Sample records for orbital modelling study

  1. Effects of Orbital Lifetime Reduction on the Long-Term Earth Satellite Population as Modeled by EVOLVE 4.0

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Opiela, John N.; Liou, Jer-Chyi; Anz-Meador, Phillip D.; Theall, Jeffrey R.

    1999-01-01

    The latest update of the NASA orbital debris environment model, EVOLVE 4.0, has been used to study the effect of various proposed debris mitigation measures, including the NASA 25-year guideline. EVOLVE 4.0, which includes updates of the NASA breakup, solar activity, and the orbit propagator models, a GEO analysis option, and non-fragmentation debris source models, allows for the statistical modeling and predicted growth of the particle population >1 mm in characteristic length in LEO and GEO orbits. The initial implementation of this &odel has been to study the sensitivity of the overall LEO debris environment to mitigation measures designed to limit the lifetime of intact objects in LEO orbits. The mitigation measures test matrix for this study included several commonly accepted testing schemes, i.e., the variance of the maximum LEO lifetime from 10 to 50 years, the date of the initial implementation of this policy, the shut off of all explosions at some specified date, and the inclusion of disposal orbits. All are timely studies in that all scenarios have been suggested by researchers and satellite operators as options for the removal of debris from LEO orbits.

  2. Moonport: Transportation node in lunar orbit

    NASA Technical Reports Server (NTRS)

    1987-01-01

    An orbital transporation system between the Earth and Moon was designed. The design work focused on the requirements and configuration of an orbiting lunar base. The design utilized current Space Station technologies, but also focused on the specific requirements involved with a permanently manned, orbiting lunar station. A model of the recommended configuration was constructed. In order to analyze Moonport activity and requirements, a traffic model was designed, defining traffic between the lunar port, or Moonport and low Earth orbit. Also, a lunar base model was used to estimate requirements of the surface base on Moonport traffic and operations. A study was conducted to compare Moonport traffic and operations based in low lunar orbit and the L (sub 2) equilibrium point, behind the Moon. The study compared delta-V requirements to each location and possible payload deliveries to low Earth orbit from each location. Products of the Moonport location study included number of flights annually to Moonport, net payload delivery to low Earth orbit, and Moonport storage requirement.

  3. Orbital-selective Mott phase in multiorbital models for iron pnictides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Si, Qimiao

    2017-09-01

    There is increasing recognition that the multiorbital nature of the 3 d electrons is important to the proper description of the electronic states in the normal state of the iron-based superconductors. Earlier studies of the pertinent multiorbital Hubbard models identified an orbital-selective Mott phase, which anchors the orbital-selective behavior seen in the overall phase diagram. An important characteristics of the models is that the orbitals are kinetically coupled, i.e., hybridized, to each other, which makes the orbital-selective Mott phase especially nontrivial. A U (1 ) slave-spin method was used to analyze the model with nonzero orbital-level splittings. Here we develop a Landau free-energy functional to shed further light on this issue. We put the microscopic analysis from the U (1 ) slave-spin approach in this perspective, and show that the intersite spin correlations are crucial to the renormalization of the bare hybridization amplitude towards zero and the concomitant realization of the orbital-selective Mott transition. Based on this insight, we discuss additional ways to study the orbital-selective Mott physics from a dynamical competition between the interorbital hybridization and collective spin correlations. Our results demonstrate the robustness of the orbital-selective Mott phase in the multiorbital models appropriate for the iron-based superconductors.

  4. High spin systems with orbital degeneracy.

    PubMed

    Shen, Shun-Qing; Xie, X C; Zhang, F C

    2002-01-14

    High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighboring bonds interact antiferromagnetically. Possible relevance to the transition metal oxides is discussed.

  5. Payload/orbiter contamination control requirement study

    NASA Technical Reports Server (NTRS)

    Bareiss, L. E.; Rantanen, R. O.; Ress, E. B.

    1974-01-01

    A study was conducted to determine and quantify the expected particulate and molecular on-orbit contaminant environment for selected space shuttle payloads as a result of major shuttle orbiter contamination sources. Individual payload susceptibilities to contamination are reviewed. The risk of payload degradation is identified and preliminary recommendations are provided concerning the limiting factors which may depend on operational activities associated with the payload/orbiter interface or upon independent payload functional activities. A basic computer model of the space shuttle orbiter which includes a representative payload configuration is developed. The major orbiter contamination sources, locations, and flux characteristics based upon available data have been defined and modeled.

  6. Comparison of Selected Geopotential Models in Terms of the GOCE Orbit Determination Using Simulated GPS Observations

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej

    2016-12-01

    This work contains a comparative study of the performance of six geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, such models as ULUX_CHAMP2013S, ITG-GRACE 2010S, EIGEN-51C, EIGEN5S, EGM2008, EGM96, were adopted. Different sets of pseudo-range simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. The solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the solutions was slightly enhanced. Different arc lengths were taken for the computation.

  7. Hypersonic aerodynamic characteristics of NR-ATP orbiter, orbiter with external tank, and ascent configuration

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1973-01-01

    A scale model of the North American Rockwell ATP Orbiter with and without the external tank has been tested in a 22-inch helium tunnel at Mach 20 and a Reynolds number based on model length, of 2.14 times one million. Longitudinal and lateral-directional data were determined for the orbiter alone while only longitudinal characteristics and elevon roll effectiveness were investigated for the orbiter/tank combination. Oil flow and electron beam flow visualization studies were conducted for the orbiter alone, orbiter with external tank and the ascent configuration.

  8. Role of spin-orbit coupling in the Kugel-Khomskii model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-03-01

    We study the effective spin-orbital model for honeycomb-layered transition metal compounds, applying the second-order perturbation theory to the three-orbital Hubbard model with the anisotropic hoppings. This model is reduced to the Kitaev model in the strong spin-orbit coupling limit. Combining the cluster mean-field approximations with the exact diagonalization, we treat the Kugel-Khomskii type superexchange interaction and spin-orbit coupling on an equal footing to discuss ground-state properties. We find that a zigzag ordered state is realized in the model within nearest-neighbor interactions. We clarify how the ordered state competes with the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit. Thermodynamic properties are also addressed. The present paper should provide another route to account for the Kitaev-based magnetic properties in candidate materials.

  9. Graphical techniques to assist in pointing and control studies of orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Ruf, J. H.

    1986-01-01

    Computer generated graphics are developed to assist in the modeling and assessment of pointing and control systems of orbiting spacecraft. Three-dimensional diagrams are constructed of the Earth and of geometrical models which resemble the spacecraft of interest. Orbital positioning of the spacecraft model relative to the Earth and the orbital ground track are then displayed. A star data base is also available which may be used for telescope pointing and star tracker field-of-views to visually assist in spacecraft pointing and control studies. A geometrical model of the Hubble Space Telescope (HST) is constructed and placed in Earth orbit to demonstrate the use of these programs. Simulated star patterns are then displayed corresponding to the primary mirror's FOV and the telescope's star trackers for various telescope orientations with respect to the celestial sphere.

  10. Evaluation of semiempirical atmospheric density models for orbit determination applications

    NASA Technical Reports Server (NTRS)

    Cox, C. M.; Feiertag, R. J.; Oza, D. H.; Doll, C. E.

    1994-01-01

    This paper presents the results of an investigation of the orbit determination performance of the Jacchia-Roberts (JR), mass spectrometer incoherent scatter 1986 (MSIS-86), and drag temperature model (DTM) atmospheric density models. Evaluation of the models was performed to assess the modeling of the total atmospheric density. This study was made generic by using six spacecraft and selecting time periods of study representative of all portions of the 11-year cycle. Performance of the models was measured for multiple spacecraft, representing a selection of orbit geometries from near-equatorial to polar inclinations and altitudes from 400 kilometers to 900 kilometers. The orbit geometries represent typical low earth-orbiting spacecraft supported by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD). The best available modeling and orbit determination techniques using the Goddard Trajectory Determination System (GTDS) were employed to minimize the effects of modeling errors. The latest geopotential model available during the analysis, the Goddard earth model-T3 (GEM-T3), was employed to minimize geopotential model error effects on the drag estimation. Improved-accuracy techniques identified for TOPEX/Poseidon orbit determination analysis were used to improve the Tracking and Data Relay Satellite System (TDRSS)-based orbit determination used for most of the spacecraft chosen for this analysis. This paper shows that during periods of relatively quiet solar flux and geomagnetic activity near the solar minimum, the choice of atmospheric density model used for orbit determination is relatively inconsequential. During typical solar flux conditions near the solar maximum, the differences between the JR, DTM, and MSIS-86 models begin to become apparent. Time periods of extreme solar activity, those in which the daily and 81-day mean solar flux are high and change rapidly, result in significant differences between the models. During periods of high geomagnetic activity, the standard JR model was outperformed by DTM. Modification of the JR model to use a geomagnetic heating delay of 3 hours, as used in DTM, instead of the 6.7-hour delay produced results comparable to or better than the DTM performance, reducing definitive orbit solution ephermeris overlap differences by 30 to 50 percent. The reduction in the overlap differences would be useful for mitigating the impact of geomagnetic storms on orbit prediction.

  11. Thermal models applicable for visual and infrared studies of orbital debris

    NASA Technical Reports Server (NTRS)

    Lebofsky, Larry A.; Vilas, Faith

    1990-01-01

    Over the past decade, thermal models have been developed for the determination of asteroid diameters and albedos. As a first step to understanding the size/frequency distribution of the debris population in earth orbit, these thermal models have been modified to determine the sizes of orbiting debris. When possible, the model results have been compared to spherical satellites of known diameter.

  12. The development of an advanced generic solar dynamic heat receiver thermal model

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Kohout, L.

    1988-01-01

    An advanced generic solar dynamic heat receiver thermal model under development which can analyze both orbital transient and orbital average conditions is discussed. This model can be used to study advanced receiver concepts, evaluate receiver concepts under development, analyze receiver thermal characteristics under various operational conditions, and evaluate solar dynamic system thermal performances in various orbit conditions. The model and the basic considerations that led to its creation are described, and results based on a set of baseline orbit, configuration, and operational conditions are presented to demonstrate the working of the receiver model.

  13. Logistics of a Lunar Based Solar Power Satellite Scenario

    NASA Technical Reports Server (NTRS)

    Melissopoulos, Stefanos

    1995-01-01

    A logistics system comprised of two orbital stations for the support of a 500 GW space power satellite scenario in a geostationary orbit was investigated in this study. A subsystem mass model, a mass flow model and a life cycle cost model were developed. The results regarding logistics cost and burden rates show that the transportation cost contributed the most (96%) to the overall cost of the scenario. The orbital stations at a geostationary and at a lunar orbit contributed 4 % to that cost.

  14. Building CX peanut-shaped disk galaxy profiles. The relative importance of the 3D families of periodic orbits bifurcating at the vertical 2:1 resonance

    NASA Astrophysics Data System (ADS)

    Patsis, P. A.; Harsoula, M.

    2018-05-01

    Context. We present and discuss the orbital content of a rather unusual rotating barred galaxy model, in which the three-dimensional (3D) family, bifurcating from x1 at the 2:1 vertical resonance with the known "frown-smile" side-on morphology, is unstable. Aims: Our goal is to study the differences that occur in the phase space structure at the vertical 2:1 resonance region in this case, with respect to the known, well studied, standard case, in which the families with the frown-smile profiles are stable and support an X-shaped morphology. Methods: The potential used in the study originates in a frozen snapshot of an N-body simulation in which a fast bar has evolved. We follow the evolution of the vertical stability of the central family of periodic orbits as a function of the energy (Jacobi constant) and we investigate the phase space content by means of spaces of section. Results: The two bifurcating families at the vertical 2:1 resonance region of the new model change their stability with respect to that of most studied analytic potentials. The structure in the side-on view that is directly supported by the trapping of quasi-periodic orbits around 3D stable periodic orbits has now an infinity symbol (i.e. ∞-type) profile. However, the available sticky orbits can reinforce other types of side-on morphologies as well. Conclusions: In the new model, the dynamical mechanism of trapping quasi-periodic orbits around the 3D stable periodic orbits that build the peanut, supports the ∞-type profile. The same mechanism in the standard case supports the X shape with the frown-smile orbits. Nevertheless, in both cases (i.e. in the new and in the standard model) a combination of 3D quasi-periodic orbits around the stable x1 family with sticky orbits can support a profile reminiscent of the shape of the orbits of the 3D unstable family existing in each model.

  15. Testing of Selected Geopotential Models in Terms of GOCE Satellite Orbit Determination Using Simulated GPS Observations

    NASA Astrophysics Data System (ADS)

    Bobojc, Andrzej; Drozyner, Andrzej

    2016-04-01

    This work contains a comparative study of performance of twenty geopotential models in an orbit estimation process of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. For testing, among others, such models as JYY_GOCE02S, ITG-GOCE02, ULUX_CHAMP2013S, GOGRA02S, ITG-GRACE2010S, EIGEN-51C, EGM2008, EGM96, JGM3, OSU91a, OSU86F were adopted. A special software package, called the Orbital Computation System (OCS), based on the classical method of least squares was used. In the frame of OCS, initial satellite state vector components are corrected in an iterative process, using the given geopotential model and the models describing the remaining gravitational perturbations. An important part of the OCS package is the 8th order Cowell numerical integration procedure, which enables a satellite orbit computation. Different sets of pseudorange simulations along reference GOCE satellite orbital arcs were obtained using real orbits of the Global Positioning System (GPS) satellites. These sets were the basic observation data used in the adjustment. The centimeter-accuracy Precise Science Orbit (PSO) for the GOCE satellite provided by the European Space Agency (ESA) was adopted as the GOCE reference orbit. Comparing various variants of the orbital solutions, the relative accuracy of geopotential models in an orbital aspect is determined. Full geopotential models were used in the adjustment process. However, the solutions were also determined taking into account truncated geopotential models. In such case, an accuracy of the orbit estimated was slightly enhanced. The obtained solutions refer to the orbital arcs with the lengths of 90-minute and 1-day.

  16. Atmospheric density models comparison and impact on orbit solutions of GRACE-1, Sentinel-1A, TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Colace, Marco; Hackel, Stefan; Kirschner, Michael; Kahle, Ralph; Circi, Christian

    2017-04-01

    Satellites in Low Earth Orbit (LEO) are notably affected by the presence of the atmosphere, a predominant source of perturbations of the Keplerian motion at the altitudes of interest. For spacecraft of this class the main source of error in propagated trajectories is due to the mismodeling of the neutral density in the thermosphere and the associated drag force, which steadily decelerates orbital motion with both secular and periodic effects. Thermospheric density varies significantly with space and time because of complex interactions between solar activity and the Earth's atmosphere and magnetic field. Properly reproducing this variability by means of empirical dynamic models has always represented a difficult task but is of vital importance for orbit determination and propagation. The present study shows the influence of different atmospheric density models, predicted space weather proxies, and their related uncertainties on the orbit solutions of representative satellite missions. The study has been carried out by using a routine-like orbit propagation scenario applied to GRACE-1, Sentinel-1A, and TerraSAR-X, three LEO orbiting spacecraft with operational altitudes well spaced within the 400-700 km range. Archived space weather data predictions and some of the most recent and promising empirical atmospheric models (Naval Research Laboratory's NRLMSISE-00 and Jacchia-Bowman 2008) were used side-by-side with the well-known Jacchia 1971 model in order to assess potential gains in prediction accuracy. To evaluate the influence of solar variability on the atmospheric density models and associated orbit quality, two 2-month test time frames, in high and low solar activity periods, have been selected. The scope of the presentation is a detailed comparison of atmospheric density models and their influence on the estimated orbits of GRACE-1, Sentinel-1A and TerraSAR-X.

  17. Evaluation of advanced geopotential models for operational orbit determination

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Davis, B. E.; Samii, M. V.; Engel, C. J.; Doll, C. E.

    1988-01-01

    To meet future orbit determination accuracy requirements for different NASA projects, analyses are performed using Tracking and Data Relay Satellite System (TDRSS) tracking measurements and orbit determination improvements in areas such as the modeling of the Earth's gravitational field. Current operational requirements are satisfied using the Goddard Earth Model-9 (GEM-9) geopotential model with the harmonic expansion truncated at order and degree 21 (21-by-21). This study evaluates the performance of 36-by-36 geopotential models, such as the GEM-10B and Preliminary Goddard Solution-3117 (PGS-3117) models. The Earth Radiation Budget Satellite (ERBS) and LANDSAT-5 are the spacecraft considered in this study.

  18. Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model

    DOE PAGES

    Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.; ...

    2015-10-30

    We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less

  19. Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.

    We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less

  20. Mirror-Imaged Rapid Prototype Skull Model and Pre-Molded Synthetic Scaffold to Achieve Optimal Orbital Cavity Reconstruction.

    PubMed

    Park, Sung Woo; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk

    2015-08-01

    Reconstruction of traumatic orbital wall defects has evolved to restore the original complex anatomy with the rapidly growing use of computer-aided design and prototyping. This study evaluated a mirror-imaged rapid prototype skull model and a pre-molded synthetic scaffold for traumatic orbital wall reconstruction. A single-center retrospective review was performed of patients who underwent orbital wall reconstruction after trauma from 2012 to 2014. Patients were included by admission through the emergency department after facial trauma or by a tertiary referral for post-traumatic orbital deformity. Three-dimensional (3D) computed tomogram-based mirror-imaged reconstruction images of the orbit and an individually manufactured rapid prototype skull model by a 3D printing technique were obtained for each case. Synthetic scaffolds were anatomically pre-molded using the skull model as guide and inserted at the individual orbital defect. Postoperative complications were assessed and 3D volumetric measurements of the orbital cavity were performed. Paired samples t test was used for statistical analysis. One hundred four patients with immediate orbital defect reconstructions and 23 post-traumatic orbital deformity reconstructions were included in this study. All reconstructions were successful without immediate postoperative complications, although there were 10 cases with mild enophthalmos and 2 cases with persistent diplopia. Reoperations were performed for 2 cases of persistent diplopia and secondary touchup procedures were performed to contour soft tissue in 4 cases. Postoperative volumetric measurement of the orbital cavity showed nonsignificant volume differences between the damaged orbit and the reconstructed orbit (21.35 ± 1.93 vs 20.93 ± 2.07 cm(2); P = .98). This protocol was extended to severe cases in which more than 40% of the orbital frame was lost and combined with extensive soft tissue defects. Traumatic orbital reconstruction can be optimized and successful using an individually manufactured rapid prototype skull model and a pre-molded synthetic scaffold by computer-aid design and manufacturing. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  1. Geographical representation of radial orbit perturbations due to ocean tides: Implications for satellite altimetry

    NASA Technical Reports Server (NTRS)

    Bettadpur, Srinivas V.; Eanes, Richard J.

    1994-01-01

    In analogy to the geographical representation of the zeroth-order radial orbit perturbations due to the static geopotential, similar relationships have been derived for radial orbit perturbations due to the ocean tides. At each location these perturbations are seen to be coherent with the tide height variations. The study of this singularity is of obvious importance to the estimation of ocean tides from satellite altimeter data. We derive analytical expressions for the sensitivity of altimeter derived ocean tide models to the ocean tide force model induced errors in the orbits of the altimeter satellite. In particular, we focus on characterizing and quantifying the nonresonant tidal orbit perturbations, which cannot be adjusted into the empirical accelerations or radial perturbation adjustments commonly used during orbit determination and in altimeter data processing. As an illustration of the utility of this technique, we study the differences between a TOPEX/POSEIDON-derived ocean tide model and the Cartwright and Ray 1991 Geosat model. This analysis shows that nearly 60% of the variance of this difference for M(sub 2) can be explained by the Geosat radial orbit eror due to the omission of coefficients from the GEM-T2 background ocean tide model. For O(sub 1), K(sub 1), S(sub 2), and K(sub 2) the orbital effects account for approximately 10 to 40% of the variances of these differences. The utility of this technique to assessment of the ocean tide induced errors in the TOPEX/POSEIDON-derived tide models is also discussed.

  2. Sentinel-2A: Orbit Modelling Improvements and their Impact on the Orbit Prediction

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Otten, Michiel; Fernández Sánchez, Jaime; Fernández Martín, Carlos; Féménias, Pierre

    2016-07-01

    Sentinel-2A is the second satellite of the European Copernicus Programme. The satellite has been launched on 23rd June 2015 and it is operational since mid October 2015. This optical mission carries a GPS receiver for precise orbit determination. The Copernicus POD (Precise Orbit Determination) Service is in charge of generating precise orbital products and auxiliary files for Sentinel-2A as well as for the Sentinel-1 and -3 missions. The accuracy requirements for the Sentinel-2A orbit products are not very stringent with 3 m in 3D (3 sigma) for the near real-time (NRT) orbit and 10 m in 2D (3 sigma) for the predicted orbit. The fulfilment of the orbit accuracy requirements is normally not an issue. The Copernicus POD Service aims, however, to provide the best possible orbits for all three Sentinel missions. Therefore, a sophisticated box-wing model is generated for the Sentinel-2 satellite as it is done for the other two missions as well. Additionally, the solar wing of the satellite is rewound during eclipse, which has to be modelled accordingly. The quality of the orbit prediction is dependent on the results of the orbit estimation performed before it. The values of the last estimation of each parameter is taken for the orbit propagation, i.e. estimating ten atmospheric drag coefficients per 24h, the value of the last coefficient is used as a fix parameter for the subsequent orbit prediction. The question is whether the prediction might be stabilised by, e.g. using an average value of all ten coefficients. This paper presents the status and the quality of the Sentinel-2 orbit determination in the operational environment of the Copernicus POD Service. The impact of the orbit model improvements on the NRT and predicted orbits is studied in detail. Changes in the orbit parametrization as well as in the settings for the orbit propagation are investigated. In addition, the impact of the quality of the input GPS orbit and clock product on the Sentinel-2A orbit prediction results is checked. The results of this study do not only improve the Sentinel-2 orbit products but will also support the generation of reliable orbit predictions for the Sentinel-3 mission. The Sentinel-3 satellite is equipped with a laser retro-reflector and reliable orbit predictions are, therefore, very important to guarantee a continuous support of the satellite laser tracking stations.

  3. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  4. Orbital-selective Mott phases of a one-dimensional three-orbital Hubbard model studied using computational techniques

    DOE PAGES

    Liu, Guangkun; Kaushal, Nitin; Liu, Shaozhi; ...

    2016-06-24

    A recently introduced one-dimensional three-orbital Hubbard model displays orbital-selective Mott phases with exotic spin arrangements such as spin block states [J. Rincón et al., Phys. Rev. Lett. 112, 106405 (2014)]. In this paper we show that the constrained-path quantum Monte Carlo (CPQMC) technique can accurately reproduce the phase diagram of this multiorbital one-dimensional model, paving the way to future CPQMC studies in systems with more challenging geometries, such as ladders and planes. The success of this approach relies on using the Hartree-Fock technique to prepare the trial states needed in CPQMC. In addition, we study a simplified version of themore » model where the pair-hopping term is neglected and the Hund coupling is restricted to its Ising component. The corresponding phase diagrams are shown to be only mildly affected by the absence of these technically difficult-to-implement terms. This is confirmed by additional density matrix renormalization group and determinant quantum Monte Carlo calculations carried out for the same simplified model, with the latter displaying only mild fermion sign problems. Lastly, we conclude that these methods are able to capture quantitatively the rich physics of the several orbital-selective Mott phases (OSMP) displayed by this model, thus enabling computational studies of the OSMP regime in higher dimensions, beyond static or dynamic mean-field approximations.« less

  5. Diagrammatic theory of transition of pendulum like systems. [orbit-orbit and spin-orbit gravitational resonance interactions

    NASA Technical Reports Server (NTRS)

    Yoder, C. F.

    1979-01-01

    Orbit-orbit and spin-orbit gravitational resonances are analyzed using the model of a rigid pendulum subject to both a time-dependent periodic torque and a constant applied torque. First, a descriptive model of passage through resonance is developed from an examination of the polynomial equation that determines the extremes of the momentum variable. From this study, a probability estimate for capture into libration is derived. Second, a lowest order solution is constructed and compared with the solution obtained from numerical integration. The steps necessary to systematically improve this solution are also discussed. Finally, the effect of a dissipative term in the pendulum equation is analyzed.

  6. Dawn Orbit Determination Team : Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matt; Ardito, Alessandro; Han, Don; Haw, Robert; Kennedy, Brian; Mastrodemos, Nicholas; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The NASA Dawn spacecraft was launched on September 27, 2007 on a mission to study the asteroid belt's two largest objects, Vesta and Ceres. It is the first deep space orbiting mission to demonstrate solar-electric ion propulsion, providing the necessary delta-V to enable capture and escape from two extraterrestrial bodies. At this time, Dawn has completed its science campaign at Vesta and is currently on its journey to Ceres, where it will arrive in mid-2015. The spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012, capturing science data during four dedicated orbit phases. In order to maintain the reference orbits necessary for science and enable the transfers between those orbits, precise and timely orbit determination was required. The constraints associated with low-thrust ion propulsion coupled with the relatively unknown a priori gravity and rotation models for Vesta presented unique challenges for the Dawn orbit determination team. While [1] discusses the prediction performance of the orbit determination products, this paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  7. Optimum element density studies for finite-element thermal analysis of hypersonic aircraft structures

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Olona, Timothy; Muramoto, Kyle M.

    1990-01-01

    Different finite element models previously set up for thermal analysis of the space shuttle orbiter structure are discussed and their shortcomings identified. Element density criteria are established for the finite element thermal modelings of space shuttle orbiter-type large, hypersonic aircraft structures. These criteria are based on rigorous studies on solution accuracies using different finite element models having different element densities set up for one cell of the orbiter wing. Also, a method for optimization of the transient thermal analysis computer central processing unit (CPU) time is discussed. Based on the newly established element density criteria, the orbiter wing midspan segment was modeled for the examination of thermal analysis solution accuracies and the extent of computation CPU time requirements. The results showed that the distributions of the structural temperatures and the thermal stresses obtained from this wing segment model were satisfactory and the computation CPU time was at the acceptable level. The studies offered the hope that modeling the large, hypersonic aircraft structures using high-density elements for transient thermal analysis is possible if a CPU optimization technique was used.

  8. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  9. Development of the X-33 Aerodynamic Uncertainty Model

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.

    1998-01-01

    An aerodynamic uncertainty model for the X-33 single-stage-to-orbit demonstrator aircraft has been developed at NASA Dryden Flight Research Center. The model is based on comparisons of historical flight test estimates to preflight wind-tunnel and analysis code predictions of vehicle aerodynamics documented during six lifting-body aircraft and the Space Shuttle Orbiter flight programs. The lifting-body and Orbiter data were used to define an appropriate uncertainty magnitude in the subsonic and supersonic flight regions, and the Orbiter data were used to extend the database to hypersonic Mach numbers. The uncertainty data consist of increments or percentage variations in the important aerodynamic coefficients and derivatives as a function of Mach number along a nominal trajectory. The uncertainty models will be used to perform linear analysis of the X-33 flight control system and Monte Carlo mission simulation studies. Because the X-33 aerodynamic uncertainty model was developed exclusively using historical data rather than X-33 specific characteristics, the model may be useful for other lifting-body studies.

  10. How useful is the `mean stream' in discussing meteoroid stream evolution?

    NASA Astrophysics Data System (ADS)

    Williams, I. P.; Jones, D. C.

    2007-02-01

    The current model for meteoroid formation involves particles being ejected from parent objects, usually comets and sometimes asteroids. The orbital speed of any body in the Solar system is much larger than any potential ejection speed of small particles from the body, hence the initial orbit of any meteoroid is fairly similar to that of the parent. However, with the passage of time the effects of gravitational perturbations from the planets and solar radiation will cause the orbits of the meteoroids to evolve away from the parent's orbit. Initially this may cause a meteor shower to occur, but eventually will lead to the dissipation of the stream. When modelling meteoroid streams, it is usually more convenient to use the average orbital elements of all the meteoroids to study their evolution. In this paper, we consider the evolution of the orbits of several sets of meteoroids comparing the effectiveness of using the mean and median values for a stream when modelling the overall evolution. We conclude that although both mean and median provide a good match to the evolution of the real meteoroids for most of the time interval studied, the mean orbit remains more consistently close to the stream.

  11. Parametric studies and orbital analysis for an electric orbit transfer vehicle space flight demonstration

    NASA Astrophysics Data System (ADS)

    Avila, Edward R.

    The Electric Insertion Transfer Experiment (ELITE) is an Air Force Advanced Technology Transition Demonstration which is being executed as a cooperative Research and Development Agreement between the Phillips Lab and TRW. The objective is to build, test, and fly a solar-electric orbit transfer and orbit maneuvering vehicle, as a precursor to an operational electric orbit transfer vehicle (EOTV). This paper surveys some of the analysis tools used to do parametric studies and discusses the study results. The primary analysis tool was the Electric Vehicle Analyzer (EVA) developed by the Phillips Lab and modified by The Aerospace Corporation. It uses a simple orbit averaging approach to model low-thrust transfer performance, and runs in a PC environment. The assumptions used in deriving the EVA math model are presented. This tool and others surveyed were used to size the solar array power required for the spacecraft, and develop a baseline mission profile that meets the requirements of the ELITE mission.

  12. Earth Observatory Satellite system definition study. Report 1: Orbit/launch vehicle trade-off studies and recommendations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A summary of the constraints and requirements on the Earth Observatory Satellite (EOS-A) orbit and launch vehicle analysis is presented. The propulsion system (hydrazine) and the launch vehicle (Delta 2910) selected for EOS-A are examined. The rationale for the selection of the recommended orbital altitude of 418 nautical miles is explained. The original analysis was based on the EOS-A mission with the Thematic Mapper and the High Resolution Pointable Imager. The impact of the revised mission model is analyzed to show how the new mission model affects the previously defined propulsion system, launch vehicle, and orbit. A table is provided to show all aspects of the EOS multiple mission concepts. The subjects considered include the following: (1) mission orbit analysis, (2) spacecraft parametric performance analysis, (3) launch system performance analysis, and (4) orbits/launch vehicle selection.

  13. Nonlocal correlations in the orbital selective Mott phase of a one-dimensional multiorbital Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, S.; Kaushal, N.; Wang, Y.

    Here, we study nonlocal correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital- and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that themore » self-energy for the itinerant electrons is momentum dependent, indicating a degree of nonlocal correlations while the localized electrons have largely momentum independent self-energies. These nonlocal correlations also produce relative shifts of the holelike and electronlike bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally ordered insulating phase.« less

  14. Space Transfer Concepts and Analyses for Exploration Missions. Technical Directive 12: Beamed Power Systems Study

    NASA Technical Reports Server (NTRS)

    Eder, D.

    1992-01-01

    Parametric models were constructed for Earth-based laser powered electric orbit transfer from low Earth orbit to geosynchronous orbit. These models were used to carry out performance, cost/benefit, and sensitivity analyses of laser-powered transfer systems including end-to-end life cycle cost analyses for complete systems. Comparisons with conventional orbit transfer systems were made indicating large potential cost savings for laser-powered transfer. Approximate optimization was done to determine best parameter values for the systems. Orbit transfer flights simulations were conducted to explore effects of parameters not practical to model with a spreadsheet. The simulations considered view factors that determine when power can be transferred from ground stations to an orbit transfer vehicle and conducted sensitivity analyses for numbers of ground stations, Isp including dual-Isp transfers, and plane change profiles. Optimal steering laws were used for simultaneous altitude and plane change. Viewing geometry and low-thrust orbit raising were simultaneously simulated. A very preliminary investigation of relay mirrors was made.

  15. Nonlocal correlations in the orbital selective Mott phase of a one-dimensional multiorbital Hubbard model

    DOE PAGES

    Li, S.; Kaushal, N.; Wang, Y.; ...

    2016-12-12

    Here, we study nonlocal correlations in a three-orbital Hubbard model defined on an extended one-dimensional chain using determinant quantum Monte Carlo and density matrix renormalization group methods. We focus on a parameter regime with robust Hund's coupling, which produces an orbital selective Mott phase (OSMP) at intermediate values of the Hubbard U, as well as an orbitally ordered ferromagnetic insulating state at stronger coupling. An examination of the orbital- and spin-correlation functions indicates that the orbital ordering occurs before the onset of magnetic correlations in this parameter regime as a function of temperature. In the OSMP, we find that themore » self-energy for the itinerant electrons is momentum dependent, indicating a degree of nonlocal correlations while the localized electrons have largely momentum independent self-energies. These nonlocal correlations also produce relative shifts of the holelike and electronlike bands within our model. The overall momentum dependence of these quantities is strongly suppressed in the orbitally ordered insulating phase.« less

  16. Investigation of electrodynamic stabilization and control of long orbiting tethers

    NASA Technical Reports Server (NTRS)

    Colombo, G.; Arnold, D.

    1984-01-01

    The state-of-the-art in tether modelling among participants in the Tethered Satellite System (TSS) Program, the slack tether and its behavior, and certain advanced applications of the tether to problems in orbital mechanics are identified. The features and applications of the TSS software set are reviewed. Modelling the slack tether analytically with as many as 50 mass points and the application of this new model to a study of the behavior of a broken tether near the Shuttle are described. A reel control algorithm developed by SAO and examples of its use are described, including an example which also demonstrates the use of the tether in transferring a heavy payload from a low-orbiting Shuttle to a high circular orbit. Capture of a low-orbiting payload by a Space Station in high circular orbit is described. Energy transfer within a dumbbell-type spacecraft by cyclical reeling operations or gravitational effects on the natural elasticity of the connecting tether, it is shown, can circularize the orbit of the spacecraft.

  17. Ionospheric refraction effects on orbit determination using the orbit determination error analysis system

    NASA Technical Reports Server (NTRS)

    Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.

    1990-01-01

    The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.

  18. Impact of GNSS orbit modeling on LEO orbit and gravity field determination

    NASA Astrophysics Data System (ADS)

    Arnold, Daniel; Meyer, Ulrich; Sušnik, Andreja; Dach, Rolf; Jäggi, Adrian

    2017-04-01

    On January 4, 2015 the Center for Orbit Determination in Europe (CODE) changed the solar radiation pressure modeling for GNSS satellites to an updated version of the empirical CODE orbit model (ECOM). Furthermore, since September 2012 CODE operationally computes satellite clock corrections not only for the 3-day long-arc solutions, but also for the non-overlapping 1-day GNSS orbits. This provides different sets of GNSS products for Precise Point Positioning, as employed, e.g., in the GNSS-based precise orbit determination of low Earth orbiters (LEOs) and the subsequent Earth gravity field recovery from kinematic LEO orbits. While the impact of the mentioned changes in orbit modeling and solution strategy on the GNSS orbits and geophysical parameters was studied in detail, their implications on the LEO orbits were not yet analyzed. We discuss the impact of the update of the ECOM and the influence of 1-day and 3-day GNSS orbit solutions on zero-difference LEO orbit and gravity field determination, where the GNSS orbits and clock corrections, as well as the Earth rotation parameters are introduced as fixed external products. Several years of kinematic and reduced-dynamic orbits for the two GRACE LEOs are computed with GNSS products based on both the old and the updated ECOM, as well as with 1- and 3-day GNSS products. The GRACE orbits are compared by means of standard validation measures. Furthermore, monthly and long-term GPS-only and combined GPS/K-band gravity field solutions are derived from the different sets of kinematic LEO orbits. GPS-only fields are validated by comparison to combined GPS/K-band solutions, while the combined solutions are validated by analysis of the formal errors, as well as by comparing them to the combined GRACE solutions of the European Gravity Service for Improved Emergency Management (EGSIEM) project.

  19. Dynamical lifetimes of asteroids in retrograde orbits

    NASA Astrophysics Data System (ADS)

    Kankiewicz, Paweł; Włodarczyk, Ireneusz

    2017-07-01

    The population of known minor bodies in retrograde orbits (I > 90°) that are classified as asteroids is still growing. The aim of our study was to estimate the dynamical lifetimes of these bodies using the latest observational data, including astrometry and physical properties. We selected 25 asteroids with the best-determined orbital elements. We studied their dynamical evolution in the past and future for ±100 Myr (±1 Gyr for three particular cases). We first used orbit determination and cloning to produce swarms of test particles. These swarms were then input into long-term numerical integrations, and the orbital elements were averaged. Next, we collected the available thermal properties of our objects and we used them in an enhanced dynamical model with Yarkovsky forces. We also used a gravitational model for comparison. Finally, we estimated the median lifetimes of 25 asteroids. We found three objects whose retrograde orbits were stable with a dynamical lifetime τ ˜ 10-100 Myr. A large portion of the objects studied displayed smaller values of τ (τ ˜ 1 Myr). In addition, we studied the possible influence of the Yarkovsky effect on our results. We found that the Yarkovsky effect can have a significant influence on the lifetimes of asteroids in retrograde orbits. Because of the presence of this effect, it is possible that the median lifetimes of these objects are extended. Additionally, the changes in orbital elements, caused by Yarkovsky forces, appear to depend on the integration direction. To explain this more precisely, the same model based on new physical parameters, determined from future observations, will be required.

  20. ASSESSING THE INFLUENCE OF THE SOLAR ORBIT ON TERRESTRIAL BIODIVERSITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, F.; Bailer-Jones, C. A. L.

    The terrestrial record shows a significant variation in the extinction and origination rates of species during the past half-billion years. Numerous studies have claimed an association between this variation and the motion of the Sun around the Galaxy, invoking the modulation of cosmic rays, gamma rays, and comet impact frequency as a cause of this biodiversity variation. However, some of these studies exhibit methodological problems, or were based on coarse assumptions (such as a strict periodicity of the solar orbit). Here we investigate this link in more detail, using a model of the Galaxy to reconstruct the solar orbit andmore » thus a predictive model of the temporal variation of the extinction rate due to astronomical mechanisms. We compare these predictions as well as those of various reference models with paleontological data. Our approach involves Bayesian model comparison, which takes into account the uncertainties in the paleontological data as well as the distribution of solar orbits consistent with the uncertainties in the astronomical data. We find that various versions of the orbital model are not favored beyond simpler reference models. In particular, the distribution of mass extinction events can be explained just as well by a uniform random distribution as by any other model tested. Although our negative results on the orbital model are robust to changes in the Galaxy model, the Sun's coordinates, and the errors in the data, we also find that it would be very difficult to positively identify the orbital model even if it were the true one. (In contrast, we do find evidence against simpler periodic models.) Thus, while we cannot rule out there being some connection between solar motion and biodiversity variations on the Earth, we conclude that it is difficult to give convincing positive conclusions of such a connection using current data.« less

  1. Cosmic dust and space debris; Proceedings of the Topical Meetings and Workshop 6 of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M. (Editor); Hanner, M. S. (Editor); Kessler, D. J. (Editor)

    1986-01-01

    These proceedings encompass topics in the fields of extraterrestrial material samples, IRAS solar system and dust model results, and earth orbit debris. Attention is given to chemical fractionation during high velocity impact, particle deceleration and survival in multiple thin foil targets, and IRAS studies of asteroids, comets, cometary tails, the zodiacal background, and the three-dimensional modeling of interplanetary dust. Also discussed are the evolution of an earth orbit debris cloud, orbital debris due to future space activities, collision probabilities in geosynchronous orbits, and a bitelescopic survey of low altitude orbital debris.

  2. Phase competition in a one-dimensional three-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Tang, Yanfei; Maier, Thomas A.; Johnston, Steven

    2018-05-01

    We study the interplay between the electron-phonon (e -ph) and on-site electron-electron (e-e) interactions in a three-orbital Hubbard-Holstein model on an extended one-dimensional lattice using determinant quantum Monte Carlo. For weak e-e and e -ph interactions, we observe a competition between an orbital-selective Mott phase (OSMP) and a (multicomponent) charge-density-wave (CDW) insulating phase, with an intermediate metallic phase located between them. For large e-e and e -ph couplings, the OSMP and CDW phases persist, while the metallic phase develops short-range orbital correlations and becomes insulating when both the e-e and e -ph interactions are large but comparable. Many of our conclusions are in line with those drawn from a prior dynamical mean-field theory study of the two-orbital Hubbard-Holstein model [Phys. Rev. B 95, 121112(R) (2017), 10.1103/PhysRevB.95.121112] in infinite dimension, suggesting that the competition between the e -ph and e-e interactions in multiorbital Hubbard-Holstein models leads to rich physics, regardless of the dimension of the system.

  3. Orbit control of a stratospheric satellite with parameter uncertainties

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huo, Wei

    2016-12-01

    When a stratospheric satellite travels by prevailing winds in the stratosphere, its cross-track displacement needs to be controlled to keep a constant latitude orbital flight. To design the orbit control system, a 6 degree-of-freedom (DOF) model of the satellite is established based on the second Lagrangian formulation, it is proven that the input/output feedback linearization theory cannot be directly implemented for the orbit control with this model, thus three subsystem models are deduced from the 6-DOF model to develop a sequential nonlinear control strategy. The control strategy includes an adaptive controller for the balloon-tether subsystem with uncertain balloon parameters, a PD controller based on feedback linearization for the tether-sail subsystem, and a sliding mode controller for the sail-rudder subsystem with uncertain sail parameters. Simulation studies demonstrate that the proposed control strategy is robust to uncertainties and satisfies high precision requirements for the orbit flight of the satellite.

  4. Tidal regime of intact planetoid capture model for the Earth-Moon system: Does it relate to the archean sedimentary rock record?

    NASA Technical Reports Server (NTRS)

    Malcuit, Robert J.; Winters, Ronald R.

    1993-01-01

    Regardless of one's favorite model for the origin of the Earth-Moon system (fission, coformation, tidal capture, giant-impact) the early history of lunar orbital evolution would produce significant thermal and earth and ocean tidal effects on the primitive earth. Three of the above lunar origin models (fission, coformation, giant-impact) feature a circular orbit which undergoes a progressive increase in orbital radius from the time of origin to the present time. In contrast, a tidal capture model places the moon in an elliptical orbit undergoing progressive circularization from the time of capture (for model purposes about 3.9 billion years ago) for at least a few 10(exp 8) years following the capture event. Once the orbit is circularized, the subsequent tidal history for a tidal capture scenario is similar to that for other models of lunar origin and features a progressive increase in orbital radius to the current state of the lunar orbit. This elliptical orbit phase, if it occurred, should have left a distinctive signature in the terrestrial and lunar rock records. Depositional events would be associated terrestrial shorelines characterized by abnormally high, but progressively decreasing, ocean tidal amplitudes and ranges associated with such an orbital evolution. Several rock units in the age range 3.6-2.5 billion years before present are reported to have a major tidal component. Examples are the Warrawoona, Fortescue, and Hamersley Groups of Western Australia and the Pangola and Witwatersand Supergroups of South Africa. Detailed study of the features of these tidal sequences may be helpful in deciphering the style of lunar orbital evolution during the Archean Eon.

  5. Data analysis and interpretation related to space system/environment interactions at LEO altitude

    NASA Technical Reports Server (NTRS)

    Raitt, W. John; Schunk, Robert W.

    1991-01-01

    Several studies made on the interaction of active systems with the LEO space environment experienced from orbital or suborbital platforms are covered. The issue of high voltage space interaction is covered by theoretical modeling studies of the interaction of charged solar cell arrays with the ionospheric plasma. The theoretical studies were complemented by experimental measurements made in a vacuum chamber. The other active system studied was the emission of effluent from a space platform. In one study the emission of plasma into the LEO environment was studied by using initially a 2-D model, and then extending this model to 3-D to correctly take account of plasma motion parallel to the geomagnetic field. The other effluent studies related to the releases of neutral gas from an orbiting platform. One model which was extended and used determined the density, velocity, and energy of both an effluent gas and the ambient upper atmospheric gases over a large volume around the platform. This model was adapted to study both ambient and contaminant distributions around smaller objects in the orbital frame of reference with scale sizes of 1 m. The other effluent studies related to the interaction of the released neutral gas with the ambient ionospheric plasma. An electrostatic model was used to help understand anomalously high plasma densities measured at times in the vicinity of the space shuttle orbiter.

  6. Regional climate and vegetation response to orbital forcing within the mid-Pliocene Warm Period: A study using HadCM3

    NASA Astrophysics Data System (ADS)

    Prescott, C. L.; Dolan, A. M.; Haywood, A. M.; Hunter, S. J.; Tindall, J. C.

    2018-02-01

    Regional climate and environmental variability in response to orbital forcing during interglacial events within the mid-Piacenzian (Pliocene) Warm Period (mPWP; 3.264-3.025 Ma) has been rarely studied using climate and vegetation models. Here we use climate and vegetation model simulations to predict changes in regional vegetation patterns in response to orbital forcing for four different interglacial events within the mPWP (Marine Isotope Stages (MIS) G17, K1, KM3 and KM5c). The efficacy of model-predicted changes in regional vegetation is assessed by reference to selected high temporal resolution palaeobotanical studies that are theoretically capable of discerning vegetation patterns for the selected interglacial stages. Annual mean surface air temperatures for the studied interglacials are between 0.4 °C to 0.7 °C higher than a comparable Pliocene experiment using modern orbital parameters. Increased spring/summer and reduced autumn/winter insolation in the Northern Hemisphere during MIS G17, K1 and KM3 enhances seasonality in surface air temperature. The two most robust and notable regional responses to this in vegetation cover occur in North America and continental Eurasia, where forests are replaced by more open-types of vegetation (grasslands and shrubland). In these regions our model results appear to be inconsistent with local palaeobotanical data. The orbitally driven changes in seasonal temperature and precipitation lead to a 30% annual reduction in available deep soil moisture (2.0 m from surface), a critical parameter for forest growth, and subsequent reduction in the geographical coverage of forest-type vegetation; a phenomenon not seen in comparable simulations of Pliocene climate and vegetation run with a modern orbital configuration. Our results demonstrate the importance of examining model performance under a range of realistic orbital forcing scenarios within any defined time interval (e.g. mPWP). Additional orbitally resolved records of regional vegetation are needed to further examine the validity of model-predicted regional climate and vegetation responses in greater detail.

  7. Orbital Noise in the Earth System is a Common Cause of Climate and Greenhouse-Gas Fluctuation

    NASA Technical Reports Server (NTRS)

    Liu, H. S.; Kolenkiewicz, R.; Wade, C., Jr.; Smith, David E. (Technical Monitor)

    2002-01-01

    The mismatch between fossil isotopic data and climate models known as the cool-tropic paradox implies that either the data are flawed or we understand very little about the climate models of greenhouse warming. Here we question the validity of the climate models on the scientific background of orbital noise in the Earth system. Our study shows that the insolation pulsation induced by orbital noise is the common cause of climate change and atmospheric concentrations of carbon dioxide and methane. In addition, we find that the intensity of the insolation pulses is dependent on the latitude of the Earth. Thus, orbital noise is the key to understanding the troubling paradox in climate models.

  8. An Inviscid Computational Study of the Space Shuttle Orbiter and Several Damaged Configurations

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Merski, N. Ronald (Technical Monitor)

    2004-01-01

    Inviscid aerodynamic characteristics of the Space Shuttle Orbiter were computed in support of the Columbia Accident Investigation. The unstructured grid software FELISA was used and computations were done using freestream conditions corresponding to those in the NASA Langley 20-Inch Mach 6 CF4 tunnel test section. The angle of attack was held constant at 40 degrees. The baseline (undamaged) configuration and a large number of damaged configurations of the Orbiter were studied. Most of the computations were done on a half model. However, one set of computations was done using the full-model to study the effect of sideslip. The differences in the aerodynamic coefficients for the damaged and the baseline configurations were computed. Simultaneously with the computation reported here, tests were being done on a scale model of the Orbiter in the 20-Inch Mach 6 CF4 tunnel to measure the deltas . The present computations complemented the CF4 tunnel test, and provided aerodynamic coefficients of the Orbiter as well as its components. Further, they also provided details of the flow field.

  9. Atmospheric Propagation of High Energy Lasers: Modeling, Simulation, Tracking, and Control

    DTIC Science & Technology

    2008-04-29

    the North American Aerospace Defense Command (NORAD) SGP4 /SDP4 orbital propagator and study on energy transfer to orbital assets. • Implementation of...scenarios which include orbital assets. We have incorporated into SHaRE the North American Aerospace Defense Command (NORAD) SGP4 (for near-earth... TLE ) datum. This allows us to investigate the energy characteristics of a ground based laser to an orbital asset. We have conducted a study using

  10. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Y. F.; Chen, C. -C.; Wang, Yao

    Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  11. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Y. F.; Chen, C. -C.; Wang, Yao

    We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding ofmore » the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  12. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE PAGES

    Kung, Y. F.; Chen, C. -C.; Wang, Yao; ...

    2016-04-29

    Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  13. Competing phases and orbital-selective behaviors in the two-orbital Hubbard-Holstein model

    NASA Astrophysics Data System (ADS)

    Li, Shaozhi; Khatami, Ehsan; Johnston, Steven

    2017-03-01

    We study the interplay between the electron-electron (e-e) and the electron-phonon (e-ph) interactions in the two-orbital Hubbard-Holstein model at half-filling using the dynamical mean-field theory. We find that the e-ph interaction, even at weak couplings, strongly modifies the phase diagram of this model and introduces an orbital-selective Peierls insulating phase (OSPI) that is analogous to the widely studied orbital-selective Mott phase (OSMP). At small e-e and e-ph couplings, we find a competition between the OSMP and the OSPI, while at large couplings, a competition occurs between Mott and charge-density-wave (CDW) insulating phases. We further demonstrate that the Hund's coupling influences the OSPI transition by lowering the energy associated with the CDW. Our results explicitly show that one must be cautious when neglecting the e-ph interaction in multiorbital systems, where multiple electronic interactions create states that are readily influenced by perturbing interactions.

  14. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kung, Y. F.; Chen, C.-C.; Wang, Yao; Huang, E. W.; Nowadnick, E. A.; Moritz, B.; Scalettar, R. T.; Johnston, S.; Devereaux, T. P.

    2016-04-01

    We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π ,π ) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.

  15. Point vortex modelling of the wake dynamics behind asymmetric vortex generator arrays

    NASA Astrophysics Data System (ADS)

    Baldacchino, D.; Ferreira, C.; Ragni, D.; van Bussel, G. J. W.

    2016-09-01

    In this work, we present a simple inviscid point vortex model to study the dynamics of asymmetric vortex rows, as might appear behind misaligned vortex generator vanes. Starting from the existing solution of the infinite vortex cascade, a numerical model of four base-vortices is chosen to represent two primary counter-rotating vortex pairs and their mirror plane images, introducing the vortex strength ratio as a free parameter. The resulting system of equations is also defined in terms of the vortex row separation and the qualitative features of the ensuing motion are mapped. A translating and orbiting regime are identified for different cascade separations. The latter occurs for all unequal strength vortex pairs. Thus, the motion is further classified by studying the cyclic behaviour of the orbiting regime and it is shown that for small mismatches in vortex strength, the orbiting length and time scales are sufficiently large as to appear, in the near wake, as translational (non-orbiting). However, for larger mismatches in vortex strength, the orbiting motion approaches the order of the starting height of the vortex. Comparisons between experimental data and the potential flow model show qualitative agreement whilst viscous effects account for the major discrepancies. Despite this, the model captures the orbital mode observed in the measurements and provides an impetus for considering the impact of these complex interactions on vortex generator designs.

  16. Investigation of the charge-orbital ordering mechanism in single-layered Pr0.5Ca1.5MnO4

    NASA Astrophysics Data System (ADS)

    Rangkuti, C. N.; Majidi, M. A.

    2018-04-01

    Motivated by the experimental study of half-doped single-layered Pr0.5Ca1.5MnO4 showing charge, orbital, and spin orderings [1], we propose a model to theoretically study the system to explain such ordering phenomena. The ground state electron configuration reveals that the charges form a checkerboard pattern with alternating Mn3+/Mn4+ sites, while the orbitals are aligned in zigzag chains [1, 2]. We calculate the ground state energy of this system to find the most preferable configuration by comparing three types of configurations (charge-unordered, charge-ordered, and charge-orbital-ordered states). The calculations are based on a tight-binding model representing effective electron hoppings among Mn ions in MnO2-plane. We take into account the horizontally- and vertically-oriented orbital and spin degrees of freedom at Mn sites. We assume that the hopping integral values depend on the relative orientation between the corresponding orbitals of adjacent Mn ions. The interaction terms we incorporate into our effective Hamiltonian include inter-orbital, intra-orbital Hubbard repulsions, and Jahn-Teller distortion [2]. We absorb the exchange interaction between spins into local self-energy that we calculate within dynamical mean field algorithm [2]. Within our model we show a circumstance in which the charge-orbital ordered configuration has the lowest energy, consistent with the ground state ordering revealed by the experimental data.

  17. Role of degeneracy, hybridization, and nesting in the properties of multiorbital systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, Andrew D; Liu, Jia-Ming; Ge, Weihao

    2011-01-01

    To understand the role that degeneracy, hybridization, and nesting play in the magnetic and pairing properties of multiorbital Hubbard models we here study numerically two types of two-orbital models, both with holelike and electron-like Fermi surfaces (FS s) that are related by nesting vectors ( ,0) and (0, ). In one case the bands that determine the FS s arise from strongly hybridized degenerate dxz and dyz orbitals, while in the other the two bands are determined by nondegenerate and nonhybridized s-like orbitals. Using a variety of techniques, in the weak-coupling regime it is shown that only the model withmore » hybridized bands develops metallic magnetic order, while the other model exhibits an ordered excitonic orbital-transverse spin state that is insulating and does not have a local magnetization. However, both models display similar insulating magnetic stripe ordering in the strong-coupling limit. These results indicate that nesting is a necessary but not sufficient condition for the development of ordered states with finite local magnetization in multiorbital Hubbard systems; the additional ingredient appears to be that the nested portions of the bands need to have the same orbital flavor. This condition can be achieved via strong hybridization of the orbitals in weak coupling or via the FS reconstruction induced by the Coulomb interactions in the strong-coupling regime. This effect also affects the pairing symmetry as demonstrated by the study of the dominant pairing channels for the two models.« less

  18. Peanuts, brezels and bananas: food for thought on the orbital structure of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Portail, Matthieu; Wegg, Christopher; Gerhard, Ortwin

    2015-06-01

    Recent observations have discovered the presence of a box/peanut or X-shape structure in the Galactic bulge. Such box/peanut structures are common in external disc galaxies, and are well known in N-body simulations where they form following the buckling instability of a bar. From studies of analytical potentials and N-body models, it has been claimed in the past that box/peanut bulges are supported by `bananas', or x1v1 orbits. We present here a set of N-body models where instead the peanut bulge is mainly supported by brezel-like orbits, allowing strong peanuts to form with short extent relative to the bar length. This shows that stars in the X-shape do not necessarily stream along banana orbits which follow the arms of the X-shape. The brezel orbits are also found to be the main orbital component supporting the peanut shape in our recent made-to-measure dynamical models of the Galactic bulge. We also show that in these models the fraction of stellar orbits that contribute to the X-structure account for 40-45 per cent of the stellar mass.

  19. Performance assessment of density functional methods with Gaussian and Slater basis sets using 7σ orbital momentum distributions of N2O

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Pang, Wenning; Duffy, Patrick

    2012-12-01

    Performance of a number of commonly used density functional methods in chemistry (B3LYP, Bhandh, BP86, PW91, VWN, LB94, PBe0, SAOP and X3LYP and the Hartree-Fock (HF) method) has been assessed using orbital momentum distributions of the 7σ orbital of nitrous oxide (NNO), which models electron behaviour in a chemically significant region. The density functional methods are combined with a number of Gaussian basis sets (Pople's 6-31G*, 6-311G**, DGauss TZVP and Dunning's aug-cc-pVTZ as well as even-tempered Slater basis sets, namely, et-DZPp, et-QZ3P, et-QZ+5P and et-pVQZ). Orbital momentum distributions of the 7σ orbital in the ground electronic state of NNO, which are obtained from a Fourier transform into momentum space from single point electronic calculations employing the above models, are compared with experimental measurement of the same orbital from electron momentum spectroscopy (EMS). The present study reveals information on performance of (a) the density functional methods, (b) Gaussian and Slater basis sets, (c) combinations of the density functional methods and basis sets, that is, the models, (d) orbital momentum distributions, rather than a group of specific molecular properties and (e) the entire region of chemical significance of the orbital. It is found that discrepancies of this orbital between the measured and the calculated occur in the small momentum region (i.e. large r region). In general, Slater basis sets achieve better overall performance than the Gaussian basis sets. Performance of the Gaussian basis sets varies noticeably when combining with different Vxc functionals, but Dunning's augcc-pVTZ basis set achieves the best performance for the momentum distributions of this orbital. The overall performance of the B3LYP and BP86 models is similar to newer models such as X3LYP and SAOP. The present study also demonstrates that the combinations of the density functional methods and the basis sets indeed make a difference in the quality of the calculated orbitals.

  20. Interplay between Magnetism, Superconductivity, and Orbital Order in 5-Pocket Model for Iron-Based Superconductors: Parquet Renormalization Group Study.

    PubMed

    Classen, Laura; Xing, Rui-Qi; Khodas, Maxim; Chubukov, Andrey V

    2017-01-20

    We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one progressively integrates out fermions with higher energies. We find that the low-energy behavior is amazingly simple, despite the large number of interactions. Namely, at low energies the full 5-pocket model effectively reduces either to a 3-pocket model made of one d_{xy} hole pocket and two electron pockets or a 4-pocket model made of two d_{xz}/d_{yz} hole pockets and two electron pockets. The leading instability in the effective 4-pocket model is a spontaneous orbital (nematic) order, followed by s^{+-} superconductivity. In the effective 3-pocket model, orbital fluctuations are weaker, and the system develops either s^{+-} superconductivity or a stripe spin-density wave. In the latter case, nematicity is induced by composite spin fluctuations.

  1. Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation

    NASA Technical Reports Server (NTRS)

    Wadhams, T. P.; Holden, M. S.; MacLean, M. G.; Campbell, Charles

    2010-01-01

    In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed thin-film resolution in both the span and chord direction in the area of peak heating. Additional objectives of this first study included: obtaining natural or tripped turbulent wing leading edge heating levels, assessing the effectiveness of protuberances and cavities placed at specified locations on the orbiter over a range of Mach numbers and Reynolds numbers to evaluate and compare to existing engineering and computational tools, obtaining cavity floor heating to aid in the verification of cavity heating correlations, acquiring control surface deflection heating data on both the main body flap and elevons, and obtain high speed schlieren videos of the interaction of the orbiter nose bow shock with the wing leading edge. To support these objectives, the stainless steel 1.8% scale orbiter model in addition to the sensors on the wing leading edge was instrumented down the windward centerline, over the wing acreage on the port side, and painted with temperature sensitive paint on the starboard side wing acreage. In all, the stainless steel 1.8% scale Orbiter model was instrumented with over three-hundred highly sensitive thin-film heating sensors, two-hundred of which were located in the wing leading edge shock interaction region. Further experimental studies will also be performed following the successful acquisition of flight data during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM on STS-119 at specific data points simulating flight conditions and geometries. Additional instrumentation and a protuberance matching the layout present during the STS-119 boundary layer transition flight experiment were added with testing performed at Mach number and Reynolds number conditions simulating conditions experienced in flight. In addition to the experimental studies, CUBRC also performed a large amount of CFD analysis to confirm and validate not only the tunnel freestream conditions, but also 3D flows over the orbiter acreage, wing leading edge, and controlurfaces to assess data quality, shock interaction locations, and control surface separation regions. This analysis is a standard part of any experimental program at CUBRC, and this information was of key importance for post-test data quality analysis and understanding particular phenomena seen in the data. All work during this effort was sponsored and paid for by the NASA Space Shuttle Program Office at the Johnson Space Center in Houston, Texas.

  2. The world state of orbital debris measurements and modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2004-02-01

    For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.

  3. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    NASA Technical Reports Server (NTRS)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown here.

  4. Circular revisit orbits design for responsive mission over a single target

    NASA Astrophysics Data System (ADS)

    Li, Taibo; Xiang, Junhua; Wang, Zhaokui; Zhang, Yulin

    2016-10-01

    The responsive orbits play a key role in addressing the mission of Operationally Responsive Space (ORS) because of their capabilities. These capabilities are usually focused on supporting specific targets as opposed to providing global coverage. One subtype of responsive orbits is repeat coverage orbit which is nearly circular in most remote sensing applications. This paper deals with a special kind of repeating ground track orbit, referred to as circular revisit orbit. Different from traditional repeat coverage orbits, a satellite on circular revisit orbit can visit a target site at both the ascending and descending stages in one revisit cycle. This typology of trajectory allows a halving of the traditional revisit time and does a favor to get useful information for responsive applications. However the previous reported numerical methods in some references often cost lots of computation or fail to obtain such orbits. To overcome this difficulty, an analytical method to determine the existence conditions of the solutions to revisit orbits is presented in this paper. To this end, the mathematical model of circular revisit orbit is established under the central gravity model and the J2 perturbation. A constraint function of the circular revisit orbit is introduced, and the monotonicity of that function has been studied. The existent conditions and the number of such orbits are naturally worked out. Taking the launch cost into consideration, optimal design model of circular revisit orbit is established to achieve a best orbit which visits a target twice a day in the morning and in the afternoon respectively for several days. The result shows that it is effective to apply circular revisit orbits in responsive application such as reconnoiter of natural disaster.

  5. Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach

    NASA Astrophysics Data System (ADS)

    Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori

    2018-06-01

    Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.

  6. Orbital Disturbance Analysis due to the Lunar Gravitational Potential and Deviation Minimization through the Trajectory Control in Closed Loop

    NASA Astrophysics Data System (ADS)

    Gonçalves, L. D.; Rocco, E. M.; de Moraes, R. V.

    2013-10-01

    A study evaluating the influence due to the lunar gravitational potential, modeled by spherical harmonics, on the gravity acceleration is accomplished according to the model presented in Konopliv (2001). This model provides the components x, y and z for the gravity acceleration at each moment of time along the artificial satellite orbit and it enables to consider the spherical harmonic degree and order up to100. Through a comparison between the gravity acceleration from a central field and the gravity acceleration provided by Konopliv's model, it is obtained the disturbing velocity increment applied to the vehicle. Then, through the inverse problem, the Keplerian elements of perturbed orbit of the satellite are calculated allowing the orbital motion analysis. Transfer maneuvers and orbital correction of lunar satellites are simulated considering the disturbance due to non-uniform gravitational potential of the Moon, utilizing continuous thrust and trajectory control in closed loop. The simulations are performed using the Spacecraft Trajectory Simulator-STRS, Rocco (2008), which evaluate the behavior of the orbital elements, fuel consumption and thrust applied to the satellite over the time.

  7. Myths in the Diagnosis and Management of Orbital Tumors

    PubMed Central

    Gündüz, Kaan; Yanık, Özge

    2015-01-01

    Orbital tumors constitute a group of diverse lesions with a low incidence in the population. Tumors affecting the eye and ocular adnexa may also secondarily invade the orbit. Lack of accumulation of a sufficient number of cases with a specific diagnosis at various orbital centers, the paucity of prospective randomized studies, animal model studies, tissue bank, and genetic studies led to the development of various myths regarding the diagnosis and treatment of orbital lesions in the past. These myths continue to influence the diagnosis and treatment of orbital lesions by orbital specialists. This manuscript discusses some of the more common myths through case summaries and a review of the literature. Detailed genotypic analysis and genetic classification will provide further insight into the pathogenesis of many orbital diseases in the future. This will enable targeted treatments even for diseases with the same histopathologic diagnosis. Phenotypic variability within the same disease will be addressed using targeted treatments. PMID:26692710

  8. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 3: Impact of retrofits for center-of-gravity extension on orbiter thermal-protection system

    NASA Technical Reports Server (NTRS)

    Dunavant, J. C.

    1979-01-01

    Heat transfer studies were conducted at Mach 10.3 on space shuttle orbiter models with the S-2 fillet and C-4 canard retrofit moldlines which were generated in aerodynamic and system design studies to increase the allowable c.g. range of the orbiter. Areas of orbiter most strongly affected were the sides where a shear layer which separated along the wing leading edge impinged. Analytical studies of the heating effect on the thermal-protection system were made which indicated that scar weight on the orbiter sides due to allowances for retrofits of the S-2 fillet and C-4 canard is small (less than about 90 kg (200 lbs) in comparison to the total weight of the retrofit).

  9. Orbit decay analysis of STS upper stage boosters

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Mueller, A. C.

    1979-01-01

    An orbit decay analysis of the space transportation system upper stage boosters is presented. An overview of the computer trajectory programs, DSTROB, algorithm is presented. Atmospheric drag and perturbation models are described. The development of launch windows, such that the transfer orbit will decay within two years, is discussed. A study of the lifetimes of geosynchronous transfer orbits is presented.

  10. A Crystal Field Approach to Orbitally Degenerate SMMs: Beyond the Spin-Only Hamiltonian

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Lakshmi; Marriott, Katie; Murrie, Mark; Hill, Stephen

    Single-Molecule Magnets (SMMs) with large magnetization reversal barriers are promising candidates for high-density information storage. Recently, a large uniaxial magnetic anisotropy was observed for a mononuclear trigonal bipyramidal (TBP) [NiIICl3(Me-abco)2] SMM. High-field EPR studies analyzed on the basis of a spin-only Hamiltonian give ¦D¦>400 cm-1, which is close to the spin-orbit coupling parameter λ = 668 cm-1 for NiII, suggesting an orbitally degenerate ground state. The spin-only description is ineffective in this limit, necessitating the development of a model that includes the orbital moment. Here we describe a phenomenological approach that takes into account a full description of crystal field, electron-electron repulsion and spin-orbit coupling effects on the ground state of a NiII ion in a TBP coordination geometry. The model is in good agreement with the high-field EPR experiments, validating its use for spectroscopic studies of orbitally degenerate molecular nanomagnets. This work was supported by the NSF (DMR-1309463).

  11. Orbital operations study. Volume 1: Mission analysis

    NASA Technical Reports Server (NTRS)

    Steinwachs, W. L.

    1972-01-01

    The final report of the orbital operations study and a summary of the 25 elements in the study inventory are presented. Fourteen interfacing activities are defined. Eleven mission models encompassing all potential interfacing element pairs and interfacing activities are included.

  12. Ground-state phase diagram in the Kugel-Khomskii model with finite spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-05-01

    We study ground-state properties in the Kugel-Khomskii model on the two-dimensional honeycomb lattice. Using the cluster mean-field approximations, we deal with the exchange and spin-orbit couplings on an equal footing. We then discuss the stability of the ferromagnetically ordered states against the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit.

  13. Anaerobic orbital cellulitis: a clinical and experimental study.

    PubMed Central

    Jedrzynski, M S; Bullock, J D; McGuire, T W; Elder, B L; Bullock, J D

    1991-01-01

    In this article we have reviewed the clinical and bacteriologic aspects of anaerobic orbital cellulitis and have presented six patients to illustrate these points. Physicians who treat patients with orbital cellulitis should have a high index of suspicion for possible instances involving anaerobes, so that appropriate management can be started early. To investigate this problem further, we created an animal model of anaerobic orbital cellulitis. This model may be useful in future studies of the pathogenesis and treatment of this serious and often devastating disease. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 15 FIGURE 16 FIGURE 17 FIGURE 18 FIGURE 19 PMID:1808813

  14. Local nature of impurity induced spin-orbit torques

    NASA Astrophysics Data System (ADS)

    Nikolaev, Sergey; Kalitsov, Alan; Chshiev, Mairbec; Mryasov, Oleg

    Spin-orbit torques are of a great interest due to their potential applications for spin electronics. Generally, it originates from strong spin orbit coupling of heavy 4d/5d elements and its mechanism is usually attributed either to the Spin Hall effect or Rashba spin-orbit coupling. We have developed a quantum-mechanical approach based on the non-equilibrium Green's function formalism and tight binding Hamiltonian model to study spin-orbit torques and extended our theory for the case of extrinsic spin-orbit coupling induced by impurities. For the sake of simplicity, we consider a magnetic material on a two dimensional lattice with a single non-magnetic impurity. However, our model can be easily extended for three dimensional layered heterostructures. Based on our calculations, we present the detailed analysis of the origin of local spin-orbit torques and persistent charge currents around the impurity, that give rise to spin-orbit torques even in equilibrium and explain the existence of anisotropy.

  15. Automating Initial Guess Generation for High Fidelity Trajectory Optimization Tools

    NASA Technical Reports Server (NTRS)

    Villa, Benjamin; Lantoine, Gregory; Sims, Jon; Whiffen, Gregory

    2013-01-01

    Many academic studies in spaceflight dynamics rely on simplified dynamical models, such as restricted three-body models or averaged forms of the equations of motion of an orbiter. In practice, the end result of these preliminary orbit studies needs to be transformed into more realistic models, in particular to generate good initial guesses for high-fidelity trajectory optimization tools like Mystic. This paper reviews and extends some of the approaches used in the literature to perform such a task, and explores the inherent trade-offs of such a transformation with a view toward automating it for the case of ballistic arcs. Sample test cases in the libration point regimes and small body orbiter transfers are presented.

  16. Mission Analysis Program for Solar Electric Propulsion (MAPSEP). Volume 1: Analytical manual for earth orbital MAPSEP

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An introduction to the MAPSEP organization and a detailed analytical description of all models and algorithms are given. These include trajectory and error covariance propagation methods, orbit determination processes, thrust modeling, and trajectory correction (guidance) schemes. Earth orbital MAPSEP contains the capability of analyzing almost any currently projected low thrust mission from low earth orbit to super synchronous altitudes. Furthermore, MAPSEP is sufficiently flexible to incorporate extended dynamic models, alternate mission strategies, and almost any other system requirement imposed by the user. As in the interplanetary version, earth orbital MAPSEP represents a trade-off between precision modeling and computational speed consistent with defining necessary system requirements. It can be used in feasibility studies as well as in flight operational support. Pertinent operational constraints are available both implicitly and explicitly. However, the reader should be warned that because of program complexity, MAPSEP is only as good as the user and will quickly succumb to faulty user inputs.

  17. Constraining the Absolute Orientation of eta Carinae's Binary Orbit: A 3-D Dynamical Model for the Broad [Fe III] Emission

    NASA Technical Reports Server (NTRS)

    Madura, T. I.; Gull, T. R.; Owocki, S. P.; Groh, J. H.; Okazaki, A. T.; Russell, C. M. P.

    2011-01-01

    We present a three-dimensional (3-D) dynamical model for the broad [Fe III] emission observed in Eta Carinae using the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). This model is based on full 3-D Smoothed Particle Hydrodynamics (SPH) simulations of Eta Car's binary colliding winds. Radiative transfer codes are used to generate synthetic spectro-images of [Fe III] emission line structures at various observed orbital phases and STIS slit position angles (PAs). Through a parameter study that varies the orbital inclination i, the PA(theta) that the orbital plane projection of the line-of-sight makes with the apastron side of the semi-major axis, and the PA on the sky of the orbital axis, we are able, for the first time, to tightly constrain the absolute 3-D orientation of the binary orbit. To simultaneously reproduce the blue-shifted emission arcs observed at orbital phase 0.976, STIS slit PA = +38deg, and the temporal variations in emission seen at negative slit PAs, the binary needs to have an i approx. = 130deg to 145deg, Theta approx. = -15deg to +30deg, and an orbital axis projected on the sky at a P A approx. = 302deg to 327deg east of north. This represents a system with an orbital axis that is closely aligned with the inferred polar axis of the Homunculus nebula, in 3-D. The companion star, Eta(sub B), thus orbits clockwise on the sky and is on the observer's side of the system at apastron. This orientation has important implications for theories for the formation of the Homunculus and helps lay the groundwork for orbital modeling to determine the stellar masses.

  18. Effect of structural distortion on the electronic band structure of NaOsO3 studied within density functional theory and a three-orbital model

    NASA Astrophysics Data System (ADS)

    Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash

    2018-04-01

    Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.

  19. Seasonal modulation of the Asian summer monsoon between the Medieval Warm Period and Little Ice Age: a multi model study

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki

    2017-12-01

    Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.

  20. The rectilinear three-body problem as a basis for studying highly eccentric systems

    NASA Astrophysics Data System (ADS)

    Voyatzis, G.; Tsiganis, K.; Gaitanas, M.

    2018-01-01

    The rectilinear elliptic restricted three-body problem (TBP) is the limiting case of the elliptic restricted TBP when the motion of the primaries is described by a Keplerian ellipse with eccentricity e'=1, but the collision of the primaries is assumed to be a non-singular point. The rectilinear model has been proposed as a starting model for studying the dynamics of motion around highly eccentric binary systems. Broucke (AIAA J 7:1003-1009, 1969) explored the rectilinear problem and obtained isolated periodic orbits for mass parameter μ =0.5 (equal masses of the primaries). We found that all orbits obtained by Broucke are linearly unstable. We extend Broucke's computations by using a finer search for symmetric periodic orbits and computing their linear stability. We found a large number of periodic orbits, but only eight of them were found to be linearly stable and are associated with particular mean motion resonances. These stable orbits are used as generating orbits for continuation with respect to μ and e'<1. Also, continuation of periodic solutions with respect to the mass of the small body can be applied by using the general TBP. FLI maps of dynamical stability show that stable periodic orbits are surrounded in phase space with regions of regular orbits indicating that systems of very highly eccentric orbits can be found in stable resonant configurations. As an application we present a stability study for the planetary system HD7449.

  1. Averaged model to study long-term dynamics of a probe about Mercury

    NASA Astrophysics Data System (ADS)

    Tresaco, Eva; Carvalho, Jean Paulo S.; Prado, Antonio F. B. A.; Elipe, Antonio; de Moraes, Rodolpho Vilhena

    2018-02-01

    This paper provides a method for finding initial conditions of frozen orbits for a probe around Mercury. Frozen orbits are those whose orbital elements remain constant on average. Thus, at the same point in each orbit, the satellite always passes at the same altitude. This is very interesting for scientific missions that require close inspection of any celestial body. The orbital dynamics of an artificial satellite about Mercury is governed by the potential attraction of the main body. Besides the Keplerian attraction, we consider the inhomogeneities of the potential of the central body. We include secondary terms of Mercury gravity field from J_2 up to J_6, and the tesseral harmonics \\overline{C}_{22} that is of the same magnitude than zonal J_2. In the case of science missions about Mercury, it is also important to consider third-body perturbation (Sun). Circular restricted three body problem can not be applied to Mercury-Sun system due to its non-negligible orbital eccentricity. Besides the harmonics coefficients of Mercury's gravitational potential, and the Sun gravitational perturbation, our average model also includes Solar acceleration pressure. This simplified model captures the majority of the dynamics of low and high orbits about Mercury. In order to capture the dominant characteristics of the dynamics, short-period terms of the system are removed applying a double-averaging technique. This algorithm is a two-fold process which firstly averages over the period of the satellite, and secondly averages with respect to the period of the third body. This simplified Hamiltonian model is introduced in the Lagrange Planetary equations. Thus, frozen orbits are characterized by a surface depending on three variables: the orbital semimajor axis, eccentricity and inclination. We find frozen orbits for an average altitude of 400 and 1000 km, which are the predicted values for the BepiColombo mission. Finally, the paper delves into the orbital stability of frozen orbits and the temporal evolution of the eccentricity of these orbits.

  2. The Smaller Alignment Index (SALI) applied in a study of stellar orbits in barred galaxies potential models using the LP-VIcode

    NASA Astrophysics Data System (ADS)

    Caritá, Lucas Antonio; Rodrigues, Irapuan; Puerari, Ivânio; Schiavo, Luiz Eduardo Camargo Aranha

    2018-04-01

    The Smaller Alignment Index (SALI) is a mathematical tool, not yet conventional, for chaos detection in the phase space of Hamiltonian Dynamical Systems. The SALI values has temporal behaviors very specific to ordered or chaotic motions, what makes the distinction between order and chaos easily observable in these systems. In this paper, this method will be applied to the stability study of stellar orbits immersed in gravitational potential of barred galaxies, since the motion of a test particle in a rotating barred galaxy model is given by a Hamiltonian function. Extracting four parameter sets from the Manos and Athanassoula (2011) work and elaborating a different initial conditions set for each case, we were able to introduce another point of view of their stability study for two degrees of freedom. We have also introduced two new extreme models that corroborates with the conclusions that more axisymmetric bars create an environment with less chaos and that more massive bars create an environment with more chaos. Separate studies were carried out for prograde and retrograde orbits that showed that the retrograde orbits seem more conducive to chaos. To perform all the orbits integrations we used the LP-VIcode program.

  3. Dynamic sea surface topography, gravity and improved orbit accuracies from the direct evaluation of SEASAT altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F.; Koblinsky, C. J.; Klosko, S. M.; Robbins, J. W.; Williamson, R. G.; Patel, G. B.

    1989-01-01

    A method for the simultaneous solution of dynamic ocean topography, gravity and orbits using satellite altimeter data is described. A GEM-T1 based gravitational model called PGS-3337 that incorporates Seasat altimetry, surface gravimetry and satellite tracking data has been determined complete to degree and order 50. The altimeter data is utilized as a dynamic observation of the satellite's height above the sea surface with a degree 10 model of dynamic topography being recovered simultaneously with the orbit parameters, gravity and tidal terms in this model. PGS-3337 has a geoid uncertainty of 60 cm root-mean-square (RMS) globally, with the uncertainty over the altimeter tracked ocean being in the 25 cm range. Doppler determined orbits for Seasat, show large improvements, with the sub-30 cm radial accuracies being achieved. When altimeter data is used in orbit determination, radial orbital accuracies of 20 cm are achieved. The RMS of fit to the altimeter data directly gives 30 cm fits for Seasat when using PGS-3337 and its geoid and dynamic topography model. This performance level is two to three times better than that achieved with earlier Goddard earth models (GEM) using the dynamic topography from long-term oceanographic averages. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 1500 km. The power in the dynamic topography recovery is now found to be closer to that of oceanographic studies than for previous satellite solutions. This is attributed primarily to the improved modeling of the geoid which has occurred. Study of the altimeter residuals reveals regions where tidal models are poor and sea state effects are major limitations.

  4. Libration Point Orbit Utilization for Tactical Advantage in Communications, Surveillance, and Risk Mitigation

    DTIC Science & Technology

    2014-10-27

    Ephemeris model in the orbit analysis software Satellite Took Kit ( STK ). As the first step, a study was conducted to find the visibility coverage using...northern L1 and L3 halo orbits. Figure 55. Average visibility by latitude at different ephemeris epochs for an L1 orbiter from STK analysis . Figure...56. Average visibility by latitude at different ephemeris epochs for an L3 orbiter from STK analysis . Figure 57. Average percent visibility of the

  5. A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer

    NASA Technical Reports Server (NTRS)

    Ikenaga, Toshinori; Hashida, Yoshi; Unwin, Martin

    2007-01-01

    In the present day, orbit determination by Global Positioning System (GPS) is not unusual. Especially for low-cost small satellites, position determination by an on-board GPS receiver provides a cheap, reliable and precise method. However, the original purpose of GPS is for ground users, so the transmissions from all of the GPS satellites are directed toward the Earth s surface. Hence there are some restrictions for users above the GPS constellation to detect those signals. On the other hand, a desire for precise orbit determination for users in orbits higher than GPS constellation exists. For example, the next Japanese Very Long Baseline Interferometry (VLBI) mission "ASTRO-G" is trying to determine its orbit in an accuracy of a few centimeters at apogee. The use of GPS is essential for such ultra accurate orbit determination. This study aims to construct a method for precise orbit determination for such high orbit users, especially in High Elliptical Orbits (HEOs). There are several approaches for this objective. In this study, a hybrid method with GPS and an accelerometer is chosen. Basically, while the position cannot be determined by an on-board GPS receiver or other Range and Range Rate (RARR) method, all we can do to estimate the user satellite s position is to propagate the orbit along with the force model, which is not perfectly correct. However if it has an accelerometer (ACC), the coefficients of the air drag and the solar radiation pressure applied to the user satellite can be updated and then the propagation along with the "updated" force model can improve the fitting accuracy of the user satellite s orbit. In this study, it is assumed to use an accelerometer available in the present market. The effects by a bias error of an accelerometer will also be discussed in this paper.

  6. The relationship of cranial, orbital and nasal cavity size with the morphology of the supraorbital region in modern Homo sapiens.

    PubMed

    Nowaczewska, Wioletta; Łapicka, Urszula; Cieślik, Agata; Biecek, Przemysław

    2017-09-01

    Morphological variation of the supraorbital region (SR) in human crania has been investigated and its potential sources suggested, along with the importance of the size of the facial skeleton, neurocranium, and orbit for the formation of this region. However, previous studies have not indicated whether facial size exhibits a stronger association with SR robusticity than neurocranial size or sex; moreover, the association between orbital volume and SR robusticity has been analysed only in non-human primate skulls. In this study we investigate whether the size of the facial skeleton, neurocranium, two measures of relative orbital size (orbital volume and estimated orbital aperture area), the relative size of the nasal cavity, and the relative estimated area of the anterior nasal cavity opening are related to SR robusticity; we also examine which of these analysed relationships is strongest, as well as independent of the influence of the other traits, in a geographically diverse modern human cranial sample. The results of Spearman's rank and partial rank correlations (encompassing models including or excluding sex and geographic origin) show a relationship between most of the above-mentioned variables and SR robusticity, with the exception of the estimated relative area of the orbital opening (in the case of the results of Spearman's rank correlations) and the traits of the nasal cavity. Of all the analysed traits, sex appears to be the most important for the formation of SR robusticity and, of two measures of cranial size, neurocranial size was the most significant. The strong relationship between SR robusticity and relative orbital volume was observed in models without the geographic origin factor. The results concerning analysed models suggest the influence of this factor on this relationship; however, to explain this influence, further studies are needed.

  7. Classification of Stellar Orbits in Axisymmetric Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Baile; Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping and angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.

  8. CLASSIFICATION OF STELLAR ORBITS IN AXISYMMETRIC GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Baile; Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: baile.li@vanderbilt.edu, E-mail: k.holley@vanderbilt.edu, E-mail: khanfazeel.ist@gmail.com

    2015-09-20

    It is known that two supermassive black holes (SMBHs) cannot merge in a spherical galaxy within a Hubble time; an emerging picture is that galaxy geometry, rotation, and large potential perturbations may usher the SMBH binary through the critical three-body scattering phase and ultimately drive the SMBH to coalesce. We explore the orbital content within an N-body model of a mildly flattened, non-rotating, SMBH-embedded elliptical galaxy. When used as the foundation for a study on the SMBH binary coalescence, the black holes bypassed the binary stalling often seen within spherical galaxies and merged on gigayear timescales. Using both frequency-mapping andmore » angular momentum criteria, we identify a wealth of resonant orbits in the axisymmetric model, including saucers, that are absent from an otherwise identical spherical system and that can potentially interact with the binary. We quantified the set of orbits that could be scattered by the SMBH binary, and found that the axisymmetric model contained nearly six times the number of these potential loss cone orbits compared to our equivalent spherical model. In this flattened model, the mass of these orbits is more than three times that of the SMBH, which is consistent with what the SMBH binary needs to scatter to transition into the gravitational wave regime.« less

  9. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  10. An Overview of NASA's Orbital Debris Engineering Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    This slide presentation reviews the importance of Orbital debris engineering models. They are mathematical tools to assess orbital debris flux. It briefly reviews the history of the orbital debris engineering models, and reviews the new features in the current model (i.e., ORDEM2010).

  11. Interaction of hydraulic and buckling mechanisms in blowout fractures.

    PubMed

    Nagasao, Tomohisa; Miyamoto, Junpei; Jiang, Hua; Tamaki, Tamotsu; Kaneko, Tsuyoshi

    2010-04-01

    The etiology of blowout fractures is generally attributed to 2 mechanisms--increase in the pressure of the orbital contents (the hydraulic mechanism) and direct transmission of impacts on the orbital walls (the buckling mechanism). The present study aims to elucidate whether or not an interaction exists between these 2 mechanisms. We performed a simulation experiment using 10 Computer-Aided-Design skull models. We applied destructive energy to the orbits of the 10 models in 3 different ways. First, to simulate pure hydraulic mechanism, energy was applied solely on the internal walls of the orbit. Second, to simulate pure buckling mechanism, energy was applied solely on the inferior rim of the orbit. Third, to simulate the combined effect of the hydraulic and buckling mechanisms, energy was applied both on the internal wall of the orbit and inferior rim of the orbit. After applying the energy, we calculated the areas of the regions where fracture occurred in the models. Thereafter, we compared the areas among the 3 energy application patterns. When the hydraulic and buckling mechanisms work simultaneously, fracture occurs on wider areas of the orbital walls than when each of these mechanisms works separately. The hydraulic and buckling mechanisms interact, enhancing each other's effect. This information should be taken into consideration when we examine patients in whom blowout fracture is suspected.

  12. Trajectory Design and Orbital Dynamics of Deep Space Exploration

    NASA Astrophysics Data System (ADS)

    Zhao, Y. H.

    2013-05-01

    The term of deep space exploration is used for the exploration in which a probe, unlike an earth satellite, escapes from the Earth's gravitation field, and conducts the exploration of celestial bodies within or away from the solar system. As the progress of aerospace science and technology, the exploration of the Moon and other planets of the solar system has attracted more and more attention throughout the world since late 1990s. China also accelerated its progress of the lunar exploration in recent years. Its first lunar-orbiting spacecraft, Chang'e 1, was successfully launched on 2007 October 24. It then achieved the goals of accurate maneuver and lunar orbiting, acquired a large amount of scientific data and a full lunar image, and finally impacted the Moon under control. On 2010 October 1, China launched Chang'e 2 with success, which obtained a full lunar image with a higher resolution and a high-definition image of the Sinus Iridum, and completed multiple extended missions such as orbiting the Lagrangian point L2, laying the groundwork for future deep space exploration. As the first phase of the three main operational phases (orbiting, landing, return) of the Chinese Lunar Exploration Program, the successful launches and flights of Chang'e 1 and Chang'e 2 are excellent applications of the orbit design of both the Earth-Moon transfer orbit and the circumlunar orbit, yet not involving the design of the entire trajectory consisting of the Earth-Moon transfer orbit, the circumlunar orbit, and the return orbit, which is produced particularly for sample return spacecraft. This paper studies the entire orbit design of the lunar sample return spacecraft which would be employed in both the third phase of the lunar exploration program and the human lunar landing program, analyzes the dynamic characteristics of the orbit, and works out the launch windows based on specific conditions. The results are universally applicable, and could serve as the basis of the orbit design of the lunar sample return spacecraft. Meanwhile, China's independent Mars exploration is in progress. In this context, this paper also carries out comprehensive related researches, such as the orbit design and computation of the Earth-Mars transfer orbit, the selection of its launch window, and mid-course trajectory correction maneuver (TCM), etc. It conducts calculations and dynamic analysis for Hohmann transfer orbit in accurate dynamic model, providing basis for the selection and design of the transfer orbit in China's Mars exploration. On the basis of orbit dynamics theory of the small bodies including detectors in the solar system, all the works concerned about trajectory design in this paper are worked out in a complete and reasonable dynamic model, that is why the results have some referential value for the trajectory design in the deep space exploration. The major innovations in this paper are as follows: (1) This paper studies different types of the Earth-Moon transfer orbit on the basis of orbit dynamics theory of small bodies in the solar system, and provides the theoretical basis of the orbit type selection in practical missions; (2) This paper works on the orbit dynamics of the free return orbit, which intends to guarantee the safety of the astronauts in the human landing moon exploration, and carries out the free return orbit calculated in the real dynamic model; (3) This paper shows the characteristics of the reentry angle of the Moon-Earth transfer orbit. With the conditions of the landing range of our country taken into account, our works carry out the constraints of the reentry angle and the latitude of the explorer at reentry time, and provide the basis of orbit type choice for practical applications; (4) Based on the error transition matrix of the small bodies' motion, this paper analyzes the attributes of the error propagation of the Earth-Moon transfer orbit, on the basis of which it proposes the timing methods as well as the equation for the determination of the velocity increment for TCMs; (5) Based on the IAU2000 Mars orientation model, this paper studies the precession part of the change of Mars gravitation, which lays the foundation for further study of its influence on the Mars orbiter's orbit of precession. This paper proposes the analytical solution of the corresponding coordinate additional perturbations; (6) This paper studies the characteristics of the Earth-Mars transfer orbit in the real dynamic model, and puts forward the according theoretical analysis; (7) The theoretical analysis of the error propagation of the Earth-Mars transfer orbit is performed on the basis of error transition matrix, thereafter the determination of time and the calculation of velocity increment for TCMs are given. By comparing the results of different methods, it proves that the linear method of TCM calculation is the most timesaving one among all applicable methods for a certain accuracy requirement; (8) All the numerical simulations in the production of this paper are carried out by programs written on my own, which could apply to other relevant missions.

  13. Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition.

    PubMed

    Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W

    2012-12-01

    To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.

  14. Low-Thrust Transfers from Distant Retrograde Orbits to L2 Halo Orbits in the Earth-Moon System

    NASA Technical Reports Server (NTRS)

    Parrish, Nathan L.; Parker, Jeffrey S.; Hughes, Steven P.; Heiligers, Jennette

    2016-01-01

    Enable future missions Any mission to a DRO or halo orbit could benefit from the capability to transfer between these orbits Chemical propulsion could be used for these transfers, but at high propellant cost Fill gaps in knowledge A variety of transfers using SEP or solar sails have been studied for the Earth-Moon system Most results in literature study a single transfer This is a step toward understanding the wide array of types of transfers available in an N-body force model.

  15. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  16. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaushal, Nitin; Herbrych, Jacek W.; Nocera, Alberto

    Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t 2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase tomore » an excitonic insulator with increasing λ at intermediate U. In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum <(J eff) 2>≠0 near the excitonic phase, smoothly connected to the <(J eff) 2>=0 regime. In conclusion, we also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.« less

  17. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension

    NASA Astrophysics Data System (ADS)

    Kaushal, Nitin; Herbrych, Jacek; Nocera, Alberto; Alvarez, Gonzalo; Moreo, Adriana; Reboredo, F. A.; Dagotto, Elbio

    2017-10-01

    Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ , at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase to an excitonic insulator with increasing λ at intermediate U . In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum 〈(Jeff)2〉≠0 near the excitonic phase, smoothly connected to the 〈(Jeff)2〉=0 regime. We also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.

  18. Density matrix renormalization group study of a three-orbital Hubbard model with spin-orbit coupling in one dimension

    DOE PAGES

    Kaushal, Nitin; Herbrych, Jacek W.; Nocera, Alberto; ...

    2017-10-09

    Using the density matrix renormalization group technique we study the effect of spin-orbit coupling on a three-orbital Hubbard model in the (t 2g) 4 sector and in one dimension. Fixing the Hund coupling to a robust value compatible with some multiorbital materials, we present the phase diagram varying the Hubbard U and spin-orbit coupling λ, at zero temperature. Our results are shown to be qualitatively similar to those recently reported using the dynamical mean-field theory in higher dimensions, providing a robust basis to approximate many-body techniques. Among many results, we observe an interesting transition from an orbital-selective Mott phase tomore » an excitonic insulator with increasing λ at intermediate U. In the strong U coupling limit, we find a nonmagnetic insulator with an effective angular momentum <(J eff) 2>≠0 near the excitonic phase, smoothly connected to the <(J eff) 2>=0 regime. In conclusion, we also provide a list of quasi-one-dimensional materials where the physics discussed in this paper could be realized.« less

  19. Lifetime maps for orbits around Callisto using a double-averaged model

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, Josué; Carvalho, Jean P. S.; Prado, Antônio F. B. A.; Vilhena de Moraes, Rodolpho

    2017-12-01

    The present paper studies the lifetime of orbits around a moon that is in orbit around its mother planet. In the context of the inner restricted three-body problem, the dynamical model considered in the present study uses the double-averaged dynamics of a spacecraft moving around a moon under the gravitational pulling of a disturbing third body in an elliptical orbit. The non-uniform distribution of the mass of the moon is also considered. Applications are performed using numerical experiments for the Callisto-spacecraft-Jupiter system, and lifetime maps for different values of the eccentricity of the disturbing body (Jupiter) are presented, in order to investigate the role of this parameter in these maps. The idea is to simulate a system with the same physical parameters as the Jupiter-Callisto system, but with larger eccentricities. These maps are also useful for validation and improvements in the results available in the literature, such as to find conditions to extend the available time for a massless orbiting body to be in highly inclined orbits under gravitational disturbances coming from the other bodies of the system.

  20. Dawn Orbit Determination Team: Trajectory Modeling and Reconstruction Processes at Vesta

    NASA Technical Reports Server (NTRS)

    Abrahamson, Matthew J.; Ardito, Alessandro; Han, Dongsuk; Haw, Robert; Kennedy, Brian; Mastrodemos, Nick; Nandi, Sumita; Park, Ryan; Rush, Brian; Vaughan, Andrew

    2013-01-01

    The Dawn spacecraft spent over a year in orbit around Vesta from July 2011 through August 2012. In order to maintain the designated science reference orbits and enable the transfers between those orbits, precise and timely orbit determination was required. Challenges included low-thrust ion propulsion modeling, estimation of relatively unknown Vesta gravity and rotation models, track-ing data limitations, incorporation of real-time telemetry into dynamics model updates, and rapid maneuver design cycles during transfers. This paper discusses the dynamics models, filter configuration, and data processing implemented to deliver a rapid orbit determination capability to the Dawn project.

  1. Models of Angular Momentum Input to a Circumterrestrial Swarm from Encounters with Heliocentric Planetesimals

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Greenberg, R.; Hebert, F.

    1985-01-01

    Models of lunar origin in which the Moon accretes in orbit about the Earth from material approaching the Earth from heliocentric orbits must overcome a fundamental problem: the approach orbits of such material would be, in the simplest approximation, equally likely to be prograde or retrograde about the Earth, with the result that accretion of such material adds mass but not angular momentum to circumterrestrial satellites. Satellite orbits would then decay due to the resulting drag, ultimately impacting onto the Earth. One possibility for adding both material and angular momentum to Earth orbit is investigated: imbalance in the delivered angular momentum between pro and retrograde Earth passing orbits which arises from the three body dynamics of planetesimals approaching the Earth from heliocentric space. In order to study angular momentum delivery to circumterrestrial satellites, the near Earth velocities were numerically computed as a function of distance from the Earth for a large array of orbits systematically spanning heliocentric phase space.

  2. An assessment of gravity model improvements using TOPEX/Poseidon TDRSS observations

    NASA Technical Reports Server (NTRS)

    Putney, B. H.; Teles, J.; Eddy, W. F.; Klosko, S. M.

    1992-01-01

    The contribution of TOPEX/Poseidon (T/P) TDRSS data to geopotential model recovery is assessed. Simulated TDRSS one-way and Bilateration Ranging Transponder System (BRTS) observations have been generated and orbitally reduced to form normal equations for geopotential parameters. These normals have been combined with those of the latest prelaunch T/P gravity model solution using data from over 30 satellites. A study of the resulting solution error covariance shows that TDRSS can make important contributions to geopotential recovery, especially for improving T/P specific effects like those arising from orbital resonance. It is argued that future effort is desirable both to establish TDRSS orbit determination limits in a reference frame compatible with that used for the precise laser/DORIS orbits, and the reduction of these TDRSS data for geopotential recovery.

  3. Selected Gravity Models in Terms of the fit to the GOCE Kinematic Orbit in the Dynamic Orbit Determination Process

    NASA Astrophysics Data System (ADS)

    Bobojć, Andrzej; Drożyner, Andrzej; Rzepecka, Zofia

    2017-04-01

    The work includes the comparison of performance of selected geopotential models in the dynamic orbit estimation of the satellite of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission. This was realized by fitting estimated orbital arcs to the official centimeter-accuracy GOCE kinematic orbit which is provided by the European Space Agency. The Cartesian coordinates of kinematic orbit were treated as observations in the orbit estimation. The initial satellite state vector components were corrected in an iterative process with respect to the J2000.0 inertial reference frame using the given geopotential model, the models describing the remaining gravitational perturbations and the solar radiation pressure. Taking the obtained solutions into account, the RMS values of orbital residuals were computed. These residuals result from the difference between the determined orbit and the reference one - the GOCE kinematic orbit. The performance of selected gravity models was also determined using various orbital arc lengths. Additionally, the RMS fit values were obtained for some gravity models truncated at given degree and order of spherical harmonic coefficients. The advantage of using the kinematic orbit is its independence from any a priori dynamical models. For the research such GOCE-independent gravity models as HUST-Grace2016s, ITU_GRACE16, ITSG-Grace2014s, ITSG-Grace2014k, GGM05S, Tongji-GRACE01, ULUX_CHAMP2013S, ITG-GRACE2010S, EIGEN-51C, EIGEN5S, EGM2008 and EGM96 were adopted.

  4. Estimating on-orbit optical properties for GNSS satellites

    NASA Astrophysics Data System (ADS)

    Rodriguez Solano, M. Sc. Carlos Javier; Hugentobler, Urs; Steigenberger, Peter

    One of the major uncertainty sources affecting GNSS satellite orbits is the direct solar radiation pressure. Other important though smaller effects are caused by deviations of the satellite from nominal attitude, Earth radiation pressure and thermal re-radiation forces. To compensate such effects, the IGS Analysis Centers usually estimate empirical parameters which fit best the tracking data obtained from a global network of GNSS ground stations to compute orbits at an accuracy level of 2.5 cm for GPS and of 5 cm for GLONASS. On the other hand, there are also accurate physical models for the above mentioned non-conservative forces affecting the GNSS satellites such as the ROCK models for GPS satellites. However, current models fail to predict the real orbit behaviour with sufficient accuracy, mainly due to deviations from nominal attitude, from inaccurately known optical properties, or from aging of the satellite surfaces. In this context an analytical box-wing model has been derived based on the physical interaction between the direct solar radiation and a satellite consisting of a bus (box shape) and solar panels. Furthermore some of the parameters of the box-wing model can be adjusted to fit the GNSS tracking data, namely the fraction of reflected photons of the corresponding satellite surfaces. For this study GNSS orbits are generated based on one year of tracking data from the global IGS network and involving the box-wing model implemented into the Bernese GPS Software. The processing scheme was derived from the one used at the Center for Orbit Determination in Europe (CODE). The resulting satellite orbits are compared with CODE Final Orbits and validated using SLR (Satellite Laser Ranging) tracking data. Additionally, in the case of GPS satellites, the box-wing model and the obtained optical properties are compared directly with a priori models (e.g. ROCK), which deal with the direct solar radiation impacting the satellites.

  5. Model improvements and validation of TerraSAR-X precise orbit determination

    NASA Astrophysics Data System (ADS)

    Hackel, S.; Montenbruck, O.; Steigenberger, P.; Balss, U.; Gisinger, C.; Eineder, M.

    2017-05-01

    The radar imaging satellite mission TerraSAR-X requires precisely determined satellite orbits for validating geodetic remote sensing techniques. Since the achieved quality of the operationally derived, reduced-dynamic (RD) orbit solutions limits the capabilities of the synthetic aperture radar (SAR) validation, an effort is made to improve the estimated orbit solutions. This paper discusses the benefits of refined dynamical models on orbit accuracy as well as estimated empirical accelerations and compares different dynamic models in a RD orbit determination. Modeling aspects discussed in the paper include the use of a macro-model for drag and radiation pressure computation, the use of high-quality atmospheric density and wind models as well as the benefit of high-fidelity gravity and ocean tide models. The Sun-synchronous dusk-dawn orbit geometry of TerraSAR-X results in a particular high correlation of solar radiation pressure modeling and estimated normal-direction positions. Furthermore, this mission offers a unique suite of independent sensors for orbit validation. Several parameters serve as quality indicators for the estimated satellite orbit solutions. These include the magnitude of the estimated empirical accelerations, satellite laser ranging (SLR) residuals, and SLR-based orbit corrections. Moreover, the radargrammetric distance measurements of the SAR instrument are selected for assessing the quality of the orbit solutions and compared to the SLR analysis. The use of high-fidelity satellite dynamics models in the RD approach is shown to clearly improve the orbit quality compared to simplified models and loosely constrained empirical accelerations. The estimated empirical accelerations are substantially reduced by 30% in tangential direction when working with the refined dynamical models. Likewise the SLR residuals are reduced from -3 ± 17 to 2 ± 13 mm, and the SLR-derived normal-direction position corrections are reduced from 15 to 6 mm, obtained from the 2012-2014 period. The radar range bias is reduced from -10.3 to -6.1 mm with the updated orbit solutions, which coincides with the reduced standard deviation of the SLR residuals. The improvements are mainly driven by the satellite macro-model for the purpose of solar radiation pressure modeling, improved atmospheric density models, and the use of state-of-the-art gravity field models.

  6. Semiautomatic regional segmentation to measure orbital fat volumes in thyroid-associated ophthalmopathy. A validation study.

    PubMed

    Comerci, M; Elefante, A; Strianese, D; Senese, R; Bonavolontà, P; Alfano, B; Bonavolontà, B; Brunetti, A

    2013-08-01

    This study was designed to validate a novel semi-automated segmentation method to measure regional intra-orbital fat tissue volume in Graves' ophthalmopathy. Twenty-four orbits from 12 patients with Graves' ophthalmopathy, 24 orbits from 12 controls, ten orbits from five MRI study simulations and two orbits from a digital model were used. Following manual region of interest definition of the orbital volumes performed by two operators with different levels of expertise, an automated procedure calculated intra-orbital fat tissue volumes (global and regional, with automated definition of four quadrants). In patients with Graves' disease, clinical activity score and degree of exophthalmos were measured and correlated with intra-orbital fat volumes. Operator performance was evaluated and statistical analysis of the measurements was performed. Accurate intra-orbital fat volume measurements were obtained with coefficients of variation below 5%. The mean operator difference in total fat volume measurements was 0.56%. Patients had significantly higher intra-orbital fat volumes than controls (p<0.001 using Student's t test). Fat volumes and clinical score were significantly correlated (p<0.001). The semi-automated method described here can provide accurate, reproducible intra-orbital fat measurements with low inter-operator variation and good correlation with clinical data.

  7. GOATS - Orbitology Component

    NASA Technical Reports Server (NTRS)

    Haber, Benjamin M.; Green, Joseph J.

    2010-01-01

    The GOATS Orbitology Component software was developed to specifically address the concerns presented by orbit analysis tools that are often written as stand-alone applications. These applications do not easily interface with standard JPL first-principles analysis tools, and have a steep learning curve due to their complicated nature. This toolset is written as a series of MATLAB functions, allowing seamless integration into existing JPL optical systems engineering modeling and analysis modules. The functions are completely open, and allow for advanced users to delve into and modify the underlying physics being modeled. Additionally, this software module fills an analysis gap, allowing for quick, high-level mission analysis trades without the need for detailed and complicated orbit analysis using commercial stand-alone tools. This software consists of a series of MATLAB functions to provide for geometric orbit-related analysis. This includes propagation of orbits to varying levels of generalization. In the simplest case, geosynchronous orbits can be modeled by specifying a subset of three orbit elements. The next case is a circular orbit, which can be specified by a subset of four orbit elements. The most general case is an arbitrary elliptical orbit specified by all six orbit elements. These orbits are all solved geometrically, under the basic problem of an object in circular (or elliptical) orbit around a rotating spheroid. The orbit functions output time series ground tracks, which serve as the basis for more detailed orbit analysis. This software module also includes functions to track the positions of the Sun, Moon, and arbitrary celestial bodies specified by right ascension and declination. Also included are functions to calculate line-of-sight geometries to ground-based targets, angular rotations and decompositions, and other line-of-site calculations. The toolset allows for the rapid execution of orbit trade studies at the level of detail required for the early stage of mission concept development.

  8. Micro-orbits in a many-brane model and deviations from Newton's 1/r^2 law

    NASA Astrophysics Data System (ADS)

    Donini, A.; Marimón, S. G.

    2016-12-01

    We consider a five-dimensional model with geometry M = M_4 × S_1, with compactification radius R. The Standard Model particles are localized on a brane located at y=0, with identical branes localized at different points in the extra dimension. Objects located on our brane can orbit around objects located on a brane at a distance d=y/R, with an orbit and a period significantly different from the standard Newtonian ones. We study the kinematical properties of the orbits, finding that it is possible to distinguish one motion from the other in a large region of the initial conditions parameter space. This is a warm-up to study if a SM-like mass distribution on one (or more) distant brane(s) may represent a possible dark matter candidate. After using the same technique to the study of orbits of objects lying on the same brane (d=0), we apply this method to the detection of generic deviations from the inverse-square Newton law. We propose a possible experimental setup to look for departures from Newtonian motion in the micro-world, finding that an order of magnitude improvement on present bounds can be attained at the 95% CL under reasonable assumptions.

  9. Hardware in-the-Loop Demonstration of Real-Time Orbit Determination in High Earth Orbits

    NASA Technical Reports Server (NTRS)

    Moreau, Michael; Naasz, Bo; Leitner, Jesse; Carpenter, J. Russell; Gaylor, Dave

    2005-01-01

    This paper presents results from a study conducted at Goddard Space Flight Center (GSFC) to assess the real-time orbit determination accuracy of GPS-based navigation in a number of different high Earth orbital regimes. Measurements collected from a GPS receiver (connected to a GPS radio frequency (RF) signal simulator) were processed in a navigation filter in real-time, and resulting errors in the estimated states were assessed. For the most challenging orbit simulated, a 12 hour Molniya orbit with an apogee of approximately 39,000 km, mean total position and velocity errors were approximately 7 meters and 3 mm/s respectively. The study also makes direct comparisons between the results from the above hardware in-the-loop tests and results obtained by processing GPS measurements generated from software simulations. Care was taken to use the same models and assumptions in the generation of both the real-time and software simulated measurements, in order that the real-time data could be used to help validate the assumptions and models used in the software simulations. The study makes use of the unique capabilities of the Formation Flying Test Bed at GSFC, which provides a capability to interface with different GPS receivers and to produce real-time, filtered orbit solutions even when less than four satellites are visible. The result is a powerful tool for assessing onboard navigation performance in a wide range of orbital regimes, and a test-bed for developing software and procedures for use in real spacecraft applications.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Yuxin; Suto, Yasushi; Taruya, Atsushi

    The angle between the stellar spin and the planetary orbit axes (the spin-orbit angle) is supposed to carry valuable information concerning the initial condition of planetary formation and subsequent migration history. Indeed, current observations of the Rossiter-McLaughlin effect have revealed a wide range of spin-orbit misalignments for transiting exoplanets. We examine in detail the tidal evolution of a simple system comprising a Sun-like star and a hot Jupiter adopting the equilibrium tide and the inertial wave dissipation effects simultaneously. We find that the combined tidal model works as a very efficient realignment mechanism; it predicts three distinct states of themore » spin-orbit angle (i.e., parallel, polar, and antiparallel orbits) for a while, but the latter two states eventually approach the parallel spin-orbit configuration. The intermediate spin-orbit angles as measured in recent observations are difficult to obtain. Therefore the current model cannot reproduce the observed broad distribution of the spin-orbit angles, at least in its simple form. This indicates that the observed diversity of the spin-orbit angles may emerge from more complicated interactions with outer planets and/or may be the consequence of the primordial misalignment between the protoplanetary disk and the stellar spin, which requires future detailed studies.« less

  11. Comparative DMFT study of the eg-orbital Hubbard model in thin films

    NASA Astrophysics Data System (ADS)

    Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.

    2014-02-01

    Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.

  12. Multi-Body Orbit Architectures for Lunar South Pole Coverage

    NASA Technical Reports Server (NTRS)

    Grebow, D. J.; Ozimek, M. T.; Howell, K. C.; Folta, D. C.

    2006-01-01

    A potential ground station at the lunar south pole has prompted studies of orbit architectures that ensure adequate coverage. Constant communications can be achieved with two spacecraft in different combinations of Earth-Moon libration point orbits. Halo and vertical families, as well as other orbits near L1 and L2 are considered. The investigation includes detailed results using nine different orbits with periods ranging from 7 to 16 days. Natural solutions are generated in a full ephemeris model, including solar perturbations. A preliminary station-keeping analysis is also completed.

  13. Regions of stability of asteroids

    NASA Technical Reports Server (NTRS)

    Szebehely, V.; Lundberg, J.; Vicente, R.

    1983-01-01

    Using Hill's modified stability criterion, regions of orbital elements are established for conditions of stability. The model of the three-dimensional restricted problem of three bodies is used with the sun and Jupiter as the primaries. Four different cases are studied: direct and retrograde, outside and inside asteroidal orbits. The directions of the asteroidal orbits refer to the synodical reference frame and the positions refer to Jupiter's orbit. The orbital parameters of the asteroids are the semi-major axis (a), the eccentricity (e), and the inclination from Jupiter's orbital plane (i). The argument of the perihelion and the longitude of the ascending node are fixed at Omega = omega = 90 deg and the time of perihelion passage is T = 0 for all orbits.

  14. Variations in Titan's dune orientations as a result of orbital forcing

    NASA Astrophysics Data System (ADS)

    McDonald, George D.; Hayes, Alexander G.; Ewing, Ryan C.; Lora, Juan M.; Newman, Claire E.; Tokano, Tetsuya; Lucas, Antoine; Soto, Alejandro; Chen, Gang

    2016-05-01

    Wind-blown dunes are a record of the climatic history in Titan's equatorial region. Through modeling of the climatic conditions associated with Titan's historical orbital configurations (arising from apsidal precessions of Saturn's orbit), we present evidence that the orientations of the dunes are influenced by orbital forcing. Analysis of 3 Titan general circulation models (GCMs) in conjunction with a sediment transport model provides the first direct intercomparison of results from different Titan GCMs. We report variability in the dune orientations predicted for different orbital epochs of up to 70°. Although the response of the GCMs to orbital forcing varies, the orbital influence on the dune orientations is found to be significant across all models. Furthermore, there is near agreement among the two models run with surface topography, with 3 out of the 5 dune fields matching observation for the most recent orbital cycle. Through comparison with observations by Cassini, we find situations in which the observed dune orientations are in best agreement with those modeled for previous orbital configurations or combinations thereof, representing a larger portion of the cycle. We conclude that orbital forcing could be an important factor in governing the present-day dune orientations observed on Titan and should be considered when modeling dune evolution.

  15. Orbital selective directional conductor in the two-orbital Hubbard model

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Moreo, Adriana; ...

    2016-02-29

    Recently, we employed a developed many-body technique that allows for the incorporation of thermal effects, the rich phase diagram of a two-dimensional two-orbital (degenerate d xz and d yz) Hubbard model is presented varying temperature and the repulsion U. The main result is the finding at intermediate U of an antiferromagnetic orbital selective state where an effective dimensional reduction renders one direction insulating and the other metallic. Possible realizations of this state are discussed. Additionally, we also study nematicity above the N eel temperature. After a careful finite-size scaling analysis, the nematicity temperature window appears to survive in the bulkmore » limit, although it is very narrow.« less

  16. Electric sail elliptic displaced orbits with advanced thrust model

    NASA Astrophysics Data System (ADS)

    Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2017-09-01

    This paper analyzes the performance of an Electric Solar Wind Sail for generating and maintaining an elliptic, heliocentric, displaced non-Keplerian orbit. In this sense, this paper extends and completes recent studies regarding the performances of an Electric Solar Wind Sail that covers a circular, heliocentric, displaced orbit of given characteristics. The paper presents the general equations that describe the elliptic orbit maintenance in terms of both spacecraft attitude and performance requirements, when a refined thrust model (recently proposed for the preliminary mission design) is taken into account. In particular, the paper also discusses some practical applications on particular mission scenarios in which an analytic solution of the governing equations has been found.

  17. Analytical slave-spin mean-field approach to orbital selective Mott insulators

    NASA Astrophysics Data System (ADS)

    Komijani, Yashar; Kotliar, Gabriel

    2017-09-01

    We use the slave-spin mean-field approach to study particle-hole symmetric one- and two-band Hubbard models in the presence of Hund's coupling interaction. By analytical analysis of the Hamiltonian, we show that the locking of the two orbitals vs orbital selective Mott transition can be formulated within a Landau-Ginzburg framework. By applying the slave-spin mean field to impurity problems, we are able to make a correspondence between impurity and lattice. We also consider the stability of the orbital selective Mott phase to the hybridization between the orbitals and study the limitations of the slave-spin method for treating interorbital tunnelings in the case of multiorbital Bethe lattices with particle-hole symmetry.

  18. A dynamical mean-field study of orbital-selective Mott phase enhanced by next-nearest neighbor hopping

    NASA Astrophysics Data System (ADS)

    Niu, Yuekun; Sun, Jian; Ni, Yu; Song, Yun

    2018-06-01

    The dynamical mean-field theory is employed to study the orbital-selective Mott transition (OSMT) of the two-orbital Hubbard model with nearest neighbor hopping and next-nearest neighbor (NNN) hopping. The NNN hopping breaks the particle-hole symmetry at half filling and gives rise to an asymmetric density of states (DOS). Our calculations show that the broken symmetry of DOS benefits the OSMT, where the region of the orbital-selective Mott phase significantly extends with the increasing NNN hopping integral. We also find that Hund's rule coupling promotes OSMT by blocking the orbital fluctuations, but the influence of NNN hopping is more remarkable.

  19. An a priori solar radiation pressure model for the QZSS Michibiki satellite

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Chen, Guo; Guo, Jing; Liu, Jingnan; Liu, Xianglin

    2018-02-01

    It has been noted that the satellite laser ranging (SLR) residuals of the Quasi-Zenith Satellite System (QZSS) Michibiki satellite orbits show very marked dependence on the elevation angle of the Sun above the orbital plane (i.e., the β angle). It is well recognized that the systematic error is caused by mismodeling of the solar radiation pressure (SRP). Although the error can be reduced by the updated ECOM SRP model, the orbit error is still very large when the satellite switches to orbit-normal (ON) orientation. In this study, an a priori SRP model was established for the QZSS Michibiki satellite to enhance the ECOM model. This model is expressed in ECOM's D, Y, and B axes (DYB) using seven parameters for the yaw-steering (YS) mode, and additional three parameters are used to compensate the remaining modeling deficiencies, particularly the perturbations in the Y axis, based on a redefined DYB for the ON mode. With the proposed a priori model, QZSS Michibiki's precise orbits over 21 months were determined. SLR validation indicated that the systematic β -angle-dependent error was reduced when the satellite was in the YS mode, and better than an 8-cm root mean square (RMS) was achieved. More importantly, the orbit quality was also improved significantly when the satellite was in the ON mode. Relative to ECOM and adjustable box-wing model, the proposed SRP model showed the best performance in the ON mode, and the RMS of the SLR residuals was better than 15 cm, which was a two times improvement over the ECOM without a priori model used, but was still two times worse than the YS mode.

  20. Methods to Improve the Maintenance of the Earth Catalog of Satellites During Severe Solar Storms

    NASA Technical Reports Server (NTRS)

    Wilkin, Paul G.; Tolson, Robert H.

    1998-01-01

    The objective of this thesis is to investigate methods to improve the ability to maintain the inventory of orbital elements of Earth satellites during periods of atmospheric disturbance brought on by severe solar activity. Existing techniques do not account for such atmospheric dynamics, resulting in tracking errors of several seconds in predicted crossing time. Two techniques are examined to reduce of these tracking errors. First, density predicted from various atmospheric models is fit to the orbital decay rate for a number of satellites. An orbital decay model is then developed that could be used to reduce tracking errors by accounting for atmospheric changes. The second approach utilizes a Kalman filter to estimate the orbital decay rate of a satellite after every observation. The new information is used to predict the next observation. Results from the first approach demonstrated the feasibility of building an orbital decay model based on predicted atmospheric density. Correlation of atmospheric density to orbital decay was as high as 0.88. However, it is clear that contemporary: atmospheric models need further improvement in modeling density perturbations polar region brought on by solar activity. The second approach resulted in a dramatic reduction in tracking errors for certain satellites during severe solar Storms. For example, in the limited cases studied, the reduction in tracking errors ranged from 79 to 25 percent.

  1. Constraints on the pre-impact orbits of Theia, the Borealis impactor and the progenitor of Mercury

    NASA Astrophysics Data System (ADS)

    Jackson, Alan P.; Gabriel, Travis; Asphaug, Erik

    2016-10-01

    Many aspects of the current dynamical and compositional configuration of the inner Solar System, such as Mercury's large core mass fraction, the angular momentum of the Earth-Moon system, and the reorientation of Mars, have been achieved through the effects of giant impacts. It is possible to relate the impact conditions, especially the velocity, to the pre-impact orbits. This in turn provides insight into the source regions for the terrestrial planets for comparison with N-body accretion models. For example, in the case of the canonical model for the formation of the Moon, previous studies have investigated regions in which the Mars-size impactor, Theia, could be quasi-stable for millions of years. We can however obtain constraints on the orbit of an impactor immediately prior to collision simply by knowing the impact velocity. We consider the canonical Moon formation model, as well as the models of Cuk & Stewart (2012), Canup (2012) and Reufer et al. (2012), to derive from each model its constraints on the pre-impact orbit of Theia. We also consider Mars, and provide constraints on the pre-impact orbit of the impactor suggested to have formed the Borealis basin, and Mercury, namely the Benz et al. (2007) scenario for the formation of Mercury. We discuss the implication of these pre-impact orbits for the origin of the bodies and their compositions.

  2. Orbital State Manipulation of a Diamond Nitrogen-Vacancy Center Using a Mechanical Resonator

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; MacQuarrie, E. R.; Fuchs, G. D.

    2018-04-01

    We study the resonant optical transitions of a single nitrogen-vacancy (NV) center that is coherently dressed by a strong mechanical drive. Using a gigahertz-frequency diamond mechanical resonator that is strain coupled to a NV center's orbital states, we demonstrate coherent Raman sidebands out to the ninth order and orbital-phonon interactions that mix the two excited-state orbital branches. These interactions are spectroscopically revealed through a multiphonon Rabi splitting of the orbital branches which scales as a function of resonator driving amplitude and is successfully reproduced in a quantum model. Finally, we discuss the application of mechanical driving to engineering NV-center orbital states.

  3. Dynamical Simulations of HD 69830

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Ford, Eric B.; Wyatt, Mark C.; Booth, Mark

    2009-02-01

    Previous studies have developed models for the growth and migration of three planets orbiting HD 69830. We perform n-body simulations using MERCURY (Chambers 1999) to explore the implications of these models for: 1) the excitation of planetary orbits via planet-planet interactions, 2) the accretion and clearing of a putative planetesimal disk, 3) the distribution of planetesimal orbits following migration, and 4) the implications for the origin of the observed infrared emission from the HD 69830 system. We report preliminary results that suggest new constraints on the formation of HD 69830.

  4. TDRS orbit determination by radio interferometry

    NASA Technical Reports Server (NTRS)

    Pavloff, Michael S.

    1994-01-01

    In support of a NASA study on the application of radio interferometry to satellite orbit determination, MITRE developed a simulation tool for assessing interferometry tracking accuracy. The Orbit Determination Accuracy Estimator (ODAE) models the general batch maximum likelihood orbit determination algorithms of the Goddard Trajectory Determination System (GTDS) with the group and phase delay measurements from radio interferometry. ODAE models the statistical properties of tracking error sources, including inherent observable imprecision, atmospheric delays, clock offsets, station location uncertainty, and measurement biases, and through Monte Carlo simulation, ODAE calculates the statistical properties of errors in the predicted satellites state vector. This paper presents results from ODAE application to orbit determination of the Tracking and Data Relay Satellite (TDRS) by radio interferometry. Conclusions about optimal ground station locations for interferometric tracking of TDRS are presented, along with a discussion of operational advantages of radio interferometry.

  5. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Habitability design concepts for the Shuttle Orbiter Program are provided for MSC. A variety of creative solutions for the stated tasks are presented. Sketches, mock-ups, mechanicals and models are included for establishing a foundation for future development.

  6. An Overview of NASA's Oribital Debris Environment Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    Using updated measurement data, analysis tools, and modeling techniques; the NASA Orbital Debris Program Office has created a new Orbital Debris Environment Model. This model extends the coverage of orbital debris flux throughout the Earth orbit environment, and includes information on the mass density of the debris as well as the uncertainties in the model environment. This paper will give an overview of this model and its implications for spacecraft risk analysis.

  7. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Based on the research, the area of precise ephemerides for GPS satellites, the following observations can be made pertaining to the status and future work needed regarding orbit accuracy. There are several aspects which need to be addressed in discussing determination of precise orbits, such as force models, kinematic models, measurement models, data reduction/estimation methods, etc. Although each one of these aspects was studied at CSR in research efforts, only points pertaining to the force modeling aspect are addressed.

  8. On the orbital evolution of the Lyrid meteoroid stream

    NASA Astrophysics Data System (ADS)

    Kornoš, Leonard; Tóth, Juraj; Porubčan, Vladimír; Klačka, Jozef; Nagy, Roman; Rudawska, Regina

    2015-12-01

    A detailed analysis of the Lyrid video orbits from the EDMOND database is performed. Applying selective methods, the weighted mean orbit and mean geophysical parameters are derived. The occurrence of orbits with the semimajor axes smaller than 35 AU, in comparison with the value of 55 AU of the parent comet Thatcher, is about 80%, in the set of higher quality data of the Lyrids in the EDMOND database. The gravitational orbital evolutions of Thatcher and modelled particles ejected in five perihelion passages of the comet in the past are studied. Both, orbits of the comet and modelled particles, are under quite strong disturbing influence of Jupiter, Saturn and Earth. After the integration to the present, the mean theoretical radiants, the mean geocentric velocities and periods of activity of particles approaching the Earth's orbit were calculated. The mean orbits of the modelled streams of particles ejected from different perihelia match well the mean Lyrid orbit from the IAU MDC and the observed video Lyrids from the EDMOND database. The particles released in the two oldest simulated perihelion passages of the parent comet are most responsible for the occurrence of the Earth-crossing orbits with the semimajor axes smaller than 35 AU, but no one below 20 AU. The influence of non-gravitational effects, mainly solar radiation, may shorten semimajor axis of a submilimeter particle with density of 0.3 g/cm3 by more than half during an evolution of 50 000 years. A common influence of gravitational perturbations and non-gravitational effects can provide a dynamical way to the short-period orbits. However, this process is for millimeter and larger particles (video and photographic) less effective.

  9. Impact of tidal density variability on orbital and reentry predictions

    NASA Astrophysics Data System (ADS)

    Leonard, J. M.; Forbes, J. M.; Born, G. H.

    2012-12-01

    Since the first satellites entered Earth orbit in the late 1950's and early 1960's, the influences of solar and geomagnetic variability on the satellite drag environment have been studied, and parameterized in empirical density models with increasing sophistication. However, only within the past 5 years has the realization emerged that "troposphere weather" contributes significantly to the "space weather" of the thermosphere, especially during solar minimum conditions. Much of the attendant variability is attributable to upward-propagating solar tides excited by latent heating due to deep tropical convection, and solar radiation absorption primarily by water vapor and ozone in the stratosphere and mesosphere, respectively. We know that this tidal spectrum significantly modifies the orbital (>200 km) and reentry (60-150 km) drag environments, and that these tidal components induce longitude variability not yet emulated in empirical density models. Yet, current requirements for improvements in orbital prediction make clear that further refinements to density models are needed. In this paper, the operational consequences of longitude-dependent tides are quantitatively assessed through a series of orbital and reentry predictions. We find that in-track prediction differences incurred by tidal effects are typically of order 200 ± 100 m for satellites in 400-km circular orbits and 15 ± 10 km for satellites in 200-km circular orbits for a 24-hour prediction. For an initial 200-km circular orbit, surface impact differences of order 15° ± 15° latitude are incurred. For operational problems with similar accuracy needs, a density model that includes a climatological representation of longitude-dependent tides should significantly reduce errors due to this source.

  10. The Copernicus POD Service and beyond: Scientific exploitation of the orbit-related data and products

    NASA Astrophysics Data System (ADS)

    Peter, Heike; Fernández, Jaime; Fernández, Carlos; Féménias, Pierre

    2017-04-01

    The Copernicus POD (Precise Orbit Determination) Service is part of the Copernicus Processing Data Ground Segment (PDGS) of the Sentinel-1, -2 and -3 missions. A GMV-led consortium is operating the Copernicus POD Service being in charge of generating precise orbital products and auxiliary data files for their use as part of the processing chains of the respective Sentinel PDGS. The orbital products are available through the dedicated Copernicus data hub. The Copernicus POD Service is supported by the Copernicus POD Quality Working Group (QWG) for the validation of the orbit product accuracy. The QWG is delivering independent orbit solutions for the satellites. The cross-comparison of all these orbit solutions is essential to monitor and to improve the orbit accuracy because for Sentinel-1 and -2 this is the only possibility to externally assess the quality of the orbits. Each of the Sentinel-1, -2, and -3 satellites carries dual-frequency GPS receivers delivering the necessary measurements for the precise orbit determination of the satellites. The Sentinel-3 satellites are additionally equipped with a DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) receiver and a Laser Retro Reflector for Satellite Laser Ranging. These two additional observation techniques allow for independent validation of the GPS-derived orbit determination results and for studying biases between the different techniques. The scientific exploitation of the orbit determination and the corresponding input data is manifold. Sophisticated satellite macro models improve the modelling of the non-gravitational forces acting on the satellite. On the other hand, comparisons to orbits based on pure empirical modelling of the non-gravitational forces help to sort out deficiencies in the satellite geometry information. The dual-frequency GPS data delivered by the satellites can give valuable input for ionospheric studies important for Space Weather research. So-called kinematic orbits, being a time series of discrete satellite positions derived from GPS, may be used for the modelling of the time-variable low degree harmonics of the Earth's gravity field. This is very important to support filling the possible gap between the dedicated gravity field missions GRACE and GRACE Follow-on. Many other important research topics could be mentioned here as well. Therefore a broad scientific community could benefit of an open access not only to the operational orbits (which is partially available today), but also to the GPS observations, satellite attitude and other ancillary information to perform POD. This poster presents firstly the status of the Copernicus POD Service in terms of products generated, accuracy and timeliness of the operational orbital products and all potential inputs available. Then the main focus of the poster is to outline the possibilities for scientific exploitation of the orbit determination and the corresponding input data. The great scientific potential of these data is explained to confirm the need of making them publicly available for scientists.

  11. Theory of electronic and spin-orbit proximity effects in graphene on Cu(111)

    NASA Astrophysics Data System (ADS)

    Frank, Tobias; Gmitra, Martin; Fabian, Jaroslav

    2016-04-01

    We study orbital and spin-orbit proximity effects in graphene adsorbed to the Cu(111) surface by means of density functional theory (DFT). The proximity effects are caused mainly by the hybridization of graphene π and copper d orbitals. Our electronic structure calculations agree well with the experimentally observed features. We carry out a graphene-Cu(111) distance dependent study to obtain proximity orbital and spin-orbit coupling parameters, by fitting the DFT results to a robust low energy model Hamiltonian. We find a strong distance dependence of the Rashba and intrinsic proximity induced spin-orbit coupling parameters, which are in the meV and hundreds of μ eV range, respectively, for experimentally relevant distances. The Dirac spectrum of graphene also exhibits a proximity orbital gap, of about 20 meV. Furthermore, we find a band inversion within the graphene states accompanied by a reordering of spin and pseudospin states, when graphene is pressed towards copper.

  12. A Comparison of Averaged and Full Models to Study the Third-Body Perturbation

    PubMed Central

    Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida

    2013-01-01

    The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made. PMID:24319348

  13. Transport and equilibrium in field-reversed mirrors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, J.K.

    Two plasma models relevant to compact torus research have been developed to study transport and equilibrium in field reversed mirrors. In the first model for small Larmor radius and large collision frequency, the plasma is described as an adiabatic hydromagnetic fluid. In the second model for large Larmor radius and small collision frequency, a kinetic theory description has been developed. Various aspects of the two models have been studied in five computer codes ADB, AV, NEO, OHK, RES. The ADB code computes two dimensional equilibrium and one dimensional transport in a flux coordinate. The AV code calculates orbit average integralsmore » in a harmonic oscillator potential. The NEO code follows particle trajectories in a Hill's vortex magnetic field to study stochasticity, invariants of the motion, and orbit average formulas. The OHK code displays analytic psi(r), B/sub Z/(r), phi(r), E/sub r/(r) formulas developed for the kinetic theory description. The RES code calculates resonance curves to consider overlap regions relevant to stochastic orbit behavior.« less

  14. A comparison of averaged and full models to study the third-body perturbation.

    PubMed

    Solórzano, Carlos Renato Huaura; Prado, Antonio Fernando Bertachini de Almeida

    2013-01-01

    The effects of a third-body travelling in a circular orbit around a main body on a massless satellite that is orbiting the same main body are studied under two averaged models, single and double, where expansions of the disturbing function are made, and the full restricted circular three-body problem. The goal is to compare the behavior of these two averaged models against the full problem for long-term effects, in order to have some knowledge of their differences. The single averaged model eliminates the terms due to the short period of the spacecraft. The double average is taken over the mean motion of the satellite and the mean motion of the disturbing body, so removing both short period terms. As an example of the methods, an artificial satellite around the Earth perturbed by the Moon is used. A detailed study of the effects of different initial conditions in the orbit of the spacecraft is made.

  15. Rotation of a spheroid in a Couette flow at moderate Reynolds numbers.

    PubMed

    Yu, Zhaosheng; Phan-Thien, Nhan; Tanner, Roger I

    2007-08-01

    The rotation of a single spheroid in a planar Couette flow as a model for simple shear flow is numerically simulated with the distributed Lagrangian multiplier based fictitious domain method. The study is focused on the effects of inertia on the orbital behavior of prolate and oblate spheroids. The numerical orbits are found to be well described by a simple empirical model, which states that the rate of the spheroid rotation about the vorticity axis is a sinusoidal function of the corresponding projection angle in the flow-gradient plane, and that the exponential growth rate of the orbit function is a constant. The following transitions in the steady state with increasing Reynolds number are identified: Jeffery orbit, tumbling, quasi-Jeffery orbit, log rolling, and inclined rolling for a prolate spheroid; and Jeffery orbit, log rolling, inclined rolling, and motionless state for an oblate spheroid. In addition, it is shown that the orbit behavior is sensitive to the initial orientation in the case of strong inertia and there exist different steady states for certain shear Reynolds number regimes.

  16. VISCOELASTIC MODELS OF TIDALLY HEATED EXOMOONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobos, Vera; Turner, Edwin L., E-mail: dobos@konkoly.hu

    2015-05-01

    Tidal heating of exomoons may play a key role in their habitability, since the elevated temperature can melt the ice on the body even without significant solar radiation. The possibility of life has been intensely studied on solar system moons such as Europa or Enceladus where the surface ice layer covers a tidally heated water ocean. Tidal forces may be even stronger in extrasolar systems, depending on the properties of the moon and its orbit. To study the tidally heated surface temperature of exomoons, we used a viscoelastic model for the first time. This model is more realistic than themore » widely used, so-called fixed Q models because it takes into account the temperature dependence of the tidal heat flux and the melting of the inner material. Using this model, we introduced the circumplanetary Tidal Temperate Zone (TTZ), which strongly depends on the orbital period of the moon and less on its radius. We compared the results with the fixed Q model and investigated the statistical volume of the TTZ using both models. We have found that the viscoelastic model predicts 2.8 times more exomoons in the TTZ with orbital periods between 0.1 and 3.5 days than the fixed Q model for plausible distributions of physical and orbital parameters. The viscoelastic model provides more promising results in terms of habitability because the inner melting of the body moderates the surface temperature, acting like a thermostat.« less

  17. A Dynamical Systems Approach to the Design of the Science Orbit Around Europa

    NASA Technical Reports Server (NTRS)

    Gomez, Gerard; Lara, Martin; Russell, Ryan P.

    2006-01-01

    The science orbit for a future mission to Europa requires low eccentricity, low altitude, and high inclination. However, high inclination orbits around planetary satellites are unstable due to third-body perturbations. Without control, the orbiter impacts Europa after few weeks. To minimize control, a tour over the stable-unstable, averaged manifolds of unstable frozen orbits has been suggested. We proceed with the unaveraged equations and study the manifolds of unstable orbits that are periodic in a rotating frame attached to Europa. Massive numerical computation helps in understanding the unstable dynamics close to Europa, and, thus, in selecting long lifetime high inclination orbits. A final test of a selected set of initial conditions on a high fidelity, ephemeris model, validate the results.

  18. Comparison of stellar and gasdynamics of a barred galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contopoulos, G.; Gottesman, S.T.; Hunter, J.H. Jr.

    1989-08-01

    The stellar and gas dynamics of several models of barred galaxies were studied, and results for some representative cases are reported for galaxies in which the stars and gas respond to the same potentials. Inside corotation there are two main families of periodic orbits, designated x1 and 4/1. Close to the center, the x1 orbits are like elongated ellipses. As the 4/1 resonance is approached, these orbits become like lozenges, with apices along the bar and perpendicular to it. The family 4/1 consists of orbits like parallelograms which produce the boxy component of the bar. The orbits in spirals outsidemore » corotation enhance the spiral between the outer -4/1 resonance and the outer Lindblad resonance. Between corotation and the -4/1 resonance in strong spirals, the orbits are mostly stochastic and fill almost circular rings. A spiral field must be added to gasdynamical models to obtain gaseous arms extending from the end of a bar. 38 refs.« less

  19. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  20. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  1. Payload/orbiter contamination control assessment support

    NASA Technical Reports Server (NTRS)

    Rantanen, R. O.; Ress, E. B.

    1975-01-01

    The development and use is described of a basic contamination mathematical model of the shuttle orbiter which incorporates specific shuttle orbiter configurations and contamination sources. These configurations and sources were evaluated with respect to known shuttle orbiter operational surface characteristics and specific lines-of-sight which encompass the majority of viewing requirements for shuttle payloads. The results of these evaluations are presented as summary tables for each major source. In addition, contamination minimization studies were conducted and recommendations are made, where applicable, to support the shuttle orbiter design and operational planning for those sources which were identified to present a significant contamination threat.

  2. Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory

    2013-01-01

    Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.

  3. Interacting Winds in Eclipsing Symbiotic Systems - The Case Study of EG Andromedae

    NASA Astrophysics Data System (ADS)

    Calabrò, Emanuele

    2014-03-01

    We report the mathematical representation of the so called eccentric eclipse model, whose numerical solutions can be used to obtain the physical parameters of a quiescent eclipsing symbiotic system. Indeed the nebular region produced by the collision of the stellar winds should be shifted to the orbital axis because of the orbital motion of the system. This mechanism is not negligible, and it led us to modify the classical concept of an eclipse. The orbital elements obtained from spectroscopy and photometry of the symbiotic EG Andromedae were used to test the eccentric eclipse model. Consistent values for the unknown orbital elements of this symbiotic were obtained. The physical parameters are in agreement with those obtained by means of other simulations for this system.

  4. Utilizing the Lunar Laser Ranging datasets alongside the radioscience data from the Lunar Reconnaissance Orbiter to improve the dynamical model of the Moon

    NASA Astrophysics Data System (ADS)

    Viswanathan, Vishnu; Fienga, Agnes; Laskar, Jacques; Manche, Herve; Torre, Jean-Marie; Courde, Clément; Exertier, Pierre

    2015-08-01

    In this poster we elaborate the use of raw navigation data (range and Doppler observations) from the Lunar Reconnaissance Orbiter (LRO) available on the Planetary Data System (PDS), in order to study the orbit of this probe using the orbit determination software (GINS) developed by the French space agency (CNES). The constraints that are derived from this process on combining with the high precision Lunar Laser Ranging (LLR) datasets which are spread over 40 years, facilitates an improved dynamical modeling of the Moon. In addition, the possible advantages that could be exploited by the LLR experiments when operated with lasers in the IR wavelength are analyzed.

  5. Orbital transfer vehicle concept definition and system analysis study, 1985. Volume 3: System and program trades

    NASA Technical Reports Server (NTRS)

    Nelson, James H.; Mohrman, Gordon W.; Callan, Daniel R.

    1986-01-01

    The key system and program trade studies performed to arrive at a preferred Orbital Transfer Vehicle (OTV) system concept and evolutionary approach to the acquisition of the requisite capabilites is documented. These efforts were expanded to encompass a Space Transportation Architecture Study (STAS) mission model and recommended unmanned cargo vehicle. The most important factors affecting the results presented are the mission model requirements and selection criteria. The reason for conducting the OTV concept definition and system analyses study is to select a concept and acquisition approach that meets a delivery requirement reflected by the mission model.

  6. On the lunar node resonance of the orbital plane evolution of the Earth's satellite orbits

    NASA Astrophysics Data System (ADS)

    Zhu, Ting-Lei

    2018-06-01

    This paper aims to investigate the effects of lunar node resonance on the circular medium Earth orbits (MEO). The dynamical model is established in classical Hamiltonian systems with the application of Lie transform to remove the non-resonant terms. Resonant condition, stability and phase structures are studied. The lunar node resonance occurs when the secular changing rates of the orbital node (with respect to the equator) and the lunar node (with respect to the ecliptic) form a simple integer ratio. The resonant conditions are satisfied for both inclined and equatorial orbits. The orbital plane would have long period (with typical timescales of several centuries) fluctuation due to the resonance.

  7. BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements.

    PubMed

    Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang

    2017-10-27

    This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm.

  8. BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements

    PubMed Central

    Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang

    2017-01-01

    This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm. PMID:29076998

  9. Investigation of Co-rotation Lag in Saturn's Dayside Magnetosphere and Comparison with the Nightside

    NASA Astrophysics Data System (ADS)

    Smith, E. J.; Dougherty, M. K.

    2016-12-01

    Two previous studies of co-rotation lag concentrated on 13 identical high-inclination Cassini orbits. In the first, measurements of the magnetospheric field azimuthal component, Bϕ, were restricted to the southern hemisphere, near midnight, from the equator and perikron to maximum latitude 70°. Comparison with the prevailing model of the magnetosphere-ionosphere interaction yielded conclusions that the ionospheric conductivity, Σp, was independent of ionospheric co-latitude, θi, and the ratio of magnetospheric to planetary field angular velocities, ω/Ωs, equaled, 1- exp(-Bθi), an unexpected exponential dependence on a single parameter. Both model parameters exhibited significant temporal variations from orbit to orbit leading to variations in the ionospheric profiles of Pedersen current, Ip. The second 13 orbit study of Bϕ extended to the north hemisphere where lagging fields alternated with leading and co-rotating fields. It was concluded that the difference was actually a local- time dependence with lagging -fields- only occurring after midnight and the mixed rotations before midnight. Again, Σp was independent of θi and ω/Ωs = 1- exp(-Bθi). Both studies raised the questions: How general is the exponential dependence of 1-ω/Ωs? Is it restricted to midnight or hold as well in the dayside magnetosphere? What is the cause of this dependence that differs from the model? The analysis of Bϕ has been extended to four nearly-identical north-south orbits near noon. The results and conclusions of this third study will be reported.

  10. Astronomy sortie missions definition study. Volume 3, book 2: Appendix: Design analysis and trade studies

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Backup or supporting data for the design analyses and trade studies which defined the astronomy sortie missions are presented. The subjects discussed are: (1) configuration of space shuttle orbiter, (2) electronic subsystems, (3) electric power requirements, and (4) payload requirements. Mathematical models are developed to illustrate the orbital rendezvous capabilities.

  11. Magnetism in S = 1 / 2 Double Perovskites with Strong Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Balents, Leon

    2015-03-01

    Motivated by recent studies on heavy-element double-perovskite (DP) compounds, we theoretically studied spin models on a FCC lattice with anisotropic interactions. In these systems, competition/cooperation of spin, orbital, and the lattice degrees of freedoms in the presence of the strong-spin orbit coupling is of particular interest. In a previous theoretical study, the magnetic phase diagrams of DP compounds with 5d1 electron configuration was studied using a model with four-fold degenerated single-ion state. On the other hand, a recent experiment on a DP material, Ba2Na2OsO6, reported that the compound is likely to be an effective S = 1 / 2 magnet. Inspired by the experimental observation, we considered spin models with symmetry-allowed anisotropic nearest-neighbor interactions. By a combination of various analytical and numerical techniques, we present the magnetic phase diagram of the model and the effect of thermal and quantum fluctuations. In particular, we show that fluctuations induce < 110 > anisotropy of magnetic moments. We also discuss a possible ``nematic'' phase driven by spin-phonon couplings.

  12. Orbital Debris Research in the United States

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene

    2009-01-01

    The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.

  13. Neural networks to predict exosphere temperature corrections

    NASA Astrophysics Data System (ADS)

    Choury, Anna; Bruinsma, Sean; Schaeffer, Philippe

    2013-10-01

    Precise orbit prediction requires a forecast of the atmospheric drag force with a high degree of accuracy. Artificial neural networks are universal approximators derived from artificial intelligence and are widely used for prediction. This paper presents a method of artificial neural networking for prediction of the thermosphere density by forecasting exospheric temperature, which will be used by the semiempirical thermosphere Drag Temperature Model (DTM) currently developed. Artificial neural network has shown to be an effective and robust forecasting model for temperature prediction. The proposed model can be used for any mission from which temperature can be deduced accurately, i.e., it does not require specific training. Although the primary goal of the study was to create a model for 1 day ahead forecast, the proposed architecture has been generalized to 2 and 3 days prediction as well. The impact of artificial neural network predictions has been quantified for the low-orbiting satellite Gravity Field and Steady-State Ocean Circulation Explorer in 2011, and an order of magnitude smaller orbit errors were found when compared with orbits propagated using the thermosphere model DTM2009.

  14. Modeling L2,3-Edge X-ray Absorption Spectroscopy with Real-Time Exact Two-Component Relativistic Time-Dependent Density Functional Theory.

    PubMed

    Kasper, Joseph M; Lestrange, Patrick J; Stetina, Torin F; Li, Xiaosong

    2018-04-10

    X-ray absorption spectroscopy is a powerful technique to probe local electronic and nuclear structure. There has been extensive theoretical work modeling K-edge spectra from first principles. However, modeling L-edge spectra directly with density functional theory poses a unique challenge requiring further study. Spin-orbit coupling must be included in the model, and a noncollinear density functional theory is required. Using the real-time exact two-component method, we are able to variationally include one-electron spin-orbit coupling terms when calculating the absorption spectrum. The abilities of different basis sets and density functionals to model spectra for both closed- and open-shell systems are investigated using SiCl 4 and three transition metal complexes, TiCl 4 , CrO 2 Cl 2 , and [FeCl 6 ] 3- . Although we are working in the real-time framework, individual molecular orbital transitions can still be recovered by projecting the density onto the ground state molecular orbital space and separating contributions to the time evolving dipole moment.

  15. Secular orbital evolution of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  16. The Effect of Improved Sub-Daily Earth Rotation Models on Global GPS Data Processing

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Choi, K. K.

    2017-12-01

    Throughout the various International GNSS Service (IGS) products, strong periodic signals have been observed around the 14 day period. This signal is clearly visible in all IGS time-series such as those related to orbit ephemerides, Earth rotation parameters (ERP) and ground station coordinates. Recent studies show that errors in the sub-daily Earth rotation models are the main factors that induce such noise. Current IGS orbit processing standards adopted the IERS 2010 convention and its sub-daily Earth rotation model. Since the IERS convention had published, recent advances in the VLBI analysis have made contributions to update the sub-daily Earth rotation models. We have compared several proposed sub-daily Earth rotation models and show the effect of using those models on orbit ephemeris, Earth rotation parameters and ground station coordinates generated by the NGS global GPS data processing strategy.

  17. Secular resonances between bodies on close orbits II: prograde and retrograde orbits for irregular satellites

    NASA Astrophysics Data System (ADS)

    Li, Daohai; Christou, Apostolos A.

    2017-09-01

    In extending the analysis of the four secular resonances between close orbits in Li and Christou (Celest Mech Dyn Astron 125:133-160, 2016) (Paper I), we generalise the semianalytical model so that it applies to both prograde and retrograde orbits with a one-to-one map between the resonances in the two regimes. We propose the general form of the critical angle to be a linear combination of apsidal and nodal differences between the two orbits b_1 Δ π + b_2 Δ Ω, forming a collection of secular resonances in which the ones studied in Paper I are among the strongest. Test of the model in the orbital vicinity of massive satellites with physical and orbital parameters similar to those of the irregular satellites Himalia at Jupiter and Phoebe at Saturn shows that {>}20 and {>}40% of phase space is affected by these resonances, respectively. The survivability of the resonances is confirmed using numerical integration of the full Newtonian equations of motion. We observe that the lowest order resonances with b_1+|b_2|≤ 3 persist, while even higher-order resonances, up to b_1+|b_2|≥ 7, survive. Depending on the mass, between 10 and 60% of the integrated test particles are captured in these secular resonances, in agreement with the phase space analysis in the semianalytical model.

  18. WASP-12b and Its Possible Fiery Demise

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    Jupiter-like planets on orbits close to their hosts are predicted to spiral ever closer to their hosts until they meet their eventual demise and yet weve never observed orbital decay. Could WASP-12b provide the first evidence?Undetected PredictionsSince the discovery of the first hot Jupiter more than 20 years ago, weve studied a number of these peculiar exoplanets. Despite our many observations, two phenomena predicted of hot Jupiters have not yet been detected, due to the long timescales needed to identify them:Tidal orbital decayTidal forces should cause a hot Jupiters orbit to shrink over time, causing the planet to eventually spiral into its host star. This phenomenon would explain a number of statistical properties of observed star-planet systems (for instance, the scarcity of gas giants with periods less than a day).An illustration of apsidal precession. [Mpfiz]Apsidal precessionThe orbits of hot Jupiters should be apsidally precessing on timescales of decades, as long as they are at least slightly eccentric. Since the precession rate depends on the planets tidally deformed mass distribution, measuring this would allow us to probe the interior of the planet.A team of scientists led by Kishore Patra (Massachusetts Institute of Technology) think that the hot Jupiter WASP-12b may be our first chance to study one of these two phenomena. The question is, which one?WASP-12bWASP-12b has orbital period of 1.09 days one of the shortest periods observed for a giant planet and weve monitored it for a decade, making it a great target to test for both of these long-term effects.Timing residuals for WASP-12b. Squares show the new data points, circles show previous data from the past decade. The data are better fit by the decay model than the precession model, but both are still consistent. [Patra et al. 2017]Patra and collaborators made transit observations with the 1.2-m telescope at the Fred Lawrence Whipple Observatory in Arizona and occultation observations with the Spitzer Space Telescope. These two new sets of observations, combined with the decade of previous observations, allowed the authors to fit models to WASP-12bs orbit over time.The results show that a constant period for WASP-12b is firmly ruled out this planets orbit is definitely changing over time. The observations are best fit by a model in which the planets orbit is tidally decaying, but a 14-year apsidal precession cycle cant be definitively ruled out.Future ProspectsPossible futures for WASP-12bs orbit, based on the decay model (red) and the precession model (blue). We should be able to differentiate between these models with a few more years of observations. [Patra et al. 2017]If the planets orbit is decaying, then the authors show that its period will shrink to zero within 3.2 million years, suggesting that were currently witnessing the last 0.2% of the planets lifetime. Supporting the orbital-decay hypothesis are independent observations that suggest WASP-12b is approaching a point of tidal disruption it appears to have an extended and escaping exosphere, for instance.While we cant yet state for certain that WASP-12bs orbit is decaying, the authors argue that we should be able to tell conclusively with a few more years of observations. Either of the two outcomes above orbital decay or apsidal precession would have exciting scientific implications, however: if WASP-12bs orbit is decaying, we can measure the tidal dissipation rate of the star. If its orbit is apsidally precessing, we may be able to measure the tidal deformability of an exoplanet. Future observations of this hot Jupiter should prove interesting!CitationKishore C. Patra et al 2017 AJ 154 4. doi:10.3847/1538-3881/aa6d75

  19. Thermal and structural analysis of the GOES scan mirror's on orbit performance

    NASA Technical Reports Server (NTRS)

    Zurmehly, G. E.; Hookman, R. A.

    1991-01-01

    The on-orbit performance of the GOES satellite's scan mirror has been predicted by means of thermal, structural, and optical models. A simpler-than-conventional thermal model was used to reduce the time required to obtain orbital predictions, and the structural model was used to predict on-earth gravity sag and on-orbit distortions. The transfer of data from the thermal model to the structural model was automated for a given set of thermal nodes and structural grids.

  20. NASA Shuttle Orbiter Reinforced Carbon Carbon (RCC) Crack Repair Arc-Jet Testing

    NASA Technical Reports Server (NTRS)

    Clark, ShawnDella; Larin, Max; Rochelle, Bill

    2007-01-01

    This NASA study demonstrates the capability for testing NOAX-repaired RCC crack models in high temperature environments representative of Shuttle Orbiter during reentry. Analysis methods have provided correlation of test data with flight predictions. NOAX repair material for RCC is flown on every STS flight in the event such a repair is needed. Two final test reports are being generated on arc-jet results (both calibration model runs and repaired models runs).

  1. The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.; Wang, Yan Ming; Pavlis, Nikolaos K.

    1991-01-01

    The computation is described of a geopotential model to deg 360, a sea surface topography model to deg 10/15, and adjusted Geosat orbits for the first year of the exact repeat mission (ERM). This study started from the GEM-T2 potential coefficient model and it's error covariance matrix and Geosat orbits (for 22 ERMs) computed by Haines et al. using the GEM-T2 model. The first step followed the general procedures which use a radial orbit error theory originally developed by English. The Geosat data was processed to find corrections to the a priori geopotential model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a harmonic representation of the sea surface topography. The second stage of the analysis took place by doing a combination of the GEM-T2 coefficients with 30 deg gravity data derived from surface gravity data and anomalies obtained from altimeter data. The analysis has shown how a high degree spherical harmonic model can be determined combining the best aspects of two different analysis techniques. The error analysis was described that has led to the accuracy estimates for all the coefficients to deg 360. Significant work is needed to improve the modeling effort.

  2. Photoinduced Hund excitons in the breakdown of a two-orbital Mott insulator

    NASA Astrophysics Data System (ADS)

    Rincón, Julián; Dagotto, Elbio; Feiguin, Adrian E.

    2018-06-01

    We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production of doublon-holon pairs, is enhanced by Hund's exchange, which dynamically activates large orbital fluctuations. The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration of excitons with orbital character that are stabilized by Hund's coupling. These unconventional "Hund excitons" correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as bandwidth, binding potential, and size within a semiclassical approach. The photometallic state results from a coexistence of Hund excitons and doublon-holon plasma.

  3. Suppression of the overlap between Majorana fermions by orbital magnetic effects in semiconducting-superconducting nanowires

    NASA Astrophysics Data System (ADS)

    Dmytruk, Olesia; Klinovaja, Jelena

    2018-04-01

    We study both analytically and numerically the role of orbital effects caused by a magnetic field applied along the axis of a semiconducting Rashba nanowire in the topological regime hosting Majorana fermions. We demonstrate that the orbital effects can be effectively taken into account in a one-dimensional model by shifting the chemical potential and thus modifying the topological criterion. We focus on the energy splitting between two Majorana fermions in a finite nanowire and find a striking interplay between orbital and Zeeman effects on this splitting. In the limit of strong spin-orbit interaction, we find regimes where the amplitude of the oscillating splitting stays constant or even decays with increasing the magnetic field, in stark contrast to the commonly studied case where orbital effects of the magnetic field are neglected. The period of these oscillations is found to be almost constant in many parameter regimes.

  4. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    PubMed

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  5. Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission

    PubMed Central

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179

  6. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James

    2015-01-01

    The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.

  7. Orbital debris research at NASA Johnson Space Center, 1986-1988

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert C.; Potter, Andrew E., Jr.

    1989-01-01

    Research on orbital debris has intensified in recent years as the number of debris objects in orbit has grown. The population of small debris has now reached the level that orbital debris has become an important design factor for the Space Station. The most active center of research in this field has been the NASA Lyndon B. Johnson Space Center. Work is being done on the measurement of orbital debris, development of models of the debris population, and development of improved shielding against hypervelocity impacts. Significant advances have been made in these areas. The purpose of this document is to summarize these results and provide references for further study.

  8. Orbital debris and near-Earth environmental management: A chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Loftus, Joseph P., Jr.

    1993-01-01

    This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.

  9. A Radial Axial-symmetric Intermediary Model for the Roto-orbital Motion

    NASA Astrophysics Data System (ADS)

    Crespo, F.; Molero, F. J.; Ferrer, S.; Scheeres, D. J.

    2018-03-01

    We study the roto-orbital dynamics of a uniform sphere and a body with axial symmetry by means of a radial intermediary, which defines an integrable system. Numerical comparisons of the MacCullagh's truncation of the gravity gradient potential and intermediary models are performed, concluding that the intermediary provides a valuable approximation with small differences when compared with the MacCullagh's one. Our analysis includes the analytical integration and a study of the special solutions and relative equilibria.

  10. Presence of 3d quadrupole moment in LaTiO3 studied by 47,49Ti NMR.

    PubMed

    Kiyama, Takashi; Itoh, Masayuki

    2003-10-17

    47,49Ti NMR spectra of LaTiO3 are reexamined and the orbital state of this compound is discussed. The NMR spectra of LaTiO3 taken at 1.5 K under zero external field indicate a large nuclear quadrupole splitting. This splitting is ascribed to the presence of the rather large quadrupole moment of 3d electrons at Ti sites, suggesting that the orbital liquid model proposed for LaTiO3 is inappropriate. The NMR spectra are well explained by the orbital ordering model expressed approximately as 1/square root of 3(d(xy)+d(yz)+d(zx)) originating from a crystal field effect. It is also shown that most of the orbital moment is quenched.

  11. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  12. An optimum organizational structure for a large earth-orbiting multidisciplinary space base. Ph.D. Thesis - Fla. State Univ., 1973

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1975-01-01

    An optimum hypothetical organizational structure was studied for a large earth-orbiting, multidisciplinary research and applications space base manned by a crew of technologists. Because such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than with the empirical testing of the model. The essential finding of this research was that a four-level project type total matrix model will optimize the efficiency and effectiveness of space base technologists.

  13. Long-term evaluation of orbital dynamics in the Sun-planet system considering axial-tilt

    NASA Astrophysics Data System (ADS)

    Bakhtiari, Majid; Daneshjou, Kamran

    2018-05-01

    In this paper, the axial-tilt (obliquity) effect of planets on the motion of planets’ orbiter in prolonged space missions has been investigated in the presence of the Sun gravity. The proposed model is based on non-simplified perturbed dynamic equations of planetary orbiter motion. From a new point of view, in this work, the dynamic equations regarding a disturbing body in elliptic inclined three-dimensional orbit are derived. The accuracy of this non-simplified method is validated with dual-averaged method employed on a generalized Earth-Moon system. It is shown that the neglected short-time oscillations in dual-averaged technique can accumulate and propel to remarkable errors in the prolonged evolution. After validation, the effects of the planet’s axial-tilt on eccentricity, inclination and right ascension of the ascending node of the orbiter are investigated. Moreover, a generalized model is provided to study the effects of third-body inclination and eccentricity on orbit characteristics. It is shown that the planet’s axial-tilt is the key to facilitating some significant changes in orbital elements in long-term mission and short-time oscillations must be considered in accurate prolonged evaluation.

  14. Model and on-orbit study of the International space station contamination processes by jets of its orientation thrusters

    NASA Astrophysics Data System (ADS)

    Yarygin, V. N.; Gerasimov, Yu I.; Krylov, A. N.; Prikhodko, V. G.; Skorovarov, A. Yu; Yarygin, I. V.

    2017-11-01

    The main objective of this paper is to describe the current state of research for the problem of the International Space Station contamination by plumes of its orientation thrusters. Results of experiments carried out at the Institute of Thermophysics SB RAS modeling space vehicles orientation thruster’s plumes are presented and experimental setup is discussed. A novel approach to reduction of contamination by thrusters with the help of special gas-dynamic protective devices mounted at the exit part of the nozzle is suggested. The description and results of on-orbit experiment at the International Space Station are given. Results show good agreement for model and on-orbit experiments validating our approach.

  15. Perspectives from ab-initio and tight-binding: Applications to transition metal compounds and superlattices

    NASA Astrophysics Data System (ADS)

    Venkataraman, Vijay Shankar

    The experimental and theoretical study of transition metal compounds have occupied condensed matter physicists for the best part of the last century. The rich variety of physical behaviour exhibited by these compounds owes its origin to the subtle balance of the energy scales at play for the d orbitals. In this thesis, we study three different systems comprised of transition metal atoms from the third, the fourth, and the fifth group of the periodic table using a combination of ab-initio density functional theory (DFT) computations and effective tight-binding models for the electronic properties. We first consider the electronic properties of artificially fabricated perovskite superlattices of the form [(SrIrO3)m / SrTiO3] with integer m denoting the number of layers of SrIrO3. After discussing the results of experiments undertaken by our collaborators, we present the results of our DFT calculations and build tight-binding models for the m = 1 and m = 2 superlattices. The active ingredient is found to be the 5d orbitals with significant spin-orbit coupling. We then study the energies of magnetic ground states within DFT and compare and contrast our results with those obtained for the bulk Ruddlesden-Popper iridates. Together with experimental measurements, our results suggest that these superlattices are an exciting venue to probe the magnetism and metal-insulator transitions that occur from the intricate balance of the spin-orbit coupling and electron interactions, as has been reported for their bulk counterparts. Next, we consider alpha-RuCl3, a honeycomb lattice compound. We first show using DFT calculations in conjunction with experiments performed by our collaborators, how spin-orbit coupling in the 4d orbitals of Ru is essential to understand the insulating state realized in this compound. Then, in the latter half of the chapter, we study the magnetic ground states of a two-dimensional analogue of alpha-RuCl3 in weak and strong-coupling regimes obtained from a tight-binding model for the 4d orbitals. We further compare these results with energies obtained from DFT calculations. We obtain a zig-zag magnetic ground state for this compound, in all the three approaches. Within DFT, we find that correlations enhance the spin-orbit coupling in this compound and that the anisotropic Kitaev interactions between the spins are dominant in a strong-coupling model. Then, we move on to study the electronic band structures of the higher manganese silicides, which are good thermoelectric materials. Using results from DFT calculations on Mn4Si7 and structural arguments, we construct an effective tight-binding model for the first three members of this series - Mn4Si7, Mn11Si19, and Mn15Si26.

  16. Launch window analysis of satellites in high eccentricity or large circular orbits

    NASA Technical Reports Server (NTRS)

    Renard, M. L.; Bhate, S. K.; Sridharan, R.

    1973-01-01

    Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions.

  17. Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.

    PubMed

    Scawn, Richard L; Foster, Alex; Lee, Bradford W; Kikkawa, Don O; Korn, Bobby S

    2015-01-01

    Additive manufacturing or 3D printing is the process by which three dimensional data fields are translated into real-life physical representations. 3D printers create physical printouts using heated plastics in a layered fashion resulting in a three-dimensional object. We present a technique for creating customised, inexpensive 3D orbit models for use in orbital surgical training using 3D printing technology. These models allow trainee surgeons to perform 'wet-lab' orbital decompressions and simulate upcoming surgeries on orbital models that replicate a patient's bony anatomy. We believe this represents an innovative training tool for the next generation of orbital surgeons.

  18. On-orbit evaluation of the control system/structural mode interactions on OSO-8

    NASA Technical Reports Server (NTRS)

    Slafer, L. I.

    1980-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. This paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments. The test results have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system, and also verified the approach taken to vehicle and servo ground testing.

  19. Simulation and analyses of the aeroassist flight experiment attitude update method

    NASA Technical Reports Server (NTRS)

    Carpenter, J. R.

    1991-01-01

    A method which will be used to update the alignment of the Aeroassist Flight Experiment's Inertial Measuring Unit is simulated and analyzed. This method, the Star Line Maneuver, uses measurements from the Space Shuttle Orbiter star trackers along with an extended Kalman filter to estimate a correction to the attitude quaternion maintained by an Inertial Measuring Unit in the Orbiter's payload bay. This quaternion is corrupted by on-orbit bending of the Orbiter payload bay with respect to the Orbiter navigation base, which is incorporated into the payload quaternion when it is initialized via a direct transfer of the Orbiter attitude state. The method of updating this quaternion is examined through verification of baseline cases and Monte Carlo analysis using a simplified simulation, The simulation uses nominal state dynamics and measurement models from the Kalman filter as its real world models, and is programmed on Microvax minicomputer using Matlab, and interactive matrix analysis tool. Results are presented which confirm and augment previous performance studies, thereby enhancing confidence in the Star Line Maneuver design methodology.

  20. Searching for orbits around the triple system 45 Eugenia

    NASA Astrophysics Data System (ADS)

    Mescolotti, B. Y. P. M.; Prado, A. F. B. A.; Chiaradia, A. P. M.; Gomes, V. M.

    2017-10-01

    Asteroids are small bodies that raises high interest, because they have unknown characteristics. The present research aims to study orbits for a spacecraft around the triple asteroid 45 Eugenia. The quality of the observations made by the spacecraft depends on the distance the spacecraft remains from the bodies of the system. It is used a semi-analytical model that is simple but able to represent the main characteristics of that system. This model is called “Precessing Inclined Bi-Elliptical Problem” (PIBEP). A reference system centered on the main body (Eugenia) and with the reference plane assumed to be in the orbital plane of the second more massive body, here called Petit-Prince, is used. The secondary bodies are assumed to be in elliptical orbits. In addition, it is assumed that the orbits of the smaller bodies are precessing due to the presence of the flattening of the main body (J2). This work analyzes orbits for the spacecraft with passages near Petit-Prince and Princesses, which are the two smaller bodies of the triple system.

  1. Orbit determination singularities in the Doppler tracking of a planetary orbiter

    NASA Technical Reports Server (NTRS)

    Wood, L. J.

    1985-01-01

    On a number of occasions, spacecraft launched by the U.S. have been placed into orbit about the moon, Venus, or Mars. It is pointed out that, in particular, in planetary orbiter missions two-way coherent Doppler data have provided the principal data type for orbit determination applications. The present investigation is concerned with the problem of orbit determination on the basis of Doppler tracking data in the case of a spacecraft in orbit about a natural body other than the earth or the sun. Attention is given to Doppler shift associated with a planetary orbiter, orbit determination using a zeroth-order model for the Doppler shift, and orbit determination using a first-order model for the Doppler shift.

  2. Studies on the ionospheric-thermospheric coupling mechanisms using SLR

    NASA Astrophysics Data System (ADS)

    Panzetta, Francesca; Erdogan, Eren; Bloßfeld, Mathis; Schmidt, Michael

    2016-04-01

    Several Low Earth Orbiters (LEOs) have been used by different research groups to model the thermospheric neutral density distribution at various altitudes performing Precise Orbit Determination (POD) in combination with satellite accelerometry. This approach is, in principle, based on satellite drag analysis, driven by the fact that the drag force is one of the major perturbing forces acting on LEOs. The satellite drag itself is physically related to the thermospheric density. The present contribution investigates the possibility to compute the thermospheric density from Satellite Laser Ranging (SLR) observations. SLR is commonly used to compute very accurate satellite orbits. As a prerequisite, a very high precise modelling of gravitational and non-gravitational accelerations is necessary. For this investigation, a sensitivity study of SLR observations to thermospheric density variations is performed using the DGFI Orbit and Geodetic parameter estimation Software (DOGS). SLR data from satellites at altitudes lower than 500 km are processed adopting different thermospheric models. The drag coefficients which describe the interaction of the satellite surfaces with the atmosphere are analytically computed in order to obtain scaling factors purely related to the thermospheric density. The results are reported and discussed in terms of estimates of scaling coefficients of the thermospheric density. Besides, further extensions and improvements in thermospheric density modelling obtained by combining a physics-based approach with ionospheric observations are investigated. For this purpose, the coupling mechanisms between the thermosphere and ionosphere are studied.

  3. Orbit/attitude estimation with LANDSAT Landmark data

    NASA Technical Reports Server (NTRS)

    Hall, D. L.; Waligora, S.

    1979-01-01

    The use of LANDSAT landmark data for orbit/attitude and camera bias estimation was studied. The preliminary results of these investigations are presented. The Goddard Trajectory Determination System (GTDS) error analysis capability was used to perform error analysis studies. A number of questions were addressed including parameter observability and sensitivity, effects on the solve-for parameter errors of data span, density, and distribution an a priori covariance weighting. The use of the GTDS differential correction capability with acutal landmark data was examined. The rms line and element observation residuals were studied as a function of the solve-for parameter set, a priori covariance weighting, force model, attitude model and data characteristics. Sample results are presented. Finally, verfication and preliminary system evaluation of the LANDSAT NAVPAK system for sequential (extended Kalman Filter) estimation of orbit, and camera bias parameters is given.

  4. Non-gravitational force modeling of Comet 81P/Wild 2. II. Rotational evolution

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Pedro J.; Davidsson, Björn J. R.

    2007-11-01

    In this paper, we have studied both the dynamical and the rotational evolution of an 81P/Wild 2-like comet under the effects of the outgassing-induced force and torque. The main aim is to study if it is possible to reproduce the non-gravitational orbital changes observed in this comet, and to establish the likely evolution of both orbital and rotational parameters. To perform this study, a simple thermophysical model has been used to estimate the torque acting on the nucleus. Once the torque is calculated, Euler equations are solved numerically considering a nucleus mass directly estimated from the changes in the orbital elements (as determined from astrometry). According to these simulations, when the water production rate and changes in orbital parameters for 1997, as well as observational rotational parameters for 2004 are imposed as constraints, the change in the orbital period of 81P/Wild 2, ΔP=P˙, will decrease so that P¨=-5 to -1minorbit, which is similar to the actual tendency observed from 1988 up to 1997. This nearly constant decreasing can be explained as due to a slight drift of the spin axis orientation towards larger ecliptic longitudes. After studying the possible spin axis orientations proposed for 1997, simulations suggest that the spin obliquity and argument (I,Φ)=(56°,167°) is the most likely. As for rotational evolution, changes per orbit smaller than 10% of the actual spin velocity are probable, while the most likely value corresponds to a change between 2 and 7% of the spin velocity. Equally, net changes in the spin axis orientation of 4°-8° per orbit are highly expected.

  5. Model-based segmentation in orbital volume measurement with cone beam computed tomography and evaluation against current concepts.

    PubMed

    Wagner, Maximilian E H; Gellrich, Nils-Claudius; Friese, Karl-Ingo; Becker, Matthias; Wolter, Franz-Erich; Lichtenstein, Juergen T; Stoetzer, Marcus; Rana, Majeed; Essig, Harald

    2016-01-01

    Objective determination of the orbital volume is important in the diagnostic process and in evaluating the efficacy of medical and/or surgical treatment of orbital diseases. Tools designed to measure orbital volume with computed tomography (CT) often cannot be used with cone beam CT (CBCT) because of inferior tissue representation, although CBCT has the benefit of greater availability and lower patient radiation exposure. Therefore, a model-based segmentation technique is presented as a new method for measuring orbital volume and compared to alternative techniques. Both eyes from thirty subjects with no known orbital pathology who had undergone CBCT as a part of routine care were evaluated (n = 60 eyes). Orbital volume was measured with manual, atlas-based, and model-based segmentation methods. Volume measurements, volume determination time, and usability were compared between the three methods. Differences in means were tested for statistical significance using two-tailed Student's t tests. Neither atlas-based (26.63 ± 3.15 mm(3)) nor model-based (26.87 ± 2.99 mm(3)) measurements were significantly different from manual volume measurements (26.65 ± 4.0 mm(3)). However, the time required to determine orbital volume was significantly longer for manual measurements (10.24 ± 1.21 min) than for atlas-based (6.96 ± 2.62 min, p < 0.001) or model-based (5.73 ± 1.12 min, p < 0.001) measurements. All three orbital volume measurement methods examined can accurately measure orbital volume, although atlas-based and model-based methods seem to be more user-friendly and less time-consuming. The new model-based technique achieves fully automated segmentation results, whereas all atlas-based segmentations at least required manipulations to the anterior closing. Additionally, model-based segmentation can provide reliable orbital volume measurements when CT image quality is poor.

  6. Magnetic Local Time Dependant Low Energy Electron Flux Models at Geostationary Earth Orbit

    NASA Astrophysics Data System (ADS)

    Boynton, R.; Balikhin, M. A.; Walker, S. N.

    2017-12-01

    The low energy electron fluxes in the outer radiation belts at Geostationary Earth Orbit (GEO) can vary widely in Magnetic Local Time (MLT). This spatial variation is due to the convective and substorm-associated electric fields and can take place on short time scales. This makes it difficult to deduce a data based model of the low energy electrons. For higher energies, where there is negligible spatial variation at a particular L-star, data based models employ averaged fluxes over the orbit. This removes the diurnal variation as GEO passes through various L-star due to the structure of Earth's magnetic field. This study develops a number of models for the low energy electron fluxes measured by GOES 13 and 15 for different MLT to capture the dynamics of the spatial variations.

  7. Integrated orbital servicing and payloads study. Volume 2: Technical and cost analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The details and background used in the investigation of orbital servicing and payloads are presented. Topics discussed include review of previous models, application of servicing to communications satellites, assessment of spacecraft servicing, cost of servicing, and launch vehicle effects on spacecraft.

  8. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Stack, K. M.; Edwards, C. S.; Grotzinger, J. P.; Gupta, S.; Sumner, D. Y.; Calef, F. J.; Edgar, L. A.; Edgett, K. S.; Fraeman, A. A.; Jacob, S. R.; Le Deit, L.; Lewis, K. W.; Rice, M. S.; Rubin, D.; Williams, R. M. E.; Williford, K. H.

    2016-12-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  9. Comparing orbiter and rover image-based mapping of an ancient sedimentary environment, Aeolis Palus, Gale crater, Mars

    USGS Publications Warehouse

    Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.

    2016-01-01

    This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.

  10. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    ERIC Educational Resources Information Center

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  11. Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    King, RUdolph A.; Berry, Scott A.; Kegerise, Michael A.

    2008-01-01

    This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent.

  12. Preliminary results on the dynamics of large and flexible space structures in Halo orbits

    NASA Astrophysics Data System (ADS)

    Colagrossi, Andrea; Lavagna, Michèle

    2017-05-01

    The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around one of the Earth-Moon collinear Lagrangian points, L1 or L2, is discussed to point out some relevant outcomes for the potential implementation of such a mission.

  13. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in Earth orbit. The near Earth environment is thus parameterized by debris density percentages within subsections of that environment. This model version is used in the upgraded NASA Orbital Debris Engineering Model (ORDEM).

  14. Quantum simulation. Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism.

    PubMed

    Zhang, X; Bishof, M; Bromley, S L; Kraus, C V; Safronova, M S; Zoller, P; Rey, A M; Ye, J

    2014-09-19

    SU(N) symmetry can emerge in a quantum system with N single-particle spin states when spin is decoupled from interparticle interactions. Taking advantage of the high measurement precision offered by an ultrastable laser, we report a spectroscopic observation of SU(N ≤ 10) symmetry in (87)Sr. By encoding the electronic orbital degree of freedom in two clock states while keeping the system open to as many as 10 nuclear spin sublevels, we probed the non-equilibrium two-orbital SU(N) magnetism via Ramsey spectroscopy of atoms confined in an array of two-dimensional optical traps; we studied the spin-orbital quantum dynamics and determined the relevant interaction parameters. This study lays the groundwork for using alkaline-earth atoms as testbeds for important orbital models. Copyright © 2014, American Association for the Advancement of Science.

  15. Towards the 1 mm/y stability of the radial orbit error at regional scales

    NASA Astrophysics Data System (ADS)

    Couhert, Alexandre; Cerri, Luca; Legeais, Jean-François; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel

    2015-01-01

    An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West “order-1” pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

  16. Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales

    NASA Technical Reports Server (NTRS)

    Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel

    2015-01-01

    An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS, SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

  17. Towards the 1 mm/y Stability of the Radial Orbit Error at Regional Scales

    NASA Technical Reports Server (NTRS)

    Couhert, Alexandre; Cerri, Luca; Legeais, Jean-Francois; Ablain, Michael; Zelensky, Nikita P.; Haines, Bruce J.; Lemoine, Frank G.; Bertiger, William I.; Desai, Shailen D.; Otten, Michiel

    2014-01-01

    An estimated orbit error budget for the Jason-1 and Jason-2 GDR-D solutions is constructed, using several measures of orbit error. The focus is on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular this study reviews orbit errors dependent on the tracking technique, with an aim to monitoring the long-term stability of all available tracking systems operating on Jason-1 and Jason-2 (GPS, DORIS,SLR). The reference frame accuracy and its effect on Jason orbit is assessed. We also examine the impact of analysis method on the inference of Geographically Correlated Errors as well as the significance of estimated radial orbit error trends versus the time span of the analysis. Thus a long-term error budget of the 10-year Jason-1 and Envisat GDR-D orbit time series is provided for two time scales: interannual and decadal. As the temporal variations of the geopotential remain one of the primary limitations in the Precision Orbit Determination modeling, the overall accuracy of the Jason-1 and Jason-2 GDR-D solutions is evaluated through comparison with external orbits based on different time-variable gravity models. This contribution is limited to an East-West "order-1" pattern at the 2 mm/y level (secular) and 4 mm level (seasonal), over the Jason-2 lifetime. The possibility of achieving sub-mm/y radial orbit stability over interannual and decadal periods at regional scales and the challenge of evaluating such an improvement using in situ independent data is discussed.

  18. Stable Orbits in the Didymos Binary Asteroid System - Useful Platforms for Exploration

    NASA Astrophysics Data System (ADS)

    Damme, Friedrich; Hussmann, Hauke; Wickhusen, Kai; Enrico, Mai; Oberst, Jürgen

    2016-04-01

    We have analyzed particle motion in binary asteroid systems to search for stable orbits. In particular, we studied the motion of particles near the asteroid 1996 GT (Didymos), proposed as a target for the AIDA mission. The combined gravity fields of the odd-shaped rotating objects moving about each other are complex. In addition, orbiting spacecraft or dust particles are affected by radiation pressure, possibly exceeding the faint gravitational forces. For the numerical integrations, we adopt parameters for size, shape, and rotation from telescopic observations. To simulate the effect of radiation pressure during a spacecraft mission, we apply a spacecraft wing-box shape model. Integrations were carried out beginning in near-circular orbits over 11 days, during which the motion of the particles were examined. Most orbits are unstable with particles escaping quickly or colliding with the asteroid bodies. However, with carefully chosen initial positions, we found stable motion (in the orbiting plane of the secondary) associated with the Lagrangian points (L4 and L5), in addition to horseshoe orbits, where particles move from one of the Lagrangian point to the other. Finally, we examined orbits in 1:2 resonances with the motion of the orbital period of the secondary. Stable conditions depend strongly on season caused by the inclination of the mutual orbit plane with respect to Didymos solar orbit. At larger distance from the asteroid pair, we find the well-known terminator orbits where gravitational attraction is balanced against radiation pressure. Stable orbits and long motion arcs are useful for long tracking runs by radio or Laser instruments and are well-suited for modelling of the ephemerides of the asteroid pair and gravity field mapping. Furthermore, these orbits may be useful as observing posts or as platforms for approach. These orbits may also represent traps for dust particles, an opportunity for dust collection - or possibly a hazard to spacecraft operation.

  19. An Overview of the Jupiter Europa Orbiter Concept's Europa Science Phase Orbit Design

    NASA Technical Reports Server (NTRS)

    Lock, Robert E.; Ludwinski, Jan M.; Petropoulos, Anastassios E.; Clark, Karla B.; Pappalardo, Robert T.

    2009-01-01

    Jupiter Europa Orbiter (JEO), the proposed NASA element of the proposed joint NASA-ESA Europa Jupiter System Mission (EJSM), could launch in February 2020 and conceivably arrive at Jupiter in December of 2025. The concept is to perform a multi-year study of Europa and the Jupiter system, including 30 months of Jupiter system science and a comprehensive Europa orbit phase of 9 months. This paper provides an overview of the JEO concept and describes the Europa Science phase orbit design and the related science priorities, model pay-load and operations scenarios needed to conduct the Europa Science phase. This overview is for planning and discussion purposes only.

  20. Preforming of polydioxanone sheets for orbital wall fractures - A technical note.

    PubMed

    Kruber, Daniel; Hierl, Thomas; Doerfler, Hans-Martin; Huempfner-Hierl, Heike; Krause, Matthias

    2018-07-01

    Polydioxanone (PDS) sheets are commonly used in the treatment of orbital wall fractures. A potential drawback of PDS is that it may be difficult to adapt to the anatomy of the orbital walls. Therefore a study was conceived to test the feasibility of preforming PDS sheets. PDS sheet material was water-heated and preformed using a template based on a statistical anatomical model. Then the deformed sheet was cooled, stored and compared to the original model to investigate post-deformation changes. PDS sheet material could easily be deformed using a mould. No significant post-cooling shape changes were noticed. PDS sheet material can be preformed into complex geometric shapes. This could be a benefit in the treatment of orbital wall fractures. Copyright © 2018 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Emergent low-energy bound states in the two-orbital Hubbard model

    DOE PAGES

    Nunez-Fernandez, Y.; Kotliar, G.; Hallberg, K.

    2018-03-30

    A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U 12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ = U - U 12 in the other band. These excitations are interband holon-doublonmore » bound states. At the symmetric point U = U 12, the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.« less

  2. Emergent low-energy bound states in the two-orbital Hubbard model

    NASA Astrophysics Data System (ADS)

    Núñez-Fernández, Y.; Kotliar, G.; Hallberg, K.

    2018-03-01

    A repulsive Coulomb interaction between electrons in different orbitals in correlated materials can give rise to bound quasiparticle states. We study the nonhybridized two-orbital Hubbard model with intra- (inter)orbital interaction U (U12) and different bandwidths using an improved dynamical mean-field theory numerical technique which leads to reliable spectra on the real energy axis directly at zero temperature. We find that a finite density of states at the Fermi energy in one band is correlated with the emergence of well-defined quasiparticle states at excited energies Δ =U -U12 in the other band. These excitations are interband holon-doublon bound states. At the symmetric point U =U12 , the quasiparticle peaks are located at the Fermi energy, leading to a simultaneous and continuous Mott transition settling a long-standing controversy.

  3. The role of global cloud climatologies in validating numerical models

    NASA Technical Reports Server (NTRS)

    HARSHVARDHAN

    1993-01-01

    The purpose of this work is to estimate sampling errors of area-time averaged rain rate due to temporal samplings by satellites. In particular, the sampling errors of the proposed low inclination orbit satellite of the Tropical Rainfall Measuring Mission (TRMM) (35 deg inclination and 350 km altitude), one of the sun synchronous polar orbiting satellites of NOAA series (98.89 deg inclination and 833 km altitude), and two simultaneous sun synchronous polar orbiting satellites--assumed to carry a perfect passive microwave sensor for direct rainfall measurements--will be estimated. This estimate is done by performing a study of the satellite orbits and the autocovariance function of the area-averaged rain rate time series. A model based on an exponential fit of the autocovariance function is used for actual calculations. Varying visiting intervals and total coverage of averaging area on each visit by the satellites are taken into account in the model. The data are generated by a General Circulation Model (GCM). The model has a diurnal cycle and parameterized convective processes. A special run of the GCM was made at NASA/GSFC in which the rainfall and precipitable water fields were retained globally for every hour of the run for the whole year.

  4. Preliminary Experimental Results for Charge Drag in a Simulated Low Earth Orbit Environment

    NASA Astrophysics Data System (ADS)

    Azema-Rovira, Monica

    Interest in the Low Earth Orbit (LEO) environment is growing in the science community as well as in the private sector. The number of spacecraft launched in these altitudes (150 - 700 km) keeps growing, and this region is accumulating space debris. In this scenario, the precise location of all LEO objects is a key factor to avoid catastrophic collisions and to safely perform station-keeping maneuvers. The detailed study of the atmospheric models in LEO can enhance the disturbances forces calculation of an orbiting object. Recent numerical studies indicate that one of the biggest non-conservative forces on a spacecraft is underestimated, the charge drag phenomenon. Validating these numerical models experimentally, will help to improve the numerical models for future spacecraft mission design. For this reason, the motivation of this thesis is to characterize a plasma source to later be used for charged drag measurements. The characterization has been done at the University of Colorado Colorado Springs in the Chamber for Atmospheric and Orbital Space Simulation. In the characterization process, a nano-Newton Thrust Stand has been characterized as a plasma diagnosis tool and compared with Langmuir Probe data.

  5. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    NASA Technical Reports Server (NTRS)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  6. Experimental investigation of spin-orbit coupling in n-type PbTe quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peres, M. L.; Monteiro, H. S.; Castro, S. de

    2014-03-07

    The spin-orbit coupling is studied experimentally in two PbTe quantum wells by means of weak antilocalization effect. Using the Hikami-Larkin-Nagaoka model through a computational global optimization procedure, we extracted the spin-orbit and inelastic scattering times and estimated the strength of the zero field spin-splitting energy Δ{sub so}. The values of Δ{sub so} are linearly dependent on the Fermi wave vector (k{sub F}) confirming theoretical predictions of the existence of large spin-orbit coupling in IV-VI quantum wells originated from pure Rashba effect.

  7. Study of spin-scan imaging for outer planets missions. [imaging techniques for Jupiter orbiter missions

    NASA Technical Reports Server (NTRS)

    Russell, E. E.; Chandos, R. A.; Kodak, J. C.; Pellicori, S. F.; Tomasko, M. G.

    1974-01-01

    The constraints that are imposed on the Outer Planet Missions (OPM) imager design are of critical importance. Imager system modeling analyses define important parameters and systematic means for trade-offs applied to specific Jupiter orbiter missions. Possible image sequence plans for Jupiter missions are discussed in detail. Considered is a series of orbits that allow repeated near encounters with three of the Jovian satellites. The data handling involved in the image processing is discussed, and it is shown that only minimal processing is required for the majority of images for a Jupiter orbiter mission.

  8. Orbital, Rotational, and Climatic Interactions

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G. (Editor)

    1992-01-01

    The report of an international meeting on the topic of Orbital, Rotational, and Climatic Interactions, which was held 9-11 Jul. 1991 at the Johns Hopkins University is presented. The meeting was attended by 22 researchers working on various aspects of orbital and rotational dynamics, paleoclimate data analysis and modeling, solid-Earth deformation studies, and paleomagnetic analyses. The primary objective of the workshop was to arrive at a better understanding of the interactions between the orbital, rotational, and climatic variations of the Earth. This report contains a brief introduction and 14 contributed papers which cover most of the topics discussed at the meeting.

  9. Modeling Photodetachment from HO2- Using the pd Case of the Generalized Mixed Character Molecular Orbital Model

    NASA Astrophysics Data System (ADS)

    Blackstone, Christopher C.; Sanov, Andrei

    2016-06-01

    Using the generalized model for photodetachment of electrons from mixed-character molecular orbitals, we gain insight into the nature of the HOMO of HO2- by treating it as a coherent superpostion of one p- and one d-type atomic orbital. Fitting the pd model function to the ab initio calculated HOMO of HO2- yields a fractional d-character, γp, of 0.979. The modeled curve of the anisotropy parameter, β, as a function of electron kinetic energy for a pd-type mixed character orbital is matched to the experimental data.

  10. Geosynchronous platform definition study. Volume 4, Part 1: Traffic analysis and system requirements for the baseline traffic model

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The traffic analyses and system requirements data generated in the study resulted in the development of two traffic models; the baseline traffic model and the new traffic model. The baseline traffic model provides traceability between the numbers and types of geosynchronous missions considered in the study and the entire spectrum of missions foreseen in the total national space program. The information presented pertaining to the baseline traffic model includes: (1) definition of the baseline traffic model, including identification of specific geosynchronous missions and their payload delivery schedules through 1990; (2) Satellite location criteria, including the resulting distribution of the satellite population; (3) Geosynchronous orbit saturation analyses, including the effects of satellite physical proximity and potential electromagnetic interference; and (4) Platform system requirements analyses, including satellite and mission equipment descriptions, the options and limitations in grouping satellites, and on-orbit servicing criteria (both remotely controlled and man-attended).

  11. GNSS orbit determination by precise modeling of non-gravitational forces acting on satellite's body

    NASA Astrophysics Data System (ADS)

    Wielgosz, Agata; Kalarus, Maciej; Liwosz, Tomasz

    2016-04-01

    Satellites orbiting around Earth are affected by gravitational forces and non-gravitational perturbations (NGP). While the perturbations caused by gravitational forces, which are due to central body gravity (including high-precision geopotential field) and its changes (due to secular variations and tides), solar bodies attraction and relativistic effects are well-modeled, the perturbations caused by the non-gravitational forces are the most limiting factor in Precise Orbit Determination (POD). In this work we focused on very precise non-gravitational force modeling for medium Earth orbit satellites by applying the various models of solar radiation pressure including changes in solar irradiance and Earth/Moon shadow transition, Earth albedo and thermal radiation. For computing influence of aforementioned forces on spacecraft the analytical box-wing satellite model was applied. Smaller effects like antenna thrust or spacecraft thermal radiation were also included. In the process of orbit determination we compared the orbit with analytically computed NGP with the standard procedure in which CODE model is fitted for NGP recovery. We considered satellites from several systems and on different orbits and for different periods: when the satellite is all the time in full sunlight and when transits the umbra and penumbra regions.

  12. Geometrical Model of Solar Radiation Pressure Based on High-Performing Galileo Clocks - First Geometrical Mapping of the Yarkowsky effect

    NASA Astrophysics Data System (ADS)

    Svehla, Drazen; Rothacher, Markus; Hugentobler, Urs; Steigenberger, Peter; Ziebart, Marek

    2014-05-01

    Solar radiation pressure is the main source of errors in the precise orbit determination of GNSS satellites. All deficiencies in the modeling of Solar radiation pressure map into estimated terrestrial reference frame parameters as well as into derived gravity field coefficients and altimetry results when LEO orbits are determined using GPS. Here we introduce a new approach to geometrically map radial orbit perturbations of GNSS satellites using highly-performing clocks on board the first Galileo satellites. Only a linear model (time bias and time drift) needs to be removed from the estimated clock parameters and the remaining clock residuals map all radial orbit perturbations along the orbit. With the independent SLR measurements, we show that a Galileo clock is stable enough to map radial orbit perturbations continuously along the orbit with a negative sign in comparison to SLR residuals. Agreement between the SLR residuals and the clock residuals is at the 1 cm RMS for an orbit arc of 24 h. Looking at the clock parameters determined along one orbit revolution over a period of one year, we show that the so-called SLR bias in Galileo and GPS orbits can be explained by the translation of the determined orbit in the orbital plane towards the Sun. This orbit translation is due to thermal re-radiation and not accounting for the Sun elevation in the parameterization of the estimated Solar radiation pressure parameters. SLR ranging to GNSS satellites takes place typically at night, e.g. between 6 pm and 6 am local time when the Sun is in opposition to the satellite. Therefore, SLR observes only one part of the GNSS orbit with a negative radial orbit error that is mapped as an artificial bias in SLR observables. The Galileo clocks clearly show orbit translation for all Sun elevations: the radial orbit error is positive when the Sun is in conjuction (orbit noon) and negative when the Sun is in opposition (orbit midnight). The magnitude of this artificial negative SLR bias depends on the orbit quality and should rather be called GNSS orbit bias instead of SLR bias. When LEO satellite orbits are estimated using GPS, this GPS orbit bias is mapped into the antenna phase center. All LEO satellites, such as CHAMP, GRACE and JASON-1/2, need an adjustment of the radial antenna phase center offset. GNSS orbit translations towards the Sun in the orbital plane do not only propagate into the estimated LEO orbits, but also into derived gravity field and altimetry products. Geometrical mapping of orbit perturbations using an on board GNSS clock is a new technique to monitor orbit perturbations along the orbit and was successfully applied in the modeling of Solar radiation pressure. We show that CODE Solar radiation pressure parameterization lacks dependency with the Sun's elevation, i.e. elongation angle (rotation of Solar arrays), especially at low Sun elevations (eclipses). Parameterisation with the Sun elongation angle is used in the so-called T30 model (ROCK-model) that includes thermal re-radiation. A preliminary version of Solar radiation pressure for the first five Galileo and the GPS-36 satellite is based on 2×180 days of the MGEX Campaign. We show that Galileo clocks map the Yarkowsky effect along the orbit, i.e. the lag between the Sun's illumination and thermal re-radiation. We present the first geometrical mapping of anisotropic thermal emission of absorbed sunlight of an illuminated satellite. In this way, the effects of Solar radiation pressure can be modelled with only two paramaters for all Sun elevations.

  13. Reprocessing the Elliptical Orbiting Galileo Satellites E14 and E18: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Männel, Benjamin

    2017-04-01

    In August 2014, the two Galileo satellites FOC-1 (E18) and FOC-2 (E14) were - due to a technical problem - launched into a wrong, elliptic orbit. In a recovery mission a series of orbit maneuvers were performed to raise the perigee to an altitude where both spacecrafts could be introduced to the Galileo navigation service. After this period of orbit maintenance both satellites started to transmit navigation signals at November 29, 2014 (E18) and March 17, 2015 (E14). However, as it was not possible to recover the nominal orbits due to propellant limitations, both spacecrafts orbit the Earth with a numerical eccentricity of 0.16 and an inclination of 50.2°. Very soon, it was assumed that both satellites could be highly useful for studies on general relativity, especially as the Galileo spacecrafts are equipped with very stable passive hydrogen masers. A prerequisite for dedicated studies in this field are highly accurate satellite orbits and clock corrections. Preliminary results for orbit and satellite clock determination will be presented based on an initial reprocessing over the past 2.5 years. The presentation focuses firstly on orbit modeling aspects with respect to the elliptically orbits. Secondly the derived clock corrections for the on-board passive clocks are assessed with respect to the reference clock at ground stations. The results will be discussed also with respect to the proposed Galileo-based studies on the gravitational redshift.

  14. Impact of End-of-Life manoeuvres on the collision risk in protected regions

    NASA Astrophysics Data System (ADS)

    Frey, Stefan; Lemmens, Stijn; Bastida Virgili, Benjamin; Flohrer, Tim; Gass, Volker

    2017-09-01

    The Inter-Agency Space Debris Coordination Committee (IADC) Space Debris Mitigation Guidelines, issued in 2002 and revised in 2007, address the post mission disposal of objects in orbit. After their mission, objects crossing the Low Earth Orbit (LEO) should have a remaining lifetime in orbit not exceeding 25 years. Objects near the Geostationary Orbit (GEO) region should be placed in an orbit that remains outside of the GEO protected region. In this paper, the impact of satellites and rocket bodies performing End-of-Life (EOL) orbital manoeuvres on the collision risk in the LEO and GEO protected regions is investigated. The cases of full or partial compliance with the IADC post mission disposal guideline are studied. ESA's Meteoroid and Space Debris Terrestrial Environment Reference (MASTER) model is used to compare the space debris flux rate of the object during the remaining lifetime estimated for the pre-EOL-manoeuvre and for the post-EOL-manoeuvre orbit. The study shows that, on average, the probability of collision can be significantly decreased by performing an EOL-manoeuver.

  15. A model of the near-earth plasma environment and application to the ISEE-A and -B orbit

    NASA Technical Reports Server (NTRS)

    Chan, K. W.; Sawyer, K. W.; Vette, J. I.

    1977-01-01

    A model of the near-earth environment to obtain a best estimate of the average flux of protons and electrons in the energy range from 0.1 to 100 keV for the International Sun-Earth Explorer (ISEE)-A and -B spacecraft. The possible radiation damage to the thermal coating on these spinning spacecraft is also studied. Applications of the model to other high-altitude satellites can be obtained with the appropriate orbit averaging. This study is the first attempt to synthesize an overall quantitative environment of low-energy particles for high altitude spacecraft, using data from in situ measurements.

  16. Orbital-Maneuver-Sequence Optimization

    DTIC Science & Technology

    1985-12-01

    CLASSIFICATION OF THIS PAGE t j "" r --•.’-, LIST OF FIGURES * 2.1 Clohessy - Wiltshire Axes ....... .................. 17 3.1 Problem Geometry...13 Velocity Impulse ..... ..................... 13 The Clohessy - Wiltshire (CW) Equations ...... .. ... 14 3. INTERCEPT-MANEUVER-SEQUENCE STUDY...use of the Clohessy - Wiltshire near-circular-orbit model (Refs. 1, 2 and 3) which is adequate for low altitude maneuvering studies and attractive for

  17. Systems engineering studies of on-orbit assembly operation

    NASA Technical Reports Server (NTRS)

    Morgenthaler, George W.

    1991-01-01

    While the practice of construction has a long history, the underlying theory of construction is relatively young. Very little has been documented as to techniques of logistic support, construction planning, construction scheduling, construction testing, and inspection. The lack of 'systems approaches' to construction processes is certainly one of the most serious roadblocks to the construction of space structures. System engineering research efforts at CSC are aimed at developing concepts and tools which contribute to a systems theory of space construction. The research is also aimed at providing means for trade-offs of design parameters for other research areas in CSC. Systems engineering activity at CSC has divided space construction into the areas of orbital assembly, lunar base construction, interplanetary transport vehicle construction, and Mars base construction. A brief summary of recent results is given. Several models for 'launch-on-time' were developed. Launch-on-time is a critical concept to the assembly of such Earth-orbiting structures as the Space Station Freedom, and to planetary orbiters such as the Mars transfer vehicle. CSC has developed a launch vehicle selection model which uses linear programming to find optimal combinations of launch vehicles of various sizes (Atlas, Titan, Shuttles, HLLV's) to support SEI missions. Recently, the Center developed a cost trade-off model for studying on orbit assembly logistics. With this model it was determined that the most effective size of the HLLV would be in the range of 120 to 200 metric tons to LEO, which is consistent with the choices of General Stafford's Synthesis Group Report. A second-generation Dynamic Construction Activities Model ('DYCAM') process model has been under development, based on our past results in interruptability and our initial DYCAM model. This second-generation model is built on the paradigm of knowledge-based expert systems. It is aimed at providing answers to two questions: (1) what are some necessary or sufficient conditions for judging conceptual designs of spacecraft?, and (2) can a methodology be formulated such that these conditions may be used to provide computer-aided tools for evaluating conceptual designs and planning for space assembly sequences? Early simulation results indicate that the DYCAM model has a clear ability to emulate and simulate human orbital construction processes.

  18. Wilson Prize Talk

    NASA Astrophysics Data System (ADS)

    Symon, Keith R.

    2005-04-01

    In the late 1950's and the 1960's the MURA (Midwestern Universities Research Association) working group developed fixed field alternating gradient (FFAG) particle accelerators. FFAG accelerators are a natural corollary of the invention of alternating gradient focusing. The fixed guide field accommodates all orbits from the injection to the final energy. For this reason, the transverse motion in the guide field is nearly decoupled from the longitudinal acceleration. This allows a wide variety of acceleration schemes, using betatron or rf accelerating fields, beam stacking, bucket lifts, phase displacement, etc. It also simplifies theoretical and experimental studies of accelerators. Theoretical studies included an extensive analysis of rf acceleration processes, nonlinear orbit dynamics, and collective instabilities. Two FFAG designs, radial sector and spiral sector, were invented. The MURA team built small electron models of each type, and used them to study orbit dynamics, acceleration processes, orbit instabilities, and space charge limits. A practical result of these studies was the invention of the spiral sector cyclotron. Another was beam stacking, which led to the first practical way of achieving colliding beams. A 50 MeV two-way radial sector model was built in which it proved possible to stack a beam of over 10 amperes of electrons.

  19. Photoinduced Hund excitons in the breakdown of a two-orbital Mott insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rincon, Julian; Dagotto, Elbio R.; Feiguin, Adrian E.

    We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production of doublon-holon pairs, is enhanced by Hund's exchange, which dynamically activates large orbital fluctuations. The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration of excitons with orbital character that are stabilized bymore » Hund's coupling. These unconventional “Hund excitons” correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as bandwidth, binding potential, and size within a semiclassical approach. In conclusion, the photometallic state results from a coexistence of Hund excitons and doublon-holon plasma.« less

  20. Photoinduced Hund excitons in the breakdown of a two-orbital Mott insulator

    DOE PAGES

    Rincon, Julian; Dagotto, Elbio R.; Feiguin, Adrian E.

    2018-06-05

    We study the photoinduced breakdown of a two-orbital Mott insulator and resulting metallic state. Using time-dependent density matrix renormalization group, we scrutinize the real-time dynamics of the half-filled two-orbital Hubbard model interacting with a resonant radiation field pulse. The breakdown, caused by production of doublon-holon pairs, is enhanced by Hund's exchange, which dynamically activates large orbital fluctuations. The melting of the Mott insulator is accompanied by a high to low spin transition with a concomitant reduction of antiferromagnetic spin fluctuations. Most notably, the overall time response is driven by the photogeneration of excitons with orbital character that are stabilized bymore » Hund's coupling. These unconventional “Hund excitons” correspond to bound spin-singlet orbital-triplet doublon-holon pairs. We study exciton properties such as bandwidth, binding potential, and size within a semiclassical approach. In conclusion, the photometallic state results from a coexistence of Hund excitons and doublon-holon plasma.« less

  1. Dynamics Simulation Model for Space Tethers

    NASA Technical Reports Server (NTRS)

    Levin, E. M.; Pearson, J.; Oldson, J. C.

    2006-01-01

    This document describes the development of an accurate model for the dynamics of the Momentum Exchange Electrodynamic Reboost (MXER) system. The MXER is a rotating tether about 100-km long in elliptical Earth orbit designed to catch payloads in low Earth orbit and throw them to geosynchronous orbit or to Earth escape. To ensure successful rendezvous between the MXER tip catcher and a payload, a high-fidelity model of the system dynamics is required. The model developed here quantifies the major environmental perturbations, and can predict the MXER tip position to within meters over one orbit.

  2. Tidal friction and the early history of the moon's orbit

    NASA Technical Reports Server (NTRS)

    Rubincam, D. P.

    1975-01-01

    The present work investigates the consequences implied by various rheological models of the early earth for the orbital history of the moon subsequent to its formation. Models of the earth that yield small tidal angles, such as low-viscosity models, imply that the moon never orbited in the earth's equatorial plane, thereby ruling out an equatorial origin for the moon. A high-viscosity model is shown to permit the moon to originate in the equatorial plane and still account for the present-day characteristics of the moon's orbit.

  3. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    NASA Technical Reports Server (NTRS)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  4. Characterizing the Survey Strategy and Initial Orbit Determination Abilities of the NASA MCAT Telescope for Geosynchronous Orbital Debris Environmental Studies

    NASA Astrophysics Data System (ADS)

    Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.

    The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.

  5. Interactive Visualization of Parking Orbits Around the Moon: An X3D Application for a NASA Lunar Mission Study

    NASA Technical Reports Server (NTRS)

    Murphy, Douglas G.; Qu, Min; Salas, Andrea O.

    2006-01-01

    The NASA Integrated Modeling and Simulation (IM&S) project aims to develop a collaborative engineering system to include distributed analysis, integrated tools, and web-enabled graphics. Engineers on the IM&S team were tasked with applying IM&S capabilities to an orbital mechanics analysis for a lunar mission study. An interactive lunar globe was created to show 7 landing sites, contour lines depicting the energy required to reach a given site, and the optimal lunar orbit orientation to meet the mission constraints. Activation of the lunar globe rotation shows the change of the angle between the landing site latitude and the orbit plane. A heads-up-display was used to embed straightforward interface elements.

  6. Stanford automatic photogrammetry research

    NASA Technical Reports Server (NTRS)

    Quam, L. H.; Hannah, M. J.

    1974-01-01

    A feasibility study on the problem of computer automated aerial/orbital photogrammetry is documented. The techniques investigated were based on correlation matching of small areas in digitized pairs of stereo images taken from high altitude or planetary orbit, with the objective of deriving a 3-dimensional model for the surface of a planet.

  7. Students' Levels of Explanations, Models, and Misconceptions in Basic Quantum Chemistry: A Phenomenographic Study

    ERIC Educational Resources Information Center

    Stefani, Christina; Tsaparlis, Georgios

    2009-01-01

    We investigated students' knowledge constructions of basic quantum chemistry concepts, namely atomic orbitals, the Schrodinger equation, molecular orbitals, hybridization, and chemical bonding. Ausubel's theory of meaningful learning provided the theoretical framework and phenomenography the method of analysis. The semi-structured interview with…

  8. Active Debris Removal Using Modified Launch Vehicle Upper Stages

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea

    2013-09-01

    During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).

  9. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Astrophysics Data System (ADS)

    Manski, Detlef; Martin, James A.

    1988-07-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  10. Evaluation of innovative rocket engines for single-stage earth-to-orbit vehicles

    NASA Technical Reports Server (NTRS)

    Manski, Detlef; Martin, James A.

    1988-01-01

    Computer models of rocket engines and single-stage-to-orbit vehicles that were developed by the authors at DFVLR and NASA have been combined. The resulting code consists of engine mass, performance, trajectory and vehicle sizing models. The engine mass model includes equations for each subsystem and describes their dependences on various propulsion parameters. The engine performance model consists of multidimensional sets of theoretical propulsion properties and a complete thermodynamic analysis of the engine cycle. The vehicle analyses include an optimized trajectory analysis, mass estimation, and vehicle sizing. A vertical-takeoff, horizontal-landing, single-stage, winged, manned, fully reusable vehicle with a payload capability of 13.6 Mg (30,000 lb) to low earth orbit was selected. Hydrogen, methane, propane, and dual-fuel engines were studied with staged-combustion, gas-generator, dual bell, and the dual-expander cycles. Mixture ratio, chamber pressure, nozzle exit pressure liftoff acceleration, and dual fuel propulsive parameters were optimized.

  11. The Space Shuttle Orbiter molecular environment induced by the supplemental flash evaporator system

    NASA Technical Reports Server (NTRS)

    Ehlers, H. K. F.

    1985-01-01

    The water vapor environment of the Space Shuttle Orbiter induced by the supplemental flash evaporator during the on-orbit flight phase has been analyzed based on Space II model predictions and orbital flight measurements. Model data of local density, column density, and return flux are presented. Results of return flux measurements with a mass spectrometer during STS-2 and of direct flux measurements during STS-4 are discussed and compared with model predictions.

  12. Results of tests CS4 and CS5 to investigate dynamic loads and pressures on 0.03-scale models (Ax1319-3/4 and 45-0) of mated 747 cam and space shuttle orbiter in the Boeing transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 0.03-scale model of the 747 CAM/Orbiter was tested in an 8 x 12 foot transonic wind tunnel. Dynamic loads, pressure, and empennage flow field data were obtained using pressure transducers, strain gages, and a split film anemometer. The test variables included Mach number, angle of attack, sideslip angle, orbiter tailcone on and off, orbiter partial tailcone, orbiter nozzle air scoops, orbiter body flap angle, and orbiter elevon angle.

  13. Preclinical models of Graves' disease and associated secondary complications.

    PubMed

    Moshkelgosha, Sajad; So, Po-Wah; Diaz-Cano, Salvador; Banga, J Paul

    2015-01-01

    Autoimmune thyroid disease is the most common organ-specific autoimmune disorder which consists of two opposing clinical syndromes, Hashimoto's thyroiditis and Graves' (hyperthyroidism) disease. Graves' disease is characterized by goiter, hyperthyroidism, and the orbital complication known as Graves' orbitopathy (GO), or thyroid eye disease. The hyperthyroidism in Graves' disease is caused by stimulation of function of thyrotropin hormone receptor (TSHR), resulting from the production of agonist antibodies to the receptor. A variety of induced mouse models of Graves' disease have been developed over the past two decades, with some reproducible models leading to high disease incidence of autoimmune hyperthyroidism. However, none of the models show any signs of the orbital manifestation of GO. We have recently developed an experimental mouse model of GO induced by immunization of the plasmid encoded ligand binding domain of human TSHR cDNA by close field electroporation that recapitulates the orbital pathology in GO. As in human GO patients, immune mice with hyperthyroid or hypothyroid disease induced by anti-TSHR antibodies exhibited orbital pathology and chemosis, characterized by inflammation of orbital muscles and extensive adipogenesis leading to expansion of the orbital retrobulbar space. Magnetic resonance imaging of the head region in immune mice showed a significant expansion of the orbital space, concurrent with proptosis. This review discusses the different strategies for developing mouse models in Graves' disease, with a particular focus on GO. Furthermore, it outlines how this new model will facilitate molecular investigations into pathophysiology of the orbital disease and evaluation of new therapeutic interventions.

  14. Orbit Determination for the Lunar Reconnaissance Orbiter Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven; Lowe, Jonathan; Woodburn, James

    2015-01-01

    Orbit determination (OD) analysis results are presented for the Lunar Reconnaissance Orbiter (LRO) using a commercially available Extended Kalman Filter, Analytical Graphics' Orbit Determination Tool Kit (ODTK). Process noise models for lunar gravity and solar radiation pressure (SRP) are described and OD results employing the models are presented. Definitive accuracy using ODTK meets mission requirements and is better than that achieved using the operational LRO OD tool, the Goddard Trajectory Determination System (GTDS). Results demonstrate that a Vasicek stochastic model produces better estimates of the coefficient of solar radiation pressure than a Gauss-Markov model, and prediction accuracy using a Vasicek model meets mission requirements over the analysis span. Modeling the effect of antenna motion on range-rate tracking considerably improves residuals and filter-smoother consistency. Inclusion of off-axis SRP process noise and generalized process noise improves filter performance for both definitive and predicted accuracy. Definitive accuracy from the smoother is better than achieved using GTDS and is close to that achieved by precision OD methods used to generate definitive science orbits. Use of a multi-plate dynamic spacecraft area model with ODTK's force model plugin capability provides additional improvements in predicted accuracy.

  15. Further studies of the pulsation period and orbital elements of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Schreier, E. J.

    1977-01-01

    The long- and short-term variability of the 4.8-s pulsation and the 2.1-day orbital periods of Centaurus X-3 are studied. The pulsation period decreases over 4 yr with a fractional change of -0.00028 per yr, but with rms fluctuations of 0.0002 s. In August-September 1972, a continuous transition from speedup to slowdown was observed. The orbital period also decreases over 4 yr with decrease of approximately 8 millionths per yr, and with significant fluctuations of the order of 0.00001 day over months. The orbital eccentricity is found to be about 0.0008. The pulsation-period variability is found to be consistent with a near balance between the Alfven and corotation radii in an accretion-disk model. The orbital-period variability is interpreted in terms of tidal circularization and possible mass transfer and loss.

  16. Aeroheating Characteristics for a Two-Stage-To-Orbit Concept During Separation at Mach 6

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2005-01-01

    An experimental study was conducted to determine the proximity aeroheating characteristics for a two-stage-to-orbit concept in close proximity in the NASA Langley 20-Inch Mach 6 Air Tunnel. A new hybrid discrete thin-film resistance gauge technique was evaluated in this study and used to measure experimental interference heating levels between the booster and the orbiter at a constant freestream Reynolds number of 8.25 x 10(exp 6)/m and a variety of separation and axial offset distances. It was found that, as the orbiter separates from the booster and the booster falls away, the windward centerline heating increased on the orbiter by as much as 13-times over the baseline, single model heating distribution, and on the booster by as much as 6-times. The aeroheating database developed can be used for computational fluid dynamic code validation.

  17. Impingement effect of service module reaction control system engine plumes. Results of service module reaction control system plume model force field application to an inflight Skylab mission proximity operation situation with the inflight Skylab response

    NASA Technical Reports Server (NTRS)

    Lobb, J. D., Jr.

    1978-01-01

    Plume impingement effects of the service module reaction control system thruster firings were studied to determine if previous flight experience would support the current plume impingement model for the orbiter reaction control system engines. The orbiter reaction control system is used for rotational and translational maneuvers such as those required during rendezvous, braking, docking, and station keeping. Therefore, an understanding of the characteristics and effects of the plume force fields generated by the reaction control system thruster firings were examined to develop the procedures for orbiter/payload proximity operations.

  18. Linear stability analysis of the Vlasov-Poisson equations in high density plasmas in the presence of crossed fields and density gradients

    NASA Technical Reports Server (NTRS)

    Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.

    1986-01-01

    The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.

  19. Inversion of the Earth spherical albedo from radiation-pressure

    NASA Astrophysics Data System (ADS)

    Wilkman, Olli; Herranen, Joonas; Näränen, Jyri; Virtanen, Jenni; Koivula, Hannu; Poutanen, Markku; Penttilä, Antti; Gritsevich, Maria; Muinonen, Karri

    2017-04-01

    We are studying the retrieval of the spherical albedo and net radiation of the Earth from the perturbations caused by the planet's radiation on the dynamics of its satellites. The spherical or Bond albedo gives the ratio of the fluxes incident on and scattered by the planet. The net radiation represents the net heat input into the planet's climate system and drives changes in its atmospheric, surface, and ocean temperatures. The ultimate aim of the study is inverting the problem and estimating the Earth albedo based on observations of satellites, simultaneously improving the space-geodetic positioning accuracy. Here we investigate the effect of the spherical albedo on satellite orbits with the help of a simplified model. We simulate the propagation of satellite orbits using a new simulation software. The simulation contains the main perturbing forces on medium and high Earth orbits, used by, e.g., navigation satellites, including the radiation pressure of reflected sunlight from the Earth. An arbitrary satellite shape model can be used, and the rotation of the satellite is modeled. In this first study, we use a box-wing satellite model with a simple surface BRDF. We also assume a diffusely reflecting Earth with a single global albedo value. We vary the Earth albedo and search for systematic effects on different orbits. Thereafter, we estimate the dependence of the albedo accuracy on the satellite positioning and timing data available. We show that the inversion of the spherical albedo with reasonable accuracy is feasible from the current space-geodetic measurements.

  20. Test and analysis procedures for updating math models of Space Shuttle payloads

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1991-01-01

    Over the next decade or more, the Space Shuttle will continue to be the primary transportation system for delivering payloads to Earth orbit. Although a number of payloads have already been successfully carried by the Space Shuttle in the payload bay of the Orbiter vehicle, there continues to be a need for evaluation of the procedures used for verifying and updating the math models of the payloads. The verified payload math models is combined with an Orbiter math model for the coupled-loads analysis, which is required before any payload can fly. Several test procedures were employed for obtaining data for use in verifying payload math models and for carrying out the updating of the payload math models. Research was directed at the evaluation of test/update procedures for use in the verification of Space Shuttle payload math models. The following research tasks are summarized: (1) a study of free-interface test procedures; (2) a literature survey and evaluation of model update procedures; and (3) the design and construction of a laboratory payload simulator.

  1. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges andmore » opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.« less

  2. Study of the low energy spectrum of titanium by using QMC methods

    NASA Astrophysics Data System (ADS)

    Buendía, E.; Caballero, M. A.; Gálvez, F. J.

    2018-02-01

    We study the ground state and the low energy excited states of Ti. Each variational wave function is a product of a Jastrow correlation factor by a model function obtained within the parameterized optimized effective potential (POEP) framework by using a configuration mixing. Near degeneracy effects between the orbitals 4s and 4p, as well as excitations to the 3d orbital due to the strong competition between 4s and 3d orbitals in transition metal atoms are taken into account. All electron calculations have been carried out by using quantum Monte Carlo techniques, variational and diffusion.

  3. Far side Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Appourchaux, T.; Birch, A.; Gizon, L. C.; Löptien, B.; Schou, J.; Solanki, S. K.; del Toro Iniesta, J. C.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Woch, J. G.; Schmidt, W.

    2016-12-01

    The Solar Orbiter mission, to be launched in October 2018, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude up to 34 degrees by the end of the extended mission and thus will enable the first local helioseismology studies of the polar regions. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. In this paper we will review the helioseismic objectives achievable with PHI, and will also give a short status report of the development of the Flight Model of PHI.

  4. Emergence of fully gapped s++-wave and nodal d-wave states mediated by orbital and spin fluctuations in a ten-orbital model of KFe2Se2

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi

    2011-04-01

    We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.

  5. Low energy stage study. Volume 2: Requirements and candidate propulsion modes. [orbital launching of shuttle payloads

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A payload mission model covering 129 launches, was examined and compared against the space transportation system shuttle standard orbit inclinations and a shuttle launch site implementation schedule. Based on this examination and comparison, a set of six reference missions were defined in terms of spacecraft weight and velocity requirements to deliver the payload from a 296 km circular Shuttle standard orbit to the spacecraft's planned orbit. Payload characteristics and requirements representative of the model payloads included in the regime bounded by each of the six reference missions were determined. A set of launch cost envelopes were developed and defined based on the characteristics of existing/planned Shuttle upper stages and expendable launch systems in terms of launch cost and velocity delivered. These six reference missions were used to define the requirements for the candidate propulsion modes which were developed and screened to determine the propulsion approaches for conceptual design.

  6. Modeling of the gate-controlled Kondo effect at carbon point defects in graphene

    NASA Astrophysics Data System (ADS)

    May, Daniel; Lo, Po-Wei; Deltenre, Kira; Henke, Anika; Mao, Jinhai; Jiang, Yuhang; Li, Guohong; Andrei, Eva Y.; Guo, Guang-Yu; Anders, Frithjof B.

    2018-04-01

    We study the magnetic properties in the vicinity of a single carbon defect in a monolayer of graphene. We include the unbound σ orbital and the vacancy-induced bound π state in an effective two-orbital single-impurity model. The local magnetic moments are stabilized by the Coulomb interaction as well as a significant ferromagnetic Hund's rule coupling between the orbitals predicted by a density functional theory calculation. A hybridization between the orbitals and the Dirac fermions is generated by the curvature of the graphene sheet in the vicinity of the vacancy. We present results for the local spectral function calculated using Wilson's numerical renormalization group approach for a realistic graphene band structure and find three different regimes depending on the filling, the controlling chemical potential, and the hybridization strength. These different regions are characterized by different magnetic properties. The calculated spectral functions qualitatively agree with recent scanning tunneling spectra on graphene vacancies.

  7. Is It Time to Retire the Hybrid Atomic Orbital?

    ERIC Educational Resources Information Center

    Grushow, Alexander

    2011-01-01

    A rationale for the removal of the hybrid atomic orbital from the chemistry curriculum is examined. Although the hybrid atomic orbital model does not accurately predict spectroscopic energies, many chemical educators continue to use and teach the model despite the confusion it can cause for students. Three arguments for retaining the model in the…

  8. 3D Printing of Molecular Models with Calculated Geometries and p Orbital Isosurfaces

    ERIC Educational Resources Information Center

    Carroll, Felix A.; Blauch, David N.

    2017-01-01

    3D printing was used to prepare models of the calculated geometries of unsaturated organic structures. Incorporation of p orbital isosurfaces into the models enables students in introductory organic chemistry courses to have hands-on experience with the concept of orbital alignment in strained and unstrained p systems.

  9. Geographically correlated orbit error

    NASA Technical Reports Server (NTRS)

    Rosborough, G. W.

    1989-01-01

    The dominant error source in estimating the orbital position of a satellite from ground based tracking data is the modeling of the Earth's gravity field. The resulting orbit error due to gravity field model errors are predominantly long wavelength in nature. This results in an orbit error signature that is strongly correlated over distances on the size of ocean basins. Anderle and Hoskin (1977) have shown that the orbit error along a given ground track also is correlated to some degree with the orbit error along adjacent ground tracks. This cross track correlation is verified here and is found to be significant out to nearly 1000 kilometers in the case of TOPEX/POSEIDON when using the GEM-T1 gravity model. Finally, it was determined that even the orbit error at points where ascending and descending ground traces cross is somewhat correlated. The implication of these various correlations is that the orbit error due to gravity error is geographically correlated. Such correlations have direct implications when using altimetry to recover oceanographic signals.

  10. Magnetic properties and pairing tendencies of the iron-based superconducting ladder BaFe 2 S 3 : Combined ab initio and density matrix renormalization group study

    DOE PAGES

    Patel, Niravkumar D.; Nocera, Alberto; Alvarez, Gonzalo; ...

    2016-08-10

    The recent discovery of superconductivity under high pressure in the two-leg ladder compound BaFe 2S 3 [H. Takahashi et al., Nat. Mater. 14, 1008 (2015)] opens a broad avenue of research, because it represents the first report of pairing tendencies in a quasi-one-dimensional iron-based high-critical-temperature superconductor. Similarly, as in the case of the cuprates, ladders and chains can be far more accurately studied using many-body techniques and model Hamiltonians than their layered counterparts, particularly if several orbitals are active. In this publication, we derive a two-orbital Hubbard model from first principles that describes individual ladders of BaFe 2S 3. Themore » model is studied with the density matrix renormalization group. These first reported results are exciting for two reasons: (i) at half-filling, ferromagnetic order emerges as the dominant magnetic pattern along the rungs of the ladder, and antiferromagnetic order along the legs, in excellent agreement with neutron experiments; and (ii) with hole doping, pairs form in the strong coupling regime, as found by studying the binding energy of two holes doped on the half-filled system. In addition, orbital selective Mott phase characteristics develop with doping, with only oneWannier orbital receiving the hole carriers while the other remains half-filled. Lastly, these results suggest that the analysis of models for iron-based two-leg ladders could clarify the origin of pairing tendencies and other exotic properties of iron-based high-critical-temperature superconductors in general.« less

  11. Mars approach navigation using Doppler and range measurements to surface beacons and orbiting spacecraft

    NASA Technical Reports Server (NTRS)

    Thurman, Sam W.; Estefan, Jeffrey A.

    1991-01-01

    Approximate analytical models are developed and used to construct an error covariance analysis for investigating the range of orbit determination accuracies which might be achieved for typical Mars approach trajectories. The sensitivity or orbit determination accuracy to beacon/orbiter position errors and to small spacecraft force modeling errors is also investigated. The results indicate that the orbit determination performance obtained from both Doppler and range data is a strong function of the inclination of the approach trajectory to the Martian equator, for surface beacons, and for orbiters, the inclination relative to the orbital plane. Large variations in performance were also observed for different approach velocity magnitudes; Doppler data in particular were found to perform poorly in determining the downtrack (along the direction of flight) component of spacecraft position. In addition, it was found that small spacecraft acceleration modeling errors can induce large errors in the Doppler-derived downtrack position estimate.

  12. CFD Analysis of Tile-Repair Augers for the Shuttle Orbiter Re-Entry Aeroheating

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.

    2007-01-01

    A three-dimensional aerothermodynamic model of the shuttle orbiter's tile overlay repair (TOR) sub-assembly is presented. This sub-assembly, which is an overlay that covers the damaged tiles, is modeled as a protuberance with a constant thickness. The washers and augers that serve as the overlay fasteners are modeled as cylindrical protuberances with constant thicknesses. Entry aerothermodynamic cases are studied to provide necessary inputs for future thermal analyses and to support the space-shuttle return-to-flight effort. The NASA Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used to calculate heat transfer rate on the surfaces of the tile overlay repair and augers. Gas flow is modeled as non-equilibrium, five species air in thermal equilibrium. Heat transfer rate and surface temperatures are analyzed and studied for a shuttle orbiter trajectory point at Mach 17.85. Computational results show that the average heat transfer rate normalized with respect to its value at body point 1800 is about BF=1.9 for the auger head. It is also shown that the average BF for the auger and washer heads is about BF=2.0.

  13. A new empirical solar radiation pressure model for BeiDou GEO satellites

    NASA Astrophysics Data System (ADS)

    Liu, Junhong; Gu, Defeng; Ju, Bing; Shen, Zhen; Lai, Yuwang; Yi, Dongyun

    2016-01-01

    Two classic empirical solar radiation pressure (SRP) models, the Extended Center for Orbit Determination in Europe (CODE) Orbit Model ECOM 5 and ECOM 9 have been widely used for Global Positioning System (GPS) Medium Earth Orbit (MEO) satellites precise orbit determination (POD). However, these two models are not suitable for BeiDou Geostationary Earth Orbit (GEO) satellites due to their special attitude control mode. With the experimental design method this paper proposes a new empirical SRP model for BeiDou GEO satellites, which is featured by three constant terms in DYX directions, two sine terms in DX directions and one cosine term in the Y direction. It is the first time to reveal that the periodic terms in the D direction are more important than those in YX directions for BeiDou GEO satellites. Compared with ECOM 5 and ECOM 9, the BeiDou GEO satellite orbits are significantly stabilized with the new SRP force model. The average orbit overlapping root mean square (RMS) achieved by the proposed model is 7.5 cm in the radial component, which is evidently improved over those of 37.4 and 13.2 cm for ECOM 5 and ECOM 9, respectively. In addition, the correlation coefficients between GEO orbit overlaps precision and the elevation angle of the Sun have been decreased to -0.12, 0.21, and -0.03 in radial, along-track and cross-track components by using the proposed model, while they are -0.94, -0.79 and -0.29 for ECOM 5 and -0.70, 0.21 and 0.10 for ECOM 9. Moreover, the standard deviation (STD) of Satellite Laser Ranging (SLR) data residuals for the GEO satellite C01 is reduced by 37.4% and 16.1% compared with those of ECOM 5 and ECOM 9 SRP models.

  14. Stability of orbits around planetary satellites considering a disturbing body in an elliptical orbit: Applications to Europa and Ganymede

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, Josué; Carvalho, Jean Paulo; Vilhena de Moraes, Rodolpho

    Europa and Ganymede are two of the four Jupiter’s moons which compose the Galilean satellite. These ones are planetary satellites of greater interest at the present moment among the scientific community. There are some missions being planned to visit them and and the Jovian system. One of them is the cooperation between NASA and ESA for the Europa Jupiter System Mission (EJSM). In this mission are planned the insertion of the spacecrafts JEO (Jupiter Europa Orbiter) and JGO (Jupiter Ganymede Orbiter) into Europa and Ganymede’s orbit. Thus, there is a great necessity for having a better comprehension of the dynamics of the orbits around this planetary satellite. This comprehension is essential for the success of this type of mission. In this context, this work aims to perform a search for low-altitude orbits around these planetary satellites. An emphasis is given in polar orbits. These orbits can be useful in the planning of aerospace activities to be conducted around this planetary satellite, with respect to the stability of orbits of artificial satellites. The study considers orbits of an artificial satellite around Europa and Ganymede under the influence of the third-body perturbation (the gravitational attraction of Jupiter) and the polygenic perturbations. These last ones occur due to forces such as the non-uniform distribution of mass (J2 and J3) of the main (central) body. A simplified dynamic model for polygenic perturbations is used. A new model for the third-body disturbance is presented considering it in an elliptical orbit. The Lagrange planetary equations, which compose a system of nonlinear differential equations, are used to describe the orbital motion of the artificial satellite around Ganymede. The equations showed here are developed in closed form to avoid expansions in inclination and eccentricity.

  15. Lunar Prospector Orbit Determination Uncertainties Using the High Resolution Lunar Gravity Models

    NASA Technical Reports Server (NTRS)

    Carranza, Eric; Konopliv, Alex; Ryne, Mark

    1999-01-01

    The Lunar Prospector (LP) mission began on January 6, 1998, when the LP spacecraft was launched from Cape Canaveral, Florida. The objectives of the mission were to determine whether water ice exists at the lunar poles, generate a global compositional map of the lunar surface, detect lunar outgassing, and improve knowledge of the lunar magnetic and gravity fields. Orbit determination of LP performed at the Jet Propulsion Laboratory (JPL) is conducted as part of the principal science investigation of the lunar gravity field. This paper will describe the JPL effort in support of the LP Gravity Investigation. This support includes high precision orbit determination, gravity model validation, and data editing. A description of the mission and its trajectory will be provided first, followed by a discussion of the orbit determination estimation procedure and models. Accuracies will be examined in terms of orbit-to-orbit solution differences, as a function of oblateness model truncation, and inclination in the plane-of-sky. Long term predictions for several gravity fields will be compared to the reconstructed orbits to demonstrate the accuracy of the orbit determination and oblateness fields developed by the Principal Gravity Investigator.

  16. Precise satellite orbit determination with particular application to ERS-1

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Joana Afonso Pereira

    The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.

  17. Revisiting the Bohr Atom 100 Years Later

    NASA Astrophysics Data System (ADS)

    Wall, Ernst

    2013-03-01

    We use a novel electron model wherein the electron is modeled as a point charge behaving as a trapped photon revolving in a Compton wavelength orbit at light speed. The revolving point charge gives rise to spiraling Compton wavelets around the electron, which give rise to de Broglie waves. When applied to the Bohr model, the orbital radius of the electron scales to the first Bohr orbit's radius via the fine structure constant. The orbiting electron's orbital velocity, Vb, scales to that of the electron's charge's internal velocity (the velocity of light, c) via the fine structure constant. The Compton wavelets, if they reflect off the nucleus, have a round trip time just long enough to allow the electron to move one of its diameters in distance in the first Bohr orbit. The ratio of the electron's rotational frequency, fe, to its rotational frequency in the Bohr orbit fb, is fe/fb = 1/α2, which is also the number of electron rotations in single orbit. If we scale the electron's rotational energy (h*fe) to that of the orbit using this, the orbital energy value (h*fb) would be 27.2114 eV. However, the virial theorem reduces it to 13.6057, the ground state energy of the first Bohr orbit. Ref: www.tachyonmodel.com.

  18. Computer modeling of high-voltage solar array experiment using the NASCAP/LEO (NASA Charging Analyzer Program/Low Earth Orbit) computer code

    NASA Astrophysics Data System (ADS)

    Reichl, Karl O., Jr.

    1987-06-01

    The relationship between the Interactions Measurement Payload for Shuttle (IMPS) flight experiment and the low Earth orbit plasma environment is discussed. Two interactions (parasitic current loss and electrostatic discharge on the array) may be detrimental to mission effectiveness. They result from the spacecraft's electrical potentials floating relative to plasma ground to achieve a charge flow equilibrium into the spacecraft. The floating potentials were driven by external biases applied to a solar array module of the Photovoltaic Array Space Power (PASP) experiment aboard the IMPS test pallet. The modeling was performed using the NASA Charging Analyzer Program/Low Earth Orbit (NASCAP/LEO) computer code which calculates the potentials and current collection of high-voltage objects in low Earth orbit. Models are developed by specifying the spacecraft, environment, and orbital parameters. Eight IMPS models were developed by varying the array's bias voltage and altering its orientation relative to its motion. The code modeled a typical low Earth equatorial orbit. NASCAP/LEO calculated a wide variety of possible floating potential and current collection scenarios. These varied directly with both the array bias voltage and with the vehicle's orbital orientation.

  19. Physico-chemical study of some areas of fundamental significance to biophysics. Final report, 1974--1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGlynn, S.P.

    1977-08-18

    The comprehensive report includes a complete list of publications resulting from the work and a review of studies made in the vacuum ultraviolet, photoelectron spectroscopy, excited states and electron structure of inorganic salts, a model for polar molecules, application of abstract mathematics to the genetic code, the orbital approximation in which orbital properties are related to state properties. (JSR)

  20. Expected orbit determination performance for the TOPEX/Poseidon mission

    NASA Technical Reports Server (NTRS)

    Nerem, R. S.; Putney, Barbara H.; Marshall, J. A.; Lerch, Francis J.; Pavlis, Erricos C.; Klosko, Steven M.; Luthcke, Scott B.; Patel, Girish B.; Williamson, Ronald G.; Zelensky, Nikita P.

    1993-01-01

    Each of the components required for the computation of precise orbits for the TOPEX/Poseidon (T/P) spacecraft - gravity field modeling, nonconservative force modeling, and satellite tracking technologies - is examined. The research conducted in the Space Geodesy Branch at Goddard Space Flight Center in preparation for meeting the 13-cm radial orbit accuracy requirement for the T/P mission is outlined. New developments in modeling the earth's gravitational field and modeling the complex nonconservative forces acting on T/P are highlighted. The T/P error budget is reviewed, and a prelaunch assessment of the predicted orbit determination accuracies is summarized.

  1. Intramolecular interactions of L-phenylalanine: Valence ionization spectra and orbital momentum distributions of its fragment molecules.

    PubMed

    Ganesan, Aravindhan; Wang, Feng; Falzon, Chantal

    2011-02-01

    Intramolecular interactions between fragments of L-phenylalanine, i.e., phenyl and alaninyl, have been investigated using dual space analysis (DSA) quantum mechanically. Valence space photoelectron spectra (PES), orbital energy topology and correlation diagram, as well as orbital momentum distributions (MDs) of L-phenylalanine, benzene and L-alanine are studied using density functional theory methods. While fully resolved experimental PES of L-phenylalanine is not yet available, our simulated PES reproduces major features of the experimental measurement. For benzene, the simulated orbital MDs for 1e(1g) and 1a(2u) orbitals also agree well with those measured using electron momentum spectra. Our theoretical models are then applied to reveal intramolecular interactions of the species on an orbital base, using DSA. Valence orbitals of L-phenylalanine can be essentially deduced into contributions from its fragments such as phenyl and alaninyl as well as their interactions. The fragment orbitals inherit properties of their parent species in energy and shape (ie., MDs). Phenylalanine orbitals show strong bonding in the energy range of 14-20 eV, rather than outside of this region. This study presents a competent orbital based fragments-in-molecules picture in the valence space, which supports the fragment molecular orbital picture and building block principle in valence space. The optimized structures of the molecules are represented using the recently developed interactive 3D-PDF technique. Copyright © 2010 Wiley Periodicals, Inc.

  2. Origin of orbital debris impacts on LDEF's trailing surfaces

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1993-01-01

    A model was developed to determine the origin of orbital impacts measured on the training surfaces of LDEF. The model calculates the expected debris impact crater distribution around LDEF as a function of debris orbital parameters. The results show that only highly elliptical, low inclination orbits could be responsible for these impacts. The most common objects left in this type of orbit are orbital transfer stages used by the U.S. and ESA to place payloads into geosynchronous orbit. Objects in this type of orbit are difficult to catalog by the U.S. Space Command; consequently there are independent reasons to believe that the catalog does not adequately represent this population. This analysis concludes that the relative number of cataloged objects with highly elliptical, low inclination orbits must be increased by a factor of 20 to be consistent with the LDEF data.

  3. Thermospheric dynamics during November 21-22, 1981 - Dynamics Explorer measurements and thermospheric general circulation model predictions

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Killeen, T. L.; Spencer, N. W.; Heelis, R. A.; Reiff, P. H.

    1988-01-01

    Time-dependent aurora and magnetospheric convection parameterizations have been derived from solar wind and aurora particle data for November 21-22, 1981, and are used to drive the auroral and magnetospheric convection models that are embedded in the National Center for Atmospheric Research thermospheric general circulation model (TGCM). Neutral wind speeds and transition boundaries between the midlatitude solar-driven circulation and the high-latitude magnetospheric convection-driven circulation are examined on an orbit-by-orbit basis. The results show that TGCM-calculated winds and reversal boundary locations are in generally good agreement with Dynamics Explorer 2 measurements for the orbits studied. This suggests that, at least for this particular period of relatively moderate geomagnetic activity, the TGCM parameterizations on the eveningside of the auroral oval and polar cap are adequate.

  4. Research on Equivalent Tests of Dynamics of On-orbit Soft Contact Technology Based on On-Orbit Experiment Data

    NASA Astrophysics Data System (ADS)

    Yang, F.; Dong, Z. H.; Ye, X.

    2018-05-01

    Currently, space robots have been become a very important means of space on-orbit maintenance and support. Many countries are taking deep research and experiment on this. Because space operation attitude is very complicated, it is difficult to model them in research lab. This paper builds up a complete equivalent experiment framework according to the requirement of proposed space soft-contact technology. Also, this paper carries out flexible multi-body dynamics parameters verification for on-orbit soft-contact mechanism, which combines on-orbit experiment data, the built soft-contact mechanism equivalent model and flexible multi-body dynamics equivalent model that is based on KANE equation. The experiment results approve the correctness of the built on-orbit soft-contact flexible multi-body dynamics.

  5. Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model

    NASA Astrophysics Data System (ADS)

    Kandemir, Zafer; Mayda, Selma; Bulut, Nejat

    2015-03-01

    We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.

  6. Initial assessment of the effects of energetic ion injections in the magnetosphere due to the transport of satellite power system components from low earth orbit to geosynchronous earth orbit

    NASA Astrophysics Data System (ADS)

    Curtis, S. A.; Grebowsky, J. M.

    1980-07-01

    Potentially serious environmental effects exist when cargo orbital transfer vehicle (COTV) ion propulsion is used on the scale proposed in the preliminary definition studies of the Satellite Power System. These effects of the large scale injections of ion propulsion exhaust in the plasmasphere and in the outer magnetosphere were shown to be highly model dependent with major differences existing in the predicted effects of two models, the ion cloud model and the ion sheath model. The expected total number density deposition of the propellant Ar(+) in the plasmasphere, the energy spectra of the deposited Ar(+) and time dependent behavior of the Ar(+) injected into the plasmasphere by a fleet of COTV vehicles differ drastically between the two models. The ion sheath model was demonstrated to be applicable to the proposed Ar(+) beam physics if the beam was divergent and turbulent whereas the ion cloud model was not a realistic approximation for such a beam because the "frozen-field" assumption on which it is based is not valid.

  7. Development of a rotating gravity gradiometer for earth orbit applications (AAFE)

    NASA Technical Reports Server (NTRS)

    Forward, R. L.; Bell, C. C.; Lahue, P. M.; Mallove, E. F.; Rouse, D. W.

    1973-01-01

    Some preliminary mission studies are described along with the design, fabrication, and test of a breadboard model of an earth orbital, rotating gravity gradiometer with a design goal of 10 to the minus 11th power/sec sq (0.01 EU) in a 35-sec integration time. The proposed mission uses a Scout vehicle to launch one (or two orthogonally oriented) spin-stabilized satellites into a 330-km circular polar orbit some 20 days before an equinox. During the short orbital lifetime, the experiment would obtain two complete maps of the gravity gradient field with a resolution approaching 270 km (degree 75). The breadboard model of the gradiometer demonstrated a combined thermal and electronic noise threshold of 0.015 EU per data channel. The design changes needed to reduce the noise to less than 0.01 EU were identified. Variations of the sensor output signal with temperature were experimentally determined and a suitable method of temperature compensation was developed and tested. Other possible error sources, such as sensor interaction with satellite dynamics and magnetic fields, were studied analytically and shown to be small.

  8. Research on orbit prediction for solar-based calibration proper satellite

    NASA Astrophysics Data System (ADS)

    Chen, Xuan; Qi, Wenwen; Xu, Peng

    2018-03-01

    Utilizing the mathematical model of the orbit mechanics, the orbit prediction is to forecast the space target's orbit information of a certain time based on the orbit of the initial moment. The proper satellite radiometric calibration and calibration orbit prediction process are introduced briefly. On the basis of the research of the calibration space position design method and the radiative transfer model, an orbit prediction method for proper satellite radiometric calibration is proposed to select the appropriate calibration arc for the remote sensor and to predict the orbit information of the proper satellite and the remote sensor. By analyzing the orbit constraint of the proper satellite calibration, the GF-1solar synchronous orbit is chose as the proper satellite orbit in order to simulate the calibration visible durance for different satellites to be calibrated. The results of simulation and analysis provide the basis for the improvement of the radiometric calibration accuracy of the satellite remote sensor, which lays the foundation for the high precision and high frequency radiometric calibration.

  9. Research on the impact factors of GRACE precise orbit determination by dynamic method

    NASA Astrophysics Data System (ADS)

    Guo, Nan-nan; Zhou, Xu-hua; Li, Kai; Wu, Bin

    2018-07-01

    With the successful use of GPS-only-based POD (precise orbit determination), more and more satellites carry onboard GPS receivers to support their orbit accuracy requirements. It provides continuous GPS observations in high precision, and becomes an indispensable way to obtain the orbit of LEO satellites. Precise orbit determination of LEO satellites plays an important role for the application of LEO satellites. Numerous factors should be considered in the POD processing. In this paper, several factors that impact precise orbit determination are analyzed, namely the satellite altitude, the time-variable earth's gravity field, the GPS satellite clock error and accelerometer observation. The GRACE satellites provide ideal platform to study the performance of factors for precise orbit determination using zero-difference GPS data. These factors are quantitatively analyzed on affecting the accuracy of dynamic orbit using GRACE observations from 2005 to 2011 by SHORDE software. The study indicates that: (1) with the altitude of the GRACE satellite is lowered from 480 km to 460 km in seven years, the 3D (three-dimension) position accuracy of GRACE satellite orbit is about 3˜4 cm based on long spans data; (2) the accelerometer data improves the 3D position accuracy of GRACE in about 1 cm; (3) the accuracy of zero-difference dynamic orbit is about 6 cm with the GPS satellite clock error products in 5 min sampling interval and can be raised to 4 cm, if the GPS satellite clock error products with 30 s sampling interval can be adopted. (4) the time-variable part of earth gravity field model improves the 3D position accuracy of GRACE in about 0.5˜1.5 cm. Based on this study, we quantitatively analyze the factors that affect precise orbit determination of LEO satellites. This study plays an important role to improve the accuracy of LEO satellites orbit determination.

  10. Comparison of Ultra-Rapid Orbit Prediction Strategies for GPS, GLONASS, Galileo and BeiDou.

    PubMed

    Geng, Tao; Zhang, Peng; Wang, Wei; Xie, Xin

    2018-02-06

    Currently, ultra-rapid orbits play an important role in the high-speed development of global navigation satellite system (GNSS) real-time applications. This contribution focuses on the impact of the fitting arc length of observed orbits and solar radiation pressure (SRP) on the orbit prediction performance for GPS, GLONASS, Galileo and BeiDou. One full year's precise ephemerides during 2015 were used as fitted observed orbits and then as references to be compared with predicted orbits, together with known earth rotation parameters. The full nine-parameter Empirical Center for Orbit Determination in Europe (CODE) Orbit Model (ECOM) and its reduced version were chosen in our study. The arc lengths of observed fitted orbits that showed the smallest weighted root mean squares (WRMSs) and medians of the orbit differences after a Helmert transformation fell between 40 and 45 h for GPS and GLONASS and between 42 and 48 h for Galileo, while the WRMS values and medians become flat after a 42 h arc length for BeiDou. The stability of the Helmert transformation and SRP parameters also confirmed the similar optimal arc lengths. The range around 42-45 h is suggested to be the optimal arc length interval of the fitted observed orbits for the multi-GNSS joint solution of ultra-rapid orbits.

  11. Comparison of Ultra-Rapid Orbit Prediction Strategies for GPS, GLONASS, Galileo and BeiDou

    PubMed Central

    Zhang, Peng; Wang, Wei; Xie, Xin

    2018-01-01

    Currently, ultra-rapid orbits play an important role in the high-speed development of global navigation satellite system (GNSS) real-time applications. This contribution focuses on the impact of the fitting arc length of observed orbits and solar radiation pressure (SRP) on the orbit prediction performance for GPS, GLONASS, Galileo and BeiDou. One full year’s precise ephemerides during 2015 were used as fitted observed orbits and then as references to be compared with predicted orbits, together with known earth rotation parameters. The full nine-parameter Empirical Center for Orbit Determination in Europe (CODE) Orbit Model (ECOM) and its reduced version were chosen in our study. The arc lengths of observed fitted orbits that showed the smallest weighted root mean squares (WRMSs) and medians of the orbit differences after a Helmert transformation fell between 40 and 45 h for GPS and GLONASS and between 42 and 48 h for Galileo, while the WRMS values and medians become flat after a 42 h arc length for BeiDou. The stability of the Helmert transformation and SRP parameters also confirmed the similar optimal arc lengths. The range around 42–45 h is suggested to be the optimal arc length interval of the fitted observed orbits for the multi-GNSS joint solution of ultra-rapid orbits. PMID:29415467

  12. Modified empirical Solar Radiation Pressure model for IRNSS constellation

    NASA Astrophysics Data System (ADS)

    Rajaiah, K.; Manamohan, K.; Nirmala, S.; Ratnakara, S. C.

    2017-11-01

    Navigation with Indian Constellation (NAVIC) also known as Indian Regional Navigation Satellite System (IRNSS) is India's regional navigation system designed to provide position accuracy better than 20 m over India and the region extending to 1500 km around India. The reduced dynamic precise orbit estimation is utilized to determine the orbit broadcast parameters for IRNSS constellation. The estimation is mainly affected by the parameterization of dynamic models especially Solar Radiation Pressure (SRP) model which is a non-gravitational force depending on shape and attitude dynamics of the spacecraft. An empirical nine parameter solar radiation pressure model is developed for IRNSS constellation, using two-way range measurements from IRNSS C-band ranging system. The paper addresses the development of modified SRP empirical model for IRNSS (IRNSS SRP Empirical Model, ISEM). The performance of the ISEM was assessed based on overlap consistency, long term prediction, Satellite Laser Ranging (SLR) residuals and compared with ECOM9, ECOM5 and new-ECOM9 models developed by Center for Orbit Determination in Europe (CODE). For IRNSS Geostationary Earth Orbit (GEO) and Inclined Geosynchronous Orbit (IGSO) satellites, ISEM has shown promising results with overlap RMS error better than 5.3 m and 3.5 m respectively. Long term orbit prediction using numerical integration has improved with error better than 80%, 26% and 7.8% in comparison to ECOM9, ECOM5 and new-ECOM9 respectively. Further, SLR based orbit determination with ISEM shows 70%, 47% and 39% improvement over 10 days orbit prediction in comparison to ECOM9, ECOM5 and new-ECOM9 respectively and also highlights the importance of wide baseline tracking network.

  13. Cassini's motions and resonant librations of synchronous satellites of big planets

    NASA Astrophysics Data System (ADS)

    Barkin, Yu. V.

    2008-09-01

    Introduction. In the paper the rotations of synchronous satellites of the Jupiter, Saturn, Uran and Neptune are studied. On the base theory of resonant rotation of the rigid satellite on precessing elliptical orbit [1], [2] parameters of Cassini's motions and periods of free resonant librations have been determined for big grope of satellites of planets considered as rigid non-spherical bodies. Here I use observed values of coefficients of second harmonics of gravitational potensials ( 2 J and 22 C ) and of dimension less moment of inertia I = C / ?mr 2 ? of Io, Europa, Ganimede, Callisto and also Rhea and Titan, obtained on the base of data of space missions to these bodies [3]. Here C is the polar moment of inertia, m and r is the mass and the mean radius of satellite. Mentioned parameters 2 J , 22 C and I also have been evaluated for a wide set of another's satellites of big planets for their models as homogeneous ellipsoids of known forms and sizes (www.nasa.gov). These models also have been obtained here effective applications. For corresponding models the notation (e) is used here. For another from considered satellites (without indexes) we use also ellipsoidal models of hydrostatic equilibrium state of synchronous satellite [4]. The full list of discussed parameters for satellites of planets is presented in the paper [5]. Perturbed orbital motions of considered satellites we discribe by mean orbital elements reffered to local Laplacian planes of corresponding satellites ( http://ssd.jpl.nasa. gov/sat_elem. html). From them: the eccentricity ( e ), the inclination of orbit plane ( i ), the mean orbital motion and its period ( n and n T ), the angular velocity and period of preseccion of orbit plane of satellite on local Laplacian plane ( n? and T? ). In our approach all mentioned parameters are considered as constants and more fine effects in orbital motions of satellites do not take into account in this paper. The purpose of paper is to study syncronous motions of satellites in Solar system and for each of them to determine the values of the basic Cassini's parameter 0 ? (it is the average angle of inclination of the axis of rotation relatively to normal of the precessing orbit plane) and the periods of resonant librations in the longitude ( g T ), in the pole wobble ( l T ) and period of space precession ( h T ) (and their errors). Here we use the analytical formulas for mentioned parameters which were developed by study of the Moon Cassini's motion in my early papers [1], [2]. Specially for the case of small eccentricities and inclinations of orbits of synchronous satellites we have obtained the simple reduced formulas for all four considered parameters.

  14. Structural-functional relationships between eye orbital imaging biomarkers and clinical visual assessments

    NASA Astrophysics Data System (ADS)

    Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.

    2017-02-01

    Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.

  15. Orbital stability close to asteroid 624 Hektor using the polyhedral model

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Baoyin, Hexi; Li, Hengnian

    2018-03-01

    We investigate the orbital stability close to the unique L4-point Jupiter binary Trojan asteroid 624 Hektor. The gravitational potential of 624 Hektor is calculated using the polyhedron model with observational data of 2038 faces and 1021 vertexes. Previous studies have presented three different density values for 624 Hektor. The equilibrium points in the gravitational potential of 624 Hektor with different density values have been studied in detail. There are five equilibrium points in the gravitational potential of 624 Hektor no matter the density value. The positions, Jacobian, eigenvalues, topological cases, stability, as well as the Hessian matrix of the equilibrium points are investigated. For the three different density values the number, topological cases, and the stability of the equilibrium points with different density values are the same. However, the positions of the equilibrium points vary with the density value of the asteroid 624 Hektor. The outer equilibrium points move away from the asteroid's mass center when the density increases, and the inner equilibrium point moves close to the asteroid's mass center when the density increases. There exist unstable periodic orbits near the surface of 624 Hektor. We calculated an orbit near the primary's equatorial plane of this binary Trojan asteroid; the results indicate that the orbit remains stable after 28.8375 d.

  16. Results of an external tank separation test in AEDC/VKF tunnel B on 0.010-scale replica of space shuttle vehicle model 52-OT(IA17A), Volume 1

    NASA Technical Reports Server (NTRS)

    Spangler, R. H.; Daileda, J. J.

    1975-01-01

    Tests were conducted on scale models of the space shuttle orbiter and external tank (ET) to determine the aerodynamic interactions during a return to launch site abort separation. The orbiter model was built to vehicle 3 configuration lines (139B) and the ET model approximated the vehicle 5 configurations with protuberances and attach hardware. For these investigations the orbiter was mounted on the primary support system and the external tank was mounted on the captive trajectory system. Six-component data were obtained for each vehicle at various orbiter angles of attack and sideslip for a range of relative angular and linear displacements of the ET from the orbiter.

  17. Newtonian-Machian analysis of the neo-Tychonian model of planetary motions

    NASA Astrophysics Data System (ADS)

    Popov, Luka

    2013-03-01

    The calculation of the trajectories in the Sun-Earth-Mars system is performed using two different models, both in the framework of Newtonian mechanics. The first model is the well-known Copernican system, which assumes that the Sun is at rest and that all the planets orbit around it. The second is a less well-known model, developed by Tycho Brahe (1546-1601), according to which the Earth stands still, the Sun orbits around the Earth, and the other planets orbit around the Sun. The term ‘neo-Tychonian system’ refers to the assumption that orbits of distant masses around the Earth are synchronized with the Sun's orbit. It is the aim of this paper to show the kinematical and dynamical equivalence of these systems, under the assumption of Mach's principle.

  18. 3D-Printed Simulation Device for Orbital Surgery.

    PubMed

    Lichtenstein, Juergen Thomas; Zeller, Alexander Nicolai; Lemound, Juliana; Lichtenstein, Thorsten Enno; Rana, Majeed; Gellrich, Nils-Claudius; Wagner, Maximilian Eberhard

    Orbital surgery is a challenging procedure because of its complex anatomy. Training could especially benefit from dedicated study models. The currently available devices lack sufficient anatomical representation and realistic soft tissue properties. Hence, we developed a 3D-printed simulation device for orbital surgery with tactual (haptic) correct simulation of all relevant anatomical structures. Based on computed tomography scans collected from patients treated in a third referral center, the hard and soft tissue were segmented and virtually processed to generate a 3D-model of the orbit. Hard tissue was then physically realized by 3D-printing. The soft tissue was manufactured by a composite silicone model of the nucleus and the surrounding tissue over a negative mold model also generated by 3D-printing. The final model was evaluated by a group of 5 trainees in oral and maxillofacial surgery (1) and a group of 5 consultants (2). All participants were asked to reconstruct an isolated orbital floor defect with a titanium implant. A stereotactic navigation system was available to all participants. Their experience was evaluated for haptic realism, correct representation of surgical approach, general handling of model, insertion of implant into the orbit, placement and fixation of implant, and usability of navigated control. The items were evaluated via nonparametric statistics (1 [poor]-5 [good]). Group 1 gave an average mark of 4.0 (±0.9) versus 4.6 (±0.6) by group 2. The haptics were rated as 3.6 (±1.1) [1] and 4.2 (±0.8) [2]. The surgical approach was graded 3.7 (±1.2) [1] and 4.0 (±1.0) [2]. Handling of the models was rated 3.5 (±1.1) [1] and 4 (±0.7) [2]. The insertion of the implants was marked as 3.7 (±0.8) [1] and 4.2 (±0.8) [2]. Fixation of the implants was also perceived to be realistic with 3.6 (±0.9) [1] and 4.2 (±0.45) [2]. Lastly, surgical navigation was rated 3.8 (±0.8) [1] and 4.6 (±0.56) [2]. In this project, all relevant hard and soft tissue characteristics of orbital anatomy could be realized. Moreover, it was possible to demonstrate that the entire workflow of an orbital procedure may be simulated. Hence, using this model training expenses may be reduced and patient security could be enhanced. Copyright © 2016 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  19. Mean-field study of correlation-induced antisymmetric spin-orbit coupling in a two-orbital honeycomb model

    NASA Astrophysics Data System (ADS)

    Hayami, Satoru; Kusunose, Hiroaki; Motome, Yukitoshi

    2018-05-01

    We investigate a two-orbital Hubbard model on a honeycomb structure, with a special focus on the antisymmetric spin-orbit coupling (ASOC) induced by symmetry breaking in the electronic degrees of freedom. By investigating the ground-state phase diagram by the mean-field approximation in addition to the analysis in the strong correlation limit, we obtain a variety of symmetry-broken phases that induce different types of effective ASOCs by breaking of spatial inversion symmetry. We find several unusual properties emergent from the ASOCs, such as a linear magnetoelectric effect in a spin-orbital ordered phase at 1/4 filling and a spin splitting in the band structure in charge ordered phases at 1/4 and 1/2 fillings. We also show that a staggered potential on the honeycomb structure leads to another type of ASOC, which gives rise to a valley splitting in the band structure at 1/2 filling. We discuss the experimental relevance of our results to candidate materials including transition metal dichalcogenides and trichalcogenides.

  20. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Brad M. S., E-mail: hansen@astro.ucla.edu

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute tomore » the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.« less

  1. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE PAGES

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.; ...

    2017-10-31

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  2. Particle tracing modeling of ion fluxes at geosynchronous orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brito, Thiago V.; Woodroffe, Jesse; Jordanova, Vania K.

    The initial results of a coupled MHD/particle tracing method to evaluate particle fluxes in the inner magnetosphere are presented. This setup is capable of capturing the earthward particle acceleration process resulting from dipolarization events in the tail region of the magnetosphere. On the period of study, the MHD code was able to capture a dipolarization event and the particle tracing algorithm was able to capture our results of these disturbances and calculate proton fluxes in the night side geosynchronous orbit region. The simulation captured dispersionless injections as well as the energy dispersion signatures that are frequently observed by satellites atmore » geosynchronous orbit. Currently, ring current models rely on Maxwellian-type distributions based on either empirical flux values or sparse satellite data for their boundary conditions close to geosynchronous orbit. In spite of some differences in intensity and timing, the setup presented here is able to capture substorm injections, which represents an improvement regarding a reverse way of coupling these ring current models with MHD codes through the use of boundary conditions.« less

  3. A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control

    NASA Technical Reports Server (NTRS)

    ONeill, John; Shalin, Valerie L.

    2000-01-01

    The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.

  4. Geosynchronous inclined orbits for high-latitude communications

    NASA Astrophysics Data System (ADS)

    Fantino, E.; Flores, R. M.; Di Carlo, M.; Di Salvo, A.; Cabot, E.

    2017-11-01

    We present and discuss a solution to the growing demand for satellite telecommunication coverage in the high-latitude geographical regions (beyond 55°N), where the signal from geostationary satellites is limited or unavailable. We focus on the dynamical issues associated to the design, the coverage, the maintenance and the disposal of a set of orbits selected for the purpose. Specifically, we identify a group of highly inclined, moderately eccentric geosynchronous orbits derived from the Tundra orbit (geosynchronous, eccentric and critically inclined). Continuous coverage can be guaranteed by a constellation of three satellites in equally spaced planes and suitably phased. By means of a high-precision model of the terrestrial gravity field and the relevant environmental perturbations, we study the evolution of these orbits. The effects of the different perturbations on the ground track (which is more important for coverage than the orbital elements themselves) are isolated and analyzed. The physical model and the numerical setup are optimized with respect to computing time and accuracy. We show that, in order to maintain the ground track unchanged, the key parameters are the orbital period and the argument of perigee. Furthermore, corrections to the right ascension of the ascending node are needed in order to preserve the relative orientation of the orbital planes. A station-keeping strategy that minimizes propellant consumption is then devised, and comparisons are made between the cost of a solution based on impulsive maneuvers and one with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

  5. Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hill, Nicole M.

    2009-01-01

    There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.

  6. An optimum organizational structure for a large earth-orbiting multidisciplinary Space Base

    NASA Technical Reports Server (NTRS)

    Ragusa, J. M.

    1973-01-01

    The purpose of this exploratory study was to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The essential finding of this research was that a four-level project type 'total matrix' model will optimize the efficiency and effectiveness of Space Base technologists.

  7. Geosynchronous Orbit Determination Using Space Surveillance Network Observations and Improved Radiative Force Modeling

    DTIC Science & Technology

    2004-06-01

    equinoctial elements , because both sets of orbital elements reference the equinoctial coordinate system. In fact, to...spacecraft position and velocity vectors, or an element set , which represents the orbit using scalar quantities and angle measurements called orbital ...common element sets used to describe elliptical orbits (including circular orbits ) are Keplerian elements , also called classical orbital

  8. Modeling of Mercury tides for recovery of gravity field and interior properties

    NASA Astrophysics Data System (ADS)

    Padovan, S.; Margot, J.; Hauck, S. A.; Lemoine, F. G.; Mazarico, E.; Peale, S. J.; Solomon, S. C.

    2011-12-01

    The radio science experiment on the MESSENGER mission allows the determination of the gravitational field of Mercury. In order to secure the best possible gravity-field recovery, it is important to model all the forces acting on the spacecraft. Here we study the perturbations induced on the spacecraft by the tides raised on Mercury by the Sun. The manner by which the tides affect the orbit of MESSENGER depends on the response of the planet to the tide-raising potential. This response is directly connected to the interior properties of Mercury, and its study can help improve our understanding of the physical and chemical properties of the planet. The standard approach of modeling the strongest tidal effect on the gravitational field is by introducing a time-varying component in the degree-two harmonic coefficients of the gravity field. The amplitude of these variations depends on known quantities (mass of the Sun and Mercury, radius of Mercury and its position and relative orientation with respect to the Sun) and on the Love number k2. The value of this parameter is sensitive (among other things) to the state of the core and to the rigidity of the mantle (which in turn depends on its chemical composition). An accurate value of k2 determined from orbit perturbations can be compared to values obtained with forward modeling of the interior of Mercury. The orbital geometry and physical environment of MESSENGER make the identification of the tidal perturbation difficult. Nevertheless, recent work has shown that in the case of Mars, careful study of the effect of tides on the spacecraft trajectory can help identify which orbital and observational geometries exhibit stronger tidal signatures and are apt to provide the best possible determination of k2. Our long-term goal is to evaluate k2 for a suite of interior models and to evaluate the sensitivity of k2 to key interior properties. We will describe the orbital geometry and the tidal perturbations acting on the spacecraft trajectory with both numerical and analytical approaches, and we will report on the status of the interior modeling efforts.

  9. Implementing a 50x50 Gravity Field Model in an Orbit Determination System

    DTIC Science & Technology

    1993-06-01

    orbital element set , sometimes better known as the Keplerian orbital element set . Another set is the equinoctial element set , which removes singularity...Conference. San Diego, California. August 1976. [8] Cefola, Paul. Equinoctial Orbit Elements - Application to Artificial Satellite Orbits . AIAA Paper...251 A.2 Classical Orbital Elements ......................................................... 251 A.3

  10. Crew appliance computer program manual, volume 1

    NASA Technical Reports Server (NTRS)

    Russell, D. J.

    1975-01-01

    Trade studies of numerous appliance concepts for advanced spacecraft galley, personal hygiene, housekeeping, and other areas were made to determine which best satisfy the space shuttle orbiter and modular space station mission requirements. Analytical models of selected appliance concepts not currently included in the G-189A Generalized Environmental/Thermal Control and Life Support Systems (ETCLSS) Computer Program subroutine library were developed. The new appliance subroutines are given along with complete analytical model descriptions, solution methods, user's input instructions, and validation run results. The appliance components modeled were integrated with G-189A ETCLSS models for shuttle orbiter and modular space station, and results from computer runs of these systems are presented.

  11. Studies for the Europagenic Plasma Source in Jupiter's Inner Magnetosphere during the Galileo Europa Mission

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2004-01-01

    Progress in research to understand the three-dimensional nature of the Europagenic plasma torus is summarized. Efforts to improve the plasma torus description near Europa's orbit have included a better understanding of Europa's orbit and an improved description of the planetary magnetic field. New plasma torus chemistry for molecular and atomic species has been introduced and implemented in Europa neutral cloud models. Preliminary three-dimensional model calculations for Europa's neutral clouds and their plasma sources are presented.

  12. Space construction base control system

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Aspects of an attitude control system were studied and developed for a large space base that is structurally flexible and whose mass properties change rather dramatically during its orbital lifetime. Topics of discussion include the following: (1) space base orbital pointing and maneuvering; (2) angular momentum sizing of actuators; (3) momentum desaturation selection and sizing; (4) multilevel control technique applied to configuration one; (5) one-dimensional model simulation; (6) N-body discrete coordinate simulation; (7) structural analysis math model formulation; and (8) discussion of control problems and control methods.

  13. Chaos in pseudo-Newtonian black holes with halos

    NASA Astrophysics Data System (ADS)

    Guéron, E.; Letelier, P. S.

    2001-03-01

    Newtonian as well as special relativistic dynamics are used to study the stability of orbits of a test particle moving around a black hole with a dipolar halo. The black hole is modeled by either the usual monopole potential or the Paczyńki-Wiita pseudo-Newtonian potential. The full general relativistic similar case is also considered. The Poincaré section method and the Lyapunov characteristic exponents show that the orbits for the pseudo-Newtonian potential models are more unstable than the corresponding general relativistic geodesics.

  14. Electronic structure studies of La2CuO4

    NASA Astrophysics Data System (ADS)

    Wachs, A. L.; Turchi, P. E. A.; Jean, Y. C.; Wetzler, K. H.; Howell, R. H.; Fluss, M. J.; Harshman, D. R.; Remeika, J. P.; Cooper, A. S.; Fleming, R. M.

    1988-07-01

    We report results of positron-electron momentum-distribution measurements of single-crystal La2CuO4 using two-dimensional angular correlation of positron-annihilation-radiation techniques. The data contain two components: a large (~85%), isotropic corelike electron contribution and a remaining, anisotropic valence-electron contribution modeled using a linear combination of atomic orbitals-molecular orbital method and a localized ion scheme, within the independent-particle model approximation. This work suggests a ligand-field Hamiltonian to be justified for describing the electronic properties of perovskite materials.

  15. A Semi-Analytical Orbit Propagator Program for Highly Elliptical Orbits

    NASA Astrophysics Data System (ADS)

    Lara, M.; San-Juan, J. F.; Hautesserres, D.

    2016-05-01

    A semi-analytical orbit propagator to study the long-term evolution of spacecraft in Highly Elliptical Orbits is presented. The perturbation model taken into account includes the gravitational effects produced by the first nine zonal harmonics and the main tesseral harmonics affecting to the 2:1 resonance, which has an impact on Molniya orbit-types, of Earth's gravitational potential, the mass-point approximation for third body perturbations, which on ly include the Legendre polynomial of second order for the sun and the polynomials from second order to sixth order for the moon, solar radiation pressure and atmospheric drag. Hamiltonian formalism is used to model the forces of gravitational nature so as to avoid time-dependence issues the problem is formulated in the extended phase space. The solar radiation pressure is modeled as a potential and included in the Hamiltonian, whereas the atmospheric drag is added as a generalized force. The semi-analytical theory is developed using perturbation techniques based on Lie transforms. Deprit's perturbation algorithm is applied up to the second order of the second zonal harmonics, J2, including Kozay-type terms in the mean elements Hamiltonian to get "centered" elements. The transformation is developed in closed-form of the eccentricity except for tesseral resonances and the coupling between J_2 and the moon's disturbing effects are neglected. This paper describes the semi-analytical theory, the semi-analytical orbit propagator program and some of the numerical validations.

  16. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  17. Efficacy of Intravenous Mannitol in the Management of Orbital Compartment Syndrome: A Nonhuman Primate Model.

    PubMed

    Johnson, Davin; Winterborn, Andrew; Kratky, Vladimir

    2016-01-01

    To report the efficacy of intravenous mannitol in the treatment of orbital compartment syndrome. An experimental study was conducted on 4 nonhuman primates (8 orbits). Orbital compartment syndrome was simulated by injecting autologous blood into both orbits of each nonhuman primate until a pressure of 80 mm Hg was reached (time 0). After 10 minutes, nonhuman primates were randomized to receive an infusion of either mannitol or saline, given over 15 minutes. Five minutes after the infusion was complete, lateral canthotomy and cantholysis was performed on both orbits in isolated steps every 5 minutes. During the study protocol, orbital and intraocular pressures were recorded every 5 minutes, with a final set of measurements at 60 minutes. The primary outcome measures were the mean change in pressure from time 0 to 60 minutes, as well as the mean change in pressure during the infusion period. There was no statistically significant difference in the mean changes in orbital or intraocular pressure from time 0 to 60 minutes of the protocol. However, during the infusion period there was significantly greater decrease in both orbital and intraocular pressure in the mannitol compared with saline group (-34.0 vs. -9.3 mm Hg for orbital pressure [p = 0.03]; -34.8 vs. -9.7 mm Hg for intraocular pressure [p = 0.04]). While the definitive treatment of orbital compartment syndrome is lateral canthotomy and cantholysis, mannitol results in a rapid and clinically meaningful drop in orbital and intraocular pressure. The authors believe that their data support the routine use of mannitol in orbital compartment syndrome, especially when there is a delay in timely surgical management.

  18. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (Editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  19. Randomly diluted eg orbital-ordered systems.

    PubMed

    Tanaka, T; Matsumoto, M; Ishihara, S

    2005-12-31

    Dilution effects on the long-range ordered state of the doubly degenerate e(g) orbital are investigated. Quenched impurities without the orbital degree of freedom are introduced in the orbital model where the long-range order is realized by the order-from-disorder mechanism. It is shown by Monte Carlo simulations and the cluster-expansion method that a decrease in the orbital-ordering temperature by dilution is substantially larger than that in the randomly diluted spin models. Tilting of orbital pseudospins around impurities is the essence of this dilution effect. The present theory provides a new viewpoint for the recent resonant x-ray scattering experiments in KCu(1-x)Zn(x)F(3).

  20. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-12-12

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously.

  1. Partially chaotic orbits in a perturbed cubic force model

    NASA Astrophysics Data System (ADS)

    Muzzio, J. C.

    2017-11-01

    Three types of orbits are theoretically possible in autonomous Hamiltonian systems with 3 degrees of freedom: fully chaotic (they only obey the energy integral), partially chaotic (they obey an additional isolating integral besides energy) and regular (they obey two isolating integrals besides energy). The existence of partially chaotic orbits has been denied by several authors, however, arguing either that there is a sudden transition from regularity to full chaoticity or that a long enough follow-up of a supposedly partially chaotic orbit would reveal a fully chaotic nature. This situation needs clarification, because partially chaotic orbits might play a significant role in the process of chaotic diffusion. Here we use numerically computed Lyapunov exponents to explore the phase space of a perturbed three-dimensional cubic force toy model, and a generalization of the Poincaré maps to show that partially chaotic orbits are actually present in that model. They turn out to be double orbits joined by a bifurcation zone, which is the most likely source of their chaos, and they are encapsulated in regions of phase space bounded by regular orbits similar to each one of the components of the double orbit.

  2. Particle orbits in two-dimensional equilibrium models for the magnetotail

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.

    1990-01-01

    Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.

  3. Formation flying for electric sails in displaced orbits. Part I: Geometrical analysis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Mengali, Giovanni; Quarta, Alessandro A.; Yuan, Jianping

    2017-09-01

    We present a geometrical methodology for analyzing the formation flying of electric solar wind sail based spacecraft that operate in heliocentric, elliptic, displaced orbits. The spacecraft orbit is maintained by adjusting its propulsive acceleration modulus, whose value is estimated using a thrust model that takes into account a variation of the propulsive performance with the sail attitude. The properties of the relative motion of the spacecraft are studied in detail and a geometrical solution is obtained in terms of relative displaced orbital elements, assumed to be small quantities. In particular, for the small eccentricity case (i.e. for a near-circular displaced orbit), the bounds characterized by the extreme values of relative distances are analytically calculated, thus providing an useful mathematical tool for preliminary design of the spacecraft formation structure.

  4. Coupled Attitude and Orbit Dynamics and Control in Formation Flying Systems

    NASA Technical Reports Server (NTRS)

    Xu, Yun-Jun; Fitz-Coy, Norman; Mason, Paul

    2003-01-01

    Formation flying systems can range from global constellations offering extended service coverage to clusters of highly coordinated vehicles that perform distributed sensing. Recently, the use of groups of micro-satellites in the areas of near Earth explorations, deep space explorations, and military applications has received considerable attention by researchers and practitioners. To date, most proposed control strategies are based on linear models (e.g., Hill-Clohessy-Wiltshire equations) or nonlinear models that are restricted to circular reference orbits. Also, all models in the literature are uncoupled between relative position and relative attitude. In this paper, a generalized dynamic model is proposed. The reference orbit is not restricted to the circular case. In this formulation, the leader or follower satellite can be in either a circular or an elliptic orbit. In addition to maintaining a specified relative position, the satellites are also required to maintain specified relative attitudes. Thus the model presented couples vehicle attitude and orbit requirements. Orbit perturbations are also included. In particular, the J(sub 2) effects are accounted in the model. Finally, a sliding mode controller is developed and used to control the relative attitude of the formation and the simulation results are presented.

  5. Satellite Power Systems (SPS) concept definition study. Volume 5: Special emphasis studies. [rectenna and solar power satellite design studies

    NASA Technical Reports Server (NTRS)

    Hanley, G. M.

    1980-01-01

    Satellite configurations based on the Satellite Power System baseline requirements were analyzed and a preferred concept selected. A satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Rectenna construction requirement were also addressed. Mass flow to orbit requirements were revised and traffic models established based on construction of 60 instead of 120 satellites. Analyses were conducted to determine satellite control, resources, manufacturing, and propellant requirements. The impact of the laser beam used for space-to-Earth power transmission upon the intervening atmosphere was examined as well as the inverse effect. The significant space environments and their effects on spacecraft components were investigated to define the design and operational limits imposed by the environments on an orbit transfer vehicle. The results show that LEO altitude 300 nmi and transfer orbit duration 6 months are preferrable.

  6. Chaotic orbits obeying one isolating integral in a four-dimensional map

    NASA Astrophysics Data System (ADS)

    Muzzio, J. C.

    2018-02-01

    We have recently presented strong evidence that chaotic orbits that obey one isolating integral besides energy exist in a toy Hamiltonian model with three degrees of freedom and are bounded by regular orbits that isolate them from the Arnold web. The interval covered by those numerical experiments was equivalent to about one million Hubble times in a galactic context. Here, we use a four-dimensional map to confirm our previous results and to extend that interval 50 times. We show that, at least within that interval, features found in lower dimension Hamiltonian systems and maps are also present in our study, e.g. within the phase space occupied by a chaotic orbit that obeys one integral there are subspaces where that orbit does not enter and are, instead, occupied by regular orbits that, if tori, bound other chaotic orbits obeying one integral and, if cantori, produce stickiness. We argue that the validity of our results might exceed the time intervals covered by the numerical experiments.

  7. Spin-orbit torques from interfacial spin-orbit coupling for various interfaces

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.

    2017-09-01

    We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal-metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.

  8. Spin-orbit torques from interfacial spin-orbit coupling for various interfaces.

    PubMed

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M D

    2017-09-01

    We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism.

  9. Spin-orbit torques from interfacial spin-orbit coupling for various interfaces

    PubMed Central

    Kim, Kyoung-Whan; Lee, Kyung-Jin; Sinova, Jairo; Lee, Hyun-Woo; Stiles, M. D.

    2017-01-01

    We use a perturbative approach to study the effects of interfacial spin-orbit coupling in magnetic multilayers by treating the two-dimensional Rashba model in a fully three-dimensional description of electron transport near an interface. This formalism provides a compact analytic expression for current-induced spin-orbit torques in terms of unperturbed scattering coefficients, allowing computation of spin-orbit torques for various contexts, by simply substituting scattering coefficients into the formulas. It applies to calculations of spin-orbit torques for magnetic bilayers with bulk magnetism, those with interface magnetism, a normal metal/ferromagnetic insulator junction, and a topological insulator/ferromagnet junction. It predicts a dampinglike component of spin-orbit torque that is distinct from any intrinsic contribution or those that arise from particular spin relaxation mechanisms. We discuss the effects of proximity-induced magnetism and insertion of an additional layer and provide formulas for in-plane current, which is induced by a perpendicular bias, anisotropic magnetoresistance, and spin memory loss in the same formalism. PMID:29333523

  10. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  11. Trade Study for Neutron Transport at Low Earth Orbit: Adding Fidelity to DIORAMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClanahan, Tucker Caden; Wakeford, Daniel Tyler

    The Distributed Infrastructure Offering Real-Time Access to Modeling and Analysis (DIORAMA) software provides performance modeling capabilities of the United States Nuclear Detonation Detection System (USNDS) with a focus on the characterization of Space-Based Nuclear Detonation Detection (SNDD) instrument performance [1]. A case study was done to add the neutron propagation capabilities of DIORAMA to low earth orbit (LEO), and compare the back-calculated incident energy from the time-of- ight (TOF) spectrum with the scored incident energy spectrum. As the scoring altitude lowers, the time increase due to scattering takes up much more of the fraction of total TOF; whereas at geosynchronousmore » earth orbit (GEO), the time increase due to scattering is a negligible fraction of the total TOF [2]. The scattering smears out the TOF enough to make the back-calculation of the initial energy spectrum from the TOF spectrum very convoluted.« less

  12. High degree gravitational sensitivity from Mars orbiters for the GMM-1 gravity model

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Smith, D. E.; Chan, J. C.; Patel, G. B.; Chinn, D. S.

    1994-01-01

    Orbital sensitivity of the gravity field for high degree terms (greater than 30) is analyzed on satellites employed in a Goddard Mars Model GMM-1, complete in spherical harmonics through degree and order 50. The model is obtained from S-band Doppler data on Mariner 9 (M9), Viking Orbiter 1 (VO1), and Viking Orbiter 2 (VO2) spacecraft, which were tracked by the NASA Deep Space Network on seven different highly eccentric orbits. The main sensitivity of the high degree terms is obtained from the VO1 and VO2 low orbits (300 km periapsis altitude), where significant spectral sensitivity is seen for all degrees out through degree 50. The velocity perturbations show a dominant effect at periapsis and significant effects out beyond the semi-latus rectum covering over 180 degrees of the orbital groundtrack for the low altitude orbits. Because of the wideband of periapsis motion covering nearly 180 degrees in w and +39 degrees in latitude coverage, the VO1 300 km periapsis altitude orbit with inclination of 39 degrees gave the dominant sensitivity in the GMM-1 solution for the high degree terms. Although the VO2 low periapsis orbit has a smaller band of periapsis mapping coverage, it strongly complements the VO1 orbit sensitivity for the GMM-1 solution with Doppler tracking coverage over a different inclination of 80 degrees.

  13. Results of a carrier aircraft (model AX13191-4) verification test in the Boeing transonic wind tunnel using a 0.03-scale 747 CAM/orbiter model 45-0 (CA6), volume 1

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Force and moment data were obtained on each vehicle both mated and separated. The investigation included the effects of orbiter incidence, orbiter tail cone, orbiter strut fairings, elevon, and body flap settings. Analysis of the data indicated the 747 is suitable as a carrier of the orbiter in both the ALT launch and ferry mode. The effect of configuration changes on drag and stability was determined.

  14. Molecular-orbital model for metal-sapphire interfacial strength

    NASA Technical Reports Server (NTRS)

    Johnson, K. H.; Pepper, S. V.

    1982-01-01

    Self-consistent-field X-Alpha scattered-wave cluster molecular-orbital models have been constructed for transition and noble metals (Fe, Ni, Cu, and Ag) in contact with a sapphire (Al2O3) surface. It is found that a chemical bond is established between the metal d-orbital electrons and the nonbonding 2p-orbital electrons of the oxygen anions on the Al2O3 surface. An increasing number of occupied metal-sapphire antibonding molecular orbitals explains qualitatively the observed decrease of contact shear strength through the series Fe, Ni, Cu, and Ag.

  15. Infrared near-Earth-object survey modeling for observatories interior to the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Buie, M.

    2014-07-01

    The search for and dynamical characterization of the near-Earth population of objects (NEOs) has been a busy topic for surveys for many years. Most of the work thus far has been from ground-based optical surveys such as the Catalina Sky Survey and LINEAR. These surveys have essentially reached a complete inventory of objects down to 1 km diameter and have shown that the known objects do not pose any significant impact threat. Smaller objects are correspondingly smaller threats but there are more of them and fewer of them have so far been discovered. The next generation of surveys is looking to extend their reach down to much smaller sizes. From an impact risk perspective, those objects as small as 30--40 m are still of interest (similar in size to the Tunguska bolide). Smaller objects than this are largely of interest from a space resource or in-situ analysis efforts. A recent mission concept promoted by the B612 Foundation and Ball Aerospace calls for an infrared survey telescope in a Venus-like orbit, known as the Sentinel Mission. This wide-field facility has been designed to complete the inventory down to a 140 m diameter while also providing substantial constraints on the NEO population down to a Tunguska-sized object. I have been working to develop a suite of tools to provide survey modeling for this class of survey telescope. The purpose of the tool is to uncover hidden complexities that govern mission design and operation while also working to quantitatively understand the orbit quality provided on its catalog of objects without additional followup assets. The baseline mission design calls for a 6.5 year survey lifetime. This survey model is a statistically based tool for establishing completeness as a function of object size and survey duration. Effects modeled include the ability to adjust the field-of-regard (includes all pointing restrictions), field-of-view, focal plane array fill factor, and the observatory orbit. Consequences tracked include time-tagged detection times from which orbit quality can be derived and efficiency by dynamical class. The dominant noise term in the simulations comes from the noise in the background flux caused by thermal emission from zodiacal dust. The model used is sufficient for the study of reasonably low-inclination spacecraft orbits such as are being considered. Results to date are based on the 2002 Bottke NEA orbit-distribution model. The system can work with any orbit-distribution model and with any size-frequency distribution. This tool also serves to quantify the amount of data that will also be collected on main-belt objects by simply testing against the known catalog of bodies. The orbit quality work clearly shows the benefit of a self-followup survey such as Sentinel. Most objects discovered will be seen in multiple observing epochs and the resulting orbits will preclude losing track of them for decades to come (or longer). All of the ephemeris calculations, including investigation of orbit determination quality, are done with the OpenOrb software package. The presentation for this meeting will be based on results of modeling the Sentinel Mission and other similar variants. The focus will be on evaluating the survey completion for different dynamical classes as well as for different sized objects. Within the fidelity of such statistically-based models, the planned Sentinel observatory is well capable of a huge step forward in the efforts to build a complete catalog of all objects that could pose future harm to planet Earth.

  16. Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop

    NASA Astrophysics Data System (ADS)

    Walker, W.; Ardebili, H.

    2014-12-01

    Lithium-ion batteries (LIBs) are replacing the Nickel-Hydrogen batteries used on the International Space Station (ISS). Knowing that LIB efficiency and survivability are greatly influenced by temperature, this study focuses on the thermo-electrochemical analysis of LIBs in space orbit. Current finite element modeling software allows for advanced simulation of the thermo-electrochemical processes; however the heat transfer simulation capabilities of said software suites do not allow for the extreme complexities of orbital-space environments like those experienced by the ISS. In this study, we have coupled the existing thermo-electrochemical models representing heat generation in LIBs during discharge cycles with specialized orbital-thermal software, Thermal Desktop (TD). Our model's parameters were obtained from a previous thermo-electrochemical model of a 185 Amp-Hour (Ah) LIB with 1-3 C (C) discharge cycles for both forced and natural convection environments at 300 K. Our TD model successfully simulates the temperature vs. depth-of-discharge (DOD) profiles and temperature ranges for all discharge and convection variations with minimal deviation through the programming of FORTRAN logic representing each variable as a function of relationship to DOD. Multiple parametrics were considered in a second and third set of cases whose results display vital data in advancing our understanding of accurate thermal modeling of LIBs.

  17. A standard library for modeling satellite orbits on a microcomputer

    NASA Astrophysics Data System (ADS)

    Beutel, Kenneth L.

    1988-03-01

    Introductory students of astrodynamics and the space environment are required to have a fundamental understanding of the kinematic behavior of satellite orbits. This thesis develops a standard library that contains the basic formulas for modeling earth orbiting satellites. This library is used as a basis for implementing a satellite motion simulator that can be used to demonstrate orbital phenomena in the classroom. Surveyed are the equations of orbital elements, coordinate systems and analytic formulas, which are made into a standard method for modeling earth orbiting satellites. The standard library is written in the C programming language and is designed to be highly portable between a variety of computer environments. The simulation draws heavily on the standards established by the library to produce a graphics-based orbit simulation program written for the Apple Macintosh computer. The simulation demonstrates the utility of the standard library functions but, because of its extensive use of the Macintosh user interface, is not portable to other operating systems.

  18. Complexity of the Earth's space-atmosphere interaction region (SAIR) response to the solar flux at 10.7 cm as seen through the evaluation of five solar cycle two-line element (TLE) records

    NASA Astrophysics Data System (ADS)

    Molaverdikhani, Karan; Ajabshirizadeh, Ali; Davoudifar, Pantea; Lashkanpour, Majid

    2016-09-01

    Orbital debris are long-standing threats to space systems. They also contribute to the flux of macroscopic particles into the Earth's atmosphere and eventually affects environmental processes across several other related regions. As impactful space debris may be, debris along with other Low Earth Orbit (LEO) orbiting objects, also serve as valuable long-monitoring probes to deduce the properties of geospace environment in-situ. We define the Daily Decay Rate (DDR) as a suitable indicator of how the Earth's space-atmosphere interaction region (SAIR) responds to solar activity and how solar activity directly affects the orbital evolution of a LEO orbiter. We present a computationally simplified technique that simultaneously solves the motion equations for DDR and cross-sectional area to mass ratio (A/m) from consecutive TLE records. By evaluating more than 50 million TLE records we estimate A/m of 15,307 NORAD-indexed objects and determine how DDR varies. We observe the thermospheric ;natural thermostat; in our results, consistent with previous studies. We compare the observed DDRs with two models based on NRLMSISE-00 and DTM-2013, and present evidence the models display a systemic altitudinal bias. We propose several possibilities to explain this altitudinal bias including the overestimated CD at low altitudes in our models (presumably due to the despinning effect of perturbing forces on the orbiting objects), and incomplete and limited coverage of in-situ observations at high solar activity. We conclude that the density models do not reliably reproduce the densities and atmospheric-thermospheric behaviors at high solar active conditions, especially for F10.7 cm above 300 sfu.

  19. Modeling Ionosphere Environments: Creating an ISS Electron Density Tool

    NASA Technical Reports Server (NTRS)

    Gurgew, Danielle N.; Minow, Joseph I.

    2011-01-01

    The International Space Station (ISS) maintains an altitude typically between 300 km and 400 km in low Earth orbit (LEO) which itself is situated in the Earth's ionosphere. The ionosphere is a region of partially ionized gas (plasma) formed by the photoionization of neutral atoms and molecules in the upper atmosphere of Earth. It is important to understand what electron density the spacecraft is/will be operating in because the ionized gas along the ISS orbit interacts with the electrical power system resulting in charging of the vehicle. One instrument that is already operational onboard the ISS with a goal of monitoring electron density, electron temperature, and ISS floating potential is the Floating Potential Measurement Unit (FPMU). Although this tool is a valuable addition to the ISS, there are limitations concerning the data collection periods. The FPMU uses the Ku band communication frequency to transmit data from orbit. Use of this band for FPMU data runs is often terminated due to necessary observation of higher priority Extravehicular Activities (EVAs) and other operations on ISS. Thus, large gaps are present in FPMU data. The purpose of this study is to solve the issue of missing environmental data by implementing a secondary electron density data source, derived from the COSMIC satellite constellation, to create a model of ISS orbital environments. Extrapolating data specific to ISS orbital altitudes, we model the ionospheric electron density along the ISS orbit track to supply a set of data when the FPMU is unavailable. This computer model also provides an additional new source of electron density data that is used to confirm FPMU is operating correctly and supplements the original environmental data taken by FPMU.

  20. The Precise Orbit and the Challenge of Long Term Stability

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Cerri, Luca; Otten, Michiel; Bertiger, William; Zelensky, Nikita; Willis, Pascal

    2012-01-01

    The computation of a precise orbit reference is a fundamental component of the altimetric measurement. Since the dawn of the modern altimeter age, orbit accuracy has been determined by the quality of the GPS, SLR, and DORIS tracking systems, the fidelity of the measurement and force models, and the choice of parameterization for the orbit solutions, and whether a dynamic or a reduced-dynamic strategy is used to calculate the orbits. At the start of the TOPEX mission, the inaccuracies in the modeling of static gravity, dynamic ocean tides, and the nonconservative forces dominated the orbit error budget. Much of the error due to dynamic mismodeling can be compensated by reduced-dynamic tracking techniques depending on the measurement system strength. In the last decade, the launch of the GRACE mission has eliminated the static gravity field as a concern, and the background force models and the terrestrial reference frame have been systematically refined. GPS systems have realized many improvements, including better modeling of the forces on the GPS spacecraft, large increases in the ground tracking network, and improved modeling of the GPS measurements. DORIS systems have achieved improvements through the use of new antennae, more stable monumentation, and of satellite receivers that can track multiple beacons, and as well as through improved modeling of the nonconservative forces. Many of these improvements have been applied in the new reprocessed time series of orbits produced for the ERS satellites, Envisat, TOPEX/Poseidon and the Jason satellites, and as well as for the most recent Cryosat-2 and HY2A. We now face the challenge of maintaining a stable orbit reference for these altimetric satellites. Changes in the time-variable gravity field of the Earth and how these are modelled have been shown to affect the orbit evolution, and the calibration of the altimetric data with tide gauges. The accuracy of the reference frame realizations, and their projection into the future remains a source of error. Other sources of omission error include the geocenter for which no consensus model is as of yet applied. Although progress has been made in nonconservative force modeling through the use of detailed satellite-specific models, radiation pressure modeling, and atmospheric density modeling remain a potential source of orbit error. The longer term influence of variations in the solar and terrestrial radiation fields over annual and solar cycles remains principally untested. Also the long term variation in optical and thermal properties of the space vehicle surfaces would contribute to biases in the orbital frame if ignored. We review the status of altimetric precision orbit determination as exemplified by the recent computations undertaken by the different analysis centers for ERS, Envisat, TOPEX/Poseidon, Jason, Cryosat2 and HY2A, and we provide a perspective on the challenges for future missions such as the Jason-3, SENTINEL-3 and SWOT.

  1. Modeling Minor Constituents of Europa's Atmosphere

    NASA Astrophysics Data System (ADS)

    Cassidy, T. A.; Johnson, R. E.

    2007-12-01

    A spacecraft orbiting Jupiter's moon Europa, of the sort considered by both ESA and NASA, would provide an opportunity to determine the composition and morphology of its tenuous atmosphere. Europa's atmosphere, though tenuous, has been detected by Earth-based telescopes. Its O2 atmosphere was detected from Earth orbit and its much thinner alkali atmosphere was detected by ground-based telescopes. Many other species are expected based on surface reflectance spectra, such as H2O, Sn, SO2, CO2, H2O2. I will discuss the issues involved in the modeling of these as-yet-undetected components. Previous theoretical studies and observations of the atmosphere produced important conclusions about the surface and its interaction with the Jovian magnetosphere. The modeling and detection of minor components could reveal much more. Of particular interest is the detectability of these species with an orbiting mass spectrometer or more distant light spectrometer.

  2. Magnetic and transport signatures of Rashba spin-orbit coupling on the Kondo lattice model in two dimensional clusters

    NASA Astrophysics Data System (ADS)

    Riera, Jose

    2014-03-01

    Motivated by emergent phenomena at oxide surfaces and heterostructures, particularly those involving transition metal oxides with perovskite crystal structure such as LaTiO3/SrTiO3, we examine the Kondo lattice model in the presence of a Rashba spin-orbit coupling (RSOC). Using an array of numerical techniques, under the assumption that the electrons on localized orbitals may be treated as classical continuum spins, we compute various charge, spin and transport properties on square clusters and on ladders at zero and finite temperatures. The main goal is to determine magnetic and transport signatures due to the RSOC. The same model can be used to study at an effective level the combined effect on magnetic and transport properties of Rashba and ferromagnetic moments, such as the ones present at LMnO3/SrMnO3 interfaces. Support from CONICET (ARGENTINA).

  3. Introductory Molecular Orbital Theory: An Honors General Chemistry Computational Lab as Implemented Using Three-Dimensional Modeling Software

    ERIC Educational Resources Information Center

    Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.

    2012-01-01

    In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…

  4. Integrated Vehicle and Trajectory Design of Small Spacecraft with Electric Propulsion for Earth and Interplanetary Missions

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Benjamin

    2015-01-01

    This paper investigates the feasibility of Earth-transfer and interplanetary mission architectures for miniaturized spacecraft using emerging small solar electric propulsion technologies. Emerging small SEP thrusters offer significant advantages relative to existing technologies and will enable U-class systems to perform trajectory maneuvers with significant Delta V requirements. The approach in this paper is unique because it integrates trajectory design with vehicle sizing and accounts for the system and operational constraints of small U-class missions. The modeling framework includes integrated propulsion, orbit, energy, and external environment dynamics and systems-level power, energy, mass, and volume constraints. The trajectory simulation environment models orbit boosts in Earth orbit and flyby and capture trajectories to interplanetary destinations. A family of small spacecraft mission architectures are studied, including altitude and inclination transfers in Earth orbit and trajectories that escape Earth orbit and travel to interplanetary destinations such as Mercury, Venus, and Mars. Results are presented visually to show the trade-offs between competing performance objectives such as maximizing available mass and volume for payloads and minimizing transfer time. The results demonstrate the feasibility of using small spacecraft to perform significant Earth and interplanetary orbit transfers in less than one year with reasonable U-class mass, power, volume, and mission durations.

  5. Jason-2 systematic error analysis in the GPS derived orbits

    NASA Astrophysics Data System (ADS)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Luthcke, S. B.; Chinn, D. S.

    2011-12-01

    Several results related to global or regional sea level changes still too often rely on the assumption that orbit errors coming from station coordinates adoption can be neglected in the total error budget (Ceri et al. 2010). In particular Instantaneous crust-fixed coordinates are obtained by adding to the linear ITRF model the geophysical high-frequency variations. In principle, geocenter motion should also be included in this computation, in order to reference these coordinates to the center of mass of the whole Earth. This correction is currently not applied when computing GDR orbits. Cerri et al. (2010) performed an analysis of systematic errors common to all coordinates along the North/South direction, as this type of bias, also known as Z-shift, has a clear impact on MSL estimates due to the unequal distribution of continental surface in the northern and southern hemispheres. The goal of this paper is to specifically study the main source of errors which comes from the current imprecision in the Z-axis realization of the frame. We focus here on the time variability of this Z-shift, which we can decompose in a drift and a periodic component due to the presumably omitted geocenter motion. A series of Jason-2 GPS-only orbits have been computed at NASA GSFC, using both IGS05 and IGS08. These orbits have been shown to agree radially at less than 1 cm RMS vs our SLR/DORIS std0905 and std1007 reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Melachroinos et al. 2011). Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR-crossover residuals provide the best performance indicator for independent validation of the NASA/GSFC GPS-only reduced dynamic orbits. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. At first, we quantify the effect of a North/South displacement of the tracking reference points for each of the three techniques. We then compare these results to the study of Morel and Willis (2005) and Ceri et al. (2010). We extend the analysis to the most recent Jason-2 cycles. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN.

  6. A vertically integrated snow/ice model over land/sea for climate models. I - Development. II - Impact on orbital change experiments

    NASA Technical Reports Server (NTRS)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A vertically integrated formulation (VIF) model for sea ice/snow and land snow is discussed which can simulate the nonlinear effects of heat storage and transfer through the layers of snow and ice. The VIF demonstates the accuracy of the multilayer formulation, while benefitting from the computational flexibility of linear formulations. In the second part, the model is implemented in a seasonal dynamic zonally averaged climate model. It is found that, in response to a change between extreme high and low summer insolation orbits, the winter orbital change dominates over the opposite summer change for sea ice. For snow over land the shorter but more pronounced summer orbital change is shown to dominate.

  7. State dependent model predictive control for orbital rendezvous using pulse-width pulse-frequency modulated thrusters

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.; Meguid, S. A.

    2016-07-01

    This paper studies the pulse-width pulse-frequency modulation based trajectory planning for orbital rendezvous and proximity maneuvering near a non-cooperative spacecraft in an elliptical orbit. The problem is formulated by converting the continuous control input, output from the state dependent model predictive control, into a sequence of pulses of constant magnitude by controlling firing frequency and duration of constant-magnitude thrusters. The state dependent model predictive control is derived by minimizing the control error of states and control roughness of control input for a safe, smooth and fuel efficient approaching trajectory. The resulting nonlinear programming problem is converted into a series of quadratic programming problem and solved by numerical iteration using the receding horizon strategy. The numerical results show that the proposed state dependent model predictive control with the pulse-width pulse-frequency modulation is able to effectively generate optimized trajectories using equivalent control pulses for the proximity maneuvering with less energy consumption.

  8. Orbital theory in terms of KS elements with luni-solar perturbations

    NASA Astrophysics Data System (ADS)

    Sellamuthu, Harishkumar; Sharma, Ram

    2016-07-01

    Precise orbit computation of Earth orbiting satellites is essential for efficient mission planning of planetary exploration, navigation and satellite geodesy. The third-body perturbations of the Sun and the Moon predominantly affect the satellite motion in the high altitude and elliptical orbits, where the effect of atmospheric drag is negligible. The physics of the luni-solar gravity effect on Earth satellites have been studied extensively over the years. The combined luni-solar gravitational attraction will induce a cumulative effect on the dynamics of satellite orbits, which mainly oscillates the perigee altitude. Though accurate orbital parameters are computed by numerical integration with respect to complex force models, analytical theories are highly valued for the manifold of solutions restricted to relatively simple force models. During close approach, the classical equations of motion in celestial mechanics are almost singular and they are unstable for long-term orbit propagation. A new singularity-free analytical theory in terms of KS (Kustaanheimo and Stiefel) regular elements with respect to luni-solar perturbation is developed. These equations are regular everywhere and eccentric anomaly is the independent variable. Plataforma Solar de Almería (PSA) algorithm and a Fourier series algorithm are used to compute the accurate positions of the Sun and the Moon, respectively. Numerical studies are carried out for wide range of initial parameters and the analytical solutions are found to be satisfactory when compared with numerically integrated values. The symmetrical nature of the equations allows only two of the nine equations to be solved for computing the state vectors and the time. Only a change in the initial conditions is required to solve the other equations. This theory will find multiple applications including on-board software packages and for mission analysis purposes.

  9. Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.

  10. Orbital Angular Momentum Multiplexing over Visible Light Communication Systems

    NASA Astrophysics Data System (ADS)

    Tripathi, Hardik Rameshchandra

    This thesis proposes and explores the possibility of using Orbital Angular Momentum multiplexing in Visible Light Communication system. Orbital Angular Momentum is mainly applied for laser and optical fiber transmissions, while Visible Light Communication is a technology using the light as a carrier for wireless communication. In this research, the study of the state of art and experiments showing some results on multiplexing based on Orbital Angular Momentum over Visible Light Communication system were done. After completion of the initial stage; research work and simulations were performed on spatial multiplexing over Li-Fi channel modeling. Simulation scenarios which allowed to evaluate the Signal-to-Noise Ratio, Received Power Distribution, Intensity and Illuminance were defined and developed.

  11. The influence of orbit selection on the accuracy of the Stanford Relativity gyroscope experiment

    NASA Technical Reports Server (NTRS)

    Vassar, R.; Everitt, C. W. F.; Vanpatten, R. A.; Breakwell, J. V.

    1980-01-01

    This paper discusses an error analysis for the Stanford Relativity experiment, designed to measure the precession of a gyroscope's spin-axis predicted by general relativity. Measurements will be made of the spin-axis orientations of 4 superconducting spherical gyroscopes carried by an earth-satellite. Two relativistic precessions are predicted: a 'geodetic' precession associated with the satellite's orbital motion and a 'motional' precession due to the earth's rotation. Using a Kalman filter covariance analysis with a realistic error model we have computed the error in determining the relativistic precession rates. Studies show that a slightly off-polar orbit is better than a polar orbit for determining the 'motional' drift.

  12. Exo-Milankovitch Cycles. I. Orbits and Rotation States

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Armstrong, John; Charnay, Benjamin; Wilhelm, Caitlyn

    2018-02-01

    The obliquity of the Earth, which controls our seasons, varies by only ∼2.°5 over ∼40,000 years, and its eccentricity varies by only ∼0.05 over 100,000 years. Nonetheless, these small variations influence Earth’s ice ages. For exoplanets, however, variations can be significantly larger. Previous studies of the habitability of moonless Earth-like exoplanets have found that high obliquities, high eccentricities, and dynamical variations can extend the outer edge of the habitable zone by preventing runaway glaciation (snowball states). We expand upon these studies by exploring the orbital dynamics with a semianalytic model that allows us to map broad regions of parameter space. We find that, in general, the largest drivers of obliquity variations are secular spin–orbit resonances. We show how the obliquity varies in several test cases, including Kepler-62 f, across a wide range of orbital and spin parameters. These obliquity variations, alongside orbital variations, will have a dramatic impact on the climates of such planets.

  13. Space shuttle phase B wind tunnel model and test information. Volume 2: Orbiter configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a data base and are available for applying to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Data Base is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retro-glide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configuration types include booster and orbiter components in various stacked and tandem combinations.

  14. Orbital evolution studies of planet-crossing asteroids.

    NASA Astrophysics Data System (ADS)

    Hahn, Gerhard; Lagerkvist, Claes-Ingvar

    1987-03-01

    Numerical integrations of 26 orbits of planet-crossing astetoids of Apollo-Amor type have been performed, in a solar system model including the perturbations by the planets from Venus to Neptune. The 15:th order RADAU integrator (Everhart, 1985) has been used. Orbits for the asteroids 433 Eros, 887 Alinda, 1036 Ganymed, 1221 Amor, 1580 Betulia, 1627 Ivar, 1685 Toro, 1862 Apollo, 1863 Antinous, 1864 Daedalus, 1865 Cerberus, 1915 Quetzalcoatl and 1916 Boreas have been integrated over 100 000 years forward in time and for 1866 Sisyphus, 2102 Tantalus, 2201 Oljato, 2329 Orthos, 3360 1981 VA, 3552 1983 SA, 1981 EJ30, 1985 PA, 1985 WA, 1986 DA 1986 JK and 1986 RA a period of about 33 000 years has been covered. The orbital evolutions of these asteroids are discussed. This work is part of a larger study of the long-term orbital evolution of planet-crossing asteroids and will be continued within the project SPACEGUARD (Milani et al., 1987).

  15. Theoretical studies of superconductivity in doped BaCoSO

    NASA Astrophysics Data System (ADS)

    Qin, Shengshan; Li, Yinxiang; Zhang, Qiang; Le, Congcong; Hu, Jiangping

    2018-06-01

    We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C 4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three {t_{{2_g}}} orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the {d_{{x^2} - {y^2}}} orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.

  16. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from milli-second pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar lightcurve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a tuning analysis of the EKF. The study shows that the closed Earth orbit for XNAV performance is reliant on the orbit semi-major axis and eccentricity as well as orbit inclination. These parameters are the primary drivers of pulsar measurement availability and significantly influence the natural spacecraft orbit dynamics. Sensitivity to initial orbit determination error growth due to the scarcity of XNAV measurements within an orbital period require appropriate timing of initial XNAV measurements. The orbit angles of argument of perigee and right ascension of the ascending node, alongside the other orbit parameters, complete the initial cadence of XNAV measurements. The performance of initial XNAV measurements then propagates throughout the experimental period. The study provides a basis to missions who wish to consider XNAV as a potential navigation source in a closed Earth orbit design. It provides a family of orbit trajectories as well as other modeling considerations needed to effectively evaluate if XNAV is an effective navigation source for a potential mission. As an EKF is sensitive to a linearized estimated state, this study has a direct benefit of providing effective XNAV measurements to maintain spacecraft tracking, independent of other navigation sources. In the particular use case of the SEXTANT mission, it also provides a novel scheduling algorithm which addresses the need to prioritize and manage pulsar observations for effective navigation.

  17. Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space

    NASA Technical Reports Server (NTRS)

    Yu, Wayne Hong

    2016-01-01

    The potential for pulsars as a navigation source has been studied since their discovery in 1967. X-ray pulsar navigation (XNAV) is a celestial navigation system that uses the consistent timing nature of x-ray photons from millisecond pulsars (MSP) to perform space navigation. By comparing the detected arrival of x-ray photons to a reference database of expected pulsar light-curve timing models, one can infer a range and range rate measurement based on light time delay. Much of the challenge of XNAV comes from the faint signal, availability, and distant nature of pulsars. This is a study of potential pulsar XNAV measurements to measure extended Kalman filter (EKF) tracking performance with a wide trade space of bounded Earth orbits, using a simulation of existing x-ray detector space hardware. An example of an x-ray detector for XNAV is the NASA Station Explorer for X-ray Timing and Navigation (SEXTANT) mission, a technology demonstration of XNAV set to perform on the International Space Station (ISS) in late 2016early 2017. XNAV hardware implementation is driven by trajectory and environmental influences which add noise to the x-ray pulse signal. In a closed Earth orbit, the radiation environment can exponentially increase the signal noise from x-ray pulsar sources, decreasing the quality and frequency of measurements. The SEXTANT mission in particular improves on the signal to noise ratio by focusing an array of 56 x-ray silicon drift detectors at one pulsar target at a time. This reduces timing glitches and other timing noise contributions from ambient x-ray sources to within a 100 nanosecond resolution. This study also considers the SEXTANT scheduling challenges inherent in a single target observation. Finally, as the navigation sources are now relatively inertial targets, XNAV measurements are also subject to periods of occultation from various celestial bodies. This study focuses on the characterization of these drivers in closed Earth orbits and is not a tuning analysis of the EKF. The study shows that the closed Earth orbit for XNAV performance is reliant on the orbit semi-major axis and eccentricity as well as orbit inclination. These parameters are the primary drivers of pulsar measurement availability and significantly influence the natural spacecraft orbit dynamics. Sensitivity to initial orbit determination error growth due to the scarcity of XNAV measurements within an orbital period require appropriate timing of initial XNAV measurements. The orbit angles of argument of perigee and right ascension of the ascending node, alongside the other orbit parameters, complete the initial cadence of XNAV measurements. The performance of initial XNAV measurements then propagates throughout the experimental period. The study provides a basis to missions who wish to consider XNAV as a potential navigation source in a closed Earth orbit design. It provides a family of orbit trajectories as well as other modeling considerations needed to effectively evaluate if XNAV is an effective navigation source for a potential mission. As an EKF is sensitive to a linearized estimated state, this study has a direct benefit of providing effective XNAV measurements to maintain spacecraft tracking, independent of other navigation sources. In the particular use case of the SEXTANT mission, it also provides a novel scheduling algorithm which addresses the need to prioritize and manage pulsar observations for effective navigation.

  18. Dynamics in the vicinity of (101955) Bennu: solar radiation pressure effects in equatorial orbits

    NASA Astrophysics Data System (ADS)

    Chanut, T. G. G.; Aljbaae, S.; Prado, A. F. B. A.; Carruba, V.

    2017-09-01

    Here, we study the dynamical effects of the solar radiation pressure (SRP) on a spacecraft that will survey the near-Earth rotating asteroid (101955) Bennu when the projected shadow is accounted for. The spacecraft's motion near (101955) Bennu is modelled in the rotating frame fixed at the centre of the asteroid, neglecting the Sun gravity effects. We calculate the SRP at the perihelion, semimajor axis and aphelion distances of the asteroid from the Sun. The goals of this work are to analyse the stability for both homogeneous and inhomogeneous mass distribution and study the effects of the SRP in equatorial orbits close to the asteroid (101955) Bennu. As results, we find that the mascon model divided into 10 equal layers seems to be the most suitable for this problem. We can highlight that the centre point E8, which was linearly stable in the case of the homogeneous mass distribution, becomes unstable in this new model changing its topological structure. For a Sun initial longitude ψ0 = -180°, starting with the spacecraft longitude λ = 0, the orbits suffer fewer impacts and some (between 0.4 and 0.5 km), remaining unwavering even if the maximum solar radiation is considered. When we change the initial longitude of the Sun to ψ0 = -135°, the orbits with initial longitude λ = 90° appear to be more stable. Finally, when the passage of the spacecraft in the shadow is accounted for, the effects of SRP are softened, and we find more stable orbits.

  19. Improving the Accuracy of Planet Occurrence Rates from Kepler Using Approximate Bayesian Computation

    NASA Astrophysics Data System (ADS)

    Hsu, Danley C.; Ford, Eric B.; Ragozzine, Darin; Morehead, Robert C.

    2018-05-01

    We present a new framework to characterize the occurrence rates of planet candidates identified by Kepler based on hierarchical Bayesian modeling, approximate Bayesian computing (ABC), and sequential importance sampling. For this study, we adopt a simple 2D grid in planet radius and orbital period as our model and apply our algorithm to estimate occurrence rates for Q1–Q16 planet candidates orbiting solar-type stars. We arrive at significantly increased planet occurrence rates for small planet candidates (R p < 1.25 R ⊕) at larger orbital periods (P > 80 day) compared to the rates estimated by the more common inverse detection efficiency method (IDEM). Our improved methodology estimates that the occurrence rate density of small planet candidates in the habitable zone of solar-type stars is {1.6}-0.5+1.2 per factor of 2 in planet radius and orbital period. Additionally, we observe a local minimum in the occurrence rate for strong planet candidates marginalized over orbital period between 1.5 and 2 R ⊕ that is consistent with previous studies. For future improvements, the forward modeling approach of ABC is ideally suited to incorporating multiple populations, such as planets, astrophysical false positives, and pipeline false alarms, to provide accurate planet occurrence rates and uncertainties. Furthermore, ABC provides a practical statistical framework for answering complex questions (e.g., frequency of different planetary architectures) and providing sound uncertainties, even in the face of complex selection effects, observational biases, and follow-up strategies. In summary, ABC offers a powerful tool for accurately characterizing a wide variety of astrophysical populations.

  20. Aerodynamic investigations into various low speed L/D improvement devices on the 140A/B space shuttle orbiter configuration in the Rockwell International low speed wind tunnel (OA86)

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.

    1974-01-01

    Tests were conducted to investigate various base drag reduction techniques in an attempt to improve Orbiter lift-to-drag ratios and to calculate sting interference effects on the Orbiter aerodynamic characteristics. Test conditions and facilites, and model dimensional data are presented along with the data reduction guidelines and data set/run number collation used for the studies. Aerodynamic force and moment data and the results of stability and control tests are also given.

  1. Satellite Orbit Under Influence of a Drag - Analytical Approach

    NASA Astrophysics Data System (ADS)

    Martinović, M. M.; Šegan, S. D.

    2017-12-01

    The report studies some changes in orbital elements of the artificial satellites of Earth under influence of atmospheric drag. In order to develop possibilities of applying the results in many future cases, an analytical interpretation of the orbital element perturbations is given via useful, but very long expressions. The development is based on the TD88 air density model, recently upgraded with some additional terms. Some expressions and formulae were developed by the computer algebra system Mathematica and tested in some hypothetical cases. The results have good agreement with iterative (numerical) approach.

  2. Results of the Low Speed Aeroelastic Buffet Test with a 0.046-scale Model (747-ax1322-d-3/orbiter 8-0) of the 747 Cam/orbiter in the University of Washington Wind Tunnel (CS 3)

    NASA Technical Reports Server (NTRS)

    Gillins, R. L.

    1976-01-01

    A series of wind tunnel studies designed to assess the potential buffet problems resulting from orbiter wake characteristics with its tailcone removed are presented to provide design loads and acceleration environments, and to develop data on buffet sensitivity to various aerodynamic configurations and flight parameters. Data are intended to support subsequent analyses of structural fatigue life, crew efficiency, and equipment vibrations.

  3. Theoretical study of orbital ordering induced structural phase transition in iron pnictides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jena, Sushree Sangita, E-mail: sushree@iopb.res.in; Rout, G. C., E-mail: gcr@iopb.res.in; Panda, S. K., E-mail: skp@iopb.res.in

    2016-05-06

    We attribute the structural phase transition (SPT) in the parent compounds of the iron pnictides to orbital ordering. Due to anisotropy of the d{sub xz} and d{sub yz} orbitals in the xy plane, orbital ordering makes the orthorhombic structure more favorable and thus inducing the SPT. We consider a one band model Hamiltonian consisting of first and second-nearest-neighbor hopping of the electrons. We introduce Jahn-Tellar (JT) distortion in the system arising due to the orbital ordering present in this system. We calculate the electron Green’s function by using Zuvareb’s Green’s function technique and hence calculate an expression for the temperaturemore » dependent lattice strain which is computed numerically and self-consistently. The temperature dependent electron specific heat is calculated by minimizing the free energy of the system. The lattice strain is studied by varying the JT coupling and elastic constant of the system. The structural anomaly is studied through the electron occupation number and the specific heat by varying the physical parameters like JT coupling, lattice constant, chemical potential and hopping integrals of the system.« less

  4. Semi-Empirical, First-Principles, and Hybrid Modeling of the Thermosphere to Enhance Data Assimilation

    DTIC Science & Technology

    2015-10-27

    CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Eric K. Sutton 5d. PROJECT NUMBER 3001 5e. TASK NUMBER PPM00018035...principal components, hybrid model, helium model, neutral composition, low-Earth orbit 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...difficult force to determine and predict, in the orbit propagation model of low earth orbiting satellites [36]. The drag acceleration vector, ~a

  5. ESTABLISHING {alpha} Oph AS A PROTOTYPE ROTATOR: IMPROVED ASTROMETRIC ORBIT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkley, Sasha; Hillenbrand, Lynne; Crepp, Justin R.

    2011-01-10

    The nearby star {alpha} Oph (Ras Alhague) is a rapidly rotating A5IV star spinning at {approx} 89% of its breakup velocity. This system has been imaged extensively by interferometric techniques, giving a precise geometric model of the star's oblateness and the resulting temperature variation on the stellar surface. Fortuitously, {alpha} Oph has a previously known stellar companion, and characterization of the orbit provides an independent, dynamically based check of both the host star and the companion mass. Such measurements are crucial to constrain models of such rapidly rotating stars. In this study, we combine eight years of adaptive optics imagingmore » data from the Palomar, AEOS, and CFHT telescopes to derive an improved, astrometric characterization of the companion orbit. We also use photometry from these observations to derive a model-based estimate of the companion mass. A fit was performed on the photocenter motion of this system to extract a component mass ratio. We find masses of 2.40{sup +0.23}{sub -0.37} M{sub sun} and 0.85{sup +0.06}{sub -0.04} M{sub sun} for {alpha} Oph A and {alpha} Oph B, respectively. Previous orbital studies of this system found a mass too high for this system, inconsistent with stellar evolutionary calculations. Our measurements of the host star mass are more consistent with these evolutionary calculations, but with slightly higher uncertainties. In addition to the dynamically derived masses, we use IJHK photometry to derive a model-based mass for {alpha} Oph B, of 0.77 {+-} 0.05 M{sub sun} marginally consistent with the dynamical masses derived from our orbit. Our model fits predict a periastron passage on 2012 April 19, with the two components having a 50 mas separation from 2012 March to May. A modest amount of interferometric and radial velocity data during this period could provide a mass determination of this star at the few percent level.« less

  6. Particle orbits in model current sheet with a nonzero B(y) component

    NASA Technical Reports Server (NTRS)

    Zhu, Zhongwei; Parks, George

    1993-01-01

    The problem of charged particle motions in magnetotaillike model current sheets is revisited with the inclusion of a nonzero dawn-dusk magnetic field component. Three cases are examined considering both trapped and escaped orbits. The results show that a nonzero B(y) component disturbs the particle orbits by destroying orbit symmetry in the phase space about the z = 0 plane. It also changes the bounce frequency of particle orbits. The presence of B(y) thus modifies the Speiser orbits, particularly near the ejection phase. The process of ejected particle such as ejection direction, ejection velocity, and pitch angles are shown to depend on the sign of the charge.

  7. Summary of the AIAA/NASA/DOD Orbital Debris Conference - Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, A.; Kessler, D.; Nieder, R.; Reynolds, R.

    1990-01-01

    An international conference on orbital debris was held on April 16-19, 1990, in Baltimore, Maryland. Topics of the conference included the implications of orbital debris for space flight, orbital debris measurements, modeling of the orbital debris environment, and methods to reduce the growth of the orbital debris population. Significant results from this meeting are summarized.

  8. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    PubMed

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.

  9. Numerical Researches on Dynamical Systems with Relativistic Spin

    NASA Astrophysics Data System (ADS)

    Han, W. B.

    2010-04-01

    It is well known that spinning compact binaries are one of the most important research objects in the universe. Especially, EMRIs (extreme mass ratio inspirals) involving stellar compact objects which orbit massive black holes, are considered to be primary sources of gravitational radiation (GW) which could be detected by the space-based interferometer LISA. GW signals from EMRIs can be used to test general relativity, measure the masses and spins of central black holes and study essential physics near horizons. Compared with the situation without spin, the complexity of extreme objects, most of which rotate very fast, is much higher. So the dynamics of EMRI systems are numerically and analytically studied. We focus on how the spin effects on the dynamics of these systems and the produced GW radiations. Firstly, an ideal model of spinning test particles around Kerr black hole is considered. For equatorial orbits, we present the correct expression of effective potential and analyze the stability of circular orbits. Especially, the gravitational binding energy and frame-dragging effect of extreme Kerr black hole are much bigger than those without spin. For general orbits, spin can monotonically enlarge orbital inclination and destroy the symmetry of orbits about equatorial plane. It is the most important that extreme spin can produce orbital chaos. By carefully investigating the relations between chaos and orbital parameters, we point out that chaos usually appears for orbits with small pericenter, big eccentricity and orbital inclination. It is emphasized that Poincaré section method is invalid to detect the chaos of spinning particles, and the way of systems toward chaos is the period-doubling bifurcation. Furthermore, we study how spins effect on GW radiations from spinning test particles orbiting Kerr black holes. It is found that spins can increase orbit eccentricity and then make h+ component be detected more easily. But for h× component, because spins change orbital inclination in a complicated way, it is more difficult to build GW signal templates. Secondly, based on the scalar gravity theory, a numerical relativistic model of EMRIs is constructed to consider the self-gravity and radiation reaction of low-mass objects. Finally, we develop a new method with multiple steps for Hamilton systems to meet the needs of numerical researches. This method can effectively maintain each conserved quantity of the separable Hamilton system. In addition, for constrained system with a few first integrals, we present a new numerical stabilization method named as adjustment-stabilization method, which can maintain all known conserved quantities in a given dynamical system and greatly improve the numerical accuracy. Our new method is the most complete stabilization method up to now.

  10. Space Station on-orbit solar array loads during assembly

    NASA Astrophysics Data System (ADS)

    Ghofranian, S.; Fujii, E.; Larson, C. R.

    This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.

  11. Orbital debris and meteoroids: Results from retrieved spacecraft surfaces

    NASA Astrophysics Data System (ADS)

    Mandeville, J. C.

    1993-08-01

    Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.

  12. Simulation of interference between Earth stations and Earth-orbiting satellites

    NASA Technical Reports Server (NTRS)

    Bishop, D. F.

    1994-01-01

    It is often desirable to determine the potential for radio frequency interference between earth stations and orbiting spacecraft. This information can be used to select frequencies for radio systems to avoid interference or it can be used to determine if coordination between radio systems is necessary. A model is developed that will determine the statistics of interference between earth stations and elliptical orbiting spacecraft. The model uses orbital dynamics, detailed antenna patterns, and spectral characteristics to obtain accurate levels of interference at the victim receiver. The model is programmed into a computer simulation to obtain long-term statistics of interference. Two specific examples are shown to demonstrate the model. The first example is a simulation of interference from a fixed-satellite earth station to an orbiting scatterometer receiver. The second example is a simulation of interference from earth-exploration satellites to a deep-space earth station.

  13. From Ideas to Efficacy: The ORBIT Model for Developing Behavioral Treatments for Chronic Diseases

    PubMed Central

    Czajkowski, Susan M.; Powell, Lynda H.; Adler, Nancy; Naar-King, Sylvie; Reynolds, Kim D.; Hunter, Christine M.; Laraia, Barbara; Olster, Deborah H.; Perna, Frank M.; Peterson, Janey C.; Epel, Elissa; Boyington, Josephine E.; Charlson, Mary E.

    2015-01-01

    Objective Given the critical role of behavior in preventing and treating chronic diseases, it is important to accelerate the development of behavioral treatments that can improve chronic disease prevention and outcomes. Findings from basic behavioral and social science research hold great promise for addressing behaviorally-based clinical health problems, yet there is currently no established pathway for translating fundamental behavioral science discoveries into health-related treatments ready for Phase III efficacy testing. This article provides a systematic framework for guiding efforts to translate basic behavioral science findings into behavioral treatments for preventing and treating chronic illness. Methods The ORBIT model for behavioral treatment development is described as involving a flexible and progressive process, pre-specified clinically significant milestones for forward movement, and return to earlier stages for refinement and optimization. Results This article presents the background and rationale for the ORBIT model, a summary of key questions for each phase, a selection of study designs and methodologies well-suited to answering these questions, and pre-specified milestones for forward or backward movement across phases. Conclusions The ORBIT model provides a progressive, clinically-relevant approach to increasing the number of evidence-based behavioral treatments available to prevent and treat chronic diseases. PMID:25642841

  14. Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Lim, Hyung-Chul; Neumann, Gregory A.; Choi, Myeong-Hwan; Yu, Sung-Yeol; Bang, Seong-Cheol; Ka, Neung-Hyun; Park, Jong-Uk; Choi, Man-Soo; Park, Eunseo

    2016-09-01

    Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

  15. Orbit determination modelling analysis using GPS including perturbations due to geopotential coefficients of high degree and order, solar radiation pressure and luni-solar attraction

    NASA Astrophysics Data System (ADS)

    Vilhena de Moraes, Rodolpho; Cristiane Pardal, Paula; Koiti Kuga, Helio

    The problem of orbit determination consists essentially of estimating parameter values that completely specify the body trajectory in the space, processing a set of information (measure-ments) from this body. Such observations can be collected through a conventional tracking network on Earth or through sensors like GPS. The Global Positioning System (GPS) is a powerful and low cost way to allow the computation of orbits for artificial Earth satellites. The Topex/Poseidon satellite is normally used as a reference for analyzing this system for space positioning. The orbit determination of artificial satellites is a nonlinear problem in which the disturbing forces are not easily modeled, like geopotential and direct solar radiation pressure. Through an onboard GPS receiver it is possible to obtain measurements (pseudo-range and phase) that can be used to estimate the state of the orbit. One intends to analyze the modeling of the orbit of an artificial satellite, using signals of the GPS constellation and least squares algorithms as a method of estimation, with the aim of analyzing the performance of the orbit estimation process. Accuracy is not the main goal; one pursues to verify how differences of modeling can affect the final accuracy of the orbit determination. To accomplish that, the following effects were considered: perturbations up to high degree and order for the geopoten-tial coefficients; direct solar radiation pressure, Sun attraction, and Moon attraction. It was also considered the position of the GPS antenna on the satellite body that, lately, consists of the influence of the satellite attitude motion in the orbit determination process. Although not presenting the ultimate accuracy, pseudo-range measurements corrected from ionospheric effects were considered enough to such analysis. The measurements were used to feed the batch least squares orbit determination process, in order to yield conclusive results about the orbit modeling issue. An application has been done, using such GPS data, for orbit determination of the Topex/Poseidon satellite, whose accurate ephemerides are freely available at Internet. It is shown that from a poor but acceptable modeling up to all effects included, the accuracy can vary from about 30m to 8m. Test results for short period (2 hours) and for long period (24 hours) are also shown.

  16. A possible formation channel for blue hook stars in globular cluster - II. Effects of metallicity, mass ratio, tidal enhancement efficiency and helium abundance

    NASA Astrophysics Data System (ADS)

    Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen

    2016-12-01

    Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.

  17. Physics of higher orbital bands in optical lattices: a review.

    PubMed

    Li, Xiaopeng; Liu, W Vincent

    2016-11-01

    The orbital degree of freedom plays a fundamental role in understanding the unconventional properties in solid state materials. Experimental progress in quantum atomic gases has demonstrated that high orbitals in optical lattices can be used to construct quantum emulators of exotic models beyond natural crystals, where novel many-body states such as complex Bose-Einstein condensates and topological semimetals emerge. A brief introduction of orbital degrees of freedom in optical lattices is given and a summary of exotic orbital models and resulting many-body phases is provided. Experimental consequences of the novel phases are also discussed.

  18. Simulation and analysis of a geopotential research mission

    NASA Technical Reports Server (NTRS)

    White, Lisa K.

    1987-01-01

    Methods for the determination of the initial conditions for the two satellites that will satisfy Geopotential Research Mission (GRM) requirements are investigated. For certain gravitational recovery techniques, the satellites must remain close to a specified separation distance and their groundtracks must repeat after a specified interval of time. Since the objective of the GRM mission is to improve the gravity model, any pre-mission orbit predicted using existing gravity models will be in error. A technique has been developed to eliminate the drift between the two satellites caused by gravitational modeling errors and return them to repeating groundtracks. The concept of frozen orbits, which minimize altitude variations over given latitudes, was investigated. Finally, the effects of temporal perturbations on the relative range-rate signal were studied. At the proposed altitude of 160 km, the range-rate signal produced by perturbations other than the static geopotential field are dominated by the luni-solar effect. This study demonstrates that the combined effects of all the temporal perturbations does not prevent the orbit from being frozen or the satellites from obtaining a repeating groundtrack to within a specified closure distance.

  19. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  20. Cooperative Search of Autonomous Vehicles for Unknown Targets

    NASA Astrophysics Data System (ADS)

    Yang, Sheng Qing; Yu, Jian Qiao; Zhang, Si Yu

    2013-01-01

    We study the orbital-dependent superconducting pairing in a five-orbital t-J1-J2 model for iron pnictides. Depending on the orbital selectivity of electron correlations and the orbital characters along the Fermi surface, the superconducting gap in an A_{1g} pairing state may exhibit anisotropy. This anisotropy varies with the degree of J1-J2 magnetic frustration. We have also calculated the dynamical spin susceptibility in the superconducting state. The frequency dependence of the susceptibility at the antiferromagnetic wavevector (\\pi,0) shows a resonance, whose width is enhanced by the orbital dependence of the superconducting gap; when the latter is sufficiently strong, the resonance peak may be split into two. We discuss the implications of our results on the recent angle-resolved photoemission and neutron-scattering measurements in several superconducting iron pnictides.

  1. Life and death of a hero - lessons learned from modelling the dwarf spheroidal Hercules: an incorrect orbit?

    NASA Astrophysics Data System (ADS)

    Blaña, M.; Fellhauer, M.; Smith, R.; Candlish, G. N.; Cohen, R.; Farias, J. P.

    2015-01-01

    Hercules is a dwarf spheroidal satellite of the Milky Way, found at a distance of ≈138 kpc, and showing evidence of tidal disruption. It is very elongated and exhibits a velocity gradient of 16 ± 3 km s-1 kpc-1. Using these data a possible orbit of Hercules has previously been deduced in the literature. In this study, we make use of a novel approach to find a best-fitting model that follows the published orbit. Instead of using trial and error, we use a systematic approach in order to find a model that fits multiple observables simultaneously. As such, we investigate a much wider parameter range of initial conditions and ensure we have found the best match possible. Using a dark matter free progenitor that undergoes tidal disruption, our best-fitting model can simultaneously match the observed luminosity, central surface brightness, effective radius, velocity dispersion, and velocity gradient of Hercules. However, we find it is impossible to reproduce the observed elongation and the position angle of Hercules at the same time in our models. This failure persists even when we vary the duration of the simulation significantly, and consider a more cuspy density distribution for the progenitor. We discuss how this suggests that the published orbit of Hercules is very likely to be incorrect.

  2. Spin-orbit-torque-induced skyrmion dynamics for different types of spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Kim, Kyoung-Whan; Lee, Hyun-Woo; Lee, Kyung-Jin

    2018-06-01

    We investigate current-induced skyrmion dynamics in the presence of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque corresponding to various types of spin-orbit coupling. We determine the symmetries of Dzyaloshinskii-Moriya interaction and spin-orbit spin-transfer torque based on linear spin-orbit coupling model. We find that like interfacial Dzyaloshinskii-Moriya interaction (Rashba spin-orbit coupling) and bulk Dzyaloshinskii-Moriya interaction (Weyl spin-orbit coupling), Dresselhaus spin-orbit coupling also has a possibility for stabilizing skyrmion and current-induced skyrmion dynamics.

  3. LEOrbit: A program to calculate parameters relevant to modeling Low Earth Orbit spacecraft-plasma interaction

    NASA Astrophysics Data System (ADS)

    Marchand, R.; Purschke, D.; Samson, J.

    2013-03-01

    Understanding the physics of interaction between satellites and the space environment is essential in planning and exploiting space missions. Several computer models have been developed over the years to study this interaction. In all cases, simulations are carried out in the reference frame of the spacecraft and effects such as charging, the formation of electrostatic sheaths and wakes are calculated for given conditions of the space environment. In this paper we present a program used to compute magnetic fields and a number of space plasma and space environment parameters relevant to Low Earth Orbits (LEO) spacecraft-plasma interaction modeling. Magnetic fields are obtained from the International Geophysical Reference Field (IGRF) and plasma parameters are obtained from the International Reference Ionosphere (IRI) model. All parameters are computed in the spacecraft frame of reference as a function of its six Keplerian elements. They are presented in a format that can be used directly in most spacecraft-plasma interaction models. Catalogue identifier: AENY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 270308 No. of bytes in distributed program, including test data, etc.: 2323222 Distribution format: tar.gz Programming language: FORTRAN 90. Computer: Non specific. Operating system: Non specific. RAM: 7.1 MB Classification: 19, 4.14. External routines: IRI, IGRF (included in the package). Nature of problem: Compute magnetic field components, direction of the sun, sun visibility factor and approximate plasma parameters in the reference frame of a Low Earth Orbit satellite. Solution method: Orbit integration, calls to IGRF and IRI libraries and transformation of coordinates from geocentric to spacecraft frame reference. Restrictions: Low Earth orbits, altitudes between 150 and 2000 km. Running time: Approximately two seconds to parameterize a full orbit with 1000 points.

  4. Lunar Gravity Field Determination Using SELENE Same-Beam Differential VLBI Tracking Data

    NASA Technical Reports Server (NTRS)

    Goossens, S.; Matsumoto, K.; Liu, Q.; Kikuchi, F.; Sato, K.; Hanada, H.; Ishihara, Y.; Noda, H.; Kawano, N.; Namiki, N.; hide

    2010-01-01

    A lunar gravity field model up to degree and order 100 in spherical harmonics, named SGM 100i, has been determined from SELENE and historical tracking data, with an emphasis on using same-beam S-band differential VLBI data obtained in the SELENE mission between January 2008 and February 2009. Orbit consistency throughout the entire mission period of SELENE as determined from orbit overlaps for the two sub-satellites of SELENE involved in the VLBI tracking improved consistently from several hundreds of metres to several tens of metres by including differential VLBI data. Through orbits that are better determined, the gravity field model is also improved by including these data. Orbit determination performance for the new model shows improvements over earlier 100th degree and order models, especially for edge-on orbits over the deep far side. Lunar Prospector orbit determination shows an improvement of orbit consistency from I-day predictions for 2-day arcs of 6 m in a total sense, with most improvement in the along and cross-track directions. Data fit for the types and satellites involved is also improved. Formal errors for the lower degrees are smaller, and the new model also shows increased correlations with topography over the far side. The estimated value for the lunar GM for this model equals 4902.80080 +/- 0.0009 cu km/sq s (10 sigma). The lunar degree 2 potential Love number k2 was also estimated, and has a value of 0.0255 +/- 0.0016 (10 sigma as well).

  5. Mid- and long-term debris environment projections using the EVOLVE and CHAIN models

    NASA Astrophysics Data System (ADS)

    Eichler, Peter; Reynolds, Robert C.

    1995-06-01

    Results of debris environment projections are of great importance for the evaluation of the necessity and effectiveness of debris mitigation measures. EVOLVE and CHAIN are two models for debris environment projections that have been developed independently using different conceptual approaches. A comparison of results from these two models therefore provides a means of validating debris environment projections which they have made. EVOLVE is a model that requires mission model projections to describe future space operation; these projections include launch date, mission orbit altitude and inclimation, mission duration, vehicle size and mass, and classification as an object capable of experiencing breakup from on-board stored energy. EVOLVE describes the orbital debris environment by the orbital elements of the objects in the environment. CHAIN is an analytic model that bins the debris environemnt in size and altitude rather than following the orbit evolution of individual debris fragments. The altitude/size bins are coupled by the initial spreading of fragments by collisions and the following orbital decay behavior. A set of test cases covering a variety of space usage scenarios have been defined for the two models. In this paper, a comparison of the results will be presented and sources of disagreement identified and discussed. One major finding is that despite differences in the results of the two models, the basic tendencies of the environment projections are independent of modeled uncertainties, leading to the demand of debris mitigation measures--explosion suppression and de-orbit of rocket bodies and payloads after mission completion.

  6. Mission design concepts for repeat groundtrack orbits and application to the ICESat mission

    NASA Astrophysics Data System (ADS)

    Pie, Nadege

    The primary objective of the NASA sponsored ICESat mission is to study the short and long term changes in the ice mass in the Greenland and Antarctica regions. The satellite was therefore placed into a frozen near-polar near-circular repeat groundtrack to ensure an adequate coverage of the polar regions while keeping the groundtrack periodic and reducing the variations in the orbital elements, and more specifically the semi-major axis of the ICESat orbit. After launch, a contingency plan had to be devised to compensate for a laser that dangerously compromised the lifetime of the ICESat mission. This new plan makes an intensive use of the ICESat subcycles, a characteristic of the repeat groundtrack orbits often over-looked. The subcycle of a repeat groundtrack orbit provide global coverage within a time shorter than the groundtrack repetition period. For a satellite with an off-nadir pointing capacity, the subcycles provide near-repeat tracks which represents added opportunity for altimetry measurement over a specific track. The ICESat subcycles were also used in a very innovative fashion to reposition the satellite within its repeat cycle via orbital maneuvers called phasing maneuver. The necessary theoretical framework is provided for the subcycle analysis and the implementation of phasing maneuvers for any future repeat orbit mission. In the perspective of performing cross-validation of missions like CryoSat using the ICESat off-nadir capacity, a study was conducted to determine the geolocations of crossovers between two different repeat groundtrack Keplerian orbits. The general analytical solution was applied to ICESat vs. several other repeat groundtrack orbit mission, including the future ICESat-II mission. ICESat's repeat groundtrack orbit was designed using a disturbing force model that includes only the Earth geopotential. Though the third body effect from the Sun and the Moon was neglected in the orbit design, it does in fact disrupt the repeatability condition of the groundtrack and consequently implies orbit correction maneuvers. The perturbations on ICESat orbit due to the third body effect are studied as a preliminary work towards including these forces in the design of the future ICESat-II repeat groundtrack orbit.

  7. STS-49 Endeavour, Orbiter Vehicle (OV) 105, Orbit Team O1 in MCC Bldg 30 FCR

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, Orbit Team 1 (O1) poses in front of large display screens in JSC's Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) for group portrait. Lead Flight Director (FD) Granvil A. Pennington stands next to a model of the James Cook's ship, the Endeavour (left). Astronaut and Spacecraft Communicator (CAPCOM) John H. Casper stands at the right of the model.

  8. Low-cost autonomous orbit control about Mars: Initial simulation results

    NASA Astrophysics Data System (ADS)

    Dawson, S. D.; Early, L. W.; Potterveld, C. W.; Königsmann, H. J.

    1999-11-01

    Interest in studying the possibility of extraterrestrial life has led to the re-emergence of the Red Planet as a major target of planetary exploration. Currently proposed missions in the post-2000 period are routinely calling for rendezvous with ascent craft, long-term orbiting of, and sample-return from Mars. Such missions would benefit greatly from autonomous orbit control as a means to reduce operations costs and enable contact with Mars ground stations out of view of the Earth. This paper present results from initial simulations of autonomously controlled orbits around Mars, and points out possible uses of the technology and areas of routine Mars operations where such cost-conscious and robust autonomy could prove most effective. These simulations have validated the approach and control philosophies used in the development of this autonomous orbit controller. Future work will refine the controller, accounting for systematic and random errors in the navigation of the spacecraft from the sensor suite, and will produce prototype flight code for inclusion on future missions. A modified version of Microcosm's commercially available High Precision Orbit Propagator (HPOP) was used in the preparation of these results due to its high accuracy and speed of operation. Control laws were developed to allow an autonomously controlled spacecraft to continuously control to a pre-defined orbit about Mars with near-optimal propellant usage. The control laws were implemented as an adjunct to HPOP. The GSFC-produced 50 × 50 field model of the Martian gravitational potential was used in all simulations. The Martian atmospheric drag was modeled using an exponentially decaying atmosphere based on data from the Mars-GRAM NASA Ames model. It is hoped that the simple atmosphere model that was implemented can be significantly improved in the future so as to approach the fidelity of the Mars-GRAM model in its predictions of atmospheric density at orbital altitudes. Such additional work would take the form of solar flux (F10.7) and diurnal density dependencies. The autonomous controller is a-derivative of the proprietary and patented Microcosm Earth-orbiting control methodology which will be implemented on the upcoming Surrey Satellite Technology (SSTL) UoSAT-12 and the NASA EO-1 spacecraft missions. This work was funded by the NASA Jet Propulsion Laboratory under a Phase I SBIR (96.1 07.02 9444) and by internal Microcosm R&D funds as well as earlier supporting work done under a variety of USAF Research Laboratory-sponsored contracts [1, 2, 4, 12].

  9. Lunar Obliquity History Revisited

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Bills, B.; Paige, D.

    2007-12-01

    In preparation for a LRO (Lunar Reconnaissance Orbiter) related study of possible lunar polar volatiles, we re- examined the lunar orbital and rotational history, with primary focus on the obliquity history of the Moon. Though broad models have been made of lunar obliquity, a cohesive obliquity history was not found. We report on a new model of lunar obliquity including secular changes in inclination of the lunar orbit, tidal dissipation, lunar moments of inertia, and details for periods outside of the stable configurations known as Cassini states. For planets, the obliquity, or angle between the spin and orbit poles, is the dominant control on incident solar radiation. For planetary satellites, the radiation pattern can be more complex, as it depends on the mutual inclinations of three poles; the satellite spin and orbit poles, and the planetary heliocentric orbit pole. Presently, the lunar spin pole and orbit pole co-precess about the ecliptic pole, in a stable situation known as a Cassini state. As a result, permanently shadowed regions near the poles are expected to exist and act as cold traps, retaining water or other volatiles delivered to the surface by comets, solar wind, or via outgassing of the lunar interior. However, tidally driven secular changes in the lunar semimajor axis cause changes in precession rates of the spin and orbit poles, and thereby alter or destabilize the Cassini states. Only one prograde Cassini state exists at present (state 2). In the standard Cassini state model of Ward [1975], two other such states would have existed in the past (states 1 and 4) with the Moon starting in the low obliquity state 1, and remaining there until states 1 and 4 merged and disappear, at roughly half the present Earth-Moon distance. At that point, the Moon transitioned into the currently occupied state 2, and briefly attained very high obliquity values during the transition, and then stayed in state 2 until the present. If correct, this model implies that the transition from state 1 to state 2 is the most important event in the histories of lunar obliquity and polar volatiles, as it separates two periods in which current lunar cold traps could have existed with a period of high polar insolation which could have mobilized volatiles into space or to greater depths in the lunar near surface. If incorrect, lunar cold traps may prove only a very recent phenomenon. By including secular orbit changes, our model should help determine if this Cassini state stability really dominated in the past and allow detailed examination of extra-Cassini state periods.

  10. Reliability model of a monopropellant auxiliary propulsion system

    NASA Technical Reports Server (NTRS)

    Greenberg, J. S.

    1971-01-01

    A mathematical model and associated computer code has been developed which computes the reliability of a monopropellant blowdown hydrazine spacecraft auxiliary propulsion system as a function of time. The propulsion system is used to adjust or modify the spacecraft orbit over an extended period of time. The multiple orbit corrections are the multiple objectives which the auxiliary propulsion system is designed to achieve. Thus the reliability model computes the probability of successfully accomplishing each of the desired orbit corrections. To accomplish this, the reliability model interfaces with a computer code that models the performance of a blowdown (unregulated) monopropellant auxiliary propulsion system. The computer code acts as a performance model and as such gives an accurate time history of the system operating parameters. The basic timing and status information is passed on to and utilized by the reliability model which establishes the probability of successfully accomplishing the orbit corrections.

  11. Stable low-altitude orbits around Ganymede considering a disturbing body in a circular orbit

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, J.; Carvalho, J. P. S.; Vilhena de Moraes, R.

    2014-10-01

    Some missions are being planned to visit Ganymede like the Europa Jupiter System Mission that is a cooperation between NASA and ESA to insert the spacecraft JGO (Jupiter Ganymede Orbiter) into Ganymedes orbit. This comprehension of the dynamics of these orbits around this planetary satellite is essential for the success of this type of mission. Thus, this work aims to perform a search for low-altitude orbits around Ganymede. An emphasis is given in polar orbits and it can be useful in the planning of space missions to be conducted around, with respect to the stability of orbits of artificial satellites. The study considers orbits of artificial satellites around Ganymede under the influence of the third-body (Jupiter's gravitational attraction) and the polygenic perturbations like those due to non-uniform distribution of mass (J_2 and J_3) of the main body. A simplified dynamic model for these perturbations is used. The Lagrange planetary equations are used to describe the orbital motion of the artificial satellite. The equations of motion are developed in closed form to avoid expansions in eccentricity and inclination. The results show the argument of pericenter circulating. However, low-altitude (100 and 150 km) polar orbits are stable. Another orbital elements behaved variating with small amplitudes. Thus, such orbits are convenient to be applied to future space missions to Ganymede. Acknowledgments: FAPESP (processes n° 2011/05671-5, 2012/12539-9 and 2012/21023-6).

  12. Evaluation and modeling of autonomous attitude thrust control for the Geostation Operational Environmental Satellite (GOES)-8 orbit determination

    NASA Technical Reports Server (NTRS)

    Forcey, W.; Minnie, C. R.; Defazio, R. L.

    1995-01-01

    The Geostationary Operational Environmental Satellite (GOES)-8 experienced a series of orbital perturbations from autonomous attitude control thrusting before perigee raising maneuvers. These perturbations influenced differential correction orbital state solutions determined by the Goddard Space Flight Center (GSFC) Goddard Trajectory Determination System (GTDS). The maneuvers induced significant variations in the converged state vector for solutions using increasingly longer tracking data spans. These solutions were used for planning perigee maneuvers as well as initial estimates for orbit solutions used to evaluate the effectiveness of the perigee raising maneuvers. This paper discusses models for the incorporation of attitude thrust effects into the orbit determination process. Results from definitive attitude solutions are modeled as impulsive thrusts in orbit determination solutions created for GOES-8 mission support. Due to the attitude orientation of GOES-8, analysis results are presented that attempt to absorb the effects of attitude thrusting by including a solution for the coefficient of reflectivity, C(R). Models to represent the attitude maneuvers are tested against orbit determination solutions generated during real-time support of the GOES-8 mission. The modeling techniques discussed in this investigation offer benefits to the remaining missions in the GOES NEXT series. Similar missions with large autonomous attitude control thrusting, such as the Solar and Heliospheric Observatory (SOHO) spacecraft and the INTELSAT series, may also benefit from these results.

  13. Expected orbit determination performance for the TOPEX/Poseidon mission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerem, R.S.; Putney, B.H.; Marshall, J.A.

    1993-03-01

    The TOPEX/Poseidon (T/P) mission, launched during the summer of 1992, has the requirement that the radial component of its orbit must be computed to an accuracy of 13 cm root-mean-square (rms) or better, allowing measurements of the sea surface height to be computed to similar accuracy when the satellite height is differenced with the altimeter measurements. This will be done by combining precise satellite tracking measurements with precise models of the forces acting on the satellite. The Space Geodesy Branch at Goddard Space Flight Center (GSFC), as part of the T/P precision orbit determination (POD) Team, has the responsibility withinmore » NASA for the T/P precise orbit computations. The prelaunch activities of the T/P POD Team have been mainly directed towards developing improved models of the static and time-varying gravitational forces acting on T/P and precise models for the non-conservative forces perturbing the orbit of T/P such as atmospheric drag, solar and Earth radiation pressure, and thermal imbalances. The radial orbit error budget for T/P allows 10 cm rms error due to gravity field mismodeling, 3 cm due to solid Earth and ocean tides, 6 cm due to radiative forces, and 3 cm due to atmospheric drag. A prelaunch assessment of the current modeling accuracies for these forces indicates that the radial orbit error requirements can be achieved with the current models, and can probably be surpassed once T/P tracking data are used to fine tune the models. Provided that the performance of the T/P spacecraft is nominal, the precise orbits computed by the T/P POD Team should be accurate to 13 cm or better radially.« less

  14. Spaceflight and bone turnover - Correlation with a new rat model of weightlessness

    NASA Technical Reports Server (NTRS)

    Morey, E. R.

    1979-01-01

    Earlier manned spaceflight studies have revealed that the near-weightless environment of orbital flight produce certain biological effects in humans, including abnormalities in mineral metabolism. The data collected were compatible with bone mineral loss. Cosmos 782 and 936 experiments have shown a decrease in rat bone formation rate. In this paper, a rat model of weightlessness is described, which is unique in that the animal is free to move about a 360-deg arc. The model meets the requirements for an acceptable system. Data from the model and spaceflight are presented. Many of the responses noted in suspended animals indicate that the model closely mimics results from rats and man exposed to near-weightlessness during orbital spaceflight.

  15. DFT study of ethyl xanthate interaction with sphalerite (1 1 0) surface in the absence and presence of copper

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wen, Shuming; Deng, Jiushuai; Chen, Xiumin; Feng, Qicheng

    2014-08-01

    The interaction among sphalerite (1 1 0) surface, copper and ethyl xanthate (EX) was simulated using the density functional theory (DFT). The results of DFT indicate that four types of stable interaction models exist among sphalerite surface, copper and EX, i.e., EX interacts with the Cu substituted for Zn, Cu adsorbed on the top site of S, Cu adsorbed on the bridge site of S and Cu(OH)2 adsorbed on the sphalerite surface. The four interaction models can result in the activation flotation of sphalerite. Density of states (DOS) analysis shows that the energy level discrepancy of the Zn 3d orbital in ZnS and the bonding S 3p orbital in EX results in the weak adsorption of EX on un-activated sphalerite surface. However, after copper activation, the Cu 3d orbital peak and bonding S 3p orbital peak are just maximally overlapped nearby the Fermi level. This study provides an insight into the nature that sphalerite responds not well to EX and also a comprehensive understanding on the possible interaction cases existing among sphalerite surface, copper and EX.

  16. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE PAGES

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  17. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  18. Geostationary platform systems concepts definition study. Volume 2: Technical, book 2

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A selected concept for a geostationary platform is defined in sufficient detail to identify requirements for supporting research and technology, space demonstrations, GFE interfaces, costs, and schedules. This system consists of six platforms in geostationary orbit (GEO) over the Western Hemisphere and six over the Atlantic, to satisfy the total payload set associated with the nominal traffic model. Each platform is delivered to low Earth orbit (LEO) in a single shuttle flight, already mated to its LEO to GEO transfer vehicle and ready for deployment and transfer to GEO. An alternative concept is looked at briefly for comparison of configuration and technology requirements. This alternative consists of two large platforms, one over the Western Hemisphere consisting of three docked modules, and one over the Atlantic (two docked modules), to satisfy a high traffic model. The modules are full length orbiter cargo bay payloads, mated at LEO to orbital transfer vehicles (OTVs) delivered in other shuttle flights, for transfer to GEO, rendezvous, and docking. A preliminary feasibility study of an experimental platform is also performed to demonstrate communications and platform technologies required for the operational platforms of the 1990s.

  19. Precision GPS ephemerides and baselines

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The required knowledge of the Global Positioning System (GPS) satellite position accuracy can vary depending on a particular application. Application to relative positioning of receiver locations on the ground to infer Earth's tectonic plate motion requires the most accurate knowledge of the GPS satellite orbits. Research directed towards improving and evaluating the accuracy of GPS satellite orbits was conducted at the University of Texas Center for Space Research (CSR). Understanding and modeling the forces acting on the satellites was a major focus of the research. Other aspects of orbit determination, such as the reference frame, time system, measurement modeling, and parameterization, were also investigated. Gravitational forces were modeled by truncated versions of extant gravity fields such as, Goddard Earth Model (GEM-L2), GEM-T1, TEG-2, and third body perturbations due to the Sun and Moon. Nongravitational forces considered were the solar radiation pressure, and perturbations due to thermal venting and thermal imbalance. At the GPS satellite orbit accuracy level required for crustal dynamic applications, models for the nongravitational perturbation play a critical role, since the gravitational forces are well understood and are modeled adequately for GPS satellite orbits.

  20. Effect of mass variation on dynamics of tethered system in orbital maneuvering

    NASA Astrophysics Data System (ADS)

    Sun, Liang; Zhao, Guowei; Huang, Hai

    2018-05-01

    In orbital maneuvering, the mass variation due to fuel consumption has an obvious impact on the dynamics of tethered system, which cannot be neglected. The contributions of the work are mainly shown in two aspects: 1) the improvement of the model; 2) the analysis of dynamics characteristics. As the mass is variable, and the derivative of the mass is directly considered in the traditional Lagrange equation, the expression of generalized force is complicated. To solve this problem, the coagulated derivative is adopted in the paper; besides, the attitude dynamics equations derived in this paper take into account the effect of mass variation and the drift of orbital trajectory at the same time. The bifurcation phenomenon, the pendular motion angular frequency, and amplitudes of tether vibration revealed in this paper can provide a reference for the parameters and controller design in practical engineering. In the article, a dumbbell model is adopted to analyze the dynamics of tethered system, in which the mass variation of base satellite is fully considered. Considering the practical application, the case of orbital transfer under a transversal thrust is mainly studied. Besides, compared with the analytical solutions of librational angles, the effects of mass variation on stability and librational characteristic are studied. Finally, in order to make an analysis of the effect on vibrational characteristic, a lumped model is introduced, which reveals a strong coupling of librational and vibrational characteristics.

  1. A UNIFIED FRAMEWORK FOR THE ORBITAL STRUCTURE OF BARS AND TRIAXIAL ELLIPSOIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valluri, Monica; Abbott, Caleb; Shen, Juntai

    We examine a large random sample of orbits in two self-consistent simulations of N-body bars. Orbits in these bars are classified both visually and with a new automated orbit classification method based on frequency analysis. The well-known prograde x1 orbit family originates from the same parent orbit as the box orbits in stationary and rotating triaxial ellipsoids. However, only a small fraction of bar orbits (∼4%) have predominately prograde motion like their periodic parent orbit. Most bar orbits arising from the x1 orbit have little net angular momentum in the bar frame, making them equivalent to box orbits in rotatingmore » triaxial potentials. In these simulations a small fraction of bar orbits (∼7%) are long-axis tubes that behave exactly like those in triaxial ellipsoids: they are tipped about the intermediate axis owing to the Coriolis force, with the sense of tipping determined by the sign of their angular momentum about the long axis. No orbits parented by prograde periodic x2 orbits are found in the pure bar model, but a tiny population (∼2%) of short-axis tube orbits parented by retrograde x4 orbits are found. When a central point mass representing a supermassive black hole (SMBH) is grown adiabatically at the center of the bar, those orbits that lie in the immediate vicinity of the SMBH are transformed into precessing Keplerian orbits that belong to the same major families (short-axis tubes, long-axis tubes and boxes) occupying the bar at larger radii. During the growth of an SMBH, the inflow of mass and outward transport of angular momentum transform some x1 and long-axis tube orbits into prograde short-axis tubes. This study has important implications for future attempts to constrain the masses of SMBHs in barred galaxies using orbit-based methods like the Schwarzschild orbit superposition scheme and for understanding the observed features in barred galaxies.« less

  2. Surface chemical reactivity of ultrathin Pd(111) films on Ru(0001): Importance of orbital symmetry in the application of the d-band model

    DOE PAGES

    Yin, Xiangshi; Cooper, Valentino R.; Weitering, Hanno H.; ...

    2015-09-22

    The chemical bonding of adsorbate molecules on transition-metal surfaces is strongly influenced by the hybridization between the molecular orbitals and the metal d-band. The strength of this interaction is often correlated with the location of the metal d-band center relative to the Fermi level. Here, we exploit finite size effects in the electronic structure of ultrathin Pd(111) films grown on Ru(0001) to tune their reactivity by changing the film thickness one atom layer at a time, while keeping all other variables unchanged. Interestingly, while bulk Pd(111) is reactive toward oxygen, Pd(111) films below five monolayers are surprisingly inert. This observationmore » is fully in line with the d-band model prediction when applied to the orbitals involved in the bonding. The shift of the d-band center with film thickness is primarily attributed to shifts in the partial density of states associated with the 4d xz and 4d yz orbitals. This study provides an in-depth look into the orbital specific contributions to the surface chemical reactivity, providing new insights that could be useful in surface catalysis.« less

  3. ORBITS OF FOUR YOUNG TRIPLE-LINED MULTIPLE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokovinin, Andrei, E-mail: atokovinin@ctio.noao.edu

    2016-07-01

    Each of the nearby triple systems HIP 7601, 13498, 23824, and 113597 (HD 10800, 18198, 35877, 217379) consist of solar-type dwarfs with comparable masses, where all three components are resolved spectrally, while the outer pairs are resolved both visually and spectrally. These stars are relatively young (between 100 and 600 Myr) and chromospherically active (X-ray sources), although they rotate slowly. I determine the spectroscopic orbits of the inner subsystems (periods 19.4, 14.1, 5.6, 20.3 days) and the orbits of the outer systems (periods 1.75, 51, 27, 500 years, respectively). For HIP 7601 and 13498, the combined spectro-interferometric outer orbits producemore » direct measurement of the masses of all of the components, allowing for a comparison with stellar models. The 6708 Å lithium line is present and its strength is measured in each component individually by subtracting the contributions of the other components. The inner and outer orbits of HIP 7601 are nearly circular, likely co-planar, and have a modest period ratio of 1:33. This study contributes to the characterization of hierarchical multiplicity in the solar neighborhood and provides data for testing stellar evolutionary models and chronology.« less

  4. Lunar flyby transfers between libration point orbits

    NASA Astrophysics Data System (ADS)

    Qi, Yi; Xu, Shijie; Qi, Rui

    2017-06-01

    Lunar flyby or lunar gravity assist is a classical technique to change the energy and trajectory of space vehicle in space mission. In this paper, lunar flyby transfers between Sun-Earth/Moon libration point orbits with different energies are investigated in the Sun-Earth-Moon restricted four-body problem. Distinguished by behaviours before and after lunar flyby, classification of lunar flyby orbits is defined and studied. Research indicates that junction point of special regions of four types of lunar flyby orbits denotes the perilune of lunar flyby transfer between libration point orbits. Based on those special perilunes, retrograde and prograde lunar flyby transfers are discussed in detail, respectively. The mean energy level transition distribution is proposed and applied to analyse the influence of phase angle and eccentricity on lunar flyby transfers. The phase space is divided into normal and chaotic intervals based on the topology pattern of transfers. A continuation strategy of lunar flyby transfer in the bicircular model is presented. Numerical examples show that compared with the single-impulse transfers based on patched invariant manifolds, lunar flyby transfers are more energy efficient. Finally, lunar flyby transfers are further extended to the realistic models.

  5. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Li, Y.; Pan, H. L.; Liu, J. T.; Zhuang, B. T.

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment.

  6. ECCENTRICITY EVOLUTION THROUGH ACCRETION OF PROTOPLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Yuji; Nagasawa, Makiko; Ida, Shigeru, E-mail: yuji.matsumoto@nao.ac.jp, E-mail: nagasawa.m.ad@m.titech.ac.jp, E-mail: ida@elsi.jp

    2015-09-10

    Most super-Earths detected by the radial velocity (RV) method have significantly smaller eccentricities than the eccentricities corresponding to velocity dispersion equal to their surface escape velocity (“escape eccentricities”). If orbital instability followed by giant impacts among protoplanets that have migrated from outer regions is considered, it is usually considered that eccentricities of the merged bodies become comparable to those of orbital crossing bodies, which are excited up to their escape eccentricities by close scattering. However, the eccentricity evolution in the in situ accretion model has not been studied in detail. Here, we investigate the eccentricity evolution through N-body simulations. Wemore » have found that the merged planets tend to have much smaller eccentricities than escape eccentricities due to very efficient collision damping. If the protoplanet orbits are initially well separated and their eccentricities are securely increased, an inner protoplanet collides at its apocenter with an outer protoplanet at its pericenter. The eccentricity of the merged body is the smallest for such configurations. Orbital inclinations are also damped by this mechanism and planets tend to share a same orbital plane, which is consistent with Kepler data. Such efficient collision damping is not found when we start calculations from densely packed orbits of the protoplanets. If the protoplanets are initially in the mean-motion resonances, which corresponds to well separated orbits, the in situ accretion model well reproduces the features of eccentricities and inclinations of multiple super-Earths/Earth systems discovered by RV and Kepler surveys.« less

  7. TRAP/SEE Code Users Manual for Predicting Trapped Radiation Environments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    2000-01-01

    TRAP/SEE is a PC-based computer code with a user-friendly interface which predicts the ionizing radiation exposure of spacecraft having orbits in the Earth's trapped radiation belts. The code incorporates the standard AP8 and AE8 trapped proton and electron models but also allows application of an improved database interpolation method. The code treats low-Earth as well as highly-elliptical Earth orbits, taking into account trajectory perturbations due to gravitational forces from the Moon and Sun, atmospheric drag, and solar radiation pressure. Orbit-average spectra, peak spectra per orbit, and instantaneous spectra at points along the orbit trajectory are calculated. Described in this report are the features, models, model limitations and uncertainties, input and output descriptions, and example calculations and applications for the TRAP/SEE code.

  8. Mixing of t2 g-eg orbitals in 4 d and 5 d transition metal oxides

    NASA Astrophysics Data System (ADS)

    Stamokostas, Georgios L.; Fiete, Gregory A.

    2018-02-01

    Using exact diagonalization, we study the spin-orbit coupling and interaction-induced mixing between t2 g and egd -orbital states in a cubic crystalline environment, as commonly occurs in transition metal oxides. We make a direct comparison with the widely used t2 g-only or eg-only models, depending on electronic filling. We consider all electron fillings of the d shell and compute the total magnetic moment, the spin, the occupancy of each orbital, and the effective spin-orbit coupling strength (renormalized through interaction effects) in terms of the bare interaction parameters, spin-orbit coupling, and crystal-field splitting, focusing on the parameter ranges relevant to 4 d and 5 d transition metal oxides. In various limits, we provide perturbative results consistent with our numerical calculations. We find that the t2 g-eg mixing can be large, with up to 20% occupation of orbitals that are nominally "empty," which has experimental implications for the interpretation of the branching ratio in experiments, and can impact the effective local moment Hamiltonian used to study magnetic phases and magnetic excitations in transition metal oxides. Our results can aid the theoretical interpretation of experiments on these materials, which often fall in a regime of intermediate coupling with respect to electron-electron interactions.

  9. A porcine model: surgical anatomy of the orbit for maxillofacial surgery.

    PubMed

    Kyllar, Michal; Štembírek, Jan; Danek, Zdenek; Hodan, Radek; Stránský, Jiří; Machoň, Vladimír; Foltán, René

    2016-04-01

    Due to its similarity to humans, the pig has proven to be a suitable biomodel for both research purposes and for training medical professionals, particularly in surgical specializations. For example, new implant materials have been tested on pig jaws and pigs have also been used in the development of new surgical techniques. For optimizing the effectiveness of such research or training, detailed data on the anatomy of their particular features are needed. At present, however, only limited information related to surgical and imaging anatomy of the facial and orbital areas of the pig and its comparison to human structures from the experimental surgery point of view is available in the literature. The aim of this study was to obtain such data and to compare the morphological structures of the porcine and human orbital regions and to lay down the foundation for practical use in experimental surgery. Ten pig heads were examined using computed tomography (CT) and magnetic resonance imaging (MRI) and, subsequently, a dissection of the orbit was carried out. Attention was focused on the structure of the orbit (floor, rim and nerves) frequently affected by pathological processes in humans (such as trauma, infection or tumours) and which consequently are frequently the subject of maxillofacial surgery. The porcine orbit is suitable for use in experimental medicine. However, if used in experiments, its anatomical peculiarities must be taken into consideration. Our study presents a foundation of basic knowledge for researchers who plan to use the pig as a biomedical model to investigate alternative treatments in the head region. © The Author(s) 2015.

  10. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    NASA Astrophysics Data System (ADS)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  11. Analytic model for the long-term evolution of circular Earth satellite orbits including lunar node regression

    NASA Astrophysics Data System (ADS)

    Zhu, Ting-Lei; Zhao, Chang-Yin; Zhang, Ming-Jiang

    2017-04-01

    This paper aims to obtain an analytic approximation to the evolution of circular orbits governed by the Earth's J2 and the luni-solar gravitational perturbations. Assuming that the lunar orbital plane coincides with the ecliptic plane, Allan and Cook (Proc. R. Soc. A, Math. Phys. Eng. Sci. 280(1380):97, 1964) derived an analytic solution to the orbital plane evolution of circular orbits. Using their result as an intermediate solution, we establish an approximate analytic model with lunar orbital inclination and its node regression be taken into account. Finally, an approximate analytic expression is derived, which is accurate compared to the numerical results except for the resonant cases when the period of the reference orbit approximately equals the integer multiples (especially 1 or 2 times) of lunar node regression period.

  12. Orbit/launch vehicle tradeoff studies. Earth Observatory Satellite system definition study (EOS)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An evaluation of the Earth Observatory Satellite (EOS) design, performance, and cost factors which affect the choices of an orbit and a launch vehicle is presented. Primary emphasis is given to low altitude (300 to 900 nautical miles) land resources management applications for which payload design factors are defined. The subjects considered are: (1) a mission model, (2) orbit analysis and characterization, (3) characteristics and capabilities of candidate conventional launch vehicles, and space shuttle support. Recommendations are submitted for the EOS-A mission, the Single Multispectral Scanner payload, the Single Multispectral Scanner plus Thematic Mapper payload, the Dual Multispectral Scanner payload, and the Dual Multispectral Scanner plus Thematic Mapper payload.

  13. Numerical simulation of runaway electrons: 3-D effects on synchrotron radiation and impurity-based runaway current dissipation

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.; Izzo, V.

    2018-05-01

    Numerical simulations of runaway electrons (REs) with a particular emphasis on orbit dependent effects in 3-D magnetic fields are presented. The simulations were performed using the recently developed Kinetic Orbit Runaway electron Code (KORC) that computes the full-orbit relativistic dynamics in prescribed electric and magnetic fields including radiation damping and collisions. The two main problems of interest are synchrotron radiation and impurity-based RE dissipation. Synchrotron radiation is studied in axisymmetric fields and in 3-D magnetic configurations exhibiting magnetic islands and stochasticity. For passing particles in axisymmetric fields, neglecting orbit effects might underestimate or overestimate the total radiation power depending on the direction of the radial shift of the drift orbits. For trapped particles, the spatial distribution of synchrotron radiation exhibits localized "hot" spots at the tips of the banana orbits. In general, the radiation power per particle for trapped particles is higher than the power emitted by passing particles. The spatial distribution of synchrotron radiation in stochastic magnetic fields, obtained using the MHD code NIMROD, is strongly influenced by the presence of magnetic islands. 3-D magnetic fields also introduce a toroidal dependence on the synchrotron spectra, and neglecting orbit effects underestimates the total radiation power. In the presence of magnetic islands, the radiation damping of trapped particles is larger than the radiation damping of passing particles. Results modeling synchrotron emission by RE in DIII-D quiescent plasmas are also presented. The computation uses EFIT reconstructed magnetic fields and RE energy distributions fitted to the experimental measurements. Qualitative agreement is observed between the numerical simulations and the experiments for simplified RE pitch angle distributions. However, it is noted that to achieve quantitative agreement, it is necessary to use pitch angle distributions that depart from simplified 2-D Fokker-Planck equilibria. Finally, using the guiding center orbit model (KORC-GC), a preliminary study of pellet mitigated discharges in DIII-D is presented. The dependence of RE energy decay and current dissipation on initial energy and ionization levels of neon impurities is studied. The computed decay rates are within the range of experimental observations.

  14. Spin-orbital model of stoichiometric LaMnO3 with tetragonal distortions

    NASA Astrophysics Data System (ADS)

    Snamina, Mateusz; Oleś, Andrzej M.

    2018-03-01

    The spin-orbital superexchange model is derived for the cubic (perovskite) symmetry of LaMnO3, whereas real crystal structure is strongly deformed. We identify and explain three a priori important physical effects arising from tetragonal deformation: (i) the splitting of eg orbitals ∝Ez , (ii) the directional renormalization of d -p hybridization tp d, and (iii) the directional renormalization of charge excitation energies. Using the example of LaMnO3 crystal we evaluate their magnitude. It is found that the major effects of deformation are an enhanced amplitude of x2-y2 orbitals induced in the orbital order by Ez≃300 meV and anisotropic tp d≃2.0 (2.35) eV along the a b (c ) cubic axis, in very good agreement with Harrison's law. We show that the improved tetragonal model analyzed within mean field approximation provides a surprisingly consistent picture of the ground state. Excellent agreement with the experimental data is obtained simultaneously for: (i) eg orbital mixing angle, (ii) spin exchange constants, and (iii) the temperatures of spin and orbital phase transition.

  15. Starting points for the study of non-Fermi liquid-like properties of FeCrAs

    NASA Astrophysics Data System (ADS)

    O'Brien, Patrick James

    FeCrAs exhibits non-Fermi liquid-like behavior because of its odd combination of thermodynamic, transport, and magnetic properties. In particular, the resistivity of FeCrAs is not characteristic of a metal or an insulator and so remains a mystery. In this thesis, we seek a model to describe its properties. In FeCrAs, local moments reside on the Cr sites, and there is some conduction. We study the simplest possible model on the kagome lattice that features local moments and itinerant electrons, the kagome Kondo Lattice Model. We present the phase diagram of this model, which features a host of complex spin orders, one of which is the √3 x √3, the experimentally observed magnetic ground state in FeCrAs. The kagome Kondo Lattice Model, having one itinerant d-orbital band on the kagome lattice, does not fully capture the microscopic physics of FeCrAs. The kagome Kondo Lattice Model also will not de- scribe the mutilation of the Fermi surface. To investigate the microscopic properties, we calculated LDA and LDA+U results. These results and GGA results from another group all exhibit high d-orbital density of states at the Fermi energy as well as low p-orbital density of states at the Fermi energy. The DFT results motivated us to construct a model based on the chemistry and full geometry of the FeCrAs crystal. The model we construct is an effective hopping model consisting of only d-orbital operators that we call the Optimal Overlap Hopping Model (OOHM). We calculate the band structure that results from the OOHM, and this band structure can be compared to ARPES measurements. As an example of how one can use the OOHM, we calculate a dynamic spin structure factor from within the OOHM, and we compare it to neutron scattering data. We consider both the OOHM and the Kondo Lattice Model on the kagome lattice as starting points from which we can launch studies of FeCrAs, and we present the existing theories for FeCrAs on a metallicity spectrum to illustrate the various perspectives from which FeCrAs is studied.

  16. Orbital shape in intentional skull deformations and adult sagittal craniosynostoses.

    PubMed

    Sandy, Ronak; Hennocq, Quentin; Nysjö, Johan; Giran, Guillaume; Friess, Martin; Khonsari, Roman Hossein

    2018-06-21

    Intentional cranial deformations are the result of external mechanical forces exerted on the skull vault that modify the morphology of various craniofacial structures such as the skull base, the orbits and the zygoma. In this controlled study, we investigated the 3D shape of the orbital inner mould and the orbital volume in various types of intentional deformations and in adult non-operated scaphocephaly - the most common type of craniosynostosis - using dedicated morphometric methods. CT scans were performed on 32 adult skulls with intentional deformations, 21 adult skull with scaphocephaly and 17 non-deformed adult skulls from the collections of the Muséum national d'Histoire naturelle in Paris, France. The intentional deformations group included six skulls with Toulouse deformations, eight skulls with circumferential deformations and 18 skulls with antero-posterior deformations. Mean shape models were generated based on a semi-automatic segmentation technique. Orbits were then aligned and compared qualitatively and quantitatively using colour-coded distance maps and by computing the mean absolute distance, the Hausdorff distance, and the Dice similarity coefficient. Orbital symmetry was assessed after mirroring, superimposition and Dice similarity coefficient computation. We showed that orbital shapes were significantly and symmetrically modified in intentional deformations and scaphocephaly compared with non-deformed control skulls. Antero-posterior and circumferential deformations demonstrated a similar and severe orbital deformation pattern resulting in significant smaller orbital volumes. Scaphocephaly and Toulouse deformations had similar deformation patterns but had no effect on orbital volumes. This study showed that intentional deformations and scaphocephaly significantly interact with orbital growth. Our approach was nevertheless not sufficient to identify specific modifications caused by the different types of skull deformations or by scaphocephaly. © 2018 Anatomical Society.

  17. Uncertainty Modeling for Structural Control Analysis and Synthesis

    NASA Technical Reports Server (NTRS)

    Campbell, Mark E.; Crawley, Edward F.

    1996-01-01

    The development of an accurate model of uncertainties for the control of structures that undergo a change in operational environment, based solely on modeling and experimentation in the original environment is studied. The application used throughout this work is the development of an on-orbit uncertainty model based on ground modeling and experimentation. A ground based uncertainty model consisting of mean errors and bounds on critical structural parameters is developed. The uncertainty model is created using multiple data sets to observe all relevant uncertainties in the system. The Discrete Extended Kalman Filter is used as an identification/parameter estimation method for each data set, in addition to providing a covariance matrix which aids in the development of the uncertainty model. Once ground based modal uncertainties have been developed, they are localized to specific degrees of freedom in the form of mass and stiffness uncertainties. Two techniques are presented: a matrix method which develops the mass and stiffness uncertainties in a mathematical manner; and a sensitivity method which assumes a form for the mass and stiffness uncertainties in macroelements and scaling factors. This form allows the derivation of mass and stiffness uncertainties in a more physical manner. The mass and stiffness uncertainties of the ground based system are then mapped onto the on-orbit system, and projected to create an analogous on-orbit uncertainty model in the form of mean errors and bounds on critical parameters. The Middeck Active Control Experiment is introduced as experimental verification for the localization and projection methods developed. In addition, closed loop results from on-orbit operations of the experiment verify the use of the uncertainty model for control analysis and synthesis in space.

  18. Orbitally shaken shallow fluid layers. II. An improved wall shear stress model

    NASA Astrophysics Data System (ADS)

    Alpresa, Paola; Sherwin, Spencer; Weinberg, Peter; van Reeuwijk, Maarten

    2018-03-01

    A new model for the analytical prediction of wall shear stress distributions at the base of orbitally shaken shallow fluid layers is developed. This model is a generalisation of the classical extended Stokes solution and will be referred to as the potential theory-Stokes model. The model is validated using a large set of numerical simulations covering a wide range of flow regimes representative of those used in laboratory experiments. It is demonstrated that the model is in much better agreement with the simulation data than the classical Stokes solution, improving the prediction in 63% of the studied cases. The central assumption of the model—which is to link the wall shear stress with the surface velocity—is shown to hold remarkably well over all regimes covered.

  19. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    NASA Technical Reports Server (NTRS)

    Williams, Trevor W.; Hughes, Kyle M.; Mashiku, Alinda K.; Longuski, James M.

    2015-01-01

    Solar radiation pressure is one of the largest perturbing forces on the OSIRISRex trajectory as it orbits the asteroid Bennu. In this work, we investigate how forces due to solar radiation perturb the OSIRIS-REx trajectory in a high-fidelity model. The model accounts for Bennu's non-spherical gravity field, third-body gravity forces from the Sun and Jupiter, as well as solar radiation forces acting on a simplified spacecraft model. Such high-fidelity simulations indicate significant solar radiation pressure perturbations from the nominal orbit. Modifications to the initial design of the nominal orbit are found using a variation of parameters approach that reduce the perturbation in eccentricity by a factor of one-half.

  20. In Vivo Effects of Retrobulbar Bimatoprost Injection on Orbital Fat.

    PubMed

    Eftekhari, Kian; Vagefi, M Reza; Lee, Vivian; Hui, James Z; Zhu, Menglong; Dine, Kimberly; Anderson, Richard L; Koeberlein, Brigitte; Sulaimankutty, Reas; Shindler, Kenneth S

    Recent publications have reported the adverse effects of prostaglandin analogues on the periocular tissues. These medications may cause periorbital lipodystrophy, enophthalmos, and deepening of the superior sulcus deformity. While these effects may have adverse consequences for some patients, the atrophy of the periorbital fat may have a useful role in diseases that lead to orbital and periorbital fat hypertrophy such as thyroid eye disease. In this pilot study, the authors investigated the effects of retrobulbar bimatoprost injection on the intraocular pressure and orbital fat in a rat animal model. Three rats were sedated and intraocular pressure was measured. A 0.1 ml aliquot of bimatoprost was injected into the right orbit of all rats. In the left orbit, 0.1 ml of phosphate-buffered saline was injected as a control. Three weeks later, all rats were sedated and intraocular pressure was measured before euthanizing. Routine histologic staining was performed and thin sections through the intraconal orbital fat were obtained. Density of intraconal adipocytes was measured and adipocyte heterogeneity was determined using a computer image analysis algorithm. The specimens injected with bimatoprost demonstrated atrophy of orbital fat with significantly increased adipocyte density (p = 0.009) and heterogeneity (p = 0.008) when compared with control. Intraocular pressure was not significantly decreased at 3 weeks after injection of retrobulbar bimatoprost. In this pilot study, orbital injection of bimatoprost demonstrated atrophy of intraconal adipocytes when compared with control orbits injected with saline. The orbits injected with bimatoprost were noted to have smaller, more heterogeneous adipocytes that were densely packed in the intraconal space. The study limitations include the small sample size, which limited the ability for us to make conclusions about the effect on intraocular pressure. Nevertheless, the findings presented suggest that retrobulbar bimatoprost may present a nonsurgical alternative to induce atrophy of the orbital fat without inducing inflammation or hypotony.

  1. The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...

    2016-05-31

    The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less

  2. Detection of symmetric homoclinic orbits to saddle-centres in reversible systems

    NASA Astrophysics Data System (ADS)

    Yagasaki, Kazuyuki; Wagenknecht, Thomas

    2006-02-01

    We present a perturbation technique for the detection of symmetric homoclinic orbits to saddle-centre equilibria in reversible systems of ordinary differential equations. We assume that the unperturbed system has primary, symmetric homoclinic orbits, which may be either isolated or appear in a family, and use an idea similar to that of Melnikov’s method to detect homoclinic orbits in their neighbourhood. This technique also allows us to identify bifurcations of unperturbed or perturbed, symmetric homoclinic orbits. Our technique is of importance in applications such as nonlinear optics and water waves since homoclinic orbits to saddle-centre equilibria describe embedded solitons (ESs) in systems of partial differential equations representing physical models, and except for special cases their existence has been previously studied only numerically using shooting methods and continuation techniques. We apply the general theory to two examples, a four-dimensional system describing ESs in nonlinear optical media and a six-dimensional system which can possess a one-parameter family of symmetric homoclinic orbits in the unperturbed case. For these examples, the analysis is compared with numerical computations and an excellent agreement between both results is found.

  3. Orbital effect of the magnetic field in dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.

    2017-12-01

    The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.

  4. Thermally induced vibrations of smart solar panel in a low-orbit satellite

    NASA Astrophysics Data System (ADS)

    Azadi, E.; Fazelzadeh, S. Ahmad; Azadi, M.

    2017-03-01

    In this paper, a smart flexible satellite moving in a circular orbit with two flexible panels are studied. The panels have been modeled as clamped-free-free-free rectangular plates with attached piezoelectric actuators. It is assumed that the satellite has a pitch angle rotation maneuver. Rapid temperature changes at day-night transitions in orbit generate time dependent bending moments. Satellite maneuver and temperature varying induce vibrations in the appendages. So, to simulate the system, heat radiation effects on the appendages have been considered. The nonlinear equations of motion and the heat transfer equations are coupled and solved simultaneously. So, the governing equations of motion are nonlinear and very complicated ones. Finally, the whole system is simulated and the effects of the heat radiation, radius of the orbit, piezoelectric voltages, and piezoelectric locations on the response of the system are studied.

  5. Navigation study for low-altitude Earth satellites

    NASA Technical Reports Server (NTRS)

    Pastor, P. R.; Fang, B. T.; Yee, C. P.

    1985-01-01

    This document describes several navigation studies for low-altitude Earth satellites. The use of Global Positioning System Navigation Package data for LANDSAT-5 orbit determination is evaluated. In addition, a navigation analysis for the proposed Tracking and Data Aquisition System is presented. This analysis, based on simulations employing one-way Doppler data, is used to determine the agreement between the Research and Development Goddard Trajectory Determination System and the Sequential Error Analysis Program results. Properties of several geopotential error models are studied and an exploratory study of orbit smoother process noise is presented.

  6. Orbital Dynamics and Habitability of Exoplanets

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell J.

    With the discoveries of thousands of extra-solar planets, a handful of which are terrestrial in size and located within the "habitable zone" of their host stars, the discovery of another instance of life in the universe seems increasingly within our grasp. Yet, a number of difficulties remain--with current and developing technologies, the full characterization of a terrestrial atmosphere and, hence, the detection of biosignatures will be extraordinarily difficult and expensive. Furthermore, observations will be ambiguous, as recent developments have shown that there is no "smoking gun" for the presence of life. Ultimately, the interpretation of observations will depend heavily upon our understanding of life's fundamental properties and the physical context of a planet's observed properties. This thesis is devoted to a development of the latter quantity, physical context, focusing on a topic oft-neglected in theoretical works of habitability: orbital dynamics. I show a number of ways in which orbital dynamics can affect the habitability of exoplanets. This work highlights the crucial role of stability, mutual inclinations, and resonances, demonstrating how these properties influence atmospheric states. Studies of exoplanetary systems tend to assume that the planets are coplanar, however, the large mutual inclination of the planets orbiting upsilon Andromedae suggests that coplanarity is not always a valid assumption. In my study of this system, I show that the large inclination between planets c and d and their large eccentricities lead to dramatic orbital variations. Though there is almost certainly no habitable planet orbiting upsilon And, the existence of this system demonstrates that we should expect other such dynamically "hot" planetary systems, some of which may contain potentially habitable planets. Minute variations in a planet's orbit can lead to changes in the global temperature, and indeed, these variations seem to be intimately connected to Earth's Pleistocene ice ages. Mutual inclinations lead not only to larger variations in a planet's obliquity, but also uncover secular spin-orbit resonances, which lead to yet more dramatic behavior. I modeled the obliquity evolution of planets in this highly non-linear dynamical regime. Connecting the dynamical models to an simple climate model with ice sheets, I modeled the effects of such dynamical evolution on an Earth-like planet's climate. As expected, such "exo-Milankovitch cycles" can be rapid and dramatic, often leading to complete collapse into a snowball state. By demonstrating a handful of the many ways dynamics can influence habitability, this research provides context to observations of exoplanets and connects to one of the key goals of astrobiology, to "Determine the potential for habitable planets beyond the Solar System, and characterize those that are observable" (Des Marais et al., 2008). It provides tools and techniques that may be used to help prioritize exoplanet targets for characterization missions when very little information is known other than orbital properties. It also demonstrates how orbital evolution affects observable quantities like albedo, and will assist in the interpretation of spectra.

  7. Shuttle Return To Flight Experimental Results: Cavity Effects on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Horvath, Thomas J.; Berry, Scott A.

    2006-01-01

    The effect of an isolated rectangular cavity on hypersonic boundary layer transition of the windward surface of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental study was initiated to provide a cavity effects database for developing hypersonic transition criteria to support on-orbit decisions to repair a damaged thermal protection system. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth. The database contained within this report will be used to formulate cavity-induced transition correlations using predicted boundary layer edge parameters.

  8. Spin-Orbit Dimers and Noncollinear Phases in d1 Cubic Double Perovskites

    NASA Astrophysics Data System (ADS)

    Romhányi, Judit; Balents, Leon; Jackeli, George

    2017-05-01

    We formulate and study a spin-orbital model for a family of cubic double perovskites with d1 ions occupying a frustrated fcc sublattice. A variational approach and a complementary analytical analysis reveal a rich variety of phases emerging from the interplay of Hund's rule and spin-orbit coupling. The phase digram includes noncollinear ordered states, with or without a net moment, and, remarkably, a large window of a nonmagnetic disordered spin-orbit dimer phase. The present theory uncovers the physical origin of the unusual amorphous valence bond state experimentally suggested for Ba2B Mo O6 (B =Y , Lu) and predicts possible ordered patterns in Ba2B Os O6 (B =Na , Li) compounds.

  9. The Spin-Orbit Resonances of the Solar System: A Mathematical Treatment Matching Physical Data

    NASA Astrophysics Data System (ADS)

    Antognini, Francesco; Biasco, Luca; Chierchia, Luigi

    2014-06-01

    In the mathematical framework of a restricted, slightly dissipative spin-orbit model, we prove the existence of periodic orbits for astronomical parameter values corresponding to all satellites of the Solar System observed in exact spin-orbit resonance.

  10. The spectroscopic orbits and physical parameters of GG Carinae

    NASA Astrophysics Data System (ADS)

    Marchiano, P.; Brandi, E.; Muratore, M. F.; Quiroga, C.; Ferrer, O. E.; García, L. G.

    2012-04-01

    Aims: GG Car is an eclipsing binary classified as a B[e] supergiant star. The aims of our study are to improve the orbital elements of the binary system in order to obtain the actual orbital period of this system. We also compare the spectral energy distribution of the observed fluxes over a wide wavelength range with a model of a circumstellar envelope composed of gas and dust. This fitting allows us to derive the physical parameters of the system and its environment, as well as to obtain an estimation of the distance to GG Car. Methods: We analyzed about 55 optical and near infrared spectrograms taken during 1996-2010. The spectroscopic orbits were obtained by measuring the radial velocities of the blueshifted absorptions of the He I P-Cygni profiles, which are very representative of the orbital motion of both stars. On the other hand, we modeled the spectral energy distribution of GG Car, proposing a simple model of a spherical envelope consisting of a layer close to the central star composed of ionized gas and other outermost layers composed of dust. Its effect on the spectral energy distribution considering a central B-type star is presented. Comparing the model with the observed continuum energy distribution of GG Car, we can derive fundamental parameters of the system, as well as global physical properties of the gas and dust envelope. It is also possible to estimate the distance taking the spectral regions into account where the theoretical data fit the observational data very well and using the set of parameters obtained and the value of the observed flux for different wavelengths. Results: For the first time, we have determined the orbits for both components of the binary through a detailed study of the He I lines, at λλ4471, 5875, 6678, and 7065 Å, thereby obtaining an orbital period of 31.033 days. An eccentric orbit with e = 0.28 and a mass ratio q = 2.2 ± 0.9 were calculated. Comparing the model with the observed continuum energy distribution of GG Car, we obtain Teff = 23 000 K and log g = 3. The central star is surrounded by a spherical envelope consisting of a layer of 3.5 stellar radii composed of ionized gas and other outermost dust layers with EB - V = 0.39. These calculations are not strongly modified if we consider two similar B-type stars instead of a central star, provided our model suggests that the second star might contribute less than 10% of the primary flux. The calculated effective temperature is consistent with an spectral type B0-B2 and a distance to the object of 5 ± 1 kpc was determined. Based on observations taken at Complejo Astronómico EL LEONCITO, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  11. The Chocolate Shop and Atomic Orbitals: A New Atomic Model Created by High School Students to Teach Elementary Students

    ERIC Educational Resources Information Center

    Liguori, Lucia

    2014-01-01

    Atomic orbital theory is a difficult subject for many high school and beginning undergraduate students, as it includes mathematical concepts not yet covered in the school curriculum. Moreover, it requires certain ability for abstraction and imagination. A new atomic orbital model "the chocolate shop" created "by" students…

  12. Combined orbits and clocks from the IGS 2nd reprocessing

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Ray, J.

    2016-12-01

    In early 2015, the Analysis Centers (ACs) of the International GNSS Service (IGS) completed their second reanalysis of the full history of globally distributed GPS and GLONASS data collected since 1994. The suite of reprocessed AC solutions includes daily product files containing station positions, Earth rotation parameters, satellite orbits and clocks. This second reprocessing—or repro2—provided the IGS contribution to ITRF2014; it follows the successful first reprocessing, which provided the IGS input for ITRF2008. For this poster, we will discuss the newly combined repro2 GPS orbits and clocks. We also revisit our previous analysis of orbit day-boundary discontinuities with several significant changes and improvements: 1) Orbit discontinuities for the contributing ACs were studied in addition to those for the IGS repro2 combined orbits. (2) Apart from homogeneous reprocessing with updated analysis models, the main difference compared to the IGS Final operational products is that NOAA/NGS inputs were not submitted for the IGS reprocessing, yet they contribute heavily in the operational orbits in recent years. (3) Also, during spring 2016, the ESA modified their orbit model so that it is no longer consistent with the one used for reprocessing. A much longer span of orbits was available now, up to 11.2 years for some individual satellites, which allows a far better resolution of spectral features. 4) The procedure to compute orbit discontinuities has been further refined to account for extrapolation edge effects, improved geopotential fields, and to allow for spectral analysis of a longer time series of jumps. The satellite position time series used are complete enough that linear interpolation is necessary for only sparse gaps. So the key results are based on standard FFT power spectra (stacked over the available constellation and lightly smoothed). However, we have also computed Lomb-Scargle periodgrams to provide higher frequency resolution of some spectral peaks and to permit tests of the effect of excluding eclipse periods.

  13. Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons

    NASA Astrophysics Data System (ADS)

    Rosenblatt, P.; Lainey, V.; Le Maistre, S.; Marty, J. C.; Dehant, V.; Pätzold, M.; Van Hoolst, T.; Häusler, B.

    2008-05-01

    The determination of the ephemeris of the Martian moons has benefited from observations of their plane-of-sky positions derived from images taken by cameras onboard spacecraft orbiting Mars. Images obtained by the Super Resolution Camera (SRC) onboard Mars Express (MEX) have been used to derive moon positions relative to Mars on the basis of a fit of a complete dynamical model of their motion around Mars. Since, these positions are computed from the relative position of the spacecraft when the images are taken, those positions need to be known as accurately as possible. An accurate MEX orbit is obtained by fitting two years of tracking data of the Mars Express Radio Science (MaRS) experiment onboard MEX. The average accuracy of the orbits has been estimated to be around 20-25 m. From these orbits, we have re-derived the positions of Phobos and Deimos at the epoch of the SRC observations and compared them with the positions derived by using the MEX orbits provided by the ESOC navigation team. After fit of the orbital model of Phobos and Deimos, the gain in precision in the Phobos position is roughly 30 m, corresponding to the estimated gain of accuracy of the MEX orbits. A new solution of the GM of the Martian moons has also been obtained from the accurate MEX orbits, which is consistent with previous solutions and, for Phobos, is more precise than the solution from the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) tracking data. It will be further improved with data from MEX-Phobos closer encounters (at a distance less than 300 km). This study also demonstrates the advantage of combining observations of the moon positions from a spacecraft and from the Earth to assess the real accuracy of the spacecraft orbit. In turn, the natural satellite ephemerides can be improved and participate to a better knowledge of the origin and evolution of the Martian moons.

  14. Classifying orbits in galaxy models with a prolate or an oblate dark matter halo component

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.

    2014-03-01

    Aims: The distinction between regular and chaotic motion in galaxies is undoubtedly an issue of paramount importance. We explore the nature of orbits of stars moving in the meridional plane (R,z) of an axially symmetric galactic model with a disk, a spherical nucleus, and a flat biaxial dark matter halo component. In particular, we study the influence of all the involved parameters of the dynamical system by computing both the percentage of chaotic orbits and the percentages of orbits of the main regular resonant families in each case. Methods: To distinguish between ordered and chaotic motion, we use the smaller alignment index (SALI) method to extensive samples of orbits by numerically integrating the equations of motion as well as the variational equations. Moreover, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Two cases are studied for every parameter: (i) the case where the halo component is prolate and (ii) the case where an oblate dark halo is present. Results: Our numerical investigation indicates that all the dynamical quantities affect, more or less, the overall orbital structure. It was observed that the mass of the nucleus, the halo flattening parameter, the scale length of the halo, the angular momentum, and the orbital energy are the most influential quantities, while the effect of all the other parameters is much weaker. It was also found that all the parameters corresponding to the disk only have a minor influence on the nature of orbits. Furthermore, some other quantities, such as the minimum distance to the origin, the horizontal, and the vertical force, were tested as potential chaos detectors. Our analysis revealed that only general information can be obtained from these quantities. We also compared our results with early related work. Appendix A is available in electronic form at http://www.aanda.org

  15. Precise Orbit Determination Of Low Earth Satellites At AIUB Using GPS And SLR Data

    NASA Astrophysics Data System (ADS)

    Jaggi, A.; Bock, H.; Thaller, D.; Sosnica, K.; Meyer, U.; Baumann, C.; Dach, R.

    2013-12-01

    An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Institute of the University of Bern (AIUB) LEO precise orbit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numerical integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to efficiently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circulation Explorer (GOCE).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenstreet, S.; Gladman, B.; Ngo, H.

    While computing an improved near-Earth object (NEO) steady-state orbital distribution model, we discovered in the numerical integrations the unexpected production of retrograde orbits for asteroids that had originally exited from the accepted main-belt source regions. Our model indicates that {approx}0.1% (a factor of two uncertainty) of the steady-state NEO population (perihelion q < 1.3 AU) is on retrograde orbits. These rare outcomes typically happen when asteroid orbits flip to a retrograde configuration while in the 3:1 mean-motion resonance with Jupiter and then live for {approx}0.001 to 100 Myr. The model predicts, given the estimated near-Earth asteroid (NEA) population, that amore » few retrograde 0.1-1 km NEAs should exist. Currently, there are two known MPC NEOs with asteroidal designations on retrograde orbits which we therefore claim could be escaped asteroids instead of devolatilized comets. This retrograde NEA population may also answer a long-standing question in the meteoritical literature regarding the origin of high-strength, high-velocity meteoroids on retrograde orbits.« less

  17. Operation of the computer model for direct atomic oxygen exposure of Earth satellites

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gruenbaum, P. E.; Gillis, J. R.; Hargraves, C. R.

    1995-01-01

    One of the primary causes of material degradation in low Earth orbit (LEO) is exposure to atomic oxygen. When atomic oxygen molecules collide with an orbiting spacecraft, the relative velocity is 7 to 8 km/sec and the collision energy is 4 to 5 eV per atom. Under these conditions, atomic oxygen may initiate a number of chemical and physical reactions with exposed materials. These reactions contribute to material degradation, surface erosion, and contamination. Interpretation of these effects on materials and the design of space hardware to withstand on-orbit conditions requires quantitative knowledge of the atomic oxygen exposure environment. Atomic oxygen flux is a function of orbit altitude, the orientation of the orbit plan to the Sun, solar and geomagnetic activity, and the angle between exposed surfaces and the spacecraft heading. We have developed a computer model to predict the atomic oxygen exposure of spacecraft in low Earth orbit. The application of this computer model is discussed.

  18. Saddle Slow Manifolds and Canard Orbits in [Formula: see text] and Application to the Full Hodgkin-Huxley Model.

    PubMed

    Hasan, Cris R; Krauskopf, Bernd; Osinga, Hinke M

    2018-04-19

    Many physiological phenomena have the property that some variables evolve much faster than others. For example, neuron models typically involve observable differences in time scales. The Hodgkin-Huxley model is well known for explaining the ionic mechanism that generates the action potential in the squid giant axon. Rubin and Wechselberger (Biol. Cybern. 97:5-32, 2007) nondimensionalized this model and obtained a singularly perturbed system with two fast, two slow variables, and an explicit time-scale ratio ε. The dynamics of this system are complex and feature periodic orbits with a series of action potentials separated by small-amplitude oscillations (SAOs); also referred to as mixed-mode oscillations (MMOs). The slow dynamics of this system are organized by two-dimensional locally invariant manifolds called slow manifolds which can be either attracting or of saddle type.In this paper, we introduce a general approach for computing two-dimensional saddle slow manifolds and their stable and unstable fast manifolds. We also develop a technique for detecting and continuing associated canard orbits, which arise from the interaction between attracting and saddle slow manifolds, and provide a mechanism for the organization of SAOs in [Formula: see text]. We first test our approach with an extended four-dimensional normal form of a folded node. Our results demonstrate that our computations give reliable approximations of slow manifolds and canard orbits of this model. Our computational approach is then utilized to investigate the role of saddle slow manifolds and associated canard orbits of the full Hodgkin-Huxley model in organizing MMOs and determining the firing rates of action potentials. For ε sufficiently large, canard orbits are arranged in pairs of twin canard orbits with the same number of SAOs. We illustrate how twin canard orbits partition the attracting slow manifold into a number of ribbons that play the role of sectors of rotations. The upshot is that we are able to unravel the geometry of slow manifolds and associated canard orbits without the need to reduce the model.

  19. BepiColombo MMO status update

    NASA Astrophysics Data System (ADS)

    Hayakawa, Hajime; Maejima, Hironori

    2013-04-01

    BepiColombo is a ESA-JAXA joint mission to Mercury with the aim to understand the process of planetary formation and evolution as well as to understand similarities and differences between the magnetospheres of Mercury and Earth. The baseline mission consists of two spacecraft, i.e. the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). The two orbiters will be launched in 2015 by an Ariane-5 and arrive at Mercury in 2022. JAXA is responsible for the development and operation of MMO, while ESA is responsible for the development and operation of MPO as well as the launch, transport, and the insertion of two spacecraft into their dedicated orbits. The main objectives of MMO are to study Mercury's magnetic field and plasma environment around Mercury. MMO is designed as a spin-stabilized spacecraft to be placed in a 400 km x 12,000 km polar orbit. The spacecraft will accommodate instruments mostly dedicated to the study of the magnetic field, waves, and particles near Mercury. MMO Mechanical Test Model (MMO-MTM) was transported to ESA/ESTEC and stack level (MCS: Mercury Cruise System) mechanical environmental test was finished last September. MMO EM electrical model was transported to Astrium Friedrichshafen and electrical interface test was performed on Octorber. MMO stand alone Flight Model (FM) AIV was started from last October and continues until early next year. After standalone AIV, MMO will be trasported to ESA/ESTEC to attend stack level final AIV. 10th BepiColombo science working team (SWT) meeting, which discusses BepiColombo science related matters, will be held on Sep. 2013 at Lapland. In this paper, we will report the latest information of MMO project status.

  20. Magnetic anisotropy in nickel complexes as determined by combined magnetic susceptibility/magnetization/theoretical studies

    NASA Astrophysics Data System (ADS)

    Mašlejová, Anna; Boča, Roman; Dlháň, L.'ubor; Herchel, Radovan

    2004-05-01

    The zero-field splitting in nickel(II) complexes was modeled by considering all relevant operators (electron repulsion, crystal-field, spin-orbit coupling, orbital-Zeeman, and spin-Zeeman) in the complete basis set spanned by d n-atomic terms. D-values between weak and strong crystal field limits were evaluated from the crystal-field multiplets as well as using the spin Hamiltonian formalism. Importance of the anisotropic orbital reduction factors is discussed and exemplified by D/hc=-22 cm-1 as subtracted from magnetic data for [Ni(imidazole) 4(acetate) 2] complex.

  1. The New NASA Orbital Debris Engineering Model ORDEM2000

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Matney, Mark J.; Anz-Meador, Phillip D.; Kessler, Donald; Jansen, Mark; Theall, Jeffery R.

    2002-01-01

    The NASA Orbital Debris Program Office at Johnson Space Center has developed a new computer-based orbital debris engineering model, ORDEM2000, which describes the orbital debris environment in the low Earth orbit region between 200 and 2000 km altitude. The model is appropriate for those engineering solutions requiring knowledge and estimates of the orbital debris environment (debris spatial density, flux, etc.). ORDEM2000 can also be used as a benchmark for ground-based debris measurements and observations. We incorporated a large set of observational data, covering the object size range from 10 mm to 10 m, into the ORDEM2000 debris database, utilizing a maximum likelihood estimator to convert observations into debris population probability distribution functions. These functions then form the basis of debris populations. We developed a finite element model to process the debris populations to form the debris environment. A more capable input and output structure and a user-friendly graphical user interface are also implemented in the model. ORDEM2000 has been subjected to a significant verification and validation effort. This document describes ORDEM2000, which supersedes the previous model, ORDEM96. The availability of new sensor and in situ data, as well as new analytical techniques, has enabled the construction of this new model. Section 1 describes the general requirements and scope of an engineering model. Data analyses and the theoretical formulation of the model are described in Sections 2 and 3. Section 4 describes the verification and validation effort and the sensitivity and uncertainty analyses. Finally, Section 5 describes the graphical user interface, software installation, and test cases for the user.

  2. On the orbital evolution of radiating binary systems

    NASA Astrophysics Data System (ADS)

    Bekov, A. A.; Momynov, S. B.

    2018-05-01

    The evolution of dynamic parameters of radiating binary systems with variable mass is studied. As a dynamic model, the problem of two gravitating and radiating bodies is considered, taking into account the gravitational attraction and the light pressure of the interacting bodies with the additional assumption of isotropic variability of their masses. The problem combines the Gylden-Meshchersky problem, acquiring a new physical meaning, and the two-body photogravitational Radzievsky problem. The evolving orbit is presented, unlike Kepler, with varying orbital elements - parameter and eccentricity, defines by the parameter µ(t), area integral C and quasi-integral energy h(t). Adiabatic invariants of the problem, which are of interest for the slow evolution of orbits, are determined. The general course of evolution of orbits of binary systems with radiation are determined by the change of the parameter µ(t) and the total energy of the system.

  3. Results of a space shuttle vehicle ferry configuration afterbody fairing optimization study using a 140A/B 0.0405-scale model orbiter (43-0) in the Rockwell International 7.75 by 11.0 ft low speed wind tunnel (OA124)

    NASA Technical Reports Server (NTRS)

    Houlihan, S. R.

    1975-01-01

    Experimental aerodynamic investigations were conducted on a dual-strut mounted 0.0405-scale representation of the 140A/B outer mold line space shuttle orbiter vehicle. The tests, conducted from 11 Oct., 1974 through 22 Oct., 1974, were primarily to investigate aerodynamic stability and control characteristics of the space shuttle orbiter ferry configuration. Four afterbody fairing configurations and various additions to them in the form of horizontal and ventral fins strakes and other aerodynamic protuberances were tested. Base line data on the basic orbiter with MPS nozzles and bodyflap were recorded. The drag of the optimum ferry configuration was increased to the level of the basic orbiter for possible flight test configurations by the addition of two sizes of perforated speed brakes on the tail cone surface.

  4. Numerical simulations of particle orbits around 2060 Chiron

    NASA Technical Reports Server (NTRS)

    Stern, S. A.; Jackson, A. A.; Boice, D. C.

    1994-01-01

    Scattered light from orbiting or coorbiting dust is a primary signature by which Earth-based observers study the activity and atmosphere of the unusual outer solar system object 2060 Chiron. Therefore, it is important to understand the lifetime, dynamics, and loss rates of dust in its coma. We report here dynamical simulations of particles in Chiron's collisionless coma. The orbits of 17,920 dust particles were numerically integrated under the gravitational influence of Chiron, the Sun, and solar radiation pressure. These simulations show that particles ejected from Chiron are more likely to follow suborbital trajectories, or to escape altogether, than to enter quasistable orbits. Significant orbital lifetimes can only be achieved for very specific launch conditions. These results call into question models of a long-term, bound coma generated by discrete outbursts, and instead suggest that Chiron's coma state is closely coupled to the nearly instantaneous level of Chiron's surface activity.

  5. The long-period librations of large synchronous icy moons

    NASA Astrophysics Data System (ADS)

    Yseboodt, Marie; Van Hoolst, Tim

    2014-11-01

    A moon in synchronous rotation has longitudinal librations because of its non-spherical mass distribution and its elliptical orbit around the planet. We study the long-period librations of the Galilean satellites and Titan and include deformation effects and the existence of a subsurface ocean. We take into account the fact that the orbit is not keplerian and has other periodicities than the main period of orbital motion around Jupiter or Saturn due to perturbations by the Sun, other planets and moons. An orbital theory is used to compute the orbital perturbations due to these other bodies. For Titan we also take into account the large atmospheric torque at the semi-annual period of Saturn around the Sun.We numerically evaluate the amplitude and phase of the long-period librations for many interior structure models of the icy moons constrained by the mass, radius and gravity field.

  6. Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2016-01-01

    Despite of the tireless work by space surveillance assets, much of the Earth debris environment is not easily measured or tracked. For every object that is in an orbit we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. Therefore, orbital debris scientists rely on numerical modeling to understand the nature of the debris environment and its risk to space operations throughout Earth orbit and into the future. This talk will summarize the ways in which modeling complements measurements to help give us a better picture of what is occurring in Earth orbit, and helps us to better conduct current and future space operations.

  7. Abort staging characteristics of an external oxygen tank separating from the space shuttle 040-A orbiter (.006 scale model) at Mach numbers of 0.6, 2.0, and 4.0

    NASA Technical Reports Server (NTRS)

    Fossler, I. H.; Cole, P.

    1972-01-01

    Experimental aerodynamic investigations were conducted on a .006 scale model of the space shuttle 040-A orbiter and its external fuel tank utilizing the NASA/MFSC dual sting support system in the MFSC 14 x 14 inch Trisonic Wind Tunnel. Normal force, pitching moment and axial force components were recorded simultaneously on the orbiter and the tank at selected tank field positions beneath the orbiter as both models were pitched through an angle of attack range of -5 deg to 20 deg. Incidence angles between orbiter and tank of 0 deg, 5 deg, 10 deg and 15 deg were investigated. During these tests Mach number was set at 0.6, 2.0 and 4.0.

  8. Life and Death Near Zero: The distribution and evolution of NEA orbits of near-zero MOID, (e, i), and q

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Morbidelli, Alessandro; Granvik, Mikael

    2016-10-01

    Modeling the distribution of orbits with near-zero orbital parameters requires special attention to the dimensionality of the parameters in question. This is even more true since orbits of near-zero MOID, (e, i), or q are especially interesting as sources or sinks of NEAs. An essentially zero value of MOID (Minimum Orbital Intersection Distance) with respect to the Earth's orbit is a requirement for an impact trajectory, and initially also for ejecta from lunar impacts into heliocentric orbits. The collision cross section of the Earth goes up greatly with decreasing relative encounter velocity, venc, thus the impact flux onto the Earth is enhanced in such low-venc objects, which correspond to near-zero (e,i) orbits. And lunar ejecta that escapes from the Earth-moon system mostly does so at only barely greater than minimum velocity for escape (Gladman, et al., 1995, Icarus 118, 302-321), so the Earth-moon system is both a source and a sink of such low-venc orbits, and understanding the evolution of these populations requires accurately modeling the orbit distributions. Lastly, orbits of very low heliocentric perihelion distance, q, are particularly interesting as a "sink" in the NEA population as asteroids "fall into the sun" (Farinella, et al., 1994, Nature 371, 314-317). Understanding this process, and especially the role of disintegration of small asteroids as they evolve into low-q orbits (Granvik et al., 2016, Nature 530, 303-306), requires accurate modeling of the q distribution that would exist in the absence of a "sink" in the distribution. In this paper, we derive analytical expressions for the expected steady-state distributions near zero of MOID, (e,i), and q in the absence of sources or sinks, compare those to numerical simulations of orbit distributions, and lastly evaluate the distributions of discovered NEAs to try to understand the sources and sinks of NEAs "near zero" of these orbital parameters.

  9. Analysis of Petal Rotation Trajectory Characteristics

    NASA Technical Reports Server (NTRS)

    Anderson, Rodney L.; Campagnola, Stefano; Buffington, Brent B.

    2014-01-01

    In this study, the characteristics of petal rotation trajectories are explored in both the two-body and circular restricted three-body problem (CRTBP) models. Petal rotation trajectories alternate long and short resonances of different kinds to rotate the line of apsides. They are typically computed using the patched conic model, and they are used in a number of different missions and mission concepts including Cassini, JUICE, and Europa mission concepts. Petal rotation trajectories are first analyzed here using the patched conic model to quantify their characteristics and search for cases with fast rotation of the line of apsides. When they are computed in the CRTBP, they are unstable periodic orbits with corresponding stable and unstable manifolds. The characteristics of these orbits are explored from a dynamical systems perspective in the second phase of the study.

  10. The structure of motion in a 4-component galaxy mass model

    NASA Astrophysics Data System (ADS)

    Caranicolas, N. D.

    1996-03-01

    We use a composite galaxy model consisting of a disk-halo, bulge, nucleus and dark-halo components in order to investigate the motion of stars in ther-z plane. It is observed that high angular momentum stars move in regular orbits. The majority of orbits are box orbits. There are also banana-like orbits. For a given value of energy, only a fraction of the low angular momentum stars — those going near the nucleus — show chaotic motion while the rest move in regular orbits. Again one observes the above two kinds of orbits. In addition to the above one can also see orbits with the characteristics of the 2/3 and 3/4 resonance. It is also shown that, in the absence of the bulge component, the area of chaotic motion in the surface of section increases, significantly. This suggests that a larger number of low angular momentum stars are in chaotic orbits in galaxies with massive nuclei and no bulge components.

  11. Periodic Orbit Families in the Gravitational Field of Irregular-shaped Bodies

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Baoyin, Hexi

    2016-11-01

    The discovery of binary and triple asteroids in addition to the execution of space missions to minor celestial bodies in the past several years have focused increasing attention on periodic orbits around irregular-shaped celestial bodies. In the present work, we adopt a polyhedron shape model for providing an accurate representation of irregular-shaped bodies and employ the model to calculate their corresponding gravitational and effective potentials. We also investigate the characteristics of periodic orbit families and the continuation of periodic orbits. We prove a fact, which provides a conserved quantity that permits restricting the number of periodic orbits in a fixed energy curved surface about an irregular-shaped body. The collisions of Floquet multipliers are maintained during the continuation of periodic orbits around the comet 1P/Halley. Multiple bifurcations in the periodic orbit families about irregular-shaped bodies are also discussed. Three bifurcations in the periodic orbit family have been found around the asteroid 216 Kleopatra, which include two real saddle bifurcations and one period-doubling bifurcation.

  12. Origin of the orbital architecture of the giant planets of the Solar System.

    PubMed

    Tsiganis, K; Gomes, R; Morbidelli, A; Levison, H F

    2005-05-26

    Planetary formation theories suggest that the giant planets formed on circular and coplanar orbits. The eccentricities of Jupiter, Saturn and Uranus, however, reach values of 6 per cent, 9 per cent and 8 per cent, respectively. In addition, the inclinations of the orbital planes of Saturn, Uranus and Neptune take maximum values of approximately 2 degrees with respect to the mean orbital plane of Jupiter. Existing models for the excitation of the eccentricity of extrasolar giant planets have not been successfully applied to the Solar System. Here we show that a planetary system with initial quasi-circular, coplanar orbits would have evolved to the current orbital configuration, provided that Jupiter and Saturn crossed their 1:2 orbital resonance. We show that this resonance crossing could have occurred as the giant planets migrated owing to their interaction with a disk of planetesimals. Our model reproduces all the important characteristics of the giant planets' orbits, namely their final semimajor axes, eccentricities and mutual inclinations.

  13. The Outer Solar System Origin Survey full data release orbit catalog and characterization.

    NASA Astrophysics Data System (ADS)

    Kavelaars, J. J.; Bannister, Michele T.; Gladman, Brett; Petit, Jean-Marc; Gwyn, Stephen; Alexandersen, Mike; Chen, Ying-Tung; Volk, Kathryn; OSSOS Collaboration.

    2017-10-01

    The Outer Solar System Origin Survey (OSSOS) completed main data acquisition in February 2017. Here we report the release of our full orbit sample, which include 836 TNOs with high precision orbit determination and classification. We combine the OSSOS orbit sample with previously release Canada-France Ecliptic Plane Survey (CFEPS) and a precursor survey to OSSOS by Alexandersen et al. to provide a sample of over 1100 TNO orbits with high precision classified orbits and precisely determined discovery and tracking circumstances (characterization). We are releasing the full sample and characterization to the world community, along with software for conducting ‘Survey Simulations’, so that this sample of orbits can be used to test models of the formation of our outer solar system against the observed sample. Here I will present the characteristics of the data set and present a parametric model for the structure of the classical Kuiper belt.

  14. Creation of half-metallic f -orbital Dirac fermion with superlight elements in orbital-designed molecular lattice

    NASA Astrophysics Data System (ADS)

    Cui, Bin; Huang, Bing; Li, Chong; Zhang, Xiaoming; Jin, Kyung-Hwan; Zhang, Lizhi; Jiang, Wei; Liu, Desheng; Liu, Feng

    2017-08-01

    Magnetism in solids generally originates from the localized d or f orbitals that are hosted by heavy transition-metal elements. Here, we demonstrate a mechanism for designing a half-metallic f -orbital Dirac fermion from superlight s p elements. Combining first-principles and model calculations, we show that bare and flat-band-sandwiched (FBS) Dirac bands can be created when C20 molecules are deposited into a two-dimensional hexagonal lattice, which are composed of f -molecular orbitals (MOs) derived from s p -atomic orbitals (AOs). Furthermore, charge doping of the FBS Dirac bands induces spontaneous spin polarization, converting the system into a half-metallic Dirac state. Based on this discovery, a model of a spin field effect transistor is proposed to generate and transport 100% spin-polarized carriers. Our finding illustrates a concept to realize exotic quantum states by manipulating MOs, instead of AOs, in orbital-designed molecular crystal lattices.

  15. Periodic orbits of solar sail equipped with reflectance control device in Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Yuan, Jianping; Gao, Chen; Zhang, Junhua

    2018-02-01

    In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth-Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the L1 and L2 points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.

  16. Orbital tori for non-axisymmetric galaxies

    NASA Astrophysics Data System (ADS)

    Binney, James

    2018-02-01

    Our Galaxy's bar makes the Galaxy's potential distinctly non-axisymmetric. All orbits are affected by non-axisymmetry, and significant numbers are qualitatively changed by being trapped at a resonance with the bar. Orbital tori are used to compute these effects. Thick-disc orbits are no less likely to be trapped by corotation or a Lindblad resonance than thin-disc orbits. Perturbation theory is used to create non-axisymmetric orbital tori from standard axisymmetric tori, and both trapped and untrapped orbits are recovered to surprising accuracy. Code is added to the TorusModeller library that makes it as easy to manipulate non-axisymmetric tori as axisymmetric ones. The augmented TorusModeller is used to compute the velocity structure of the solar neighbourhood for bars of different pattern speeds and a simple action-based distribution function. The technique developed here can be applied to any non-axisymmetric potential that is stationary in a rotating from - hence also to classical spiral structure.

  17. Analysis of Plasma Bubble Signatures in the Ionosphere

    DTIC Science & Technology

    2011-03-01

    the equinoctial months resulted in greater slant TEC differences and, hence, greater communication problems. The results of this study not only...resulting in miscalculated enemy positions and misidentified space objects and orbit tracks. Errors in orbital positions could result in disastrous...uses a time-dependent physics-based model of the global ionosphere-plasmasphere and a Kalman filter as a basis for assimilating a diverse set of real

  18. CASSINI. Report on the Phase A study: Saturn Orbiter and Titan probe

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An in-depth, second phase exploration of Saturn is proposed. The scientific objectives involving Titan, Saturn's rings, icy satellites, magnetosphere, Jupiter, asteroids, and cruise science are covered. Other topics presented include: (1) the model payloads; (2) project requirements; (3) mission; (4) launch vehicle; (5) the orbiter system; (6) the Titan probe system; (7) mission operations; (8) management; and (9) development plan.

  19. Relative motion of orbiting particles under the influence of perturbing forces. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    Eades, J. B., Jr.

    1974-01-01

    The relative motion for orbiting vehicles, under the influence of various perturbing forces, has been studied to determine what influence these inputs, and others, can have. The analytical tasks are discribed in general terms; the force types considered, are outlined modelled and simulated, and the capabilities of the computer programs which have evolved in support of this work are denoted.

  20. Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Capon, Christopher; Boyce, Russell; Brown, Melrose

    2016-07-01

    Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.

  1. Modeling the Effects of Asynchronous Rotation on Secondary Eclipse Timings in HW VIr Binaries

    NASA Astrophysics Data System (ADS)

    Clancy, Padraig

    2018-01-01

    HW Vir binaries are post common envelope binaries consisting of a hot subdwarf and red dwarf, with light curves dominated by primary eclipses, a strong reflection effect, and secondary eclipses. They have orbital periods ranging from a few hours to half a day and are generally thought to be tidally locked; most studies assume both synchronous rotation and zero eccentricity when modeling HW Vir light curves and radial velocities. Their stable eclipse timings are frequently used in O-C studies to look for the presence of circumbinary objects, measure evolutionary changes in the orbital period, and even constrain the component masses through Roemer delay measurements of the secondary eclipse. While most systems are probably tidally locked or close to it, even slightly asynchronous rotation could theoretically shift the orbital phase of the reflection effect. Here we investigate how asynchronous rotation might affect measurements of secondary eclipse timings by generating thousands of synthetic light curves with a range of reflection effect phases, fitting eclipse timings, and creating O-C diagrams.

  2. THE STATISTICAL MECHANICS OF PLANET ORBITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tremaine, Scott, E-mail: tremaine@ias.edu

    2015-07-10

    The final “giant-impact” phase of terrestrial planet formation is believed to begin with a large number of planetary “embryos” on nearly circular, coplanar orbits. Mutual gravitational interactions gradually excite their eccentricities until their orbits cross and they collide and merge; through this process the number of surviving bodies declines until the system contains a small number of planets on well-separated, stable orbits. In this paper we explore a simple statistical model for the orbit distribution of planets formed by this process, based on the sheared-sheet approximation and the ansatz that the planets explore uniformly all of the stable region ofmore » phase space. The model provides analytic predictions for the distribution of eccentricities and semimajor axis differences, correlations between orbital elements of nearby planets, and the complete N-planet distribution function, in terms of a single parameter, the “dynamical temperature,” that is determined by the planetary masses. The predicted properties are generally consistent with N-body simulations of the giant-impact phase and with the distribution of semimajor axis differences in the Kepler catalog of extrasolar planets. A similar model may apply to the orbits of giant planets if these orbits are determined mainly by dynamical evolution after the planets have formed and the gas disk has disappeared.« less

  3. NanoSail - D Orbital and Attitude Dynamics

    NASA Technical Reports Server (NTRS)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  4. Modelos autoconsistentes de sistemas estelares cuspidales y triaxiales con distribución de velocidades casi isotrópica

    NASA Astrophysics Data System (ADS)

    Carpintero, D. D.; Muzzio, J. C.; Navone, H. D.; Zorzi, A. F.

    It has been shown in many works that it is possible to build stable, self-consistent models of triaxial stellar systems, even with cusps, and containing high percentages of chaotic orbits. Since all these models have been obtained from cold collapses, their velocity distributions are strongly radial. Also, chaos was computed using either Lyapunov exponents or SALI. However, models obtained by adiabatic deformation of spherical systems, in which the velocity distribution is more isotropic, showed a very low level of chaos, though it must be noted that the method of detecting chaos used in this case, namely the variation of orbital frequencies, is less sensitive than the abovementioned methods. In this work, we present models obtained by adiabatic deformation, in which we compute the fraction of chaotic orbits using both Lyapunov exponents and variation of orbital frequencies. Our results show that the percentages of chaotic orbits is significant, though they are smaller than those obtained in models with strong radial velocity components. FULL TEXT IN SPANISH

  5. PHOTOMETRIC, SPECTROSCOPIC, AND ORBITAL PERIOD STUDY OF THREE EARLY-TYPE SEMI-DETACHED SYSTEMS: XZ AQL, UX HER, AND AT PEG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zola, S.; Baştürk, Ö.; Şenavcı, H. V.

    2016-08-01

    In this paper, we present a combined photometric, spectroscopic, and orbital period study of three early-type eclipsing binary systems: XZ Aql, UX Her, and AT Peg. As a result, we have derived the absolute parameters of their components and, on that basis, we discuss their evolutionary states. Furthermore, we compare their parameters with those of other binary systems and with theoretical models. An analysis of all available up-to-date times of minima indicated that all three systems studied here show cyclic orbital changes; their origin is discussed in detail. Finally, we performed a frequency analysis for possible pulsational behavior, and asmore » a result we suggest that XZ Aql hosts a δ Scuti component.« less

  6. A Model for Space Shuttle Orbiter Tire Side Forces Based on NASA Landing Systems Research Aircraft Test Results

    NASA Technical Reports Server (NTRS)

    Carter, John F.; Nagy, Christopher J.; Barnicki, Joseph S.

    1997-01-01

    Forces generated by the Space Shuttle orbiter tire under varying vertical load, slip angle, speed, and surface conditions were measured using the Landing System Research Aircraft (LSRA). Resulting data were used to calculate a mathematical model for predicting tire forces in orbiter simulations. Tire side and drag forces experienced by an orbiter tire are cataloged as a function of vertical load and slip angle. The mathematical model is compared to existing tire force models for the Space Shuttle orbiter. This report describes the LSRA and a typical test sequence. Testing methods, data reduction, and error analysis are presented. The LSRA testing was conducted on concrete and lakebed runways at the Edwards Air Force Flight Test Center and on concrete runways at the Kennedy Space Center (KSC). Wet runway tire force tests were performed on test strips made at the KSC using different surfacing techniques. Data were corrected for ply steer forces and conicity.

  7. Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II

    NASA Astrophysics Data System (ADS)

    Boden, A. F.; Lane, B. F.; Creech-Eakman, M.; Queloz, D.; PTI Collaboration

    1999-12-01

    The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. Following our previous work on resolving spectroscopic binary stars with the Palomar Testbed Interferometer (PTI), we will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival radial velocity data. The six systems for which we will present new orbit models are: 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064). Most of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions. The work described in this paper was performed under contract with the National Aeronautics and Space Administration.

  8. Hollow cathodes as electron emitting plasma contactors Theory and computer modeling

    NASA Technical Reports Server (NTRS)

    Davis, V. A.; Katz, I.; Mandell, M. J.; Parks, D. E.

    1987-01-01

    Several researchers have suggested using hollow cathodes as plasma contactors for electrodynamic tethers, particularly to prevent the Shuttle Orbiter from charging to large negative potentials. Previous studies have shown that fluid models with anomalous scattering can describe the electron transport in hollow cathode generated plasmas. An improved theory of the hollow cathode plasmas is developed and computational results using the theory are compared with laboratory experiments. Numerical predictions for a hollow cathode plasma source of the type considered for use on the Shuttle are presented, as are three-dimensional NASCAP/LEO calculations of the emitted ion trajectories and the resulting potentials in the vicinity of the Orbiter. The computer calculations show that the hollow cathode plasma source makes vastly superior contact with the ionospheric plasma compared with either an electron gun or passive ion collection by the Orbiter.

  9. Dynamical fate of wide binaries in the solar neighborhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, M.D.; Shapiro, S.L.; Wasserman, I.

    1987-01-01

    An analytical model is presented for the evolution of wide binaries in the Galaxy. The study is pertinent to the postulated solar companion, Nemesis, which may disturb the Oort cloud and cause catastrophic comet showers to strike the earth every 26 Myr. Distant gravitational encounters are modeled by Fokker-Planck coefficients for advection and diffusion of the orbital binding energy. It is shown that encounters with passing stars cause a diffusive evolution of the binding energy and semimajor axis. Encounters with subclumps in giant molecular clouds disrupt orbits to a degree dependent on the cumulative number of stellar encounters. The timemore » scales of the vents and the limitations of scaling laws used are discussed. Results are provided from calculations of galactic distribution of wide binaries and the evolution of wide binary orbits. 38 references.« less

  10. Evaluating Precipitation from Orbital Data Products of TRMM and GPM over the Indian Subcontinent

    NASA Astrophysics Data System (ADS)

    Jayaluxmi, I.; Kumar, D. N.

    2015-12-01

    The rapidly growing records of microwave based precipitation data made available from various earth observation satellites have instigated a pressing need towards evaluating the associated uncertainty which arise from different sources such as retrieval error, spatial/temporal sampling error and sensor dependent error. Pertaining to microwave remote sensing, most of the studies in literature focus on gridded data products, fewer studies exist on evaluating the uncertainty inherent in orbital data products. Evaluation of the latter are essential as they potentially cause large uncertainties during real time flood forecasting studies especially at the watershed scale. The present study evaluates the uncertainty of precipitation data derived from the orbital data products of the Tropical Rainfall Measuring Mission (TRMM) satellite namely the 2A12, 2A25 and 2B31 products. Case study results over the flood prone basin of Mahanadi, India, are analyzed for precipitation uncertainty through these three facets viz., a) Uncertainty quantification using the volumetric metrics from the contingency table [Aghakouchak and Mehran 2014] b) Error characterization using additive and multiplicative error models c) Error decomposition to identify systematic and random errors d) Comparative assessment with the orbital data from GPM mission. The homoscedastic random errors from multiplicative error models justify a better representation of precipitation estimates by the 2A12 algorithm. It can be concluded that although the radiometer derived 2A12 precipitation data is known to suffer from many sources of uncertainties, spatial analysis over the case study region of India testifies that they are in excellent agreement with the reference estimates for the data period considered [Indu and Kumar 2015]. References A. AghaKouchak and A. Mehran (2014), Extended contingency table: Performance metrics for satellite observations and climate model simulations, Water Resources Research, vol. 49, 7144-7149; J. Indu and D. Nagesh Kumar (2015), Evaluation of Precipitation Retrievals from Orbital Data Products of TRMM over a Subtropical basin in India, IEEE Transactions on Geoscience and Remote Sensing, in press, doi: 10.1109/TGRS.2015.2440338.

  11. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Flegel, S.

    2014-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  12. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Functional renormalization group study of orbital fluctuation mediated superconductivity: Impact of the electron-boson coupling vertex corrections

    NASA Astrophysics Data System (ADS)

    Tazai, Rina; Yamakawa, Youichi; Tsuchiizu, Masahisa; Kontani, Hiroshi

    2016-09-01

    In various multiorbital systems, the emergence of the orbital fluctuations and their role on the pairing mechanism attract increasing attention. To achieve deep understanding on these issues, we perform a functional renormalization group (fRG) study for the two-orbital Hubbard model. The vertex corrections for the electron-boson coupling (U -VC), which are dropped in the Migdal-Eliashberg gap equation, are obtained by solving the RG equation. We reveal that the dressed electron-boson coupling for the charge channel Ûeffc becomes much larger than the bare Coulomb interaction Û 0 due to the U -VC in the presence of moderate spin fluctuations. For this reason, the attractive pairing interaction due to the charge or orbital fluctuations is enlarged by the factor (Ûeffc/Û0) 2≫1 . In contrast, the spin fluctuation pairing interaction is suppressed by the spin-channel U -VC, because of the relation Ûeffs≪Û 0 . The present study demonstrates that the orbital or charge fluctuation pairing mechanism can be realized in various multiorbital systems thanks to the U -VC, such as in Fe-based superconductors.

  14. Measuring atmospheric density using GPS-LEO tracking data

    NASA Astrophysics Data System (ADS)

    Kuang, D.; Desai, S.; Sibthorpe, A.; Pi, X.

    2014-01-01

    We present a method to estimate the total neutral atmospheric density from precise orbit determination of Low Earth Orbit (LEO) satellites. We derive the total atmospheric density by determining the drag force acting on the LEOs through centimeter-level reduced-dynamic precise orbit determination (POD) using onboard Global Positioning System (GPS) tracking data. The precision of the estimated drag accelerations is assessed using various metrics, including differences between estimated along-track accelerations from consecutive 30-h POD solutions which overlap by 6 h, comparison of the resulting accelerations with accelerometer measurements, and comparison against an existing atmospheric density model, DTM-2000. We apply the method to GPS tracking data from CHAMP, GRACE, SAC-C, Jason-2, TerraSAR-X and COSMIC satellites, spanning 12 years (2001-2012) and covering orbital heights from 400 km to 1300 km. Errors in the estimates, including those introduced by deficiencies in other modeled forces (such as solar radiation pressure and Earth radiation pressure), are evaluated and the signal and noise levels for each satellite are analyzed. The estimated density data from CHAMP, GRACE, SAC-C and TerraSAR-X are identified as having high signal and low noise levels. These data all have high correlations with anominal atmospheric density model and show common features in relative residuals with respect to the nominal model in related parameter space. On the contrary, the estimated density data from COSMIC and Jason-2 show errors larger than the actual signal at corresponding altitudes thus having little practical value for this study. The results demonstrate that this method is applicable to data from a variety of missions and can provide useful total neutral density measurements for atmospheric study up to altitude as high as 715 km, with precision and resolution between those derived from traditional special orbital perturbation analysis and those obtained from onboard accelerometers.

  15. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    PubMed

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  16. Detecting a Subsurface Ocean From Periodic Orbits at Enceladus

    NASA Astrophysics Data System (ADS)

    Casotto, S.; Padovan, S.; Russell, R. P.; Lara, M.

    2008-12-01

    Enceladus is a small icy satellite of Saturn which has been observed by the Cassini orbiter to eject plumes mainly consisting of water vapor from the "tiger stripes" located near its South pole. While tidal heating has been ruled out as an inadequate energy source to drive these eruptions, tidally induced shear stress both along and across the stripes appears to be sufficiently powerful. The internal constitution of Enceladus that fits this model is likely to entail a thin crust and a subcrustal water layer above an undifferentiated interior. Apart from the lack of a core/mantle boundary, the situation is similar to the current hypothetical models of Europa's interior. The determination of the existence of a subsurface fluid layer can therefore be pursued with similar methods, including the study of the gravitational perturbations of tidal origin on an Enceladus orbiter, and the use of altimeter measurements to the tidally deformed surface. The dynamical environment of an Enceladus orbiter is made very unstable by the overwhelming presence of nearby Saturn. The Enceladus sphere of influence is roughly twice its radius. This makes it considerably more difficult to orbit than Europa, whose sphere of influence is ~six times its radius. While low-altitude, near-polar Enceladus orbits suffer extreme instability, recent works have extended the inclination envelope for long-term stable orbits at Enceladus. Several independent methods suggest that ~65 degrees inclination is the maximum attainable for stable, perturbed Keplerian motion. These orbits are non-circular and exist with altitude variations from ~200 to ~300 km. We propose a nominal reference orbit that enjoys long term stability and is favorable for long-term mapping and other scientific experiments. A brief excursion to a lower altitude, slightly higher inclined, yet highly unstable orbit is proposed to improve gravity signatures and enable high resolution, nadir-pointing experiments on the geysers emanating from the tiger- stripes. Near-circular, low altitude highly inclined orbits with arbitrary initial conditions will impact Enceladus if uncontrolled in about 1 to 2 days. To reduce risk and station-keeping requirements we choose periodic orbits in the Hill's plus non-spherical Enceladus model. Despite the instability, the repeat ground track solutions represent equilibria in the dominant terms of the dynamics and therefore extend the uncontrolled lifetimes to ~7 to ~10 days. Round-trip transfers between the two orbital phases is expected to conservatively cost between ~50 and ~100 m/s. We use orbits of different altitudes and inclinations to simulate Earth-based ranging to the orbiter and altimeter measurements to the surface of Enceladus. The simulations are made assuming different tidal responses by adopting different values of the Love numbers. The synthetic measurements are then inverted and the tidal parameters h2 and k2 estimated. Results will be presented in terms of sensitivity of detection of Love numbers to the different orbital geometries. Indications will thus be provided for optimized orbit planning of future exploration missions aimed at investigating the internal structure of the satellite and the detection of its putative subcrustal ocean.

  17. Metal-insulator transition in a doubly orbitally degenerate model with correlated hopping

    NASA Astrophysics Data System (ADS)

    Didukh, L.; Skorenkyy, Yu.; Dovhopyaty, Yu.; Hankevych, V.

    2000-03-01

    In the present paper, we propose a doubly orbitally degenerate narrow-band model with correlated hopping. The peculiarity of the model is taking into account the matrix element of electron-electron interaction, which describes intersite hoppings of electrons. In particular, this leads to the concentration dependence of the effective hopping integral. The cases of the strong and weak Hund's coupling are considered. By means of a generalized mean-field approximation the single-particle Green function and quasiparticle energy spectrum are calculated. Metal-insulator transition is studied in the model at different integer values of the electron concentration. With the help of the obtained energy spectrum, we find energy gap width and criteria of metal-insulator transition.

  18. Prediction of high-energy radiation belt electron fluxes using a combined VERB-NARMAX model

    NASA Astrophysics Data System (ADS)

    Pakhotin, I. P.; Balikhin, M. A.; Shprits, Y.; Subbotin, D.; Boynton, R.

    2013-12-01

    This study is concerned with the modelling and forecasting of energetic electron fluxes that endanger satellites in space. By combining data-driven predictions from the NARMAX methodology with the physics-based VERB code, it becomes possible to predict electron fluxes with a high level of accuracy and across a radial distance from inside the local acceleration region to out beyond geosynchronous orbit. The model coupling also makes is possible to avoid accounting for seed electron variations at the outer boundary. Conversely, combining a convection code with the VERB and NARMAX models has the potential to provide even greater accuracy in forecasting that is not limited to geostationary orbit but makes predictions across the entire outer radiation belt region.

  19. An analysis of the booster plume impingement environment during the space shuttle nominal staging maneuver

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.; Penny, M. M.; Greenwood, T. F.; Fossler, I. H.

    1972-01-01

    An experimental study of the plume impingement heating on the space shuttle booster afterbody resulting from the space shuttle orbiter engine plumes was conducted. The 1/100-scale model tests consisted of one and two orbiter engine firings on a flat plate, a flat plate with a fin, and a cylinder model. The plume impingement heating rates on these surfaces were measured using thin film heat transfer gages. Results indicate the engine simulation is a reasonable approximation to the two engine configuration, but more tests are needed to verify the plume model of the main engine configuration. For impingment, results show models experienced laminar boundary layer convective heating. Therefore, tests at higher Reynolds numbers are needed to determine impingment heating.

  20. Dynamical instabilities in axisymmetric stellar systems. I - Oblate E6 models

    NASA Technical Reports Server (NTRS)

    Levison, Harold F.; Duncan, Martin J.; Smith, Bruce F.

    1990-01-01

    The stability of a set of models based on isothermal oblate E6 elliptical galaxies is studied using N-body techniques. The only stable models are those that are near the isotropic model and have nearly equal number of stars in retrograde and prograde orbits. Fast rotators are unstable to modes that appear to be analogous to the classical streaming instability seen in many disk systems. Systems with a large velocity dispersion in the direction of the cylindrical radius are unstable to modes that appear to be similar to the radial orbit instability observed in some spherical systems. However, evidence is presented that these two instabilities may be related, and an instability criterion that applies to both is constructed.

  1. Improving satellite vulnerability assessment to untrackable orbital debris

    NASA Astrophysics Data System (ADS)

    Welty, Nathan; Schaefer, Frank; Rudolph, Martin; Destefanis, Roberto; Grassi, Lilith

    2012-07-01

    The projected growth in the untrackable orbital debris population will place an increased emphasis on satellite vulnerability assessments during both design and mission operations. This study presents an enhanced method for assessing satellite vulnerability to untrackable orbital debris that expands on traditional practices. By looking beyond structural penetration of the spacecraft, the method predicts the survivability of individual components and the associated degradation of system functionality resulting from untrackable debris impacts. A new risk assessment tool, the Particle Impact Risk and Vulnerability Assessment Tool (PIRAT), has been developed based on this method and is also presented here. It interfaces with both the NASA ORDEM2000 and ESA MASTER-2009 debris models and has been validated against the benchmark test cases from the Inter-Agency Space Debris Coordination Committee (IADC). This study concludes with an example vulnerability assessment using PIRAT for a generic Earth observation satellite in a Sun-synchronous low-Earth orbit. The results illustrate the additional insight provided by this method that can be used to improve the robustness of future satellite designs and mitigate the overall mission risk posed by untrackable orbital debris.

  2. Optimal aeroassisted coplanar orbital transfer using an energy model

    NASA Technical Reports Server (NTRS)

    Halyo, Nesim; Taylor, Deborah B.

    1989-01-01

    The atmospheric portion of the trajectories for the aeroassisted coplanar orbit transfer was investigated. The equations of motion for the problem are expressed using reduced order model and total vehicle energy, kinetic plus potential, as the independent variable rather than time. The order reduction is achieved analytically without an approximation of the vehicle dynamics. In this model, the problem of coplanar orbit transfer is seen as one in which a given amount of energy must be transferred from the vehicle to the atmosphere during the trajectory without overheating the vehicle. An optimal control problem is posed where a linear combination of the integrated square of the heating rate and the vehicle drag is the cost function to be minimized. The necessary conditions for optimality are obtained. These result in a 4th order two-point-boundary-value problem. A parametric study of the optimal guidance trajectory in which the proportion of the heating rate term versus the drag varies is made. Simulations of the guidance trajectories are presented.

  3. Zero-gravity aerosol behavior

    NASA Technical Reports Server (NTRS)

    Edwards, H. W.

    1981-01-01

    The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.

  4. A simple orbit-attitude coupled modelling method for large solar power satellites

    NASA Astrophysics Data System (ADS)

    Li, Qingjun; Wang, Bo; Deng, Zichen; Ouyang, Huajiang; Wei, Yi

    2018-04-01

    A simple modelling method is proposed to study the orbit-attitude coupled dynamics of large solar power satellites based on natural coordinate formulation. The generalized coordinates are composed of Cartesian coordinates of two points and Cartesian components of two unitary vectors instead of Euler angles and angular velocities, which is the reason for its simplicity. Firstly, in order to develop natural coordinate formulation to take gravitational force and gravity gradient torque of a rigid body into account, Taylor series expansion is adopted to approximate the gravitational potential energy. The equations of motion are constructed through constrained Hamilton's equations. Then, an energy- and constraint-conserving algorithm is presented to solve the differential-algebraic equations. Finally, the proposed method is applied to simulate the orbit-attitude coupled dynamics and control of a large solar power satellite considering gravity gradient torque and solar radiation pressure. This method is also applicable to dynamic modelling of other rigid multibody aerospace systems.

  5. Simulation study on dynamics model of two kinds of on-orbit soft-contact mechanism

    NASA Astrophysics Data System (ADS)

    Ye, X.; Dong, Z. H.; Yang, F.

    2018-05-01

    Aiming at the problem that the operating conditions of the space manipulator is harsh and the space manipulator could not bear the large collision momentum, this paper presents a new concept and technical method, namely soft contact technology. Based on ADAMS dynamics software, this paper compares and simulates the mechanism model of on-orbit soft-contact mechanism based on the bionic model and the integrated double joint model. The main purpose is to verify the path planning ability and the momentum buffering ability based on the different design concept mechanism. The simulation results show that both the two mechanism models have the path planning function before the space target contact, and also has the momentum buffer and controllability during the space target contact process.

  6. Space Shuttle Orbiter Crew Hatch Jettison Test using a 0.0405-scale model (16-0) in the Texas A/M low speed wind tunnel (OA362). Space Shuttle aerothermodynamic data report

    NASA Technical Reports Server (NTRS)

    Mitchell, C. E.

    1992-01-01

    This report contains post-test information for the Space Shuttle Orbiter Crew Hatch Jettison Test OA362 which was conducted in the Texas A&M Low Speed Wind Tunnel from 6/15/87 to 6/22/87. The test objective was to verify that the crew hatch, once jettisoned, would clear the orbiter under various simulated flight conditions. Several model hatches were used with the 0.0405-scale orbiter (Model 16-0). The model's angle of attack was set at 10, 15, and 20 degrees while the sideslip had values of minus 5, 0, and plus 5 degrees. The full scale Qbars that were simulated were 105, 128, 160, and 210 psf. In the hatch jettison mechanism itself, the plunger pressure was varied to achieve horizontal velocities of 3, 5, 7, and 20.1 feet per second model scale, and the plunger location was varied to achieve a variety of rotational velocities. The orbiter model was subjected to 122 runs with 13 different hatches. Of these, 60 were good runs.

  7. Stability and evolution of orbits around the binary asteroid 175706 (1996 FG3): Implications for the MarcoPolo-R mission

    NASA Astrophysics Data System (ADS)

    Hussmann, Hauke; Oberst, Jürgen; Wickhusen, Kai; Shi, Xian; Damme, Friedrich; Lüdicke, Fabian; Lupovka, Valery; Bauer, Sven

    2012-09-01

    In support of the MarcoPolo-R mission, we have carried out numerical simulations of spacecraft trajectories about the binary asteroid 175706 (1996 FG3) under the influence of solar radiation pressure. We study the effects of (1) the asteroid's mass, shape, and rotational parameters, (2) the secondary's mass, shape, and orbit parameters, (3) the spacecraft's mass, surface area, and reflectivity, and (4) the time of arrival, and therefore the relative position to the sun and planets. We have considered distance regimes between 5 and 20 km, the typical range for a detailed characterization of the asteroids - primary and secondary - with imaging systems, spectrometers and by laser altimetry. With solar radiation pressure and gravity forces of the small asteroid competing, orbits are found to be unstable, in general. However, limited orbital stability can be found in the so-called Self-Stabilized Terminator Orbits (SSTO), where initial orbits are circular, orbital planes are oriented approximately perpendicular to the solar radiation pressure, and where the orbital plane of the spacecraft is shifted slightly (between 0.2 and 1 km) from the asteroid in the direction away from the sun. Under the effect of radiation pressure, the vector perpendicular to the orbit plane is observed to follow the sun direction. Shape and rotation parameters of the asteroid as well as gravitational perturbations by the secondary (not to mention sun and planets) were found not to affect the results. Such stable orbits may be suited for long radio tracking runs, which will allow for studying the gravity field. As the effect of the solar radiation pressure depends on the spacecraft mass, shape, and albedo, good knowledge of the spacecraft model and persistent monitoring of the spacecraft orientation are required.

  8. Highly Anisotropic Magnon Dispersion in Ca_{2}RuO_{4}: Evidence for Strong Spin Orbit Coupling.

    PubMed

    Kunkemöller, S; Khomskii, D; Steffens, P; Piovano, A; Nugroho, A A; Braden, M

    2015-12-11

    The magnon dispersion in Ca_{2}RuO_{4} has been determined by inelastic neutron scattering on single crytals containing 1% of Ti. The dispersion is well described by a conventional Heisenberg model suggesting a local moment model with nearest neighbor interaction of J=8  meV. Nearest and next-nearest neighbor interaction as well as interlayer coupling parameters are required to properly describe the entire dispersion. Spin-orbit coupling induces a very large anisotropy gap in the magnetic excitations in apparent contrast with a simple planar magnetic model. Orbital ordering breaking tetragonal symmetry, and strong spin-orbit coupling can thus be identified as important factors in this system.

  9. Results of oil flow visualization tests of an 0.010-scale model (52-OT) of the space shuttle orbiter-tank mated and orbiter configurations in the AEDC VKF tunnel B (IA17B)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.

    1975-01-01

    An 0.010-scale model of the space shuttle (orbiter-tank mated and orbiter configurations) was tested in the AEDC VKF Tunnel B to investigate aerodynamic flow patterns. The tests utilized oil flow techniques to visualize the flow patterns. Tunnel free stream Mach number was 7.95 and nominal unit Reynolds number was 3.7 million per foot. Model angle of attack was varied from -5 deg through 10 deg and angle of sideslip was 0 deg and 2 deg. Photographs of resulting oil flow patterns are presented.

  10. Orbital Debris Modeling

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)

  11. A molecular orbital study of a model of the Mg2+ coordination complex of the self splicing reaction of ribosomal RNA

    NASA Technical Reports Server (NTRS)

    McCourt, M.; Shibata, M.; McIver, J. W.; Rein, R.

    1988-01-01

    Recent discoveries have established the fact that RNA is capable of acting as an enzyme. In this study two different types of molecular orbital calculations, INDO and ab initio, were used in an attempt to assess the structural/functional role of the Mg2+ hydrated complex in ribozyme reactions. Preliminary studies indicate that the reaction is multistep and that the Mg2+ complex exerts a stabilizing effect on the intermediate or midpoint of the reaction.

  12. Quantum theory of an atom in proximity to a superconductor

    NASA Astrophysics Data System (ADS)

    Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério

    2018-02-01

    The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.

  13. Modeling of the Orbital Evolution of 2060 Chiron

    NASA Astrophysics Data System (ADS)

    Kovalenko, Nataliya S.; Babenko, Yury G.; Churyumov, Klim I.

    2002-03-01

    The origin of Centaurs is one of the most interesting problems of Solar system science, and it has not yet been solved. To shed light on this problem one can investigate Centaurs' past and future orbital evolution. In this paper we discuss the results of Chiron's orbital evolution modeling. It was the first discovered Centaur and is the brightest one. Numerical integration was produced for 1 Myr forward and backward from the present time. A program based on the Everhart single sequence method for integrating orbits was used.

  14. Improved Solar-Radiation-Pressure Models for GPS Satellites

    NASA Technical Reports Server (NTRS)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  15. Modeling of the Orbital Debris Population of RORSAT Sodium-Potassium Droplets

    NASA Technical Reports Server (NTRS)

    Xu, Y.-L.; Krisko, P. H.; Matney, Mark; Stansbery, E. G.

    2010-01-01

    A large population resident in the orbital debris environment is composed of eutectic sodium-potassium (NaK) droplets, released during the reactor core ejection of 16 nuclear-powered Radar Ocean Reconnaissance Satellites (RORSATs) launched in the 1980s by the former Soviet Union. These electrically conducting RORSAT debris objects are spherical in shape, generating highly polarized radar returns. Their diameters are mostly in the centimeter and millimeter size regimes. Since the Space Surveillance Network catalog is limited to objects greater than 5 cm in low Earth orbit, our current knowledge about this special class of orbital debris relies largely on the analysis of Haystack radar data. This paper elaborates the simulation of the RORSAT debris populations in the new NASA Orbital Debris Engineering Model ORDEM2010, which replaces ORDEM2000. The estimation of the NaK populations uses the NASA NaK-module as a benchmark. It follows the general statistical approach to developing all other ORDEM2010-required LEO populations (for various types of debris and across a wide range of object sizes). This paper describes, in detail, each major step in the NaK-population derivation, including a specific discussion on the conversion between Haystack-measured radar-cross-sections and object-size distribution for the NaK droplets. Modeling results show that the RORSAT debris population is stable for the time period under study and that Haystack data sets are fairly consistent over the observations of multiple years.

  16. Viscoelastic properties of bovine orbital connective tissue and fat: constitutive models

    PubMed Central

    Yoo, Lawrence; Gupta, Vijay; Lee, Choongyeop; Kavehpore, Pirouz

    2012-01-01

    Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain–stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5–2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01–0.5 s−1 strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multimode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus. PMID:21207094

  17. GPS-Based Reduced Dynamic Orbit Determination Using Accelerometer Data

    NASA Technical Reports Server (NTRS)

    VanHelleputte, Tom; Visser, Pieter

    2007-01-01

    Currently two gravity field satellite missions, CHAMP and GRACE, are equipped with high sensitivity electrostatic accelerometers, measuring the non-conservative forces acting on the spacecraft in three orthogonal directions. During the gravity field recovery these measurements help to separate gravitational and non-gravitational contributions in the observed orbit perturbations. For precise orbit determination purposes all these missions have a dual-frequency GPS receiver on board. The reduced dynamic technique combines the dense and accurate GPS observations with physical models of the forces acting on the spacecraft, complemented by empirical accelerations, which are stochastic parameters adjusted in the orbit determination process. When the spacecraft carries an accelerometer, these measured accelerations can be used to replace the models of the non-conservative forces, such as air drag and solar radiation pressure. This approach is implemented in a batch least-squares estimator of the GPS High Precision Orbit Determination Software Tools (GHOST), developed at DLR/GSOC and DEOS. It is extensively tested with data of the CHAMP and GRACE satellites. As accelerometer observations typically can be affected by an unknown scale factor and bias in each measurement direction, they require calibration during processing. Therefore the estimated state vector is augmented with six parameters: a scale and bias factor for the three axes. In order to converge efficiently to a good solution, reasonable a priori values for the bias factor are necessary. These are calculated by combining the mean value of the accelerometer observations with the mean value of the non-conservative force models and empirical accelerations, estimated when using these models. When replacing the non-conservative force models with accelerometer observations and still estimating empirical accelerations, a good orbit precision is achieved. 100 days of GRACE B data processing results in a mean orbit fit of a few centimeters with respect to high-quality JPL reference orbits. This shows a slightly better consistency compared to the case when using force models. A purely dynamic orbit, without estimating empirical accelerations thus only adjusting six state parameters and the bias and scale factors, gives an orbit fit for the GRACE B test case below the decimeter level. The in orbit calibrated accelerometer observations can be used to validate the modelled accelerations and estimated empirical accelerations computed with the GHOST tools. In along track direction they show the best resemblance, with a mean correlation coefficient of 93% for the same period. In radial and normal direction the correlation is smaller. During days of high solar activity the benefit of using accelerometer observations is clearly visible. The observations during these days show fluctuations which the modelled and empirical accelerations can not follow.

  18. Studies of the chemistry of the nightside ionosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1991-01-01

    A combination of numerical modeling and analysis of the Pioneer Venus UADS data base is studied, specifically data from the orbiter ion mass spectrometer (OIMS), orbiter neutral mass spectrometer (ONMS), and orbiter electron temperature probe (OETP). A one dimensional model of the Venus nightside ionosphere was set up in which downward fluxes of atomic ions are introduced at the upper boundary to simulate transport of ions from the dayside. The model shows that the densities of mass-28 ions, CO(+) + N(2+), resulting from an influx of atomic ions from the dayside are quite small, due to the high ionization potentials of CO and N2 that make chemical production difficult. A look at the data reveals that the actual densities of mass-28 ions are quite variable, from values near 10 to more than 10(exp 4) cm(exp -3). The excess mass-28 ions are assumed to be produced by electron precipitation and that the presence of high densities of mass-28 ions is a signature of auroral precipitation. A discussion of the atomic oxygen green line in the nightglow of Venus, which is produced mainly by dissociative recombination of O(2+), is presented. Original calculations of production rates of excited states for models based on Pioneer Venus data are also presented.

  19. Gravitational orientation of the orbital complex, Salyut-6--Soyuz

    NASA Technical Reports Server (NTRS)

    Grecho, G. M.; Sarychev, V. A.; Legostayev, V. P.; Sazonov, V. V.; Gansvind, I. N.

    1983-01-01

    A simple mathematical model is proposed for the Salyut-6-Soyuz orbital complex motion with respect to the center of mass under the one-axis gravity-gradient orientation regime. This model was used for processing the measurements of the orbital complex motion parameters when the above orientation region was implemented. Some actual satellite motions are simulated and the satellite's aerodynamic parameters are determined. Estimates are obtained for the accuracy of measurements as well as that of the mathematical model.

  20. Super-elite plasma rings and the orbits of planets and satellites isomorphic to the orbits of electrons in the Bohr's model of the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2007-10-01

    This paper continues the series of papers [1 5] and generalizes the previous results to a proto-ring of magnetized plasma whose density decreases in the radial direction. The problem of quantization of the sector and orbital velocities, and of the radii and periods of revolution of elite plasma rings is considered. A new concept of super-elite rings is introduced. Their isomorphism with the orbits of the planets and planetary satellites in the Solar System is proved. This isomorphism also extends to the orbits of electrons in the Bohr’s model of the hydrogen atom.

  1. Development of an EVA systems cost model. Volume 2: Shuttle orbiter crew and equipment translation concepts and EVA workstation concept development and integration

    NASA Technical Reports Server (NTRS)

    1975-01-01

    EVA crewman/equipment translational concepts are developed for a shuttle orbiter payload application. Also considered are EVA workstation systems to meet orbiter and payload requirements for integration of workstations into candidate orbiter payload worksites.

  2. Differentiation of orbital lymphoma and idiopathic orbital inflammatory pseudotumor: combined diagnostic value of conventional MRI and histogram analysis of ADC maps.

    PubMed

    Ren, Jiliang; Yuan, Ying; Wu, Yingwei; Tao, Xiaofeng

    2018-05-02

    The overlap of morphological feature and mean ADC value restricted clinical application of MRI in the differential diagnosis of orbital lymphoma and idiopathic orbital inflammatory pseudotumor (IOIP). In this paper, we aimed to retrospectively evaluate the combined diagnostic value of conventional magnetic resonance imaging (MRI) and whole-tumor histogram analysis of apparent diffusion coefficient (ADC) maps in the differentiation of the two lesions. In total, 18 patients with orbital lymphoma and 22 patients with IOIP were included, who underwent both conventional MRI and diffusion weighted imaging before treatment. Conventional MRI features and histogram parameters derived from ADC maps, including mean ADC (ADC mean ), median ADC (ADC median ), skewness, kurtosis, 10th, 25th, 75th and 90th percentiles of ADC (ADC 10 , ADC 25 , ADC 75 , ADC 90 ) were evaluated and compared between orbital lymphoma and IOIP. Multivariate logistic regression analysis was used to identify the most valuable variables for discriminating. Differential model was built upon the selected variables and receiver operating characteristic (ROC) analysis was also performed to determine the differential ability of the model. Multivariate logistic regression showed ADC 10 (P = 0.023) and involvement of orbit preseptal space (P = 0.029) were the most promising indexes in the discrimination of orbital lymphoma and IOIP. The logistic model defined by ADC 10 and involvement of orbit preseptal space was built, which achieved an AUC of 0.939, with sensitivity of 77.30% and specificity of 94.40%. Conventional MRI feature of involvement of orbit preseptal space and ADC histogram parameter of ADC 10 are valuable in differential diagnosis of orbital lymphoma and IOIP.

  3. A Dynamic/Anisotropic Low Earth Orbit (LEO) Ionizing Radiation Model

    NASA Technical Reports Server (NTRS)

    Badavi, Francis F.; West, Katie J.; Nealy, John E.; Wilson, John W.; Abrahms, Briana L.; Luetke, Nathan J.

    2006-01-01

    The International Space Station (ISS) provides the proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the experimental validation of ionizing radiation environmental models, nuclear transport code algorithms, and nuclear reaction cross sections. Indeed, prior measurements on the Space Transportation System (STS; Shuttle) have provided vital information impacting both the environmental models and the nuclear transport code development by requiring dynamic models of the Low Earth Orbit (LEO) environment. Previous studies using Computer Aided Design (CAD) models of the evolving ISS configurations with Thermo Luminescent Detector (TLD) area monitors, demonstrated that computational dosimetry requires environmental models with accurate non-isotropic as well as dynamic behavior, detailed information on rack loading, and an accurate 6 degree of freedom (DOF) description of ISS trajectory and orientation.

  4. The Effect of Seasonal and Long-Period Geopotential Variations on the GPS Orbits

    NASA Technical Reports Server (NTRS)

    Melachroinos, Stavros A.; Lemoine, Frank G.; Chinn, Douglas S.; Zelensky, Nikita P.; Nicholas, Joseph B.; Beckley, Brian D.

    2013-01-01

    We examine the impact of using seasonal and long-period time-variable gravity field (TVG) models on GPS orbit determination, through simulations from 1994 to 2012. The models of time-variable gravity that we test include the GRGS release RL02 GRACE-derived 10-day gravity field models up to degree and order 20 (grgs20x20), a 4 x 4 series of weekly coefficients using GGM03S as a base derived from SLR and DORIS tracking to 11 satellites (tvg4x4), and a harmonic fit to the above 4 x 4 SLR-DORIS time series (goco2s_fit2). These detailed models are compared to GPS orbit simulations using a reference model (stdtvg) based on the International Earth Rotation Service (IERS) and International GNSS Service (IGS) repro1 standards. We find that the new TVG modeling produces significant along, cross-track orbit differences as well as annual, semi-annual, draconitic and long-period effects in the Helmert translation parameters (Tx, Ty, Tz) of the GPS orbits with magnitudes of several mm. We show that the simplistic TVG modeling approach used by all of the IGS Analysis Centers, which is based on the models provided by the IERS standards, becomes progressively less adequate following 2006 when compared to the seasonal and long-period TVG models.

  5. Scheduler for monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S; Pertica, Alexander J; Riot, Vincent J; De Vries, Willem H; Bauman, Brian J; Nikolaev, Sergei; Henderson, John R; Phillion, Donald W

    2015-04-28

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  6. Monitoring objects orbiting earth using satellite-based telescopes

    DOEpatents

    Olivier, Scot S.; Pertica, Alexander J.; Riot, Vincent J.; De Vries, Willem H.; Bauman, Brian J.; Nikolaev, Sergei; Henderson, John R.; Phillion, Donald W.

    2015-06-30

    An ephemeris refinement system includes satellites with imaging devices in earth orbit to make observations of space-based objects ("target objects") and a ground-based controller that controls the scheduling of the satellites to make the observations of the target objects and refines orbital models of the target objects. The ground-based controller determines when the target objects of interest will be near enough to a satellite for that satellite to collect an image of the target object based on an initial orbital model for the target objects. The ground-based controller directs the schedules to be uploaded to the satellites, and the satellites make observations as scheduled and download the observations to the ground-based controller. The ground-based controller then refines the initial orbital models of the target objects based on the locations of the target objects that are derived from the observations.

  7. Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.

    PubMed

    Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong

    2012-10-17

    We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.

  8. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    NASA Astrophysics Data System (ADS)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-01

    This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ˜ 2°, than those from the three empirical models with averaged errors > ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.

  9. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE PAGES

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    2016-09-21

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  10. Determination of errors in derived magnetic field directions in geosynchronous orbit: results from a statistical approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yue; Cunningham, Gregory; Henderson, Michael

    Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less

  11. Engineering model system study for a regenerative fuel cell: Study report

    NASA Technical Reports Server (NTRS)

    Chang, B. J.; Schubert, F. H.; Kovach, A. J.; Wynveen, R. A.

    1984-01-01

    Key design issues of the regenerative fuel cell system concept were studied and a design definition of an alkaline electrolyte based engineering model system or low Earth orbit missions was completed. Definition of key design issues for a regenerative fuel cell system include gaseous reactant storage, shared heat exchangers and high pressure pumps. A power flow diagram for the 75 kW initial space station and the impact of different regenerative fuel cell modular sizes on the total 5 year to orbit weight and volume are determined. System characteristics, an isometric drawing, component sizes and mass and energy balances are determined for the 10 kW engineering model system. An open loop regenerative fuel cell concept is considered for integration of the energy storage system with the life support system of the space station. Technical problems and their solutions, pacing technologies and required developments and demonstrations for the regenerative fuel cell system are defined.

  12. Model predictive control for spacecraft rendezvous in elliptical orbit

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhu, Zheng H.

    2018-05-01

    This paper studies the control of spacecraft rendezvous with attitude stable or spinning targets in an elliptical orbit. The linearized Tschauner-Hempel equation is used to describe the motion of spacecraft and the problem is formulated by model predictive control. The control objective is to maximize control accuracy and smoothness simultaneously to avoid unexpected change or overshoot of trajectory for safe rendezvous. It is achieved by minimizing the weighted summations of control errors and increments. The effects of two sets of horizons (control and predictive horizons) in the model predictive control are examined in terms of fuel consumption, rendezvous time and computational effort. The numerical results show the proposed control strategy is effective.

  13. Dynamical analysis of rendezvous and docking with very large space infrastructures in non-Keplerian orbits

    NASA Astrophysics Data System (ADS)

    Colagrossi, Andrea; Lavagna, Michèle

    2018-03-01

    A space station in the vicinity of the Moon can be exploited as a gateway for future human and robotic exploration of the solar system. The natural location for a space system of this kind is about one of the Earth-Moon libration points. The study addresses the dynamics during rendezvous and docking operations with a very large space infrastructure in an EML2 Halo orbit. The model takes into account the coupling effects between the orbital and the attitude motion in a circular restricted three-body problem environment. The flexibility of the system is included, and the interaction between the modes of the structure and those related with the orbital motion is investigated. A lumped parameter technique is used to represents the flexible dynamics. The parameters of the space station are maintained as generic as possible, in a way to delineate a global scenario of the mission. However, the developed model can be tuned and updated according to the information that will be available in the future, when the whole system will be defined with a higher level of precision.

  14. Supersonic aerodynamic characteristics of the North American Rockwell ATP shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Ware, G. M.; Pencer, B., Jr.; Founier, R. H.

    1973-01-01

    A wind tunnel study to determine the supersonic aerodynamic characteristics of a 0.01925-scale model of the space shuttle orbiter configuration is reported. The model consisted of a low-finess-ratio body with a blended 50 swept delta wing forming an ogee planform and a center-line-mounted vertical tail. Tests were made at Mach numbers from 1.90 to 4.63, at angles of attack from -6 to 30, at angles of sideslip of 0 and 3, and at a Reynolds number, based on body length, of 5.3x 1 million.

  15. NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.

    1992-01-01

    The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.

  16. Laser propulsion for orbit transfer - Laser technology issues

    NASA Technical Reports Server (NTRS)

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  17. NICMOS Focus and HST Breathing

    NASA Astrophysics Data System (ADS)

    Suchkov, A.; Hershey, J.

    1998-09-01

    The program 7608 monitored on a biweekly basis NICMOS camera foci from June 9, 1997, through February 18, 1998. Each of the biweekly observations included 17 measurements of focus position (focus sweeps), individually for each of the three cameras. The measurements for camera 1 and camera 3 foci covered one or two HST orbital periods. Comparison of these measurements with the predictions of the three OTA focus breathing models has shown the following. (1). Focus variations seen in NICMOS focus sweeps correlate well with the OTA focus thermal breathing as predicted by breathing models (“4- temperature”, “full-temperature”, and “attitude” models). Thus they can be attributed mostly to the HST orbital temperature variation. (2). The amount of breathing (breathing amplitude) has been found to be on average larger in the first orbit after a telescope slew to a new target. This is explained as being due to additional thermal perturbations caused by the change in the HST attitude as the telescope repoints to a new target. (3). In the first orbit, the amount of focus change predicted by the 4-temperature model is about the same as that seen in the focus sweeps data (breathing scale factor ~1). However the full-temperature model predicts a two times smaller breathing amplitude (breathing scale factor ~1.7). This suggests that the light shield temperatures are more responsive to the attitude change than temperatures from the other temperature sensors. The results of this study may help to better understand the HST thermal cycles and to improve the models describing the impact of those on both the OTA and NICMOS focus.

  18. Space station electrical power system availability study

    NASA Technical Reports Server (NTRS)

    Turnquist, Scott R.; Twombly, Mark A.

    1988-01-01

    ARINC Research Corporation performed a preliminary reliability, and maintainability (RAM) anlaysis of the NASA space station Electric Power Station (EPS). The analysis was performed using the ARINC Research developed UNIRAM RAM assessment methodology and software program. The analysis was performed in two phases: EPS modeling and EPS RAM assessment. The EPS was modeled in four parts: the insolar power generation system, the eclipse power generation system, the power management and distribution system (both ring and radial power distribution control unit (PDCU) architectures), and the power distribution to the inner keel PDCUs. The EPS RAM assessment was conducted in five steps: the use of UNIRAM to perform baseline EPS model analyses and to determine the orbital replacement unit (ORU) criticalities; the determination of EPS sensitivity to on-orbit spared of ORUs and the provision of an indication of which ORUs may need to be spared on-orbit; the determination of EPS sensitivity to changes in ORU reliability; the determination of the expected annual number of ORU failures; and the integration of the power generator system model results with the distribution system model results to assess the full EPS. Conclusions were drawn and recommendations were made.

  19. Impact of orbit modeling on DORIS station position and Earth rotation estimates

    NASA Astrophysics Data System (ADS)

    Štěpánek, Petr; Rodriguez-Solano, Carlos Javier; Hugentobler, Urs; Filler, Vratislav

    2014-04-01

    The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values. Our analyses confirm that the empirical-stochastic orbit modeling approach, which does not require satellite attitude information and macro models, results for most of the monitored station parameters in comparable accuracy as the dynamical model that employs precise non-conservative force modeling. However, the dynamical orbit model leads to a reduction of the RMS values for the estimated rotation pole coordinates by 17% for x-pole and 12% for y-pole. The experiments show that adjusting atmospheric drag scaling parameters each 30 min is appropriate for DORIS solutions. Moreover, it was shown that the adjustment of cross-track once-per-revolution empirical parameter increases the RMS of the estimated Earth rotation pole coordinates. With recent data it was however not possible to confirm the previously known high annual variation in the estimated geocenter z-translation series as well as its mitigation by fixing the SRP parameters on pre-defined values.

  20. NASA's New Orbital Debris Engineering Model, ORDEM2010

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2010-01-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.

Top