPES. However, the strength of SOC is found to be insufficient to open a bandgap, which makes monolayer 1T'-MoTe 2 on bilayer graphene a semimetal.« less
Diagnostic instrumentation aboard ISS: just-in-time training for non-physician crewmembers
NASA Technical Reports Server (NTRS)
Foale, C. Michael; Kaleri, Alexander Y.; Sargsyan, Ashot E.; Hamilton, Douglas R.; Melton, Shannon; Martin, David; Dulchavsky, Scott A.
2005-01-01
INTRODUCTION: The performance of complex tasks on the International Space Station (ISS) requires significant preflight crew training commitments and frequent skill and knowledge refreshment. This report documents a recently developed "just-in-time" training methodology, which integrates preflight hardware familiarization and procedure training with an on-orbit CD-ROM-based skill enhancement. This "just-in-time" concept was used to support real-time remote expert guidance to complete ultrasound examinations using the ISS Human Research Facility (HRF). METHODS: An American and Russian ISS crewmember received 2 h of "hands on" ultrasound training 8 mo prior to the on-orbit ultrasound exam. A CD-ROM-based Onboard Proficiency Enhancement (OPE) interactive multimedia program consisting of memory enhancing tutorials, and skill testing exercises, was completed by the crewmember 6 d prior to the on-orbit ultrasound exam. The crewmember was then remotely guided through a thoracic, vascular, and echocardiographic examination by ultrasound imaging experts. RESULTS: Results of the CD-ROM-based OPE session were used to modify the instructions during a complete 35-min real-time thoracic, cardiac, and carotid/jugular ultrasound study. Following commands from the ground-based expert, the crewmember acquired all target views and images without difficulty. The anatomical content and fidelity of ultrasound video were adequate for clinical decision making. CONCLUSIONS: Complex ultrasound experiments with expert guidance were performed with high accuracy following limited preflight training and multimedia based in-flight review, despite a 2-s communication latency. In-flight application of multimedia proficiency enhancement software, coupled with real-time remote expert guidance, facilitates the successful performance of ultrasound examinations on orbit and may have additional terrestrial and space applications.
Marković, Svetlana; Tošović, Jelena
2015-09-03
The UV-vis properties of 22 natural phenolic compounds, comprising anthraquinones, neoflavonoids, and flavonoids were systematically examined. The time-dependent density functional theory (TDDFT) approach in combination with the B3LYP, B3LYP-D2, B3P86, and M06-2X functionals was used to simulate the UV-vis spectra of the investigated compounds. It was shown that all methods exhibit very good (B3LYP slightly better) performance in reproducing the examined UV-vis spectra. However, the shapes of the Kohn-Sham molecular orbitals (MOs) involved in electronic transitions were misleading in constructing the MO correlation diagrams. To provide better understanding of redistribution of electron density upon excitation, the natural bond orbital (NBO) analysis was applied. Bearing in mind the spatial and energetic separations, as well as the character of the π bonding, lone pair, and π* antibonding natural localized molecular orbitals (NLMOs), the "NLMO clusters" were constructed. NLMO cluster should be understood as a part of a molecule characterized with distinguished electron density. It was shown that all absorption bands including all electronic transitions need to be inspected to fully understand the UV-vis spectrum of a certain compound, and, thus, to learn more about its UV-vis light absorption. Our investigation showed that the TDDFT and NBO theories are complementary, as the results from the two approaches can be combined to interpret the UV-vis spectra. Agreement between the predictions of the TDDFT approach and those based on the NLMO clusters is excellent in the case of major electronic transitions and long wavelengths. It should be emphasized that the approach for investigation of UV-vis light absorption based on the NLMO clusters is applied for the first time.
First-principles study of the surface properties of U-Mo system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.
U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo andmore » gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.« less
NASA Astrophysics Data System (ADS)
Yang, Bowen; Lohmann, Mark; Barroso, David; Liao, Ingrid; Lin, Zhisheng; Liu, Yawen; Bartels, Ludwig; Watanabe, Kenji; Taniguchi, Takashi; Shi, Jing
2017-07-01
Despite its extremely weak intrinsic spin-orbit coupling (SOC), graphene has been shown to acquire considerable SOC by proximity coupling with exfoliated transition metal dichalcogenides (TMDs). Here we demonstrate strong induced Rashba SOC in graphene that is proximity coupled to a monolayer TMD film, Mo S2 or WS e2 , grown by chemical-vapor deposition with drastically different Fermi level positions. Graphene/TMD heterostructures are fabricated with a pickup-transfer technique utilizing hexagonal boron nitride, which serves as a flat template to promote intimate contact and therefore a strong interfacial interaction between TMD and graphene as evidenced by quenching of the TMD photoluminescence. We observe strong induced graphene SOC that manifests itself in a pronounced weak-antilocalization (WAL) effect in the graphene magnetoconductance. The spin-relaxation rate extracted from the WAL analysis varies linearly with the momentum scattering time and is independent of the carrier type. This indicates a dominantly Dyakonov-Perel spin-relaxation mechanism caused by the induced Rashba SOC. Our analysis yields a Rashba SOC energy of ˜1.5 meV in graphene/WS e2 and ˜0.9 meV in graphene/Mo S2 . The nearly electron-hole symmetric nature of the induced Rashba SOC provides a clue to possible underlying SOC mechanisms.
Spectroscopic and density functional theory studies of trans-3-(trans-4-imidazolyl)acrylic acid.
Arjunan, V; Remya, P; Sathish, U; Rani, T; Mohan, S
2014-08-14
The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry of trans-3-(trans-4-imidazolyl)acrylic acid have been determined from B3LYP methods with 6-311++G(**) and cc-pVTZ basis sets. The effects of substituents (acrylyl group) on the imidazole vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of trans-3-(trans-4-imidazolyl)acrylic acid have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. (1)H and (13)C NMR isotropic chemical shifts are calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound are also determined from DFT method. The total electron density and electrostatic potential of the compound are determined by natural bond orbital analysis. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities employing natural population analysis (NPA) are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemical vapor deposition of high-quality large-sized MoS 2 crystals on silicon dioxide substrates
Chen, Jianyi; Tang, Wei; Tian, Bingbing; ...
2016-03-31
Large-sized MoS 2 crystals can be grown on SiO 2/Si substrates via a two-stage chemical vapor deposition method. The maximum size of MoS 2 crystals can be up to about 305 μm. The growth method can be used to grow other transition metal dichalcogenide crystals and lateral heterojunctions. Additionally, the electron mobility of the MoS 2 crystals can reach ≈30 cm 2 V –1 s –1, which is comparable to those of exfoliated flakes.
Chemical Vapor Deposition of High-Quality Large-Sized MoS2 Crystals on Silicon Dioxide Substrates.
Chen, Jianyi; Tang, Wei; Tian, Bingbing; Liu, Bo; Zhao, Xiaoxu; Liu, Yanpeng; Ren, Tianhua; Liu, Wei; Geng, Dechao; Jeong, Hu Young; Shin, Hyeon Suk; Zhou, Wu; Loh, Kian Ping
2016-08-01
Large-sized MoS 2 crystals can be grown on SiO 2 /Si substrates via a two-stage chemical vapor deposition method. The maximum size of MoS 2 crystals can be up to about 305 μm. The growth method can be used to grow other transition metal dichalcogenide crystals and lateral heterojunctions. The electron mobility of the MoS 2 crystals can reach ≈30 cm 2 V -1 s -1 , which is comparable to those of exfoliated flakes.
Solution-processed MoS(x) as an efficient anode buffer layer in organic solar cells.
Li, Xiaodong; Zhang, Wenjun; Wu, Yulei; Min, Chao; Fang, Junfeng
2013-09-25
We reported a facile solution-processed method to fabricate a MoSx anode buffer layer through thermal decomposition of (NH4)2MoS4. Organic solar cells (OSCs) based on in situ growth MoSx as the anode buffer layer showed impressive improvements, and the power conversion efficiency was higher than that of conventional PEDOT:PSS-based device. The MoSx films obtained at different temperatures and the corresponding device performance were systematically studied. The results indicated that both MoS3 and MoS2 were beneficial to the device performance. MoS3 could result in higher Voc, while MoS2 could lead to higher Jsc. Our results proved that, apart from MoO3, molybdenum sulfides and Mo(4+) were also promising candidates for the anode buffer materials in OSCs.
Rao, Ankita; Kumar Sharma, Abhishek; Kumar, Pradeep; Charyulu, M M; Tomar, B S; Ramakumar, K L
2014-07-01
A new method has been developed for separation and purification of fission (99)Mo from neutron activated uranium-aluminum alloy. Alkali dissolution of the irradiated target (100mg) results in aluminum along with (99)Mo and a few fission products passing into solution, while most of the fission products, activation products and uranium remain undissolved. Subsequent purification steps involve precipitation of aluminum as Al(OH)3, iodine as AgI/AgIO3 and molybdenum as Mo-α-benzoin oxime. Ruthenium is separated by volatilization as RuO4 and final purification of (99)Mo was carried out using anion exchange method. The radiochemical yield of fission (99)Mo was found to be >80% and the purity of the product was in conformity with the international pharmacopoeia standards. Copyright © 2014 Elsevier Ltd. All rights reserved.
A convenient method of manufacturing liquid-gated MoS2 field effect transistors
NASA Astrophysics Data System (ADS)
Lin, Kabin; Yuan, Zhishan; Yu, Yu; Li, Kun; Li, Zhongwu; Sha, Jingjie; Li, Tie; Chen, Yunfei
2017-10-01
In this paper, we present a simple and convenient method of manufacturing liquid-gated MoS2 field effect transistors (FETs). A Si3N4 chip is firstly fabricated by the semiconductor manufacturing process, then the mechanical exfoliation MoS2 is transferred onto the Si3N4 chip and is connected with the gold electrodes by depositing platinum to construct the MoS2 FETs. The liquid-gated is formed by injecting 0.1 M NaCl solution into reservoir to contact the back side of the Si3N4. Our measured results show that the contact properties between MoS2 and electrodes are in well condition and the liquid-gated MoS2 FETs have a high mobility that can reach up to 109 cm2 V-1 s-1.
NASA Astrophysics Data System (ADS)
Meng, Nannan; Cheng, Jian; Zhou, Yifeng; Nie, Wangyan; Chen, Pengpeng
2017-02-01
A green and facile process was developed to prepare layered octahedral phase MoS2/reduced graphene oxide (1T-MoS2/RGO) nanocomposite by a Vitamin C-assisted self-assemble method, in which graphene oxide (GO) and LiMoS2 were used as starting materials. Catalytic performances of 1T-MoS2/RGO were evaluated by hydrogenation of 4-nitrophenol (4-NP). It was demonstrated that the prepared 1T-MoS2/RGO nanocomposite presented excellent catalytic performance and cycling stability for 4-NP reduction, which made it a promising noble-metal-free catalyst. Additionally, broadening work suggested some other RGO-based metal nanocomposite with well-defined porous structure could be also generated via this facile self-assembly method.
Photo-oxidation method using MoS2 nanocluster materials
Wilcoxon, Jess P.
2001-01-01
A method of photo-oxidizing a hydrocarbon compound is provided by dispersing MoS.sub.2 nanoclusters in a solvent containing a hydrocarbon compound contaminant to form a stable solution mixture and irradiating the mixture to photo-oxide the hydrocarbon compound. Hydrocarbon compounds of interest include aromatic hydrocarbon and chlorinated hydrocarbons. MoS.sub.2 nanoclusters with an average diameter less than approximately 10 nanometers are shown to be effective in decomposing potentially toxic aromatic and chlorinated hydrocarbons, such as phenol, pentachlorophenol, chlorinated biphenols, and chloroform, into relatively non-toxic compounds. The irradiation can occur by exposing the MoS.sub.2 nanoclusters and hydrocarbon compound mixture with visible light. The MoS.sub.2 nanoclusters can be introduced to the toxic hydrocarbons as either a MoS.sub.2 solution or deposited on a support material.
Bozkaya, Uğur
2011-12-14
In this research, orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order Møller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order Møller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O(4)(+), O(3), and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O(4)(+), the OMP3 prediction, 1343 cm(-1), for ω(6) (b(3u)) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm(-1), and OD, 1193 cm(-1), methods (the experimental value is 1320 cm(-1)). For O(3), the predictions of SCS-OMP3 (1143 cm(-1)) and SOS-OMP3 (1165 cm(-1)) are remarkably better than the more robust OD method (1282 cm(-1)); the experimental value is 1089 cm(-1). For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, ∣Δω(e)∣ = 44 and ∣Δω(e)∣ = 35 cm(-1), respectively, while for OD, ∣Δω(e)∣ = 161 cm(-1)and CCSD ∣Δω(e)∣ = 106 cm(-1). Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the best methods for the symmetry-breaking cases, based on present application results. The OMP3 method offers certain advantages: it provides reliable vibrational frequencies in case of symmetry-breaking problems, especially with spin-scaling tricks, its analytic gradients are easier to compute since there is no need to solve the coupled-perturbed equations for the orbital response, and the computation of one-electron properties are easier because there is no response contribution to the particle density matrices. The OMP3 has further advantages over standard MP3, making it promising for excited state properties via linear response theory. © 2011 American Institute of Physics
Constitution and thermodynamics of the Mo-Ru, Mo-Pd, Ru-Pd and Mo-Ru-Pd systems
NASA Astrophysics Data System (ADS)
Kleykamp, H.
1989-09-01
The constitution of the Mo-Ru, Mo-Pd and Ru-Pd systems was reinvestigated between 800 and 2000°C. The Mo-Ru system is of the eutectic type, a σ-phase Mo 5Ru 3 exists between 1915 and 1143°C. The Mo-Pd system is characterized by an hcp phase Mo 9Pd 11 and by two peritectic reactions, β- Mo( Pd) + L = Mo9Pd11andMo9Pd11 + L = α- Pd( Mo). Mo 9Pd 11 decomposes eutectoidally at 1370°C. The Ru-Pd system is simple peritectic. The continuous series of the hcp solid solutions between Mo 9Pd 11 and ɛ-Ru(Mo, Pd) in the ternary Mo-Ru-Pd system observed at 1700°C are suppressed below 1370°C near the Mo-Pd boundary system by the formation of a narrow α + β + ɛ three-phase field. Relative partial molar Gibbs energies of Mo, Mo and Ru in the respective binary systems and of Mo in the ternary system were measured by the EMF method with a Zr(Ca)O 2 electrolyte. xsΔ ḠMo∞ quantities were evaluated at 1200 K which give -43 kJ/mol Mo in Ru and -94 kJ/mol Mo in Pd at infinite dilution. Gibbs energies of formation of the Mo-Ru and Mo-Pd systems were calculated.
Functionalization of liquid-exfoliated two-dimensional 2H-MoS2.
Backes, Claudia; Berner, Nina C; Chen, Xin; Lafargue, Paul; LaPlace, Pierre; Freeley, Mark; Duesberg, Georg S; Coleman, Jonathan N; McDonald, Aidan R
2015-02-23
Layered two-dimensional (2D) inorganic transition-metal dichalchogenides (TMDs) have attracted great interest as a result of their potential application in optoelectronics, catalysis, and medicine. However, methods to functionalize and process such 2D TMDs remain scarce. We have established a facile route towards functionalized layered MoS2 . We found that the reaction of liquid-exfoliated 2D MoS2 , with M(OAc)2 salts (M=Ni, Cu, Zn; OAc=acetate) yielded functionalized MoS2 -M(OAc)2 materials. Importantly, this method furnished the 2H-polytype of MoS2 which is a semiconductor. X-ray photoelectron spectroscopy (XPS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFT-IR), and thermogravimetric analysis (TGA) provide strong evidence for the coordination of MoS2 surface sulfur atoms to the M(OAc)2 salt. Interestingly, functionalization of 2H-MoS2 allows for its dispersion/processing in more conventional laboratory solvents. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals
NASA Astrophysics Data System (ADS)
Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei
2016-01-01
High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals.
Remarkably high mobility ultra-thin-film metal-oxide transistor with strongly overlapped orbitals
Wei Shih, Chen; Chin, Albert; Fu Lu, Chun; Fang Su, Wei
2016-01-01
High mobility channel thin-film-transistor (TFT) is crucial for both display and future generation integrated circuit. We report a new metal-oxide TFT that has an ultra-thin 4.5 nm SnO2 thickness for both active channel and source-drain regions, very high 147 cm2/Vs field-effect mobility, high ION/IOFF of 2.3 × 107, small 110 mV/dec sub-threshold slope, and a low VD of 2.5 V for low power operation. This mobility is already better than chemical-vapor-deposition grown multi-layers MoS2 TFT. From first principle quantum-mechanical calculation, the high mobility TFT is due to strongly overlapped orbitals. PMID:26744240
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Kidder, Michelle; Ruther, Rose E.
In this paper, we present a new class of catalysts, InMo-ZSM- 5, which can be prepared by indium impregnation of Mo-ZSM- 5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C 2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM- 5 remains comparable to that of Mo-ZSM- 5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM- 5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM- 5more » and mechanical mixture 1In+2Mo-ZSM- 5 suggest that In and Mo need to be in close proximity to suppress coke formation. Finally, this is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS- 5.« less
Synthesis and Characterization of Molybdenum Based Colloidal Particles.
Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein
1998-11-15
The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.
Preparation of 2D MoSe2/PEDOT:PSS composite and its thermoelectric properties
NASA Astrophysics Data System (ADS)
Li, Xia; Liu, Congcong; Wang, Tongzhou; Wang, Wenfang; Wang, Xiaodong; Jiang, Qinglin; Jiang, Fengxing; Xu, Jingkun
2017-11-01
Nowadays, inorganic/polymer composites have attracted significant interest in thermoelectric field, since the composite materials usually achieve their respective advantages complementary to each other. In this work, molybdenum diselenide (MoSe2) was synthesized by a facile hydrothermal method. Solution processible two-dimensional (2D) MoSe2 nanosheets (NSs) were successfully obtained using dimethylsulfoxide (DMSO) solvent or lithium intercalation procedure. Combined with Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), MoSe2/PEDOT:PSS composite thin films were fabricated by direct vacuum-filtration method. Thermoelectric properties of composite thin films were investigated systematically and found that 2D MoSe2 NSs and PEDOT:PSS have the synergistic effect on improving thermoelectric properties. The maximum power factor was calculated to be 48.6 µW m-1 K-2 with 5 wt% 2D MoSe2 NSs embedding into PEDOT:PSS matrix, which is almost 69% higher than that of pure PEDOT:PSS. These results demonstrate that 2D inorganic/polymer composite method is one of promising strategies to get high-performance polymer-based thermoelectric composites.
Janabi, Ali H D; Kerkhof, Lee J; McGuinness, Lora R; Biddle, Amy S; McKeever, Kenneth H
2016-10-01
There are many choices for methods of extracting bacterial DNA for Next Generation Sequencing (NGS) from fecal samples. Here, we compare our modifications of a phenol/chloroform extraction method plus an inhibitor removal solution (C3) (ph/Chl+C3) to the PowerFecal® DNA Isolation Kit (MoBio-K). DNA quality and quantity coupled to NGS results were used to assess differences in relative abundance, Shannon diversity index, unique species, and principle coordinate analysis (PCoA) between biological replicates. Six replicate samples, taken from a single ball of horse feces manually collected from the rectum, were subjected to each extraction method. The Ph/Chl+C3 method produced 100× higher DNA yields with less shearing than the MoBio-K method. To assess the methods, the two method samples were sent for sequencing of the bacterial V3-V4 region of 16S rRNA gene using the Illumina MiSeq platform. The relative abundance of Bacteroidetes was greater and there were more unique species assigned to this group in MoBio-K than in Ph/Chl+C3 (P<0.05). In contrast, Firmicutes had greater relative abundance and more unique species in Ph/Chl+C3 extracts than in MoBio-K (P<0.05). The other major bacterial phyla were equally abundant in samples using both extraction methods. Alpha diversity and Shannon Weaver indices showed greater evenness of bacterial distribution in Ph/Chl+C3 compared with MoBio-K (P<0.05), but there was no difference in the OTU richness. Principle coordinate analysis (PCoA) indicated a distinct separation between the two methods (P<0.05) and tighter clustering (less variability) in Ph/Chl+C3 than in MoBio-K. These results suggest that the Ph/Chl+C3 may be preferred for research to identify specific Firmicutes taxa such as Clostridium, and Bacillus. However; MoBio-K may be a better choice for projects focusing on Bacteroidetes abundance. The Ph/Chl+C3 method required less time, but has some safety concerns associated with exposure and disposal of phenol and chloroform. While the MoBio-K may be better choice for researchers with less access to safety equipment like a fume hood. Copyright © 2016 Elsevier B.V. All rights reserved.
Colabello, Diane M; Sobalvarro, Elizabeth M; Sheckelton, John P; Neuefeind, Joerg C; McQueen, Tyrel M; Khalifah, Peter G
2017-11-06
Among oxide compounds with direct metal-metal bonding, the Y 5 Mo 2 O 12 (A 5 B 2 O 12 ) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2 O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal-metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal-metal bonding have integer oxidation states resulting from the lifting of orbital degeneracy typically induced by the metal-metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5 Mo 2 O 12 (Ln = La-Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2 O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1-2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5 Mo 2 O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. This represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one-dimensional octahedral chains of this system.
In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions
NASA Astrophysics Data System (ADS)
Aierken, Yierpan; Sevik, Cem; Gülseren, Oğuz; Peeters, François M.; Çakır, Deniz
2018-07-01
There is an increasing need to understand interfaces between two-dimensional materials to realize an energy efficient boundary with low contact resistance and small heat dissipation. In this respect, we investigated the impact of charge and substitutional atom doping on the electronic transport properties of the hybrid metallic-semiconducting lateral junctions, formed between metallic (1T and 1T d ) and semiconducting (1H) phases of MoS2 by means of first-principles and non-equilibrium Green function formalism based calculations. Our results clearly revealed the strong influence of the type of interface and crystallographic orientation of the metallic phase on the transport properties of these systems. The Schottky barrier height, which is the dominant mechanism for contact resistance, was found to be as large as 0.63 eV and 1.19 eV for holes and electrons, respectively. We found that armchair interfaces are more conductive as compared to zigzag termination due to the presence of the metallic Mo zigzag chains that are directed along the transport direction. In order to manipulate these barrier heights we investigated the influence of electron doping of the metallic part (i.e. 1T d -MoS2). We observed that the Fermi level of the hybrid system moves towards the conduction band of semiconducting 1H-MoS2 due to filling of 4d-orbital of metallic MoS2, and thus the Schottky barrier for electrons decreases considerably. Besides electron doping, we also investigated the effect of substitutional doping of metallic MoS2 by replacing Mo atoms with either Re or Ta. Due to its valency, Re (Ta) behaves as a donor (acceptor) and reduces the Schottky barrier for electrons (holes). Since Re and Ta based transition metal dichalcogenides crystallize in either the 1T d or 1T phase, substitutional doping with these atom favors the stabilization of the 1T d phase of MoS2. Co-doping of hybrid structure results in an electronic structure, which facilities easy dissociation of excitons created in the 1H part.
In pursuit of barrierless transition metal dichalcogenides lateral heterojunctions.
Aierken, Yierpan; Sevik, Cem; Gülseren, Oğuz; Peeters, François M; Çakır, Deniz
2018-07-20
There is an increasing need to understand interfaces between two-dimensional materials to realize an energy efficient boundary with low contact resistance and small heat dissipation. In this respect, we investigated the impact of charge and substitutional atom doping on the electronic transport properties of the hybrid metallic-semiconducting lateral junctions, formed between metallic (1T and 1T d ) and semiconducting (1H) phases of MoS 2 by means of first-principles and non-equilibrium Green function formalism based calculations. Our results clearly revealed the strong influence of the type of interface and crystallographic orientation of the metallic phase on the transport properties of these systems. The Schottky barrier height, which is the dominant mechanism for contact resistance, was found to be as large as 0.63 eV and 1.19 eV for holes and electrons, respectively. We found that armchair interfaces are more conductive as compared to zigzag termination due to the presence of the metallic Mo zigzag chains that are directed along the transport direction. In order to manipulate these barrier heights we investigated the influence of electron doping of the metallic part (i.e. 1T d -MoS 2 ). We observed that the Fermi level of the hybrid system moves towards the conduction band of semiconducting 1H-MoS 2 due to filling of 4d-orbital of metallic MoS 2 , and thus the Schottky barrier for electrons decreases considerably. Besides electron doping, we also investigated the effect of substitutional doping of metallic MoS 2 by replacing Mo atoms with either Re or Ta. Due to its valency, Re (Ta) behaves as a donor (acceptor) and reduces the Schottky barrier for electrons (holes). Since Re and Ta based transition metal dichalcogenides crystallize in either the 1T d or 1T phase, substitutional doping with these atom favors the stabilization of the 1T d phase of MoS 2 . Co-doping of hybrid structure results in an electronic structure, which facilities easy dissociation of excitons created in the 1H part.
Defects Engineered Monolayer MoS 2 for Improved Hydrogen Evolution Reaction
Ye, Gonglan; Gong, Yongji; Lin, Junhao; ...
2016-01-13
MoS 2 is a promising, low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. Our work represents an easy method to increase the hydrogen production in electrochemical reaction of MoS 2 via defect engineering, and helps to understand the catalytic properties of MoS 2.
Theoretical ultra-fast spectroscopy in transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Molina-Sanchez, Alejandro; Sangalli, Davide; Marini, Andrea; Wirtz, Ludger
Semiconducting 2D-materials like the transition metal dichalcogenides (TMDs) MoS2, MoSe2, WS2, WSe2 are promising alternatives to graphene for designing novel opto-electronic devices. The strong spin-orbit interaction along with the breaking of inversion symmetry in single-layer TMDs allow using the valley-index as a new quantum number. The practical use of valley physics depends on the lifetimes of valley-polarized excitons which are affected by scattering at phonons, impurities and by carrier-carrier interactions. The carrier dynamics can be monitored using ultra-fast spectroscopies such as pump-probe experiments. The carrier dynamics is simulated using non-equilibrium Green's function theory in an ab-initio framework. We include carrier relaxation through electron-phonon interaction. We obtain the transient absorption spectra of single-layer TMD and compare our simulations with recent pump-probe experiments
Experimental and Calculational Studies of the Interactions of BF3 with Fluoroethers
NASA Technical Reports Server (NTRS)
Zehe, Michael J.; Morales, Wilfredo; Ball, David W.
1998-01-01
BF3 was co-condensed with (C2H5)2O, (CF3CH2)2O and (C2F5)2O in excess argon at 15 K. Infrared spectra of the matrices showed a definite Lewis acid-base interaction between BF3 and diethyl ether; a weak but definite interaction with bis(2,2,2,-trifluorodiethyl)ether, and no observable interaction with perfluorodiethyl ether. Molecular orbital (MO) calculations complemented the experimental observations by revealing that fluorine atoms on the ethers decreased electron localization about the oxygen atom. Thus, the experimental data and MO calculations indicated a clear trend between strength of interaction with BF3 and the degree of ether F substitution. The implications of the results for commercial perfluoro ether lubricant/metal oxide surface interactions are discussed.
Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi
2015-01-01
Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio measurements. However, data obtained in this study show that instrumental mass discrimination in MC-ICP-MS is consistent with mass-dependent Mo isotope fractionation. This was demonstrated by a good agreement between experimentally obtained and theoretically expected values of the exponent of isotope fractionation, β, for each triad of Mo isotopes.
DOT National Transportation Integrated Search
2015-10-01
The overarching goal of the MoDOT Pavement Preservation Research Program, Task 3: Pavement Evaluation Tools Data : Collection Methods was to identify and evaluate methods to rapidly obtain network-level and project-level information relevant to :...
Promotional Effects of In on Non-Oxidative Methane Transformation Over Mo-ZSM-5
Zhang, Yang; Kidder, Michelle; Ruther, Rose E.; ...
2016-08-16
In this paper, we present a new class of catalysts, InMo-ZSM- 5, which can be prepared by indium impregnation of Mo-ZSM- 5. The incorporation of indium dramatically decreases coke formation during methane dehydroaromatization. The benzene and C 2 hydrocarbons selectivity among total hydrocarbons over InMo-ZSM- 5 remains comparable to that of Mo-ZSM- 5 despite reduced methane conversion due to decreased coke formation. We found 1 wt% indium to be optimal loading for reducing coke selectivity to half that of Mo-ZSM- 5. Characterization methods were not helpful in discerning the interaction of In with Mo but experiments with bimetallic 1In2Mo-ZSM- 5more » and mechanical mixture 1In+2Mo-ZSM- 5 suggest that In and Mo need to be in close proximity to suppress coke formation. Finally, this is supported by temperature programmed reduction experiments which show that In incorporation leads to lower Mo reduction temperature in In2Mo-ZMS- 5.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Gregory E.
There is currently a serious shortage of 99Mo, from which to generate the medically significant isotope 99mTc. Most of the world's supply comes from the fission of highly enriched uranium targets--this is a proliferation concern. This document focuses on the technology involved in two alternative methods: electron accelerator production of 99Mo from the 100Mo(γ,n) 99Mo reaction and production of 99Mo as a fission product in a subcritical, DT accelerator-driven low enriched uranium salt solution.
Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings
NASA Astrophysics Data System (ADS)
Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.
2016-12-01
Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.
Method for the production of .sup.99m Tc compositions from .sup.99 Mo-containing materials
Bennett, Ralph G.; Christian, Jerry D.; Grover, S. Blaine; Petti, David A.; Terry, William K.; Yoon, Woo Y.
1998-01-01
An improved method for producing .sup.99m Tc compositions from .sup.99 Mo compounds. .sup.100 Mo metal or .sup.100 MoO.sub.3 is irradiated with photons in a particle (electron) accelerator to ultimately produce .sup.99 MoO.sub.3. This composition is then heated in a reaction chamber to form a pool of molten .sup.99 MoO.sub.3 with an optimum depth of 0.5-5 mm. A gaseous mixture thereafter evolves from the molten .sup.99 MoO.sub.3 which contains vaporized .sup.99 MoO.sub.3, vaporized .sup.99m TcO.sub.3, and vaporized .sup.99m TcO.sub.2. This mixture is then combined with an oxidizing gas (O.sub.2(g)) to generate a gaseous stream containing vaporized .sup.99m Tc.sub.2 O.sub.7 and vaporized .sup.99 MoO.sub.3. Next, the gaseous stream is cooled in a primary condensation stage in the reaction chamber to remove vaporized .sup.99 MoO.sub.3. Cooling is undertaken at a specially-controlled rate to achieve maximum separation efficiency. The gaseous stream is then cooled in a sequential secondary condensation stage to convert vaporized .sup.99m Tc.sub.2 O.sub.7 into a condensed .sup.99m Tc-containing reaction product which is collected.
Method for the production of {sup 99m}Tc compositions from {sup 99}Mo-containing materials
Bennett, R.G.; Christian, J.D.; Grover, S.B.; Petti, D.A.; Terry, W.K.; Yoon, W.Y.
1998-09-01
An improved method is described for producing {sup 99m}Tc compositions from {sup 99}Mo compounds. {sup 100}Mo metal or {sup 100}MoO{sub 3} is irradiated with photons in a particle (electron) accelerator to ultimately produce {sup 99}MoO{sub 3}. This composition is then heated in a reaction chamber to form a pool of molten {sup 99}MoO{sub 3} with an optimum depth of 0.5--5 mm. A gaseous mixture thereafter evolves from the molten {sup 99}MoO{sub 3} which contains vaporized {sup 99}MoO{sub 3}, vaporized {sup 99m}TcO{sub 3}, and vaporized {sup 99m}TcO{sub 2}. This mixture is then combined with an oxidizing gas (O{sub 2(g)}) to generate a gaseous stream containing vaporized {sup 99m}Tc{sub 2}O{sub 7} and vaporized {sup 99}MoO{sub 3}. Next, the gaseous stream is cooled in a primary condensation stage in the reaction chamber to remove vaporized {sup 99}MoO{sub 3}. Cooling is undertaken at a specially-controlled rate to achieve maximum separation efficiency. The gaseous stream is then cooled in a sequential secondary condensation stage to convert vaporized {sup 99m}Tc{sub 2}O{sub 7} into a condensed {sup 99m}Tc-containing reaction product which is collected. 1 fig.
Insertion of Ag atoms into layered MoO{sub 3} via a template route
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Ke, E-mail: shaoke@szu.edu.cn; Wang, Hao
2012-11-15
Graphical abstract: PVP–Ag{sup +} complex self-assembled with inorganic (Mo{sub x}O{sub y}){sub ∞}{sup n−} chains into a layered hybrid, in which the PVP–Ag complex was intercalated between the (Mo{sub x}O{sub y}){sub ∞}{sup n−} layers. Calcinations of this hybrid at 500 °C lead to formation of Ag/MoO{sub 3} nanohybrid. By this method we have successfully inserted Ag atoms into the semiconductor MoO{sub 3} lattice. Display Omitted Highlights: ► We fabricated a PVP–Ag/polyoxomolybdate layered hybrid via in situ self-assembly. ► The PVP–Ag complex has been inserted between the molybdenum oxide layers. ► This layered hybrid transformed into Ag/MoO{sub 3} nanocomposite after calcinations. ►more » HR-TEM images show that Ag atoms of about 1 nm have been inserted in the MoO{sub 3} layers. -- Abstract: We report insertion of Ag atoms into layered MoO{sub 3} via an in situ template route. PVP–Ag{sup +} complex self-assembled with inorganic (Mo{sub x}O{sub y}){sub ∞}{sup n−} chains into a layered hybrid, in which the PVP–Ag complex was intercalated between the (Mo{sub x}O{sub y}){sub ∞}{sup n−} layers. Calcinations of this hybrid at 500 °C lead to formation of Ag/MoO{sub 3} hybrid, in which Ag nanoparticles of about 1 nm have been inserted between the MoO{sub 3} layers. By this method pillared MoO{sub 3} has been obtained very easily. We believe that this research opens new routes to fabricate novel intercalation compounds and metal/semiconductor nanohybrids via an efficient and green route.« less
Quality of 99mTcO4- from 99Mo Produced by 100Mo(n,2n)99Mo
NASA Astrophysics Data System (ADS)
Nagai, Yasuki; Nakahara, Yuto; Kawabata, Masako; Hatsukawa, Yuichi; Hashimoto, Kazuyuki; Saeki, Hideya; Motoishi, Shoji; Ohta, Akio; Shiina, Takayuki; Kawauchi, Yukimasa
2017-05-01
The pharmaceutical quality of 99mTc pertechnetate solution obtained from 99Mo, the 100Mo(n,2n) reaction product, was investigated for the first time with an emphasis on the nonradioactive Mo content and endotoxin concentration. They were less than the tolerance dose given in international guidelines and the established upper limit in an international pharmacopoeia, respectively. Four other quality control tests commonly used for a commercially available 99mTc pertechnetate solution also demonstrated to meet the United States Pharmacopeia requirements. The results strongly support that the thermochromatographic separation method used to separate 99mTc from 99Mo can be a promising substitute for the fission product 99Mo.
Magnetic MoS2 on multiwalled carbon nanotubes for sulfide sensing.
Li, Chunxiang; Zhang, Dan; Wang, Jiankang; Hu, Pingan; Jiang, Zhaohua
2017-07-04
A novel hybrid metallic cobalt insided in multiwalled carbon nanotubles/molybdenum disulfide (Co@CNT/MoS 2 ) modified glass carbon electrode (GCE) was fabricated with a adhesive of Nafion suspension and used as chemical sensors for sulfide detection. Single-layered MoS 2 was coated on CNTs through magnetic traction force between paramagnetic monolayer MoS 2 and Co particles in CNTs. Co particles faciliated the collection of paramagnetic monolayer MoS 2 exfoliated from bulk MoS 2 in solution. Amperometric analysis, cycle voltammetry, cathodic stripping analysis and linear sweep voltammetry results showed the Co@CNT/MoS 2 modified GCE exhibited excellent electrochemical activity to sulfide in buffer solutions, but amperometric analysis was found to be more sensitive than the other methods. The amperometric response result indicated the Co@CNT/MoS 2 -modified GCE electrode was an excellent electrochemical sensor for detecting S 2- with a detection limit of 7.6 nM and sensitivity of 0.23 mA/μM. The proposed electrode was used for the determination of sulfide levels in hydrogen sulfide-pretreated fruits, and the method was also verified with recovery studies. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thangasamy, Pitchai; Shanmugapriya, Vadivel; Sathish, Marappan
2018-05-01
A facile and one-pot supercritical fluid method was demonstrated for the synthesis of phase pure crystalline h-MoO3 microrods within a short reaction time of 5 min at 400 °C. The formation of h-MoO3 was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopic analysis. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images clearly revealed the formation of hexagonal h-MoO3 rods. Further, photoluminescence emission peaks corresponding to band to band transition was observed in the h-MoO3 microrods. It was observed that when increasing the reaction time from 5 min to 30 min at 400 °C, h-MoO3 microrods undergoes disintegration to α-MoO3 thin nanorods. Interestingly, h-MoO3 microrods were also formed in a reaction time of 30 min at 400 °C when reducing the volume of nitric acid from 1 mL to ∼0.5 mL. The short reaction time and simple synthetic strategy makes this method can be suitable for the synthesis of other semiconductor nanomaterials for diverse applications.
Maghrabi, Mufeed; Al-Abdullah, Tariq; Khattari, Ziad
2018-03-24
The two heating rates method (originally developed for first-order glow peaks) was used for the first time to evaluate the activation energy (E) from glow peaks obeying mixed-order (MO) kinetics. The derived expression for E has an insignificant additional term (on the scale of a few meV) when compared with the first-order case. Hence, the original expression for E using the two heating rates method can be used with excellent accuracy in the case of MO glow peaks. In addition, we derived a simple analytical expression for the MO parameter. The present procedure has the advantage that the MO parameter can now be evaluated using analytical expression instead of using the graphical representation between the geometrical factor and the MO parameter as given by the existing peak shape methods. The applicability of the derived expressions for real samples was demonstrated for the glow curve of Li 2 B 4 O 7 :Mn single crystal. The obtained parameters compare very well with those obtained by glow curve fitting and with the available published data.
NASA Astrophysics Data System (ADS)
Nalewajski, Roman F.
The flow of information in the molecular communication networks in the (condensed) atomic orbital (AO) resolution is investigated and the plane-wave (momentum-space) interpretation of the average Fisher information in the molecular information system is given. It is argued using the quantum-mechanical superposition principle that, in the LCAO MO theory the squares of corresponding elements of the Charge and Bond-Order (CBO) matrix determine the conditional probabilities between AO, which generate the molecular communication system of the Orbital Communication Theory (OCT) of the chemical bond. The conditional-entropy ("noise," information-theoretic "covalency") and the mutual-information (information flow, information-theoretic "ionicity") descriptors of these molecular channels are related to Wiberg's covalency indices of chemical bonds. The illustrative application of OCT to the three-orbital model of the chemical bond X-Y, which is capable of describing the forward- and back-donations as well as the atom promotion accompanying the bond formation, is reported. It is demonstrated that the entropy/information characteristics of these separate bond-effects can be extracted by an appropriate reduction of the output of the molecular information channel, carried out by combining several exits into a single (condensed) one. The molecular channels in both the AO and hybrid orbital representations are examined for both the molecular and representative promolecular input probabilities.
NASA Technical Reports Server (NTRS)
Cross, Jon B.; Koontz, Steven L.; Lan, Esther H.
1993-01-01
The effects of atomic oxygen on boron nitride (BN), silicon nitride (Si3N4), Intelsat 6 solar cell interconnects, organic polymers, and MoS2 and WS2 dry lubricant, were studied in Low Earth Orbit (LEO) flight experiments and in a ground based simulation facility. Both the inflight and ground based experiments employed in situ electrical resistance measurements to detect penetration of atomic oxygen through materials and Electron Spectroscopy for Chemical Analysis (ESCA) analysis to measure chemical composition changes. Results are given. The ground based results on the materials studied to date show good qualitative correlation with the LEO flight results, thus validating the simulation fidelity of the ground based facility in terms of reproducing LEO flight results. In addition it was demonstrated that ground based simulation is capable of performing more detailed experiments than orbital exposures can presently perform. This allows the development of a fundamental understanding of the mechanisms involved in the LEO environment degradation of materials.
Thermoelectric Properties of Electron-Doped SrMnO3 Single Crystals with Perovskite Structure
NASA Astrophysics Data System (ADS)
Suzuki, T.; Sakai, H.; Taguchi, Y.; Tokura, Y.
2012-06-01
Thermoelectric properties have been investigated for single crystals of Sr(Mn1- x Mo x )O3 with the perovskite structure. Similar to (Sr1- x Ce x )MnO3, the Seebeck coefficient for lightly electron-doped compounds ( x ≤ 0.01) is enhanced upon G-type antiferromagnetic ordering, while maintaining metallic conduction. This results in enhancement of the figure of merit ( ZT). On the other hand, the Seebeck coefficient for the more electron-doped compound ( x = 0.025) changes sign from negative to positive within a spin and orbital ordered phase (with C-type antiferromagnetic configuration and Mn 3 z 2 - r 2 type orbital order) as the temperature is lowered, whereas the Hall coefficient remains negative in the whole temperature range. The enhancement of the ZT value in the G-type antiferromagnetic phase implies the possibility for improvement of the thermoelectric efficiency by using the coupling between charge, spin, orbital, and lattice degrees of freedom in strongly correlated electron systems.
Transfer matrix approach to electron transport in monolayer MoS2/MoO x heterostructures
NASA Astrophysics Data System (ADS)
Li, Gen
2018-05-01
Oxygen plasma treatment can introduce oxidation into monolayer MoS2 to transfer MoS2 into MoO x , causing the formation of MoS2/MoO x heterostructures. We find the MoS2/MoO x heterostructures have the similar geometry compared with GaAs/Ga1‑x Al x As semiconductor superlattice. Thus, We employ the established transfer matrix method to analyse the electron transport in the MoS2/MoO x heterostructures with double-well and step-well geometries. We also considere the coupling between transverse and longitudinal kinetic energy because the electron effective mass changes spatially in the MoS2/MoO x heterostructures. We find the resonant peaks show red shift with the increasing of transverse momentum, which is similar to the previous work studying the transverse-momentum-dependent transmission in GaAs/Ga1‑x Al x As double-barrier structure. We find electric field can enhance the magnitude of peaks and intensify the coupling between longitudinal and transverse momentums. Moreover, higher bias is applied to optimize resonant tunnelling condition to show negative differential effect can be observed in the MoS2/MoO x system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Abdul, Momen; Youker, Amanda J.
2016-06-01
Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery andmore » -concentration columns. Promising results are reported for both methods.« less
NASA Astrophysics Data System (ADS)
Li, Chun-Xia; Luo, Hu-Bin; Hu, Qing-Miao; Yang, Rui; Yin, Fu-Xing; Umezawa, Osamu; Vitos, Levente
2013-04-01
The crystallographic structure and stability of the α″ phase relative to the α and β phases in Ti-x M (M=Ta, Nb, V, Mo) alloys are investigated by using the first-principles exact muffin-tin orbital method in combination with the coherent potential approximation. We show that, with increasing concentration of the alloying elements, the structure of the orthorhombic-α″ phase evolutes from the hcp-α to the bcc-β phase, i.e., the lattice parameters b/a and c/a as well as the basal shuffle y decreases from those corresponding to the α phase to those of the β phase. The compositional α/α″ and α″/β phase boundaries are determined by comparing the total energies of the phases. The predicted α/α″ phase boundaries are about 10.2, 10.5, 11.5, 4.5 at% for Ti-V, Ti-Nb, Ti-Ta, and Ti-Mo, respectively, in reasonable agreement with experiments. The α″/β phase boundaries are higher than the experimental values, possibly due to the absence of temperature effect in the first-principles calculations. Analyzing the electronic density of states, we propose that the stability of the α″ phase is controlled by the compromise between the strength of the covalent and metallic bonds.
Yang, Zhaolong; Gao, Daqiang; Zhang, Jing; Xu, Qiang; Shi, Shoupeng; Tao, Kun; Xue, Desheng
2015-01-14
High Curie temperature ferromagnetism has been realized in atomically thin MoS2 and WS2 nanosheets. The ultrathin nanosheet samples were prepared via a novel, simple and efficient chemical vapor deposition method; different kinds of transition metal disulfides (MoS2 and WS2) could be obtained by sulphuring the corresponding cation sources (MoO3 and WCl6). Through related morphological and structural characterization, we confirm that large-area, uniform, few-layer MoS2 and WS2 nanosheets were successfully synthesized by this method. Both nanosheet samples exhibit distinct ferromagnetic behavior. By careful measurement and fitting of the magnetization of MoS2 and WS2 samples at different temperatures, we deconstruct the magnetization into its diamagnetic, paramagnetic and ferromagnetic contributions. The ferromagnetic contributions persist until 865 K for MoS2 and 820 K for WS2. We attribute the observed ferromagnetic properties to the defects and dislocations produced during the growth process, as well as the presence of edge spins at the edge of the nanosheets.
Synthesis, characterization and photocatalytic performance of chemically exfoliated MoS2
NASA Astrophysics Data System (ADS)
Prabhakar Vattikuti, S. V.; Shim, Jaesool
2018-03-01
Two-dimensional (2D) layered structure transition metal dichalcogenides (TMDs) has gained huge attention and importance for photocatalytic energy conversion because of their unique properties. Molybdenum disulfide (MoS2) nanosheets were synthesized via one-pot method and exfoliated in (dimethylformamide) DMF solution. Subsequent exfoliated MoS2 nanosheets (e-MoS2) were used as photocatalysts for degradation of Rhodamine B (RhB) pollutant under solar light irradiation. The e-MoS2 nanosheets exhibited excellent photocatalytic activity than that of pristine MoS2, owing to high specific surface area with enormous active sites and light absorption capacity. In addition, e-MoS2 demonstrated remarkable photocatalytic stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedeking, M.; Krticka, M.; Bernstein, L. A.
2016-02-01
The emission of γ rays from neutron-bound and neutron-unbound states in 95Mo, populated in the 94Mo(d,p) reaction, has been investigated. Charged particles and γ radiation were detected with arrays of annular silicon and Clover-type high-purity Germanium detectors, respectively. Utilizing p-γ and p-γ-γ coincidences, the 95Mo level scheme was greatly enhanced with 102 new transitions and 43 new states. It agrees well with shell model calculations for excitation energies below ≈2 MeV. From p-γ coincidence data, a new method for the determination of spins of discrete levels is proposed. The method exploits the suppression of high-angular momentum neutron emission from levelsmore » with high spins populated in the (d,p) reaction above the neutron separation energy. As a result, spins for almost all 95Mo levels below 2 MeV (and for a few levels above) have been determined with this method.« less
Dual emission of chalcone-analogue dyes emitting in the red region
NASA Astrophysics Data System (ADS)
Fayed, Tarek A.; Awad, Mohamed K.
2004-08-01
The photophysical properties of new synthesized chalcones namely; 1-(4 '-R-phenyl)-5-(4 '-dimethylaminophenyl)-2,4- pentadien-1-one, [R=H ( 1), Cl ( 2) and OCH 3 ( 3)] were studied in different solvents by using steady-state absorption and emission spectroscopy. The fluorescence spectra of these chalcones exhibit dual emission in medium and polar solvents. The dual emission was attributed to population of a polar locally excited (LE) state and a highly dipolar intramolecular charge transfer (ICT) state. The changes in dipole moments upon excitation were calculated from the solvatochromic plots. The total fluorescence quantum yields ( φf) were also determined, and their values are strongly dependent on the nature of substitutent and the solvent polarity. Semiempirical molecular orbital calculations using the atom superposition and electron delocalization molecular orbital (ASED-MO) method were also performed to investigate the molecular and electronic structures of these chalcones in both the ground and excited state. The change of the dipole moment upon excitation was explained on the basis of changes in the charge redistribution over the whole skeleton of the molecules, which agree well with the experimental results. Also, the nature and energy of the electronic transitions were elucidated and discussed in relation to the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritsan, N.P.; Usov, O.M.; Shokhirev, N.V.
1986-07-01
The optical and ESR spectra have been examined for complexes of Cu(I) with various radicals, which contain various numbers of Cl/sup -/ ions in the central-atom coordination sphere. The spin-Hamiltonian parameters have been determined for all these radical complexes, and the observed ESR spectra have been compared with those calculated with allowance for second-order effects. The observed values for the isotropic and anisotropic components of the HFI constant from the central ion have been used to estimate the contributions from the 4s and 3d/sup 2//sub z/ orbitals of the copper ion to the unpaired-electron MO. Quantum-chemical calculations have been performedmore » by the INDO method on the electronic structures and geometries of complexes formed by CH/sub 2/OH with Cu(I) for various Cl/sup -/ contents in the coordination sphere. The radical is coordinated by the ..pi.. orbital on the carbon atom, and the stabilities of the radical complexes decrease as the number of Cl/sup -/ ions in the coordination sphere increases. A geometry close to planar for the CuCl/sub 4//sup 3 -/ fragment in a complex containing four Cl/sup -/ ions.« less
NASA Technical Reports Server (NTRS)
Loeffler, B. M.; Burns, R. G.; Tossell, J. A.
1975-01-01
Prominent bands in the spectral profiles of Fe-Ti phases in lunar samples have been attributed to charge-transfer transitions between Fe and Ti cations, and a model is presented for calculating charge transfer energies from energy levels computed by the SCF-X(alpha) scattered wave molecular orbital method for isolated MO6 octahedral coordination clusters containing Fe(2+), Fe(3+), Ti(3+), and Ti(4+) cations. The calculated charge transfer energy for the Fe(2+) to Ti(4+) transition correlates well with a measured spectral feature around 0.6 micron in ilmenite, and, since ilmenite is a major constituent of mare basalts and dark-mantling material, the observed darkness and blueness of the regolith in lunar black spots is attributed primarily to this transition. The Ti(3+) to Ti(4+) transition is thought to contribute to some phases.
The Perturbational MO Method for Saturated Systems.
ERIC Educational Resources Information Center
Herndon, William C.
1979-01-01
Summarizes a theoretical approach using nonbonding MO's and perturbation theory to correlate properties of saturated hydrocarbons. Discussion is limited to correctly predicted using this method. Suggests calculations can be carried out quickly in organic chemistry. (Author/SA)
Quick test for percent of deleterious material.
DOT National Transportation Integrated Search
2009-08-28
The Missouri Department of Transportation (MoDOT) is considering the replacement of its deleterious : materials test method (TM-71) with test methods that are more objective. MoDOT contracted with the Missouri : University of Science and Technology (...
NASA Astrophysics Data System (ADS)
Oh, Seung-Jin; Jun, Joong-Hwan; Lee, Min-Ha; Shon, In-Jin; Lee, Seok-Jae
2018-05-01
In this study, we successfully fabricated highly alloyed FeCrMoVC specimens within 2 min by using the spark plasma sintering (SPS) method. The densities of the sintered specimens were almost identical to their theoretical values. Fine (Mo, V)-rich carbides with lamellar structure were precipitated along the grain boundaries of the as-sintered specimen, whereas relatively large carbides were formed additionally in the transgranular region during the tempering treatment. Compared with the specimen produced by a conventional casting method, the FeCrMoVC specimens from SPS showed smaller grain size with finer carbides and higher hardness values.
NASA Astrophysics Data System (ADS)
Hashemi, Zohreh; Rafiezadeh, Shohreh; Hafizi, Roohollah; Hashemifar, S. Javad; Akbarzadeh, Hadi
2018-04-01
Evolutionary algorithm is combined with full-potential ab initio calculations to investigate conformational space of (MoS2)n and (MoSe2)n (n = 1-10) nanoclusters and to identify the lowest energy structural isomers of these systems. It is argued that within both BLYP and PBE functionals, these nanoclusters favor sandwiched planar configurations, similar to their ideal planar sheets. The second order difference in total energy (Δ2 E) of the lowest energy isomers is computed to estimate the abundance of the clusters at different sizes and to determine the magic sizes of (MoS2)n and (MoSe2)n nanoclusters. In order to investigate the electronic properties of nanoclusters, their energy gap is calculated by several methods, including hybrid functionals (B3LYP and PBE0), GW approach, and Δ scf method. At the end, the vibrational modes of the lowest lying isomers are calculated by using the force constants method and the IR active modes of the systems are identified. The vibrational spectra are used to calculate the Helmholtz free energy of the systems and then to investigate abundance of the nanoclusters at finite temperatures.
Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence
Zhang, Hui; Ma, Yaoguang; Wan, Yi; Rong, Xin; Xie, Ziang; Wang, Wei; Dai, Lun
2015-01-01
Monolayer molybdenum disulphide (MoS2) has attracted much attention, due to its attractive properties, such as two-dimensional properties, direct bandgap, valley-selective circular dichroism, and valley Hall effect. However, some of its fundamental physical parameters, e.g. refractive index, have not been studied in detail because of measurement difficulties. In this work, we have synthesized highly crystalline monolayer MoS2 on SiO2/Si substrates via chemical vapor deposition (CVD) method and devised a method to measure their optical contrast spectra. Using these contrast spectra, we extracted the complex refractive index spectrum of monolayer MoS2 in the wavelength range of 400 nm to 750 nm. We have analyzed the pronounced difference between the obtained complex refractive index spectrum and that of bulk MoS2. The method presented here is effective for two-dimensional materials of small size. Furthermore, we have calculated the color contour plots of the contrast as a function of both SiO2 thickness and incident light wavelength for monolayer MoS2 using the obtained refractive index spectrum. These plots are useful for both fundamental study and device application. PMID:25676089
Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence.
Zhang, Hui; Ma, Yaoguang; Wan, Yi; Rong, Xin; Xie, Ziang; Wang, Wei; Dai, Lun
2015-02-13
Monolayer molybdenum disulphide (MoS2) has attracted much attention, due to its attractive properties, such as two-dimensional properties, direct bandgap, valley-selective circular dichroism, and valley Hall effect. However, some of its fundamental physical parameters, e.g. refractive index, have not been studied in detail because of measurement difficulties. In this work, we have synthesized highly crystalline monolayer MoS2 on SiO2/Si substrates via chemical vapor deposition (CVD) method and devised a method to measure their optical contrast spectra. Using these contrast spectra, we extracted the complex refractive index spectrum of monolayer MoS2 in the wavelength range of 400 nm to 750 nm. We have analyzed the pronounced difference between the obtained complex refractive index spectrum and that of bulk MoS2. The method presented here is effective for two-dimensional materials of small size. Furthermore, we have calculated the color contour plots of the contrast as a function of both SiO2 thickness and incident light wavelength for monolayer MoS2 using the obtained refractive index spectrum. These plots are useful for both fundamental study and device application.
Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence
NASA Astrophysics Data System (ADS)
Zhang, Hui; Ma, Yaoguang; Wan, Yi; Rong, Xin; Xie, Ziang; Wang, Wei; Dai, Lun
2015-02-01
Monolayer molybdenum disulphide (MoS2) has attracted much attention, due to its attractive properties, such as two-dimensional properties, direct bandgap, valley-selective circular dichroism, and valley Hall effect. However, some of its fundamental physical parameters, e.g. refractive index, have not been studied in detail because of measurement difficulties. In this work, we have synthesized highly crystalline monolayer MoS2 on SiO2/Si substrates via chemical vapor deposition (CVD) method and devised a method to measure their optical contrast spectra. Using these contrast spectra, we extracted the complex refractive index spectrum of monolayer MoS2 in the wavelength range of 400 nm to 750 nm. We have analyzed the pronounced difference between the obtained complex refractive index spectrum and that of bulk MoS2. The method presented here is effective for two-dimensional materials of small size. Furthermore, we have calculated the color contour plots of the contrast as a function of both SiO2 thickness and incident light wavelength for monolayer MoS2 using the obtained refractive index spectrum. These plots are useful for both fundamental study and device application.
Chen, Zhenhua; Hoffmann, Mark R
2012-07-07
A unitary wave operator, exp (G), G(+) = -G, is considered to transform a multiconfigurational reference wave function Φ to the potentially exact, within basis set limit, wave function Ψ = exp (G)Φ. To obtain a useful approximation, the Hausdorff expansion of the similarity transformed effective Hamiltonian, exp (-G)Hexp (G), is truncated at second order and the excitation manifold is limited; an additional separate perturbation approximation can also be made. In the perturbation approximation, which we refer to as multireference unitary second-order perturbation theory (MRUPT2), the Hamiltonian operator in the highest order commutator is approximated by a Mo̸ller-Plesset-type one-body zero-order Hamiltonian. If a complete active space self-consistent field wave function is used as reference, then the energy is invariant under orbital rotations within the inactive, active, and virtual orbital subspaces for both the second-order unitary coupled cluster method and its perturbative approximation. Furthermore, the redundancies of the excitation operators are addressed in a novel way, which is potentially more efficient compared to the usual full diagonalization of the metric of the excited configurations. Despite the loss of rigorous size-extensivity possibly due to the use of a variational approach rather than a projective one in the solution of the amplitudes, test calculations show that the size-extensivity errors are very small. Compared to other internally contracted multireference perturbation theories, MRUPT2 only needs reduced density matrices up to three-body even with a non-complete active space reference wave function when two-body excitations within the active orbital subspace are involved in the wave operator, exp (G). Both the coupled cluster and perturbation theory variants are amenable to large, incomplete model spaces. Applications to some widely studied model systems that can be problematic because of geometry dependent quasidegeneracy, H4, P4, and BeH(2), are performed in order to test the new methods on problems where full configuration interaction results are available.
Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry
Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang; ...
2015-11-13
The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less
Radiation shielding materials characterization in the MoMa-Count program and further evolutions
NASA Astrophysics Data System (ADS)
Lobascio, Cesare
In the frame of the space research programme MoMa (From Molecules to Man) -Count (Coun-termeasures), funded by the Italian Space Agency, multi-functional protections for human space exploration have been investigated, paying particular attention to flexible materials, selected also for their excellent structural, thermal and ballistic performances. Flexible materials such as Kevlar R are qualified for space application, but have poorly known space radiation prop-erties, with consequent uncertainties about their shielding efficiency against the radiation en-vironment. The necessary evaluation of their shielding efficiency has been chiefly based on dedicated ground experiments in accelerators, supplemented by Monte Carlo simulations of the particle transport in the materials or multi-layers. In addition, flight experiments have been performed in Low Earth Orbit (LEO), onboard the International Space Station (ISS) and the re-entry capsule Foton, to measure the shielding behaviour in the actual operating environment of space, via dedicated detectors and dosimeters. This paper aims at presenting the results and lessons learned accrued within the MoMa-Count program, as well as the future actions planned for improving radiation shielding in long duration human exploration missions.
Stacking-dependent interlayer coupling in trilayer MoS 2 with broken inversion symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jiaxu; Wang, Xingli; Tay, Beng Kang
The stacking configuration in few-layer two-dimensional (2D) materials results in different structural symmetries and layer-to-layer interactions, and hence it provides a very useful parameter for tuning their electronic properties. For example, ABA-stacking trilayer graphene remains semimetallic similar to that of monolayer, while ABC-stacking is predicted to be a tunable band gap semiconductor under an external electric field. Such stacking dependence resulting from many-body interactions has recently been the focus of intense research activities. Here we demonstrate that few-layer MoS 2 samples grown by chemical vapor deposition with different stacking configurations (AA, AB for bilayer; AAB, ABB, ABA, AAA for trilayer)more » exhibit distinct coupling phenomena in both photoluminescence and Raman spectra. By means of ultralow-frequency (ULF) Raman spectroscopy, we demonstrate that the evolution of interlayer interaction with various stacking configurations correlates strongly with layer-breathing mode (LBM) vibrations. Our ab initio calculations reveal that the layer-dependent properties arise from both the spin–orbit coupling (SOC) and interlayer coupling in different structural symmetries. Lastly, such detailed understanding provides useful guidance for future spintronics fabrication using various stacked few-layer MoS 2 blocks.« less
Multifunctional Beta Ti Alloy with Improved Specific Strength
NASA Astrophysics Data System (ADS)
Park, Chan Hee; Hong, Jae-Keun; Lee, Sang Won; Yeom, Jong-Taek
2017-12-01
Gum metals feature properties such as ultrahigh strength, ultralow elastic modulus, superelasticity, and superplasticity. They are composed of elements from Groups 4 and 5 of the periodic table and exist when the valance electron concentration (\\overline{e/a}) is 4.24; the bond order (\\overline{Bo}) is 2.87; and the "d" electron-orbital energy level (\\overline{Md}) is 2.45 eV. Typical compositions include Ti-23Nb-2Zr-0.7Ta-O and Ti-12Ta-9Nb-6Zr-3 V-O, which contain large amounts of heavy Group-5 elements such as Nb and Ta. In the present study, to improve the specific strength of a multifunctional beta Ti alloy, three alloys (Ti-20Nb-5Zr-1Fe-O, Ti-12Zr-10Mo-4Nb-O, and Ti-24Zr-9Cr-3Mo-O) were designed by satisfying the above three requirements while adding Fe, Mo, and Cr, which are not only lightweight but also have strong hardening effects. Microstructural and mechanical property analyses revealed that Ti-20Nb-5Zr-1Fe-O has a 25% higher specific strength than gum metal while maintaining an ultralow elastic modulus.
Chen, Xihua; Wu, Kechen; Snijders, Jaap G; Lin, Chensheng
2003-01-27
A series of trinuclear metal clusters MS4(M'PPh3)2(M'PPh3) (M = Mo, W; M' = Cu, Ag, Au) have been studied using the density functional theory (DFT) method. The static polarizabilities and hyperpolarizabilities of the model clusters have been calculated using the finite-field (F-F) method. The model clusters, divided into two groups, are alike in the structure of two fragments of rhombic units M-(mu-S)2-M' (M = Mo, W; M' = Cu, Ag, Au), perpendicular to each other, which are joined by sharing the bridge metal M. It is the charge transfer from one of these moieties to the other in these characteristic sulfido-transitional metal cores that is responsible for the polarizabilities and hyperpolarizabilities. This kind of electronic delocalization, different from that of the planar pi-system, is interesting and warrants further investigation. The structural effects on properties are important. In these models, considerable third-order nonlinearities are exhibited. The element substitution effect of Mo and W is weak, while that of Cu and Ag is relatively substantial. An overall order is gamma xxxx(Mo-Ag) > gamma xxxx(W-Ag) > gamma xxxx(Mo-Au) > gamma xxxx(W-Au) > gamma xxxx (Mo-Cu) > gamma xxxx(W-Cu) and gamma av(Mo-Ag) approximately gamma av(W-Ag) > gamma av(Mo-Au) approximately gamma av(W-Au) approximately gamma av (Mo-Cu) approximately gamma av(W-Cu).
Mejía, Sol M; Flórez, Elizabeth; Mondragón, Fanor
2012-04-14
A computational study of (ethanol)(n)-water, n = 1 to 5 heteroclusters was carried out employing the B3LYP∕6-31+G(d) approach. The molecular (MO) and atomic (AO) orbital analysis and the topological study of the electron density provided results that were successfully correlated. Results were compared with those obtained for (ethanol)(n), (methanol)(n), n = 1 to 6 clusters and (methanol)(n)-water, n = 1 to 5 heteroclusters. These systems showed the same trends observed in the (ethanol)(n)-water, n = 1 to 5 heteroclusters such as an O---O distance of 5 Å to which the O-H---O hydrogen bonds (HBs) can have significant influence on the constituent monomers. The HOMO of the hetero(clusters) is less stable than the HOMO of the isolated alcohol monomer as the hetero(cluster) size increases, that destabilization is higher for linear geometries than for cyclic geometries. Changes of the occupancy and energy of the AO are correlated with the strength of O-H---O and C-H---O HBs as well as with the proton donor and/or acceptor character of the involved molecules. In summary, the current MO and AO analysis provides alternative ways to characterize HBs. However, this analysis cannot be applied to the study of H---H interactions observed in the molecular graphs.
NASA Astrophysics Data System (ADS)
Issa, Raafat M.; Fayed, Tarek A.; Awad, Mohammed K.; El-Kony, Sanaa M.
2005-12-01
The absorption spectra of mono- and bis-azo-derivatives obtained by coupling the diazonium salts of aromatic amines and 2,7-dihydroxynaphthalene have been studied in six organic solvents. The different absorption bands have been assigned and the effect of solvents on the charge transfer band is also discussed. The diagnostic IR spectral bands and 1H NMR signals are assigned and discussed in relation to molecular structure. Also, semi-empirical molecular orbital calculations using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory have been performed to investigate the molecular and electronic structures of these compounds. According to these calculations, an intramolecular hydrogen bonding is essential for stabilization of such molecules.
Activation Cross-Sections for 14.2 MeV Neutrons on Molybdenum
NASA Astrophysics Data System (ADS)
Srinivasa Rao, C. V.; Lakshmana Das, N.; Thirumala Rao, B. V.; Rama Rao, J.
1981-12-01
Using the activation method, the cross-section for the following reactions on molybdenum were measured employing the mixed powder technique and Ge(Li) gamma-ray spectroscopy: 94Mo(n, 2n)93mMo, 3.5 ± 0.5 mbarn; 92Mo(n, 2n)91mMo, 19 ± 3 mbarn; 92Mo(n, 2n)91m+gMo, 226 ± 11 mbarn; 100Mo(n, p)100m2Nb, 9 ± 1 mbarn; 98Mo(n, p)98Nb, 10 ± 1 mbarn; 97Mo(n, p)97mNb, 5 ± 1 mbarn; 96Mo(n, p)96Nb, 12 ± 2 mbarn; 92Mo(n, α)89mZr, 2.1 ± 0.5 mbarn; and 92Mo(n, α)89m+gZr 24 ± 6 mbarn; the neutron energy was 14.2 ± 0.2 MeV. The experimental cross-sections were compared with the predictions of evaporation model and of different versions of pre-equilibrium model. The master equation approach appears to give satisfactory results.
Synthesis of Large-area Crystalline MoTe2 Atomic layer from Chemical Vapor Deposition
NASA Astrophysics Data System (ADS)
Zhou, Lin; Zubair, Ahmad; Xu, Kai; Kong, Jing; Dresselhaus, Mildred
The controlled synthesis of highly crystalline large-area molybdenum ditelluride MoTe2 atomic layers is crucial for the practical applications of this emerging material. Here we develop a novel approach for the growth of large-area, uniform and highly crystalline few-layer MoTe2 film via chemical vapour deposition (CVD). Large-area atomically thin MoTe2 film has been successfully synthesized by tellurization of a MoO3 film. The as-grown MoTe2 film is uniform, stoichiometric, and highly crystalline. As a result of the high crystallinity, the electronic properties of MoTe2 film are comparable with that of mechanically exfoliated MoTe2 flakes. Moreover, we found that two different phases of MoTe2 (2H and 1T') can be grown depending on the choice of Mo precursor. Since the MoTe2 film is highly homogenous, and the size of the film is only limited by the substrate and CVD system size, our growth method paves the way for large-scale application of MoTe2 in high performance nanoelectronics and optoelectronics.
NASA Astrophysics Data System (ADS)
Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.
2018-03-01
This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.
Shi, Guodong; Yu, Luo; Ba, Xin; Zhang, Xiaoshu; Zhou, Jianqing; Yu, Ying
2017-08-15
Electrocatalytic conversion of carbon dioxide (CO 2 ) has been considered as an ideal method to simultaneously solve the energy crisis and environmental issue around the world. In this work, ultrasmall Cu nanoparticle interspersed flower-like MoS 2 was successfully fabricated via a facile microwave hydrothermal method. The designed optimal hierarchical Cu/MoS 2 composite not only exhibited remarkably enhanced electronic conductivity and specific surface area but also possessed improved CO 2 adsorption capacity, resulting in a significant increase in overall faradaic efficiency and a 7-fold augmentation of the faradaic efficiency of CH 4 in comparison with bare MoS 2 . In addition, the Cu/MoS 2 composite had superior stability with high efficiency retained for 48 h in the electrochemical process. It is anticipated that the designed Cu/MoS 2 composite electrocatalyst may provide new insights for transition metal sulfides and non-noble particles applied to CO 2 reduction.
High performance MoS2 TFT using graphene contact first process
NASA Astrophysics Data System (ADS)
Chang Chien, Chih-Shiang; Chang, Hsun-Ming; Lee, Wei-Ta; Tang, Ming-Ru; Wu, Chao-Hsin; Lee, Si-Chen
2017-08-01
An ohmic contact of graphene/MoS2 heterostructure is determined by using ultraviolet photoelectron spectroscopy (UPS). Since graphene shows a great potential to replace metal contact, a direct comparison of Cr/Au contact and graphene contact on the MoS2 thin film transistor (TFT) is made. Different from metal contacts, the work function of graphene can be modulated. As a result, the subthreshold swing can be improved. And when Vg
Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method.
Amini, Majed; Ramazani S A, Ahmad; Faghihi, Morteza; Fattahpour, Seyyedfaridoddin
2017-11-01
Molybdenum disulfide (MoS 2 ), a two-dimensional transition metal has a 2D layered structure and has recently attracted attention due to its novel catalytic properties. In this study, MoS 2 has been successfully intercalated using chemical and physical intercalation techniques, while enhancing its surface properties. The final intercalated MoS 2 is of many interests because of its low-dimensional and potential properties in in-situ catalysis. In this research, we report different methods to intercalate the layers of MoS 2 successfully using acid-treatment, ultrasonication, oxidation and thermal shocking. The other goal of this study is to form SO bonds mainly because of expected enhanced in-situ catalytic operations. The intercalated MoS 2 is further characterized using analyses such as Fourier Transform Infrared Spectroscopy (FTIR), Raman, Contact Angle, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Energy Dispersive X-Ray Microanalysis (EDAX), Transmission electron microscopy (TEM), and BET. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Huang, Jiao; Liu, Huanhuan; Zhong, Junbo; Yang, Qi; Chen, Jiufu; Li, Jianzhang; Ma, Dongmei; duan, Ran
2018-06-01
In this paper, to further boost the photocatalytic performance of CdMoO4, Bi3+ was successfully doped into CdMoO4 by a facile microwave hydrothermal method. The Bi-doped CdMoO4 photocatalysts prepared were characterized by Brunauer-Emmett-Teller (BET) method, X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), electron spin-resonance (ESR) and surface photovoltage spectroscopy (SPS). The results exhibit that doping Bi3+ into CdMoO4 remarkably boosts the separation rate of photoinduced charge pairs and the specific surface area, decrease the crystal size, narrows the band gap of the CdMoO4 and induces the binding energy shift of Cd, all these advantageous factors result in the promoted photocatalytic performance of CdMoO4. Using rhodamine B (RhB) as model toxic pollutant, the photocatalytic activities of the photocatalysts were evaluated under a 500 W Xe lamp irradiation. When the molar ratio of Bi/Cd is 0.2%, Bi-CdMoO4 prepared displays the best photocatalytic performance, the photocatalytic performance of the 0.2% sample is more than twice of that of the reference CdMoO4.
Theoretical study on electronic properties of MoS{sub 2} antidot lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Li; Chen, Guangde; Ye, Honggang, E-mail: hgye@mail.xjtu.edu.cn
2014-09-21
Motivated by the state of the art method for etching hexagonal array holes in molybdenum disulfide (MoS{sub 2}), the electronic properties of MoS{sub 2} antidot lattices (MoS{sub 2}ALs) with zigzag edge were studied with first-principles calculations. Monolayer MoS{sub 2}ALs are semiconducting and the band gaps converge to constant values as the supercell area increases, which can be attributed to the edge effect. Multilayer MoS{sub 2}ALs and chemical adsorbed MoS{sub 2}ALs by F atoms show metallic behavior, while the structure adsorbed with H atoms remains to be semiconducting with a tiny bandgap. Our results show that forming periodically repeating structures inmore » MoS{sub 2} can develop a promising technique for engineering nano materials and offer new opportunities for designing MoS{sub 2}-based nanoscale electronic devices and chemical sensors.« less
Molecular Orbital Principles of Oxygen-Redox Battery Electrodes.
Okubo, Masashi; Yamada, Atsuo
2017-10-25
Lithium-ion batteries are key energy-storage devices for a sustainable society. The most widely used positive electrode materials are LiMO 2 (M: transition metal), in which a redox reaction of M occurs in association with Li + (de)intercalation. Recent developments of Li-excess transition-metal oxides, which deliver a large capacity of more than 200 mAh/g using an extra redox reaction of oxygen, introduce new possibilities for designing higher energy density lithium-ion batteries. For better engineering using this fascinating new chemistry, it is necessary to achieve a full understanding of the reaction mechanism by gaining knowledge on the chemical state of oxygen. In this review, a summary of the recent advances in oxygen-redox battery electrodes is provided, followed by a systematic demonstration of the overall electronic structures based on molecular orbitals with a focus on the local coordination environment around oxygen. We show that a π-type molecular orbital plays an important role in stabilizing the oxidized oxygen that emerges upon the charging process. Molecular orbital principles are convenient for an atomic-level understanding of how reversible oxygen-redox reactions occur in bulk, providing a solid foundation toward improved oxygen-redox positive electrode materials for high energy-density batteries.
Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A
2003-02-01
A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.
Photoelectron Spectroscopy of Free Polyoxoanions Mo6O19 2- and W6O19 2- in the Gas Phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Infante, Ivan A.; Visscher, Lucas; Wang, Xue B.
2004-09-22
Two doubly charged polyoxoanions, Mo6O19 2- and W6O19 2-, were observed in the gas phase using electrospray ionization. Their electronic structures were investigated using photoelectron spectroscopy and quasi-relativistic density functional calculations. Each dianion was found to be highly stable despite the presence of strong intramolecular coulomb repulsion, estimated to be about 2 eV for each system. The valence detachment features were all shown to originate from electronic excitations involving oxygen lone-pair type orbitals. Their observed energies were in excellent agreement with the theoretical vertical detachment energies calculated using time-dependent density functional theory. Despite being multiply charged, polyoxometalate oxide clusters canmore » be studied in the gas phase, providing the opportunity for detailed benchmark theoretical studies on the electronic structures of these important transition-metal oxide systems.« less
Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.
Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; Zhou, Bo; Wu, Sanfeng; Dumcenco, Dumitru; Yan, Kai; Zhang, Yi; Mo, Sung-Kwan; Dudin, Pavel; Kandyba, Victor; Yablonskikh, Mikhail; Barinov, Alexei; Shen, Zhixun; Zhang, Shoucheng; Huang, Yingsheng; Xu, Xiaodong; Hussain, Zahid; Hwang, Harold Y; Cui, Yi; Chen, Yulin
2016-08-10
Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.
NASA Astrophysics Data System (ADS)
Nalewajski, Roman F.
Information theory (IT) probe of the molecular electronic structure, within the communication theory of chemical bonds (CTCB), uses the standard entropy/information descriptors of the Shannon theory of communication to characterize a scattering of the electronic probabilities and their information content throughout the system chemical bonds generated by the occupied molecular orbitals (MO). These "communications" between the basis-set orbitals are determined by the two-orbital conditional probabilities: one- and two-electron in character. They define the molecular information system, in which the electron-allocation "signals" are transmitted between various orbital "inputs" and "outputs". It is argued, using the quantum mechanical superposition principle, that the one-electron conditional probabilities are proportional to the squares of corresponding elements of the charge and bond-order (CBO) matrix of the standard LCAO MO theory. Therefore, the probability of the interorbital connections in the molecular communication system is directly related to Wiberg's quadratic covalency indices of chemical bonds. The conditional-entropy (communication "noise") and mutual-information (information capacity) descriptors of these molecular channels generate the IT-covalent and IT-ionic bond components, respectively. The former reflects the electron delocalization (indeterminacy) due to the orbital mixing, throughout all chemical bonds in the system under consideration. The latter characterizes the localization (determinacy) in the probability scattering in the molecule. These two IT indices, respectively, indicate a fraction of the input information lost in the channel output, due to the communication noise, and its surviving part, due to deterministic elements in probability scattering in the molecular network. Together, these two components generate the system overall bond index. By a straightforward output reduction (condensation) of the molecular channel, the IT indices of molecular fragments, for example, localized bonds, functional groups, and forward and back donations accompanying the bond formation, and so on, can be extracted. The flow of information in such molecular communication networks is investigated in several prototype molecules. These illustrative (model) applications of the orbital communication theory of chemical bonds (CTCB) deal with several classical issues in the electronic structure theory: atom hybridization/promotion, single and multiple chemical bonds, bond conjugation, and so on. The localized bonds in hydrides and delocalized [pi]-bonds in simple hydrocarbons, as well as the multiple bonds in CO and CO2, are diagnosed using the entropy/information descriptors of CTCB. The atom promotion in hydrides and bond conjugation in [pi]-electron systems are investigated in more detail. A major drawback of the previous two-electron approach to molecular channels, namely, two weak bond differentiation in aromatic systems, has been shown to be remedied in the one-electron approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadimicherla, Reddeppa; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070; Chen, Wen
2015-06-15
Graphical abstract: (a) TEM image of MoO{sub 3}/PEO nanobelts composite, (b) CV curves of MoO{sub 3}/PEO nanobelts composite. - Highlights: • α-MoO{sub 3} and PEO surfactant MoO{sub 3} nanobelts were synthesized by solvothermal method. • The capacity retention of 12.5 wt% PEO surfactant MoO{sub 3} nanobelts is 88.78%. • The specific capacity of 12.5 wt% PEO surfactant MoO{sub 3} nanobelts is 352 mAh g{sup −1}. • MoO{sub 3}/PEO nanobelts composite material demonstrates good cycling stability as cathode. - Abstract: α-MoO{sub 3} and PEO surfactant MoO{sub 3} nanobelts were synthesized by a solvothermal method. The morphology and nanostructure of samples weremore » characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Bare α-MoO{sub 3} and 12.5 wt% PEO surfactant MoO{sub 3} nanobelts have an initial specific capacities of 279 and 352 mAh g{sup −1}, respectively, at constant current density 30 mA g{sup −1} with potential range of 1.5–4.0 V vs. Li/Li{sup +}. While MoO{sub 3} is modified by the intercalation of PEO, it is effectively shielded against electrostatic interaction between the MoO{sub 3} interlayer and Li{sup +} ions. We reported positive material, a nanocomposite of MoO{sub 3} coated with polyethylene oxide. It presents good cycling stability due to existence of the conductive and protective polyethylene oxide coating and the nanobelt morphology of MoO{sub 3}. The polyethylene oxide acts as a conducting matrix, a binder and an active material, as well as a volume change buffer agent, which holds the MoO{sub 3} particles in place during the discharge cycles. The cyclic voltammograms of the 12.5 wt% PEO surfactant MoO{sub 3} nanobelt composite displayed better cyclic performance compared with pure MoO{sub 3} nanobelts. The specific capacity of the pure MoO{sub 3} nanobelts and 12.5 wt% PEO surfactant MoO{sub 3} nanobelts exhibit as 199 mAh g{sup −1} and 225 mAh g{sup −1}, respectively, after 9 cycles, suggesting that the stability of surfactant material is worthy.« less
di Felice, D; Dappe, Y J; González, C
2018-06-01
A theoretical study of a graphene-like tip used in atomic force microscopy (AFM) is presented. Based on first principles simulations, we proved the low reactivity of this kind of tip, using a MoS 2 monolayer as the testing sample. Our simulations show that the tip-MoS 2 interaction is mediated through weak van der Waals forces. Even on the defective monolayer, the interaction is reduced by one order of magnitude with respect to the values obtained using a highly reactive metallic tip. On the pristine monolayer, the S atoms were imaged for large distances together with the substitutional defects which should be observed as brighter spots in non-contact AFM measurements. This result is in contradiction with previous simulations performed with Cu or Si tips where the metallic defects were imaged for much larger distances than the S atoms. For shorter distances, the Mo sites will be brighter even though a vacancy is formed. On the other hand, the largest conductance value is obtained over the defect formed by two Mo atoms occupying a S divacancy when the half-occupied p y -states of the graphene-like tip find a better coupling with d-orbitals of the highest substitutional atom. Due to the weak interaction, no conductance plateau is formed in any of the sites. A great advantage of this tip lies in the absence of atomic transfer between the tip and the sample leading to a more stable AFM measurement. Finally, and as previously shown, we confirm the atomic resolution in a scanning tunneling microscopy simulation using this graphene-based tip.
NASA Astrophysics Data System (ADS)
di Felice, D.; Dappe, Y. J.; González, C.
2018-06-01
A theoretical study of a graphene-like tip used in atomic force microscopy (AFM) is presented. Based on first principles simulations, we proved the low reactivity of this kind of tip, using a MoS2 monolayer as the testing sample. Our simulations show that the tip–MoS2 interaction is mediated through weak van der Waals forces. Even on the defective monolayer, the interaction is reduced by one order of magnitude with respect to the values obtained using a highly reactive metallic tip. On the pristine monolayer, the S atoms were imaged for large distances together with the substitutional defects which should be observed as brighter spots in non-contact AFM measurements. This result is in contradiction with previous simulations performed with Cu or Si tips where the metallic defects were imaged for much larger distances than the S atoms. For shorter distances, the Mo sites will be brighter even though a vacancy is formed. On the other hand, the largest conductance value is obtained over the defect formed by two Mo atoms occupying a S divacancy when the half-occupied p y -states of the graphene-like tip find a better coupling with d-orbitals of the highest substitutional atom. Due to the weak interaction, no conductance plateau is formed in any of the sites. A great advantage of this tip lies in the absence of atomic transfer between the tip and the sample leading to a more stable AFM measurement. Finally, and as previously shown, we confirm the atomic resolution in a scanning tunneling microscopy simulation using this graphene-based tip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yeping, E-mail: ypli@ujs.edu.cn; Huang, Liying; Xu, Jingbo
Highlights: • Novel MoO{sub 3}–C{sub 3}N{sub 4} composite was prepared by a mixing-calcination method. • The MoO{sub 3}–C{sub 3}N{sub 4} composite shows remarkably enhanced absorption of visible light. • The MoO{sub 3}–C{sub 3}N{sub 4} composite shows superior visible-light photocatalytic activity. - Abstract: Composite photocatalyst of blue MoO{sub 3}/g-C{sub 3}N{sub 4} (denoted as MoO{sub 3}–C{sub 3}N{sub 4}) was prepared by a simple mixing-calcination method. The obtained MoO{sub 3}–C{sub 3}N{sub 4} composite contains a low amount of molybdenum blue and shows remarkably enhanced absorption of visible light and high efficiency for the degradation of methylene blue dye (MB) under visible light. Themore » enhancement of visible light photocatalytic activity in MoO{sub 3}–C{sub 3}N{sub 4} is attributed to the synergetic effect: (i) the strong and wide absorption of visible light, (ii) the high separation and easy transfer of photogenerated electron–hole pairs at the heterojunction interfaces derived from the match of band position between the g-C{sub 3}N{sub 4} and MoO{sub 3}.« less
NASA Astrophysics Data System (ADS)
Zhao, Fenfen; Rong, Yuefei; Wan, Junmin; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing
2018-03-01
MoS2 quantum dots (QDs) that are 5 nm in size were deposited on the surface of ultrathin TiO2 nanotubes (TNTs) with 5 nm wall thickness by using an improved hydrothermal method to form a MoS2 QDs@TNT visible-light photocatalyst. The ultrathin TNTs with high percentage of photocatalytic reactive facets were fabricated by the commercially available TiO2 nanoparticles (P25) through an improved hydrothermal method, and the MoS2 QDs were acquired by using a surfactant-assisted technique. The novel MoS2 QDs@TNT photocatalysts showed excellent photocatalytic activity with a decolorization rate of 92% or approximately 3.5 times more than that of pure TNTs for the high initial concentration of methylene blue solution (20 mg l-1) within 40 min under visible-light irradiation. MoS2 as the co-catalysts favored the broadening of TNTs into the visible-light absorption scope. The quantum confinement and edge effects of the MoS2 QDs and the heterojunction formed between the MoS2 QDs and TNTs efficiently extended the lifetime of photoinduced charges, impeded the recombination of photoexcited electron-hole pairs, and improved the visible-light-driven high-efficiency photocatalysis.
NASA Astrophysics Data System (ADS)
Kryuchkova, Natalya A.; Syrokvashin, Mikhail M.; Gushchin, Artem L.; Korotaev, Evgeniy V.; Kalinkin, Alexander V.; Laricheva, Yuliya A.; Sokolov, Maxim N.
2018-02-01
Charge state studies of compounds [Mo3S4(tu)8(H2O)]Cl4·4H2O (1), [Mo3S4Cl3(dbbpy)3]Cl·5H2O (2), [Mo3S4(CuCl)Cl3(dbbpy)3][CuCl2] (3), containing {Mo3S4}4+ and {Mo3CuS4}5+ cluster cores bearing terminal thiourea (tu) or 4,4‧-di-tert-butyl-2,2‧-bipyridine (dbbpy) ligands, have been performed by X-ray photoelectron and X-ray emission spectroscopies combined with quantum chemical calculations. The best agreement between theory and experiments has been obtained using the B3LYP method. According to the experimental and calculated data, the Mo atoms are in the oxidation state 4+ for all compounds. The energies and shapes of the Cu2p lines indicate formal oxidation states of Cu as 1+. The coordination of Cu(I) to the cluster {Mo3S4} in 3 does not lead to significant changes in the charge state of the molybdenum atoms and the {Mo3S4} unit can be considered as a tridentate metallothia crown ether.
Haase, Anton; Soltwisch, Victor; Braun, Stefan; Laubis, Christian; Scholze, Frank
2017-06-26
We investigate the influence of the Mo-layer thickness on the EUV reflectance of Mo/Si mirrors with a set of unpolished and interface-polished Mo/Si/C multilayer mirrors. The Mo-layer thickness is varied in the range from 1.7 nm to 3.05 nm. We use a novel combination of specular and diffuse intensity measurements to determine the interface roughness throughout the multilayer stack and do not rely on scanning probe measurements at the surface only. The combination of EUV and X-ray reflectivity measurements and near-normal incidence EUV diffuse scattering allows to reconstruct the Mo layer thicknesses and to determine the interface roughness power spectral density. The data analysis is conducted by applying a matrix method for the specular reflection and the distorted-wave Born approximation for diffuse scattering. We introduce the Markov-chain Monte Carlo method into the field in order to determine the respective confidence intervals for all reconstructed parameters. We unambiguously detect a threshold thickness for Mo in both sample sets where the specular reflectance goes through a local minimum correlated with a distinct increase in diffuse scatter. We attribute that to the known appearance of an amorphous-to-crystallization transition at a certain thickness threshold which is altered in our sample system by the polishing.
Bennett, Ralph G.; Christian, Jerry D.; Kirkham, Robert J.; Tranter, Troy J.
1998-01-01
An improved method for producing .sup.99m Tc compositions. .sup.100 Mo metal is irradiated with photons in a particle (electron) accelerator to produce .sup.99 Mo metal which is dissolved in a solvent. A solvated .sup.99 Mo product is then dried to generate a supply of .sup.99 MoO.sub.3 crystals. The crystals are thereafter heated at a temperature which will sublimate the crystals and form a gaseous mixture containing vaporized .sup.99m TcO.sub.3 and vaporized .sup.99m TcO.sub.2 but will not cause the production of vaporized .sup.99 MoO.sub.3. The mixture is then combined with an oxidizing gas to generate a gaseous stream containing vaporized .sup.99m Tc.sub.2 O.sub.7. Next, the gaseous stream is cooled to a temperature sufficient to convert the vaporized .sup.99m Tc.sub.2 O.sub.7 into a condensed .sup.99m Tc-containing product. The product has high purity levels resulting from the use of reduced temperature conditions and ultrafine crystalline .sup.99 MoO.sub.3 starting materials with segregated .sup.99m Tc compositions therein which avoid the production of vaporized .sup.99 MoO.sub.3 contaminants.
NASA Astrophysics Data System (ADS)
Wu, Xuan; Fan, Zihan; Ling, Xiaolun; Wu, Shuting; Chen, Xin; Hu, Xiaolin; Zhuang, Naifeng; Chen, Jianzhong
2018-06-01
Molybdenum disulfide hybridized with graphene nanoribbon (MoS2/GNR) was prepared by mild method. MoS2/GNR hybrids interlace loosely into a three-dimension structure. GNR hybridization can improve the dispersity of MoS2, reduce the grain size of MoS2 to 3-6 nm, increase the specific surface area, and broaden the interlamellar spacing of MoS2 (002) plane to 0.67-0.73 nm, which facilitates the transportation of Li+ ions for lithium-ion battery. MoS2/GNR hybrids have better cyclic durability, higher specific discharge capacity, and superior rate performance than MoS2. The electrocatalytic activity in hydrogen evolution reaction shows that MoS2/GNR hybrids have the lower overpotential and the larger current density with a negligible current loss after 2000 cycles. Hybridizing with GNRs enhances both the lithium-ion electrochemical storage and the electrocatalytic activity of MoS2. [Figure not available: see fulltext.
MoO3 nanoparticle anchored graphene as bifunctional agent for water purification
NASA Astrophysics Data System (ADS)
Lahan, Homen; Roy, Raju; Namsa, Nima D.; Das, Shyamal K.
2016-10-01
We report here a facile one step hydrothermal method to anchor MoO3 nanoparticles in graphene. The bifunctionality of graphene-MoO3 nanoparticles is demonstrated via dye adsorption and antibacterial activities. The nanocomposite showed excellent adsorption of methylene blue, a cationic dye, from water compared to pristine MoO3 and graphene. However, it showed negligible adsorption of methyl orange, an anionic dye. Again, the graphene-MoO3 nanoparticles exhibited bacteriostatic property against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.
Improving the stability of subnano-MoO3/meso-SiO2 catalyst through amino-functionalization
NASA Astrophysics Data System (ADS)
Wang, Jiasheng; Wu, Wenpei; Yang, Qianfan; Wang, Wan-Hui; Bao, Ming
Subnano-MoO3 clusters (below 1nm) have excellent catalytic activity on oxidative desulfurization (ODS). However, the stability is not very satisfactory due to the leaching of MoO3 during the reaction. To enhance the stability, here we developed a method by grafting NH2 to silica. NH2 could form coordination bond with MoO3, as proved by solid state 1H NMR, which can prevent MoO3 from leaching and thus significantly enhance the stability.
Encapsulation of Mo₂C in MoS₂ inorganic fullerene-like nanoparticles and nanotubes.
Wiesel, Inna; Popovitz-Biro, Ronit; Tenne, Reshef
2013-02-21
Mo(2)C nanoparticles encapsulated within MoS(2) inorganic fullerene-like nanoparticles and nanotubes were produced by carbothermal reaction at 1200-1300 °C inside a vertical induction furnace. The particles were analyzed using various electron microscopy techniques and complementary methods.
OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.
Sharma, Ronesh; Raicar, Gaurav; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok
2018-06-01
Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary data are available at Bioinformatics online.
Colabello, Diane M.; Sobalvarro, Elizabeth M.; Sheckelton, John P.; ...
2017-10-26
Among oxide compounds with direct metal–metal bonding, the Y 5Mo 2O 12 (A 5B 2O 12) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal–metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal–metal bonding have integer oxidation states resulting from the lifting of orbital degeneracymore » typically induced by the metal–metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5Mo 2O 12 (Ln = La–Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown in this paper that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1–2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5Mo 2O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. Finally, this represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one-dimensional octahedral chains of this system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colabello, Diane M.; Sobalvarro, Elizabeth M.; Sheckelton, John P.
Among oxide compounds with direct metal–metal bonding, the Y 5Mo 2O 12 (A 5B 2O 12) structural family of compounds has a particularly intriguing low-dimensional structure due to the presence of bioctahedral B 2O 10 dimers arranged in one-dimensional edge-sharing chains along the direction of the metal–metal bonds. Furthermore, these compounds can have a local magnetic moment due to the noninteger oxidation state (+4.5) of the transition metal, in contrast to the conspicuous lack of a local moment that is commonly observed when oxide compounds with direct metal–metal bonding have integer oxidation states resulting from the lifting of orbital degeneracymore » typically induced by the metal–metal bonding. Although a monoclinic C2/m structure has been previously proposed for Ln 5Mo 2O 12 (Ln = La–Lu and Y) members of this family based on prior single crystal diffraction data, it is found that this structural model misses many important structural features. On the basis of synchrotron powder diffraction data, it is shown in this paper that the C2/m monoclinic unit cell represents a superstructure relative to a previously unrecognized orthorhombic Immm subcell and that the superstructure derives from the ordering of interchangeable Mo 2O 10 and LaO 6 building blocks. The superstructure for this reason is typically highly faulted, as evidenced by the increased breadth of superstructure diffraction peaks associated with a coherence length of 1–2 nm in the c* direction. Finally, it is shown that oxygen vacancies can occur when Ln = La, producing an oxygen deficient stoichiometry of La 5Mo 2O 11.55 and an approximately 10-fold reduction in the number of unpaired electrons due to the reduction of the average Mo valence from +4.5 to +4.05, a result confirmed by magnetic susceptibility measurements. Finally, this represents the first observation of oxygen vacancies in this family of compounds and provides an important means of continuously tuning the magnetic interactions within the one-dimensional octahedral chains of this system.« less
Growth, structure and stability of sputter-deposited MoS2 thin films.
Kaindl, Reinhard; Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang
2017-01-01
Molybdenum disulphide (MoS 2 ) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS 2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS 2 films by magnetron sputtering. MoS 2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO 2 /Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS 2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS 2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS 2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS 2 thin films are discussed. A potential application for such conductive nanostructured MoS 2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS 2 films.
Growth, structure and stability of sputter-deposited MoS2 thin films
Bayer, Bernhard C; Resel, Roland; Müller, Thomas; Skakalova, Viera; Habler, Gerlinde; Abart, Rainer; Cherevan, Alexey S; Eder, Dominik; Blatter, Maxime; Fischer, Fabian; Meyer, Jannik C; Polyushkin, Dmitry K; Waldhauser, Wolfgang
2017-01-01
Molybdenum disulphide (MoS2) thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER) in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD) of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC) substrates. Samples deposited at room temperature (RT) and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-)electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films. PMID:28685112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Youjin, E-mail: zyj@ustc.edu.cn; Zheng, Ao; Yang, Xiaozhi
2012-09-15
Highlights: ► The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was gained with EDTA assisted hydrothermal method. ► The product was characterized by XRD, XPS, FTIR, FESEM, and PL. ► The possible formation mechanism for olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. ► The PL in visible region of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied. -- Abstract: The olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was obtained by a convenient and facile complex agent assisted hydrothermal method. The product was characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM) andmore » photoluminescence (PL). The possible formation mechanism of the olive-like α-Nd{sub 2}(MoO{sub 4}){sub 3} was proposed. The photoluminescence property in visible region of the olive-like tetragonal α-Nd{sub 2}(MoO{sub 4}){sub 3} was studied.« less
Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu
2018-03-01
Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kuang, Zheng; Ji, Zhicheng
2018-01-01
Abstract Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. PMID:29325176
ERIC Educational Resources Information Center
Blum, Nathan J.; Jawad, Abbas F.; Clarke, Angela T.; Power, Thomas J.
2011-01-01
Aim: This study investigated whether components of attention and executive functioning improve when children with attention-deficit-hyperactivity disorder (ADHD) are treated with osmotic-release oral system (OROS) methylphenidate. Method: Thirty children (24 males, six females; mean age 8y 6mo, SD 1y 11mo; range 6y 5mo-12y 6mo) with ADHD combined…
ERIC Educational Resources Information Center
Tozzi, Alberto Eugenio; Bisiacchi, Patrizia; Tarantino, Vincenza; Chiarotti, Flavia; D'elia, Lidia; De Mei, Barbara; Romano, Mariateresa; Gesualdo, Francesco; Salmaso, Stefania
2012-01-01
Aim: The aim of this article was to explore the effect of duration of breastfeeding on neurocognitive development. Method: The long-term effect of breastfeeding on neurodevelopment was examined through a battery of neuropsychological tests in 1403 children (693 females, 710 males; mean age 11y 9mo [SD 6mo], range: 10y 3mo-12y 8mo) who were…
Sintering activation energy MoSi2-WSi2-Si3N4 ceramic
NASA Astrophysics Data System (ADS)
Titov, D. D.; Lysenkov, A. S.; Kargin, Yu F.; Frolova, M. G.; Gorshkov, V. A.; Perevislov, S. N.
2018-04-01
The activation energy of sintering process was calculated based on dilatometric studies of shrinkage processes (Mo,W)Si2 + Si3N4 composite ceramic. (Mo,W)Si2 powders was obtained by solid-phase solutions of 70 wt% MoSi2 and 30 wt% WSi2 by SHS in the ISMAN RAS. The concentration rate Si3N4 was from 1 to 15 wt.%. The sintering was carried out to 1850°C in Ar atmosphere the heating rate of 5, 10, 12 and 15°C/min by the way of dilatometer tests. Based on the differential kinetic analysis method (Friedman’s method), the sintering process activation energy of (Mo,W)Si2 + Si3N4 were calculated. The two-stage sintering process and the dependence of the activation energy on the Si3N4 content was shown. Average value of 370 kJ/mol for Q was obtained.
Yan, Haijing; Xie, Ying; Jiao, Yanqing; Wu, Aiping; Tian, Chungui; Zhang, Xiaomeng; Wang, Lei; Fu, Honggang
2018-01-01
An in situ catalytic etching strategy is developed to fabricate holey reduced graphene oxide along with simultaneous coupling with a small-sized Mo 2 N-Mo 2 C heterojunction (Mo 2 N-Mo 2 C/HGr). The method includes the first immobilization of H 3 PMo 12 O 40 (PMo 12 ) clusters on graphite oxide (GO), followed by calcination in air and NH 3 to form Mo 2 N-Mo 2 C/HGr. PMo 12 not only acts as the Mo heterojunction source, but also provides the Mo species that can in situ catalyze the decomposition of adjacent reduced GO to form HGr, while the released gas (CO) and introduced NH 3 simultaneously react with the Mo species to form an Mo 2 N-Mo 2 C heterojunction on HGr. The hybrid exhibits superior activity towards the hydrogen evolution reaction with low onset potentials of 11 mV (0.5 m H 2 SO 4 ) and 18 mV (1 m KOH) as well as remarkable stability. The activity in alkaline media is also superior to Pt/C at large current densities (>88 mA cm -2 ). The good activity of Mo 2 N-Mo 2 C/HGr is ascribed to its small size, the heterojunction of Mo 2 N-Mo 2 C, and the good charge/mass-transfer ability of HGr, as supported by a series of experiments and theoretical calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhu, Chuanhui; Xu, Qun; Liu, Wei; Ren, Yumei
2017-12-01
Combining the peculiar properties of different ingredients in one ultimate material is an efficient route to achieve the desired functional materials. Compared to 2H-MoS2, 1T-MoS2 nanosheets display the perfect performance of hydrogen evolution reaction (HER) because of the excellent electronic conductivity. However, how to further realize HER in the visual and near-infrared (NIR) region is a great challenge. Herein, we develop an efficient method to locally pattern h-MoO3 on the ultrathin metallic 1T-MoS2 nanosheets and obtain the novel heterostructures of h-MoO3/1T-MoS2. The enhanced photoelectrochemical performance of the as-prepared heterostructures has been demonstrated. Our study indicates it is originated from the synergistic effect between h-MoO3 and 1T-MoS2, i.e., the strong optical absorption of h-MoO3 in the visible and NIR region, the excellent electronic conductivity of 1T-MoS2 and as well as the efficient separation of the photo-induced carriers from the heterostructures.
Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation.
Štengl, Václav; Henych, Jiří
2013-04-21
Intense ultrasound in a pressurized batch reactor was used for preparation of monolayered MoS2 nanosheets from natural mineral molybdenite. Exfoliation of bulk MoS2 using ultrasound is an attractive route to large-scale preparation of monolayered crystals. To evaluate the quality of delamination, methods like X-ray diffraction, Raman spectroscopy and microscopic techniques (TEM and AFM) were employed. From single- or few-layered products obtained from intense sonication, MoS2 quantum dots (MoSQDs) were prepared by a one-pot reaction by refluxing exfoliated nanosheets of MoS2 in ethylene glycol under atmospheric pressure. The synthesised MoSQDs were characterised by photoluminescence spectroscopy and laser-scattering particle size analysis. Our easy preparation leads to very strongly green luminescing quantum dots.
MnMoO4 nanolayers : Synthesis characterizations and electrochemical detection of QA
NASA Astrophysics Data System (ADS)
Muthamizh, S.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V.
2018-04-01
MnMoO4 nanolayers were prepared by precipitation method. The MnMoO4 nanolayers were synthesized by using commercially available (CH3COO)2Mn.4H2O and Na2WO4.2H2O. The XRD pattern reveals that the synthesized MnMoO4 has monoclinic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MnMoO4 nanolayers. DRS-UV analysis shows that MnMoO4 has a band gap of 2.59 eV. FE-SEM and HR-TEM analysis along with EDAX confirms the material morphology in stacked layers like structure in nano scale. Synthesized nanolayers were utilized for the detection of biomolecule quercetin (QA).
NASA Astrophysics Data System (ADS)
Yang, Erqi; Qi, Xiaosi; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei
2018-06-01
It is widely recognized that constructing multiple interface structures to enhance interface polarization is very good for the attenuation of electromagnetic (EM) wave. Here, a novel "203" type of heterostructured nanohybrid consisting of two-dimensional (2D) MoS2 nanosheets, zero-dimensional (0D) Fe3O4 nanoparticles and three-dimensional (3D) carbon layers was elaborately designed and successfully synthesized by a two-step method: Fe3O4 nanoparticles were deposited onto the surface of few-layer MoS2 nanosheets by a hydrothermal method, followed by the carbonation process by a chemical vapor deposition method. Compared to that of "20" type MoS2-Fe3O4, the as-prepared heterostructured "203" type MoS2-Fe3O4-C ternary nanohybrid exhibited remarkably enhanced EM and microwave absorption properties. And the minimum reflection loss (RL) value of the obtained MoS2-Fe3O4-C ternary nanohybrid could reach -53.03 dB at 14.4 GHz with a matching thickness of 7.86 mm. Moreover, the excellent EM wave absorption property of the as-prepared ternary nanohybrid was proved to be attributed to the quarter-wavelength matching model. Therefore, a simple and effective route was proposed to produce MoS2-based mixed-dimensional van der Waals heterostructure, which provided a new platform for the designing and production of high performance microwave absorption materials.
Na, Y; Suh, T; Xing, L
2012-06-01
Multi-objective (MO) plan optimization entails generation of an enormous number of IMRT or VMAT plans constituting the Pareto surface, which presents a computationally challenging task. The purpose of this work is to overcome the hurdle by developing an efficient MO method using emerging cloud computing platform. As a backbone of cloud computing for optimizing inverse treatment planning, Amazon Elastic Compute Cloud with a master node (17.1 GB memory, 2 virtual cores, 420 GB instance storage, 64-bit platform) is used. The master node is able to scale seamlessly a number of working group instances, called workers, based on the user-defined setting account for MO functions in clinical setting. Each worker solved the objective function with an efficient sparse decomposition method. The workers are automatically terminated if there are finished tasks. The optimized plans are archived to the master node to generate the Pareto solution set. Three clinical cases have been planned using the developed MO IMRT and VMAT planning tools to demonstrate the advantages of the proposed method. The target dose coverage and critical structure sparing of plans are comparable obtained using the cloud computing platform are identical to that obtained using desktop PC (Intel Xeon® CPU 2.33GHz, 8GB memory). It is found that the MO planning speeds up the processing of obtaining the Pareto set substantially for both types of plans. The speedup scales approximately linearly with the number of nodes used for computing. With the use of N nodes, the computational time is reduced by the fitting model, 0.2+2.3/N, with r̂2>0.99, on average of the cases making real-time MO planning possible. A cloud computing infrastructure is developed for MO optimization. The algorithm substantially improves the speed of inverse plan optimization. The platform is valuable for both MO planning and future off- or on-line adaptive re-planning. © 2012 American Association of Physicists in Medicine.
Mahatha, S K; Patel, K D; Menon, Krishnakumar S R
2012-11-28
Angle-resolved photoemission spectroscopy (ARPES) and ab initio band structure calculations have been used to study the detailed valence band structure of molybdenite, MoS(2) and MoSe(2). The experimental band structure obtained from ARPES has been found to be in good agreement with the theoretical calculations performed using the linear augmented plane wave (LAPW) method. In going from MoS(2) to MoSe(2), the dispersion of the valence bands decreases along both k(parallel) and k(perpendicular), revealing the increased two-dimensional character which is attributed to the increasing interlayer distance or c/a ratio in these compounds. The width of the valence band and the band gap are also found to decrease, whereas the valence band maxima shift towards the higher binding energy from MoS(2) to MoSe(2).
Shrestha, Kushal; Jakubikova, Elena
2015-08-20
Light-harvesting antennas are protein-pigment complexes that play a crucial role in natural photosynthesis. The antenna complexes absorb light and transfer energy to photosynthetic reaction centers where charge separation occurs. This work focuses on computational studies of the electronic structure of the pigment networks of light-harvesting complex I (LH1), LH1 with the reaction center (RC-LH1), and light-harvesting complex II (LH2) found in purple bacteria. As the pigment networks of LH1, RC-LH1, and LH2 contain thousands of atoms, conventional density functional theory (DFT) and ab initio calculations of these systems are not computationally feasible. Therefore, we utilize DFT in conjunction with the energy-based fragmentation with molecular orbitals method and a semiempirical approach employing the extended Hückel model Hamiltonian to determine the electronic properties of these pigment assemblies. Our calculations provide a deeper understanding of the electronic structure of natural light-harvesting complexes, especially their pigment networks, which could assist in rational design of artificial photosynthetic devices.
Effectively-truncated large-scale shell-model calculations and nuclei around 100Sn
NASA Astrophysics Data System (ADS)
Gargano, A.; Coraggio, L.; Itaco, N.
2017-09-01
This paper presents a short overview of a procedure we have recently introduced, dubbed the double-step truncation method, which is aimed to reduce the computational complexity of large-scale shell-model calculations. Within this procedure, one starts with a realistic shell-model Hamiltonian defined in a large model space, and then, by analyzing the effective single particle energies of this Hamiltonian as a function of the number of valence protons and/or neutrons, reduced model spaces are identified containing only the single-particle orbitals relevant to the description of the spectroscopic properties of a certain class of nuclei. As a final step, new effective shell-model Hamiltonians defined within the reduced model spaces are derived by way of a unitary transformation of the original large-scale Hamiltonian. A detailed account of this transformation is given and the merit of the double-step truncation method is illustrated by discussing few selected results for 96Mo, described as four protons and four neutrons outside 88Sr. Some new preliminary results for light odd-tin isotopes from A = 101 to 107 are also reported.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method/method of moments (FEM/MoM) approach is used to analyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infinite ground plane. The FEM is used to formulate the fields inside the cavity, and the MoM (with subdomain bases) in both spectral and spatial domains is used to formulate the fields above the ground plane. Fields in the aperture and the cavity are solved using a system of equations resulting from the combination of the FEM and the MoM. By virtue of the FEM, this combined approach is applicable to all arbitrarily shaped cavities with inhomogeneous material fillings, and because of the subdomain bases used in the MoM, the apertures can be of any arbitrary shape. This approach leads to a partly sparse and partly full symmetric matrix, which is efficiently solved using a biconjugate gradient algorithm. Numerical results are presented to validate the analysis.
Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy.
Szumera, Magdalena
2015-02-25
Glasses have been synthesized in the system P2O5-SiO2-K2O-MgO-CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]-O-P and/or Mo[MoO4/MoO6]-O-Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations. Copyright © 2014 Elsevier B.V. All rights reserved.
Mo-Si-B-Based Coatings for Ceramic Base Substrates
NASA Technical Reports Server (NTRS)
Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)
2015-01-01
Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.
Salt-assisted clean transfer of continuous monolayer MoS2 film for hydrogen evolution reaction
NASA Astrophysics Data System (ADS)
Cho, Heung-Yeol; Nguyen, Tri Khoa; Ullah, Farman; Yun, Jong-Won; Nguyen, Cao Khang; Kim, Yong Soo
2018-03-01
The transfer of two-dimensional (2D) materials from one substrate to another is challenging but of great importance for technological applications. Here, we propose a facile etching and residue-free method for transferring a large-area monolayer MoS2 film continuously grown on a SiO2/Si by chemical vapor deposition. Prior to synthesis, the substrate is dropped with water- soluble perylene-3, 4, 9, 10-tetracarboxylic acid tetrapotassium salt (PTAS). The as-grown MoS2 on the substrate is simply dipped in water to quickly dissolve PTAS to yield the MoS2 film floating on the water surface, which is subsequently transferred to the desired substrate. The morphological, optical and X-ray photoelectron spectroscopic results show that our method is useful for fast and clean transfer of the MoS2 film. Specially, we demonstrate that monolayer MoS2 film transferred onto a conducting substrate leads to excellent performance for hydrogen evolution reaction with low overpotential (0.29 V vs the reversible hydrogen electrode) and Tafel slope (85.5 mV/decade).
Synthesis and Characterization of Molybdenum (Mo) Thin Films Using DC-Magnetron Sputtering
NASA Astrophysics Data System (ADS)
Pandharkar, Subhash M.; Rondiya, Sachin R.; Rokade, Avinash V.; Gabhale, Bharat B.; Pathan, Habib M.; Jadkar, Sandesh R.
2018-03-01
In present work, we report synthesis of Mo thin films by DC-magnetron sputtering method. The structural, optical, morphological and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evident that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-to-substrate distance preferred orientation of Mo crystallites changes from (211) to (110) and its size decreases. The FE-SEM analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at high target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-to-substrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.
Large-area and highly crystalline MoSe2 for optical modulator
NASA Astrophysics Data System (ADS)
Yin, Jinde; Chen, Hao; Lu, Wei; Liu, Mengli; Li, Irene Ling; Zhang, Min; Zhang, Wenfei; Wang, Jinzhang; Xu, Zihan; Yan, Peiguang; Liu, Wenjun; Ruan, Shuangchen
2017-12-01
Transition metal dichalcogenides (TMDs) have been successfully used as broadband optical modulator materials for pulsed fiber laser systems. However, the nonlinear optical absorptions of exfoliated TMDs are strongly limited by their nanoflakes morphology with uncontrollable lateral size and thickness. In this work, we provide an effective method to fully explore the nonlinear optical properties of MoSe2. Large-area and high quality lattice MoSe2 grown by chemical vapor deposition method was adopted as an optical modulator for the first time. The large-area MoSe2 shows excellent nonlinear optical absorption with a large modulation depth of 21.7% and small saturable intensity of 9.4 MW cm-2. After incorporating the MoSe2 optical modulator into fiber laser cavity as a saturable absorber, a highly stable Q-switching operation with single pulse energy of 224 nJ is achieved. The large-area MoSe2 possessing superior nonlinear optical properties compared to exfoliated nanoflakes affords possibility for the larger-area two-dimensional materials family as high performance optical devices.
Wang, Xinxing; Nan, Fuxin; Zhao, Jinlong; Yang, Tao; Ge, Tong; Jiao, Kui
2015-02-15
A label-free and ultrasensitive electrochemical DNA biosensor, based on thin-layer molybdenum disulfide (MoS2) nanosheets sensing platform and differential pulse voltammetry detection, is constructed in this paper. The thin-layer MoS2 nanosheets were prepared via a simple ultrasound exfoliation method from bulk MoS2, which is simpler and no distortion compared with mechanical cleavage and lithium intercalation. Most importantly, this procedure allows the formation of MoS2 with enhanced electrochemical activity. Based on the high electrochemical activity and different affinity toward ssDNA versus dsDNA of the thin-layer MoS2 nanosheets sensing platform, the tlh gene sequence assay can be performed label-freely from 1.0 × 10(-16)M to 1.0 × 10(-10)M with a detection limit of 1.9 × 10(-17)M. Without labeling and the use of amplifiers, the detection method described here not only expands the application of MoS2, but also offers a viable alternative for DNA analysis, which has the priority in sensitivity, simplicity, and costs. Moreover, the proposed sensing platform has good electrocatalytic activity, and can be extended to detect more targets, such as guanine and adenine, which further expands the application of MoS2. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Hongfei; Chi, Dongzhi
2015-01-01
Vapor-phase growth of large-area two-dimensional (2D) MoS2 nanosheets via reactions of sulfur with MoO3 precursors vaporized and transferred from powder sources onto a target substrate has been rapidly progressing. Recent studies revealed that the growth yield of high quality singlelayer (SL) MoS2 is essentially controlled by quite a few parameters including the temperature, the pressure, the amount/weight of loaded source precursors, and the cleanup of old precursors. Here, we report a dispersive growth method where a shadow mask is encapsulated on the substrate to ‘indirectly’ supply the source precursors onto the laterally advancing growth front at elevated temperatures. With this method, we have grown large-area (up to millimeters) SL-MoS2 nanosheets with a collective in-plane orientation on c-plane sapphire substrates. Regular ripples (~1 nm in height and ~50 nm in period) have been induced by laser scanning into the SL-MoS2 nanosheets. The MoS2 ripples easily initiate at the grain boundaries and extend along the atomic steps of the substrate. Such laser-induced ripple structures can be fundamental materials for studying their effects, which have been predicted to be significant but hitherto not evidenced, on the electronic, mechanical, and transport properties of SL-MoS2. PMID:26119325
Bennett, R.G.; Christian, J.D.; Kirkham, R.J.; Tranter, T.J.
1998-09-01
An improved method is described for producing {sup 99m}Tc compositions. {sup 100}Mo metal is irradiated with photons in a particle (electron) accelerator to produce {sup 99}Mo metal which is dissolved in a solvent. A solvated {sup 99}Mo product is then dried to generate a supply of {sup 99}MoO{sub 3} crystals. The crystals are thereafter heated at a temperature which will sublimate the crystals and form a gaseous mixture containing vaporized {sup 99m}TcO{sub 3} and vaporized {sup 99m}TcO{sub 2} but will not cause the production of vaporized {sup 99}MoO{sub 3}. The mixture is then combined with an oxidizing gas to generate a gaseous stream containing vaporized {sup 99m}Tc{sub 2}O{sub 7}. Next, the gaseous stream is cooled to a temperature sufficient to convert the vaporized {sup 99m}Tc{sub 2}O{sub 7} into a condensed {sup 99m}Tc-containing product. The product has high purity levels resulting from the use of reduced temperature conditions and ultrafine crystalline {sup 99}MoO{sub 3} starting materials with segregated {sup 99m}Tc compositions therein which avoid the production of vaporized {sup 99}MoO{sub 3} contaminants. 1 fig.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ying; Chattopadhyay, Soma; Shibata, Tomohiro
A metal-template/metal-exchange method was used to imprint covalently attached bis(8- quinolinolato)dioxomolybdenum(VI) and dioxotungsten(VI) complexes onto large surface-area, mesoporous SBA-15 silica to obtain discrete MoO2 VIT and WO2 VIT catalysts bearing different metal loadings, respectively. Homogeneous counterparts, MoO2 VIN and WO2 VIN, as well as randomly ligandgrafted heterogeneous analogues, MoO2 VIG and WO2 VIG, were also prepared for comparison. X-ray absorption fine structure (XAFS), pair distribution function (PDF) and UV–vis data demonstrate that MoO2 VIT and WO2 VIT adopt a more solution-like bis(8-quinolinol) coordination environment than MoO2 VIG and WO2 VIG, respectively. Correspondingly, the templated MoVI and WVI catalysts show superiormore » performances to their randomly grafted counterparts and neat analogues in the epoxidation of cyclooctene. It is found that the representative MoO2 VIT-10% catalyst can be recycled up to five times without significant loss of reactivity, and heterogeneity test confirms the high stability of MoO2 VIT-10% catalyst against leaching of active species into solution. The homogeneity of the discrete bis(8-quinolinol) metal spheres templated on SBA-15 should be responsible for the superior performances.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Youker, Amanda J.; Krahn, Elizabeth O.
2017-03-01
Molybdenum-99 is a parent of the most widely used medical isotope technetium-99m. Proliferation concerns have prompted development of alternative Mo production methods utilizing low enriched uranium. Alumina and titania sorbents were evaluated for separation of Mo from concentrated uranyl nitrate solutions. System, mass transfer, and isotherm parameters were determined to enable design of Mo separation processes under a wide range of conditions. A model-based approach was utilized to design representative commercial-scale column processes. The designs and parameters were verified with bench-scale experiments. The results are essential for design of Mo separation processes from irradiated uranium solutions, selection of support materialmore » and process optimization. Mo uptake studies show that adsorption decreases with increasing concentration of uranyl nitrate; howeveL, examination of Mo adsorption as a function of nitrate ion concentration shows no dependency, indicating that uranium competes with Mo for adsorption sites. These results are consistent with reports indicating that Mo forms inner-sphere complexes with titania and alumina surface groups.« less
Demonstration of resonant photopumping of Mo VII by Mo XII for a VUV laser near 600 {Angstrom}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilcisin, K.J.; Aumayr, F.; Schwob, J.L.
1993-09-01
We present data of experiments on the resonant photopumping of Mo VII by Mo XII as a method of generating a coherent VUV source near 600 {angstrom}. The experiment is based on a scheme proposed by Feldman and Reader in which the 4p{sup 6} -- 4p{sup 5}6s transition in Mo VII in resonantly photopumped by the 5s {sup 2}S{sub 1/2} -- 4p {sup 2}P{sub 1/2} transition in Mo XII. Results of the laser produced plasma experiments show the successful enhancement of the population of the Mo VII 4p{sup 5}6s upper lasing level when pumped by an adjacent Mo VII plasma.more » No enhancement was seen in a control experiment where the Mo VII plasma was pumped by a Zr X plasma. Improvements of the intensity of the Mo XII pump source, achieved using an additional pump laser, lead to the generation of a population inversion for the VUV transition.« less
NASA Astrophysics Data System (ADS)
Sakai, Yoshiko; Miyoshi, Eisaku
1987-09-01
Electronic structures of MF6, MF-6, and MF2-6 (M=Cr, Mo, and W) were calculated using a model potential method in the Hartree-Fock-Roothaan scheme. Major relativistic effects were taken into account for the calculations on MoFq6 and WFq6 (q=0, -1, and -2). It is shown that the calculated electron affinities (EAs) are extremely high for all the MF6 molecules, and that the CrF-6 and MoF-6 anions also have positive EAs, whereas the WF-6 anion has a slightly negative EA. The behaviors of the EAs are interpreted with reference to the electronic structures of the MFq6 systems.
NASA Astrophysics Data System (ADS)
Chang, Lianxia; Yang, Haibin; Li, Jixue; Fu, Wuyou; Du, Yonghui; Du, Kai; Yu, Qingjiang; Xu, Jing; Li, Minghui
2006-08-01
High yields of Mo/MoS2 inorganic fullerene-like and actinomorphic nanospheres with a core-shell structure have been successfully synthesized by the one-step reaction of sulfur and molybdenum nanospheres under a hydrogen atmosphere, in which the Mo nanospheres were prepared by the wire electrical explosion method. The shell thickness of MoS2 is about 4-10 nm and exhibit an expansion of about 4.2-1% along the c-axis. Observed from high-resolution transmission electron microscopy images, unreacted molybdenum lying between the (002) layers of MoS2 contributes to the larger expansion besides the strain in the bent layer and the crystal defects; the preferred growth orientations for MoS2 on the surface of Mo have two directions under different annealing temperatures: parallel to the (110) plane of Mo, presenting an actinomorphic phase, and perpendicular or having certain angles to the (110) plane, showing a fullerene-like phase. The actinomorphic Mo/MoS2 can be used for catalysis and intercalation. The fullerene-like phase can be applied as a solid lubricant to enhance the structural rigidity and load bearing capacity of hollow MoS2. In addition, the core-shell nanospheres exhibit a little higher onset temperature and a narrow temperature range against oxidation with a weaker exothermic peak than conventional 2H-MoS2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuntong; Liu, Xiaohua, E-mail: xhliuxhliu@tom.com
2015-04-15
Graphical abstract: The phosphor powders of Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} were prepared by sol–gel method. The dependence of luminescence intensity on the Eu{sup 3+} concentration was investigated. - Highlights: • We synthesize Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors by the sol–gel method. • The effect of temperature on the crystallinity and morphology is investigated. • The phosphor presents an intense CT band in near UV range (370–410 nm). • The concentration quenching mechanism is the exchange interaction. - Abstract: Double-perovskite Ba{sub 2}Zn{sub 1−x}MoO{sub 6}:xEu{sup 3+} (x = 0, 0.02, 0.04, 0.06, 0.08, 0.1) orange–red emitting phosphors were synthesized by using themore » sol–gel method. The crystalline structure and photoluminescence properties of the phosphors were investigated. The X-ray diffraction (XRD) patterns indicate that the structure of matrix Ba{sub 2}ZnMoO{sub 6} is cubic double-perovskite with space group Fm-3m. The Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors present an intense broad charge transfer (CT) band absorption in near UV range (370–410 nm), which attributes to the charge transfer state of MoO{sub 6}, and performs orange–red emission of Eu{sup 3+} ({sup 5}D{sub 0} → {sup 7}F{sub 1} transition) at around 596 nm. A low concentration quenching occurs in Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} and the optimal doping concentration is about 6 mol%. The Ba{sub 2}ZnMoO{sub 6}:Eu{sup 3+} phosphors are considered to be a promising orange–red emitting phosphor for near ultraviolet GaN-based white light emitting diode.« less
Rajaraman, Gopalan; Totti, Federico; Bencini, Alessandro; Caneschi, Andrea; Sessoli, Roberta; Gatteschi, Dante
2009-05-07
Density functional calculations have been performed on a [Gd(iii)Cu(ii)] complex [L(1)CuGd(O(2)CCF(3))(3)(C(2)H(5)OH)(2)] () (where L(1) is N,N'-bis(3-ethoxy-salicylidene)-1,2-diamino-2-methylpropanato) with an aim of assessing a suitable functional within the DFT formalism to understand the mechanism of magnetic coupling and also to develop magneto-structural correlations. Encouraging results have been obtained in our studies where the application of B3LYP on the crystal structure of yields a ferromagnetic J value of -5.8 cm(-1) which is in excellent agreement with the experimental value of -4.42 cm(-1) (H = JS(Gd).S(Cu)). After testing varieties of functional for the method assessment we recommend the use of B3LYP with a combination of an effective core potential basis set. For all electron basis sets the relativistic effects should be incorporated either via the Douglas-Kroll-Hess (DKH) or zeroth-order regular approximation (ZORA) methods. A breakdown approach has been adopted where the calculations on several model complexes of have been performed. Their wave functions have been analysed thereafter (MO and NBO analysis) in order to gain some insight into the coupling mechanism. The results suggest, unambiguously, that the empty Gd(iii) 5d orbitals have a prominent role on the magnetic coupling. These 5d orbitals gain partial occupancy via Cu(ii) charge transfer as well as from the Gd(iii) 4f orbitals. A competing 4f-3d interaction associated with the symmetry of the complex has also been observed. The general mechanism hence incorporates both contributions and sets forth rather a prevailing mechanism for the 3d-4f coupling. The magneto-structural correlations reveal that there is no unique parameter which the J values are strongly correlated with, but an exponential relation to the J value found for the O-Cu-O-Gd dihedral angle parameter is the most credible correlation.
Effect of post-annealing on sputtered MoS2 films
NASA Astrophysics Data System (ADS)
Wong, W. C.; Ng, S. M.; Wong, H. F.; Cheng, W. F.; Mak, C. L.; Leung, C. W.
2017-12-01
Typical routes for fabricating MoS2-based electronic devices rely on the transfer of as-prepared flakes to target substrates, which is incompatible with conventional device fabrication methods. In this work we investigated the preparation of MoS2 films by magnetron sputtering. By subjecting room-temperature sputtered MoS2 films to post-annealing at mild conditions (450 °C in a nitrogen flow), crystalline MoS2 films were formed. To demonstrate the compatibility of the technique with typical device fabrication processes, MoS2 was prepared on epitaxial magnetic oxide films of La0.7Sr0.3MnO3, and the magnetic behavior of the films were unaffected by the post-annealing process. This work demonstrates the possibility of fabricating electronic and spintronic devices based on continuous MoS2 films prepared by sputtering deposition.
GEANT 4 simulation of (99)Mo photonuclear production in nanoparticles.
Dikiy, N P; Dovbnya, A N; Fedorchenko, D V; Khazhmuradov, M A
2016-08-01
GEANT 4 Monte-Carlo simulation toolkit is used to study the kinematic recoil method of (99)Mo photonuclear production. Simulation for bremsstrahlung photon spectrum with maximum photon energy 30MeV showed that for MoO3 nanoparticle escape fraction decreases from 0.24 to 0.08 when nanoparticle size increases from 20nm to 80nm. For the natural molybdenum and pure (100)Mo we obtained the lower values: from 0.17 to 0.05. The generation of accompanying molybdenum nuclei is significantly lower for pure (100)Mo and is about 3.6 nuclei per single (99)Mo nucleus, while natural molybdenum nanoparticle produce about 48 accompanying nuclei. Also, we have shown that for high-energy photons escape fraction of (99)Mo decreases, while production of unwanted molybdenum isotopes is significantly higher. Copyright © 2016 Elsevier Ltd. All rights reserved.
González de Cossío, Teresita; Escobar-Zaragoza, Leticia; González-Castell, Dinorah; Reyes-Vázquez, Horacio; Rivera-Dommarco, Juan A
2013-05-01
We present: 1) indicators of infant and young child feeding practices (IYCFP) and median age of introduction of foods analyzed by geographic and socioeconomic variables for the 2006 national probabilistic Health Nutrition Survey (ENSANUT-2006); and 2) changes in IYCFP indicators between the 1999 national probabilistic Nutrition Survey and ENSANUT-2006, analyzed by the same variables. Participants were women 12-49 y and their <2-y-old children (2953 in 2006 and 3191 in 1999). Indicators were estimated with the status quo method. The median age of introduction of foods was calculated by the Kaplan-Meier method using recall data. The national median duration of breastfeeding was similar in both surveys, 9.7 mo in 1999 and 10.4 mo in 2006, but decreased in the vulnerable population. In 1999 indigenous women breastfed 20.8 mo but did so for only 13.0 mo in 2006. The national percentage of those exclusively breastfeeding <6 mo also remained stable: 20% in 1999 and 22.3% in 2006. Nevertheless, exclusively breastfeeding <6 mo changed within the indigenous population, from 46% in 1999 to 34.5% in 2006. Between surveys, most breastfeeding indicators had lower values in vulnerable populations than in those better-off. Complementary feeding, however, improved overall. Complementary feeding was inadequately timed: median age of introduction of plain water was 3 mo, formula and non-human milk was 5 mo, and cereals, legumes, and animal foods was 5 mo. Late introduction of animal foods occurred among vulnerable indigenous population when 50% consumed these products at 8 mo. Mexican IYCFP indicate that public policy must protect breastfeeding while promoting the timely introduction of complementary feeding.
Xiao, Sai Jin; Zhao, Xiao Jing; Zuo, Jun; Huang, Hai Qing; Zhang, Li
2016-02-04
Molybdenum oxide (MoOx) is a well-studied transition-metal semiconductor material, and has a wider band gap than MoS2 which makes it become a promising versatile probe in a variety of fields, such as gas sensor, catalysis, energy storage ect. However, few MoOx nanomaterials possessing photoluminescence have been reported until now, not to mention the application as photoluminescent probes. Herein, a one-pot method is developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs) in which commercial molybdenum disulfide powder and hydrogen peroxide (H2O2) are involved as the precursor and oxidant, respectively. Compared with current synthesis methods, the proposed one has the advantages of rapid, one-pot, easily prepared, environment friendly as well as strong photoluminescence. The obtained MoOx QDs is further utilized as an efficient photoluminescent probe, and a new off-on sensor has been constructed for phosphate (Pi) determination in complicated lake water samples, attributed to the fact that the binding affinity of Eu(3+) ions to the oxygen atoms from Pi is much higher than that from the surface of MoOx QDs. Under the optimal conditions, a good linear relationship was found between the enhanced photoluminescence intensity and Pi concentration in the range of 0.1-160.0 μM with the detection limit of 56 nM (3σ/k). The first application of the photoluminescent MoOx nanomaterials for ion photochemical sensing will open the gate of employing MoOx nanomaterials as versatile probes in a variety of fields, such as chemi-/bio-sensor, cell imaging, biomedical and so on. Copyright © 2015 Elsevier B.V. All rights reserved.
Xiao, Minyu; Wei, Shuai; Li, Yaoxin; Jasensky, Joshua; Chen, Junjie; Brooks, Charles L.
2017-01-01
Two-dimensional (2D) materials such as graphene, molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and black phosphorous are being developed for sensing applications with excellent selectivity and high sensitivity. In such applications, 2D materials extensively interact with various analytes including biological molecules. Understanding the interfacial molecular interactions of 2D materials with various targets becomes increasingly important for the progression of better-performing 2D-material based sensors. In this research, molecular interactions between several de novo designed alpha-helical peptides and monolayer MoS2 have been studied. Molecular dynamics simulations were used to validate experimental data. The results suggest that, in contrast to peptide–graphene interactions, peptide aromatic residues do not interact strongly with the MoS2 surface. It is also found that charged amino acids are important for ensuring a standing-up pose for peptides interacting with MoS2. By performing site-specific mutations on the peptide, we could mediate the peptide–MoS2 interactions to control the peptide orientation on MoS2. PMID:29675220
Evaluating effective pair and multisite interactions for Ni-Mo system
NASA Astrophysics Data System (ADS)
Banerjee, Rumu H.; Arya, A.; Banerjee, S.
2018-04-01
Cluster expansion (CE) method was used to calculate the energies of various Ni-Mo phases. The clusters comprising of few nearest neighbours can describe any phase of Ni-Mo system by suitable choice of effective pair and multisite interaction parameters (ECI). The ECIs were evaluated in present study by fitting the ground state energies obtained by first principle calculations. The ECIs evaluated for Ni-Mo system were mostly pair clusters followed by triplets and quadruplet clusters with cluster diameters in the range 2.54 - 10.20 Å. The ECI values diminished for multi-body (triplets and quadruplets) clusters as compared to 2-point or pair clusters indicating a good convergence of CE model. With these ECIs the predicted energies of all the Ni-Mo structures across the Mo concentration range 0-100 at% were obtained. The quantitative error in the energies calculated by CE approach and first principle is very small (< 0.026 meV/atom). The appreciable values of 2-point ECIs upto 4th nearest neighbour reveal that two body interactions are dominant in the case of Ni-Mo system. These ECIs are compared with the reported values of compositional dependent effective pair interactions evaluated by first principle as well as by Monte Carlo method.
Kuang, Zheng; Ji, Zhicheng; Boeke, Jef D; Ji, Hongkai
2018-01-09
Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
MoO2 nanosheets embedded in amorphous carbon matrix for sodium-ion batteries
NASA Astrophysics Data System (ADS)
He, Hong; Man, Yuhong; Yang, Jingang; Xie, Jiale; Xu, Maowen
2017-10-01
MoO2 nanosheets embedded in the amorphous carbon matrix (MoO2/C) are successfully synthesized via a facile hydrothermal method and investigated as an anode for sodium-ion batteries. Because of the efficient ion transport channels and good volume change accommodation, MoO2/C delivers a discharge/charge capacity of 367.8/367.0 mAh g-1 with high coulombic efficiency (99.4%) after 100 cycles at a current density of 50 mA g-1.
NASA Astrophysics Data System (ADS)
Wang, L.; Jiang, M.; Wang, E. B.; Duan, L. Y.; Hao, N.; Lan, Y.; Xu, L.; Li, Z.
2003-11-01
Ultrathin multilayer films of the wheel-shaped molybdenum polyoxometalate cluster (Mo 38) n and poly(allylamine hydrochloride)(PAH) have been prepared by the layer-by-layer (LbL) self-assembly method. The ((Mo 38) n/PAH) m multilayer films have been characterized by X-ray photoelectron spectra (XPS) and atomic force microscopy (AFM). UV-VIS measurements reveal regular film growth with each (Mo 38) n adsorption. The electrochemistry behavior of the film at room temperature was investigated.
Technology requirements for large flexible space structures
NASA Technical Reports Server (NTRS)
Wada, B. K.; Freeland, R. E.; Garcia, N. F.
1983-01-01
Research, test, and demonstration experiments necessary for establishing a data base that will permit construction of large, lightweight flexible space structures meeting on-orbit pointing and surface precesion criteria are discussed. Attention is focused on the wrap-rib proof-of-concept antenna structures developed from technology used on the ATS-6 satellite. The target structure will be up to 150 m in diameter or smaller, operate at RF levels, be amenable to packaging for carriage in the Shuttle bay, be capable of being ground-tested, and permit on-orbit deployment and retraction. Graphite/epoxy has been chosen as the antenna ribs material, and the antenna mesh will be gold-plated Mo wire. A 55-m diam reflector was built as proof-of-concept with ground-test capability. Tests will proceed on components, a model, the entire structure, and in-flight. An analytical model has been formulated to characterize the antenna's thermal behavior. The flight test of the 55-m prototype in-orbit offers the chance to validate the analytical model and characterize the control, mechanical, and thermal characteristics of the antenna configuration.
The stabilization mechanism of titanium cluster
NASA Astrophysics Data System (ADS)
Sun, Houqian; Ren, Yun; Hao, Yuhua; Wu, Zhaofeng; Xu, Ning
2015-05-01
A systematic and comparative theoretical study on the stabilization mechanism of titanium cluster has been performed by selecting the clusters Tin (n=3, 4, 5, 7, 13, 15 and 19) as representatives in the framework of density-functional theory. For small clusters Tin (n=3, 4 and 5), the binding energy gain due to spin polarization is substantially larger than that due to structural distortion. For medium clusters Ti13 and Ti15, both have about the same contribution. For Tin (n=4, 5, 13 and 15), when the undistorted high symmetric structure with spin-polarization is changed into the lowest energy structure, the energy level spelling due to distortion fails to reverse the level order of occupied and unoccupied molecular orbital (MO) of two type spin states, the spin configuration remains unchanged. In spin restricted and undistorted high symmetric structure, d orbitals participate in the hybridization in MOs, usually by way of a less distorted manner, and weak bonds are formed. In contrast, d orbitals take part in the formation of MOs in the ground state structure, usually in a distorted manner, and strong covalent metallic bonds are formed.
Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective
Wolters, Lando P; Bickelhaupt, F Matthias
2012-01-01
We have carried out extensive computational analyses of the structure and bonding mechanism in trihalides DX⋅⋅⋅A− and the analogous hydrogen-bonded complexes DH⋅⋅⋅A− (D, X, A=F, Cl, Br, I) using relativistic density functional theory (DFT) at zeroth-order regular approximation ZORA-BP86/TZ2P. One purpose was to obtain a set of consistent data from which reliable trends in structure and stability can be inferred over a large range of systems. The main objective was to achieve a detailed understanding of the nature of halogen bonds, how they resemble, and also how they differ from, the better understood hydrogen bonds. Thus, we present an accurate physical model of the halogen bond based on quantitative Kohn–Sham molecular orbital (MO) theory, energy decomposition analyses (EDA) and Voronoi deformation density (VDD) analyses of the charge distribution. It appears that the halogen bond in DX⋅⋅⋅A− arises not only from classical electrostatic attraction but also receives substantial stabilization from HOMO–LUMO interactions between the lone pair of A− and the σ* orbital of D–X. PMID:24551497
de Melo, Ana Carolina Rodrigues; Lyra, Tácio Candeia; Ribeiro, Isabella Lima Arrais; da Paz, Alexandre Rolim; Bonan, Paulo Rogério Ferreti; de Castro, Ricardo Dias; Valença, Ana Maria Gondim
2017-01-01
This report presents a case of embryonal rhabdomyosarcoma (eRMS) located in the left maxillary sinus and invading the orbital cavity in a ten-year-old male patient who was treated at a referral hospital. The images provided from the computed tomography showed a heterogeneous mass with soft-tissue density, occupying part of the left half of the face inside the maxillary sinus, and infiltrating and destroying the bone structure of the maxillary sinus, left orbit, ethmoidal cells, nasal cavity, and sphenoid sinus. An analysis of the histological sections revealed an undifferentiated malignant neoplasm infiltrating the skeletal muscle tissue. The immunohistochemical analysis was positive for the antigens: MyoD1, myogenin, desmin, and Ki67 (100% positivity in neoplastic cells), allowing the identification of the tumour as an eRMS. The treatment protocol included initial chemotherapy followed by radiotherapy and finally surgery. The total time of the treatment was nine months, and in 18-mo of follow-up period did not show no local recurrences and a lack of visual impairment. PMID:29291204
Sulfur Adsorption on the Goethite (110) Surface
NASA Astrophysics Data System (ADS)
Simonetti, S.; Damiani, D.; Brizuela, G.; Juan, A.
The electronic structure of S adsorption on goethite (110) surface has been studied by ASED-MO cluster calculations. For S location, the most exposed surface atoms of goethite surface were selected. The calculations show that the surface offers several places for S adsorption. The most energetically stable system corresponds to S location above H atom. We studied in detail the configurations that correspond to the higher OP values. For these configurations, the H-S and Fe-S computed distances are 2.1 and 3.7 Å, respectively. The H-S and Fe-S are mainly bonding interaction with OP values of 0.156 and 0.034, respectively. The Fe-S interaction mainly involves Fe 3dx2-y2 atomic orbitals with lesser participation of Fe 4py and Fe 3dyz atomic orbitals. The O-S interaction shows the same bonding and antibonding contributions giving a small OP value. The O-S interaction involves O 2p orbitals. There is an electron transfer to the Fe atom from the S atom. On the other hand, there is an electron transfer to S atom from the H and O atoms, respectively.
Zhang, Tong; Kong, Ling-Bin; Dai, Yan-Hua; Yan, Kun; Shi, Ming; Liu, Mao-Cheng; Luo, Yong-Chun; Kang, Long
2016-09-06
Owing to their graphene-like structure and available oxidation valence states, transition metal sulfides are promising candidates for supercapacitors. Herein, we report the application of MoS3 as a new negative electrode for supercapacitors. MoS3 was fabricated by the facile thermal decomposition of a (NH4 )2 MoS4 precursor. For comparison, samples of MoS3 &MoS2 and MoS2 were also synthesized by using the same method. Moreover, this is the first report of the application of MoS3 as a negative electrode for supercapacitors. MoS3 displayed a high specific capacitance of 455.6 F g(-1) at a current density of 0.5 A g(-1) . The capacitance retention of the MoS3 electrode was 92 % after 1500 cycles, and even 71 % after 5000 cycles. In addition, an asymmetric supercapacitor assembly of MoS3 as the negative electrode demonstrated a high energy density at a high potential of 2.0 V in aqueous electrolyte. These notable results show that MoS3 has significant potential in energy-storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of Epitaxial Single-Layer MoS2 on Au(111).
Grønborg, Signe S; Ulstrup, Søren; Bianchi, Marco; Dendzik, Maciej; Sanders, Charlotte E; Lauritsen, Jeppe V; Hofmann, Philip; Miwa, Jill A
2015-09-08
We present a method for synthesizing large area epitaxial single-layer MoS2 on the Au(111) surface in ultrahigh vacuum. Using scanning tunneling microscopy and low energy electron diffraction, the evolution of the growth is followed from nanoscale single-layer MoS2 islands to a continuous MoS2 layer. An exceptionally good control over the MoS2 coverage is maintained using an approach based on cycles of Mo evaporation and sulfurization to first nucleate the MoS2 nanoislands and then gradually increase their size. During this growth process the native herringbone reconstruction of Au(111) is lifted as shown by low energy electron diffraction measurements. Within the MoS2 islands, we identify domains rotated by 60° that lead to atomically sharp line defects at domain boundaries. As the MoS2 coverage approaches the limit of a complete single layer, the formation of bilayer MoS2 islands is initiated. Angle-resolved photoemission spectroscopy measurements of both single and bilayer MoS2 samples show a dramatic change in their band structure around the center of the Brillouin zone. Brief exposure to air after removing the MoS2 layer from vacuum is not found to affect its quality.
Charge-Transfer-Induced p-Type Channel in MoS2 Flake Field Effect Transistors.
Min, Sung-Wook; Yoon, Minho; Yang, Sung Jin; Ko, Kyeong Rok; Im, Seongil
2018-01-31
The two-dimensional transition-metal dichalcogenide semiconductor MoS 2 has received extensive attention for decades because of its outstanding electrical and mechanical properties for next-generation devices. One weakness of MoS 2 , however, is that it shows only n-type conduction, revealing its limitations for homogeneous PN diodes and complementary inverters. Here, we introduce a charge-transfer method to modify the conduction property of MoS 2 from n- to p-type. We initially deposited an n-type InGaZnO (IGZO) film on top of the MoS 2 flake so that electron charges might be transferred from MoS 2 to IGZO during air ambient annealing. As a result, electron charges were depleted in MoS 2 . Such charge depletion lowered the MoS 2 Fermi level, which makes hole conduction favorable in MoS 2 when optimum source/drain electrodes with a high work function are selected. Our IGZO-supported MoS 2 flake field effect transistors (FETs) clearly display channel-type conversion from n- to p-channel in this way. Under short- and long-annealing conditions, n- and p-channel MoS 2 FETs are achieved, respectively, and a low-voltage complementary inverter is demonstrated using both channels in a single MoS 2 flake.
On the genesis of molybdenum carbide phases during reduction-carburization reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guil-Lopez, R., E-mail: rut.guil@icp.csic.es; Nieto, E.; Departamento de Tecnologia Quimica y Energetica, ESCET, Universidad Rey Juan Carlos, C/Tulipan s/n, 28933-Mostoles
2012-06-15
Molybdenum carbide has been prepared according to the carbothermal reduction method. Carbon black substrate was used as C-source whereas a H{sub 2}-flow was the reducing agent. Two different H{sub 2} consumption steps were identified during the carburization treatment. The low temperature step is related to the reduction of Mo{sup 6+}-to-Mo{sup 4+}, the higher temperature process accounts for the deep reduction of Mo{sup 4+}-to-metal Mo{sup 0} and its subsequent reaction with C to form the Mo-carbide. The influences of the maximum carburization temperature, carburization time, gas hourly space velocity regarding Mo-loading, heating rate and temperature of Ar pre-treatment were analyzed. Allmore » these conditions are interrelated to each other. Thus, the carburization process ends at 700 Degree-Sign C when Mo-loading is 10 wt%, however Mo-loading higher than 10 wt% requires higher temperatures. Carburization temperatures up to 800 Degree-Sign C are needed to fulfill Mo-carbide formation with samples containing 50 wt% Mo. Nevertheless, Ar pre-treatment at 550 Degree-Sign C and slow heating rates favor the carburization, thus requiring lower carburization temperatures to reach the same carburization level. - Graphical Abstract: H{sub 2}-consumption profile (TPR) during the molybdenum carburization process, XRD patterns of the reduced Mo-samples after carburization and TEM-micrographs with two different enlargement of the samples with 5, 20 and 50 wt% Mo. Highlights: Black-Right-Pointing-Pointer Control of carburization variables: tailor the reduced/carbide Mo-phases (single/mixture). Black-Right-Pointing-Pointer Mo carburization in two stages: (1) Mo{sup 6+}-Mo{sup 4+}; (2) Mo{sup 4+}-Mo{sup 0} and, at once, MoC. Black-Right-Pointing-Pointer The carburization process is faster than Mo{sup 4+} reduction. Black-Right-Pointing-Pointer XPS probed: reduced Mo particles show core-shell structure. Black-Right-Pointing-Pointer Core: reduced Mo (Mo{sub 2}C, MoO{sub 2} and/or Mo{sup 0}); Shell: 2-3 nm of MoO{sub 3}.« less
Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers.
Cho, Soo-Yeon; Kim, Seon Joon; Lee, Youhan; Kim, Jong-Seon; Jung, Woo-Bin; Yoo, Hae-Wook; Kim, Jihan; Jung, Hee-Tae
2015-09-22
In this work, we demonstrate that gas adsorption is significantly higher in edge sites of vertically aligned MoS2 compared to that of the conventional basal plane exposed MoS2 films. To compare the effect of the alignment of MoS2 on the gas adsorption properties, we synthesized three distinct MoS2 films with different alignment directions ((1) horizontally aligned MoS2 (basal plane exposed), (2) mixture of horizontally aligned MoS2 and vertically aligned layers (basal and edge exposed), and (3) vertically aligned MoS2 (edge exposed)) by using rapid sulfurization method of CVD process. Vertically aligned MoS2 film shows about 5-fold enhanced sensitivity to NO2 gas molecules compared to horizontally aligned MoS2 film. Vertically aligned MoS2 has superior resistance variation compared to horizontally aligned MoS2 even with same surface area exposed to identical concentration of gas molecules. We found that electrical response to target gas molecules correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. Density functional theory (DFT) calculations corroborate the experimental results as stronger NO2 binding energies are computed for multiple configurations near the edge sites of MoS2, which verifies that electrical response to target gas molecules (NO2) correlates directly with the density of the exposed edge sites of MoS2 due to high adsorption of gas molecules onto edge sites of vertically aligned MoS2. We believe that this observation extends to other 2D TMD materials as well as MoS2 and can be applied to significantly enhance the gas sensor performance in these materials.
NASA Astrophysics Data System (ADS)
Liu, Haiyang; Wu, Rong; Tian, Lie; Kong, Yangyang; Sun, Yanfei
2018-07-01
Semiconductor phase transitions and plasma noble metal quantum dots (QDs) for visible-light-driven photocatalysts have attracted significant research interest. In this study, novel microwave hydrothermal and photo-reduction methods are proposed to synthesise a visible-light-driven plasma photocatalytic 1T@2H-MoS2/Ag composite. Photoelectrochemical results show that the introduction of the 1T phase and Ag significantly enhances the light response range and charge separation. The 1T phase can act as a co-catalyst to provide a high electron concentration. Ag QDs can effectively improve the light absorption and catalytic effect. The synergistic effect between the 1T@2H-MoS2 microspheres and localised surface plasmon resonance of the Ag QDs can effectively enhance the photocatalytic activity of 1T@2H-MoS2/Ag. The developed 1T@2H-MoS2/Ag composite is superior, not only with respect to a visible-light photocatalytic degradation of conventional dyes, but also in the photocatalytic reduction of Cr(VI). Compared with 2H-MoS2, the catalytic efficiency of 1T@2H-MoS2/Ag for Cr(VI) and MB is increased by 81% and 41%, respectively. This study demonstrates that the introduction of 1T-MoS2 and Ag QDs can significantly enhance the catalytic properties of 2H-MoS2. The microwave and photo-reduction technologies can be employed as green, safe, simple, and rapid methods for the synthesis of noble metal plasma composites.
Liu, Haiyang; Wu, Rong; Tian, Lie; Kong, Yangyang; Sun, Yanfei
2018-07-13
Semiconductor phase transitions and plasma noble metal quantum dots (QDs) for visible-light-driven photocatalysts have attracted significant research interest. In this study, novel microwave hydrothermal and photo-reduction methods are proposed to synthesise a visible-light-driven plasma photocatalytic 1T@2H-MoS 2 /Ag composite. Photoelectrochemical results show that the introduction of the 1T phase and Ag significantly enhances the light response range and charge separation. The 1T phase can act as a co-catalyst to provide a high electron concentration. Ag QDs can effectively improve the light absorption and catalytic effect. The synergistic effect between the 1T@2H-MoS 2 microspheres and localised surface plasmon resonance of the Ag QDs can effectively enhance the photocatalytic activity of 1T@2H-MoS 2 /Ag. The developed 1T@2H-MoS 2 /Ag composite is superior, not only with respect to a visible-light photocatalytic degradation of conventional dyes, but also in the photocatalytic reduction of Cr(VI). Compared with 2H-MoS 2 , the catalytic efficiency of 1T@2H-MoS 2 /Ag for Cr(VI) and MB is increased by 81% and 41%, respectively. This study demonstrates that the introduction of 1T-MoS 2 and Ag QDs can significantly enhance the catalytic properties of 2H-MoS 2 . The microwave and photo-reduction technologies can be employed as green, safe, simple, and rapid methods for the synthesis of noble metal plasma composites.
A two-dimensional spin field-effect switch
NASA Astrophysics Data System (ADS)
Casanova, Felix
The integration of the spin degree of freedom in charge-based electronic devices has revolutionised both sensing and memory capability in microelectronics. Further development in spintronic devices requires electrical manipulation of spin current for logic operations. The mainstream approach followed so far, inspired by the seminal proposal of the Datta and Das spin modulator, has relied on the spin-orbit field as a medium for electrical control of the spin state. However, the still standing challenge is to find a material whose spin-orbit coupling (SOC) is weak enough to transport spins over long distances, while also being strong enough to allow their electrical manipulation. In our recent work, we demonstrate a radically different approach by engineering a van der Waals heterostructure from atomically thin crystals, and which combines the superior spin transport properties of graphene with the strong SOC of MoS2, a transition metal dichalcogenide with semiconducting properties. The spin transport in the graphene channel is modulated between ON and OFF states by tuning the spin absorption into the MoS2 layer with a gate electrode. Our demonstration of a spin field-effect switch using two-dimensional (2D) materials identifies a new route towards spin logic operations for beyond CMOS technology. Furthermore, the van der Waals heterostructure at the core of our experiments opens the path for fundamental research of exotic transport properties predicted for transition metal dichalcogenides, in which electrical spin injection has so far been elusive.
Exposure to a mildly aversive early life experience leads to prefrontal cortex deficits in the rat.
Stamatakis, Antonios; Manatos, Vasileios; Kalpachidou, Theodora; Stylianopoulou, Fotini
2016-11-01
Aversive early life experiences in humans have been shown to result in deficits in the function of the prefrontal cortex (PFC). In an effort to elucidate possible neurobiological mechanisms involved, we investigated in rats, the effects of a mildly aversive early experience on PFC structure and function. The early experience involved exposure of rat pups during postnatal days (PND) 10-13 to a T-maze in which they search for their mother, but upon finding her are prohibited contact with her, thus being denied the expected reward (DER). We found that the DER experience resulted in adulthood in impaired PFC function, as assessed by two PFC-dependent behavioral tests [attention set-shifting task (ASST) and fear extinction]. In the ASST, DER animals showed deficits specifically in the intra-dimensional reversal shifts and a lower activation-as determined by c-Fos immunohistochemistry-of the medial orbital cortex (MO), a PFC subregion involved in this aspect of the task. Furthermore, the DER experience resulted in decreased glutamatergic neuron and dendritic spine density in the MO and infralimbic cortex (IL) in the adult brain. The decreased neuronal density was detected as early as PND12 and was accompanied by increased micro- and astroglia-density in the MO/IL.
Cao, Xiehong; Zheng, Bing; Shi, Wenhui; Yang, Jian; Fan, Zhanxi; Luo, Zhimin; Rui, Xianhong; Chen, Bo; Yan, Qingyu; Zhang, Hua
2015-08-26
Reduced graphene oxide-wrapped MoO3M (rGO/MoO3 ) is prepared by a novel and simple method that is developed by using a metal-organic framework as the precursor. After a two-step annealing process, the obtained rGO/MoO3 composite is used for a high-performance supercapacitor electrode. Moreover, an all-solid-state flexible supercapacitor is fabricated based on the rGO/MoO3 composite, which shows stable performance under different bending states. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Wanzhen; Xu Zhude; Liu Run
Hierarchical flower-like MoS{sub 2} spheres with high purity were synthesized by hydrothermal method using WO{sub 3} nanorods or H{sub 2}WO{sub 4} as an additive. The flower-like spheres were about 1 {mu}m in diameter and built up with MoS{sub 2} thin flakes with thickness of several nanometers. Energy disperse X-ray spectrum showed that the spheres were only composed of Mo and S with atomic ratio of 2:1. Powder X-ray diffraction result further indicated that the products were MoS{sub 2}. The reaction mechanism is discussed and suggested that tungstenic acid played an important role on the formation of flower-like MoS{sub 2} spheres.
Tan, Chaoliang; Zhao, Wei; Chaturvedi, Apoorva; ...
2016-02-24
The high-yield and scalable production of single-layer ternary transition metal dichalcogenide nanosheets with ≈66% of metallic 1T phase, including MoS 2xSe 2(1-x) and Mo xW 1-xS 2 is here achieved via electrochemical Li-intercalation and the exfoliation method. Thin film MoS 2xSe 2(1-x) nanosheets drop-cast on a fluorine-doped tin oxide substrate are used as an efficient electrocatalyst on the counter electrode for the tri-iodide reduction in a dye-sensitized solar cell.
NASA Astrophysics Data System (ADS)
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-01
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N5 AO to MO transformation in contrast to the ΔCCSD method.
Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2018-02-07
The orbital relaxation attendant on ionization is particularly important for the core electron ionization potential (core IP) of molecules. The Unitary Group Adapted State Universal Coupled Cluster (UGA-SUMRCC) theory, recently formulated and implemented by Sen et al. [J. Chem. Phys. 137, 074104 (2012)], is very effective in capturing orbital relaxation accompanying ionization or excitation of both the core and the valence electrons [S. Sen et al., Mol. Phys. 111, 2625 (2013); A. Shee et al., J. Chem. Theory Comput. 9, 2573 (2013)] while preserving the spin-symmetry of the target states and using the neutral closed-shell spatial orbitals of the ground state. Our Ansatz invokes a normal-ordered exponential representation of spin-free cluster-operators. The orbital relaxation induced by a specific set of cluster operators in our Ansatz is good enough to eliminate the need for different sets of orbitals for the ground and the core-ionized states. We call the single configuration state function (CSF) limit of this theory the Unitary Group Adapted Open-Shell Coupled Cluster (UGA-OSCC) theory. The aim of this paper is to comprehensively explore the efficacy of our Ansatz to describe orbital relaxation, using both theoretical analysis and numerical performance. Whenever warranted, we also make appropriate comparisons with other coupled-cluster theories. A physically motivated truncation of the chains of spin-free T-operators is also made possible by the normal-ordering, and the operational resemblance to single reference coupled-cluster theory allows easy implementation. Our test case is the prediction of the 1s core IP of molecules containing a single light- to medium-heavy nucleus and thus, in addition to demonstrating the orbital relaxation, we have addressed the scalar relativistic effects on the accuracy of the IPs by using a hierarchy of spin-free Hamiltonians in conjunction with our theory. Additionally, the contribution of the spin-free component of the two-electron Gaunt term, not usually taken into consideration, has been estimated at the Self-Consistent Field (ΔSCF) level and is found to become increasingly important and eventually quite prominent for molecules with third period atoms and below. The accuracies of the IPs computed using UGA-OSCC are found to be of the same order as the Coupled Cluster Singles Doubles (ΔCCSD) values while being free from spin contamination. Since the UGA-OSCC uses a common set of orbitals for the ground state and the ion, it obviates the need of two N 5 AO to MO transformation in contrast to the ΔCCSD method.
Dahlstrand, Henrik; Stark, André; Wick, Marius C; Anissian, Lucas; Hailer, Nils P; Weiss, Rüdiger J
2017-01-01
Background and purpose Large metal-on-metal (MoM) articulations are associated with metal wear and corrosion, leading to increased metal ion concentrations and unacceptable revision rates. There are few comparative studies of 28-mm MoM articulations with conventional metal-on-polyethylene (MoP) couplings. We present a long-term follow-up of a randomized controlled trial comparing MoM versus MoP 28-mm articulations, focused on metal ions and implant survival. Patients and methods 85 patients with a mean age of 65 years at surgery were randomized to a MoM (Metasul) or a MoP (Protasul) bearing. After 16 years, 38 patients had died and 4 had undergone revision surgery. 13 patients were unavailable for clinical follow-up, leaving 30 patients (n = 14 MoM and n = 16 MoP) for analysis of metal ion concentrations and clinical outcome. Results 15-year implant survival was similar in both groups (MoM 96% [95% CI 88–100] versus MoP 97% [95% CI 91–100]). The mean serum cobalt concentration was 4-fold higher in the MoM (1.5 μg/L) compared with the MoP cohort (0.4 μg/L, p < 0.001) and the mean chromium concentration was double in the MoM (2.2 μg/L) compared with the MoP cohort (1.0 μg/L, p = 0.05). Mean creatinine levels were similar in both groups (MoM 93 μmol/L versus MoP 92 μmol/L). Harris hip scores differed only marginally between the MoM and MoP cohorts. Interpretation This is the longest follow-up of a randomized trial on 28-mm MoM articulations, and although implant survival in the 2 groups was similar, metal ion concentrations remained elevated in the MoM cohort even in the long term. PMID:28699417
Park, Kyung Ho; Mohapatra, D; Reddy, B Ramachandra
2006-11-16
The petroleum refining industry makes extensive use of hydroprocessing catalysts. These catalysts contain environmentally critical and economically valuable metals such as Mo, V, Ni and Co. In the present study, a simple hydrometallurgical processing of spent hydrodesulphurization (HDS) catalyst for the recovery of molybdenum using sodium carbonate and hydrogen peroxide mixture was investigated. Recovery of molybdenum was largely dependent on the concentrations of Na2CO3 and H2O2 in the reaction medium, which in turn controls the pH of leach liquor and the presence of Al and Ni as impurities. Under the optimum leaching conditions (40 g L(-1) Na2CO3, 6 vol.% H2O2, room temperature, 1h) about 85% recovery of Mo was achieved. The leach liquor was processed by the carbon adsorption method, which selectively adsorbs Mo at pH around 0.75. Desorption of Mo was selective at 15 vol.% NH4OH. With a single stage contact, it was found possible to achieve >99%, adsorption and desorption efficiency. Using this method, recovery of molybdenum as MoO3 product of 99.4% purity was achieved.
Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei
2016-11-23
A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.
NASA Astrophysics Data System (ADS)
Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil
2015-03-01
An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.
Symbolic programming language in molecular multicenter integral problem
NASA Astrophysics Data System (ADS)
Safouhi, Hassan; Bouferguene, Ahmed
It is well known that in any ab initio molecular orbital (MO) calculation, the major task involves the computation of molecular integrals, among which the computation of three-center nuclear attraction and Coulomb integrals is the most frequently encountered. As the molecular system becomes larger, computation of these integrals becomes one of the most laborious and time-consuming steps in molecular systems calculation. Improvement of the computational methods of molecular integrals would be indispensable to further development in computational studies of large molecular systems. To develop fast and accurate algorithms for the numerical evaluation of these integrals over B functions, we used nonlinear transformations for improving convergence of highly oscillatory integrals. These methods form the basis of new methods for solving various problems that were unsolvable otherwise and have many applications as well. To apply these nonlinear transformations, the integrands should satisfy linear differential equations with coefficients having asymptotic power series in the sense of Poincaré, which in their turn should satisfy some limit conditions. These differential equations are very difficult to obtain explicitly. In the case of molecular integrals, we used a symbolic programming language (MAPLE) to demonstrate that all the conditions required to apply these nonlinear transformation methods are satisfied. Differential equations are obtained explicitly, allowing us to demonstrate that the limit conditions are also satisfied.
Chemical Bonding: The Orthogonal Valence-Bond View
Sax, Alexander F.
2015-01-01
Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476
Preparation of atomically flat TiO2(001) surfaces
NASA Astrophysics Data System (ADS)
Wang, Yang; Weitering, Hanno H.; Snijders, Paul C.
2015-03-01
Transition metal oxides with the rutile structure (MO2, M = e.g. Ti, V, or Nb) have highly directional partially occupied t2g orbitals. Some of these orbitals form quasi-1D electronic bands along the rutile c-axis, and Peierls-like ordering phenomena have been observed in VO2 and NbO2. Tailoring the electronic properties of these materials via quantum confinement requires epitaxial growth on suitable substrates such as low index TiO2 surfaces. Because of the high surface energy of rutile TiO2(001), the standard approach of sputtering and annealing usually introduces faceting. Here we demonstrate a facile method to create atomically flat, non-faceted TiO2(001) surfaces. Using scanning tunneling microscopy we observe terraces with a width of approximately 150 nm. Step heights of approximately 0.3 nm are observed, consistent with the c lattice parameter of rutile TiO2. Low energy electron diffraction patterns reveal sharp diffraction spots with an in-plane lattice constant of 0.358 nm which is consistent with a (1x1) ordering of the (001) plane. These TiO2(001) single crystal surfaces can serve as an ideal substrate for further growth of rutile heterostructures. Research sponsored by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.
MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate
NASA Astrophysics Data System (ADS)
Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei
2018-04-01
How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.
Roalf, David R; Moore, Tyler M; Wolk, David A; Arnold, Steven E; Mechanic-Hamilton, Dawn; Rick, Jacqueline; Kabadi, Sushila; Ruparel, Kosha; Chen-Plotkin, Alice S; Chahine, Lama M; Dahodwala, Nabila A; Duda, John E; Weintraub, Daniel A; Moberg, Paul J
2016-01-01
Introduction Screening for cognitive deficits is essential in neurodegenerative disease. Screening tests, such as the Montreal Cognitive Assessment (MoCA), are easily administered, correlate with neuropsychological performance and demonstrate diagnostic utility. Yet, administration time is too long for many clinical settings. Methods Item response theory and computerised adaptive testing simulation were employed to establish an abbreviated MoCA in 1850 well-characterised community-dwelling individuals with and without neurodegenerative disease. Results 8 MoCA items with high item discrimination and appropriate difficulty were identified for use in a short form (s-MoCA). The s-MoCA was highly correlated with the original MoCA, showed robust diagnostic classification and cross-validation procedures substantiated these items. Discussion Early detection of cognitive impairment is an important clinical and public health concern, but administration of screening measures is limited by time constraints in demanding clinical settings. Here, we provide as-MoCA that is valid across neurological disorders and can be administered in approximately 5 min. PMID:27071646
Luminescent monolayer MoS2 quantum dots produced by multi-exfoliation based on lithium intercalation
NASA Astrophysics Data System (ADS)
Qiao, Wen; Yan, Shiming; Song, Xueyin; Zhang, Xing; He, Xueming; Zhong, Wei; Du, Youwei
2015-12-01
An effective multi-exfoliation method based on lithium (Li) intercalation has been demonstrated for preparing monolayer molybdenum disulfide (MoS2) quantum dots (QDs). The cutting mechanism of MoS2 QDs may involve the complete breakup around the defects and edges during the reaction of LixMoS2 with water and its following ultrasonication process. The multiply exfoliation make the MoS2 fragile and easier to break up. After the third exfoliation, a large number of monolayer MoS2 QDs is formed. The as-prepared MoS2 QDs show photoluminescence (PL) inactive due to the existence of 1T phase. After heating treatment, the PL intensity excited at 300 nm is enhanced by five times. The MoS2 QDs solution has an excitation-dependent luminescence emission which shifts to longer wavelengths when the excitation wavelength changes from 280 nm to 370 nm. The optical properties are explored based on the quantum confinement and edge effect.
Fast solid-phase synthesis of large-area few-layer 1T'-MoTe2 films
NASA Astrophysics Data System (ADS)
Xie, Sheng; Chen, Lin; Zhang, Tian-Bao; Nie, Xin-Ran; Zhu, Hao; Ding, Shi-Jin; Sun, Qing-Qing; Zhang, David Wei
2017-06-01
In this study, we report on a novel approach to produce ∼12 nm thick few-layer monoclinic 1T'-MoTe2 films. The deposition method comprised sputtering of Mo, molecular beam epitaxy of Te, and rapid thermal processing to effect tellurization of the Mo into 1T'-MoTe2. The heating rate and annealing time are the critical factors. 30 °C s-1 heating rate and 2 min annealing at 470 °C were adopted in this work. X-ray photoelectron spectroscopy confirmed the formation of stoichiometric 1T'-MoTe2 films, while X-ray diffraction confirmed the monoclinic polymorph. Raman spectroscopy confirmed spatial uniformity over the sample size of 1 cm × 1.5 cm. Our fast synthesis approach to realize high-quality 1T'-MoTe2 paves the way towards the large-scale application of 1T'-MoTe2 in high-performance nanoelectronics and optoelectronics.
NASA Astrophysics Data System (ADS)
Matsushita, Yu-ichiro; Nishi, Hirofumi; Iwata, Jun-ichi; Kosugi, Taichi; Oshiyama, Atsushi
2018-01-01
We propose an unfolding scheme to analyze energy spectra of complex large-scale systems which are inherently of double periodicity on the basis of the density-functional theory. Applying our method to a twisted bilayer graphene (tBLG) and a stack of monolayer MoS2 on graphene (MoS2/graphene) as examples, we first show that the conventional unfolding scheme in the past using a single primitive-cell representation causes serious problems in analyses of the energy spectra. We then introduce our multispace representation scheme in the unfolding method and clarify its validity. Velocity renormalization of Dirac electrons in tBLG and mini gaps of Dirac cones in MoS2/graphene are elucidated in the present unfolding scheme.
Electrical and photovoltaic properties of residue-free MoS2 thin films by liquid exfoliation method
NASA Astrophysics Data System (ADS)
Kyo Lee, Seung; Chu, Dongil; Song, Da Ye; Pak, Sang Woo; Kim, Eun Kyu
2017-05-01
Molybdenum disulfide (MoS2) film fabricated by a liquid exfoliation method has significant potential for various applications, because of its advantages of mass production and low-temperature processes. In this study, residue-free MoS2 thin films were formed during the liquid exfoliation process and their electrical properties were characterized with an interdigitated electrode. Then, the MoS2 film thickness could be controlled by centrifuge condition in the range of 20 ˜ 40 nm, and its carrier concentration and mobility were measured at about 7.36 × 1016 cm-3 and 4.67 cm2 V-1 s-1, respectively. Detailed analysis on the films was done by atomic force microscopy, Raman spectroscopy, and high-resolution transmission electron microscopy measurements for verifying the film quality. For application of the photovoltaic device, a Au/MoS2/silicon/In junction structure was fabricated, which then showed power conversion efficiency of 1.01% under illumination of 100 mW cm-2.
Photocatalytic degradation of RhB with microwave prepared PbMoO4.
Hernández-Uresti, Diana B; Aguilar-Garib, Juan A; Martínez-de la Cruz, Azael
2012-01-01
Synthesized PbMoO4 from H2MoO4 and Pb(NO3)2 with microwaves was compared, in terms of its photocatalytic activity as catalyzer for decomposing rhodamine B (RhB), against samples prepared by hydrothermal and sonochemical methods from the same precursors. Microwave synthesis lasted 20 minutes; hydrothermal, 10 minutes and sonochemical method, 1 hour. Xrays diffraction patterns show that PbMoO4 prepared by these three routes is compounded by the same phase. It is found that microwave synthesized PbMoO4 particles are rounder, in an intermediate size (250 nm), compared to sonochemical (100 nm) and hydrothermal (500 nm) routes; microwave particles also exhibit higher photocatalytic activity for degradation of RhB under a xenon lamp. This difference is not explicable in terms of surface area measurements, but could be explained by UV Light scattering by the rounder particles produced by means of the microwave processing, which are about one half size compared to the wavelength.
Rapid Synthesis of Thin and Long Mo17O47 Nanowire-Arrays in an Oxygen Deficient Flame
Allen, Patrick; Cai, Lili; Zhou, Lite; Zhao, Chenqi; Rao, Pratap M.
2016-01-01
Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20–60 nm and lengths of 4–6 μm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications. PMID:27271194
NASA Astrophysics Data System (ADS)
Kandasamy, S.; Kao, S.; Hsu, S.; Lee, T.; Velasco, V. M.; Soon, W.; Chen, M.
2013-12-01
Rebuilding of past climate and oceanographic records from monsoon dominated Asia is of vital importance for understanding the causes and mechanisms of global and regional climate changes at orbital-millennial timescales. South China Sea (SCS) provides the best marine platform to investigate a number of paleoclimate and paleoceanographic problems on different timescales mainly because of high sedimentation rates, good preservation of microfossils and the location of SCS as a connector between the Western Pacific Warm Pool and the SE Asian monsoon. Here we investigate magnetic, geochemical and isotopic records from a piston core MD97-2142 rose from the southeastern SCS to understand the past glacial terminations, chemical weathering and carbon burial on orbital to millennial timescales for the last 800 kyr. Terrigenous content and Al/Ti ratio reveal higher terrigenous input during glacial periods and vice versa during interglacials. Proxies of chemical weathering reveal larger fluctuations between 150 and 500 kyr than that of the last 150 kyr. Records of C/N ratio and carbon isotope of total organic carbon (δ13CTOC) mimic each other with higher marine productivity during marine isotope stages (MIS) 8, 10 and 12. Enrichment factors of Mn and Mo (EF Mn and EF Mo) show roughly an opposite pattern with <1 EF Mo almost throughout the last 500 kyr may suggest that the southeastern part of SCS has never been attained anoxic condition both glacial and interglacial intervals from MIS 1 through MIS 13. EF Mn shows >1 in most odd MIS, whereas <~1 EF Mn was evident in even MIS, suggesting that the former condition was likely attributed to bottom water ventilation associated with high sea levels during interglacials. We found through two endmember mixing model of δ13CTOC that lower burial of terrigenous fraction of TOC (OCTERR) during glacial intervals (MIS 6, 8, 10 and 12), but vice versa during interglacial (MIS 7, 9 and 11) periods. Our bulk magnetic susceptibility (MS) time series documents the last seven glacial terminations (T1-T7) with distinctive behaviors of T4 and T6. Wavelet analysis of MS record exhibits statistically significant periodicity at 239 kyr, 142 kyr, 85 kyr, 45 kyr, 24 kyr and 13 kyr of eccentricity, obliquity and precession cycles. With the help of diverse proxy records, the role of insolation, monsoon forcing and sea level on the variation of productivity, terrigenous input and carbon burial will be discussed on orbital and millennial timescales.
Enhanced field emission performance of NiMoO4 nanosheets by tuning the phase
NASA Astrophysics Data System (ADS)
Bankar, Prashant K.; Ratha, Satyajit; More, Mahendra A.; Late, Dattatray J.; Rout, Chandra Sekhar
2017-10-01
In this paper we report, large scale synthesis of α and β-NiMoO4 by a facile hydrothermal method and we observed that urea plays important role on the growth of β-NiMoO4 nanosheets. We have also carried out field emission (FE) investigations of α and β-NiMoO4 at a base pressure of ∼1 × 10-8 mbar. The obtained turn-on field at emission current density of 1 μA/cm2 for β-NiMoO4 nanosheets and α -NiMoO4 is 1.3 V/μm and 2.2 V/μm respectively were observed. The maximum field emission current density of 1.006 mA/cm2at an applied electric field of 2.7 V/μm was achieved for β-NiMoO4 nanosheets. Furthermore, we found that the β-NiMoO4 nanosheets possess good field emission performance compared to α-NiMoO4. The results indicate that NiMoO4can be used as a promising material in FE applications with possibility of tuning field emission performance by controlling the phase.
Li, Li; Guo, Yichuan; Sun, Yuping; Yang, Long; Qin, Liang; Guan, Shouliang; Wang, Jinfen; Qiu, Xiaohui; Li, Hongbian; Shang, Yuanyuan; Fang, Ying
2018-03-01
The capability to directly build atomically thin transition metal dichalcogenide (TMD) devices by chemical synthesis offers important opportunities to achieve large-scale electronics and optoelectronics with seamless interfaces. Here, a general approach for the chemical synthesis of a variety of TMD (e.g., MoS 2 , WS 2 , and MoSe 2 ) device arrays over large areas is reported. During chemical vapor deposition, semiconducting TMD channels and metallic TMD/carbon nanotube (CNT) hybrid electrodes are simultaneously formed on CNT-patterned substrate, and then coalesce into seamless devices. Chemically synthesized TMD devices exhibit attractive electrical and mechanical properties. It is demonstrated that chemically synthesized MoS 2 -MoS 2 /CNT devices have Ohmic contacts between MoS 2 /CNT hybrid electrodes and MoS 2 channels. In addition, MoS 2 -MoS 2 /CNT devices show greatly enhanced mechanical stability and photoresponsivity compared with conventional gold-contacted devices, which makes them suitable for flexible optoelectronics. Accordingly, a highly flexible pixel array based on chemically synthesized MoS 2 -MoS 2 /CNT photodetectors is applied for image sensing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structural, electronic and magnetic properties of Ti n Mo ( n = 1 - 7) clusters
NASA Astrophysics Data System (ADS)
Zhang, Ge; Zhai, Zhongyuan; Sheng, Yong
2017-04-01
The ground state structures of TinMo and Tin+1 (n = 1 - 7) clusters and their structural, electronic and magnetic properties are investigated with the density functional method at B3LYP/LanL2DZ level. One Mo atom substituted Tin+1 structure is the dominant growth pattern, and the TinMo clusters exhibit enhanced structural stabilities according to the averaged binding energies. The electronic properties are also discussed by investigating chemical hardness and HOMO-LUMO energy gap. The results reveal that Ti3Mo and Ti5Mo keep higher chemical stabilities when compared with the other clusters. For all the studied clusters, the Mo atoms always get electrons from Ti atoms and present negative charges. Moreover, the doping of Mo in the bare titanium clusters can alter the magnetic moments of them. Ti3Mo and Ti5Mo show relatively large total magnetic moments, which may be related to the presence of exchange splitting behavior in their densities of states. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70589-8
Ha, Yang; Tenderholt, Adam L; Holm, Richard H; Hedman, Britt; Hodgson, Keith O; Solomon, Edward I
2014-06-25
Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two complexes [Mo(IV)O(bdt)2](2-) and [Mo(VI)O2(bdt)2](2-) (bdt = benzene-1,2-dithiolate(2-)) that relate to the reduced and oxidized forms of sulfite oxidase (SO). These are compared with those of previously studied dimethyl sulfoxide reductase (DMSOr) models. DFT calculations supported by the data are extended to evaluate the reaction coordinate for oxo transfer to a phosphite ester substrate. Three possible transition states are found with the one at lowest energy, stabilized by a P-S interaction, in good agreement with experimental kinetics data. Comparison of both oxo transfer reactions shows that in DMSOr, where the oxo is transferred from the substrate to the metal ion, the oxo transfer induces electron transfer, while in SO, where the oxo transfer is from the metal site to the substrate, the electron transfer initiates oxo transfer. This difference in reactivity is related to the difference in frontier molecular orbitals (FMO) of the metal-oxo and substrate-oxo bonds. Finally, these experimentally related calculations are extended to oxo transfer by sulfite oxidase. The presence of only one dithiolene at the enzyme active site selectively activates the equatorial oxo for transfer, and allows facile structural reorganization during turnover.
NASA Astrophysics Data System (ADS)
Tian, Qingyong; Wu, Wei; Yang, Shuanglei; Liu, Jun; Yao, Weijing; Ren, Feng; Jiang, Changzhong
2017-03-01
Flower-like MoS2 nanoparticles (NPs) consist of ultra-thin MoS2 nanosheets are synthesized via a facile one-pot hydrothermal method. The MoS2/ZnO p-n heterostructure is formed by coating n-type ZnO on the surface of flower-like MoS2 NPs through the seed-mediate route and post-annealing treatment. The effects for the dye removal and photocatalytic performances after ZnO coating are systematically investigated. The results demonstrated that the coating of ZnO nanoparticles has a positive promotion to the photodegrading properties while negative effect on the adsorption capacity of the MoS2/ZnO heterostructures. The related mechanisms on the relationship of adsorption capacity and photocatalysis are discussed in detail.
Rada, M; Maties, V; Culea, M; Rada, S; Culea, E
2010-02-01
Transparent glasses were prepared by conventional melting-quenching method in the xMoO(3).(100-x)[3B(2)O(3).PbO] system where 0
Students' Social Media Engagement and Fear of Missing out (FoMO) in a Diverse Classroom
ERIC Educational Resources Information Center
Alt, Dorit
2017-01-01
With the growing attention paid to fear of missing out (FoMO) psychological phenomenon in explaining social media engagement (SME), this mixed-method research measured the relative impact of FoMO on students' SME for personal reasons during lectures. The moderating effect of culture (minority vs. non-minority students) on the connection between…
New Approach for Gas Phase Synthesis and Growth Mechanism of MoS2 Fullerene-like Nanoparticles
NASA Astrophysics Data System (ADS)
Zak, Alla; Feldman, Yishay; Alperovich, Vladimir; Rosentsveig, Rita; Tenne, Reshef
2002-10-01
Inorganic fullerene-like (hollow onion-like) nanoparticles (IF) and nanotubes are of significant interest over the past few years due to their unusual crystallographic morphology and their interesting physical properties. The synthesis of inorganic fullerene-like spherical MoS2 nanoparticles (IF-MoS2) of 5-300nm in diameter was studied in the present work. This process is based on the previous formation of suboxide (MoO3-x) 5-300nm nanoparticles and their subsequent sulfidization. During the sulfidization process the overall geometrical parameters of the suboxide nanoparticles are preserved. The oxide nanoparticles were obtained in-situ by the condensation of the evaporated MoO3 powder precursor. The condensation was provoked not by cooling (conventional method for nano-size particle formation), but by a chemical reaction (partial reduction of the MoO3 vapor by hydrogen). In this case the vapor pressure of the product (MoO2) was much lower than that of the precursor (MoO3). Based on the comprehensive understanding of the IF-MoS2 growth mechanism from MoO3 powder, a gas phase reactor, which allowed reproducible preparation of a pure IF-MoS2 phase (up to 100mg/batch) with controllable sizes, is demonstrated. Further scale-up of this production is underway.
NASA Astrophysics Data System (ADS)
Zhao, Haitao; Mu, Xueliang; Yang, Gang; Zheng, Chengheng; Sun, Chenggong; Gao, Xiang; Wu, Tao
2017-10-01
In recent years, significant effort has been made in the development of novel materials for the removal of mercury from coal-derived flue gas. In this research, microwave irradiation was adopted to induce the creation of additional active sites on the MoS2 surface. The results showed that Hg0 capture efficiency of the adsorbent containing MoS2 nanosheets being microwave treated was as high as 97%, while the sample prepared via conventional method only showed an efficiency of 94% in its first 180 min testing. After the adsorbent was treated by microwave irradiation for 3 more times, its mercury removal efficiency was still noticeably higher than that of the sample prepared via conventional method. Characterization of surface structure of the MoS2 containing material together with DFT study further revealed that the (001) basal planes of MoS2 crystal structure were cracked into (100) edge planes (with an angle of approximately 75°) under microwave treatment, which subsequently resulted in the formation of additional active edge sites on the MoS2 surface and led to the improved performance on Hg0 capture.
An improved 3D MoF method based on analytical partial derivatives
NASA Astrophysics Data System (ADS)
Chen, Xiang; Zhang, Xiong
2016-12-01
MoF (Moment of Fluid) method is one of the most accurate approaches among various surface reconstruction algorithms. As other second order methods, MoF method needs to solve an implicit optimization problem to obtain the optimal approximate surface. Therefore, the partial derivatives of the objective function have to be involved during the iteration for efficiency and accuracy. However, to the best of our knowledge, the derivatives are currently estimated numerically by finite difference approximation because it is very difficult to obtain the analytical derivatives of the object function for an implicit optimization problem. Employing numerical derivatives in an iteration not only increase the computational cost, but also deteriorate the convergence rate and robustness of the iteration due to their numerical error. In this paper, the analytical first order partial derivatives of the objective function are deduced for 3D problems. The analytical derivatives can be calculated accurately, so they are incorporated into the MoF method to improve its accuracy, efficiency and robustness. Numerical studies show that by using the analytical derivatives the iterations are converged in all mixed cells with the efficiency improvement of 3 to 4 times.
NASA Astrophysics Data System (ADS)
Nie, Ziyang; Zhang, Zhena; Chen, Jixiang
2017-10-01
SiO2 supported bifunctional MoP catalysts modified with different metal promoters (Ni, Ru, Pd, Pt), where Mo/Ni and Mo/M(M = Ru, Pd and Pt) atomic ratios was respectively 10 and 40, were prepared by TPR method from the phosphate precursors. It was found that the introduction of metal promoters facilitated the reduction of phosphate precursor and enhanced the dispersion of MoP. However, the MoP catalyst acidity was scarcely influenced by the small amount of metal promoters. In the hydroconversion of methyl laurate, the promoters enhanced the MoP catalyst activity for conversion of methyl laurate and hydrogenation of alkenes (intermediate), but reduced isomerization ability. Among the promoters, Ru was an optimum to decrease selectivity to alkenes while maintain high selectivity to iso-alkanes, and Mo40RuP showed better stability than MoP. At 380 °C and 3.0 MPa, the conversion of methyl laurate, the total selectivity to C11 and C12 hydrocarbons and the selectivity to iso-alkanes maintained at 100%, ∼94% and ∼30% on Mo40RuP during 102 h, respectively. The good stability of Mo40RuP is ascribed to that the presence of Ru prevented the sintering of MoP particles and suppressed carbon deposition.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
2004-01-01
The hybrid Finite Element Method(FEM)/Method of Moments(MoM) technique has become popular over the last few years due to its flexibility to handle arbitrarily shaped objects with complex materials. One of the disadvantages of this technique, however, is the computational cost involved in obtaining solutions over a frequency range as computations are repeated for each frequency. In this paper, the application of Model Based Parameter Estimation (MBPE) method[1] with the hybrid FEM/MoM technique is presented for fast computation of frequency response of cavity-backed apertures[2,3]. In MBPE, the electric field is expanded in a rational function of two polynomials. The coefficients of the rational function are obtained using the frequency-derivatives of the integro-differential equation formed by the hybrid FEM/MoM technique. Using the rational function approximation, the electric field is calculated at different frequencies from which the frequency response is obtained.
Reanimating patients: cardio-respiratory CT and MR motion phantoms based on clinical CT patient data
NASA Astrophysics Data System (ADS)
Mayer, Johannes; Sauppe, Sebastian; Rank, Christopher M.; Sawall, Stefan; Kachelrieß, Marc
2017-03-01
Until today several algorithms have been developed that reduce or avoid artifacts caused by cardiac and respiratory motion in computed tomography (CT). The motion information is converted into so-called motion vector fields (MVFs) and used for motion compensation (MoCo) during the image reconstruction. To analyze these algorithms quantitatively there is the need for ground truth patient data displaying realistic motion. We developed a method to generate a digital ground truth displaying realistic cardiac and respiratory motion that can be used as a tool to assess MoCo algorithms. By the use of available MoCo methods we measured the motion in CT scans with high spatial and temporal resolution and transferred the motion information onto patient data with different anatomy or imaging modality, thereby reanimating the patient virtually. In addition to these images the ground truth motion information in the form of MVFs is available and can be used to benchmark the MVF estimation of MoCo algorithms. We here applied the method to generate 20 CT volumes displaying detailed cardiac motion that can be used for cone-beam CT (CBCT) simulations and a set of 8 MR volumes displaying respiratory motion. Our method is able to reanimate patient data virtually. In combination with the MVFs it serves as a digital ground truth and provides an improved framework to assess MoCo algorithms.
Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Weihan; Xu, Yan; Li, Zhenhua; Wang, Baowei; Ma, Xinbin
2018-05-01
Two kinds of ZrO2 support with different morphologies were prepared by facile solvothermal method in different solvents. The obtained two supports showed monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2) phase with similar crystalline size. Their supported Mo-based catalysts were prepared by impregnation method and the effect of zirconia morphology on the performance of sulfur-resistant methanation was examined. The results indicated that the MoO3/m-ZrO2 has higher CO conversion than the MoO3/t-ZrO2 catalyst. Characterizations by XRD, Raman, H2-TPR and IR confirmed that the m-ZrO2 is superior to t-ZrO2 for dispersing molybdenum species. In addition, the MoO3/m-ZrO2 catalyst has weaker interaction between support and active Mo speices than the MoO3/t-ZrO2 catalyst, which facilitates to forming active species of nanocrystalline MoS2 layers for sulfur-resistant methanation. The weaker interaction of molybdenum species with m-ZrO2 is related with the more covalent character of the Zrsbnd O bond and more oxygen defective structure of m-ZrO2. A larger number of Lewis acid centers appear on the surface of m-ZrO2, which verified the substantial vacancies on m-ZrO2 exposing coordinately unsaturated Zr3+ and Zr4+ cations. Meanwhile, the less Lewis acid of t-ZrO2 result in stronger interaction between support and molybdenum species and trigger crystalline phase MoO3 and Mosbnd Osbnd Zr linkages.
Synthesis and novel luminescence properties of one-dimension BaMoO{sub 4}:Ln{sup 3+} nanostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuping; Li, Mingxia; Pan, Kai
2015-12-15
Highlights: • String BaMoO{sub 4}:Ln{sup 3+} nanobeans were prepared by a hydrothermal method. • The Decay dynamics were performed to study the photoluminescence of the BaMoO{sub 4}:Eu{sup 3+} nanobeans. • For BaMoO{sub 4}:Er{sup 3+}/Eu{sup 3+}, the {sup 2}P{sub 3/2} → {sup 4}I{sub 11/2} and {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions were observed. - Abstract: String BaMoO{sub 4}:Ln{sup 3+} (Ln = Eu, Tb, Er, and Gd) nanobeans were prepared by a hydrothermal method. The samples were characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscope, and Raman spectrometer. Under direct excitation in themore » charge transfer absorption band, concentration quenching phenomenon occurs and decay dynamics were performed to study the photoluminescence of the string BaMoO{sub 4}:Eu{sup 3+} nanobeans. In the emission spectra of BaMoO{sub 4}:Er{sup 3+}/Eu{sup 3+} under 274 nm excitation, the {sup 2}P{sub 3/2} → {sup 4}I{sub 11/2}, {sup 2}H{sub 11/2} → {sup 4}I{sub 15/2}, and {sup 4}S{sub 3/2} → {sup 4}I{sub 15/2} transitions from Er{sup 3+} ions were observed for the first time. In addition, the photoluminescence properties of BaMoO{sub 4}:Tb{sup 3+}/Eu{sup 3+} and BaMoO{sub 4}:Gd{sup 3+}/Eu{sup 3+} were also investigated.« less
Synthesis and Characterization of CO-and H2S-Tolerant Electrocatalysts for PEM Fuel Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shamsuddin Ilias
2005-12-22
The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H{sub 2}-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H{sub 2}S in the H{sub 2}-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary,more » ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H{sub 2}S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks. During this reporting period we synthesized four Pt-based electrocatalysts catalysts (Pt/Ru/Mo/Se, Pt/Ru/Mo/Ir, Pt/Ru/Mo/W, Ptr/Ru/Mo/Co) on Vulcan XG72 Carbon support by both conventional and ultra-sonication method. From current-voltage performance study, the catalytic activity was found in the increasing order of Pt/Ru/Mo/Ir > Pt/Ru/Mo/W > Pt/Ru/Mo/Co > Pt/Ru/MO/Se. Sonication method appears to provide better dispersion of catalysts on carbon support.« less
NASA Astrophysics Data System (ADS)
Liu, Zhaopeng; Xu, Yan; Cheng, Jiaming; Wang, Weihan; Wang, Baowei; Li, Zhenhua; Ma, Xinbin
2018-03-01
In this paper, two kinds of CexZr1-xO2 solid solution carriers with different Ce/Zr ratio were prepared by one-step co-precipitation method: the cubic Ce0.8Zr0.2O2 and the tetragonal Ce0.2Zr0.8O2 support. The MoO3/Ce0.8Zr0.2O2 and MoO3/Ce0.2Zr0.8O2 catalysts were prepared by incipient wetness impregnation method for comparative study on sulfur-resistant methanation reaction. The N2 adsorption/desorption, X-ray diffraction (XRD), Raman spectroscopy (RS), X-ray photoelectron (XPS), transmission electron microscopy (TEM), temperature-programmed reduction by hydrogen (H2-TPR) were undertaken to characterize the physico-chemical properties of the samples. The results indicated that the prepared MoO3/CexZr1-xO2 catalysts have a mesoporous structure with high surface area and uniform pore size distribution, achieving good MoO3 dispersion on CexZr1-xO2 supports. As for the catalytic performance of sulfur-resistant methanation, the cubic MoO3/Ce0.8Zr0.2O2 exhibited better than the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst at reaction temperature 400 °C and 450 °C. CO conversion on the cubic MoO3/Ce0.8Zr0.2O2 catalyst was 50.1% at 400 °C and 75.5% at 450 °C, which is respectively 7% and 20% higher than that on the tetragonal MoO3/Ce0.2Zr0.8O2 catalyst. These were mainly attributed to higher content of active MoS2 on the surface of catalyst, the enhanced oxygen mobility, increased Mo-species dispersion as well as the excellent reducibility resulted from the increased amount of the reducible Ce3+ on the cubic MoO3/Ce0.8Zr0.2O2 catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Jana, Saumyadeep; McInnis, Colleen A.
During eutectoid transformation of U-10Mo alloy, uniform metastable γ UMo phase is expected to transform to a mixture of α-U and γ’-U 2Mo phase. The presence of transformation products in final U-10Mo fuel, especially the α phase is considered detrimental for fuel irradiation performance, so it is critical to accurately evaluate the extent of transformation in the final U-10Mo alloy. This phase transformation can cause a volume change that induces a density change in final alloy. To understand this density and volume change, we developed a theoretical model to calculate the volume expansion and resultant density change of U-10Mo alloymore » as a function of the extent of eutectoid transformation. Based on the theoretically calculated density change for 0 to 100% transformation, we conclude that an experimental density measurement system will be challenging to employ to reliably detect and quantify the extent of transformation. Subsequently, to assess the ability of various methods to detect the transformation in U-10Mo, we annealed U-10Mo alloy samples at 500°C for various times to achieve in low, medium, and high extent of transformation. After the heat treatment at 500°C, the samples were metallographically polished and subjected to optical microscopy and x-ray diffraction (XRD) methods. Based on our assessment, optical microscopy and image processing can be used to determine the transformed area fraction, which can then be correlated with the α phase volume fraction measured by XRD analysis. XRD analysis of U-10Mo aged at 500°C detected only α phase and no γ’ was detected. To further validate the XRD results, atom probe tomography (APT) was used to understand the composition of transformed regions in U-10Mo alloys aged at 500°C for 10 hours. Based on the APT results, the lamellar transformation product was found to comprise α phase with close to 0 at% Mo and γ phase with 28–32 at% Mo, and the Mo concentration was highest at the α/γ interface.« less
... eds. Laboratory Tests and Diagnostic Procedures . 6th ed. St Louis, MO: Elsevier Saunders; 2013:878-880. Klemm ... Diagnosis and Management by Laboratory Methods . 23rd ed. St Louis, MO: Elsevier; 2017:chap 15. Kliegman RM, ...
Ab initio molecular orbital calculations on the associated complexes of lithium cyanide with ammonia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohandas, P.; Shivaglal, M.C.; Chandrasekhar, J.
Ab initio molecular orbital (MO) calculations with the 3-21G and 6-31G basis sets are carried out on a series of complexes of NH{sub 3} with Li{sup +}, C{triple_bond}N{sup -}, LiCN, and its isomer LiNC. The BSSE-corrected interaction energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies are evaluated for 15 species. Complexes with trifurcated (C{sub 3v}) structures are calculated to be saddle points on the potential energy surfaces and have one imaginary frequency each. Calculated energies, geometrical parameters, internal force constants, and harmonic vibrational frequencies of the various species considered are discussed in terms of the nature of associationmore » of LiCN with ammonia. The vibrational frequencies of the relevant complexed species are compared with the experimental frequencies reported earlier for solutions of lithium cyanide in liquid ammonia. 40 refs., 1 fig., 4 tabs.« less
Oxygen evolution on a SrFeO3 anode - Mechanistic considerations from molecular orbital theory
NASA Technical Reports Server (NTRS)
Mehandru, S. P.; Anderson, Alfred B.
1989-01-01
Various pathways proposed in the literature for the evolution of O2 in electrochemical oxidations are explored using the atom superposition and electron delocalization molecular orbital (ASED-MO) theory and the cluster models of the SrFeO3 surface as a prototype material. Calculations indicate that oxygen atoms can be easily formed on the (100) surface as well as on the edge cation sites of a SrFeO3 anode by the discharge of OH(-), followed by its deprotonation and electron transfer to the electrode. The O atoms can form O2 on the edge and corner sites, where the Fe(4+) is coordinated to four and three bulk oxygen anions, respectively. The calculations strongly disfavor mechanisms involving coupling of oxygen atoms adsorbed on different cations as well as a mechanism featuring an ozone intermediate.
A HeI photoelectron spectrum of the [Al(CH 3) 3] 2 dimer
NASA Astrophysics Data System (ADS)
Wang, Dianxun; Qian, Ximei; Zheng, Shijun; Shi, Yizhong
1997-10-01
The HeI photoelectron spectrum (PES) of the [Al(CH 3) 3] 2 dimer is recorded for the first time. To assign the PES bands, an ab initio SCF MO calculation for the dimer has also been performed. The four splitting peaks of the first PE band are respectively designated to electron ionization of the four frontier 8b u, 13a g, 7b g, and 7b u orbitals of the dimer. They originate from the recombination of the two HOMO (5e') of the two monomers in the forming of the dimer. That is to say, during the formation of the dimer from the two monomers, the reduction of molecular symmetry (from the C 3h symmetry of the monomer to the C 2h symmetry of the dimer) leads to the undegeneration of the degenerate orbitals.
Trends in MODIS Geolocation Error Analysis
NASA Technical Reports Server (NTRS)
Wolfe, R. E.; Nishihama, Masahiro
2009-01-01
Data from the two MODIS instruments have been accurately geolocated (Earth located) to enable retrieval of global geophysical parameters. The authors describe the approach used to geolocate with sub-pixel accuracy over nine years of data from M0DIS on NASA's E0S Terra spacecraft and seven years of data from MODIS on the Aqua spacecraft. The approach uses a geometric model of the MODIS instruments, accurate navigation (orbit and attitude) data and an accurate Earth terrain model to compute the location of each MODIS pixel. The error analysis approach automatically matches MODIS imagery with a global set of over 1,000 ground control points from the finer-resolution Landsat satellite to measure static biases and trends in the MO0lS geometric model parameters. Both within orbit and yearly thermally induced cyclic variations in the pointing have been found as well as a general long-term trend.
MoCha: Molecular Characterization of Unknown Pathways.
Lobo, Daniel; Hammelman, Jennifer; Levin, Michael
2016-04-01
Automated methods for the reverse-engineering of complex regulatory networks are paving the way for the inference of mechanistic comprehensive models directly from experimental data. These novel methods can infer not only the relations and parameters of the known molecules defined in their input datasets, but also unknown components and pathways identified as necessary by the automated algorithms. Identifying the molecular nature of these unknown components is a crucial step for making testable predictions and experimentally validating the models, yet no specific and efficient tools exist to aid in this process. To this end, we present here MoCha (Molecular Characterization), a tool optimized for the search of unknown proteins and their pathways from a given set of known interacting proteins. MoCha uses the comprehensive dataset of protein-protein interactions provided by the STRING database, which currently includes more than a billion interactions from over 2,000 organisms. MoCha is highly optimized, performing typical searches within seconds. We demonstrate the use of MoCha with the characterization of unknown components from reverse-engineered models from the literature. MoCha is useful for working on network models by hand or as a downstream step of a model inference engine workflow and represents a valuable and efficient tool for the characterization of unknown pathways using known data from thousands of organisms. MoCha and its source code are freely available online under the GPLv3 license.
Cai, Lili; McClellan, Connor J; Koh, Ai Leen; Li, Hong; Yalon, Eilam; Pop, Eric; Zheng, Xiaolin
2017-06-14
Two-dimensional (2D) molybdenum trioxide (MoO 3 ) with mono- or few-layer thickness can potentially advance many applications, ranging from optoelectronics, catalysis, sensors, and batteries to electrochromic devices. Such ultrathin MoO 3 sheets can also be integrated with other 2D materials (e.g., as dopants) to realize new or improved electronic devices. However, there is lack of a rapid and scalable method to controllably grow mono- or few-layer MoO 3 . Here, we report the first demonstration of using a rapid (<2 min) flame synthesis method to deposit mono- and few-layer MoO 3 sheets (several microns in lateral dimension) on a wide variety of layered materials, including mica, MoS 2 , graphene, and WSe 2 , based on van der Waals epitaxy. The flame-grown ultrathin MoO 3 sheet functions as an efficient hole doping layer for WSe 2 , enabling WSe 2 to reach the lowest sheet and contact resistance reported to date among all the p-type 2D materials (∼6.5 kΩ/□ and ∼0.8 kΩ·μm, respectively). These results demonstrate that flame synthesis is a rapid and scalable pathway to growing atomically thin 2D metal oxides, opening up new opportunities for advancing 2D electronics.
Adsorption of radionuclides on the monolayer MoS2
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping
2018-04-01
How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.
Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S.
Li, Xiao Lin; Li, Ya Dong
2003-06-16
The reaction of MoO3 and S at temperatures higher than 300 degrees C in an argon atmosphere provides a convenient and effective method for the synthesis of MoS2 nanocrystalline substances. MoS2 nanotubes and fullerene-like nanoparticles have been obtained by the reaction at 850 degrees C under well-controlled conditions. The influences of reaction temperature and duration were carefully investigated in this paper. All of the nanostructures were characterized by Xray powder diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). A stepwise reaction model and rolling mechanism were proposed based on the experimental results.
Enhanced magnetic anisotropies of single transition-metal adatoms on a defective MoS2 monolayer.
Cong, W T; Tang, Z; Zhao, X G; Chu, J H
2015-03-23
Single magnetic atoms absorbed on an atomically thin layer represent the ultimate limit of bit miniaturization for data storage. To approach the limit, a critical step is to find an appropriate material system with high chemical stability and large magnetic anisotropic energy. Here, on the basis of first-principles calculations and the spin-orbit coupling theory, it is elucidated that the transition-metal Mn and Fe atoms absorbed on disulfur vacancies of MoS2 monolayers are very promising candidates. It is analysed that these absorption systems are of not only high chemical stabilities but also much enhanced magnetic anisotropies and particularly the easy magnetization axis is changed from the in-plane one for Mn to the out-of-plane one for Fe by a symmetry-lowering Jahn-Teller distortion. The results point out a promising direction to achieve the ultimate goal of single adatomic magnets with utilizing the defective atomically thin layers.
Electronic transport in disordered MoS2 nanoribbons
NASA Astrophysics Data System (ADS)
Ridolfi, Emilia; Lima, Leandro R. F.; Mucciolo, Eduardo R.; Lewenkopf, Caio H.
2017-01-01
We study the electronic structure and transport properties of zigzag and armchair monolayer molybdenum disulfide nanoribbons using an 11-band tight-binding model that accurately reproduces the material's bulk band structure near the band gap. We study the electronic properties of pristine zigzag and armchair nanoribbons, paying particular attention to the edges states that appear within the MoS2 bulk gap. By analyzing both their orbital composition and their local density of states, we find that in zigzag-terminated nanoribbons these states can be localized at a single edge for certain energies independent of the nanoribbon width. We also study the effects of disorder in these systems using the recursive Green's function technique. We show that for the zigzag nanoribbons, the conductance due to the edge states is strongly suppressed by short-range disorder such as vacancies. In contrast, the local density of states still shows edge localization. We also show that long-range disorder has a small effect on the transport properties of nanoribbons within the bulk gap energy window.
Comparison of Passive Microwave-Derived Early Melt Onset Records on Arctic Sea Ice
NASA Technical Reports Server (NTRS)
Bliss, Angela C.; Miller, Jeffrey A.; Meier, Walter N.
2017-01-01
Two long records of melt onset (MO) on Arctic sea ice from passive microwave brightness temperatures (Tbs) obtained by a series of satellite-borne instruments are compared. The Passive Microwave (PMW) method and Advanced Horizontal Range Algorithm (AHRA) detect the increase in emissivity that occurs when liquid water develops around snow grains at the onset of early melting on sea ice. The timing of MO on Arctic sea ice influences the amount of solar radiation absorbed by the ice-ocean system throughout the melt season by reducing surface albedos in the early spring. This work presents a thorough comparison of these two methods for the time series of MO dates from 1979through 2012. The methods are first compared using the published data as a baseline comparison of the publically available data products. A second comparison is performed on adjusted MO dates we produced to remove known differences in inter-sensor calibration of Tbs and masking techniques used to develop the original MO date products. These adjustments result in a more consistent set of input Tbs for the algorithms. Tests of significance indicate that the trends in the time series of annual mean MO dates for the PMW and AHRA are statistically different for the majority of the Arctic Ocean including the Laptev, E. Siberian, Chukchi, Beaufort, and central Arctic regions with mean differences as large as 38.3 days in the Barents Sea. Trend agreement improves for our more consistent MO dates for nearly all regions. Mean differences remain large, primarily due to differing sensitivity of in-algorithm thresholds and larger uncertainties in thin-ice regions.
Two-step growth of two-dimensional WSe 2/MoSe 2 heterostructures
Gong, Yongji; Lei, Sidong; Lou, Jun; ...
2015-08-03
Two dimensional (2D) materials have attracted great attention due to their unique properties and atomic thickness. Although various 2D materials have been successfully synthesized with different optical and electrical properties, a strategy for fabricating 2D heterostructures must be developed in order to construct more complicated devices for practical applications. Here we demonstrate for the first time a two-step chemical vapor deposition (CVD) method for growing transition-metal dichalcogenide (TMD) heterostructures, where MoSe 2 was synthesized first and followed by an epitaxial growth of WSe 2 on the edge and on the top surface of MoSe 2. Compared to previously reported one-stepmore » growth methods, this two-step growth has the capability of spatial and size control of each 2D component, leading to much larger (up to 169 μm) heterostructure size, and cross-contamination can be effectively minimized. Furthermore, this two-step growth produces well-defined 2H and 3R stacking in the WSe 2/MoSe 2 bilayer regions and much sharper in-plane interfaces than the previously reported MoSe 2/WSe 2 heterojunctions obtained from one-step growth methods. The resultant heterostructures with WSe 2/MoSe 2 bilayer and the exposed MoSe 2 monolayer display rectification characteristics of a p-n junction, as revealed by optoelectronic tests, and an internal quantum efficiency of 91% when functioning as a photodetector. As a result, a photovoltaic effect without any external gates was observed, showing incident photon to converted electron (IPCE) efficiencies of approximately 0.12%, providing application potential in electronics and energy harvesting.« less
Do older adults use the Method of Loci? Results from the ACTIVE Study
Gross, Alden L.; Brandt, Jason; Bandeen-Roche, Karen; Carlson, Michelle C.; Stuart, Elizabeth A.; Marsiske, Michael; Rebok, George W.
2013-01-01
Background The method of loci (MoL) is a complex visuospatial mnemonic strategy. Previous research suggests older adults could potentially benefit from using the MoL, but that it is too attentionally demanding for them to use in practice. We evaluated the hypotheses that training can increase the use of MoL, and that MoL use is associated with better memory. Methods We analyzed skip patterns on response forms for the Auditory Verbal Learning Test (AVLT) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE, n=1,401) trial using 5 years of longitudinal follow-up. Results At baseline, 2% of participants skipped spaces. Fewer than 2% of control participants skipped spaces at any visit across 5 years, but 25% of memory-trained participants, taught the MoL, did so. Participants who skipped spaces used more serial clustering, a hallmark of the MoL (p<0.001). Trained participants who skipped spaces showed greater memory improvement after training than memory-trained participants who did not skip spaces (Cohen's d=0.84, P=0.007), and did not differ in the subsequent rate of long-term memory decline through up to 5 years of follow-up. Conclusion Despite being attentionally demanding, this study suggests that after training, the MoL is used by up to 25% of older adults, and that its use is associated with immediate memory improvement that was sustained through the course of follow-up. Findings are consistent with the notion that older adults balance complexity with novelty in strategy selection, and that changes in strategies used following memory training result in observable qualitative and quantitative differences in memory performance. PMID:24625044
Earth Observations taken by the Expedition 27 Crew
2011-05-12
ISS027-E-027026 (12 May 2011) --- An Expedition 27 crew member recorded this image aboard the International Space Station as the orbital outpost was passing over the Mississippi River flood waters from 220 miles above. North is toward the bottom of the image, which was captured using a 400-mm lens. This highly impacted area, centered near 36.6 degrees north latitude and 89.5 degrees west longitude, is just east of New Madrid, Mo. (visible in upper right). Levees appear to be intact here, but there is extensive lowland crop flooding.
NASA Technical Reports Server (NTRS)
Toelle, Ronald (Compiler)
1995-01-01
A launch vehicle concept to deliver 20,000 lb of payload to a 100-nmi orbit has been defined. A new liquid oxygen/kerosene booster powered by an RD-180 engine was designed while using a slightly modified Centaur upper stage. The design, development, and test program met the imposed 40-mo schedule by elimination of major structural testing by increased factors of safety and concurrent engineering concepts. A growth path to attain 65,000 lb of payload is developed.
NASA Astrophysics Data System (ADS)
Zhai, Yong; Li, Fumin; Ling, Lanyun; Chen, Chong
2016-10-01
In this work, the Ag2S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag2S/P3HT:PCBM/MoO3/Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag2S films prepared by these two methods were compared and the effect of the prepared Ag2S film on the device performance is investigated. It is found that the Ag2S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag2S(HRTD, n)/P3HT:PCBM/MoO3/Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag2S(HRTD, 50)/P3HT:PCBM/MoO3/Au cell is 93% higher than that of the ITO/Ag2S(MPD, 2)/P3HT:PCBM/MoO3/Au cell.
Antidiuretic hormone blood test
... eds. Laboratory Tests and Diagnostic Procedures . 6th ed. St Louis, MO: Elsevier Saunders; 2013:146. Guber HA, ... Diagnosis and Management by Laboratory Methods . 23rd ed. St Louis, MO: Elsevier; 2017:chap 24. Oh MS, ...
... eds. Laboratory Tests and Diagnostic Procedures . 6th ed. St Louis, MO: Elsevier Saunders; 2013:654-655. Fagoaga ... Diagnosis and Management by Laboratory Methods . 23rd ed. St Louis, MO: Elsevier; 2017:chap 49. Inman RD. ...
NASA Astrophysics Data System (ADS)
Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.
2016-11-01
The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.
ERIC Educational Resources Information Center
Chang, Shao-Hsia; Yu, Nan-Ying
2010-01-01
Aim: The purpose of this study was to characterize handwriting deficits in children with developmental coordination disorder (DCD) using computerized movement analyses. Method: Seventy-two children (40 females, 32 males; mean age 7y, SD 7mo; range 6y 2mo to 7y 11mo) with handwriting deficits (33 with DCD, 39 without DCD); and 22 age- and…
Leisure Activity Preferences for 6- To 12-Year-Old Children with Cerebral Palsy
ERIC Educational Resources Information Center
Majnemer, Annette; Shikako-Thomas, Keiko; Chokron, Nathalie; Law, Mary; Shevell, Michael; Chilingaryan, Gevorg; Poulin, Chantal; Rosenbaum, Peter
2010-01-01
Aim: The objective was to describe leisure activity preferences of children with cerebral palsy (CP) and their relationship to participation. Factors associated with greater interest in leisure activities were identified. Method: Fifty-five school-aged children (36 males, 19 females; mean age 9y 11mo; range 6y 1mo-12y 11mo) with CP (Gross Motor…
Origin of the Surface-Induced First Hyperpolarizability in the C60/SiO2 System: SCC-DFTB Insight.
Nénon, Sébastien; Champagne, Benoît
2014-01-02
Using the self-consistent charge density functional tight binding (SCC-DFTB) method, C60 molecules physisorbed on an α-quartz slab are shown to display a first hyperpolarizability, whereas, owing to their symmetry, both the α-quartz slab and C60 molecule have no first hyperpolarizabilities. A larger first hyperpolarizability is achieved when the lowest-lying (five- or six-membered) ring is situated in between two hydroxyl rows, rather than on top, because this situation favors orbital overlaps and charge transfer. Further analysis has demonstrated that (i) the first hyperpolarizability originates from the MO overlap and field-induced charge transfers from the neighboring substrate/adsorbate moieties but not to geometric relaxation of the C60 molecules at the interface and that (ii) larger first hyperpolarizabilities are associated with low surface coverage and with small distances between C60 and the surface. This contribution is a clear illustration of the emergence of second-order nonlinear optical responses (first hyperpolarizability) as a result of breaking the centrosymmetry.
NASA Astrophysics Data System (ADS)
Li, Xiangguo; Wang, Yun-Peng; Zhang, X.-G.; Cheng, Hai-Ping
A prototype field-effect transistor (FET) with fascinating properties can be made by assembling graphene and two-dimensional insulating crystals into three-dimensional stacks with atomic layer precision. Transition metal dichalcogenides (TMDCs) such as WS2, MoS2 are good candidates for the atomically thin barrier between two layers of graphene in the vertical FET due to their sizable bandgaps. We investigate the electronic properties of the Graphene/TMDCs/Graphene sandwich structure using first-principles method. We find that the effective tunnel barrier height of the TMDC layers in contact with the graphene electrodes has a layer dependence and can be modulated by a gate voltage. Consequently a very high ON/OFF ratio can be achieved with appropriate number of TMDC layers and a suitable range of the gate voltage. The spin-orbit coupling in TMDC layers is also layer dependent but unaffected by the gate voltage. These properties can be important in future nanoelectronic device designs. DOE/BES-DE-FG02-02ER45995; NERSC.
Hasani, Amirhossein; Le, Quyet Van; Nguyen, Thang Phan; Choi, Kyoung Soon; Sohn, Woonbae; Kim, Jang-Kyo; Jang, Ho Won; Kim, Soo Young
2017-10-16
A facile, highly efficient approach to obtain molybdenum trioxide (MoO 3 )-doped tungsten trioxide (WO 3 ) is reported. An annealing process was used to transform ammonium tetrathiotungstate [(NH 4 ) 2 WS 4 ] to WO 3 in the presence of oxygen. Ammonium tetrathiomolybdate [(NH 4 ) 2 MoS 4 ] was used as a dopant to improve the film for use in an electrochromic (EC) cell. (NH 4 ) 2 MoS 4 at different concentrations (10, 20, 30, and 40 mM) was added to the (NH 4 ) 2 WS 4 precursor by sonication and the samples were annealed at 500 °C in air. Raman, X-ray diffraction, and X-ray photoelectron spectroscopy measurements confirmed that the (NH 4 ) 2 WS 4 precursor decomposed to WO 3 and the (NH 4 ) 2 MoS 4 -(NH 4 ) 2 WS 4 precursor was transformed to MoO 3 -doped WO 3 after annealing at 500 °C. It is shown that the MoO 3 -doped WO 3 film is more uniform and porous than pure WO 3 , confirming the doping quality and the privileges of the proposed method. The optimal MoO 3 -doped WO 3 used as an EC layer exhibited a high coloration efficiency of 128.1 cm 2 /C, which is larger than that of pure WO 3 (74.5 cm 2 /C). Therefore, MoO 3 -doped WO 3 synthesized by the reported method is a promising candidate for high-efficiency and low-cost smart windows.
Senchyk, Ganna A; Lysenko, Andrey B; Domasevitch, Konstantin V; Erhart, Oliver; Henfling, Stefan; Krautscheid, Harald; Rusanov, Eduard B; Krämer, Karl W; Decurtins, Silvio; Liu, Shi-Xia
2017-11-06
We investigated the coordination ability of the bis(1,2,4-triazolyl) module, tr 2 pr = 1,3-bis(1,2,4-triazol-4-yl)propane, toward the engineering of solid-state structures of copper polyoxomolybdates utilizing a composition space diagram approach. Different binding modes of the ligand including [N-N]-bridging and N-terminal coordination and the existence of favorable conformation forms (anti/anti, gauche/anti, and gauche/gauche) resulted in varieties of mixed metal Cu I /Mo VI and Cu II /Mo VI coordination polymers prepared under hydrothermal conditions. The composition space analysis employed was aimed at both the development of new coordination solids and their crystallization fields through systematic changes of the reagent ratios [copper(II) and molybdenum(VI) oxide precursors and the tr 2 pr ligand]. Nine coordination compounds were synthesized and structurally characterized. The diverse coordination architectures of the compounds are composed of cationic fragments such as [Cu II 3 (μ 2 -OH) 2 (μ 2 -tr) 2 ] 4+ , [Cu II 3 (μ 2 -tr) 6 ] 6+ , [Cu II 2 (μ 2 -tr) 3 ] 4+ , etc., connected to polymeric arrays by anionic species (molybdate MoO 4 2- , isomeric α-, δ-, and β-octamolybdates {Mo 8 O 26 } 4- or {Mo 8 O 28 H 2 } 6- ). The inorganic copper(I,II)/molybdenum(VI) oxide matrix itself forms discrete or low-dimensional subtopological motifs (0D, 1D, or 2D), while the organic spacers interconnect them into higher-dimensional networks. The 3D coordination hybrids show moderate thermal stability up to 230-250 °C, while for the 2D compounds, the stability of the framework is distinctly lower (∼190 °C). The magnetic properties of the most representative samples were investigated. The magnetic interactions were rationalized in terms of analyzing the planes of the magnetic orbitals.
Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2.
Yang, Tao; Chen, Meijing; Kong, Qianqian; Luo, Xiliang; Jiao, Kui
2017-03-15
Very recently, the 2-dimensional MoS 2 layer as base substrate integrated with other materials has caused people's emerging attention. In this paper, a thin-layered MoS 2 was prepared through an ultrasonic exfoliation method from bulk MoS 2 and then the free-standing ZnO nanosheet was electrodeposited on the MoS 2 scaffold for DNA sensing. The ZnO/MoS 2 nanocomposite revealed smooth and vertical nanosheets morphology by scanning electron microscopy, compared with the sole MoS 2 and sole ZnO. Importantly, the partially negative charged MoS 2 layer is beneficial to the nucleation and growth of ZnO nanosheets under the effect of electrostatic interactions. Classic methylene blue, which possesses different affinities to dsDNA and ssDNA, was adopted as the measure signal to confirm the immobilization and hybridization of DNA on ZnO nanosheets and pursue the optimal synthetic conditions. And the results demonstrated that the free-standing ZnO/MoS 2 nanosheets had low detection limit (6.6×10 -16 M) and has a positive influence on DNA immobilization and hybridization. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Meilan; Zhao, Jiachang
2018-07-01
Herein, a novel core-shell heterojunction structure of molybdenum disulfide (MoS2) nanosheets coated antimony trisulfide (Sb2S3) nanorods (Sb2S3@MoS2) are designed and fabricated by a two-step hydrothermal method. The Sb2S3@MoS2 heterostructure consists of one-dimension (1D) Sb2S3 nanorods coated by two-dimension (2D) MoS2 nanosheets. When utilized as a photocatalyst under simulated sunlight, compared with pure Sb2S3 nanorods and MoS2 nanosheets, Sb2S3@MoS2 nanorods perform an enhanced photoactivity in degrading Rhodamine B (RhB) with a decomposition efficiency of 99%. The excellent photocatalytic property is attributed to the properly constructed heterojunction between Sb2S3 and MoS2, which can broaden the photoadsorption range. Furthermore, not only can the unique hybrid 1D/2D core-shell structures possess more reaction active sites, but also the compact interfaces between Sb2S3 and MoS2 provide rapid charge transfer channels for charge separation.
NASA Astrophysics Data System (ADS)
Ye, Fei; Li, Houfen; Yu, Hongtao; Chen, Shuo; Quan, Xie
2017-12-01
Protons tend to bond strongly with unsaturated-coordinate S element located at the edge of nano-MoS2 and are consequently reduced to H2. Therefore, increasing the active S atoms quantity will be a feasible approach to enhance hydrogen evolution. Herein we developed a porous TiO2 derived from metal organic frameworks (MOFs) as scaffold to restrict the growth and inhibit the aggregation of MoS2 nanosheets. As a result, the thickness of the prepared MoS2 nanosheets was less than 3 nm (1-4 layers), with more edges and active S atoms being exposed. This few-layer MoS2-porous TiO2 exhibits a H2 evolution rate of 897.5 μmol h-1 g-1, which is nearly twice as much as free-stand MoS2 nanosheets and twenty times more than physical mixture of MoS2 with porous TiO2. The high performance is attributed to that more active edge sites in few-layer MoS2-porous TiO2 are exposed than pure MoS2. This work provides a new method to construct MOFs derived porous structures for controlling MoS2 to expose active sites for HER.
Desulfurization of 4-methyl dibenzothiophene using titanium supported Keggin type polyoxometalate
NASA Astrophysics Data System (ADS)
Lesbani, Aldes; Anggraini, Ana; Mohadi, Risfidian; Rohendi, Dedi; Said, Muhammad
2017-03-01
Titanium supported Keggin type polyoxometalate H5PV2Mo10O40.nH2O has been prepared using tetra isopropyl orthotitanate by sol-gel method and microemulsion to form H5PV2Mo10O40/TiO2. Compound H5PV2Mo10O40.nH2O/TiO2 was characterized using FTTR spectroscopy, X-Ray analysis, and acidity measurement. FTTR spectrum showed that all vibration of titanium and polyoxometalate were appeared in H5PV2Mo10O40.nH2O/TiO2 with decreasing crystallinity. The acidity of H5PV2Mo10O40.nH2O/TiO2 was higher than H5PV2Mo10O40.nH2O. Desulfurization of 4-methyl dibenzothiophene (4-MDBT) using H5PV2Mo10O40.nH2O/TiO2 as catalyst resulted conversion of 4-MDBT was 99% and higher than desulfurization using H5PV2Mo10O40.nH2O under mild conditions.
Plasma nanocoating of thiophene onto MoS2 nanotubes
NASA Astrophysics Data System (ADS)
Türkaslan, Banu Esencan; Dikmen, Sibel; Öksüz, Lütfi; Öksüz, Aysegul Uygun
2015-12-01
MoS2 nanotubes were coated with conductive polymer thiophene by atmospheric pressure radio-frequency (RF) glow discharge. MoS2 nanotubes were prepared by thermal decomposition of hexadecylamine (HDA) intercalated laminar MoS2 precursor on anodized aluminum oxide template and the thiophene was polymerized directly on surface of these nanotubes as in situ by plasma method. The effect of plasma power on PTh/MoS2 nanocomposite properties has been investigated by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM and EDX), and X-ray diffraction spectroscopy (XRD). The presence of PTh bands in the FTIR spectra of PTh/MoS2 nanotube nanocomposites corresponding XRD results indicates that the polythiophene coating onto MoS2 nanotube. The chemical structure of PTh is not changed when the plasma power of discharge differ from 117 to 360 W. SEM images of nanocomposites show that when the discharge power is increased between 117 and 360 W the average diameter of PTh/MoS2 nanotube nanocomposites are changed and the structure become more uniformly.
NASA Astrophysics Data System (ADS)
Tanabe, Tadao; Ito, Takafumi; Oyama, Yutaka
2018-03-01
We used X-ray diffraction, and Raman and photoluminescence (PL) spectroscopies to examine the structure and optical properties of molybdenum disulfide (MoS2) crystals grown by friction at the interface between two materials. MoS2 is produced chemically from molybdenum dithiocarbamates (MoDTC) in synthetic oil under sliding friction conditions. The X-ray diffraction (XRD) patterns indicate that the structure of the MoS2 is layered with the c-axis perpendicular to the surface. The MoS2 layer was formed on stainless steel and germanium by friction at the interface between these materials and high carbon chromium bearing steel. The number of layers is estimated to be N (N > 6) from the distance between the Raman frequencies of the E12g and A1g modes. For MoS2 grown on stainless steel, exciton peak is observed in the PL spectrum at room temperature. These results show that this friction induced crystal growth method is viable for synthesizing atomic layers of MoS2 at solid surfaces.
Huang, Jingwen; Liu, Huiqiang; Jin, Bo; Liu, Min; Zhang, Qingchun; Luo, Liqiong; Chu, Shijin; Chu, Sheng; Peng, Rufang
2017-07-07
This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe 2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe 2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe 2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe 2 monolayer. The growth mechanism of the snow-like MoSe 2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe 2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe 2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.
NASA Astrophysics Data System (ADS)
Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H.
2016-02-01
The SnO2-Zn2SnO4 nanocomposite was successfully prepared via a simple solid state method. Then, a chemically modified electrode based on incorporating SnO2-Zn2SnO4 into multi-walled carbon nanotube paste matrix (MWCNTs/SnO2-Zn2SnO4/CPE) was prepared for the simultaneous determination of morphine(MO) and codeine (CO). The measurements were carried out by application of differential pulse voltammetry (DPV), cyclic voltammetry, and chronoamperometry. The MWCNTs/SnO2-Zn2SnO4/CPE showed an efficient electrocatalytic activity for the oxidation of MO and CO. The separation of the oxidation peak potential for MO-CO was about 550 mV. The calibration curves obtained for MO and CO were in the ranges of 0.1-310 μmol L-1 and 0.1-600.0 μmol L-1, respectively. The detection limits (S/N = 3) were 0.009 μmol L-1 for both drugs. The method also successfully employed as a selective, simple, and precise method for the determination of MO and CO in pharmaceutical and biological samples.
Antonelou, Aspasia; Syrrokostas, George; Sygellou, Lamprini; Leftheriotis, George; Dracopoulos, Vassileios; Yannopoulos, Spyros N
2016-01-29
The growth of MoS2 films by sulfurization of Mo foils at atmospheric pressure is reported. The growth procedure provides, in a controlled way, mono- and few-layer thick MoS2 films with substrate-scale uniformity across square-centimeter area on commercial foils without any pre- or post-treatment. The prepared few-layer MoS2 films are investigated as counter electrodes for dye-sensitized solar cells (DSSCs) by assessing their ability to catalyse the reduction of I3(-) to I(-) in triiodide redox shuttles. The dependence of the MoS2 catalytic activity on the number of monolayers is explored down to the bilayer thickness, showing performance similar to that of, and stability against corrosion better than, Pt-based nanostructured film. The DSSC with the MoS2-Mo counter electrode yields a photovoltaic energy conversion efficiency of 8.4%, very close to that of the Pt-FTO-based DSSC, i.e. 8.7%. The current results disclose a facile, cost-effective and green method for the fabrication of mechanically robust and chemically stable, few-layer MoS2 on flexible Mo substrates and further demonstrate that efficient counter electrodes for DSSCs can be prepared at thicknesses down to the 1-2 nm scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, M.; Ma, L.Q.
1998-11-01
It is critical to compare existing sample digestion methods for evaluating soil contamination and remediation. USEPA Methods 3050, 3051, 3051a, and 3052 were used to digest standard reference materials and representative Florida surface soils. Fifteen trace metals (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and Za), and six macro elements (Al, Ca, Fe, K, Mg, and P) were analyzed. Precise analysis was achieved for all elements except for Cd, Mo, Se, and Sb in NIST SRMs 2704 and 2709 by USEPA Methods 3050 and 3051, and for all elements except for As, Mo,more » Sb, and Se in NIST SRM 2711 by USEPA Method 3052. No significant differences were observed for the three NIST SRMs between the microwave-assisted USEPA Methods 3051 and 3051A and the conventional USEPA Method 3050 Methods 3051 and 3051a and the conventional USEPA Method 3050 except for Hg, Sb, and Se. USEPA Method 3051a provided comparable values for NIST SRMs certified using USEPA Method 3050. However, for method correlation coefficients and elemental recoveries in 40 Florida surface soils, USEPA Method 3051a was an overall better alternative for Method 3050 than was Method 3051. Among the four digestion methods, the microwave-assisted USEPA Method 3052 achieved satisfactory recoveries for all elements except As and Mg using NIST SRM 2711. This total-total digestion method provided greater recoveries for 12 elements Ag, Be, Cr, Fe, K, Mn, Mo, Ni, Pb, Sb, Se, and Zn, but lower recoveries for Mg in Florida soils than did the total-recoverable digestion methods.« less
NASA Astrophysics Data System (ADS)
Rameshbabu, R.; Vinoth, R.; Navaneethan, M.; Harish, S.; Hayakawa, Y.; Neppolian, B.
2017-10-01
Visible light active copper molybdenum sulfide (Cu2MoS4) nanosheets were successfully anchored on reduced graphene oxide (rGO) using facile hydrothermal method. During the hydrothermal reaction, reduction of graphene oxide into rGO and the formation of Cu2MoS4 nanosheets were successfully obtained. The charge transfer interaction between the rGO sheets and Cu2MoS4 nanosheets extended the absorption to visible region in comparison with bare Cu2MoS4 nanosheets i.e without rGO sheets. Furthermore, the notable photoluminescence quenching observed for Cu2MoS4/rGO nanocomposite revealed the effective role of rGO towards the significant inhibition of electron-hole pair recombination. The photocatalytic efficiencies of bare Cu2MoS4 and Cu2MoS4/rGO nanocomposite was evaluated for the degradation of methyl orange dye under visible irradiation (λ > 420 nm). A maximum photodegradation efficiency of 99% was achieved for Cu2MoS4/rGO nanocomposite, while only 64% photodegradation was noted for bare Cu2MoS4. The enhanced optical absorption in visible region, high surface area, and low charge carrier recombination in the presence of rGO sheets were the main reasons for the enhancement in photodegardation of MO dye. In addition, the resultant Cu2MoS4/rGO nanocomposite was found to be reusable for five successive cycles without significant loss in its photocatalytic performance.
NASA Astrophysics Data System (ADS)
Xin, Hailin; Hai, Yang; Li, Dongzhi; Qiu, Zhaozheng; Lin, Yemao; Yang, Bo; Fan, Haosen; Zhu, Caizhen
2018-05-01
Hybrid aerogel by dispersing Mo2C@C core-shell nanocrystals into three-dimensional (3D) graphene (Mo2C@C-GA) has been successfully prepared through two-step methods. Firstly, carbon-coated MoO2 nanocrystals uniformly anchor on 3D graphene aerogel (MoO2@C-GA) via hydrothermal reaction. Then the MoO2@C-GA precursor is transformed into Mo2C@C-GA after the following carbonization process. Furthermore, the freeze-drying step plays an important role in the resulting pore size distribution of the porous networks. Moreover, graphene aerogels exhibit extremely low densities and superior electrical properties. When evaluated as anode material for lithium ion battery, Mo2C@C-GA delivers excellent rate capability and stable cycle performance when compared with C-GA and Mo2C nanoparticles. Mo2C@C-GA exhibits the initial discharge capacity of 1461.4 mA h g-1 at the current density of 0.1 A g-1, and retains a reversible capacity of 1089.8 mA h g-1 after 100 cycles at a current density of 0.1 A g-1. Even at high current density of 5 A g-1, a discharge capacity of 623.5 mA h g-1 can be still achieved. The excellent performance of Mo2C@C-GA could be attributed to the synergistic effect of Mo2C@C nanocrystals and the 3D graphene conductive network.
Characterization of Thin Walled Mo Tubing produced by FBCVD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaux, Miles Frank; Usov, Igor Olegovich
2016-01-21
The goal of this report is to delineate the results of material characterization performed on Mo tubing produced via the fluidized bed chemical vapor deposition (FBCVD) method. Scanning electron microscopy (SEM) imaging reveals that small randomly oriented grains are achieved in the Mo deposition, but do not persist throughout the entire thickness of the material. Energy dispersive spectroscopy (EDS) reveals the Mo tubes contain residual chlorine and oxygen. EDS measurements on the tube surfaces separated from glass and quartz substrates reveal substrate material adhered to this surface. X-ray diffraction (XRD) revealed the presence of carbon contaminant in the form ofmore » Mo 2C and oxygen in the form of MoO 2. Combustion infrared detection (CID) and inert gas fusion (IGF) performed at Luvak Inc. was used to quantify weight percentages of oxygen and carbon in the tubes produced. Hardness value of the FBCVD Mo was found to be comparable to low carbon arc cast molybdenum.« less
Chua, Chun Kiang; Loo, Adeline Huiling; Pumera, Martin
2016-09-26
The metallic 1 T phase of MoS2 has been widely identified to be responsible for the improved performances of MoS2 in applications including hydrogen evolution reactions and electrochemical supercapacitors. To this aim, various synthetic methods have been reported to obtain 1 T phase-rich MoS2 . Here, the aim is to evaluate the efficiencies of the bottom-up (hydrothermal reaction) and top-down (chemical exfoliation) approaches in producing 1 T phase MoS2 . It is established in this study that the 1 T phase MoS2 produced through the bottom-up approach contains a high proportion of 1 T phase and demonstrates excellent electrochemical and electrical properties. Its performance in the hydrogen evolution reaction and electrochemical supercapacitors also surpassed that of 1 T phase MoS2 produced through a top-down approach. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta
2018-04-01
A facile hydrothermal method has been adopted to synthesize pure MoS2 nanosheets and MoS2/rGO nanosheets hybrid. The samples were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (HRTEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET). The photocatalytic performance and reusability of MoS2 nanosheets and MoS2/rGO hybrids was evaluated by discoloring of RhB under visible light irradiation. Results indicated that MoS2/rGO photocatalysts with large surface area of 69.5 m2 g-1 could completely degrade 50 mL of 8 mg L-1 RhB aqueous solution in 90 min with excellent recycling and structural stability as compared with pure MoS2 nanosheets (53%). Such enhanced performance could be explained due to the high surface area, enhanced light absorption and the increased dye adsorptivity and reduced electron-hole pair recombination with the presence of rGO.
Multicentric occurrence of hepatocellular carcinoma with nonalcoholic steatohepatitis
Kawai, Hirokazu; Nomoto, Minoru; Suda, Takeshi; Kamimura, Kenya; Tsuchiya, Atsunori; Tamura, Yasushi; Yano, Masahiko; Takamura, Masaaki; Igarashi, Masato; Wakai, Toshifumi; Yamagiwa, Satoshi; Matsuda, Yasunobu; Ohkoshi, Shogo; Kurosaki, Isao; Shirai, Yoshio; Okada, Masahiko; Aoyagi, Yutaka
2011-01-01
AIM: To reveal the manner of hepatocellular carcinoma (HCC) development in patients with nonalcoholic steatohepatitis (NASH) focusing on multicentric occurrence (MO) of HCC. METHODS: We compared clinicopathological characteristics between patients with and without MO of HCC arising from NASH background. The clinical features were implicated with reference to the literature available. RESULTS: MO of HCC was identified with histological proof in 4 out of 12 patients with NASH-related HCC (2 males and 2 females). One patient had synchronous MO; an advanced HCC, two well-differentiated HCCs and a dysplastic nodule, followed by the development of metachronous MO of HCC. The other three patients had multiple advanced HCCs accompanied by a well-differentiated HCC or a dysplastic nodule. Of these three patients, one had synchronous MO, one had metachronous MO and the other had both synchronous and metachronous MO. There were no obvious differences between the patients with or without MO in terms of liver function tests, tumor markers and anatomical extent of HCC. On the other hand, all four patients with MO of HCC were older than 70 years old and had the comorbidities of obesity, type 2 diabetes mellitus (T2DM), hypertension and cirrhosis. Although these conditions were not limited to MO of HCC, all the conditions were met in only one of eight patients without MO of HCC. Thus, concurrence of these conditions may be a predisposing situation to synchronous MO of HCC. In particular, old age, T2DM and cirrhosis were suggested to be prerequisite for MO because these factors were depicted in common among two other cases with MO of HCC under NASH in the literature. CONCLUSION: The putative predisposing factors and necessary preconditions for synchronous MO of HCC in NASH were suggested in this study. Further investigations are required to clarify the accurate prevalence and predictors of MO to establish better strategies for treatment and prevention leading to the prognostic improvement in NASH. PMID:21307983
Molecular recognition features (MoRFs) in three domains of life.
Yan, Jing; Dunker, A Keith; Uversky, Vladimir N; Kurgan, Lukasz
2016-03-01
Intrinsically disordered proteins and protein regions offer numerous advantages in the context of protein-protein interactions when compared to the structured proteins and domains. These advantages include ability to interact with multiple partners, to fold into different conformations when bound to different partners, and to undergo disorder-to-order transitions concomitant with their functional activity. Molecular recognition features (MoRFs) are widespread elements located in disordered regions that undergo disorder-to-order transition upon binding to their protein partners. We characterize abundance, composition, and functions of MoRFs and their association with the disordered regions across 868 species spread across Eukaryota, Bacteria and Archaea. We found that although disorder is substantially elevated in Eukaryota, MoRFs have similar abundance and amino acid composition across the three domains of life. The abundance of MoRFs is highly correlated with the amount of intrinsic disorder in Bacteria and Archaea but only modestly correlated in Eukaryota. Proteins with MoRFs have significantly more disorder and MoRFs are present in many disordered regions, with Eukaryota having more MoRF-free disordered regions. MoRF-containing proteins are enriched in the ribosome, nucleus, nucleolus and microtubule and are involved in translation, protein transport, protein folding, and interactions with DNAs. Our insights into the nature and function of MoRFs enhance our understanding of the mechanisms underlying the disorder-to-order transition and protein-protein recognition and interactions. The fMoRFpred method that we used to annotate MoRFs is available at http://biomine.ece.ualberta.ca/fMoRFpred/.
NASA Astrophysics Data System (ADS)
Wang, B. B.; Zhu, M. K.; Levchenko, I.; Zheng, K.; Gao, B.; Xu, S.; Ostrikov, K.
2017-10-01
The role of reactive environment and hydrogen specifically in growth and structure of molybdenum selenide (MoSe2) nanomaterials is presently debated, and it is not clear whether hydrogen can promote the growth of MoSe2 sheets and alter their electronic properties. To find efficient, convenient methods for controlling the nucleation, growth and resultant properties of MoSe2 nanomaterials, MoSe2 nanoflakes were synthesized on silicon substrates by hot filament chemical vapor deposition using molybdenum trioxide and selenium powders in pure hydrogen, nitrogen gases and hydrogen-nitrogen mixtures. The structures and composition of synthesized MoSe2 nanoflakes were studied using the advanced characterization instruments including field emission scanning electron microscopy, micro-Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectrometry. The analysis of the growth process indicates that hydrogen can improve the formation of MoSe2 nanoflakes and significantly alter their properties due to the high reduction capacity of hydrogen and the creation of more nucleation centers of MoSe2 nanoflakes on the silicon surface. The study of photoluminescent (PL) properties reveals that the MoSe2 nanoflakes can generate a strong PL band at about 631 nm, differently from the plain MoSe2 nanoflakes. The major difference in the PL properties may be related to the edges of MoSe2 nanoflakes. These results can be used to control the growth and structure of MoSe2-based nanomaterials and contribute to the development of advanced MoSe2-based optoelectronic devices.
An, Jianxin; Wang, Xuan; Ming, Meiting; Li, Jian; Ye, Nengsheng
2018-05-01
A synthetic polyethylene glycol-molybdenum disulfide (PEG@MoS 2 ) composite was prepared using a simple method, and the application of this material in dispersive solid-phase extraction (DSPE) was investigated for the enrichment of eight sulfonamides (SAs) in milk samples. The composite was characterized by energy dispersive spectroscopy, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller measurements. The results showed that the MoS 2 synthesized in the presence of PEG has the advantage of a larger surface area and that the adsorption effect of this MoS 2 was enhanced. After extraction, the eight SAs were separated by capillary zone electrophoresis with a good linear relationship ( R 2 > 0.9902) in the range of 0.3-30 µg ml -1 and good precision (between 0.32% and 9.83%). Additionally, good recoveries (between 60.52% and 110.91%) were obtained for the SAs in the milk samples. The developed PEG@MoS 2 -based DSPE method could be applied for the enrichment of SAs in real milk samples.
a Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis.
NASA Astrophysics Data System (ADS)
Gomez de Anderez, Dora M.
1990-01-01
Available from UMI in association with The British Library. Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4-tetrahidro-1, 6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 Br.H_2O) has been determined, first using monochromatic Mo Kalpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed a R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop- 2-en-1-one, (C_{25 }H_{20}N _2O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analysis respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analysis of the benzil compound ((C_6H_5 O.CO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature -114 ^circC. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new molecular structure of (Dinitrato-(N,N ^'-dimethylethylene-diamine)copper(II)) has been determined using Mo Kalpha radiation on a four circle diffractometer. The refinement resulted in an R-factor (on F) of 4.06%.
A Study of the Synchrotron Laue Method for Quantitative Crystal Structure Analysis
NASA Astrophysics Data System (ADS)
Gomez de Anderez, Dora M.
1990-01-01
Quantitative crystal structure analyses have been carried out on small molecule crystals using synchrotron radiation and the Laue method. A variety of single crystal structure determinations and associated refinements are used and compared with the monochromatic analyses. The new molecular structure of 7-amino-5-bromo -4-methyl-2-oxo-1,2,3,4 -tetrahidro-1,6 -naphthyridine-8-carbonitrile (C_{10 }H_9ON_4 BrcdotH_2O) has been determined, first using monochromatic Mo K alpha radiation and a four-circle diffractometer, then using synchrotron Laue diffraction photography. The structure refinements showed an R-factor of 4.97 and 14.0% for the Mo Kalpha and Laue data respectively. The molecular structure of (S)-2-chloro-2-fluoro-N-((S)-1-phenylethyl) ethanamide, (C_{10}H _{11}ClFNO), has been determined using the same crystal throughout for X-ray monochromatic analyses (Mo Kalpha and Cu K alpha) followed by synchrotron Laue data collection. The Laue and monochromatic data compare favourably. The R -factors (on F) were 6.23, 6.45 and 8.19% for the Mo K alpha, Cu Kalpha and Laue data sets respectively. The molecular structure of 3-(5-hydroxy-3-methyl-1-phenylpyrazol-4-yl)-1,3-diphenyl -prop-2-en-1-one, (C_{25}H _{20}N_2 O_2) has been determined using the synchrotron Laue method. The results compare very well with Mo Kalpha monochromatic data. The R-factors (on F) were 4.60 and 5.29% for Mo Kalpha and Laue analyses respectively. The Laue method is assessed in locating the 20 hydrogen atoms in this structure. The structure analyses of the benzil compound ((C_6H_5 OcdotCO_2)) is carried out using the synchrotron Laue method firstly at room temperature and secondly at low temperature. The structure shows an R-factor (on F) of 13.06% and 6.85% for each data set respectively. The synchrotron Laue method was used to collect data for ergocalciferol (Vitamin D_2). The same crystal was also used to record oscillation data with the synchrotron radiation monochromatic beam. A new molecular structure of (Dinitrato-(N,N ^'-dimethylethylene-diamine)copper(II)) has been determined using Mo Kalpha radiation on a four circle diffractometer. The refinement resulted in an R-factor (on F) of 4.06%.
Correlates of Mental Health Disorders among Children with Hearing Impairments
ERIC Educational Resources Information Center
Fellinger, Johannes; Holzinger, Daniel; Sattel, Heribert; Laucht, Manfred; Goldberg, David
2009-01-01
Aim: The aim of this study was to elucidate factors related to the high rate of mental health disorders seen in those with impaired hearing, including social factors and audiological measures. Method: A representative sample of 95 pupils (47 females, 48 males; mean age 11y 1mo, range 6y 5mo to 16y, SD 2y 7mo) with hearing impairments of at least…
NASA Astrophysics Data System (ADS)
Chang, Yuan-Ming; Lin, Che-Yi; Lin, Yen-Fu; Tsukagoshi, Kazuhito
2016-11-01
We present a review of recent developments in the synthesis, thickness identification, electronic properties, and possible applications of layered MoTe2 flakes. Special emphasis is made on two-dimensional (2D) MoTe2 semiconductors and the extensive research in recent years on their applications in electronics. Layered MoTe2 flakes have been the focus of substantial interest in the research community because of their fascinating characteristics, including an appropriate band gap and a simple fabrication method (exfoliation) to form layered nanomaterials. Our aim is to provide the readers an overview of layered MoTe2 flakes and to understand their properties, which may lead to their applications in micro- and nanoelectronics.
Thiol-modified MoS2 nanosheets as a functional layer for electrical bistable devices
NASA Astrophysics Data System (ADS)
Li, Guan; Tan, Fenxue; Lv, Bokun; Wu, Mengying; Wang, Ruiqi; Lu, Yue; Li, Xu; Li, Zhiqiang; Teng, Feng
2018-01-01
Molybdenum disulfide nanosheets have been synthesized by one-pot method using 1-ODT as sulfur source and surfactant. The structure, morphology and optical properties of samples were investigated by XRD, FTIR, Abs spectrum and TEM patterns. The XRD pattern indicated that the as-obtained MoS2 belong to hexagonal system. The as-obtained MoS2 nanosheets blending with PVK could be used to fabricate an electrically bistable devices through a simple spin-coating method and the device exhibited an obvious electrical bistability properties. The charge transport mechanism of the device was discussed based on the filamentary switching models.
Zhang, Angel; Stillman, Martin J
2018-05-09
The electronic structures of three previously synthesized Ni-coordinated chlorins with β-substituents of thioketone, fluorene, and ketone were investigated using magnetic circular dichroism spectroscopy (MCD) and density functional theory (DFT) for potential application as sensitizers for dye-sensitized solar cells (DSSCs). Computational studies on modeled Zn-coordinated chlorins allowed identification of charge transfer and d-d transitions of the Ni2+ coordinated chlorins. Two fictive Zn chlorins, M1 and M2, were designed with thiophene units based on the fluorene substituted chlorin. Substitution with thiophene altered the typical arrangement of the four Gouterman molecular orbitals (MOs) and red-shifted and greatly intensified the lowest energy absorption band (the Q band). The introduction of the thiophene-based MO as the LUMO below the usual Gouterman LUMO is predicted to increase the efficiency of electron transfer from the dye to the conduction band of the semiconductor in DSSCs. The addition of a donor group on the opposite pyrrole (M2) red-shifted the Q band further and introduced a donor-based MO between the typical Gouterman HOMO and HOMO-1. Despite the relatively small ΔHOMO, M1 and M2 exhibited remarkably intense Q bands. M2 would be a possible candidate for application in DSSCs due to its panchromatic absorption, intense and red-shifted Q band, and the presence of the substituent based MO properties. Another indicator of a successful dye is the alignment of the ground state and excited state oxidation potentials (GSOP and ESOP, respectively) with respect to the conduction band of the semiconductor. The GSOP for M2 lies 0.55 eV below the I-/I3- redox potential and the ESOP lies 0.48 eV above the TiO2 conduction band. The impact of the thiophene dominance in the LUMO also supports the prediction of efficient sensitization properties. The remarkably intense Q band of M2 predicted to be at 777 nm with a ΔHOMO of just 1.04 eV provides a synthetic route to tetrapyrroles with extremely intense, red Q bands without the need for aza nitrogens of the phthalocyanines. This study illustrates the value of guided synthesis using MCD spectral analysis and computational methods for optimizing the design of porphyrin dyes.
Ionescu, Robert; Campbell, Brennan; Wu, Ryan; Aytan, Ece; Patalano, Andrew; Ruiz, Isaac; Howell, Stephen W; McDonald, Anthony E; Beechem, Thomas E; Mkhoyan, K Andre; Ozkan, Mihrimah; Ozkan, Cengiz S
2017-07-25
It is of paramount importance to improve the control over large area growth of high quality molybdenum disulfide (MoS 2 ) and other types of 2D dichalcogenides. Such atomically thin materials have great potential for use in electronics, and are thought to make possible the first real applications of spintronics. Here in, a facile and reproducible method of producing wafer scale atomically thin MoS 2 layers has been developed using the incorporation of a chelating agent in a common organic solvent, dimethyl sulfoxide (DMSO). Previously, solution processing of a MoS 2 precursor, ammonium tetrathiomolybdate ((NH 4 ) 2 MoS 4 ), and subsequent thermolysis was used to produce large area MoS 2 layers. Our work here shows that the use of ethylenediaminetetraacetic acid (EDTA) in DMSO exerts superior control over wafer coverage and film thickness, and the results demonstrate that the chelating action and dispersing effect of EDTA is critical in growing uniform films. Raman spectroscopy, photoluminescence (PL), x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and high-resolution scanning transmission electron microscopy (HR-STEM) indicate the formation of homogenous few layer MoS 2 films at the wafer scale, resulting from the novel chelant-in-solution method.
Doping of two-dimensional MoS2 by high energy ion implantation
NASA Astrophysics Data System (ADS)
Xu, Kang; Zhao, Yuda; Lin, Ziyuan; Long, Yan; Wang, Yi; Chan, Mansun; Chai, Yang
2017-12-01
Two-dimensional (2D) materials have been demonstrated to be promising candidates for next generation electronic circuits. Analogues to conventional Si-based semiconductors, p- and n-doping of 2D materials are essential for building complementary circuits. Controllable and effective doping strategies require large tunability of the doping level and negligible structural damage to ultrathin 2D materials. In this work, we demonstrate a doping method utilizing a conventional high-energy ion-implantation machine. Before the implantation, a Polymethylmethacrylate (PMMA) protective layer is used to decelerate the dopant ions and minimize the structural damage to MoS2, thus aggregating the dopants inside MoS2 flakes. By optimizing the implantation energy and fluence, phosphorus dopants are incorporated into MoS2 flakes. Our Raman and high-resolution transmission electron microscopy (HRTEM) results show that only negligibly structural damage is introduced to the MoS2 lattice during the implantation. P-doping effect by the incorporation of p+ is demonstrated by Photoluminescence (PL) and electrical characterizations. Thin PMMA protection layer leads to large kinetic damage but also a more significant doping effect. Also, MoS2 with large thickness shows less kinetic damage. This doping method makes use of existing infrastructures in the semiconductor industry and can be extended to other 2D materials and dopant species as well.
A New Method of Metallization for Silicon Solar Cells
NASA Technical Reports Server (NTRS)
Macha, M.
1979-01-01
A low cost ohmic contact on silicon solar cells based on molybdenum-tin metal systems was developed. The approach is based on the formulation of a screenable ink composed from molybdenum oxide and tin mixture. The reduction of Mo03 into Mo and the establishment of Mo 03:Sn ratio is studied. Both tasks were done in an experimental station constructed for this purpose. The results show that molybdenum was formed from its oxide at 800 C. and improved in bonding to silicon at 900 C. A 20% Mo03-80%Sn mixture was converted into metallic coating within this temperature range.
Prabhakar, A H; Patel, V B; Giridhar, R
1999-07-01
Two new rapid, sensitive and economical spectrophotometric methods are described for the determination of fluoxetine hydrochloride in bulk and in pharmaceutical formulations. Both methods are based on the formation of a yellow ion-pair complex due to the action of methyl orange (MO) and thymol blue (TM) on fluoxetine in acidic (pH 4.0) and basic (pH 8.0) medium, respectively. Under optimised conditions they show an absorption maxima at 433 nm (MO) and 410 nm (TB), with molar absorptivities of 2.12 x 10(-4) and 4.207 x 10(-3) l mol(-1) cm(-1) and Sandell's Sensitivities of 1.64 x 10(-2) and 0.082 microg cm(-2) per 0.001 absorbance unit for MO and TB, respectively. The colour is stable for 5 min after extraction. In both cases Beer's Law is obeyed at 1-20 microg mol(-1) with MO and 4-24 microg mol(-1) with TB. The proposal method was successfully extended to pharmaceutical preparations capsules. The results obtained by both the agreement and E.P. (3rd edition) were in good agreement and statistical comparison by Student's t-test and variance ratio F-test showed no significant difference in the three methods.
Sertsu, M G; Nardello, M; Giglia, A; Corso, A J; Maurizio, C; Juschkin, L; Nicolosi, P
2015-12-10
Accurate measurements of optical properties of multilayer (ML) mirrors and chemical compositions of interdiffusion layers are particularly challenging to date. In this work, an innovative and nondestructive experimental characterization method for multilayers is discussed. The method is based on extreme ultraviolet (EUV) reflectivity measurements performed on a wide grazing incidence angular range at an energy near the absorption resonance edge of low-Z elements in the ML components. This experimental method combined with the underlying physical phenomenon of abrupt changes of optical constants near EUV resonance edges enables us to characterize optical and structural properties of multilayers with high sensitivity. A major advantage of the method is to perform detailed quantitative analysis of buried interfaces of multilayer structures in a nondestructive and nonimaging setup. Coatings of Si/Mo multilayers on a Si substrate with period d=16.4 nm, number of bilayers N=25, and different capping structures are investigated. Stoichiometric compositions of Si-on-Mo and Mo-on-Si interface diffusion layers are derived. Effects of surface oxidation reactions and carbon contaminations on the optical constants of capping layers and the impact of neighboring atoms' interactions on optical responses of Si and Mo layers are discussed.
NASA Astrophysics Data System (ADS)
Zhao, Peng; Khosravi, Ava; Azcatl, Angelica; Bolshakov, Pavel; Mirabelli, Gioele; Caruso, Enrico; Hinkle, Christopher L.; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.
2018-07-01
Border traps and interface traps in HfO2/few-layer MoS2 top-gate stacks are investigated by C–V characterization. Frequency dependent C–V data shows dispersion in both the depletion and accumulation regions for the MoS2 devices. The border trap density is extracted with a distributed model, and interface traps are analyzed using the high-low frequency and multi-frequency methods. The physical origins of interface traps appear to be caused by impurities/defects in the MoS2 layers, performing as band tail states, while the border traps are associated with the dielectric, likely a consequence of the low-temperature deposition. This work provides a method of using multiple C–V measurements and analysis techniques to analyze the behavior of high-k/TMD gate stacks and deconvolute border traps from interface traps.
Zhao, Dan; Cheng, Wen-Dan; Zhang, Hao; Hang, Shu-Ping; Fang, Ming
2008-07-28
The structural, optical, and electronic properties of two rare-earth molybdenum borate compounds, LnMoBO(6) (Ln = La, Ce), have been investigated by means of single-crystal X-ray diffraction, elemental analyses, and spectral measurements, as well as calculations of energy band structures, density of states, and optical response functions by the density functional method. The title compounds, which crystallize in monoclinic space group P2(1)/c, possess a similar network of interconnected [Ce(2)(MoO(4))(2)](2+) chains and [BO(2)](-) wavy chains. Novel 1D molybdenum oxide chains are contained in their three-dimensional (3D) networks. The calculated results of crystal energy band structure by the density functional theory (DFT) method show that the solid-state compound LaMoBO(6) is a semiconductor with indirect band gaps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Dong-Suk; Kang, Yu-Jin; Park, Jae-Hyung
Highlights: • We developed and investigated source/drain electrodes in oxide TFTs. • The Mo S/D electrodes showed good output characteristics. • Intrinsic TFT parameters were calculated by the transmission line method. - Abstract: This paper investigates the feasibility of a low-resistivity electrode material (Mo) for source/drain (S/D) electrodes in thin film transistors (TFTs). The effective resistances between Mo source/drain electrodes and amorphous zinc–tin-oxide (a-ZTO) thin film transistors were studied. Intrinsic TFT parameters were calculated by the transmission line method (TLM) using a series of TFTs with different channel lengths measured at a low source/drain voltage. The TFTs fabricated with Momore » source/drain electrodes showed good transfer characteristics with a field-effect mobility of 10.23 cm{sup 2}/V s. In spite of slight current crowding effects, the Mo source/drain electrodes showed good output characteristics with a steep rise in the low drain-to-source voltage (V{sub DS}) region.« less