Science.gov

Sample records for orbital wall fracture

  1. Considerations for the Management of Medial Orbital Wall Blowout Fracture

    PubMed Central

    Park, Youngsoo; Chung, Kyu Jin

    2016-01-01

    Recently, diagnoses of and operations for medial orbital blowout fracture have increased because of the development of imaging technology. In this article, the authors review the literature, and overview the accumulated knowledge about the orbital anatomy, fracture mechanisms, surgical approaches, reconstruction materials, and surgical methods. In terms of surgical approaches, transcaruncular, transcutaneous, and transnasal endoscopic approaches are discussed. Reconstruction methods including onlay covering, inlay implantation, and repositioning methods are also discussed. Consideration and understanding of these should lead to more optimal outcomes. PMID:27218019

  2. Transcaruncular Approach for Treatment of Medial Wall and Large Orbital Blowout Fractures.

    PubMed

    Nguyen, Dennis C; Shahzad, Farooq; Snyder-Warwick, Alison; Patel, Kamlesh B; Woo, Albert S

    2016-03-01

    We evaluate the safety and efficacy of the transcaruncular approach for reconstruction of medial orbital wall fractures and the combined transcaruncular-transconjunctival approach for reconstruction of large orbital defects involving the medial wall and floor. A retrospective review of the clinical and radiographic data of patients who underwent either a transcaruncular or a combined transcaruncular-transconjunctival approach by a single surgeon for orbital fractures between June 2007 and June 2013 was undertaken. Seven patients with isolated medial wall fractures underwent a transcaruncular approach, and nine patients with combined medial wall and floor fractures underwent a transcaruncular-transconjunctival approach with a lateral canthotomy. Reconstruction was performed using a porous polyethylene implant. All patients with isolated medial wall fractures presented with enophthalmos. In the combined medial wall and floor group, five out of eight patients had enophthalmos with two also demonstrating hypoglobus. The size of the medial wall defect on preoperative computed tomography (CT) scan ranged from 2.6 to 4.6 cm(2); the defect size of combined medial wall and floor fractures was 4.5 to 12.7 cm(2). Of the 11 patients in whom postoperative CT scans were obtained, all were noted to have acceptable placement of the implant. All patients had correction of enophthalmos and hypoglobus. One complication was noted, with a retrobulbar hematoma having developed 2 days postoperatively. The transcaruncular approach is a safe and effective method for reconstruction of medial orbital floor fractures. Even large fractures involving the orbital medial wall and floor can be adequately exposed and reconstructed with a combined transcaruncular-transconjunctival-lateral canthotomy approach. The level of evidence of this study is IV (case series with pre/posttest). PMID:26889348

  3. Combination of absorbable mesh and demineralized bone matrix in orbital wall fracture for preventing herniation of orbit.

    PubMed

    Tak, Kyoung Seok; Jung, Min Su; Lee, Byeong Ho; Kim, Joo Hyun; Ahn, Duk Kyun; Jeong, Hii Sun; Park, Young Kyu; Suh, In Suck

    2014-07-01

    After restoration of orbit wall fracture, preventing sequelae is important. An absorbable mesh is commonly used in orbit wall fracture, yet it has limitation due to orbit sagging when bony defect is larger than the moderate size (1 × 1 cm2). In this study, the authors present a satisfactory result in treating orbit wall fracture larger than the moderate size with a combination of absorbable mesh and demineralized bone matrix.From 2009 to 2012, 63 patients with bony defect larger than the moderate size, who were treated with a combination of absorbable mesh and demineralized bone matrix, were reviewed retrospectively. The site of bony defect, size, and applied amount of demineralized bone matrix were reviewed, and a 2-year follow-up was done. Facial computed tomography scans were checked preoperative, immediate postoperative, and 2-year postoperative.Among the 63 patients, there were 52 men and 11 women. Mean age was 33.3 years. The most common cause was blunt blow (35 cases); mean defect size was 13.36 × 12.82 mm2 in inferior wall fracture and 20.69 × 14.41 mm2 in medial wall fracture. There was no complication except for 3 cases of infraorbital nerve hypoesthesia. A 2-year follow-up computed tomography showed that the surgical site preserved bony formation without herniation. In treating moderate-sized bony defect in orbit wall fracture, absorbable mesh and demineralized bone matrix can maintain structural stability through good bony formation even after degradation of absorbable mesh.

  4. Medial Wall Fracture and Orbital Emphysema Mimicking Inferior Rectus Entrapment in a Child.

    PubMed

    Collin, John; Afshar, Farid; Thomas, Steven

    2015-12-01

    Orbital emphysema is commonly associated with fractures of the orbital floor or medial wall. The air often dissipates spontaneously, but rarely can cause increased intraocular pressure and even loss of vision. Entrapment of the extraocular muscles can also occur with orbital fractures and may require prompt treatment in the pediatric patient due to the risk muscle ischemia. Both conditions can cause diplopia due to restriction of eye movement and differentiation of the two etiologies is important to prevent unnecessary surgical exploration. Identification and prompt management of raised intraocular pressure is essential in patients with orbital trauma. We present a case of orbital emphysema mimicking inferior rectus entrapment following trauma in an 11-year-old boy.

  5. Patient specific implants (PSI) in reconstruction of orbital floor and wall fractures.

    PubMed

    Gander, Thomas; Essig, Harald; Metzler, Philipp; Lindhorst, Daniel; Dubois, Leander; Rücker, Martin; Schumann, Paul

    2015-01-01

    Fractures of the orbital wall and floor can be challenging due to the demanding three-dimensional anatomy and limited intraoperative overview. Misfitting implants and inaccurate surgical technique may lead to visual disturbance and unaesthetic results. A new approach using individually manufactured titanium implants (KLS Martin, Group, Germany) for daily routine is presented in the current paper. Preoperative CT-scan data were processed in iPlan 3.0.5 (Brainlab, Feldkirchen, Germany) to generate a 3D-reconstruction of the affected orbit using the mirrored non-affected orbit as template and the extent of the patient specific implant (PSI) was outlined and three landmarks were positioned on the planned implant in order to allow easy control of the implant's position by intraoperative navigation. Superimposition allows the comparison of the postoperative result with the preoperative planning. Neither reoperation was indicated due to malposition of the implant and the ocular bulb nor visual impairments could be assessed. PSI allows precise reconstruction of orbital fractures by using a complete digital workflow and should be considered superior to manually bent titanium mesh implants.

  6. Paranasal sinus endoscopy and orbital fracture repair.

    PubMed

    Woog, J J; Hartstein, M E; Gliklich, R

    1998-05-01

    Although excellent results may be achieved in the management of many orbital floor injuries with standard transconjunctival or transcutaneous approaches, visualization of the posterior edge of the orbital floor or medial wall defect may be challenging at times. We describe our experience using endoscopic examination of the orbital floor through maxillary sinus approaches during the repair of selected orbital floor fractures. Owing to the posterosuperior angulation of the orbital floor, these approaches allow better visualization of the posterior edge of fractures involving the posterior portion of the orbital floor than do the standard transconjunctival approaches, and they facilitate confirmation that all orbital soft tissues have been elevated from the fracture site. We have used these techniques successfully in 9 patients with fractures involving either the posterior portion of the orbital floor or the medial wall or both.

  7. Adult orbital trapdoor fracture.

    PubMed

    Kum, Clarissa; McCulley, Timothy J; Yoon, Michael K; Hwang, Thomas N

    2009-01-01

    Trapdoor fractures occur almost exclusively in the pediatric population. The authors describe an adult with an entrapped inferior rectus muscle sheath in a trapdoor fracture. A 37-year-old man presented with persistent diplopia 3 weeks after blunt right orbital trauma. The only abnormal findings on clinical examination were limited vertical ductions. No bony defect or displacement was evident on CT. However, several small pockets of air were visible adjacent to the inferior rectus muscle. On surgical exploration, a linear nondisplaced orbital floor fracture was confirmed, and the entrapped inferior rectus muscle was released. One month postoperatively, extraocular motility had improved with no diplopia in primary or reading positions. This case demonstrates that trapdoor fractures can occur in adults and should be considered when suggestive findings are encountered. Clinicians should be aware of this because timely diagnosis and treatment might achieve more favorable outcomes.

  8. Pediatric Orbital Fractures

    PubMed Central

    Oppenheimer, Adam J.; Monson, Laura A.; Buchman, Steven R.

    2013-01-01

    It is wise to recall the dictum “children are not small adults” when managing pediatric orbital fractures. In a child, the craniofacial skeleton undergoes significant changes in size, shape, and proportion as it grows into maturity. Accordingly, the craniomaxillofacial surgeon must select an appropriate treatment strategy that considers both the nature of the injury and the child's stage of growth. The following review will discuss the management of pediatric orbital fractures, with an emphasis on clinically oriented anatomy and development. PMID:24436730

  9. Patterns and injuries associated with orbital wall fractures in elderly patients who visited the emergency room: a retrospective case–control study

    PubMed Central

    Kim, Youn-Jung; Ahn, Shin; Seo, Dong-Woo; Sohn, Chang Hwan; Lee, Hyung-Joo; Park, In-June; Yang, Dong-Jin; Ryoo, Seung Mok; Kim, Won Young; Lim, Kyung Soo

    2016-01-01

    Objectives This study aimed to determine orbital wall fracture (OWF) patterns and associated facial injuries in elderly patients and compare them with those in their younger adult counterparts. Design A retrospective case–control study. Setting An emergency department of a university-affiliated hospital located in an urban area. Participants A total of 1378 adult patients with OWF diagnosed by CT from 1 January 2004 through 31 March 2014 were enrolled. Patients were categorised into elderly (≥65 years) and non-elderly (<65 years) groups. Results The elderly group (n=146) had a mean age of 74.0 years compared with 37.5 years in the non-elderly group (n=1232). Slipping was the most common cause of OWF in the elderly group (43.8%, p<0.001), whereas violence was the most common cause in the non-elderly group (37.3%, p<0.001). The lateral orbital wall was the more common site of fracture in the elderly group, and their injuries were more often associated with concurrent facial bone fractures, including the mandible, maxilla and zygoma, compared with the non-elderly group. After adjusting for sex and the mechanism of injury, inclusion in the elderly group was a significant risk factor for fracture of the lateral wall (OR 1.658; 95% CI 1.074 to 2.560) and concomitant facial bone fractures of the maxilla (OR 1.625; 95% CI 1.111 to 2.377) and zygoma (OR 1.670; 95% CI 1.126 to 2.475). Conclusions Elderly patients were vulnerable to facial trauma, and concurrent facial bone fracture associated with OWF was more commonly observed in this age group. Therefore, a high index of suspicion and thorough investigation, including CT, for OWF-associated facial bone fractures are important. PMID:27645553

  10. An orbital roof and anterior skull base fracture: case report.

    PubMed

    Gennaro, P; Mitro, V; Gabriele, G; Giovannetti, F; Facchini, A

    2012-10-01

    Blow-out fractures usually involve the orbit in the floor or in the medial wall. Anyway, if the roof of the orbit is thin and direct compressive or buckling forces impact the orbit the fracture can involve the upper roof. We describe the case of a blow-out fracture of the orbital roof with enophtalmus and cerebrospinal fluid leak from lacero-contusive subciliar wound

  11. Blow-in fracture of the orbit.

    PubMed

    Hwang, Kun; Kim, Han Joon; Lee, Hong Sik

    2013-01-01

    We report 2 patients with blow-in fractures of the orbital floor caused by different mechanisms. In a 17-year-old boy, a sudden impact was given to the anterior maxillary wall and caused a depression fracture of a maxilla, yet the infraorbital rim remained intact. We think fragments of the orbital floor were forced into the orbit by a sudden increase in pressure in the maxillary sinus in this patient. In a 51-year-old man, the impact of a force was on the laterosuperior part of the zygoma, which pushed the zygoma medially. These 2 cases represent 2 different mechanisms of blow-in fractures of the orbital floor.

  12. Blow-in fracture of the orbit.

    PubMed

    Hwang, Kun; Kim, Han Joon; Lee, Hong Sik

    2013-01-01

    We report 2 patients with blow-in fractures of the orbital floor caused by different mechanisms. In a 17-year-old boy, a sudden impact was given to the anterior maxillary wall and caused a depression fracture of a maxilla, yet the infraorbital rim remained intact. We think fragments of the orbital floor were forced into the orbit by a sudden increase in pressure in the maxillary sinus in this patient. In a 51-year-old man, the impact of a force was on the laterosuperior part of the zygoma, which pushed the zygoma medially. These 2 cases represent 2 different mechanisms of blow-in fractures of the orbital floor. PMID:24036789

  13. Indirect orbital floor fractures: a meta-analysis.

    PubMed

    Gonzalez, Mithra O; Durairaj, Vikram D

    2010-04-01

    Orbit fractures are common in the context of orbital trauma. Fractures of the orbital floor without orbital rim involvement are known as indirect orbital floor fractures, pure internal floor fractures, and orbital blowout fractures. In this paper, we have reported a meta-analysis of orbital floor fractures focusing on indications and timing of surgical repair, outcomes, and complications. PMID:20616920

  14. Orbital blowout fractures in sport.

    PubMed Central

    Jones, N P

    1994-01-01

    One-third of orbital blowout fractures are sustained during sport. Soccer is most commonly involved. Though visual acuity recovery is usually complete, permanent loss of binocular visual field is almost universal. Typically high-energy blows by opponent's finger, fist, elbow, knee or boot are responsible. Injuries to the eye itself may also be sustained and should be looked for. Ocular protection may be feasible in some sports, but the main preventive measure to be addressed is the reduction in aggressive play or deliberate injury. PMID:7894960

  15. Orbital fracture deterioration after scuba diving.

    PubMed

    Nakatani, Hiroko; Yoshioka, Nobutaka

    2009-07-01

    Sinus barotrauma is a common disease in divers. However, it is not familiar to maxillofacial surgeon. We presented orbital fracture deterioration by sinus barotrauma in scuba diving and a review of literatures. We also discussed the clinical features, the prevention, and the possible mechanism of orbital fracture deterioration after scuba diving.

  16. Nontraumatic orbital floor fracture after nose blowing.

    PubMed

    Sandhu, Ranjit S; Shah, Akash D

    2016-03-01

    A 40-year-old woman with no history of trauma or prior surgery presented to the emergency department with headache and left eye pain after nose blowing. Noncontrast maxillofacial computed tomography examination revealed an orbital floor fracture that ultimately required surgical repair. There are nontraumatic causes of orbital blowout fractures, and imaging should be obtained irrespective of trauma history. PMID:26973725

  17. Orbital fractures in children: a review of outcomes.

    PubMed

    Gerber, Barbara; Kiwanuka, Paul; Dhariwal, Daljit

    2013-12-01

    The third most common facial fractures in children are fractures of the orbit, and the medial wall and floor are the commonest sites affected. The aetiology, clinical presentation, and timing of operation all differ from those of adults. If there are few or no clinical signs, but oculocardiac reflex is present, it is highly suggestive of trapdoor injury. This retrospective study includes all consecutive children (younger than 18 years) referred with confirmed fractures of the orbital floor over a 5-year period (2005-2010). A total of 24 patients were identified with a mean age of 13.5 years, and most injuries were secondary to falls. Isolated injury to the orbital floor occurred in 14 (58%); the rest involved other fractures of the orbital wall or face, or both. There were 11 trapdoor fractures (46%), and 9 open blow-out fractures (38%). Overall, nausea and vomiting occurred in 13 patients (54%); 8 of these had trapdoor fractures. Most patients had operations (22, 92%), and the mean time to operation was 4 days. Complications increased with delays to theatre. Those operated on within 1 day had fewer complications than those who had operations after 3 days. Postoperatively, diplopia (n=6/11) and restricted eye movement (n=3/11) were associated with trapdoor injury, while enophthalmos (n=1/9) and paraesthesia (n=3/9) were related to open blow-out fractures. To reduce compromised outcomes, prompt operation is warranted in all children with fractures of the orbital floor regardless of the configuration. PMID:23915493

  18. Reconstruction of internal orbital fractures with Vitallium mesh.

    PubMed

    Sargent, L A; Fulks, K D

    1991-07-01

    Trauma to the face frequently results in internal orbital fractures that may produce large orbital defects involving multiple walls. Accurate anatomic reconstruction of the bony orbit is essential to maintain normal appearance and function of the eye following such injuries. Autogenous bone grafts do not always produce predictable long-term support of the globe. Displacement and varying amounts of bone-graft resorption can lead to enophthalmos. This study examines the use of Vitallium mesh in the acute reconstruction of internal orbital defects. Fifty-four patients with 66 orbits underwent reconstruction of internal orbital defects with Vitallium mesh. Associated fractures were anatomically reduced and rigidly fixed. Forty-six patients and 57 orbits had adequate follow-up for analysis of results. The average follow-up was 9 months, with 85 percent of the patients followed 6 months or longer. There were no postoperative orbital infections, and none of the Vitallium mesh required removal. Large internal orbital defects can be reconstructed using Vitallium mesh with good results and little risk of infection. Vitallium mesh appears to be well tolerated in spite of free communication with the sinuses. Stable reconstruction of the internal orbit can be achieved and predictable eye position maintained without donor-site morbidity.

  19. Orbital hematoma caused by bleeding from orbital branch of the infraorbital artery after reconstruction of an orbital fracture.

    PubMed

    Hwang, Kun; Kim, Joo Ho; Kang, Young Hye

    2014-03-01

    We experienced and report on a case of retrobulbar hematoma caused by bleeding from the orbital branch of the infraorbital artery after a medial orbital wall reconstruction.A healthy 28-year-old man struck his left eye while playing baseball before admission. A computed tomographic scan revealed an approximately 13 × 12-mm-sized fracture of the left orbit medial wall. The medial orbit wall was reconstructed through a subciliary approach on the 18th day after the injury. Approximately 15 hours after the orbit wall reconstruction, the patient complained of pain in the left orbital area, headache, and vomiting. Upon an examination, swelling and ecchymosis were observed on the left eye. His visual acuity was 0.8 (oculus dexter [OD])/0.4 (oculus sinister [OS]) and the intraocular pressure was 18 (OD)/24 (OS) mm Hg by a Goldmann applanation tonometry. A computed tomographic scan showed an intraorbital hematoma and proptosis on the left side. In an emergency operation, a hematoma with a volume of approximately 2 to 3 mL was evacuated and an active bleeding point was noted on the orbital floor, which was thought to be the orbital branch of the infraorbital nerve. The bleeding point was cauterized. After the operation, his visual acuity was 1.0 (OD)/0.8 (OS) and the ocular pressure normalized to 16 (OD)/16 (OS) mm Hg by a Goldmann applanation tonometry.Close observation and meticulous hemostasis along the infraorbital groove may be needed in an orbital floor exploration to prevent postoperative orbital hematoma.

  20. Management of orbital fractures: challenges and solutions

    PubMed Central

    Boyette, Jennings R; Pemberton, John D; Bonilla-Velez, Juliana

    2015-01-01

    Many specialists encounter and treat orbital fractures. The management of these fractures is often challenging due to the impact that they can have on vision. Acute treatment involves a thorough clinical examination and management of concomitant ocular injuries. The clinical and radiographic findings for each individual patient must then be analyzed for the need for surgical intervention. Deformity and vision impairment can occur from these injuries, and while surgery is intended to prevent these problems, it can also create them. Therefore, surgical approach and implant selection should be carefully considered. Accurate anatomic reconstruction requires complete assessment of fracture margins and proper implant contouring and positioning. The implementation of new technologies for implant shaping and intraoperative assessment of reconstruction will hopefully lead to improved patient outcomes. PMID:26604678

  1. Pure orbital blowout fractures reconstructed with autogenous bone grafts: functional and aesthetic outcomes.

    PubMed

    Kronig, S A J; van der Mooren, R J G; Strabbing, E M; Stam, L H M; Tan, J A S L; de Jongh, E; van der Wal, K G H; Paridaens, D; Koudstaal, M J

    2016-04-01

    The purpose of this study was to investigate the ophthalmic clinical findings following surgical reconstruction with autogenous bone grafts of pure blowout fractures. A retrospective review of 211 patients who underwent surgical repair of an orbital fracture between October 1996 and December 2013 was performed. Following data analysis, 60 patients who were followed up over a period of 1 year were included. A solitary floor fracture was present in 38 patients and a floor and a medial wall fracture in 22 patients. Comparing preoperative findings between these two groups, preoperative diplopia and enophthalmos were almost twice as frequent in the group with additional medial wall fractures: diplopia 8% and 14% and enophthalmos 18% and 55%, respectively. One year following surgery there was no diplopia present in either group. In the solitary floor fracture group, 3% still had enophthalmos. It can be concluded that at 1 year following the repair of pure orbital floor fractures using autogenous bone, good functional and aesthetic results can be obtained. In the group with both floor and medial wall fractures, no enophthalmos was found when both walls were reconstructed. When the medial wall was left unoperated, 29% of patients still suffered from enophthalmos after 1 year.

  2. Blow-out fractures of the orbit: a comparison of computed tomography and conventional radiography with anatomic correlation

    SciTech Connect

    Hammeschlag, S.B.; Hughes, S.; O'Reilly, G.V.; Naheedy, M.H.; Rumbaugh, C.L.

    1982-05-01

    Orbital blow-out fractures were experimentally created in eight human cadavers. Each orbit underwent conventional radiographic studies, complex motion tomography, and computed tomographic examinations. A comparison of the three modalities was made. Anatomical correlation was obtained by dissecting the orbits. The significance of medial-wall fractures and enophthalmos is discussed. Limitation of inferior rectus muscle mobility is thought to be a result of muscle kinking associated with orbital fat-pad prolapse at the fracture site, rather than muscle incarceration. Blow-out fractures should be evaluated by computed tomographic computer reformations in the oblique sagittal plane.

  3. Evaluation of the lateral orbital approach in management of zygomatic bone fractures

    PubMed Central

    Thangavelu, K; Ganesh, N Sayee; Kumar, J Arun; Sabitha, S; Nikil

    2013-01-01

    Zygomatic maxillary fractures, also known as tripod fractures, are usually the result of a direct blow to the body of the zygoma. Tripod fracture consists of (a) zygomatic arch fracture, (b) fracture of the lateral orbital wall, and (c) fracture of the inferior orbital floor. The purpose of this study is to evaluate the functional and esthetic outcome following this lateral orbital approach in the management of zygoma fracture. This study was carried out in VMS Dental College, Salem, and in a private hospital. This study was based on the experience gained from a retrospective study of the 30 lateral orbital approaches that were used in 30 patients with fractures of the zygomatic complex, which were conducted for a period of 8 years between January 2003 and January 2011. In the retrospective study, all the 30 patients were able to open the mouth completely; eyeball movements were normal; esthetically, all patients appeared normal. There were no sinusitis or visual problems in any of the studied patients. We conclude that the lateral orbital approach is an ideal option in reduction and treatment of zygomatic bone and arch fractures. PMID:23633846

  4. Evaluation of the lateral orbital approach in management of zygomatic bone fractures.

    PubMed

    Thangavelu, K; Ganesh, N Sayee; Kumar, J Arun; Sabitha, S; Nikil

    2013-01-01

    Zygomatic maxillary fractures, also known as tripod fractures, are usually the result of a direct blow to the body of the zygoma. Tripod fracture consists of (a) zygomatic arch fracture, (b) fracture of the lateral orbital wall, and (c) fracture of the inferior orbital floor. The purpose of this study is to evaluate the functional and esthetic outcome following this lateral orbital approach in the management of zygoma fracture. This study was carried out in VMS Dental College, Salem, and in a private hospital. This study was based on the experience gained from a retrospective study of the 30 lateral orbital approaches that were used in 30 patients with fractures of the zygomatic complex, which were conducted for a period of 8 years between January 2003 and January 2011. In the retrospective study, all the 30 patients were able to open the mouth completely; eyeball movements were normal; esthetically, all patients appeared normal. There were no sinusitis or visual problems in any of the studied patients. We conclude that the lateral orbital approach is an ideal option in reduction and treatment of zygomatic bone and arch fractures.

  5. Mechanisms of orbital floor fractures: a clinical, experimental, and theoretical study.

    PubMed Central

    Bullock, J D; Warwar, R E; Ballal, D R; Ballal, R D

    1999-01-01

    PURPOSE: The purpose of this study was to investigate the two accepted mechanisms of the orbital blow-out fracture (the hydraulic and the buckling theories) from a clinical, experimental, and theoretical standpoint. METHODS: Clinical cases in which blow-out fractures resulted from both a pure hydraulic mechanism and a pure buckling mechanism are presented. Twenty-one intact orbital floors were obtained from human cadavers. A metal rod was dropped, experimentally, onto each specimen until a fracture was produced, and the energy required in each instance was calculated. A biomathematical model of the human bony orbit, depicted as a thin-walled truncated conical shell, was devised. Two previously published (by the National Aeronautics Space Administration) theoretical structural engineering formulas for the fracture of thin-walled truncated conical shells were used to predict the energy required to fracture the bone of the orbital floor via the hydraulic and buckling mechanisms. RESULTS: Experimentally, the mean energy required to fracture the bone of the human cadaver orbital floor directly was 78 millijoules (mj) (range, 29-127 mj). Using the engineering formula for the hydraulic theory, the predicted theoretical energy is 71 mj (range, 38-120 mj); for the buckling theory, the predicted theoretical energy is 68 mj (range, 40-106 mj). CONCLUSION: Through this study, we have experimentally determined the amount of energy required to fracture the bone of the human orbital floor directly and have provided support for each mechanism of the orbital blow-out fracture from a clinical and theoretical basis. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5A FIGURE 5B FIGURE 5E FIGURE 5F PMID:10703119

  6. Tension pneumocephalus from orbital roof fracture.

    PubMed

    Wesley, R E; McCord, C D

    1982-02-01

    Despite the detection and treatment of an extensive orbitocranial fracture in an 18-year-old man following a motor vehicle injury, the persistent leakage of CSF and trapping of air within the intracranial cavity resulted in fulminant neurologic deterioration due to the mass effect of air when tension pneumocephalus developed. The ethmoidal defect closed spontaneously, and the patient recovered neurologically when the tension pneumocephalus was relieved with a ventriculoatrial shunt. Orbitocranial injuries, which may be unsuspected despite careful orbital, neurologic, and conventional roentgenographic examination, have a considerable mortality. The presence of intracranial penetration. The CT scans, which detect as little as 0.5 mL of intracranial air, can be used to document serial changes in amount or position of air and detect shifts of the brain. tension pneumocephalus following orbitocranial injury and management with ventriculoatrial shunting have not been previously reported.

  7. Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques.

    PubMed

    Shiino, Takayuki; Oh, Se-Hyeok; Haney, Paul M; Lee, Seo-Won; Go, Gyungchoon; Park, Byong-Guk; Lee, Kyung-Jin

    2016-08-19

    We theoretically investigate the dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet-heavy-metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets. PMID:27588878

  8. Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques

    NASA Astrophysics Data System (ADS)

    Shiino, Takayuki; Oh, Se-Hyeok; Haney, Paul M.; Lee, Seo-Won; Go, Gyungchoon; Park, Byong-Guk; Lee, Kyung-Jin

    2016-08-01

    We theoretically investigate the dynamics of antiferromagnetic domain walls driven by spin-orbit torques in antiferromagnet-heavy-metal bilayers. We show that spin-orbit torques drive antiferromagnetic domain walls much faster than ferromagnetic domain walls. As the domain wall velocity approaches the maximum spin-wave group velocity, the domain wall undergoes Lorentz contraction and emits spin waves in the terahertz frequency range. The interplay between spin-orbit torques and the relativistic dynamics of antiferromagnetic domain walls leads to the efficient manipulation of antiferromagnetic spin textures and paves the way for the generation of high frequency signals from antiferromagnets.

  9. Iatrogenic inferior oblique palsy: intentional disinsertion during transcaruncular approach to orbital fracture repair.

    PubMed

    Tiedemann, Laura M; Lefebvre, Daniel R; Wan, Michael J; Dagi, Linda R

    2014-10-01

    Hypotropia following orbital fracture repair is traditionally attributed to residual tissue entrapment, scarring, direct muscle injury, or damage to the branches of the oculomotor nerve serving the inferior oblique or inferior rectus muscles. We present a case of acquired hypotropia and incyclotropia that occurred following repair of an orbital fracture involving the floor and medial wall. In order to enable adequate visualization and treatment of the combined fractures, access via a transcaruncular approach and disinsertion of the inferior oblique muscle at its origin was necessary. Whereas the possibility of inferior oblique paresis due to repair of an orbital fracture via the transcaruncular approach has received some acknowledgment, there are no prior reports in the ophthalmic literature. Strabismus surgeons should be aware of this possibility when planning surgical correction of hypotropia and incyclotropia in similar cases.

  10. Management of orbital blow-out fractures. Case reports and discussion.

    PubMed

    Forrest, L A; Schuller, D E; Strauss, R H

    1989-01-01

    Blow-out fractures are fractures of the orbital floor or medial wall that occur as a consequence of blunt trauma. Impact increases the intraorbital pressure, forcing the nondistensible orbital contents through the orbital floor. The fracture is commonly caused by impact from a baseball or tennis ball. However, any blunt trauma to the orbit, as from a knee or elbow, can result in a blow-out fracture. The characteristic clinical findings include double vision, a sunken globe, and numbness in the distribution of the infraorbital nerve. Sometimes, the only sign of a blow-out fracture is the abrupt inflation of periorbital tissue with air when the patient blows his nose. Standard evaluation of these fractures includes history, physical examination, and radiographs. Some patients benefit from computed tomography (CT), which can be both diagnostic and prognostic. Blow-out fractures do not often produce serious sequelae, and the current trend is toward no treatment. However, it is imperative to rule out any serious injury to the eye itself that would require emergency treatment.

  11. Current management of posterior wall fractures of the acetabulum.

    PubMed

    Moed, Berton R; Kregor, Philip J; Reilly, Mark C; Stover, Michael D; Vrahas, Mark S

    2015-01-01

    The general goals for treating an acetabular fracture are to restore congruity and stability of the hip joint. These goals are no different from those for the subset of fractures of the posterior wall. Nevertheless, posterior wall fractures present unique problems compared with other types of acetabular fractures. Successful treatment of these fractures depends on a multitude of factors. The physician must understand their distinctive radiologic features, in conjunction with patient factors, to determine the appropriate treatment. By knowing the important points of posterior surgical approaches to the hip, particularly the posterior wall, specific techniques can be used for fracture reduction and fixation in these often challenging fractures. In addition, it is important to develop a complete grasp of potential complications and their treatment. The evaluation and treatment protocols initially developed by Letournel and Judet continue to be important; however, the surgeon also should be aware of new information published and presented in the past decade.

  12. Long-term infectious complications of using porous polyethylene mesh for orbital fracture reconstruction

    PubMed Central

    Song, Xuefei; Li, Lunhao; Sun, Yiyuan; Fan, Xianqun; Li, Zhengkang

    2016-01-01

    Abstract Porous polyethylene is a widely used implants in orbital reconstruction, on which comprehensive clinical analysis, various treatments, and different prognosis according to specific classification principles on long-term complications have not been reported. To investigate the new clinical symptoms, intraoperative findings, treatments, and outcomes of complications long period after previous surgery, resulting from the use of porous polyethylene mesh for orbital fracture reconstruction. A retrospective study was conducted on 21 patients at the Department of Ophthalmology, Shanghai Ninth People's Hospital with orbital complications after orbital fracture reconstruction with porous polyethylene mesh for 4 ± 2.2 years from 2011 to 2013. These data included new clinical symptoms after previous surgery, computerized tomography data, intraoperative findings, treatments, and outcomes. Data from 21 patients were analyzed in this study. Two patients received conservative treatment, while the other 19 patients underwent surgical approaches. Classification principles for orbital complications after orbital wall defect reconstruction with porous polyethylene mesh were formulated according to patients’ new clinical symptoms, computed tomography (CT), and intraoperative findings after previous surgery. In the last follow-up, 19 patients (90.5%) were cured or improved according to our assessment principle. The follow-up ranged from 3 to 45 months (35 months in average). According to specific classification for orbital complications resulting from the use of porous polyethylene mesh for orbital fracture reconstruction, various medical treatments should be carried out, and the prognosis may be different. PMID:27336867

  13. Water infiltration and intermittent flow in rough-walled fractures

    SciTech Connect

    Su, G.

    1995-05-01

    Flow visualization experiments were conducted in transparent replicas of natural rough-walled fractures. The fracture was inclined to observe the interplay between capillary and gravity forces. Water was introduced into the fracture by a capillary siphon. Preferential flow paths were observed, where intermittent flow frequently occurred. The water infiltration experiments suggest that intermittent flow in fractures appears to be the rule rather than the exception. In order to investigate the mechanism causing intermittent flow in fractures, parallel plates with different apertures were assembled using lucite and glass. A medium-coarse-fine pore structure is believed to cause the intermittency in flow. Intermittent flow was successfully produced in the parallel plate experiments using the lucite plates. After several trials, intermittent flow was also produced in the glass plates.

  14. Orbital wall infarction in child with sickle cell disease.

    PubMed

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment. PMID:26790559

  15. Orbital wall infarction in child with sickle cell disease.

    PubMed

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment.

  16. Lateral Orbital Wall Destruction Due to Pilonidal Sinus.

    PubMed

    Karadağ, Emine Çiğdem; Toy, Hatice; Tosun, Zekeriya

    2016-07-01

    Pilonidal sinus is a chronic inflammatory disease commonly observed in the sacrococcygeal region. The authors report a patient of a pilonidal sinus in a rare location-the lateral orbital region. The authors' patient was misdiagnosed with an epidermal cyst, and the subsequent incomplete excision of the sinus tract led a pilonidal sinus with a high morbidity resulting in the destruction of bone tissue in the lateral orbital wall. It was, therefore, crucial to accurately diagnose and treat before the infection progressed through the bone and caused osteomyelitis. PMID:27391513

  17. Boiling radial flow in fractures of varying wall porosity

    SciTech Connect

    Barnitt, Robb Allan

    2000-06-01

    The focus of this report is the coupling of conductive heat transfer and boiling convective heat transfer, with boiling flow in a rock fracture. A series of experiments observed differences in boiling regimes and behavior, and attempted to quantify a boiling convection coefficient. The experimental study involved boiling radial flow in a simulated fracture, bounded by a variety of materials. Nonporous and impermeable aluminum, highly porous and permeable Berea sandstone, and minimally porous and permeable graywacke from The Geysers geothermal field. On nonporous surfaces, the heat flux was not strongly coupled to injection rate into the fracture. However, for porous surfaces, heat flux, and associated values of excess temperature and a boiling convection coefficient exhibited variation with injection rate. Nucleation was shown to occur not upon the visible surface of porous materials, but a distance below the surface, within the matrix. The depth of boiling was a function of injection rate, thermal power supplied to the fracture, and the porosity and permeability of the rock. Although matrix boiling beyond fracture wall may apply only to a finite radius around the point of injection, higher values of heat flux and a boiling convection coefficient may be realized with boiling in a porous, rather than nonporous surface bounded fracture.

  18. Biodegradable polymers: Wall slip, melt fracture, and processing aids

    NASA Astrophysics Data System (ADS)

    Othman, Norhayani; Noroozi, Nazbanoo; Jazrawi, Bashar; Mehrkhodavandi, Parisa; Schafer, Laurel; Hatzikiriakos, Savvas George

    2015-04-01

    The wall slip and melt fracture behaviour of several commercial polylactides (PLAs) and poly(ɛ-caprolactone), (PCLs) have been investigated. PLAs with molecular weights greater than a certain value were found to slip, with the slip velocity to increase with decrease of molecular weight consistent with wall slip data reported in the literature for other systems. The onset of melt fracture for the high molecular weight PLAs was found to occur at about 0.2 to 0.3 MPa, depending on the geometrical characteristics of the dies and independent of temperature. Similarly, sharkskin and gross melt fracture was observed for the case of PCLs depending on the molecular characteristics of the resins and the geometrical details of the capillary dies. It was also found that the addition of a small amount of PCL (typically 0.5 wt.%) into the PLA and vice versa is effective in eliminating and delaying the onset of melt fracture to higher shear rates in the capillary extrusion of PLA and PCL respectively. This is due to significant interfacial slip that occurs in the presence of PCL or PLA as well as to the immiscibility of the PLA/PCL blend system at all compositions.

  19. Foam flow through a transparent rough-walled rock fracture

    SciTech Connect

    Kovscek, A.; Tretheway, D.; Radke, C.

    1995-07-01

    This paper presents an experimental study of nitrogen, water, and aqueous foam flow through a transparent replica of a natural rough-walled rock fracture with a hydraulic aperture of roughly 30 {mu}m. It is established that single-phase flow of both nitrogen and water is well described by analogy to flow between parallel plates. Inertial effects caused by fracture roughness become important in single-phase flow as the Reynolds number approaches 1. Foam exhibits effective control of gas mobility. Foam flow resistances are approximately 10 to 20 times greater than those of nitrogen over foam qualities spanning from 0.60 to 0.99 indicating effective gas-mobility control. Because previous studies of foam flow have focused mainly upon unfractured porous media, little information is available about foam flow mechanisms in fractured media. The transparency of the fracture allowed flow visualization and demonstrated that foam rheology in fractured media depends upon bubble shape and size. Changes in flow behavior are directly tied to transitions in bubble morphology.

  20. Orbital fracture and eyeball rupture caused by golf-club injury.

    PubMed

    Hwang, Kun; Kim, Joo Ho

    2014-05-01

    We report a case of an orbital fracture and an eyeball rupture caused by a golf-club injury. A 75-year-old man was struck in his right eye by a golf club while watching behind his son swinging a hybrid-type golf club at his home. A 70-mm muscle-depth laceration was present in the infraorbital area with active bleeding. Computed tomographic imaging of the face revealed a rupture of the right eyeball; fractures in the superior, medial, lateral, and inferior wall of the right orbit; a fracture in the right zygomaticofrontal junction; and a small amount of pneumocephalus in the parafalx region. Under general anesthesia, evisceration of the right eyeball was performed. Not only golfers but also people just watching or passing by can be injured by an errantly struck golf ball or swung golf club. Elderly people as well as children should be instructed in technique and safety and also be supervised when playing golf. Also, the public should be educated about the risk of eye injuries and the benefits of wearing a protective eyewear.

  1. Orthoptic Sequelae Following Conservative Management of Pure Blowout Orbital Fractures: Anecdotal or Clinically Relevant?

    PubMed

    Steinegger, Ken; De Haller, Raoul; Courvoisier, Delphine; Scolozzi, Paolo

    2015-07-01

    The aim of this study was to prospectively assess the prevalence of orthoptic anomalies following conservative management of pure blowout orbital fractures and to evaluate their clinical relevance. Clinical and radiologic data of patients with unilateral conservatively managed pure blowout orbital fractures with a minimum follow-up of 6 months were reviewed. Eligible patients were contacted and invited to undergo an extended ophthalmologic examination as follows: distance and near visual acuities, Hertel exophthalmometry, corneal light reflex (Hirschberg test), ductions and versions in the 6 cardinal fields of gaze, eye deviation with prisms and alternate cover test in all of the 9-gaze directions with Maddox rod, degrees of incyclo/excyclotorsion with right and left eye fixation, horizontal and vertical deviation with Hess-Weiss coordimetry, degree of horizontal/vertical and incyclo/excyclotorsion deviation with Harms wall deviometry, and vertical deviation with Bielschowsky head-tilt test. Of the 69 patients contacted, 49 declined to participate given that they were asymptomatic. Twenty patients agreed to undergo the examination. One patient complained of minimal double vision limited to the extreme downgaze. Four patients had asymptomatic ocular motility disturbances limited to the extreme gaze. Seven patients had asymptomatic horizontal heterophoria. These disturbances did not interfere with daily or professional activities in any of the patients. The current study demonstrated that conservative management of pure orbital blowout fractures can result in orthoptic anomalies. These sequelae were restricted to a very limited portion of the binocular field of the vision and were not found to be clinically relevant. PMID:26102539

  2. Sustained chiral magnetic domain wall motion driven by spin-orbit torques under the tilted current

    NASA Astrophysics Data System (ADS)

    He, Peng-Bin; Yan, Han; Cai, Meng-Qiu; Li, Zai-Dong

    2016-06-01

    We theoretically investigate the steady magnetic domain wall driven by spin-orbit torques in the heavy-metal/magnet bilayers with perpendicular anisotropy. Based on collective coordinates method and stability analysis, we analyze the effects of tilted current and Dzyaloshinskii-Moriya interaction on the wall. We find that the wall acquires a sustained motion in the high-current regime by deviating the current from the wall track. Also, a persistent motion can be supported by the competition between spin-orbit torques and Dzyaloshinskii-Moriya interaction in transforming wall type. In the low-current regime, there exist a switching of wall chirality and a reversal of wall motion.

  3. Use of copolymer polylactic and polyglycolic acid resorbable plates in repair of orbital floor fractures.

    PubMed

    Lin, Jonathan; German, Michael; Wong, Brian

    2014-10-01

    The fractures of the orbital floor are common after craniofacial trauma. Repair with resorbable plates is a viable reconstructive option; however, there are few reports in the literature. This study describes our experience using copolymer polylactic and polyglycolic acid (PLLA/PGA) orbital reconstruction plates (LactoSorb, Lorenz Surgical, Jacksonville, FL) in 29 cases of the orbital floor fracture repair. We conducted a retrospective review of 29 orbital floor fractures at a single institution repaired through transconjunctival, preseptal dissection using PLLA/PGA plates fashioned to repair the orbital floor defect. Associated fractures included zygomaticomaxillary, LeFort, and nasoethmoid fractures. There were six patients with complications. Four patients had transient diplopia with complete resolution of symptoms within 1 year. One patient had diplopia postoperatively, but was later lost to follow-up. Two patients have had persistent enophthalmos since 1 year. In each of these cases, the floor fracture was coincident with significant panfacial or neurotrauma. We did not encounter any adverse inflammatory reactions to the implant material itself. The study concluded that orbital floor fracture repair with resorbable plates is safe, relatively easy to perform, and in the majority of cases was effective without complications. In the presence of severe orbital trauma, more rigid implant materials may be appropriate.

  4. Arthroscopic Reduction and Transportal Screw Fixation of Acetabular Posterior Wall Fracture: Technical Note.

    PubMed

    Park, Jin Young; Chung, Woo Chull; Kim, Che Keun; Huh, Soon Ho; Kim, Se Jin; Jung, Bo Hyun

    2016-06-01

    Acetabular fractures can be treated with variable method. In this study, acetabular posterior wall fracture was treated with arthroscopic reduction and fixation using cannulated screw. The patient recovered immediately and had a satisfactory outcome. In some case of acetabular fracture could be good indication with additional advantages of joint debridement and loose body removal. So, we report our case with technical note. PMID:27536654

  5. Arthroscopic Reduction and Transportal Screw Fixation of Acetabular Posterior Wall Fracture: Technical Note

    PubMed Central

    Park, Jin young; Kim, Che Keun; Huh, Soon Ho; Kim, Se Jin; Jung, Bo Hyun

    2016-01-01

    Acetabular fractures can be treated with variable method. In this study, acetabular posterior wall fracture was treated with arthroscopic reduction and fixation using cannulated screw. The patient recovered immediately and had a satisfactory outcome. In some case of acetabular fracture could be good indication with additional advantages of joint debridement and loose body removal. So, we report our case with technical note. PMID:27536654

  6. Hydraulic fracturing model featuring initiation beyond the wellbore wall for directional well in coal bed

    NASA Astrophysics Data System (ADS)

    Li, Yuwei; Jia, Dan; Wang, Meng; Liu, Jia; Fu, Chunkai; Yang, Xinliang; Ai, Chi

    2016-08-01

    In developing internal fracture systems in coal beds, the initiation mechanism differs greatly from that of conventional ones and initiations may be produced beyond the wellbore wall. This paper describes the features of the internal structure of coal beds and RFPA2D simulation is used to attest the possible occurrence of initiation beyond the wellbore wall in coal bed hydraulic fracturing. Using the theory of elasticity and fracture mechanics, we analyse the stress distribution in the vicinal coal rock. Then by taking into consideration the effects of the spatial relationship between coal bed cleats and the wellbore, we establish a model for calculating both tensile and shear initiation pressure that occur along cleats beyond the wellbore wall. The simulation in this paper indicates that for shear initiations that happen along coal cleats, the pressure required to initiate fracture for cleats beyond the wellbore wall is evidently lower than that on the wellbore wall, thus it is easier to initiate shear fractures for cleats beyond the wellbore wall. For tensile failure, the pressure required to initiate tensile fracture for cleats beyond the wellbore wall is obviously higher than that for cleats at the wellbore wall, thus it is easier to initiate tensile fractures for cleats at the wellbore wall. On the one hand, this paper has proved the possible occurrence of initiations beyond the wellbore wall and has changed the current assumption that hydraulic fractures can only occur at the wellbore wall. On the other hand, the established theoretical model provides a new approach to calculating the initiation pressure in hydraulic fracturing.

  7. Sunken Eye Induced by Superior Orbital Wall Defect After Craniofacial Surgery

    PubMed Central

    Joo, Sung-Pil; Kim, Sung-Hyun; Park, Hong-Ju; Jung, Seunggon; Han, Jeong Joon; Kim, Tae-Sun

    2016-01-01

    Abstract Enophthalmos after a ventriculo-peritoneal (V-P) shunt placement is very rare. Previous defects of the orbital wall with intracranial hypotension can cause enophthalmos after V-P shunting. The authors present 2 patients of enophthalmos with orbital wall defects resulting from anterior clinoidectomy that was performed during previous aneurysmal surgery. Both patients received a V-P shunt for hydrocephalus after subarachnoid hemorrhage. Although the hydrocephalus was improved by V-P shunts in both patients, sunken eyes were observed. The patients received reconstructive surgery of the superior orbital wall using titanium mesh and recovered after surgery without any neurological deficits. Here, the authors present 2 patients of enophthalmos with orbital wall defects treated by orbital wall reconstruction. PMID:27483101

  8. Numerical simulations examining the relationship between wall-roughness and fluid flow in rock fractures

    SciTech Connect

    Crandall, Dustin; Bromhal, Grant; Karpyn, Zuleima T.

    2010-07-01

    Understanding how fracture wall-roughness affects fluid flow is important when modeling many subsurface transport problems. Computed tomography scanning provides a unique view of rock fractures, allowing the measurement of fracture wall-roughness, without destroying the initial rock sample. For this computational fluid dynamics study, we used several different methods to obtain three-dimensional meshes of a computed tomography scanned fracture in Berea sandstone. These volumetric meshes had different wall-roughnesses, which we characterized using the Joint Roughness Coefficient and the fractal dimension of the fracture profiles. We then related these macroscopic roughness parameters to the effective flow through the fractures, as determined from Navier-Stokes numerical models. Thus, we used our fracture meshes to develop relationships between the observed roughness properties of the fracture geometries and flow parameters that are of importance for modeling flow through fractures in field scale models. Fractures with high Joint Roughness Coefficients and fractal dimensions were shown to exhibit tortuous flow paths, be poorly characterized by the mean geometric aperture, and have a fracture transmissivity 35 times smaller than the smoother modeled fracture flows.

  9. "Roller coaster maneuver via lateral orbital approach" for reduction of isolated zygomatic arch fractures.

    PubMed

    Pilanci, Ozgur; Basaran, Karaca; Datli, Asli; Kuvat, Samet Vasfi

    2013-11-01

    Numerous techniques have been reported for the reduction of zygomatic arch fractures. In this article, we aimed to describe a technique we named as "roller coaster maneuver via lateral orbital approach" to closed reduction of the isolated-type zygomatic arch fractures. Surgical outcomes of 14 patients treated with this method were outlined. PMID:24220411

  10. Successful application of endoscopic modified medial maxillectomy to orbital floor trapdoor fracture in a pediatric patient.

    PubMed

    Matsuda, Yasunori; Sakaida, Hiroshi; Kobayashi, Masayoshi; Takeuchi, Kazuhiko

    2016-10-01

    Although surgical treatment of orbital floor fractures can be performed by many different approaches, the application of endoscopic modified medial maxillectomy (EMMM) for this condition has rarely been described in the literature. We report on a case of a 7-year-old boy with a trapdoor orbital floor fracture successfully treated with the application of EMMM. The patient suffered trauma to the right orbit floor and the inferior rectus was entrapped at the orbital floor. Initially, surgical repair via endoscopic endonasal approach was attempted. However, we were unable to adequately access the orbital floor through the maxillary ostium. Therefore, an alternative route of access to the orbital floor was established by EMMM. With sufficient visualization and operating space, the involved orbital content was completely released from the entrapment site and reduced into the orbit. To facilitate wound healing, the orbital floor was supported with a water-inflated urethral balloon catheter for 8 days. At follow-up 8 months later, there was no gaze restriction or complications associated with the EMMM. This case illustrates the efficacy and safety of EMMM in endoscopic endonasal repair of orbital floor fracture, particularly for cases with a narrow nasal cavity such as in pediatric patients.

  11. Effect of Surface Wettability on Nonlinear Flow in a Rough-Walled Fracture

    NASA Astrophysics Data System (ADS)

    Lee, H.; Yeo, I.; Park, J.; Lee, K.

    2005-12-01

    The understanding of flow behavior in rock fractures is essential to the analysis of water flow, solute transport and DNAPL migration and remediation in rock fractures. DNAPL migration and remediation in rock fractures has been an emerging issue due to its serious contamination problem and the difficulty in dealing with DNAPL trapped in rock fractures. It has been reported that while DNAPL migrates through rock fractures, DNAPL may be trapped on rock surfaces due to variable apertures and dead-end fractures, and may also change the surface wettability of rock fractures from hydrophilic to hydrophobic. In this study, the effect of surface wettability on water flow in rock fractures has been investigated. A glass replica of a real rough-walled fracture was made, and the fracture surface was brushed with corn oil to make the fracture surface hydrophobic. The corn oil was wiped off with tissues many times, to eliminate the oil remnants on the surface. Flow tests were conducted on the oil-wet fracture surface. Then, the surface was completely washed out with the cleaning agents to make the fracture surface hydrophilic, which was confirmed through contact angle measurements. Flow tests were repeated for the water-wet fracture surface. Flow tests were also carried out for a parallel glass plate fracture over the same water- and oil-wet surface conditions as in the rough fracture. In the parallel plate fracture, the hydraulic aperture from the oil-wet surface was only two percent higher that that of the water-wet surface, which indicated that the initial aperture of the fracture might not decrease by the corn-oil coating. Both oil- and water-wet surfaces of the parallel plate showed a linear flow regime, up to Reynolds number of 400. In the case of the rough fracture, the hydraulic aperture of the oil-wet fracture surface was smaller than that of the water-wet fracture surface. For the water-wet fracture surface, the non-linear flow started at Reynolds number less than 30

  12. Solute exchange at the fracture-matrix wall involving significant buoyancy effects - an analog experiment

    NASA Astrophysics Data System (ADS)

    Michel, L.; Meheust, Y.; Bouquain, J.; Caudal, J.; de Bremond D'Ars, J.; de Dreuzy, J.; Davy, P.

    2008-12-01

    Contaminant transport in heterogeneous fractured aquifers occurs mostly through the networks of intersecting fractures. The physical mechanisms of solute transport in a single fracture with impermeable walls are well identified: advection, micro-dispersion (including molecular diffusion) Taylor-Aris dispersion, roughness dispersion, and aperture-variation dispersion. The description of the mass transfert coefficient between the region of high permeability (the fracture) and that of low permeability (the surrounding matrix), when the permeability of the latter cannot be neglected, is in contrast poorly understood. We address here solute transport through a synthetic fracture with a porous wall placed under the fracture, and for which buoyancy effects significantly promote solute exchange at the porous wall. We have developed an analog experimental setup in which the planar horizontal fracture is 1 m long, 5 cm wide and its mean aperture is 5 mm. It is bounded by either two smooth parallel Plexiglass plates (impermeable walls configuration), or by one such plate and a porous medium consisting of 1 mm glass beads ("semi-permeable" configuration). A permanent laminar water flow is forced through the fracture at controlled mean velocity (~ 1mm/s). The flow conditions inside the experimental fracture have been characterized using three-dimensional finite volume numerical simulations of the flow. A dye (patent blue) injection system simulates a point source of contaminant along the center plane of the experimental fracture. The tracer plume is tracked using a visualization system based on (i) lasers illuminating a series of vertical linear optical sensor arrays, and (ii) 4 cameras positioned side by side and providing a composite image of the fracture length, viewed from the side. The two measurement systems yield consistent quantitative temporal descriptions of the tracer concentration, integrated over the fracture width and at several positions along the fracture length

  13. Rib fracture patterns predict thoracic chest wall and abdominal solid organ injury.

    PubMed

    Al-Hassani, Ammar; Abdulrahman, Husham; Afifi, Ibrahim; Almadani, Ammar; Al-Den, Ahmed; Al-Kuwari, Abdulaziz; Recicar, John; Nabir, Syed; Maull, Kimball I

    2010-08-01

    Blunt trauma patients with rib fractures were studied to determine whether the number of rib fractures or their patterns were more predictive of abdominal solid organ injury and/or other thoracic trauma. Rib fractures were characterized as upper zone (ribs 1 to 4), midzone (ribs 5 to 8), and lower zone (ribs 9 to 12). Findings of sternal and scapular fractures, pulmonary contusions, and solid organ injures (liver, spleen, kidney) were characterized by the total number and predominant zone of ribs fractured. There were 296 men and 14 women. There were 38 patients with scapular fracture and 19 patients with sternal fractures. There were 90 patients with 116 solid organ injuries: liver (n = 42), kidney (n = 27), and spleen (n = 47). Lower rib fractures, whether zone-limited or overlapping, were highly predictive of solid organ injury when compared with upper and midzones. Scapular and sternal fractures were more common with upper zone fractures and pulmonary contusions increased with the number of fractured ribs. Multiple rib fractures involving the lower ribs have a high association with solid organ injury, 51 per cent in this series. The increasing number of rib fractures enhanced the likelihood of other chest wall and pulmonary injuries but did not affect the incidence of solid organ injury. PMID:20726423

  14. Presence of a groove in the lateral wall of the human orbit.

    PubMed Central

    Santo Neto, H; Penteado, C V; de Carvalho, V C

    1984-01-01

    The presence of a groove in the lateral wall of the human orbit (Royle, 1973) was found in 45 of 100 orbits examined (45%). In 15 skulls the groove was present bilaterally. The groove probably lodges an anastomosis between the middle meningeal and infraorbital blood vessels. No reference to this groove was found in general anatomical texts. Images Fig. 1 PMID:6746401

  15. Sterile subperiosteal fluid collections accompanying orbital wall infarction in sickle-cell disease.

    PubMed

    Huckfeldt, Rachel M; Shah, Ankoor S

    2014-10-01

    Infarction of the orbital wall is an uncommon manifestation of sickle cell disease (SCD) that may mimic an infectious process. We report a patient with two separate orbital infarctions with different presenting symptoms involving different bones. Radiologic-guided sampling of a periosteal fluid collection in the first episode showed likely sterile inflammatory exudates. This case highlights the range of findings in orbital wall infarction in SCD as well as helpful clinical and imaging entities that may differentiate infarction from infection, allowing early diagnosis and appropriate management.

  16. Late treatment of orbital fractures: a new analysis for surgical planning.

    PubMed

    Pagnoni, M; Marenco, M; Ramieri, V; Terenzi, V; Bartoli, D; Amodeo, G; Mazzoli, A; Iannetti, G

    2014-12-01

    Surgical treatment of orbital fractures should be performed without delay; in some cases acute management is not possible due to general conditions and might be delayed for weeks or months. In the latter case, the fractured fragments can consolidate improperly, causing secondary deformities of the orbital region with aesthetic and functional alteration. Surgical planning of secondary deformities is critical for adequate pre-operative planning. In the last decade an increasing number of dedicated software applications for surgical planning have been developed. Standard computed tomography (CT) or the relatively new cone beam CT can be used for diagnostic purposes, pre-surgical visual treatment outcome and virtual surgery. In this report, the authors propose their pre-operative planning analysis for surgical correction of secondary deformities of orbital fractures. The treatment of orbital fracture must, in fact, analyse not only the bone structures but the soft tissue and surrounding periorbital region. The position of the orbit in the space should be determined in relation to the surrounding structures compared to the contralateral side, if this is not affected by the trauma or pre-existing malformations.

  17. Preliminary studies of water seepage through rough-walled fractures

    SciTech Connect

    Geller, J.T.; Su, G.; Pruess, K.

    1996-07-01

    For groundwater aquifers in fractured rock, fractures play a significant role in the transport of water and contaminants through the unsaturated zone to the groundwater table. Fractures can provide preferential flow paths for infiltrating liquids that dramatically accelerate contaminant transport compared to predictions based upon spatially uniform infiltration. The actual liquid distribution during infiltration determines the contact area between the flowing water and rock, and liquid residence time, which in turn affects the potential for rock-water and rock-solute interaction, as well as mass transfer between liquid and gas phases. This report summarizes flow- visualization experiments of water percolation through transparent replicas of a natural rock fracture. We have focused on phenomenological and exploratory experiments that can lead to a conceptual model which incorporates the important physical mechanisms that control flow.

  18. Melt fracture, wall slip, and flow-induced fractionation of bimodal polyethylenes

    NASA Astrophysics Data System (ADS)

    Inn, Yong Woo

    2015-04-01

    The melt fracture and wall slip behaviors of bimodal polyethylene (PE) resins are compared with those of unimodal PE resins. The apparent wall slip is estimated by comparing the flow curves obtained by capillary rheology measurements with the linear viscoelastic data. It is confirmed that the higher content of small chains could cause more wall slip. The unimodal resin with broader molecular weight distribution (MWD) and the bimodal resin with higher content of low molecular weight (MW) component have matte surface roughness on the extrudates at lower stress. It is proposed that the flow-induced fractionation leading to the small chains being more concentrated on the die wall interface could cause the wall slip and unusual melt fracture behaviors in the capillary extrusion.

  19. How reactive fluids alter fracture walls and affect shale-matrix accessibility

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Deng, H.; Peters, C. A.

    2014-12-01

    Predictions of mass transfer across fracture boundaries and fluid flow in fracture networks provide fundamental inputs into risk and life cycle assessments of geologic energy technologies including oil and gas extraction, geothermal energy systems and geologic CO2 storage. However, major knowledge gaps exist due to the lack of experimental observations of how reactive fluids alter the pore structures and accessible surface area within fracture boundaries that control the mass transfer of organics, metals and salts, and influence fluid flow within the fracture. To investigate the fracture and rock matrix properties governing fracture boundary alteration, we developed a new flow-through cell that enables time-dependent 2D x-ray imaging of mineral dissolution and/or precipitation at a fracture surface. The parallel plate design provides an idealized fracture geometry to investigate the relationship between flow rate, reaction rate, and mineral spatial heterogeneity and variation. In the flow-cell, a carbonate-rich sample of Eagle Ford shale was reacted with acidified brine. The extent and rate of mineral dissolution were correlated with calcite abundance relative to less soluble silicate minerals. Three-dimensional x-ray tomography of the reacted fracture wall shows how calcite dissolution left behind a porous network of silicate minerals. And while this silicate network essentially preserved the location of the initial fracture wall, the pore network structures within the fracture boundary were dramatically altered, such that the accessible surface area of matrix components increased significantly. In a second set of experiments with a limestone specimen, however, the extent of dissolution and retreat of the fracture wall was not strictly correlated with the occurrence of calcite. Instead, the pattern and extent of dissolution suggested secondary causes such as calcite morphology, the presence of argillaceous minerals and other diagenetic features. Our experiments

  20. The isolated orbital floor fracture from a transconjunctival or subciliary perspective-A standardized anthropometric evaluation

    PubMed Central

    Djedovic, Gabriel; Peisker, Andre; Wohlrath, Rene; Rieger, Ulrich; Guentsch, Arndt; Gomez-Dammeier, Marta; Schultze-Mosgau, Stefan

    2016-01-01

    Background The influence of orbital fractures and their repair on the rate of deformities of the lower eyelid is an ongoing source of discussion in the literature. Most of the present studies include isolated blowout as well as combined orbital fractures. Material and Methods We present a retrospective evaluation of a series of 100 patients after isolated blowout fracture repair using reference anthropometric data on standardized photographs. Analysis included eye fissure width and height, lid sulcus height, upper lid height, upper and lower iris coverage, position of cornea to palpebra inferior, canthal tilt, scleral show, ectropion and entropion. It was clearly distinguished between operated and contralateral eyelid, whether a transconjunctival or a subciliary approach was performed and amount of fracture. Our main interests were changes of the aforementioned parameters with regards to eyelid deformities. Results Surgery per se did not significantly influence eyelid deformities. However, the surgical approach selected significantly affected eye fissure index, lower iris coverage and rate of scleral show, indicating retraction of the lower eyelid. Conclusions The standardized measurements described here are accurate and objective to evaluate postoperative results. The subciliary approach included the highest risk of lower lid retraction as compared to transconjunctival approaches. Key words:Transconjunctical approach, subciliary approach, orbital floor fracture. PMID:26595833

  1. Vascularized Nasoseptal Flap for Medial Orbital Wall Reconstruction.

    PubMed

    Turel, Mazda K; Chin, Christopher J; Vescan, Allan D; Gentili, Fred

    2016-09-01

    With the use and efficacy of the vascularized nasoseptal flap, its indications are also expanding. Due to its relative ease of harvesting and no significant impairment in the long-term sinonasal quality of life, the flap has been used for a number of other purposes apart from its originally proposed use in reconstruction of the anterior cranial fossa, sella, and the clivus. Its use may negate the need of another incision to obtain fat or fascia. The authors describe the case of a 47-year-old lady who underwent endoscopic excision of a medially placed orbital intraconal hemangioma who presented to us with very poor vision in the left eye. The large medial orbital defect was reconstructed with a vascularized pedicled nasoseptal flap from the ipsilateral side. The patient made an excellent visual and sino-nasal recovery. This patient highlights a unique use for the proliferating indications for the use of the nasoseptal flap. PMID:27428902

  2. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    SciTech Connect

    Diniz, Ginetom S. Ulloa, Sergio E.

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  3. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Diniz, Ginetom S.; Ulloa, Sergio E.

    2014-07-01

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  4. Nonlinear fracture mechanics-based analysis of thin wall cylinders

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Leis, Brian N.; Forte, Thomas P.

    1994-01-01

    This paper presents a simple analysis technique to predict the crack initiation, growth, and rupture of large-radius, R, to thickness, t, ratio (thin wall) cylinders. The method is formulated to deal both with stable tearing as well as fatigue mechanisms in applications to both surface and through-wall axial cracks, including interacting surface cracks. The method can also account for time-dependent effects. Validation of the model is provided by comparisons of predictions to more than forty full scale experiments of thin wall cylinders pressurized to failure.

  5. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies

    USGS Publications Warehouse

    Williams, J.H.; Johnson, C.D.

    2004-01-01

    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  6. Orbital Emphysema Following Ocular Trauma and Sneezing.

    PubMed

    Gauguet, Jean-Marc; Lindquist, Patricia A; Shaffer, Kitt

    2008-01-01

    Orbital emphysema is typically a benign condition that occurs following forceful injection of air into the orbital soft tissue spaces. In many cases there is a history of trauma and fracture of an orbital bone, which permits air entry. However, other mechanisms of orbital emphysema have been reported including infection, pulmonary barotrauma, injury from compressed-air hoses, and complications from surgery including dental procedures. Here, we describe a report of a teenager who suffered an isolated medial orbital wall fracture while playing basketball, and several hours later developed orbital emphysema acutely after sneezing. We will review the radiological evaluation of orbital fractures and emphysema.

  7. Simulated orbital impact of multi-wall composite structures

    NASA Technical Reports Server (NTRS)

    Walker, Eve J.; Schonberg, William P.

    1992-01-01

    This paper presents the results of an experimental investigation in which several different composite materials were tested for their ability to prevent the perforation of multiwall systems under hypervelocity projectile impact. The damage in the composite specimens is compared to the damage in aluminum specimens of similar geometry and weight caused by hypervelocity projectiles with similar impact energies. The analysis shows that using composite materials in combination with metallic materials in multiwall structures can increase the protection afforded a spacecraft against perforation by orbital debris over that provided by traditional, purely metallic multiwall structures.

  8. Evaluating the Influence of Wall-Roughness on Fracture Transmissivity with CT Scanning and Flow Simulations

    SciTech Connect

    Crandall, Dustin; Bromhal, Grant; McIntyre, Dustin

    2010-01-01

    Combining CT imaging of geomaterials with computational fluid dynamics provides substantial benefits to researchers. With simulations, geometric parameters can be varied in systematic ways that are not possible in the lab. This paper details the conversion of micro-CT images of a physical fracture in Berea sandstone to several tractable finite volume meshes. By computationally varying the level of detail captured from the scans we produced several realistic fracture geometries with different degrees of wall-roughness and various geometric properties. Simulations were performed and it was noted that increasing roughness increased the resistance to fluid flow. Also, as the distance between walls was increased the mean aperture approached the effective aperture.

  9. Technique for repair of fractures and separations involving the cartilaginous portions of the anterior chest wall.

    PubMed

    Bonne, Stephanie L; Turnbull, Isaiah R; Southard, Robert E

    2015-06-01

    Internal fixation of the ribs has been shown in numerous studies to decrease complications following traumatic rib fractures. Anterior injuries to the chest wall causing cartilaginous fractures, although rare, can cause significant disability and can lead to a variety of complications and, therefore, pose a unique clinical problem. Here, we report the surgical technique used for four patients with internal fixation of injuries to the cartilaginous portions of the chest wall treated at our center. All patients had excellent clinical outcomes and reported improvement in symptoms, with no associated complications. Patients who have injuries to the anterior portions of the chest wall should be considered for internal fixation of the chest wall when the injuries are severe and can lead to clinical disability. PMID:26033132

  10. Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque

    PubMed Central

    Bhowmik, Debanjan; Nowakowski, Mark E.; You, Long; Lee, OukJae; Keating, David; Wong, Mark; Bokor, Jeffrey; Salahuddin, Sayeef

    2015-01-01

    Spin-polarized electrons can move a ferromagnetic domain wall through the transfer of spin angular momentum when current flows in a magnetic nanowire. Such current induced control of a domain wall is of significant interest due to its potential application for low power ultra high-density data storage. In previous reports, it has been observed that the motion of the domain wall always happens parallel to the current flow – either in the same or opposite direction depending on the specific nature of the interaction. In contrast, here we demonstrate deterministic control of a ferromagnetic domain wall orthogonal to current flow by exploiting the spin orbit torque in a perpendicularly polarized Ta/CoFeB/MgO heterostructure in presence of an in-plane magnetic field. Reversing the polarity of either the current flow or the in-plane field is found to reverse the direction of the domain wall motion. Notably, such orthogonal motion with respect to current flow is not possible from traditional spin transfer torque driven domain wall propagation even in presence of an external magnetic field. Therefore the domain wall motion happens purely due to spin orbit torque. These results represent a completely new degree of freedom in current induced control of a ferromagnetic domain wall. PMID:26139349

  11. Tail shortening with developing eddies in a rough-walled rock fracture

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Yeo, In Wook; Lee, Kang-Kun; Detwiler, Russell L.

    2015-08-01

    Understanding fluid flow and solute transport in rough-walled fractures is important in many problems such as geological storage of CO2 and siting of radioactive waste repositories. The first microscopic observation of fluid flow and solute transport through a rough-walled fracture was made to assess the evolution of eddies and their effect on non-Fickian tailing. A noteworthy phenomenon was observed that as the eddy grew, the particles were initially caught in and swirled around within eddies, and then cast back into main flow channel, which reduced tailing. This differs from the conventional conceptual model, which presumes a distinct separation between mobile and immobile zones. Fluid flow and solute transport modeling within the 3-D fracture confirmed tail shortening due to mass transfer by advective paths between the eddies and the main flow channel, as opposed to previous 2-D numerical studies that showed increased tailing with growing eddies.

  12. Clinical and surgical implications regarding morphometric variations of the medial wall of the orbit in relation to age and gender.

    PubMed

    Morales-Avalos, Rodolfo; Santos-Martínez, Arlette Gabriela; Ávalos-Fernández, Cesia Gisela; Mohamed-Noriega, Karim; Sánchez-Mejorada, Gabriela; Montemayor-Alatorre, Adolfo; Martínez-Fernández, David A; Espinosa-Uribe, Abraham G; Mohamed-Noriega, Jibran; Cuervo-Lozano, Edgar E; Mohamed-Hamsho, Jesús; Quiroga-García, Oscar; Lugo-Guillen, Roberto A; Guzmán-López, Santos; Elizondo-Omaña, Rodrigo E

    2016-09-01

    The ethmoidal foramens are located on the medial wall of the orbit and are key reference points for intraoperative orientation. Detailed knowledge of the anatomy, bony landmarks and morphometric characteristics of the medial wall of the orbit is essential for various surgical procedures. The aim of this study was to determine the morphometric variations in the medial wall of the orbit and establish significant variations regarding age and gender. A total of 110 orbits were analyzed and subdivided by age (over or under 40 years) and gender. The distances of the medial wall of the orbit between the anterior lacrimal crest, the ethmoidal foramen, the optic canal and the interforamina were determined. Safe surgical areas were sought. Statistical tests were used to determine the differences between groups. In men, there is a safe surgical area proximal to the anterior and posterior ethmoidal foramen. In women, this area is in the posterior third of the medial wall of the orbit between the posterior ethmoidal foramen and the optic canal. Regarding variation according to age, the results of this study suggested that the anteroposterior diameter of the medial wall increases with age. This study showed that the anteroposterior total length of the medial orbit wall is similar between genders of similar age, increases with age, and has significant variations in the distances between the various structures that make up the medial orbit wall with regard to gender and age.

  13. Surgical management of persistent diplopia in blowout fractures of the orbit.

    PubMed

    Harley, R D

    1975-12-01

    Persistent diplopia continues as a problem in a significant number of patients following the surgical management of a blowout fracture of the orbital floor even when repaired within 15 days of the traumatic incident. Inferior rectus and inferior oblique muscles which have been incarcerated in a blowout fracture for longer periods have a worse prognosis for adequate functioning postoperatively. There is some presumptive evidence to suggest a myogenic or neurogenic cause for such dysfunction. Experiments with posterior fractures clearly demonstrate that the nerve entering the inferior rectus can be damaged. Vertical diplopia which persists beyond 3 months following release of entrapped muscle tissue requires surgical correction depending upon the degree of vertical dissociation. Motility surgery was required in 18 of 20 patients with persistent diplopia. Multiple muscle combinations were frequently required to achieve success. The criterion for a successful result was elimination of vertical diplopia in the primary and reading position. The elimination of persistent diplopia in association with blowout fractures of the orbit is usually possible even in late treated cases when one uses specific criteria for success. Three cases were considered cured since there was no diplopia in any direction of gaze, while 17 cases developed single binocular vision in the primary and reading positions. In these latter patients, on extreme upward or downward gaze, diplopia could still be demonstrated in all patients, especially when the individuals were specifically requested to look for diplopia.

  14. High Antiferromagnetic Domain Wall Velocity Induced by Néel Spin-Orbit Torques

    NASA Astrophysics Data System (ADS)

    Gomonay, O.; Jungwirth, T.; Sinova, J.

    2016-07-01

    We demonstrate the possibility to drive an antiferromagnetic domain wall at high velocities by fieldlike Néel spin-orbit torques. Such torques arise from current-induced local fields that alternate their orientation on each sublattice of the antiferromagnet and whose orientation depends primarily on the current direction, giving them their fieldlike character. The domain wall velocities that can be achieved by this mechanism are 2 orders of magnitude greater than the ones in ferromagnets. This arises from the efficiency of the staggered spin-orbit fields to couple to the order parameter and from the exchange-enhanced phenomena in antiferromagnetic texture dynamics, which leads to a low domain wall effective mass and the absence of a Walker breakdown limit. In addition, because of its nature, the staggered spin-orbit field can lift the degeneracy between two 180° rotated states in a collinear antiferromagnet, and it provides a force that can move such walls and control the switching of the states.

  15. Cavitation by spall fracture of solid walls in liquids

    NASA Astrophysics Data System (ADS)

    Mikulich, V.; Brücker, Ch.

    2014-07-01

    Experiments are carried out to investigate the cavitation process induced by the spill-off from material from a surface in a liquid environment. Therefore, a simplified physical model was designed which allows the optical observation of the process next to a transparent glass rod submerged in a liquid where the rod is forced to fracture at a pre-defined groove. High-speed shadow-imaging and refractive index matching allow observation of the dynamics of the cavitation generation and cavitation bubble breakdown together with the flow. The results show that the initial phase of spill-off is a vertical lift-off of the rod from the surface that is normal to the direction of pendulum impact. A cavitation bubble is immediately formed during spill-off process and grows in size until lateral motion of the rod sets in. While the rod is transported away, the bubble shrinks into hyperbolic shape and finally collapses. This process is regarded as one contributing factor to the high efficiency of hydro-abrasive wear.

  16. Experiments on fracture toughness of thick-wall cylinder for modes I, II, III

    SciTech Connect

    Saegusa, T.; Urabe, N.; Ito, C.; Shirai, K.; Kosaki, A.

    1999-07-01

    There have been few data on fracture toughness for Mode 2 and 3 as compared with those for Mode 1. Experimental data on fracture toughness of plates made of ductile cast iron (ASTM A874-89) and forged steel (ASME SA350 LF5 C1.1) were obtained at a temperature range from 77K to 293K for Mode 1, 2 and 3. The results showed: J{sub IC} < J{sub IIC} < J{sub IIIC}, and K{sub IC} < K{sub IIC} K{sub IIIC}. Integrity of a thick-wall cylinder with artificial flaw was demonstrated against brittle fracture at 233K for Mode 1, 2 and 3, which is one of the design requirements of containers shipping radioactive materials.

  17. Fracture toughness of irradiated candidate materials for ITER first wall/blanket structures: Summary report

    SciTech Connect

    Alexander, D.J.; Pawel, J.E.; Grossbeck, M.L.; Rowcliffe, A.F.

    1996-04-01

    Disk compact specimens of candidate materials for first wall/blanket structures in ITER have been irradiated to damage levels of about 3 dpa at nominal irradiation temperatures of either 90 250{degrees}C. These specimens have been tested over a temperature range from 20 to 250{degrees}C to determine J-integral values and tearing moduli. The results show that irradiation at these temperatures reduces the fracture toughness of austenic stainless steels, but the toughness remains quite high. The toughness decreases as the temperature increases. Irradiation at 250{degrees}C is more damaging that at 90{degrees}C, causing larger decreases in the fracture toughness. The ferritic-martensitic steels HT-9 and F82H show significantly greater reductions in fracture toughness that the austenitic stainless steels.

  18. Modeling gravity-driven fingering in rough-walled fractures using modified percolation theory

    SciTech Connect

    Glass, R.J.

    1992-12-31

    Pore scale invasion percolation theory is modified for imbibition of.wetting fluids into fractures. The effects of gravity, local aperture field geometry, and local in-plane air/water interfacial curvatureare included in the calculation of aperture filling potential which controls wetted structure growth within the fracture. The inclusion of gravity yields fingers oriented in the direction of the gravitational gradient. These fingers widen and tend to meander and branch more as the gravitational gradient decreases. In-plane interfacial curvature also greatly affects the wetted structure in both horizontal and nonhorizontal fractures causing the formation of macroscopic wetting fronts. The modified percolation model is used to simulate imbibition into an analogue rough-walled fracture where both fingering and horizontal imbibition experiments were previously conducted. Comparison of numerical and experimental results showed reasonably good agreement. This process oriented physical and numerical modeling is-a necessary step toward including gravity-driven fingering in models of flow and transport through unsaturated, fractured rock.

  19. Fracture Toughness Measurements and Assessment of Thin Walled Conduit Alloys in a Cicc Application

    NASA Astrophysics Data System (ADS)

    Walsh, R. P.; Han, K.; Toplosky, V. J.

    2008-03-01

    The Series-Connected Hybrid Magnets under construction at the NHMFL use Cable-in-Conduct-Conductor (CICC) technology. The 4 K mechanical properties of the conduit are extremely important to the performance and reliability of the magnets. We have measured tensile and fracture toughness of two candidate conduit alloys (Haynes 242 and modified 316LN) in various metallurgical states, with emphasis on the final state of production. To assess the material in its final production state, non-standard specimens are removed directly from the round-corner rectangular conduit and tested after exposure to a simulated Nb3Sn reaction heat treatment. Non-standard middle-tension (MT) fracture toughness specimens enable toughness evaluation of the base metal, welds and weld/base transitional region in the as-fabricated conduit with final dimensions not suitable for conventional fracture toughness specimens. Although fracture toughness tests of the thin walled conduit fail to meet ASTM test validity requirements they provide a qualitative evaluation and estimate of the fracture toughness of the conduit and the welds.

  20. FRACTURE TOUGHNESS MEASUREMENTS AND ASSESSMENT OF THIN WALLED CONDUIT ALLOYS IN A CICC APPLICATION

    SciTech Connect

    Walsh, R. P.; Han, K.; Toplosky, V. J.

    2008-03-03

    The Series-Connected Hybrid Magnets under construction at the NHMFL use Cable-in-Conduct-Conductor (CICC) technology. The 4 K mechanical properties of the conduit are extremely important to the performance and reliability of the magnets. We have measured tensile and fracture toughness of two candidate conduit alloys (Haynes 242 and modified 316LN) in various metallurgical states, with emphasis on the final state of production. To assess the material in its final production state, non-standard specimens are removed directly from the round-corner rectangular conduit and tested after exposure to a simulated Nb{sub 3}Sn reaction heat treatment. Non-standard middle-tension (MT) fracture toughness specimens enable toughness evaluation of the base metal, welds and weld/base transitional region in the as-fabricated conduit with final dimensions not suitable for conventional fracture toughness specimens. Although fracture toughness tests of the thin walled conduit fail to meet ASTM test validity requirements they provide a qualitative evaluation and estimate of the fracture toughness of the conduit and the welds.

  1. Blowout fracture-orbital floor reconstruction using costochondral cartilage causing pain, warping, and diplopia

    PubMed Central

    Balaji, S. M.

    2015-01-01

    Orbital floor reconstruction is the most challenging component in the midfacial trauma management. Most often owing to the complexity of the fractures, the floor reconstruction requires grafts or other substitutes. Literature reveals several sources of autogenous sources of such grafts. Though most of the grafts are well taken and gives an ideal result, at certain instances, owing to the complex nature of the graft, its biochemical nature, reaction to the grafting, biochemical response, a reactionary change may result at late stages. The aim of this manuscript is to present a rare instance of warping of a costochondral graft that was used as a part of the orbital floor reconstruction giving rise to an ophthalmic emergency. The situation was immediately diagnosed and successfully managed. The situation, structural, and biochemical mechanisms behind such a phenomenon are discussed. PMID:26981485

  2. Paediatric orbital fractures: the importance of regular thorough eye assessment and appropriate referral.

    PubMed

    Kassam, Karim; Rahim, Ishrat; Mills, Caroline

    2013-01-01

    The paediatric orbital fracture should always raise alarm bells to all clinicians working in an emergency department. A delay or failure in diagnosis and appropriate referral can result in rapidly developing and profound complications. We present a boy of childhood age who sustained trauma to his eye during a bicycle injury. Acceptance of the referral was based on no eye signs; however, on examination in our unit the eye had reduction in visual acuity, no pupillary reaction, and ophthalmoplegia. CT scan suggested bone impinging on the globe and the child was rushed to theatre for removal of the bony fragment. Postoperatively no improvement was noted and a diagnosis of traumatic optic neuropathy was made. An overview of factors complicating paediatric orbital injuries, their associated "red flags", and appropriate referral are discussed in this short paper. PMID:24349804

  3. Cosmic bubble and domain wall instabilities II: fracturing of colliding walls

    SciTech Connect

    Braden, Jonathan; Bond, J. Richard; Mersini-Houghton, Laura

    2015-08-26

    We study collisions between nearly planar domain walls including the effects of small initial nonplanar fluctuations. These perturbations represent the small fluctuations that must exist in a quantum treatment of the problem. In a previous paper, we demonstrated that at the linear level a subset of these fluctuations experience parametric amplification as a result of their coupling to the planar symmetric background. Here we study the full three-dimensional nonlinear dynamics using lattice simulations, including both the early time regime when the fluctuations are well described by linear perturbation theory as well as the subsequent stage of fully nonlinear evolution. We find that the nonplanar fluctuations have a dramatic effect on the overall evolution of the system. Specifically, once these fluctuations begin to interact nonlinearly the split into a planar symmetric part of the field and the nonplanar fluctuations loses its utility. At this point the colliding domain walls dissolve, with the endpoint of this being the creation of a population of oscillons in the collision region. The original (nearly) planar symmetry has been completely destroyed at this point and an accurate study of the system requires the full three-dimensional simulation.

  4. The stability of steady motion of magnetic domain wall: Role of higher-order spin-orbit torques

    SciTech Connect

    He, Peng-Bin Yan, Han; Cai, Meng-Qiu; Li, Zai-Dong

    2015-12-14

    The steady motion of magnetic domain wall driven by spin-orbit torques is investigated analytically in the heavy/ferromagnetic metal nanowires for three cases with a current transverse to the in-plane and perpendicular easy axis, and along the in-plane easy axis. By the stability analysis of Walker wall profile, we find that if including the higher-order spin-orbit torques, the Walker breakdown can be avoided in some parameter regions of spin-orbit torques with a current transverse to or along the in-plane easy axis. However, in the case of perpendicular anisotropy, even considering the higher-order spin-orbit torques, the velocity of domain wall cannot be efficiently enhanced by the current. Furthermore, the direction of wall motion is dependent on the configuration and chirality of domain wall with a current along the in-plane easy axis or transverse to the perpendicular one. Especially, the direction of motion can be controlled by the initial chirality of domain wall. So, if only involving the spin-orbit mechanism, it is preferable to adopt the scheme of a current along the in-plane easy axis for enhancing the velocity and controlling the direction of domain wall.

  5. Examination of Relationship Between Photonic Signatures and Fracture Strength of Fused Silica Used in Orbiter Windows

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cramer, K. Elliott; Estes, Linda R.; Salem, Jonathan A.; Lankford, James, Jr.; Lesniak, Jon

    2011-01-01

    A commercially available grey-field polariscope (GFP) instrument for photoelastic examination is used to assess impact damage inflicted upon the outermost pane of the orbiter windows. Four categories of damage: hyper-velocity impacts that occur during space-flight (HVI); hypervelocity impacts artificially made at the Hypervelocity Impact Technology Facility (HIT-F); impacts made by larger objects falling onto the pane surface to simulate dropped items on the window during service/storage of vehicle (Bruises); and light scratches from dull objects designed to mimic those that might occur by dragging a dull object across the glass surface (Chatter Checks) are examined. The damage sites are cored from fused silica window carcasses, examined with the GFP and other methodologies, and broken using the ASTM Standard C1499-09 to measure the fracture strength. A correlation is made between the fracture strength and damage-site measurements including geometrical measurements and GFP measurements of photoelastic retardation (stress patterns) surrounding the damage sites. An analytical damage model to predict fracture strength from photoelastic retardation measurements is presented and compared with experimental results.

  6. Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

    SciTech Connect

    Persoff, P.; Pruess, K.; Myer, L.

    1991-01-01

    Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light.

  7. Plasma membrane ultrastructure during plant protoplast plasmolysis, isolation and wall regeneration: a freeze-fracture study.

    PubMed

    Wilkinson, M J; Northcote, D H

    1980-04-01

    The freeze-fracture morphology of the plasma membrane of cells and isolated protoplasts of plant callus suspensions has been investigated. Plasmolysis of suspension cells leads to the formation of 2 types of hexagonal arrays of intramembrane particles situated on the inner fracture face (PF). These arrays are interpreted as proteins that have 'crystallized' in the plane of the membrane as the area of surrounding lipid bilayer is reduced during protoplast retraction from the cell wall. Time-course studies have revealed no positive relationship between the distribution of hexagonal arrays and the occurrence of microfibrils regenerated around isolated protoplasts during periods of culture. No evidence for the specialized transport functions attributed to hexagonal arrays of plant cells by previous workers has been found.

  8. Occult radiographic fractures of the chest wall identified by nuclear scan imaging: report of seven cases.

    PubMed

    LaBan, M M; Siegel, C B; Schutz, L K; Taylor, R S

    1994-03-01

    Between 1985 and 1990 the enactment of state mandatory seat belt laws has reduced the risk of death from auto accident by at least 40% and the risk of moderate to severe injury by 45%. Although head and facial trauma has also been significantly reduced, there has not been a decrease in injuries to other parts of the body. We evaluated seven restrained drivers who complained of persistent anterior and/or lateral chest wall pain after being in motor vehicle accidents. All had normal x-rays of the osseous thorax. Nuclear scan imaging subsequently revealed that all seven had a healing fracture of either the sternum or ribs. In each instance, direct trauma to the sternum and ribs anteriorly by the chest strap itself and/or laterally displaced bending forces transmitted to the postero lateral rib margins was sufficient to produce x-ray occult fractures.

  9. Infraorbital nerve transpositioning into orbital floor: a modified technique to minimize nerve injury following zygomaticomaxillary complex fractures

    PubMed Central

    Kotrashetti, Sharadindu Mahadevappa; Kale, Tejraj Pundalik; Bhandage, Supriya

    2015-01-01

    Objectives Transpositioning of the inferior alveolar nerve to prevent injury in lower jaw has been advocated for orthognathic, pre-prosthetic and for implant placement procedures. However, the concept of infra-orbital nerve repositioning in cases of mid-face fractures remains unexplored. The infraorbital nerve may be involved in trauma to the zygomatic complex which often results in sensory disturbance of the area innervated by it. Ten patients with infraorbital nerve entrapment were treated in similar way at our maxillofacial surgery centre. Materials and Methods In this article we are reporting three cases of zygomatico-maxillary complex fracture in which intra-operative repositioning of infra-orbital nerve into the orbital floor was done. This was done to release the nerve from fractured segments and to reduce the postoperative neural complications, to gain better access to fracture site and ease in plate fixation. This procedure also decompresses the nerve which releases it off the soft tissue entrapment caused due to trauma and the organized clot at the fractured site. Results There was no evidence of sensory disturbance during their three month follow-up in any of the patient. Conclusion Infraorbital nerve transposition is very effective in preventing paresthesia in patients which fracture line involving the infraorbital nerve. PMID:25922818

  10. Orbital Wall Reconstruction with Two-Piece Puzzle 3D Printed Implants: Technical Note.

    PubMed

    Mommaerts, Maurice Y; Büttner, Michael; Vercruysse, Herman; Wauters, Lauri; Beerens, Maikel

    2016-03-01

    The purpose of this article is to describe a technique for secondary reconstruction of traumatic orbital wall defects using titanium implants that act as three-dimensional (3D) puzzle pieces. We present three cases of large defect reconstruction using implants produced by Xilloc Medical B.V. (Maastricht, the Netherlands) with a 3D printer manufactured by LayerWise (3D Systems; Heverlee, Belgium), and designed using the biomedical engineering software programs ProPlan and 3-Matic (Materialise, Heverlee, Belgium). The smaller size of the implants allowed sequential implantation for the reconstruction of extensive two-wall defects via a limited transconjunctival incision. The precise fit of the implants with regard to the surrounding ledges and each other was confirmed by intraoperative 3D imaging (Mobile C-arm Systems B.V. Pulsera, Philips Medical Systems, Eindhoven, the Netherlands). The patients showed near-complete restoration of orbital volume and ocular motility. However, challenges remain, including traumatic fat atrophy and fibrosis. PMID:26889349

  11. Intershell interaction in double walled carbon nanotubes: Charge transfer and orbital mixing

    NASA Astrophysics Data System (ADS)

    Zólyomi, V.; Koltai, J.; Rusznyák, Á.; Kürti, J.; Gali, Á.; Simon, F.; Kuzmany, H.; Szabados, Á.; Surján, P. R.

    2008-06-01

    Recent nuclear-magnetic-resonance measurements on isotope engineered double walled carbon nanotubes (DWCNTs) surprisingly suggest a uniformly metallic character of all nanotubes, which can only be explained by the interaction between the layers. Here we study the intershell interaction in DWCNTs by density-functional theory and the intermolecular Hückel model. Both methods find charge transfer between the inner and outer tubes. We find that the charge transfer between the walls is on the order of 0.001e-/atom and that the inner tube is always negatively charged. We also observe orbital mixing between the states of the layers. We find that these two effects combined can in some cases lead to a semiconductor-to-metal transition of the double walled tube, but not necessarily in all cases. We extend our study to multiwalled nanotubes as well, with up to six layers in total. We find similar behavior as in the case of DWCNTs: electrons tend to be transferred from the outermost layer toward the innermost one. We find a notable peculiarity in the charge transfer when the (5,0) tube is present as the innermost tube; we attribute this to the σ-π mixing in such small diameter tubes.

  12. Crystal orbital study on the double walls made of nanotubes encapsulated inside zigzag carbon nanotubes

    SciTech Connect

    Zhao, Xin; Qiao, Weiye; Li, Yuliang; Huang, Yuanhe

    2015-01-15

    The structure stabilities and electronic properties are investigated by using ab initio self-consistent-field crystal orbital method based on density functional theory for the one-dimensional (1D) double-wall nanotubes made of n-gon SiO{sub 2} nanotubes encapsulated inside zigzag carbon nanotubes. It is found that formation of the combined systems is energetically favorable when the distance between the two constituents is around the Van der Waals scope. The obtained band structures show that all the combined systems are semiconductors with nonzero energy gaps. The frontier energy bands (the highest occupied band and the lowest unoccupied band) of double-wall nanotubes are mainly derived from the corresponding carbon nanotubes. The mobilities of charge carriers are calculated to be within the range of 10{sup 2}–10{sup 4} cm{sup 2} V{sup −1} s{sup −1} for the hybrid double-wall nanotubes. Young’s moduli are also calculated for the combined systems. For the comparison, geometrical and electronic properties of n-gon SiO{sub 2} nanotubes are also calculated and discussed. - Graphical abstract: Structures and band structures of the optimum 1D Double walls nanotubes. The optimized structures are 3-gon SiO2@(15,0), 5-gon SiO2@(17,0), 6-gon SiO2@(18,0) and 7-gon SiO2@(19,0). - Highlights: • The structure and electronic properties of the 1D n-gon SiO{sub 2}@(m,0)s are studied using SCF-CO method. • The encapsulation of 1D n-gon SiO{sub 2} tubes inside zigzag carbon nanotubes can be energetically favorable. • The 1D n-gon SiO{sub 2}@(m,0)s are all semiconductors. • The mobility of charge carriers and Young’s moduli are calculated.

  13. Ring-shaped Racetrack memory based on spin orbit torque driven chiral domain wall motions

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Zhang, Xueying; Hu, Jingtong; Nan, Jiang; Zheng, Zhenyi; Zhang, Zhizhong; Zhang, Youguang; Vernier, Nicolas; Ravelosona, Dafine; Zhao, Weisheng

    2016-10-01

    Racetrack memory (RM) has sparked enormous interest thanks to its outstanding potential for low-power, high-density and high-speed data storage. However, since it requires bi-directional domain wall (DW) shifting process for outputting data, the mainstream stripe-shaped concept certainly suffers from the data overflow issue. This geometrical restriction leads to increasing complexity of peripheral circuits or programming as well as undesirable reliability issue. In this work, we propose and study ring-shaped RM, which is based on an alternative mechanism, spin orbit torque (SOT) driven chiral DW motions. Micromagnetic simulations have been carried out to validate its functionality and exhibit its performance advantages. The current flowing through the heavy metal instead of ferromagnetic layer realizes the “end to end” circulation of storage data, which remains all the data in the device even if they are shifted. It blazes a promising path for application of RM in practical memory and logic.

  14. Ring-shaped Racetrack memory based on spin orbit torque driven chiral domain wall motions

    PubMed Central

    Zhang, Yue; Zhang, Xueying; Hu, Jingtong; Nan, Jiang; Zheng, Zhenyi; Zhang, Zhizhong; Zhang, Youguang; Vernier, Nicolas; Ravelosona, Dafine; Zhao, Weisheng

    2016-01-01

    Racetrack memory (RM) has sparked enormous interest thanks to its outstanding potential for low-power, high-density and high-speed data storage. However, since it requires bi-directional domain wall (DW) shifting process for outputting data, the mainstream stripe-shaped concept certainly suffers from the data overflow issue. This geometrical restriction leads to increasing complexity of peripheral circuits or programming as well as undesirable reliability issue. In this work, we propose and study ring-shaped RM, which is based on an alternative mechanism, spin orbit torque (SOT) driven chiral DW motions. Micromagnetic simulations have been carried out to validate its functionality and exhibit its performance advantages. The current flowing through the heavy metal instead of ferromagnetic layer realizes the “end to end” circulation of storage data, which remains all the data in the device even if they are shifted. It blazes a promising path for application of RM in practical memory and logic. PMID:27725741

  15. Results after En Bloc Lateral Wall Decompression Surgery with Orbital Fat Resection in 111 Patients with Graves' Orbitopathy

    PubMed Central

    Fichter, Nicole; Guthoff, Rudolf F.

    2015-01-01

    Purpose. To evaluate the effect of en bloc lateral wall decompression with additional orbital fat resection in terms of exophthalmos reduction and complications. Methods. A retrospective, noncomparative case series study from 1999 to 2011 (chart review) in Graves' orbitopathy (GO) patients. The standardized surgical technique involved removal of the lateral orbital wall including the orbital rim via a lid crease approach combined with additional orbital fat resection. Exophthalmos, diplopia, retrobulbar pressure sensation, and complications were analyzed pre- and postoperatively. Results. A total of 111 patients (164 orbits) with follow-up >3 months were analysed. Mean exophthalmos reduction was 3.05mm and preoperative orbital pressure sensation resolved or improved in all patients. Visual acuity improved significantly in patients undergoing surgery for rehabilitative or vision threatening purposes. Preoperative diplopia improved in 10 patients (9.0%) but worsened in 5 patients (4.5%), necessitating surgical correction in 3 patients. There were no significant complications; however, one patient had slight hollowing of the temporalis muscle around the scar that did not necessitate revision, and another patient with a circumscribed retraction of the scar itself underwent surgical correction. Conclusions. The study confirms the efficiency of en bloc lateral wall decompression in GO in a large series of patients, highlighting the low risk of disturbance of binocular functions and of cosmetic blemish in the temporal midface region. PMID:26221142

  16. Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures

    SciTech Connect

    Persoff, P.; Pruess, K.; Myer, L.

    1991-01-01

    Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler ''sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light. A set of two-phase flow experiments has been performed which has proven the viability of the basic experimental design, while also suggesting further improvements in the apparatus. Preliminary measurements are presented for single-phase permeability to liquid, and for relative permeabilities in simultaneous flow of liquid and gas.

  17. Survey of Common Practices among Oculofacial Surgeons in the Asia-Pacific Region: Management of Orbital Floor Blowout Fractures.

    PubMed

    Koh, Victor; Chiam, Nathalie; Sundar, Gangadhara

    2014-09-01

    A web-based anonymous survey was performed to assess common practices of oculofacial surgeons in the management of traumatic orbital floor blowout fractures. A questionnaire which contained questions on several controversial topics in the management of orbital floor fractures was sent out via e-mail to 131 oculofacial surgeons in 14 countries in the Asia-Pacific region. A total response rate of 58.3% was achieved from May to December 2012. The preferred time for surgical intervention was within 2 weeks for adult patients, porous polyethylene implant was the most popular choice, and most surgeons preferred the transconjunctival approach. Postoperatively, diplopia was the most commonly encountered complication and most oculofacial surgeons reviewed their patients regularly for up to 12 months. We report the results of the first survey of oculofacial surgeons within the Asia-Pacific region on the management of orbital floor blowout fractures. Compared with previous surveys (from year 2000 to 2004), the duration to surgical intervention was comparable but there was a contrasting change in preferred surgical approach and choice of orbital implant.

  18. Spin-orbit torques for current parallel and perpendicular to a domain wall

    SciTech Connect

    Schulz, Tomek; Lee, Kyujoon; Karnad, Gurucharan V.; Alejos, Oscar; Martinez, Eduardo; Moretti, Simone; Garcia, Karin; Ravelosona, Dafiné; Vila, Laurent; Lo Conte, Roberto; Kläui, Mathias; Ocker, Berthold; Brataas, Arne

    2015-09-21

    We report field- and current-induced domain wall (DW) depinning experiments in Ta\\Co{sub 20}Fe{sub 60}B{sub 20}\\MgO nanowires through a Hall cross geometry. While purely field-induced depinning shows no angular dependence on in-plane fields, the effect of the current depends crucially on the internal DW structure, which we manipulate by an external magnetic in-plane field. We show depinning measurements for a current sent parallel to the DW and compare its depinning efficiency with the conventional case of current flowing perpendicularly to the DW. We find that the maximum efficiency is similar for both current directions within the error bars, which is in line with a dominating damping-like spin-orbit torque (SOT) and indicates that no large additional torques arise for currents perpendicular to the DW. Finally, we find a varying dependence of the maximum depinning efficiency angle for different DWs and pinning levels. This emphasizes the importance of our full angular scans compared with previously used measurements for just two field directions (parallel and perpendicular to the DW) to determine the real torque strength and shows the sensitivity of the SOT to the precise DW structure and pinning sites.

  19. The history of the walls of the Acropolis of Athens and the natural history of secondary fracture healing process.

    PubMed

    Lyritis, G P

    2000-09-01

    During its long and adventurous history, the Acropolis of Athens has been a site of many dramatic events. It suffered its most disastrous destruction during the Persian wars. Under the command of King Xerxes, the Persians invaded Athens and ruined the Temple of the Parthenon and the walls of the Acropolis. After their victorious sea battle at Salamis, the Athenians, led by Themistocles, returned home and tried to repair the damage. Their priority still was to defend their city by restoring the walls of the Acropolis. Materials of all kinds were salvaged from the ruins of the Acropolis and used for an immediate reconstruction of the walls. Later, when the Athenians became the leaders of the Greek world, it was decided that the walls should be rebuilt in a proper artistic way. Themistocles suggested that a small section of the walls, which had formerly been a part of the urgent restoration, should remain in place so as to remind the citizens of this historical event. This is a characteristic example of the biological and mechanical adaptation of fracture callus to musculoskeletal function. After a period of urgency with the fixation of a fracture by means of a primitive secondary callus formation, the broken limb gradually returns to its usual function. Increased mechanical loading enhances the remodelling of the callus and the replacement of woven bone with lamellar bone. PMID:15758516

  20. Virtual Surgical Planning for Orbital Reconstruction

    PubMed Central

    Susarla, Srinivas M.; Duncan, Katherine; Mahoney, Nicholas R.; Merbs, Shannath L.; Grant, Michael P.

    2015-01-01

    The advent of computer-assisted technology has revolutionized planning for complex craniofacial operations, including orbital reconstruction. Orbital reconstruction is ideally suited for virtual planning, as it allows the surgeon to assess the bony anatomy and critical neurovascular structures within the orbit, and plan osteotomies, fracture reductions, and orbital implant placement with efficiency and predictability. In this article, we review the use of virtual surgical planning for orbital decompression, posttraumatic midface reconstruction, reconstruction of a two-wall orbital defect, and reconstruction of a large orbital floor defect with a custom implant. The surgeon managing orbital pathology and posttraumatic orbital deformities can benefit immensely from utilizing virtual planning for various types of orbital pathology. PMID:26692714

  1. Orbital Fracture Leading to Severe Multifascial Space Infection Including the Parapharyngeal Space: A Report of a Case and Review of the Literature

    PubMed Central

    Park, Chan; Marchiori, Erica; Barber, Jacob; Cardon, Curtis

    2014-01-01

    Orbital trauma can result in periorbital and orbital infections. Orbital infections have been classified by Chandler et al in 1970 to their anatomic location and boundaries. This case report describes a patient who developed a severe orbital infection following orbital fractures. The infection progressed to the parapharyngeal space. The patient required multiple incision and drainage surgeries and tissue debridements to have clinical resolution. To our knowledge, there has not been a case described in the literature of an orbital infection progressing to the parapharyngeal space. A literature review of orbital trauma leading to infection discusses the pathogenesis of the infections. This case demonstrates that close clinical follow-up and appropriate medical management of comorbidities that put a patient at higher risk of developing an infection is of the utmost importance in the treatment of maxillofacial trauma patients. PMID:25136414

  2. Orbital

    NASA Astrophysics Data System (ADS)

    Hanson, Robert M.

    2003-06-01

    ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).

  3. Fractures

    PubMed Central

    Hall, Michael C.

    1963-01-01

    Recent studies on the epidemiology and repair of fractures are reviewed. The type and severity of the fracture bears a relation to the age, sex and occupation of the patient. Bone tissue after fracture shows a process of inflammation and repair common to all members of the connective tissue family, but it repairs with specific tissue. Cartilage forms when the oxygen supply is outgrown. After a fracture, the vascular bed enlarges. The major blood supply to healing tissue is from medullary vessels and destruction of them will cause necrosis of the inner two-thirds of the cortex. Callus rapidly mineralizes, but full mineralization is achieved slowly; increased mineral metabolism lasts several years after fracture. PMID:13952119

  4. Comminuted Frontal Sinus Fracture Reconstructed With Titanium Mesh.

    PubMed

    Sakat, Muhammed Sedat; Kilic, Korhan; Altas, Enver; Gozeler, Mustafa Sitki; Ucuncu, Harun

    2016-03-01

    Frontal sinus fractures (FSF) are relatively uncommon maxillofacial injuries. The most common cause of FSF is motor vehicle accidents with 62% percentage. Management of FSF depends on type of fracture, associated injuries, and involvement of naso-frontal duct. In this report, the authors presented a patient with comminuted fracture of anterior wall of frontal sinus reconstructed with titanium mesh. A 40-year-old man presented with depression of the frontal bone, facial pain, and epistaxis consisting of a motor vehicle accident. Computerized tomography scan revealed multiple comminuted fractures of anterior wall of frontal sinus and fractures of left orbital medial and superior walls. Titanium mesh was used for reconstruction. Postoperative course was uneventful. The titanium mesh, which is easy to handle with no complications, may provide excellent frontal contour after comminuted anterior wall fractures. PMID:26872283

  5. Numerical Simulation of Impact Damage Induced by Orbital Debris on Shielded Wall of Composite Overwrapped Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Cherniaev, Aleksandr; Telichev, Igor

    2014-12-01

    This paper presents a methodology for numerical simulation of the formation of the front wall damage in composite overwrapped pressure vessels under hypervelocity impact. Both SPH particles and Lagrangian finite elements were employed in combination for numerical simulations. Detailed numerical models implementing two filament winding patterns with different degree of interweaving were developed and used to simulate 2.5 km/s and 5.0 km/s impacts of 5 mm-diameter spherical aluminum-alloy projectile. Obtained results indicate that winding pattern may have a pronounced effect on vessel damage in case of orbital debris impact, influencing propagation of the stress waves in composite material.

  6. Fractures

    MedlinePlus

    ... commonly happen because of car accidents, falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the bones. Overuse can cause stress fractures, which are very small cracks in the ...

  7. Fracture behavior of shallow cracks in full-thickness clad beams from an RPV wall section

    SciTech Connect

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1995-04-01

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in weld material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from an RPV shell segment that includes weld, plate and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include material gradients and material inhomogeneities in welded regions. The shallow-crack clad beam specimens showed a significant loss of constraint similar to that of other shallow-crack single-edge notch bend (SENB) specimens. The stress-based Dodds-Anderson scaling model appears to be effective in adjusting the test data to account for in-plane loss of constraint for uniaxially tested beams, but cannot predict the observed effects of out-of-plane biaxial loading on shallow-crack fracture toughness. A strain-based dual-parameter fracture toughness correlation (based on plastic zone width) performed acceptably when applied to the uniaxial and biaxial shallow-crack fracture toughness data.

  8. [Endoscopic approaches to the orbit].

    PubMed

    Cebula, H; Lahlou, A; De Battista, J C; Debry, C; Froelich, S

    2010-01-01

    During the last decade, the use of endoscopic endonasal approaches to the pituitary has increased considerably. The endoscopic endonasal and transantral approaches offer a minimally invasive alternative to the classic transcranial or transconjunctival approaches to the medial aspect of the orbit. The medial wall of the orbit, the orbital apex, and the optic canal can be exposed through a middle meatal antrostomy, an anterior and posterior ethmoidectomy, and a sphenoidotomy. The inferomedial wall of the orbit can be also perfectly visualized through a sublabial antrostomy or an inferior meatal antrostomy. Several reports have described the use of an endoscopic approach for the resection or the biopsy of lesions located on the medial extraconal aspect of the orbit and orbital apex. However, the resection of intraconal lesions is still limited by inadequate instrumentation. Other indications for the endoscopic approach to the orbit are the decompression of the orbit for Graves' ophthalmopathy and traumatic optic neuropathy. However, the optimal management of traumatic optic neuropathy remains very controversial. Endoscopic endonasal decompression of the optic nerve in case of tumor compression could be a more valid indication in combination with radiation therapy. Finally, the endoscopic transantral treatment of blowout fracture of the floor of the orbit is an interesting option that avoids the eyelid or conjunctive incision of traditional approaches. The collaboration between the neurosurgeon and the ENT surgeon is mandatory and reduces the morbidity of the approach. Progress in instrumentation and optical devices will certainly make this approach promising for intraconal tumor of the orbit.

  9. Flow visualization and relative permeability measurements in rough-walled fractures

    SciTech Connect

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media.

  10. Facial fractures.

    PubMed Central

    Carr, M. M.; Freiberg, A.; Martin, R. D.

    1994-01-01

    Emergency room physicians frequently see facial fractures that can have serious consequences for patients if mismanaged. This article reviews the signs, symptoms, imaging techniques, and general modes of treatment of common facial fractures. It focuses on fractures of the mandible, zygomaticomaxillary region, orbital floor, and nose. Images p520-a p522-a PMID:8199509

  11. Failure Analysis of Fractured Poppet from Space Shuttle Orbiter Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Russell, Richard

    2010-01-01

    This slide presentation reviews the failure analysis of a fractured poppet from a flow control valve (FCV) used on the space shuttle. This presentation has focused on the laboratory analysis of the failed hardware. The use of Scanning electron fractography during the investigation led to the conclusion that the poppet failed due to fatigue cracking that, most likely, occurred under changing loading conditions. The initial investigation led to a more thorough test of poppets that had been retired, this testing led to the conclusion that the thumbnail cracks in the flight hardware had existed for the life of the shuttle program. This led to a program to develop an eddy current technique that was capable of detecting small very tight cracks.

  12. Arcuate Fractures

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    In the upper left corner of this VIS image are a series of fractures. Where the fractures are exposed on the surface it is impossible to tell the plane of the fracture; however where the fractures are visible in the cliff wall it is possible to see that the fractures dip to the north. This image shows part of the caldera of Tharsis Tholus.

    Image information: VIS instrument. Latitude 1.7, Longitude 176.5 East (183.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. BUMPERII - DESIGN ANALYSIS CODE FOR OPTIMIZING SPACECRAFT SHIELDING AND WALL CONFIGURATION FOR ORBITAL DEBRIS AND METEOROID IMPACTS

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1994-01-01

    BUMPERII is a modular program package employing a numerical solution technique to calculate a spacecraft's probability of no penetration (PNP) from man-made orbital debris or meteoroid impacts. The solution equation used to calculate the PNP is based on the Poisson distribution model for similar analysis of smaller craft, but reflects the more rigorous mathematical modeling of spacecraft geometry, orientation, and impact characteristics necessary for treatment of larger structures such as space station components. The technique considers the spacecraft surface in terms of a series of flat plate elements. It divides the threat environment into a number of finite cases, then evaluates each element of each threat. The code allows for impact shielding (shadowing) of one element by another in various configurations over the spacecraft exterior, and also allows for the effects of changing spacecraft flight orientation and attitude. Four main modules comprise the overall BUMPERII package: GEOMETRY, RESPONSE, SHIELD, and CONTOUR. The GEOMETRY module accepts user-generated finite element model (FEM) representations of the spacecraft geometry and creates geometry databases for both meteoroid and debris analysis. The GEOMETRY module expects input to be in either SUPERTAB Universal File Format or PATRAN Neutral File Format. The RESPONSE module creates wall penetration response databases, one for meteoroid analysis and one for debris analysis, for up to 100 unique wall configurations. This module also creates a file containing critical diameter as a function of impact velocity and impact angle for each wall configuration. The SHIELD module calculates the PNP for the modeled structure given exposure time, operating altitude, element ID ranges, and the data from the RESPONSE and GEOMETRY databases. The results appear in a summary file. SHIELD will also determine the effective area of the components and the overall model, and it can produce a data file containing the probability

  14. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon.

    PubMed

    Khanal, S P; Mahfuz, H; Rondinone, A J; Leventouri, Th

    2016-03-01

    The potential of improving the fracture toughness of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and polymerized ε-caprolactam (nylon) was studied. A series of HAp samples with CfSWCNTs concentrations varying from 0 to 1.5 wt.%, without, and with nylon addition was prepared. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) were used to characterize the samples. The three point bending test was applied to measure the fracture toughness of the composites. A reproducible value of 3.6±0.3 MPa.√m was found for samples containing 1 wt.% CfSWCNTs and nylon. This value is in the range of the cortical bone fracture toughness. Increase of the CfSWCNTs content results to decrease of the fracture toughness, and formation of secondary phases.

  15. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon

    DOE PAGES

    Khanal, Suraj P.; Mahfuz, Hassan; Rondinone, Adam Justin; Leventouri, Th.

    2015-11-12

    The potential of improving the fracture toughness of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and polymerized ε-caprolactam (nylon) was researched. A series of HAp samples with CfSWCNTs concentrations varying from 0 to 1.5 wt.%, without, and with nylon addition was prepared. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) were used to characterize the samples. The three point bending test was applied to measure the fracture toughness of the composites. A reproducible value of 3.6 ± 0.3 MPa.√m was found for samples containing 1 wt.% CfSWCNTs and nylon. This valuemore » is in the range of the cortical bone fracture toughness. Lastly, the increase of the CfSWCNTs content results to decrease of the fracture toughness, and formation of secondary phases.« less

  16. Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon

    SciTech Connect

    Khanal, Suraj P.; Mahfuz, Hassan; Rondinone, Adam Justin; Leventouri, Th.

    2015-11-12

    The potential of improving the fracture toughness of synthetic hydroxyapatite (HAp) by incorporating carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and polymerized ε-caprolactam (nylon) was researched. A series of HAp samples with CfSWCNTs concentrations varying from 0 to 1.5 wt.%, without, and with nylon addition was prepared. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) were used to characterize the samples. The three point bending test was applied to measure the fracture toughness of the composites. A reproducible value of 3.6 ± 0.3 MPa.√m was found for samples containing 1 wt.% CfSWCNTs and nylon. This value is in the range of the cortical bone fracture toughness. Lastly, the increase of the CfSWCNTs content results to decrease of the fracture toughness, and formation of secondary phases.

  17. Analytical Modeling of Pressure Wall Hole Size and Maximum Tip-to-Tip Crack Length for Perforating Normal and Oblique Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Mohamed, Essam

    1997-01-01

    This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.

  18. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    NASA Astrophysics Data System (ADS)

    Li, Heng; Yang, He; Zhan, Mei

    2010-06-01

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  19. A Study On Critical Thinning In Thin-walled Tube Bending Of Al-Alloy 5052O Via Coupled Ductile Fracture Criteria

    SciTech Connect

    Li Heng; Yang He; Zhan Mei

    2010-06-15

    Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.

  20. Spin-orbit-coupling induced torque in ballistic domain walls: Equivalence of charge-pumping and nonequilibrium magnetization formalisms

    NASA Astrophysics Data System (ADS)

    Yuan, Zhe; Kelly, Paul J.

    2016-06-01

    To study the effect of spin-orbit coupling (SOC) on spin-transfer torque in magnetic materials, we have implemented two theoretical formalisms that can accommodate SOC. Using the "charge-pumping" formalism, we find two contributions to the out-of-plane spin-transfer torque parameter β in ballistic Ni domain walls (DWs). For short DWs, the nonadiabatic reflection of conduction electrons caused by the rapid spatial variation of the exchange potential results in an out-of-plane torque that increases rapidly with decreasing DW length. For long DWs, the Fermi level conduction channel anisotropy that gives rise to an intrinsic DW resistance in the presence of SOC leads to a linear dependence of β on the DW length. To understand this counterintuitive divergence of β in the long DW limit, we use the "nonequilibrium magnetization" formalism to examine the spatially resolved spin-transfer torque. The SOC-induced out-of-plane torque in ballistic DWs is found to be quantitatively consistent with the values obtained using the charge-pumping calculations, indicating the equivalence of the two theoretical methods.

  1. Non-perturbative modelling of energetic particle effects on resistive wall mode: Anisotropy and finite orbit width

    SciTech Connect

    Liu, Yueqiang Chapman, I. T.; Hao, G. Z.; Wang, Z. R.; Menard, J. E.; Okabayashi, M.; Strait, E. J.; Turnbull, A.

    2014-05-15

    A non-perturbative magnetohydrodynamic-kinetic hybrid formulation is developed and implemented into the MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)] that takes into account the anisotropy and asymmetry [Graves et al., Nature Commun. 3, 624 (2012)] of the equilibrium distribution of energetic particles (EPs) in particle pitch angle space, as well as first order finite orbit width (FOW) corrections for both passing and trapped EPs. Anisotropic models, which affect both the adiabatic and non-adiabatic drift kinetic energy contributions, are implemented for both neutral beam injection and ion cyclotron resonant heating induced EPs. The first order FOW correction does not contribute to the precessional drift resonance of trapped particles, but generally remains finite for the bounce and transit resonance contributions, as well as for the adiabatic contributions from asymmetrically distributed passing particles. Numerical results for a 9MA steady state ITER plasma suggest that (i) both the anisotropy and FOW effects can be important for the resistive wall mode stability in ITER plasmas; and (ii) the non-perturbative approach predicts less kinetic stabilization of the mode, than the perturbative approach, in the presence of anisotropy and FOW effects for the EPs. The latter may partially be related to the modification of the eigenfunction of the mode by the drift kinetic effects.

  2. Slow dust in Enceladus' plume from condensation and wall collisions in tiger stripe fractures.

    PubMed

    Schmidt, Jürgen; Brilliantov, Nikolai; Spahn, Frank; Kempf, Sascha

    2008-02-01

    One of the spectacular discoveries of the Cassini spacecraft was the plume of water vapour and icy particles (dust) originating near the south pole of Saturn's moon Enceladus. The data imply considerably smaller velocities for the grains than for the vapour, which has been difficult to understand. The gas and dust are too dilute in the plume to interact, so the difference must arise below the surface. Here we report a model for grain condensation and growth in channels of variable width. We show that repeated wall collisions of grains, with re-acceleration by the gas, induce an effective friction, offering a natural explanation for the reduced grain velocity. We derive particle speed and size distributions that reproduce the observed and inferred properties of the dust plume. The gas seems to form near the triple point of water; gas densities corresponding to sublimation from ice at temperatures less than 260 K are generally too low to support the measured particle fluxes. This in turn suggests liquid water below Enceladus' south pole.

  3. Isogeometric Analysis of Deformation, Inelasticity and Fracture In Thin-Walled Structures

    NASA Astrophysics Data System (ADS)

    de Borst, René

    2016-08-01

    The basic idea of isogeometric analysis (IGA) is to use splines, which are the functions commonly used in computer-aided design (CAD) to describe the geometry, as the basis function for the analysis as well. A main advantage is that a sometimes elaborate meshing process is by-passed. Another benefit is that spline basis-functions possess a higher-order degree of continuity, which enables a more accurate representation of the stress. Further, the order of continuity of the basis-functions can be reduced locally by knot insertion. This feature can be used to model interfaces and cracks as discontinuities in the displacement field. In order to study failure-mechanisms in thin-walled composite materials, an accurate representation of the full three-dimensional stress field is mandatory. A continuum shell formulation is an obvious choice. Continuum shell elements can be developed based on the isogeometric concept. They exploit NURBS basis functions to construct the mid-surface of the shell. In combination with a higher-order B-spline basis function in the thickness direction a complete three-dimensional representation of the shell is obtained. This isogeometric shell formulation can be implemented in a standard finite element code using Bézier extraction. Weak and strong discontinuities can be introduced in the B-spline function using knot-insertion to model material interfaces and delaminations rigorously as discontinuities in the displacement field. The exact representation of material interfaces vastly improves the accuracy of the through-the- thickness stress field. The ability to provide a double knot insertion enables a straightforward analysis of delamination growth in layered composite shells. Illustrative examples will be given.

  4. Evaluation of the Biodegradable Plates (PG910/PDO) for Reconstruction of Various Sizes of Orbital Floor Defects in the Blow-Out Fractures.

    PubMed

    Tabrizi, Reza; Langner, Nicole J; Pouzesh, Ayatollah; Arabion, Hamidreza

    2013-09-01

    The aim of our study was to evaluate the biodegradable plates (PG910/PDO) for reconstruction of various sizes of the orbital floor defects in the blow-out fractures. We included patients who had an impure blow-out fracture. All patients had a recent trauma and also the surgical intervention was done between 1 and 10 days after trauma. The amount of the orbital floor defect was measured in each case through computed tomography scan. In the surgical intervention, a biodegradable plate was used for the reconstruction of the orbital floor defect along with titanium miniplates used for bone fixation in orbital rim. Due to aesthetic reasons, all patients underwent secondary surgery including removal of titanium miniplates after 18 months. The orbital floor was reevaluated during the removal of the miniplates. The clinical evaluation of remnant defects and biodegradable plates (presence of complete or partial resorption) were documented for each patient. In our study a total of 15 patients (10 males and 5 females) underwent the orbital floor reconstruction using biodegradable miniplates. The size of the orbital floor defects was meanly 3.51 ± 1.29 cm(2). Results demonstrated that 4 out of 15 patients had a remnant defect after resorption of the biodegradable plate. In 10 out of 15 patients, the biodegradable plates completely replaced with fibrous tissues after 18 months. Remaining five patients had partial resorption of plates. There was not any relationship between the defect size and the remnant defects (p > 0.05). A significant relationship was seen between the defect size and the plates' resorption rate (p < 0.001). There is a significant relationship between the resorption rate and the remnant defect. The risk to have remnant defects have been increased as the plates had incomplete resorption. The use of biodegradable plates is an appropriate option for reconstruction of the orbital floor defects. The defect size does not have any effect on the stability of the

  5. Ethmoid osteoma as a culprit of orbital emphysema: a case report.

    PubMed

    Zhuang, Ai; Li, Yinwei; Lin, Ming; Shi, Wodong; Fan, Xianqun

    2015-05-01

    Orbital emphysema is generally recognized as a complication of orbital fractures involving any paranasal sinuses. The recognition about its etiology has extended beyond sole trauma, but few articles mentioned tumors to be a possible cause.In this case report, we present a patient with orbital emphysema associated with ethmoid osteoma without orbital cellulitis or trauma history. The patient developed sudden proptosis, eyelid swelling, and movement limitation of the left eye, peripheral diplopia, and left periorbital crepitus after a vigorous nose blowing.Complete surgical resection of ethmoid osteoma followed by repair of the orbital medial wall was performed with assistance of combined endoscopy and navigational techniques. Twelve-month follow-up showed no residual lesion or recurrence; the orbital medial wall was accurately repaired with good visual function and facial symmetry.Tumors should be considered for differential diagnosis of orbital emphysema, and combined endoscopy and navigational techniques may improve safety, accuracy, and effectiveness of orbital surgeries.

  6. Assessment of the validity of Stokes and Reynolds equations for fluid flow through a rough-walled fracture with flow imaging

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Lee, Kang-Kun; Yeo, In Wook

    2014-07-01

    Understanding fluid flow through a rough-walled fracture is important in many problems such as petroleum and geothermal reservoir exploitation, geological storage of CO2, and sitting of radioactive waste repositories. In order to advance the understanding of fracture flow, we conducted the first direct measurement of flow velocity across rough-walled fractures at Reynolds number (Re) of 0.014 to 0.086. The results were used for an order of magnitude analysis to evaluate assumptions underlying the Stokes and the Reynolds equations, which are derived from simplifying the Navier-Stokes equations. Even at very rough subregions, viscous forces were at least 2 orders of magnitude greater than inertial forces, indicating that the Stokes equations are valid for Re < 0.1. However, the assumption made in the derivation of the Reynolds equation that ∂2ux/∂z2 is dominant over other viscous terms was not satisfied even at moderate roughness for Re < 0.1. The Reynolds equation overestimated flow rate.

  7. Chest Wall Volume Receiving >30 Gy Predicts Risk of Severe Pain and/or Rib Fracture After Lung Stereotactic Body Radiotherapy

    SciTech Connect

    Dunlap, Neal E.; Cai, Jing; Biedermann, Gregory B.; Yang, Wensha; Benedict, Stanley H.; Sheng Ke; Schefter, Tracey E.; Kavanagh, Brian D.; Larner, James M.

    2010-03-01

    Purpose: To identify the dose-volume parameters that predict the risk of chest wall (CW) pain and/or rib fracture after lung stereotactic body radiotherapy. Methods and Materials: From a combined, larger multi-institution experience, 60 consecutive patients treated with three to five fractions of stereotactic body radiotherapy for primary or metastatic peripheral lung lesions were reviewed. CW pain was assessed using the Common Toxicity Criteria for pain. Peripheral lung lesions were defined as those located within 2.5 cm of the CW. A minimal point dose of 20 Gy to the CW was required. The CW volume receiving >=20, >=30, >=40, >=50, and >=60 Gy was determined and related to the risk of CW toxicity. Results: Of the 60 patients, 17 experienced Grade 3 CW pain and five rib fractures. The median interval to the onset of severe pain and/or fracture was 7.1 months. The risk of CW toxicity was fitted to the median effective concentration dose-response model. The CW volume receiving 30 Gy best predicted the risk of severe CW pain and/or rib fracture (R{sup 2} = 0.9552). A volume threshold of 30 cm{sup 3} was observed before severe pain and/or rib fracture was reported. A 30% risk of developing severe CW toxicity correlated with a CW volume of 35 cm{sup 3} receiving 30 Gy. Conclusion: The development of CW toxicity is clinically relevant, and the CW should be considered an organ at risk in treatment planning. The CW volume receiving 30 Gy in three to five fractions should be limited to <30 cm{sup 3}, if possible, to reduce the risk of toxicity without compromising tumor coverage.

  8. Fractures in Tharsis Tholus

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    In the upper left corner of this VIS image are a series of fractures. Where the fractures are exposed on the surface it is impossible to tell the plane of the fracture; however where the fractures are visible in the cliff wall it is possible to see that the fractures dip to the north. This image shows part of the caldera of Tharsis Tholus.

    Image information: VIS instrument. Latitude 13.5, Longitude 268.9 East (91.1 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Limited-interval definitions of the photometric functions of lunar crater walls by photography from orbiting Apollo

    USGS Publications Warehouse

    Wildey, R.L.

    1971-01-01

    By the use of only relative photometry (intraframe) it is shown that the photometric functions of material reposed on the inner walls of some of the ypunger lunar craters photographed on the far side of the Moon from the Apollo 11 Command Module are not of a form which can be reduced to a dependence on phase angle and brightness-longitude (g, ??) alone. Some other dependence on the completely general degrees of freedom described by phase angle, angle of incidence, and angle of emergence (g, i, ??{lunate}) seems to be required. In addition, however, it has been found that a dependence of g and ?? is more closely approached for the crater, in the group observed, which is obviously the oldest by virtue of the roundedness of the rim crest and the mass-wasting which has occured on its inner walls. The possibility thus arises of crater age-dating by making a brightness ratio measurement together with some image geometry measurements. It is at least evident that more than one type of geologic material has been encountered. ?? 1971.

  10. Fractured Craters on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Two highly fractured craters are visible in this high resolution image of Jupiter's moon, Ganymede. NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. North is to the top of the picture and the sun illuminates the surface from the southeast. The two craters in the center of the image lie in the ancient dark terrain of Marius Regio, at 40 degrees latitude and 201 degrees longitude, at the border of a region of bright grooved terrain known as Byblus Sulcus (the eastern portion of which is visible on the left of this image). Pervasive fracturing has occurred in this area that has completely disrupted these craters and destroyed their southern and western walls. Such intense fracturing has occurred over much of Ganymede's surface and has commonly destroyed older features. The image covers an area approximately 26 kilometers (16 miles) by 18 kilometers (11 miles) across at a resolution of 86 meters (287 feet) per picture element. The image was taken on September 6, 1996 by the solid state imaging (CCD) system on NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  11. High efficiency of the spin-orbit torques induced domain wall motion in asymmetric interfacial multilayered Tb/Co wires

    SciTech Connect

    Bang, Do; Awano, Hiroyuki

    2015-05-07

    We investigated current-induced DW motion in asymmetric interfacial multilayered Tb/Co wires for various thicknesses of magnetic and Pt-capping layers. It is found that the driving mechanism for the DW motion changes from interfacial to bulk effects at much thick magnetic layer (up to 19.8 nm). In thin wires, linearly depinning field dependence of critical current density and in-plane field dependence of DW velocity suggest that the extrinsic pinning governs field-induced DW motion and injecting current can be regarded as an effective field. It is expected that the high efficiency of spin-orbit torques in thick magnetic multilayers would have important implication for future spintronic devices based on in-plane current induced-DW motion or switching.

  12. Nose fracture

    MedlinePlus

    Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It ... with other fractures of the face. Sometimes a blunt injury can ...

  13. Summary and interpretation of dye-tracer tests to investigate the hydraulic connection of fractures at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Kentucky

    USGS Publications Warehouse

    Taylor, C.J.

    1994-01-01

    Dye-tracer tests were done during 1985-92 to investigate the hydraulic connection between fractures in Pennsylvanian coal-bearing strata at a ridge-and-valley-wall site near Fishtrap Lake, Pike County, Ky. Fluorescent dye was injected into a core hole penetrating near-surface and mining- induced fractures near the crest of the ridge. The rate and direction of migration of dye in the subsurface were determined by measuring the relative concentration of dye in water samples collected from piezometers completed in conductive fracture zones and fractured coal beds at various stratigraphic horizons within the ridge. Dye-concentration data and water-level measurements for each piezometer were plotted as curves on dye- recovery hydrographs. The dye-recovery hydrographs were used to evaluate trends in the fluctuation of dye concentrations and hydraulic heads in order to identify geologic and hydrologic factors affecting the subsurface transport of dye. The principal factors affecting the transport of dye in the subsurface hydrologic system were determined to be (1) the distribution, interconnection, and hydraulic properties of fractures; (2) hydraulic-head conditions in the near-fracture zone at the time of dye injection; and (3) subsequent short- and long-term fluctuations in recharge to the hydrologic system. In most of the dye-tracer tests, dye-recovery hydrographs are characterized by complex, multipeaked dye-concentration curves that are indicative of a splitting of dye flow as ground water moved through fractures. Intermittent dye pulses (distinct upward spikes in dye concentration) mark the arrivals of dye-labeled water to piezometers by way of discrete fracture-controlled flow paths that vary in length, complexity, and hydraulic conductivity. Dye injections made during relatively high- or increasing-head conditions resulted in rapid transport of dye (within several days or weeks) from near-surface fractures to piezometers. Injections made during relatively low- or

  14. [Diseases of the orbit].

    PubMed

    Lukasik, S; Betkowski, A; Cyran-Rymarz, A; Szuber, D

    1995-01-01

    Diseases of the orbital cavity require more attention because of its specific anatomic structure and placement. Their curing requires cooperation of many medical specialties. Analysis consider orbital fractures, mainly caused by car accidents (69.2%). The next half of them consider inflammatory processes and tumor in equal numbers. Malignant tumors of orbital cavity occur most frequently (48.0%), less frequent are pseudotumors--pseudotumor orbitae (36.0%) and rare--malignant ones (16.0%). Malignant tumors more frequently infiltrate the orbit in neighborhood (63.3%), less frequently they come out from orbit tissue (16.7%). It should be emphasized that the number of orbit inflammations decreases in subsequent years, whereas occurrence of orbit tumors increases. PMID:9454170

  15. Patient-Specific Orbital Implants: Development and Implementation of Technology for More Accurate Orbital Reconstruction.

    PubMed

    Podolsky, Dale J; Mainprize, James G; Edwards, Glenn P; Antonyshyn, Oleh M

    2016-01-01

    Fracture of the orbital floor is commonly seen in facial trauma. Accurate anatomical reconstruction of the orbital floor contour is challenging. The authors demonstrate a novel method to more precisely reconstruct the orbital floor on a 50-year-old female who sustained an orbital floor fracture following a fall. Results of the reconstruction show excellent reapproximation of the native orbital floor contour and complete resolution of her enopthalmos and facial asymmetry. PMID:26674886

  16. Management of ocular, orbital, and adnexal trauma

    SciTech Connect

    Spoor, T.C.; Nesi, F.A.

    1988-01-01

    This book contains 20 chapters. Some of the chapter titles are: The Ruptured Globe: Primary Care; Corneal Trauma, Endophthalmitis; Antibiotic Usage; Radiology of Orbital Trauma; Maxillofacial Fractures; Orbital Infections; and Basic Management of Soft Tissue Injury.

  17. [Orbital varices].

    PubMed

    Seceleanu, Andreea; Szabo, I; Călugăru, M; Dudea, S M; Preda, D

    2004-01-01

    The purpose of this study was to point out a case with orbital venous abnormalities at the left eye, associated with varices of the legs. The clinical picture of this case was: intermittent exophthalmos, venous malformations at the level of the lids and episclera, elevated ocular pressure. All this signs reveal an abnormality at the level of venous wall, indicating a constitutional weakness of the venous system. The case was investigated by imagistic methods: ultrasound examination, Doppler -ultrasound and magnetic resonance imaging. According to the facts offered by clinical and imagistic investigation this case can be included into the first type of orbital varices, associated with secondary glaucoma provoked by an elevated episcleral venous pressure. PMID:15598045

  18. Fracture detection logging tool

    DOEpatents

    Benzing, William M.

    1992-06-09

    A method and apparatus by which fractured rock formations are identified and their orientation may be determined includes two orthogonal motion sensors which are used in conjunction with a downhole orbital vibrator. The downhole vibrator includes a device for orienting the sensors. The output of the sensors is displayed as a lissajou figure. The shape of the figure changes when a subsurface fracture is encountered in the borehole. The apparatus and method identifies fractures rock formations and enables the azimuthal orientation of the fractures to be determined.

  19. Development and experimental evaluation of models for low capillary number two-phase flows in rough walled fractures relevant to natural gradient conditions

    SciTech Connect

    Glass, R.J.; Yarrington, L.; Nicholl, M.J.

    1997-09-01

    The major results from SNL`s Conceptual Model Development and Validation Task (WBS 1.2.5.4.6) as developed through exploration of small scale processes were synthesized in Glass et al. to give guidance to Performance Assessment on improving conceptual models for isothermal flow in unsaturated, fractured rock. There, pressure saturation and relative permeability curves for single fractures were proposed to be a function of both fracture orientation within the gravity field and initial conditions. We refer the reader to Glass et al. for a discussion of the implications of this behavior for Performance Assessment. The scientific research we report here substantiates this proposed behavior. We address the modeling of phase structure within fractures under natural gradient conditions relevant to unsaturated flow through fractures. This phase structure underlies the calculation of effective properties for individual fractures and hence fracture networks as required for Performance Assessment. Standard Percolation (SP) and Invasion Percolation (IP) approaches have been recently proposed to model the underlying phase saturation structures within the individual fractures during conditions of two-phase flow. Subsequent analysis of these structures yields effective two-phase pressure-saturation and relative permeability relations for the fracture. However, both of these approaches yield structures that are at odds with physical reality as we see in experiments and thus effective properties calculated from these structures are in error. Here we develop and evaluate a Modified Invasion Percolation (MIP) approach to better model quasi-static immiscible displacement in fractures. The effects of gravity, contact angle, local aperature field geometry, and local in-plane interfacial curvature between phases are included in the calculation of invasion pressure for individual sites in a discretized aperture field.

  20. A Wrapping Method for Inserting Titanium Micro-Mesh Implants in the Reconstruction of Blowout Fractures

    PubMed Central

    Choi, Tae Joon; Yang, Won Yong; Kang, Sang Yoon

    2016-01-01

    Titanium micro-mesh implants are widely used in orbital wall reconstructions because they have several advantageous characteristics. However, the rough and irregular marginal spurs of the cut edges of the titanium mesh sheet impede the efficacious and minimally traumatic insertion of the implant, because these spurs may catch or hook the orbital soft tissue, skin, or conjunctiva during the insertion procedure. In order to prevent this problem, we developed an easy method of inserting a titanium micro-mesh, in which it is wrapped with the aseptic transparent plastic film that is used to pack surgical instruments or is attached to one side of the inner suture package. Fifty-four patients underwent orbital wall reconstruction using a transconjunctival or transcutaneous approach. The wrapped implant was easily inserted without catching or injuring the orbital soft tissue, skin, or conjunctiva. In most cases, the implant was inserted in one attempt. Postoperative computed tomographic scans showed excellent placement of the titanium micro-mesh and adequate anatomic reconstruction of the orbital walls. This wrapping insertion method may be useful for making the insertion of titanium micro-mesh implants in the reconstruction of orbital wall fractures easier and less traumatic. PMID:26848451

  1. A Wrapping Method for Inserting Titanium Micro-Mesh Implants in the Reconstruction of Blowout Fractures.

    PubMed

    Choi, Tae Joon; Burm, Jin Sik; Yang, Won Yong; Kang, Sang Yoon

    2016-01-01

    Titanium micro-mesh implants are widely used in orbital wall reconstructions because they have several advantageous characteristics. However, the rough and irregular marginal spurs of the cut edges of the titanium mesh sheet impede the efficacious and minimally traumatic insertion of the implant, because these spurs may catch or hook the orbital soft tissue, skin, or conjunctiva during the insertion procedure. In order to prevent this problem, we developed an easy method of inserting a titanium micro-mesh, in which it is wrapped with the aseptic transparent plastic film that is used to pack surgical instruments or is attached to one side of the inner suture package. Fifty-four patients underwent orbital wall reconstruction using a transconjunctival or transcutaneous approach. The wrapped implant was easily inserted without catching or injuring the orbital soft tissue, skin, or conjunctiva. In most cases, the implant was inserted in one attempt. Postoperative computed tomographic scans showed excellent placement of the titanium micro-mesh and adequate anatomic reconstruction of the orbital walls. This wrapping insertion method may be useful for making the insertion of titanium micro-mesh implants in the reconstruction of orbital wall fractures easier and less traumatic. PMID:26848451

  2. Comparison of pre-bent titanium mesh versus polyethylene implants in patient specific orbital reconstructions

    PubMed Central

    2013-01-01

    Introduction Computerized tomography DICOM file can be relatively easily transformed to a virtual 3D model. With the help of additional software we are able to create the mirrored model of an undamaged orbit and on this basis produce an individual implant for the patient Authors decided to apply implants with any thickness, which are authors own invention to obtain volumetric support and more stable orbital wall reconstruction outcome. Material of choice was ultra-high molecular weight polyethylene (UHMWPE). Objective The aim of this study was to present and compare functional results of individual reconstructions of orbital wall using either titanium mesh or ultra-high molecular weight polyethylene. Materials and methods 57 consecutive patients affected by orbital wall fracture (46 males, 11 females, mean age 34±14 year) were treated in Department of Maxillofacial Surgery from 2010 to 2012. In the first group we used patient specific treatment by titanium mesh shaped on a 3D printed model of a mirrored intact orbit (37 orbits) or by individually manufactured UHMW-PE implantby CAM milling in second group (20 orbits). All of these patients were subjected to preoperative helical computerized tomography and consultation of an ophthalmologist (including binocular single vision loss test - BSVL). Further on, patients were operated under general anaesthesia using transconjuctival approach. BSVL was again evaluated post-operationally in 1 month and 6 months later. Results Functional treatment results (BSVL) for both groups were similar in 1 month as well as 6 months post operational time. There was no statistically significant difference between these two groups. Conclusions This study of 6 months functional result assessment of pre-bent individual implants and CNC milled ultra-high molecular weight polyethylene of the orbital wall has shown it to be a predictable reconstruction method. Individually shaped UHMWPE seems to be as good as pre-bent titanium mesh. PMID

  3. A case of orbital emphysema as an ocular emergency.

    PubMed

    Dobler, A A; Nathenson, A L; Cameron, J D; Carpel, E T; Janda, A M; Pederson, J E

    1993-01-01

    Orbital emphysema is radiologically apparent in 50% of cases of orbital fractures, but it is generally a benign, self-limited condition. However, visual loss may occur if a fracture produces orbital compression via a ball-valve effect, allowing air to enter but not leave the orbit. A case of compressive orbital emphysema complicated by ischemic optic neuropathy is reported. Intraorbital needle aspiration relieved the compression with improvement of visual acuity and normalization of intraocular pressure.

  4. Diplopia following midfacial fractures.

    PubMed

    al-Qurainy, I A; Stassen, L F; Dutton, G N; Moos, K F; el-Attar, A

    1991-10-01

    Over a period of 2 years, 363 patients who had sustained a total of 438 midfacial fractures due to blunt trauma received a full ophthalmological examination within 1 week of injury. Of these, 72 patients (19.8%) developed diplopia. Diplopia was most common following road traffic accidents (31%) and least common with simple falls (10%). Blow-out fractures of the orbit led to double vision in 58% of cases. Eighty two percent of patients recovered from diplopia within 6 months of injury; only 1 patient required squint surgery for double vision. The principal risk factors for diplopia comprise road traffic accidents, blow-out fractures and comminuted malar fractures. Early surgical reconstruction of midfacial fractures with conservative management of concomitant motility disorders has, in our series, resulted in very few patients having diplopia in the long term. PMID:1742259

  5. Need for airbag and seatbelt to reduce orbital injuries from steering wheel knob.

    PubMed

    Hwang, Kun; Kim, Joo Ho

    2014-11-01

    The aims of this study are to report a blowout fracture of the orbital floor and medial wall caused by being struck by a steering wheel knob of an automobile and to discuss the use of airbags and seatbelts as a preventive measure for orbital injuries. A 58-year-old man was struck in the left eye by a steering wheel. His car hit a telephone pole, and he had a frontal collision injury. In this frontal impact, his left eye was hit by a Brodie knob attached to the steering wheel. At the time of injury, the speed of the car was about 65 km/h. He was not wearing a seatbelt, and the airbag had not deployed. Swelling and ecchymosis were observed at the left periorbital area, and he had diplopia on a left-side gaze. A CT revealed fractures in the medial and inferior wall of the left orbit. Entrapped soft tissues were reduced, and the medial wall and floor were reconstructed with a resorbable sheet. His diplopia disappeared 12 days after surgery. To prevent the injury from the steering wheel knob, an airbag should be installed in any vehicle, which has a steering wheel knob. Legislation mandating the use of airbags as well as seatbelts in vehicles with attached steering wheel knobs should be made.

  6. Fractured Surface

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03084 Fractured Surface

    These fractures and graben are part of Gordii Fossae, a large region that has undergone stresses which have cracked the surface.

    Image information: VIS instrument. Latitude 16.6S, Longitude 234.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Orbital emphysema as an ophthalmologic emergency.

    PubMed

    Fleishman, J A; Beck, R W; Hoffman, R O

    1984-11-01

    Orbital emphysema is generally a benign, self-limited condition. However, if a fracture produces a ball-valve effect allowing air to enter but not to leave the orbit, and if the orbital septum remains intact, then extremely high intraorbital pressure and visual loss is possible. Two cases are described of visual loss from orbital emphysema, in a 33-year-old man and a 28-year-old man, which were successfully treated by a lateral canthotomy and cantholysis.

  8. Relative permeability through fractures

    SciTech Connect

    Diomampo, Gracel, P.

    2001-08-01

    The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

  9. Clinical outcome following use of transconjunctival approach in reducing orbitozygomaticomaxillary complex fractures

    PubMed Central

    Kumar, Saurabh; Shubhalaksmi, S.

    2016-01-01

    Background: The increasing emphasis on the open reduction and internal fixation of orbito-zygomatico-maxillary complex fractures has led to a more critical appraisal of the various surgical approaches to the orbital and zygomatic skeleton. Transconjunctival approach popularized by Tessier although credited to Bourquet in 1924 offer excellent exposure of the orbito-zygomatico-maxillary complex fracture especially the infra-orbital rim, frontozygomatic suture and the orbital floor. The argument against a transconjunctival access focuses primarily on concern about limited exposure that apparently makes accurate reduction and osteosynthesis of displaced fracture fragments difficult or impossible. Also, due to close association with eye and various ocular complications reported in the literature, most of the surgeons feel skeptical about using this approach. Aim: The aim of this study is to analyze the efficacy of transconjunctival approach in the treatment of orbito-zygomatico-maxillary complex fractures by evaluating the functional and esthetic results and its associated complications. Material and Method: We report a series of eight patients who have undergone fracture repair of the orbito-zygomatico-maxillary complex via a transconjunctival approach. Postoperative patient evaluation was performed with specific attention paid towards wound healing, functional stability, esthetic appearance and postoperative ocular complications. Postoperatively clinical examination along with radiographic examination was done to evaluate the position of the zygoma and determine the adequacy of fracture reduction. Results: In all the patients excellent surgical exposure has been achieved for reduction and rigid fixation of the fracture fragments. None of the patients had any form of complication related to the approach. There were no postoperative ocular complications. Only one patient had postoperative chemosis which was transient and subsided subsequently. All the patients had

  10. Orbit to orbit transportation

    NASA Astrophysics Data System (ADS)

    Bergeron, R. P.

    1980-07-01

    Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.

  11. Kepler's Orbit

    NASA Video Gallery

    Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...

  12. Orbital emphysema: nose blowing leading to a blown orbit.

    PubMed

    Jawaid, M Saad

    2015-01-01

    A 32-year-old woman with a painful swelling around the right eye few hours after blowing her nose, presented to the accident and emergency department. There was no associated history of facial trauma. Examination revealed a grossly swollen right eye and palpable subcutaneous emphysema. The patient's visual acuity and eye movements were normal. A CT scan of the orbit confirmed orbital emphysema secondary to a fracture of the floor of the orbit into the maxillary sinus, as a result of increased intranasal pressure during nose blowing. The patient was admitted and managed conservatively with antibiotics. She made a full recovery with complete resolution of all her symptoms. A nasal bone fracture was also seen on CT scan and even though the patient could not recall any history of facial trauma, it was an incidental finding. PMID:26516251

  13. Elbow Fractures

    MedlinePlus

    ... and held together with pins and wires or plates and screws. Fractures of the distal humerus (see ... doctor. These fractures usually require surgical repair with plates and/or screw, unless they are stable. SIGNS ...

  14. Novel Surgical Approaches to the Orbit.

    PubMed

    Campbell, Ashley A; Grob, Seanna R; Yoon, Michael K

    2015-01-01

    Determining safe surgical access to the orbit can be difficult given the complex anatomy and delicacy of the orbital structures. When considering biopsy or removal of an orbital tumor or repair of orbital fractures, careful planning is required to determine the ideal approach. Traditionally, this has at times necessitated invasive procedures with large incisions and extensive bone removal. The purpose of this review was to present newly techniques and devices in orbital surgery that have been reported over the past decade, with aims to provide better exposure and/or minimally invasive approaches and to improve morbidity and/or mortality.

  15. Novel Surgical Approaches to the Orbit

    PubMed Central

    Campbell, Ashley A.; Grob, Seanna R.; Yoon, Michael K.

    2015-01-01

    Determining safe surgical access to the orbit can be difficult given the complex anatomy and delicacy of the orbital structures. When considering biopsy or removal of an orbital tumor or repair of orbital fractures, careful planning is required to determine the ideal approach. Traditionally, this has at times necessitated invasive procedures with large incisions and extensive bone removal. The purpose of this review was to present newly techniques and devices in orbital surgery that have been reported over the past decade, with aims to provide better exposure and/or minimally invasive approaches and to improve morbidity and/or mortality. PMID:26692713

  16. A review of materials currently used in orbital floor reconstruction

    PubMed Central

    Mok, David; Lessard, Lucie; Cordoba, Carlos; Harris, Patrick G; Nikolis, Andreas

    2004-01-01

    Orbital fractures are common fractures of the midface. As such, numerous techniques and materials exist for the repair of this region, each with inherent advantages and disadvantages. But does the ideal implant material exist? Should we stop and simply use readily available materials, or should the cycle of need and discovery continue? A comprehensive review of materials used in orbital reconstruction and possible new directions in orbital floor reconstruction are presented. PMID:24115885

  17. Metatarsal fractures.

    PubMed

    Rammelt, Stefan; Heineck, Jan; Zwipp, Hans

    2004-09-01

    Metatarsal fractures are relatively common and if malunited, a frequent source of pain and disability. Nondisplaced fractures and fractures of the second to fourth metatarsal with displacement in the horizontal plane can be treated conservatively with protected weight bearing in a cast shoe for 4-6 weeks. In most displaced fractures, closed reduction can be achieved but maintenance of the reduction needs internal fixation. Percutaneous pinning is suitable for most fractures of the lesser metatarsals. Fractures with joint involvement and multiple fragments frequently require open reduction and plate fixation. Transverse fractures at the metaphyseal-diaphyseal junction of the fifth metatarsal ("Jones fractures") require an individualized approach tailored to the level of activity and time to union. Avulsion fractures of the fifth metatarsal bone are treated by open reduction and tension-band wiring or screw fixation if displaced more than 2 mm or with more that 30% of the joint involved. The metatarsals are the most common site of stress fractures, most of which are treated nonoperatively. Symptomatic posttraumatic deformities need adequate correction, in most cases by osteotomy across the former fracture site.

  18. Frontal bone fractures.

    PubMed

    Marinheiro, Bruno Henrique; de Medeiros, Eduardo Henrique Pantosso; Sverzut, Cássio Edvard; Trivellato, Alexandre Elias

    2014-11-01

    The aim of this retrospective study was to evaluate the epidemiology, treatment, and complications of frontal bone fractures associated, or not, with other facial fractures. This evaluation also sought to minimize the influence of the surgeon's skills and the preference for any rigid internal fixation system. The files from 3758 patients who attended the Oral and Maxillofacial Surgery Department of the School of Dentistry of Ribeirao Preto, University of Sao Paulo, from March 2004 to November 2011 and presented with facial trauma were scanned, and 52 files were chosen for the review. Eleven (21.15%) of these patients had pure fractures of the frontal bone, and trauma incidence was more prevalent in men (92.3%), whites (61.53%), and adults (50%). Despite the use of helmets at the moment of the trauma, motorcycle crashes were the most common etiological factor (32.69%). Fracture of the anterior wall of the frontal sinus with displacement was the main injury observed (54.9%), and the most common treatment was internal fixation with a plate and screws (45.09%). Postoperative complications were observed in 35.29% of the cases. The therapy applied was effective in handling this type of fracture, and the success rate was comparable to that reported in other published studies. PMID:25377971

  19. Fracture and Failure in Micro- and Nano-Scale

    NASA Astrophysics Data System (ADS)

    Charitidis, Costas A.

    Indentation and scratch in micro- and nano-scale are the most commonly used techniques for quantifying thin film and systems properties. Among them are different failure modes such as deformation, friction, fracture toughness, fatigue. Failure modes can be activated either by a cycle of indentation or by scratching of the samples to provide an estimation of the fracture toughness and interfacial fracture energies. In the present study, we report on the failure and fracture modes in two cases of engineering materials; that is transparent SiOx thin films onto poly(ethylene terephthalate) (PET) membranes and glass-ceramic materials. The SiOx/PET system meets the demands regarding scratch-resistance, wettability, biocompatibility, gas transmission, or friction, while maintaining the bulk characteristics of PET (such as easy processing, good mechanical properties, reasonably low permeability to oxygen and carbon dioxide gases (barrier properties), and good chemical coupling with antibacterial coatings). Glass-ceramic materials, since their first accidental production in the mid fifties by S.D. Stookey, have been used in a vast area of applications, from household cooktops and stoves, to missile nose cones and mirror mounts of orbital telescopes and from decorative wall coverings to medical applications. The fracture modes, namely transgranular and intergranular modes in glass-ceramic materials have paid less attention in literature comparing with ceramic materials. In the former case the crack paves its way irrespectively of the direction of the grain boundaries, i.e., the interfaces between the different phases. In the latter case the crack preferentially follows them, i.e., debonds the interfaces.

  20. Melt fracture revisited

    SciTech Connect

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referred to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.

  1. Accessing the Orbital Roof via an Eyelid Incision

    PubMed Central

    Ohjimi, Hiroyuki; Taniguchi, Yasushi; Tanahashi, Shinji; Era, Kozo; Fukushima, Takeo

    2000-01-01

    This article outlines a new surgical technique for accessing the orbital roof: the transpalpebral approach. It involves making an incision on the double fold of the upper eyelid, then dissecting the orbital septum and the orbicular muscle of the eye. This exposes the orbital roof and enables the surgeon to approach without a coronal incision of the scalp; the direct eyelid incision provides adequate workspace. We use this approach in three orbital roof fractures and one orbital hemangioma. This orbital approach offers a simpler surgical technique, a less invasive one, and still provides excellent exposure of the superior orbital cavity. ImagesFigure 3Figure 4Figure 5 PMID:17171150

  2. Great Walls.

    ERIC Educational Resources Information Center

    Blackburn, Steve; Moore, Tim

    1996-01-01

    Explains why installing a well-designed indoor climbing wall can draw new users to an athletic facility. Climbing-wall design elements and gear are discussed and a checklist for working with contractors is provided.(GR)

  3. Orbiter's Skeleton

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.

  4. Altered disc pressure profile after an osteoporotic vertebral fracture is a risk factor for adjacent vertebral body fracture.

    PubMed

    Tzermiadianos, Michael N; Renner, Susan M; Phillips, Frank M; Hadjipavlou, Alexander G; Zindrick, Michael R; Havey, Robert M; Voronov, Michael; Patwardhan, Avinash G

    2008-11-01

    This study investigated the effect of endplate deformity after an osteoporotic vertebral fracture in increasing the risk for adjacent vertebral fractures. Eight human lower thoracic or thoracolumbar specimens, each consisting of five vertebrae were used. To selectively fracture one of the endplates of the middle VB of each specimen a void was created under the target endplate and the specimen was flexed and compressed until failure. The fractured vertebra was subjected to spinal extension under 150 N preload that restored the anterior wall height and vertebral kyphosis, while the fractured endplate remained significantly depressed. The VB was filled with cement to stabilize the fracture, after complete evacuation of its trabecular content to ensure similar cement distribution under both the endplates. Specimens were tested in flexion-extension under 400 N preload while pressure in the discs and strain at the anterior wall of the adjacent vertebrae were recorded. Disc pressure in the intact specimens increased during flexion by 26 +/- 14%. After cementation, disc pressure increased during flexion by 15 +/- 11% in the discs with un-fractured endplates, while decreased by 19 +/- 26.7% in the discs with the fractured endplates. During flexion, the compressive strain at the anterior wall of the vertebra next to the fractured endplate increased by 94 +/- 23% compared to intact status (p < 0.05), while it did not significantly change at the vertebra next to the un-fractured endplate (18.2 +/- 7.1%, p > 0.05). Subsequent flexion with compression to failure resulted in adjacent fracture close to the fractured endplate in six specimens and in a non-adjacent fracture in one specimen, while one specimen had no adjacent fractures. Depression of the fractured endplate alters the pressure profile of the damaged disc resulting in increased compressive loading of the anterior wall of adjacent vertebra that predisposes it to wedge fracture. This data suggests that correction of

  5. Fatigue Fractures

    PubMed Central

    Morris, James M.

    1968-01-01

    Fatigue (or stress) fracture of bone in military recruits has been recognized for many years. Most often it is a metatarsal bone that is involved but the tarsal bones, calcaneus, tibia, fibula, femur, and pelvis are occasionally affected. Reports of such fractures in the ribs, ulna and vertebral bodies may be found in the literature. In recent years, there has been increasing awareness of the occurrence of fatigue fractures in the civilian population. Weekend sportsmen, athletes in an early phase of training, and persons engaged in unaccustomed, repetitive, vigorous activity are potential victims of such a fracture. The signs and symptoms, roentgenographic findings, treatment and etiology of fatigue fractures are dealt with in this presentation. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6. PMID:5652745

  6. Fracture control for the Oman India Pipeline

    SciTech Connect

    Bruno, T.V.

    1996-12-31

    This paper describes the evaluation of the resistance to fracture initiation and propagation for the high-strength, heavy-wall pipe required for the Oman India Pipeline (OIP). It discusses the unique aspects of this pipeline and their influence on fracture control, reviews conventional fracture control design methods, their limitations with regard to the pipe in question, the extent to which they can be utilized for this project, and other approaches being explored. Test pipe of the size and grade required for the OIP show fracture toughness well in excess of the minimum requirements.

  7. Flow upscaling in propped fracture

    NASA Astrophysics Data System (ADS)

    Jasinski, Lukasz; Dabrowski, Marcin

    2016-04-01

    Proppants in combination with hydraulic fracturing are widely used to maintain the production of oil or gas from low permeability formations (i.e. shale rocks). There are also examples of proppants use in geothermal reservoirs. Flow patterns in propped fracture control transport processes and give information about fracture/matrix exchange surface. Our main motivation is to understand flow behavior in such structures using direct numerical simulations and to find a good upscaling technique to be able to investigate models on reservoir scale. We study fracture made of two parallel plane walls, where void space between them is filled with partial monolayer of proppant. As the fracture is affected by closing pressure, the proppant grains are squeezed between two opposite fracture walls which can change the grain shapes or embed the grains into impermeable rock matrix. To take this effect into account and simplify the geometry, the grains are approximated as cylinders. Imposed macroscopic pressure gradient invokes flow in such medium. As the flow is considered in the low Reynolds number regime, a stationary velocity flow field is obtained by solving the Stokes equations in 3D by means of finite element method. Void space between the grains is accurately discretized by using tetrahedral mesh. To reduce computational effort, the Stokes equation is reduced over the fracture aperture to 2D Stokes-Brinkman equation, which is further numerically solved and compared against numerical solution in 3D. Systematic flow calculations using 2D Stokes-Brinkman equation are performed for periodic domain and no slip boundary condition on the grain surface. Results are discussed in terms of effective properties as a function of geometrical parameters of the medium, such as proppant packing fraction and proppant grain diameter to fracture aperture ratio.

  8. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  9. Fracture Management

    MedlinePlus

    ... to hold the fracture in the correct position. • Fiberglass casting is lighter and stronger and the exterior ... with your physician if this occurs. • When a fiberglass cast is used in conjunction with a GORE- ...

  10. Lisfranc fractures.

    PubMed

    Wright, Amanda; Gerhart, Ann E

    2009-01-01

    Injuries of the tarsometatarsal, or Lisfranc, joint are rarely seen. Lisfranc fractures and fracture dislocations are among the most frequently misdiagnosed foot injuries in the emergency department. A misdiagnosed injury may have severe consequences including chronic pain and loss of foot biomechanics. Evaluation of a foot injury should include a high level of suspicion of a Lisfranc injury, and a thorough work-up is needed for correct diagnosis.

  11. Use of Orbital Conformer to Improve Speech in Patients with Confluent Maxillectomy and Orbital Defects.

    PubMed

    Colebeck, Amanda C; Kase, Michael T; Nichols, Cindy B; Golden, Marjorie; Huryn, Joseph M

    2016-04-01

    The basic objective in prosthetic restoration of confluent maxillary and orbital defects is to achieve a comfortable, cosmetically acceptable prosthesis that restores speech, deglutition, and mastication. It is a challenging task complicated by the size and shape of the defects. The maxillary obturator prosthesis often satisfies the objective of adequate deglutition; however, orbital defects that are not obturated in the medial, septal, or posterior walls allow air to escape, negatively impacting phonation. This article describes a technique to achieve favorable prosthetic rehabilitation in a patient with a maxillectomy and ipsilateral orbital exenteration. The prosthetic components include maxillary obturator, orbital conformer, and orbital prosthesis connected using rigid magnetic attachments. PMID:25953143

  12. Use of Orbital Conformer to Improve Speech in Patients with Confluent Maxillectomy and Orbital Defects.

    PubMed

    Colebeck, Amanda C; Kase, Michael T; Nichols, Cindy B; Golden, Marjorie; Huryn, Joseph M

    2016-04-01

    The basic objective in prosthetic restoration of confluent maxillary and orbital defects is to achieve a comfortable, cosmetically acceptable prosthesis that restores speech, deglutition, and mastication. It is a challenging task complicated by the size and shape of the defects. The maxillary obturator prosthesis often satisfies the objective of adequate deglutition; however, orbital defects that are not obturated in the medial, septal, or posterior walls allow air to escape, negatively impacting phonation. This article describes a technique to achieve favorable prosthetic rehabilitation in a patient with a maxillectomy and ipsilateral orbital exenteration. The prosthetic components include maxillary obturator, orbital conformer, and orbital prosthesis connected using rigid magnetic attachments.

  13. Pediatric facial fractures: evolving patterns of treatment.

    PubMed

    Posnick, J C; Wells, M; Pron, G E

    1993-08-01

    This study reviews the treatment of facial trauma between October 1986 and December 1990 at a major pediatric referral center. The mechanism of injury, location and pattern of facial fractures, pattern of facial injury, soft tissue injuries, and any associated injuries to other organ systems were recorded, and fracture management and perioperative complications reviewed. The study population consisted of 137 patients who sustained 318 facial fractures. Eighty-one patients (171 fractures) were seen in the acute stage, and 56 patients (147 fractures) were seen for reconstruction of a secondary deformity. Injuries in boys were more prevalent than in girls (63% versus 37%), and the 6- to 12-year cohort made up the largest group (42%). Most fractures resulted from traffic-related accidents (50%), falls (23%), or sports-related injuries (15%). Mandibular (34%) and orbital fractures (23%) predominated; fewer midfacial fractures (7%) were sustained than would be expected in a similar adult population. Three quarters of the patients with acute fractures required operative intervention. Closed reduction techniques with maxillomandibular fixation were frequently chosen for mandibular condyle fractures and open reduction techniques (35%) for other regions of the facial skeleton. When open reduction was indicated, plate-and-screw fixation was the preferred method of stabilization (65%). The long-term effects of the injuries and the treatment given on facial growth remain undetermined. Perioperative complication rates directly related to the surgery were low. PMID:8336220

  14. Pediatric facial fractures: evolving patterns of treatment.

    PubMed

    Posnick, J C; Wells, M; Pron, G E

    1993-08-01

    This study reviews the treatment of facial trauma between October 1986 and December 1990 at a major pediatric referral center. The mechanism of injury, location and pattern of facial fractures, pattern of facial injury, soft tissue injuries, and any associated injuries to other organ systems were recorded, and fracture management and perioperative complications reviewed. The study population consisted of 137 patients who sustained 318 facial fractures. Eighty-one patients (171 fractures) were seen in the acute stage, and 56 patients (147 fractures) were seen for reconstruction of a secondary deformity. Injuries in boys were more prevalent than in girls (63% versus 37%), and the 6- to 12-year cohort made up the largest group (42%). Most fractures resulted from traffic-related accidents (50%), falls (23%), or sports-related injuries (15%). Mandibular (34%) and orbital fractures (23%) predominated; fewer midfacial fractures (7%) were sustained than would be expected in a similar adult population. Three quarters of the patients with acute fractures required operative intervention. Closed reduction techniques with maxillomandibular fixation were frequently chosen for mandibular condyle fractures and open reduction techniques (35%) for other regions of the facial skeleton. When open reduction was indicated, plate-and-screw fixation was the preferred method of stabilization (65%). The long-term effects of the injuries and the treatment given on facial growth remain undetermined. Perioperative complication rates directly related to the surgery were low.

  15. Wonderful Walls

    ERIC Educational Resources Information Center

    Greenman, Jim

    2006-01-01

    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  16. Fluid Flow Within Fractured Porous Media

    SciTech Connect

    Crandall, D.M.; Ahmadi, G.; Smith, D.H.; Bromhal, G.S.

    2006-10-01

    Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

  17. Gullies in Crater Wall

    NASA Technical Reports Server (NTRS)

    2004-01-01

    6 April 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies in the wall of a large impact crater in Newton Basin near 41.9oS, 158.1oW. Such gullies may have formed by downslope movement of wet debris--i.e., water. Unfortunately, because the responsible fluid (if there was one) is no longer present today, only the geomorphology of the channels and debris aprons can be used to deduce that water might have been involved. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  18. Eye and orbit ultrasound

    MedlinePlus

    Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... eye is numbed with medicine (anesthetic drops). The ultrasound wand (transducer) is placed against the front surface ...

  19. Galeazzi fracture.

    PubMed

    Atesok, Kivanc I; Jupiter, Jesse B; Weiss, Arnold-Peter C

    2011-10-01

    Galeazzi fracture is a fracture of the radial diaphysis with disruption at the distal radioulnar joint (DRUJ). Typically, the mechanism of injury is forceful axial loading and torsion of the forearm. Diagnosis is established on radiographic evaluation. Underdiagnosis is common because disruption of the ligamentous restraints of the DRUJ may be overlooked. Nonsurgical management with anatomic reduction and immobilization in a long-arm cast has been successful in children. In adults, nonsurgical treatment typically fails because of deforming forces acting on the distal radius and DRUJ. Open reduction and internal fixation is the preferred surgical option. Anatomic reduction and rigid fixation should be followed by intraoperative assessment of the DRUJ. Further intraoperative interventions are based on the reducibility and postreduction stability of the DRUJ. Misdiagnosis or inadequate management of Galeazzi fracture may result in disabling complications, such as DRUJ instability, malunion, limited forearm range of motion, chronic wrist pain, and osteoarthritis.

  20. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. PMID:27137437

  1. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures.

  2. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  3. Pediatric Thighbone (Femur) Fracture

    MedlinePlus

    ... fractures in infants under 1 year old is child abuse. Child abuse is also a leading cause of thighbone fracture ... contact sports • Being in a motor vehicle accident • Child abuse Types of Femur Fractures (Classification) Femur fractures vary ...

  4. Wall Turbulence.

    ERIC Educational Resources Information Center

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  5. General view of he forward wall of the mid deck ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of he forward wall of the mid deck of the Orbiter Discovery. In this view a majority of wall panels have been removed to reveal the avionics bays in the interstitial space between the mid deck forward wall and the forward bulkhead of the pressurized crew compartment. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  6. Microsurgical anatomy of the orbit: the rule of seven.

    PubMed

    Martins, Carolina; Costa E Silva, Isabel Eugênia; Campero, Alvaro; Yasuda, Alexandre; Aguiar, Luiz Roberto; Tatagiba, Marcos; Rhoton, Albert

    2011-01-01

    The orbits are paired structures, located on the anterior part of the face. Morphologically, each orbit is a four sided pyramid with a posterior apex and anterior base. In the orbit, all openings are arranged around the base, apex or between the orbital walls. An anatomical characteristic of the orbit is that structures are arranged in groups of seven: there are seven bones, seven intraorbital muscles and seven nerves in the orbit. Tumors confined within the periorbita in the anterior two thirds of the orbit can often be approached extracranially, but those located in the apical area, and especially those on the medial side of the optic nerve, often require a transcranial approach. Thus, knowledge of orbital osteology is paramount in adequately choosing and performing an orbital approach. Understanding the critical topographical elements in this area helps to classify an orbital lesion and provides for a solid basis in choosing the most adequate intraorbital route for its treatment. PMID:22567293

  7. Orbit analysis

    SciTech Connect

    Michelotti, L.

    1995-01-01

    The past fifteen years have witnessed a remarkable development of methods for analyzing single particle orbit dynamics in accelerators. Unlike their more classic counterparts, which act upon differential equations, these methods proceed by manipulating Poincare maps directly. This attribute makes them well matched for studying accelerators whose physics is most naturally modelled in terms of maps, an observation that has been championed most vigorously by Forest. In the following sections the author sketchs a little background, explains some of the physics underlying these techniques, and discusses the best computing strategy for implementing them in conjunction with modeling accelerators.

  8. Expansion orbitotomy: another approach to the orbital floor.

    PubMed

    Kim, Yong-Ha; Kim, Sung-Eun; Kim, Tae Gon; Lee, Junho

    2013-07-01

    Surgeons encounter obstacles on the orbital floor reconstruction because of its narrow operative field. In particular, such procedure tends to be more difficult when the orbital contents are stuck between bone defects and are not easily restored. Tugging the soft tissue using forceps or mosquitoes could injure the soft tissues. Tessier infraorbital marginotomy could be helpful to solve such problem. However, his method is too invasive and cannot be easily applied. In this study, we describe a modification of Tessier inferior orbitotomy. Our method is to expand the fractured hole through osteotomy of fractured margin. Advantages of this technique are simpler and less invasive when the orbital contents are stuck between bone fragments.

  9. Frontal Sinus Fractures: Current Concepts

    PubMed Central

    Strong, E. Bradley

    2009-01-01

    Frontal sinus injuries may range from isolated anterior table fractures resulting in a simple aesthetic deformity to complex fractures involving the frontal recess, orbits, skull base, and intracranial contents. The risk of long-term morbidity can be significant. Optimal treatment strategies for the management of frontal sinus fractures remain controversial. However, it is critical to have a thorough understanding of frontal sinus anatomy as well as the current treatment strategies used to manage these injuries. A thorough physical exam and thin-cut, multiplanar (axial, coronal, and sagittal) computed tomography scan should be performed in all patients suspected of having a frontal sinus fracture. The most appropriate treatment strategy can be determined by assessing five anatomic parameters including the: frontal recess, anterior table integrity, posterior table integrity, dural integrity, and presence of a cerebrospinal fluid leak. A well thought out management strategy and meticulous surgical techniques are critical to success. The primary surgical goal is to provide a safe sinus while minimizing patient morbidity. This article offers an anatomically based treatment algorithm for the management of frontal sinus fractures and highlights the key steps to surgical repair. PMID:22110810

  10. Cement augmentation in vertebral burst fractures.

    PubMed

    Zaryanov, Anton V; Park, Daniel K; Khalil, Jad G; Baker, Kevin C; Fischgrund, Jeffrey S

    2014-01-01

    As a result of axial compression, traumatic vertebral burst fractures disrupt the anterior column, leading to segmental instability and cord compression. In situations with diminished anterior column support, pedicle screw fixation alone may lead to delayed kyphosis, nonunion, and hardware failure. Vertebroplasty and kyphoplasty (balloon-assisted vertebroplasty) have been used in an effort to provide anterior column support in traumatic burst fractures. Cited advantages are providing immediate stability, improving pain, and reducing hardware malfunction. When used in isolation or in combination with posterior instrumentation, these techniques theoretically allow for improved fracture reduction and maintenance of spinal alignment while avoiding the complications and morbidity of anterior approaches. Complications associated with cement use (leakage, systemic effects) are similar to those seen in the treatment of osteoporotic compression fractures; however, extreme caution must be used in fractures with a disrupted posterior wall.

  11. Fracture toughness of Antrim shale

    SciTech Connect

    Kim, K.; Mubeen, A.

    1980-05-01

    Fracture toughness of Antrim shale cores from Dow Chemical's Sanilac County test site in Michigan were measured by the burst test method developed by Clifton et al. (1976). These tests were conducted to establish a preliminary data base to be used for the designing of a bed preparation method and prediction of rock fracture behavior under various loading conditions such as explosives and hydraulic fracturing for in-situ processing of oil shale. The test method was chosen because the thick-walled cylinder provides a loading and specimen configuration similar to in-situ hydraulic fracturing operations and the specimens can be conveniently prepared from diamond drill cores for laboratory tests. Further, the nature of variation of crack tip stress intensity in this specimen is such that K/sub IC/ does not depend on initial crack length, and crack propagation need not be monitored. The test results show that the fracture toughness of typical Antrim shale core range from 930 to 1080 psi ..sqrt..in. while the limestone specimens, a basement rock, range from 1240 to 1430 psi ..sqrt..in. These values are close to that of lean Western oil shale from Anvil point, Colorado (Schmidt, 1977), i.e., 980 psi ..sqrt..in.

  12. Pearls of Orbital Trauma Management

    PubMed Central

    Roth, Forrest S.; Koshy, John C.; Goldberg, Jonathan S.; Soparkar, Charles N.S.

    2010-01-01

    Orbital fractures account for a significant portion of traumatic facial injuries. Although plastic surgery literature is helpful, additional pearls and insights are provided in this article from the experience of an oculoplastic surgeon. The fundamentals remain the same, but the perceptions differ and provide a healthy perspective on a long-standing issue. The most important thing to remember is that the optimal management plan is often variable, and the proper choice regarding which plan to choose rests upon the clinical scenario and the surgeon having an honest perception of his or her level of expertise and comfort level. PMID:22550464

  13. EFFECTS OF LITHOLOGY ON TELEVIEWER-LOG QUALITY AND FRACTURE INTERPRETATION.

    USGS Publications Warehouse

    Paillet, Frederick L.; Keys, W.S.; Hess, A.E.

    1985-01-01

    Representative televiewer logs illustrating natural fractures in such common rock types as granite, gabbro, basalt, schist, sandstone, limestone and shale are presented in addition to photographs of the same fractures in core samples. These examples demonstrate the many difficulties in recognizing fractures on televiewer logs compared to fractures in logs because of the vertical scale distortion on televiewer logs and from drilling damage to the fractures at the borehole wall. All of these results demonstrate that significant fracture widening usually occurs during drilling, explaining why fractures described by the core logger as closed can be consistently detected on televiewer logs.

  14. Orbital Winch

    NASA Technical Reports Server (NTRS)

    Hoyt, Robert (Inventor); Slostad, Jeffrey T. (Inventor); Frank, Scott (Inventor); Barnes, Ian M. (Inventor)

    2016-01-01

    Orbital winch having: lower and upper frames; spool having upper and lower flanges with lower flange attached to lower frame; axial tether guide mounted to upper frame; secondary slewing ring coaxial with spool and rotatably mounted to upper frame, wherein secondary slewing ring's outer surface has gearing; upper tether guide mounted to inner surface of secondary slewing ring; linear translation means having upper end mounted to upper frame and lower end mounted on lower frame; primary slewing ring rotatably mounted within linear translation means allowing translation axially between flanges, wherein primary slewing ring's outer surface has gearing; lower tether guide mounted on primary slewing ring's inner surface; pinion rod having upper end mounted to upper frame and lower end mounted to lower frame, wherein pinion rod's teeth engage primary and secondary slewing rings' outer surface teeth; and tether passing through axial, upper, and lower tether guides and winding around spool.

  15. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  16. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    EPA Science Inventory

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter , and the power-law relationship betwe...

  17. CONTAMINANT TRANSPORT IN PARALLEL FRACTURED MEDIA: SUDICKY AND FRIND REVISITED

    EPA Science Inventory

    This paper is concerned with a modified, nondimensional form of the parallel fracture, contaminant transport model of Sudicky and Frind (1982). The modifications include the boundary condition at the fracture wall, expressed by a parameter, and the power-law relationship between...

  18. Lunar ring dikes from orbiter I.

    PubMed

    O'keefe, J A; Lowman, P D; Cameron, W S

    1967-01-01

    Orbiter photographs of the wall of a large circular formation on the moon show that the wall is a convex body resembling a flow of viscous lava. The slopes are less than the angle of repose of dry rock; hence an explanation in terms of mass wastage is hard to support. The viscosity is approximately 10(13) centimeter-gram- second units, indicating an acid lava.

  19. Wall Covering

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The attractive wall covering shown below is one of 132 styles in the Mirror Magic II line offered by The General Tire & Rubber Company, Akron, Ohio. The material is metallized plastic fabric, a spinoff from space programs. Wall coverings are one of many consumer applications of aluminized plastic film technology developed for NASA by a firm later bought by King-Seeley Thermos Company, Winchester, Massachusetts, which now produces the material. The original NASA use was in the Echo 1 passive communications satellite, a "space baloon" made of aluminized mylar; the high reflectivity of the metallized coating enabled relay of communications signals from one Earth station to another by "bouncing" them off the satellite. The reflectivity feature also made the material an extremely efficient insulator and it was subsequently widely used in the Apollo program for such purposes as temperature control of spacecraft components and insulation of tanks for fuels that must be maintained at very low temperatures. I Used as a wall covering, the aluminized material offers extra insulation, reflects light and I resists cracking. In addition to General Tire, King-Seeley also supplies wall covering material to Columbus Coated Fabrics Division of Borden, Incorporated, Columbus, Ohio, among others.

  20. Wall Art

    ERIC Educational Resources Information Center

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  1. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. PMID:25437849

  2. Inter-wall bridging induced peeling of multi-walled carbon nanotubes during tensile failure in aluminum matrix composites.

    PubMed

    Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi

    2015-02-01

    In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites.

  3. ‘Sutureless’ transconjunctival approach for infraorbital rim fractures

    PubMed Central

    Nagaraj, Vaibhav; Ghosh, Abhishek; Nanjappa, Madan; Ramesh, Keerthi

    2015-01-01

    Aim: To analyze the ease and surgical outcome of using sutureless transconjunctival approach for repair of infra-orbital fractures. Design: Prospective clinical case series. Materials and Methods: Totally 5 patients with infra-orbital rim or orbital floor fractures were selected and the fractures were accessed through a pre-septal transconjunctival incision. After reduction and fixation, the conjunctiva was just re-approximated and re-draped into position. Incidence of post-operative complications such as diplopia, lid retraction, eyelid dystopia, foreign body granuloma and poor conjunctival healing was assessed at intervals of 1 week, 15 days and a month post-operatively. Results: No complications were observed in any of the 5 patients. Healing was satisfactory in all patients. Conclusion: The sutureless technique appears to be a time saving and technically simpler viable alternative to multilayered suturing in orbital trauma with minimal post-operative complications. PMID:25821377

  4. Radial head fracture - aftercare

    MedlinePlus

    Elbow fracture - radial head - aftercare ... to 2 weeks. If you have a small fracture and your bones did not move around much, ... to see a bone doctor (orthopedic surgeon). Some fractures require surgery to: Insert pins and plates to ...

  5. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    NASA Technical Reports Server (NTRS)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  6. Dissolution and precipitation of fractures in soluble rock

    NASA Astrophysics Data System (ADS)

    Kaufmann, Georg; Gabrovšek, Franci; Romanov, Douchko

    2016-04-01

    Soluble rocks such as limestone, anhydrite, and gypsum are characterised by their large secondary permeability, which results from the interaction of water circulating through the rock and dissolving the soluble fracture walls. This highly selective dissolution process enlarges the fractures to voids and eventually cavities, which then carry the majority of flow through an aquifer along preferential flow pathes. We employ a numerical model describing the evolution of secondary porosity in a soluble rock to discuss the evolution of single fractures in different rock types. Our main focus is three-fold: The distinction of shallow versus deep flow pathes and their evolution on the one hand; the effect of precipitation of the dissolved material in the fracture, and finally the complication of fracture enlargement in fractures composed of several different soluble materials. We observe a similar evolution of void space for fractures composed of limestone and gypsum, but on different time scales. For anhydrite, owing to its difference in the kinetical rate law describing the removal of soluble rock, when compared to limestone and anhydrite, the evolution is even faster. Precipitation of the dissolved rock due to changes in the hydrochemical conditions can clog fractures fairly fast, thus changing the pattern of preferential pathways in the soluble aquifer, especially with depth. Finally, limestone fractures coated with gypsum, as frequently observed in caves, will result in a substantial acceleration of fracture enlargement with time, thus giving these fractures a hydraulical advantage over pure limestone fractures in their competition for capturing flow.

  7. Multiwell fracturing experiments. [Nitrogen foam fracture treatment

    SciTech Connect

    Warpinski, N.

    1985-01-01

    The objective of the Multiwell fracturing experiments is to test and develop the technology for the efficient stimulation of tight, lenticular gas sands. This requires basic understanding of: (1) fracture behavior and geometry in this complex lithologic environment, and (2) subsequent production into the created fracture. The intricate interplay of the hydraulic fracture with the lens geometry, the internal reservoir characteristics (fractures, reservoir breaks, etc.), the in situ stresses, and the mechanical defects (fracture, bedding, etc.) need to be defined in order to develop a successful stimulation program. The stimulation phase of the Multiwell Experiment is concerned with: (1) determining important rock/reservoir properties that influence or control fracture geometry and behavior, (2) designing fracture treatments to achieve a desired size and objectives, and (3) conducting post-treatment analyses to evaluate the effectiveness of the treatment. Background statement, project description, results and evaluation of future plans are presented. 5 refs., 2 figs., 2 tabs.

  8. [Bilateral acetabulum fracture after suffering sport trauma].

    PubMed

    Trost, P; Kollersbeck, C; Pelitz, M; Walcher, T; Genelin, F

    2013-07-01

    This case study describes a 37-year-old male who suffered a bilateral transverse acetabulum fracture with a fracture of the posterior wall and a double-sided dorsal hip dislocation in combination with a left-sided femoral head fracture (Pipkin IV) while skiing in a "fun park". The accurate diagnosis and presurgical planning was made by means of a computed tomography (CT) scan and a subsequent 3D reconstruction. After a primarily executed shielded repositioning of the bilateral hip dislocationearly secondary and anatomical reconstruction of the double-sided acetabulum fracture was possible using the Kocher-Langenbeck approach. A consistent physiotherapy as well as rehabilitation finally led to a positive clinical result for the patient.

  9. Proximal fifth metatarsal fractures.

    PubMed

    Ramponi, Denise R

    2013-01-01

    The most common fracture of the foot is a fracture of the proximal fifth metatarsal. In general, there are 3 types of fractures involving the proximal fifth metatarsal area, including a proximal diaphyseal stress fracture, a Jones fracture, and an avulsion fracture of the tuberosity. Some fractures of the fifth metatarsal heal without difficulty, whereas some have the potential for nonunion or delayed healing. Each fracture has some variation in the anatomical location on the fifth metatarsal, the mechanism of injury, the radiographic findings, and the treatment plan. Avulsion fractures of the tuberosity often heal without difficulty, yet fractures distal to the area of insertion of the peroneus brevis tendon are prone to nonunion and delayed healing (). Differential diagnosis of a fifth metatarsal midfoot injury includes ankle sprains, midfoot sprains, plantar facial ruptures, peroneus tendon ruptures, and other foot fractures.

  10. Surface deformation from a pressurized subsurface fracture: Problem description

    SciTech Connect

    Fu, Pengcheng

    2014-09-15

    This document speci es a set of problems that entail the calculation of ground surface deformation caused by a pressurized subsurface fracture. The solid medium is assumed to be isotropic-homogeneous where linear elasticity applies. The e ects of the uid in the fracture is represented by a uniform pressure applied onto the two fracture walls. The fracture is assumed to be rectangular in shape and various dipping angles are considered. In addition to the full 3D solution, we reduce the 3D problem to a plane-strain geometry, so that 2D codes can participate in the comparison and results can be compared with those available in the literature.

  11. Fracture characterisation using geoelectric null-arrays

    NASA Astrophysics Data System (ADS)

    Falco, Pierik; Negro, François; Szalai, Sándor; Milnes, Ellen

    2013-06-01

    The term "geoelectric null-array" is used for direct current electrode configurations yielding a potential difference of zero above a homogeneous half-space. This paper presents a comparative study of the behaviour of three null-arrays, midpoint null-array (MAN), Wenner-γ null-array and Schlumberger null-array in response to a fracture, both in profiling and in azimuthal mode. The main objective is to determine which array(s) best localise fractures or best identify their orientation. Forward modelling of the three null-arrays revealed that the Wenner-γ and Schlumberger null-arrays localise vertical fractures the most accurately, whilst the midpoint null-array combined with the Schlumberger null-array allows accurate orientation of a fracture. Numerical analysis then served as a basis to interpret the field results. Field test measurements were carried out above a quarry in Les Breuleux (Switzerland) with the three null-arrays and classical arrays. The results were cross-validated with quarry-wall geological mapping. In real field circumstances, the Wenner-γ null-array proved to be the most efficient and accurate in localising fractures. The orientations of the fractures according to the numerical results were most efficiently determined with the midpoint null-array, whilst the Schlumberger null-array adds accuracy to the results. This study shows that geoelectrical null-arrays are more suitable than classical arrays for the characterisation of fracture geometry.

  12. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  13. Detail view of the starboard mid deck wall of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the starboard mid deck wall of the Orbiter Discovery showing Operational Sleeping Bags attached horizontally to the wall for the crew sleep period. If it is required as part of a mission's manifest a four-tiered rigid sleep station can be installed. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  14. Crustal Fractures of Ophir Planum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 29 April 2002) The Science This THEMIS image covers a tract of plateau territory called Ophir Planum. The most obvious features in this scene are the fractures (ranging from 1 to 5 km wide) running from the upper left to lower right. Localized rifting and deep-seated tension fracturing of the crust probably formed these cracks. The wall rock displayed in the upper part of the cliffs appears to be layered. The southwest-facing wall of the largest and uppermost fracture has classic spur and gully topography. This type of topography is created by differing amounts of erosion. Also seen in this image are some scattered impact craters and some dark wind streaks in the lower right. The Ophir Planum plateau separates two separate smaller canyon systems, not visible in this image, (Candor Chasma to the north and Melas Chasma to the south) in the Valles Marineris canyon complex. The whole Valles Marineris canyon system extends some 4,000 km across the equatorial realms of Mars. For comparison, this would stretch from New York City to San Francisco. The Story Plateaus and spurs might make you think of cowboys on the open plain. 'Spurs' in this context, however, are simply ridges that can be seen on the side of the southwest-facing wall of the large fracture that splits the terrain. Gullies stretch down this slope as well. Both of these features are caused by erosion, which is a mild force of change compared to whatever tension cracked the crust and ripped apart the land. The wall rock displayed in the upper part of the cliffs appears to be layered, suggesting that different kinds of rocks and minerals can be found in each banded zone. The Ophir Planum plateau separates two separate canyon systems in the Valles Marineris complex, the largest canyon in the solar system. If Valles Marineris were on Earth, it would stretch from New York City all the way to San Francisco. That will give you some idea of the geological forces that have acted upon the planet over time

  15. Cerberus Fossae Fractures

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 29 October 2003

    The fractured surface of the Cerberus region southeast of the Elysium volcanoes provides an impressive example of the powerful tectonic forces that have shaped the region. Both the smooth lava plains and the mountains that poke through the lava are subject to the extensional forces that rip open the landscape. The fractures are radial to the Elysium complex, suggesting a relationship to the volcanic processes that have built it.

    Image information: VIS instrument. Latitude 8.6, Longitude 160.6 East (199.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Theory of satellite orbit-orbit resonance

    NASA Technical Reports Server (NTRS)

    Blitzer, L.; Anderson, J. D.

    1981-01-01

    On the basis of the strong mathematical and physical parallels between orbit-orbit and spin-orbit resonances, the dynamics of mutual orbit perturbations between two satellites about a massive planet are examined, exploiting an approach previously adopted in the study of spin-orbit coupling. Resonances are found to exist when the mean orbital periods are commensurable with respect to some rotating axis, which condition also involves the apsidal and nodal motions of both satellites. In any resonant state the satellites are effectively trapped in separate potential wells, and a single variable is found to describe the simultaneous librations of both satellites. The librations in longitude are 180 deg out-of-phase, with fixed amplitude ratio that depends only on their relative masses and semimajor axes. The theory is applicable to Saturn's resonant pairs Titan-Hyperion and Mimas-Tethys, and in these cases the calculated libration periods are in reasonably good agreement with the observed periods.

  17. Fractures of the forefoot.

    PubMed

    Mandracchia, Vincent J; Mandi, Denise M; Toney, Patris A; Halligan, Jennifer B; Nickles, W Ashton

    2006-04-01

    Fractures of the forefoot are common injuries of various causes. Although not crippling, forefoot fractures can be debilitating if they go undiagnosed or are mistreated. Whenever patients complain of foot pain with ambulation or difficulty ambulating, radiographs should be taken as part of a standard routine to assess for bony pathology. This article discusses the classification and treatment of metatarsal fractures, digital and sesamoid fractures, and open fractures about the forefoot.

  18. Ocular and orbital trauma from water balloon slingshots: a clinical, epidemiological, experimental, and theoretical study.

    PubMed Central

    Bullock, J D; Johnson, D A; Ballal, D R; Bullock, R J

    1996-01-01

    PURPOSE: To report the clinical findings of 17 patients with ocular/orbital injuries produced by launched water balloons; to determine water balloon kinetic energies in experimental and theoretical studies. METHODS: Six case histories are presented, 1 case was retrieved from the medical literature, and 10 cases were reported to the National Injury Information Clearinghouse of the United States Consumer Product Safety Commission. The energies were determined by field trials and calculations. RESULTS: Injuries included orbital contusions and hematomas, facial hypesthesia, eyelid lacerations, subconjunctival hemorrhages, corneal edema and abrasion, hyphemas, traumatic iritis, iris sphincter ruptures, iris atrophy, angle recession, iridodialyses, traumatic cataract, vitreous hemorrhages, retinal hemorrhages, macular hole formation, optic atrophy, and bony orbital wall fractures. Epidemiological analysis revealed that children and young adults, more often males, were injured, most commonly in the warm weather months (May through September). In field trials, maximum water balloon velocities ranged from 38 to 41 m/sec (85 to 92 mph) with kinetic energies from 176 to 245 J; by calculation, maximum velocities ranged from 42 to 54 m/sec (95 to 121 mph) with kinetic energies from 141 to 232 J. In a field demonstration a 300-g water balloon launched horizontally from a distance of 20 ft exploded a 12-kg watermelon. Classic physics calculations are presented to explain the complex bio-mechanical interactions between the water balloon and the eye. CONCLUSION: Kinetic energies of launched water balloons are comparable to or greater than kinetic energies experienced with a variety of common objects, including file bullets, which are well known to cause serious ocular and orbital injuries. In addition, these energies are far in excess of those required to perforate a cornea (0.7 to 1.7 J), rupture a globe (1 to 5.3 J), or fracture the bony orbit (1.8 to 14.7 j). Thus, this study

  19. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    Results from operational OD produced by the NASA Goddard Flight Dynamics Facility for the LRO nominal and extended mission are presented. During the LRO nominal mission, when LRO flew in a low circular orbit, orbit determination requirements were met nearly 100% of the time. When the extended mission began, LRO returned to a more elliptical frozen orbit where gravity and other modeling errors caused numerous violations of mission accuracy requirements. Prediction accuracy is particularly challenged during periods when LRO is in full-Sun. A series of improvements to LRO orbit determination are presented, including implementation of new lunar gravity models, improved spacecraft solar radiation pressure modeling using a dynamic multi-plate area model, a shorter orbit determination arc length, and a constrained plane method for estimation. The analysis presented in this paper shows that updated lunar gravity models improved accuracy in the frozen orbit, and a multiplate dynamic area model improves prediction accuracy during full-Sun orbit periods. Implementation of a 36-hour tracking data arc and plane constraints during edge-on orbit geometry also provide benefits. A comparison of the operational solutions to precision orbit determination solutions shows agreement on a 100- to 250-meter level in definitive accuracy.

  20. Closeup view of the mid deck aft wall of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the mid deck aft wall of the Orbiter Discovery showing a mission specific configuration of stowage lockers within the modular system designed for maximum flexibility. This photograph was taken at Kennedy Space Center. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  1. Endoscopic sinus surgery for the management of orbital diseases.

    PubMed

    Liang, Kai-Li; Su, Mao-Chang; Shiao, Jiun-Yi; Hsin, Chung-Han; Jiang, Rong-San

    2008-01-01

    The indications for endoscopic sinus surgery (ESS) have been widely expanding since its introduction into sinus surgery. ESS has become an ideal method to manage certain orbital diseases and has the advantages of excellent visualization with minimal cosmetic and functional morbidity. In the Department of Otolaryngology of Taichung Veterans General Hospital from 1988 to 2005, 3,136 patients received ESS. Among them, a total of 108 patients received ESS for orbital diseases. These orbital diseases included orbital complications secondary to bacterial rhinosinusitis, fungal rhinosinusitis, skull base osteomyelitis and mucoceles, subperiosteal hematoma, Graves' disease, traumatic optic neuropathy and orbital blowout fracture. Our results showed that ESS is effective in the management of some of these orbital diseases.

  2. Synkinematic quartz cementation in partially open fractures in sandstones

    NASA Astrophysics Data System (ADS)

    Ukar, Estibalitz; Laubach, Stephen E.; Fall, Andras; Eichhubl, Peter

    2014-05-01

    Faults and networks of naturally open fractures can provide open conduits for fluid flow, and may play a significant role in hydrocarbon recovery, hydrogeology, and CO2 sequestration. However, sandstone fracture systems are commonly infilled, at least to some degree, by quartz cement, which can stiffen and occlude fractures. Such cement deposits can systematically reduce the overall permeability enhancement due to open fractures (by reducing open fracture length) and result in permeability anisotropies. Thus, it is important to identify the factors that control the precipitation of quartz in fractures in order to identify potential fluid conduits under the present-day stress field. In many sandstones, quartz nucleates syntaxially on quartz grain or cement substrate of the fracture wall, and extends between fracture walls only locally, forming pillars or bridges. Scanning electron microscope cathodoluminescence (SEM-CL) images reveal that the core of these bridges are made up of bands of broken and resealed cement containing wall-parallel fluid inclusion planes. The fluid inclusion-rich core is usually surrounded by a layer of inclusion-poor clear quartz that comprises the lateral cement. Such crack-seal textures indicate that this phase was precipitating while the fractures were actively opening (synkinematic growth). Rapid quartz accumulation is generally believed to require temperatures of 80°C or more. Fluid inclusion thermometry and Raman spectroscopy of two-phase aqueous fluid-inclusions trapped in crack-seal bands may be used to track the P-T-X evolution of pore fluids during fracture opening and crack-seal cementation of quartz. Quartz cement bridges across opening mode fractures in the Cretaceous Travis Peak Formation of the tectonically quiescent East Texas Basin indicate individual fractures opened over a 48 m.y. time span at rates of 16-23 µm/m.y. Similarly, the Upper Cretaceous Mesaverde Group in the Piceance Basin, Colorado contains fractures that

  3. Paratrooper's Ankle Fracture: Posterior Malleolar Fracture

    PubMed Central

    Young, Ki Won; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-01-01

    Background We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Methods Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. Results The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Conclusions Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were

  4. HVI Ballistic Performance Characterization of Non-Parallel Walls

    NASA Technical Reports Server (NTRS)

    Bohl, William; Miller, Joshua; Christiansen, Eric

    2012-01-01

    The Double-Wall, "Whipple" Shield [1] has been the subject of many hypervelocity impact studies and has proven to be an effective shield system for Micro-Meteoroid and Orbital Debris (MMOD) impacts for spacecraft. The US modules of the International Space Station (ISS), with their "bumper shields" offset from their pressure holding rear walls provide good examples of effective on-orbit use of the double wall shield. The concentric cylinder shield configuration with its large radius of curvature relative to separation distance is easily and effectively represented for testing and analysis as a system of two parallel plates. The parallel plate double wall configuration has been heavily tested and characterized for shield performance for normal and oblique impacts for the ISS and other programs. The double wall shield and principally similar Stuffed Whipple Shield are very common shield types for MMOD protection. However, in some locations with many spacecraft designs, the rear wall cannot be modeled as being parallel or concentric with the outer bumper wall. As represented in Figure 1, there is an included angle between the two walls. And, with a cylindrical outer wall, the effective included angle constantly changes. This complicates assessment of critical spacecraft components located within outer spacecraft walls when using software tools such as NASA's BumperII. In addition, the validity of the risk assessment comes into question when using the standard double wall shield equations, especially since verification testing of every set of double wall included angles is impossible.

  5. Nuss procedure for surgical stabilization of flail chest with horizontal sternal body fracture and multiple bilateral rib fractures.

    PubMed

    Lee, Sung Kwang; Kang, Do Kyun

    2016-06-01

    Flail chest is a life-threatening situation that paradoxical movement of the thoracic cage was caused by multiply fractured ribs in two different planes, or a sternal fracture, or a combination of the two. The methods to achieve stability of the chest wall are controversy between surgical fixation and mechanical ventilation. We report a case of a 33-year-old man who fell from a high place with fail chest due to multiple rib fractures bilaterally and horizontal sternal fracture. The conventional surgical stabilization using metal plates by access to the front of the sternum could not provide stability of the flail segment because the fracture surface was obliquely upward and there were multiple bilateral rib fractures adjacent the sternum. The Nuss procedure was performed for supporting the flail segment from the back. Flail chest was resolved immediately after the surgery. The patient was weaned from the mechanical ventilation on third postoperative day successfully and was ultimately discharged without any complications.

  6. Predicting zygoma fractures from baseball impact.

    PubMed

    Cormier, Joseph M; Stitzel, Joel D; Hurst, William J; Porta, David J; Jones, Jeryl; Duma, Stefan M

    2006-01-01

    The purpose of this study is to develop injury risk functions that predict zygoma fracture based on baseball type and impact velocity. Zygoma fracture strength data from published experiments were mapped with the force exerted by a baseball on the orbit as a function of ball velocity. Using a normal distribution, zygoma fracture risk functions were developed. Experimental evaluation of these risk functions was performed using six human cadaver tests and two baseballs of different stiffness values. High speed video measured the baseball impact velocity. Post test analysis of the cadaver skulls was performed using CT imaging including three-dimensional reconstruction as well as autopsy. The developed injury risk functions accurately identify the risk of zygoma fracture as a result of baseball impact. The experimental results validated the zygoma risk functions at the lower and upper levels. The injuries observed in the post test analysis included fractures of the zygomatic arch, frontal process and the maxilla, zygoma suture, with combinations of these creating comminuted, tripod fractures of the zygoma. Tests with a softer baseball did result in injury but these had fewer resulting zygoma bone fragments and occurred at velocities 50% higher than the major league ball.

  7. Predicting zygoma fractures from baseball impact.

    PubMed

    Cormier, Joseph M; Stitzel, Joel D; Hurst, William J; Porta, David J; Jones, Jeryl; Duma, Stefan M

    2006-01-01

    The purpose of this study is to develop injury risk functions that predict zygoma fracture based on baseball type and impact velocity. Zygoma fracture strength data from published experiments were mapped with the force exerted by a baseball on the orbit as a function of ball velocity. Using a normal distribution, zygoma fracture risk functions were developed. Experimental evaluation of these risk functions was performed using six human cadaver tests and two baseballs of different stiffness values. High speed video measured the baseball impact velocity. Post test analysis of the cadaver skulls was performed using CT imaging including three-dimensional reconstruction as well as autopsy. The developed injury risk functions accurately identify the risk of zygoma fracture as a result of baseball impact. The experimental results validated the zygoma risk functions at the lower and upper levels. The injuries observed in the post test analysis included fractures of the zygomatic arch, frontal process and the maxilla, zygoma suture, with combinations of these creating comminuted, tripod fractures of the zygoma. Tests with a softer baseball did result in injury but these had fewer resulting zygoma bone fragments and occurred at velocities 50% higher than the major league ball. PMID:16817599

  8. [Fractures of the forefoot].

    PubMed

    Richter, M

    2011-10-01

    Fractures of the forefoot are common and comprise approximately two thirds of all foot fractures. Forefoot fractures are caused by direct impact or the effect of indirect force. The forces exerted can range from repetitive minor load (stress fractures) to massive destructive forces (complex trauma). The clinical course in forefoot fractures is typically more favourable than in fractures of the mid- and hindfoot. The incidence of complications like infection or pseudarthrosis is low. Exceptions are rare fractures of the proximal shaft of the fifth metatarsal and the sesamoids with higher pseudarthrosis rates. Malunited metatarsal fractures can cause painful conditions that should even be treated operatively. Differences in structure and function of the different forefoot areas and specific fracture types require an adapted management of these special injuries.

  9. Efficient orbit integration by orbital longitude methods

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    Recently we developed a new formulation of numerical integration of orbital motion named manifold correction methods. The main trick is to keep rigorously the consistency of some physical relations such as that of the orbital energy, of the orbital angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is done by applying a sort of correction to the integrated variables at every integration step. Typical methods of correction are certain geometric transformation such as the spatial scaling and the spatial rotation, which are commonly used in the comparison of reference frames, or mathematically-reasonable operations such as the modularization of angle variables into the standard domain [-π, π). The finally-evolved form of the manifold correction methods is the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In the unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset time of which depends on the type and the magnitude of perturbations. This feature is also realized for highly eccentric orbits by applying the same idea to the KS-regularization. Expecially the introduction of time element greatly enhances the performance of numerical integration of KS-regularized orbits whether the scaling is applied or not.

  10. Epidemiology of fragility fractures.

    PubMed

    Friedman, Susan M; Mendelson, Daniel Ari

    2014-05-01

    As the world population of older adults-in particular those over age 85-increases, the incidence of fragility fractures will also increase. It is predicted that the worldwide incidence of hip fractures will grow to 6.3 million yearly by 2050. Fractures result in significant financial and personal costs. Older adults who sustain fractures are at risk for functional decline and mortality, both as a function of fractures and their complications and of the frailty of the patients who sustain fractures. Identifying individuals at high risk provides an opportunity for both primary and secondary prevention.

  11. OEX - Use of the Shuttle Orbiter as a research vehicle

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1981-01-01

    The Orbiter Experiments Program to provide research instrumentation on the Shuttle Orbiter is discussed. Flight aerodynamic problems such as ground-based data limitations, rarefied flow effects, body flap and control surface effectiveness, and windward surface heat transfer are reviewed. Experiments currently under development are described, including experiments on tile gaps and wall catalytic effects which provide the opportunity to obtain data not available in ground facilities and apply the results to improvements in the Orbiter's thermal protection system. Such experiments combined with other instrumentation on the Orbiter should provide benchmark flight data which can make a significant impact on the design of future space transportation systems.

  12. Lunar orbiting prospector

    NASA Technical Reports Server (NTRS)

    1988-01-01

    One of the prime reasons for establishing a manned lunar presence is the possibility of using the potential lunar resources. The Lunar Orbital Prospector (LOP) is a lunar orbiting platform whose mission is to prospect and explore the Moon from orbit in support of early lunar colonization and exploitation efforts. The LOP mission is divided into three primary phases: transport from Earth to low lunar orbit (LLO), operation in lunar orbit, and platform servicing in lunar orbit. The platform alters its orbit to obtain the desired surface viewing, and the orbit can be changed periodically as needed. After completion of the inital remote sensing mission, more ambitious and/or complicated prospecting and exploration missions can be contemplated. A refueled propulsion module, updated instruments, or additional remote sensing packages can be flown up from the lunar base to the platform.

  13. Introducing Earth's Orbital Eccentricity

    ERIC Educational Resources Information Center

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  14. Five Equivalent d Orbitals

    ERIC Educational Resources Information Center

    Pauling, Linus; McClure, Vance

    1970-01-01

    Amplifies and clarifies a previous paper on pyramidal d orbitals. Discusses two sets of pyramid d orbitals with respect to their maximum bond strength and their symmetry. Authors described the oblate and prolate pentagonal antiprisms arising from the two sets of five equivalent d orbitals. (RR)

  15. SEASAT B orbit synthesis

    NASA Technical Reports Server (NTRS)

    Rea, F. G.; Warmke, J. M.

    1976-01-01

    Addition were made to Battelle's Interactive Graphics Orbit Selection (IGOS) program; IGOS was exercised via telephone lines from JPL, and candidate SEASAT orbits were analyzed by Battelle. The additions to the program enable clear understanding of the implications of a specific orbit to the diverse desires of the SEASAT user community.

  16. Infant skull fracture (image)

    MedlinePlus

    Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...

  17. Nasal fracture (image)

    MedlinePlus

    A nasal fracture is a break in the bone over the ridge of the nose. It usually results from a blunt ... and is one of the most common facial fracture. Symptoms of a broken nose include pain, blood ...

  18. Metatarsal stress fractures - aftercare

    MedlinePlus

    The metatarsal bones are the long bones in your foot that connect your ankle to your toes. A stress fracture is a break in the bone that happens with repeated injury or stress. Stress fractures are caused ...

  19. Fractures in anisotropic media

    NASA Astrophysics Data System (ADS)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  20. Displaced patella fractures.

    PubMed

    Della Rocca, Gregory J

    2013-10-01

    Displaced patella fractures often result in disruption of the extensor mechanism of the knee. An intact extensor mechanism is a requirement for unassisted gait. Therefore, operative treatment of the displaced patella fracture is generally recommended. The evaluation of the patella fracture patient includes examination of extensor mechanism integrity. Operative management of patella fractures normally includes open reduction with internal fixation, although partial patellectomy is occasionally performed, with advancement of quadriceps tendon or patellar ligament to the fracture bed. Open reduction with internal fixation has historically been performed utilizing anterior tension band wiring, although comminution of the fracture occasionally makes this fixation construct inadequate. Supplementation or replacement of the tension band wire construct with interfragmentary screws, cerclage wire or suture, and/or plate-and-screw constructs may add to the stability of the fixation construct. Arthrosis of the patellofemoral joint is very common after healing of patella fractures, and substantial functional deficits may persist long after fracture healing has occurred.

  1. [Surgical treatment of posttraumatic deformity of the orbital floor].

    PubMed

    Baranov, I V; Devdariani, D Sh; Kulikov, A V; Aleksandrov, A B; Bagnenko, A S

    2011-01-01

    The article is devoted to an actual problem of surgical treatment of patients with posttraumatic deformities of the orbital floor. On the material of 21 observations it was shown that for the successful treatment of deformities of the orbit bottom autogenous costal cartilage graft should be used as a plastic material. Removal of enophthalmos in longstanding fractures can be reached only by reducing the volume of the orbit which can be achieved by retrobulbar placement of the graft. An analysis of the results demonstrated high efficiency of this method in the treatment of such patients. PMID:22416411

  2. Hydraulic fracture design optimization

    SciTech Connect

    Lee, Tae-Soo; Advani, S.H.

    1992-01-01

    This research and development investigation, sponsored by US DOE and the oil and gas industry, extends previously developed hydraulic fracture geometry models and applied energy related characteristic time concepts towards the optimal design and control of hydraulic fracture geometries. The primary objective of this program is to develop rational criteria, by examining the associated energy rate components during the hydraulic fracture evolution, for the formulation of stimulation treatment design along with real-time fracture configuration interpretation and control.

  3. Hydraulic fracture design optimization

    SciTech Connect

    Lee, Tae-Soo; Advani, S.H.

    1992-06-01

    This research and development investigation, sponsored by US DOE and the oil and gas industry, extends previously developed hydraulic fracture geometry models and applied energy related characteristic time concepts towards the optimal design and control of hydraulic fracture geometries. The primary objective of this program is to develop rational criteria, by examining the associated energy rate components during the hydraulic fracture evolution, for the formulation of stimulation treatment design along with real-time fracture configuration interpretation and control.

  4. Clavicle fractures: individualizing treatment for fracture type.

    PubMed

    Housner, Jeffrey A; Kuhn, John E

    2003-12-01

    Clavicle fractures are common injuries in both children and adults. In most cases, the diagnosis can be made readily from the patient's history and physical examination. X-rays are helpful to confirm the diagnosis, to assess the severity of the fracture, and to follow interval healing. Most fractures are treated nonoperatively, and surgical intervention is typically reserved for unstable distal clavicle fractures. Nonoperative options involve either a sling-and-swathe or figure-of-eight splint. Return-to-play decisions should be individualized based on the age of the patient, location and severity of the fracture, degree of clinical and radiographic healing, and the sport in which the athlete will be participating.

  5. Penetrating injury of orbital roof and brain sparing the eye ball in a pediatric patient: A rare occurrence

    PubMed Central

    Kumar, Vikul; Singh, Atul Kumar; Bhaikhel, Kulwant Singh

    2016-01-01

    Blowout fractures are a common occurrence in traumatic brain injury patients. In pediatric age group, orbital floor fracture is a common occurrence. We report a case of 2-year-old male admitted to trauma center, with penetrating injury to the left eye by the clutch of motorbike which fell on the child. Noncontrast computed tomography scan revealed fracture of the roof of left orbit with left frontal contusion sparing the left eyeball. There was also the continuous leak of brain matter from the left eye which suggested tear of dura mater. Urgent left frontal craniotomy was done with the evacuation of contusion, reconstruction of orbital roof, and duroplasty under general anesthesia.

  6. Dzyaloshinskii-Moriya Domain Walls in Nanotubes

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg; Goussev, Arseni; Robbins, J. M.; Slastikov, Valeriy

    2015-03-01

    We study domain walls in thin ferromagnetic nanotubes with Dzyaloshinskii-Moriya interaction (DMI). Dramatic effects arise from the interplay of space curvature and spin-orbit induced DMI on the domain wall structure in these systems. The domain walls become narrower in systems with DMI and curvature. Moreover, the domain walls created in such nanotubes can propagate without Walker breakdown for arbitrary applied currents, thus allowing for a robust and controlled domain-wall motion. The domain-wall velocity is directly proportional to the non-adiabatic spin transfer torque current term and is insensitive to the adiabatic current term. Application of an external magnetic field along the nanotube axis triggers rich dynamical response of the curved domain wall. In particular, we show that the propagation velocity is a non-linear function of both the applied field and DMI, and strongly depends on the orientation and chirality of the wall. We acknowledge support by the Grants-in-Aid for Scientific Research (No. 25800184 and No. 25247056) from the MEXT, Japan and SpinNet.

  7. Orbit Software Suite

    NASA Technical Reports Server (NTRS)

    Osgood, Cathy; Williams, Kevin; Gentry, Philip; Brownfield, Dana; Hallstrom, John; Stuit, Tim

    2012-01-01

    Orbit Software Suite is used to support a variety of NASA/DM (Dependable Multiprocessor) mission planning and analysis activities on the IPS (Intrusion Prevention System) platform. The suite of Orbit software tools (Orbit Design and Orbit Dynamics) resides on IPS/Linux workstations, and is used to perform mission design and analysis tasks corresponding to trajectory/ launch window, rendezvous, and proximity operations flight segments. A list of tools in Orbit Software Suite represents tool versions established during/after the Equipment Rehost-3 Project.

  8. Rotary press utilizing a flexible die wall.

    PubMed

    Amidon, G E; Smith, D P; Hiestand, E N

    1981-06-01

    A die with a flexible wall was constructed and evaluated on a specially modified instrumented rotary tablet press. The design permits an inward deflection of the die wall by a side punch, which rolls past a side compression roll during compression-decompression. The side compression roll is instrumented to monitor the applied side compression roll forces. On decompression, return of the die wall to its original position permits release of residual die wall pressure. The decreased residual die wall pressure can decrease fracture and capping of tablets for problem formulations. The performance was tested on three experimental formulations. For these formulations, tablets made in a conventional die exhibited severe capping problems. However, most tablets compressed in the special die were superior. With proper adjustment of punch and die wall compression forces, excellent tablets could be manufactured. The merits of the special die and modified tablet machine are substantiated, although this initial design did not provide adequate die wall pressure for all formulations. Further engineering efforts could result in practical production equipment.

  9. Lunar Reconnaissance Orbiter Orbit Determination Accuracy Analysis

    NASA Technical Reports Server (NTRS)

    Slojkowski, Steven E.

    2014-01-01

    LRO definitive and predictive accuracy requirements were easily met in the nominal mission orbit, using the LP150Q lunar gravity model. center dot Accuracy of the LP150Q model is poorer in the extended mission elliptical orbit. center dot Later lunar gravity models, in particular GSFC-GRAIL-270, improve OD accuracy in the extended mission. center dot Implementation of a constrained plane when the orbit is within 45 degrees of the Earth-Moon line improves cross-track accuracy. center dot Prediction accuracy is still challenged during full-Sun periods due to coarse spacecraft area modeling - Implementation of a multi-plate area model with definitive attitude input can eliminate prediction violations. - The FDF is evaluating using analytic and predicted attitude modeling to improve full-Sun prediction accuracy. center dot Comparison of FDF ephemeris file to high-precision ephemeris files provides gross confirmation that overlap compares properly assess orbit accuracy.

  10. Efficient orbit integration by orbital longitude methods

    NASA Astrophysics Data System (ADS)

    Fukushima, T.

    2005-09-01

    Triggered by the desire to investigate numerically the planetary precession through a long-term numerical integration of the solar system, we developed a new formulation of numerical integration of orbital motion named manifold correction methods. The main trick is to keep rigorously the consistency of some physical relations such as that of the orbital energy, of the orbital angular momentum, or of the Laplace integral of a binary subsystem. This maintenance is done by applying a sort of correction to the integrated variables at every integration step. Typical methods of correction are certain geometric transformation such as the spatial scaling and the spatial rotation, which are commonly used in the comparison of reference frames, or mathematically-reasonable operations such as the modularization of angle variables into the standard domain [-π,π). The finally-evolved form of the manifold correction methods is the orbital longitude methods, which enable us to conduct an extremely precise integration of orbital motions. In the unperturbed orbits, the integration errors are suppressed at the machine epsilon level for an infinitely long period. In the perturbed cases, on the other hand, the errors initially grow in proportion to the square root of time and then increase more rapidly, the onset time of which depends on the type and the magnitude of perturbations. This feature is also realized for highly eccentric orbits by applying the same idea to the KS-regularization. Especially the introduction of time element greatly enhances the performance of numerical integration of KS-regularized orbits whether the scaling is applied or not.

  11. Impact of normal stress on multiphase flow through rough fractures

    NASA Astrophysics Data System (ADS)

    Alves da Silva Junior, J.; Kang, P. K.; Yang, Z.; Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Fluid flow and transport through geologic fractures plays a key role in several areas such as groundwater hydrology, geothermal energy, oil and gas production, CO2 sequestration and nuclear waste disposal. High-permeability zones associated with fracture corridors often serve as fast fluid conduits for both single and multiphase flow in otherwise low-permeability media. When multiphase flow occurs, the presence of one phase interferes with the flow of the other phase, resulting in complex displacement patterns through the fracture, and macroscopic descriptors (such as fracture-scale capillary pressure and relative permeability) that depend on the phase concentration of both phases. Here, we investigate the impact of normal stress on single and multiphase flow through rough-walled fractures: (1) we generate synthetic aperture fields that honor the fractal roughness structure observed in real fractures; (2) we model the effect of normal stress on the fracture aperture geometry by solving the contact problem between fracture walls; and (3) we use invasion percolation with trapping to model immiscible fluid displacement and then compute relative permeability numerically for each stress scenario. Our results indicate that normal stress increases the amount of contact area in the fracture wall, which results in an increase of the tortuosity of the available path for fluid displacement. Increasing normal stress results in low relative permeability for the wetting phase due to a decrease of the available path for fluid flow, and therefore a small amount of non-wetting fluid has a large impact on the flow of the wetting fluid. We find that the relative permeability of the non-wetting fluid shows less variation with stress than the wetting fluid, and that both fluids exhibit strong phase interference at intermediate saturations. Finally, we show early results from our experimental work currently underway to validate the modeling results.

  12. Land-Surface Subsidence and Open Bedrock Fractures in the Tully Valley, Onondaga County, New York

    USGS Publications Warehouse

    Hackett, William R.; Gleason, Gayle C.; Kappel, William M.

    2009-01-01

    Open bedrock fractures were mapped in and near two brine field areas in Tully Valley, New York. More than 400 open fractures and closed joints were mapped for dimension, orientation, and distribution along the east and west valley walls adjacent to two former brine fields. The bedrock fractures are as much as 2 feet wide and over 50 feet deep, while linear depressions in the soil, which are 3 to 10 feet wide and 3 to 6 feet deep, indicate the presence of open bedrock fractures below the soil. The fractures are probably the result of solution mining of halite deposits about 1,200 feet below the land surface.

  13. Dry fracture method for simultaneous measurement of in-situ stress state and material properties

    SciTech Connect

    Serata, S.; Oka, S.; Kikuchi, S.

    1996-04-01

    Based on the dry fracture principle, a computerized borehole probe has been developed to measure stress state and material properties, simultaneously. The probe is designed to obtain a series of measurements in a continuing sequence along a borehole length, without any interruptive measures, such as resetting packers, taking indentation of borehole wall, overcoming, etc. The new dry fracture probe for the single fracture method is designed to overcome the difficulties posed by its ancestor which was based on the double fracture method. The accuracy of the single fracture method is confirmed by a close agreement with the theory, FE modeling and laboratory testing.

  14. 3D characterization of the fracture network in a deformed chalk reservoir analogue: The Lagerdorf case

    SciTech Connect

    Koestler, A.G.; Reksten, K.

    1994-12-31

    Quantitative descriptions of the 3D fracture networks in terms of connectivity, fracture types, fracture surface roughness and flow characteristics are necessary for reservoir evaluation, management, and enhanced oil recovery programs of fractured reservoirs. For a period of 2 years, a research project focused on an analogue to fractured chalk reservoirs excellently exposed near Laegerdorf, NW Germany. Upper Cretaceous chalk has been uplifted and deformed by an underlying salt diapir, and is now exploited for the cement industry. In the production wall of a quarry, the fracture network of the deformed chalk was characterized and mapped at different scales. The wall was scraped off as chalk exploitation proceeded, continuously revealing new sections through the faulted and fractured chalk body. A 230 m long part of the 35m high production wall was investigated during its recess of 25m. The large amount of fracture data were analyzed with respect to parameters such as fracture density distribution, orientation- and length distribution, and in terms of the representativity of data sets collected from restricted rock volumes. This 3D description and analysis of a fracture network revealed quantitative generic parameters of importance for modeling chalk reservoirs with less data and lower data quality.

  15. Osteoporotic vertebral fractures redux.

    PubMed

    Lentle, B C; Gordon, P; Ward, L

    2008-02-01

    Osteoporosis remains an important cause of morbidity and mortality especially in the elderly. This fact is largely due to fractures of the proximal femur and spine. As recently recognized, vertebral fractures are as much a threat to health and longevity as fractures of the proximal femur. In recent decades, the development of tools to evaluate fracture risk as well as medications to treat osteoporosis has altered the management of people who are at fracture risk. At the same time identification and management procedures concerning spinal fracturing are not very clear. Besides there is not even clear consensus about what exactly constitutes a vertebral fracture, particularly those of minor degree. While height loss is a simple and valuable tool to detect vertebral fractures, it is neither sensitive nor specific enough to replace radiographs. Some 65% of fractures cause no symptoms. Often vertebral fractures are misdiagnosed, especially if they have occurred silently and if the opportunity for diagnosis arises fortuitously. It is to the patient's benefit that radiologists report and physicians identify vertebral fractures evident on a chest or other radiograph, no matter how incidental to the immediate clinical indication for the examination. Technological evolution now allows dual-energy x-ray absorptiometry machines to be used to take spine images while doing a densitometry. The images are adequate, even if not of high radiographic quality, and, more important, the patient undergoes a smaller radiation dose than with conventional spinal radiographs. Such technology may promote fracture recognition. The recognition of vertebral fractures, as well as the prevention and treatment of further fractures, will likely do much to reduce both the burden of osteoporosis-related morbidity and mortality, as well as fracture-related costs to healthcare systems.

  16. Channel Wall Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation.

    Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  17. Treatment Challenges with Benign Bone Tumors of the Orbit

    PubMed Central

    Merritt, Helen; Yin, Vivian T.; Pfeiffer, Margaret L.; Wang, Wei-Lien; Sniegowski, Matthew C.; Esmaeli, Bita

    2015-01-01

    Benign mesenchymal tumors of the craniofacial complex present unique challenges for orbital surgeons because of their potential for orbital compartment syndrome, ocular morbidity, and facial disfigurement and because definitive surgical management may be associated with significant morbidity. While the precise classification of such lesions depends on radiologic as well as histologic evaluations and remains controversial, benign tumors involving the bony walls of the orbit share features of bony expansion, facial deformity, and the potential to cause significant orbital and ophthalmic morbidity. We herein present 2 cases of benign mesenchymal tumors with bony involvement in the orbitofacial region (1 juvenile ossifying fibroma and 1 central giant cell granuloma) and review the current management of similar benign fibro-osseous and reactive bone lesions of the orbit. These rare entities presented share common orbital and ophthalmic manifestations and remain without any effective definitive treatment options. PMID:27171013

  18. Channeling and stress during fluid and suspension flow in self-affine fractures.

    PubMed

    Lo, Tak Shing; Koplik, Joel

    2014-02-01

    The flow of fluids and particulate suspensions in realistic models of geological fractures is investigated by lattice Boltzmann numerical simulations. The walls are synthetic self-affine fractal surfaces combined to produce a tight fracture, the fluid is a viscous Newtonian liquid, and the particles are rigid noncolloidal solid spheres. One focus is channeling phenomena, where we compare the fracture aperture, the preferred paths for fluid flow, and the preferred paths for suspended particles. The preferred paths are found to be somewhat similar for pure fluid and particulates and not immediately related to the fracture aperture map. We further investigate the (tensor) stress exerted on the fracture walls. Wall roughness tends to decrease stress by reducing the flow velocities adjacent to it, an effect enhanced by the presence of particulates. Last, we examine the stress probability distributions and their spatial correlation functions.

  19. Pelvic, acetabular and hip fractures: What the surgeon should expect from the radiologist.

    PubMed

    Molière, S; Dosch, J-C; Bierry, G

    2016-01-01

    Pelvic ring fractures when caused by trauma, either violent or in demineralized bone, generally consist of injuries in both the anterior (pubic symphysis and rami) and posterior (iliac wing, sacrum, sacroiliac joint) portions. Injury classifications are based on injury mechanism and pelvic stability, and are used to determine treatment. Acetabular fractures, associated or not to pelvic ring disruption, are classified on the basis of fracture line, into elementary fractures of the acetabular walls, columns and roof, and into complex fractures. Fractures of the proximal end of the femur occur often on demineralized bone following low-energy trauma. The fractures are categorized by anatomic location (neck, trochanter and subtrochanteric region) and degree of displacement. These variables determine the risk of osteonecrosis of the femoral head, which is the main complication of such fractures.

  20. Proximal humerus fractures.

    PubMed

    Price, Matthew C; Horn, Pamela L; Latshaw, James C

    2013-01-01

    Proximal humerus fractures are among the most common fractures associated with osteoporosis. With an aging population, incidence of these fractures will only increase. The proximal humerus not only forms the lateral portion of the shoulder articulation but also has significant associations with musculoskeletal and neurovascular structures. As a result, fractures of the proximal humerus can significantly impact not only the function of the shoulder joint, but the health and function of the entire upper extremity as well. Understanding of these fractures, the management options, and associated nursing care, can help reduce morbidity rate and improve functional outcomes.

  1. Talus fractures: surgical principles.

    PubMed

    Rush, Shannon M; Jennings, Meagan; Hamilton, Graham A

    2009-01-01

    Surgical treatment of talus fractures can challenge even the most skilled foot and ankle surgeon. Complicated fracture patterns combined with joint dislocation of variable degrees require accurate assessment, sound understanding of principles of fracture care, and broad command of internal fixation techniques needed for successful surgical care. Elimination of unnecessary soft tissue dissection, a low threshold for surgical reduction, liberal use of malleolar osteotomy to expose body fracture, and detailed attention to fracture reduction and joint alignment are critical to the success of treatment. Even with the best surgical care complications are common and seem to correlate with injury severity and open injuries. PMID:19121756

  2. Orbital Thermal Control of the Mercury Capsule

    NASA Technical Reports Server (NTRS)

    Weston, Kenneth C.

    1960-01-01

    The approach to orbital thermal control of the Project Mercury capsule environment is relatively unsophisticated compared with that for many unmanned satellites. This is made possible by the relatively short orbital flight of about 4 1/2 hours and by the presence of the astronaut who is able to monitor the capsule systems and compensate for undesirable thermal conditions. The general external features of the Mercury configuration as it appears in the orbital phase of flight are shown. The conical afterbody is a double-wall structure. The inner wall serves as a pressure vessel for the manned compartment, and the outer wall, of shingle type construction, acts as a radiating shield during reentry. Surface treatment of the shingles calls for a stably oxidized surface to minimize reentry temperatures. The shingles are supported by insulated stringers attached to the inner skin. Areas between stringers are insulated by blankets of Thermoflex insulation. This insulation is especially effective at high altitude due to the reduction of its thermal conductivity with decreasing pressure. As a result of the design of the afterbody for the severe reentry conditions, the heat balance on the manned compartment indicates the necessity for moderate internal cooling to compensate for the heat generation due to human and electrical sources. This cooling is achieved by the controlled vaporization of water in the cabin and astronaut-suit heat exchangers.

  3. Studies of Transport Properties of Fractures: Final Report

    SciTech Connect

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  4. Epidemiology of clavicle fractures.

    PubMed

    Postacchini, Franco; Gumina, Stefano; De Santis, Pierfrancesco; Albo, Francesco

    2002-01-01

    An epidemiologic study of 535 isolated clavicle fractures treated in a hospital of a large metropolis during an 11-year period was performed. Data regarding patient's age and sex, side involved, mechanism of injury, and season in which the fracture occurred were obtained from the clinical records. Radiographic classification was performed with the Allman system. Clavicle fractures represented 2.6% of all fractures and 44% of those in the shoulder girdle. Most patients were men (68%), and the left side was involved in 61% of cases. Fractures of the middle third of the clavicle, which were the most common (81%), were displaced in 48% of cases and comminuted in 19%. Fractures of the medial third were the least common (2%). The prevalence of midclavicular fractures was found to decrease progressively with age, starting from the first decade of life when they represented 88.2% of all clavicle fractures and were undisplaced in 55.5% of cases. In adults, the incidence of displaced fractures, independent of location, was higher than that of undisplaced fractures. Traffic accidents were the most common cause of the injury. In the period under study, the incidence of fractures showed no significant change over time and no seasonal variation. PMID:12378163

  5. Subsurface fracture spacing

    SciTech Connect

    Lorenz, J.C. ); Hill, R.E. )

    1991-01-01

    This study was undertaken in order to document and analyze the unique set of data on subsurface fracture characteristics, especially spacing, provided by the US Department of Energy's Slant Hole Completion Test well (SHCT-1) in the Piceance Basin, Colorado. Two hundred thirty-six (236) ft (71.9 m) of slant core and 115 ft (35.1 m) of horizontal core show irregular, but remarkably close, spacings for 72 natural fractures cored in sandstone reservoirs of the Mesaverde Group. Over 4200 ft (1280 m) of vertical core (containing 275 fractures) from the vertical Multiwell Experiment wells at the same location provide valuable information on fracture orientation, termination, and height, but only data from the SHCT-1 core allow calculations of relative fracture spacing. Within the 162-ft (49-m) thick zone of overlapping core from the vertical and deviated wellbores, only one fracture is present in vertical core whereas 52 fractures occur in the equivalent SHCT-1 core. The irregular distribution of regional-type fractures in these heterogeneous reservoirs suggests that measurements of average fracture spacing'' are of questionable value as direct input parameters into reservoir engineering models. Rather, deviated core provides data on the relative degree of fracturing, and confirms that cross fractures can be rare in the subsurface. 13 refs., 11 figs.

  6. Emergence of anomalous transport in stressed rough fractures

    NASA Astrophysics Data System (ADS)

    Kang, Peter K.; Brown, Stephen; Juanes, Ruben

    2016-11-01

    We report the emergence of anomalous (non-Fickian) transport through a rough-walled fracture as a result of increasing normal stress on the fracture. We show that the origin of this anomalous transport behavior can be traced to the emergence of a heterogeneous flow field dominated by preferential channels and stagnation zones, as a result of the larger number of contacts in a highly stressed fracture. We show that the velocity distribution determines the late-time scaling of particle spreading, and velocity correlation determines the magnitude of spreading and the transition time from the initial ballistic regime to the asymptotic anomalous behavior. We also propose a spatial Markov model that reproduces the transport behavior at the scale of the entire fracture with only three physical parameters. Our results point to a heretofore unrecognized link between geomechanics and particle transport in fractured media.

  7. Atraumatic sternum fracture

    PubMed Central

    Abrahamsen, Sebastian Ørskov; Madsen, Christina Friis

    2014-01-01

    The spine, pelvic bones and long bones of the lower extremities are common sites for insufficiency fractures. Cases of sternum insufficiency fractures have rarely been reported among elderly patients. Insufficiency fractures tend to occur in bones with decreased mechanical strength especially among elderly patients, in postmenopausal women and patients with underlying diseases. We describe a case of spontaneous sternum insufficiency fracture in a healthy man, with no known risk factors to fracture, or previous history of fractures. Sternum insufficiency fracture is a rare cause of chest pain. This case serves to remind the emergency physician to remain vigilant for other non-cardiac, non-pulmonary and non-traumatic causes of chest pain, especially among patients with known risk factors such as osteoporosis, chronic obstructive pulmonary disease, rheumatoid arthritis, systemic lupus erythematosus and patients on long-term steroid treatment. If diagnosed correctly, these patients can be discharged and treated as outpatients as this case emphasises. PMID:25326566

  8. [Fractures of carpal bones].

    PubMed

    Lögters, T; Windolf, J

    2016-10-01

    Fractures of the carpal bones are uncommon. On standard radiographs fractures are often not recognized and a computed tomography (CT) scan is the diagnostic method of choice. The aim of treatment is to restore pain-free and full functioning of the hand. A distinction is made between stable and unstable carpal fractures. Stable non-displaced fractures can be treated conservatively. Unstable and displaced fractures have an increased risk of arthritis and non-union and should be stabilized by screws or k‑wires. If treated adequately, fractures of the carpal bones have a good prognosis. Unstable and dislocated fractures have an increased risk for non-union. The subsequent development of carpal collapse with arthrosis is a severe consequence of non-union, which has a heterogeneous prognosis.

  9. Posterior malleolus fracture.

    PubMed

    Irwin, Todd A; Lien, John; Kadakia, Anish R

    2013-01-01

    Posterior malleolus fractures are a common component of ankle fractures. The morphology is variable; these fractures range from small posterolateral avulsion injuries to large displaced fracture fragments. The integrity of the posterior malleolus and its ligamentous attachment is important for tibiotalar load transfer, posterior talar stability, and rotatory ankle stability. Fixation of posterior malleolus fractures in the setting of rotational ankle injuries has certain benefits, such as restoring articular congruity and rotatory ankle stability, as well as preventing posterior talar translation, but current indications are unclear. Fragment size as a percentage of the anteroposterior dimension of the articular surface is often cited as an indication for fixation, although several factors may contribute to the decision, such as articular impaction, comminution, and syndesmotic stability. Outcome studies show that, in patients with ankle fractures, the presence of a posterior malleolus fracture negatively affects prognosis. Notable variability is evident in surgeon practice. PMID:23281469

  10. Full orbit calculation for lost alpha particle measurement on ITER

    SciTech Connect

    Funaki, D.; Isobe, M.; Nishiura, M.; Sato, Y.; Okamoto, A.; Kobuchi, T.; Kitajima, S.; Sasao, M.

    2008-10-15

    An orbit following calculation code with full gyromotion under the ITER magnetic field configuration has been developed to investigate escaping alpha particle orbits in ITER and to determine the geometrical arrangement for alpha particle detection. The code contained the full geometrical information of the first wall panels. It was carefully investigated whether an alpha particle escaping from the plasma through the last closed flux surface does not touch or intersect the first wall boundary before reaching the detection point. Candidates of blanket module modification have been studied to achieve effective measurement geometry for escaping alpha particle detection. The calculations showed that direct orbit loss and banana diffusion can be detected with a probe head recessed from the first wall surface.

  11. Wall surveyor project report

    SciTech Connect

    Mullenhoff, D.J.; Johnston, B.C.; Azevedo, S.G.

    1996-02-22

    A report is made on the demonstration of a first-generation Wall Surveyor that is capable of surveying the interior and thickness of a stone, brick, or cement wall. LLNL`s Micropower Impulse Radar is used, based on emitting and detecting very low amplitude and short microwave impulses (MIR rangefinder). Six test walls were used. While the demonstrator MIR Wall Surveyor is not fieldable yet, it has successfully scanned the test walls and produced real-time images identifying the walls. It is planned to optimize and package the evaluation wall surveyor into a hand held unit.

  12. Ion orbits in plasma etching of semiconductors

    SciTech Connect

    Madziwa-Nussinov, Tsitsi G.; Arnush, Donald; Chen, Francis F.

    2008-01-15

    Fabrication of high-speed semiconductor circuits depends on etching submicron trenches and holes with straight walls, guided by sheath accelerated ions, which strike the substrate at a normal angle. Electrons accumulate at the nonconductive entrance of each trench, charging it negatively and preventing the penetration of electrons to the bottom of the trench. This 'electron shading' effect causes an ion charge at the bottom, which is well known to cause damage to thin oxide layers. In addition, the deflection of ions by electric fields in the trench can cause deformation of the trench shape. To study this effect, the ion orbits are computed self-consistently with their charging of the trench walls. It is found that (a) the orbits depend only on the electric fields at the entrance and are sensitive to changes in the shape of the photoresist layer there; (b) there is an 'ion shading' effect that protects part of the wall; and (c) the number of ions striking the wall is too small to cause any deformation thereof.

  13. The Orbital Workshop Shower Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This photograph shows technicians performing a checkout of the Metabolic Analyzer (center background) and the Ergometer (foreground) in the Orbital Workshop (OWS). The shower compartment is at right. The Ergometer (Skylab Experiment M171) evaluated man's metabolic effectiveness and cost of work in space environment. Located in the experiment and work area of the OWS, the shower compartment was a cylindrical cloth enclosure that was folded flat when not in use. The bottom ring of the shower was fastened to the floor and contained foot restraints. The upper ring contained the shower head and hose. To use the shower, the astronaut filled a pressurized portable bottle with heated water and attached the bottle to the ceiling. A flexible hose cornected the water bottle to a handheld shower head. The astronaut pulled the cylindrical shower wall up into position and bathed, using liquid soap. Both soap and water were carefully rationed, having been premeasured for economical use.

  14. The Orbital Workshop Shower Compartment

    NASA Technical Reports Server (NTRS)

    1972-01-01

    In this photograph, the Orbital Workshop shower compartment was unfolded by technicians for inspection. The shower compartment was a cylindrical cloth enclosure that was folded flat when not in use. The bottom ring of the shower was fastened to the floor and contained foot restraints. The upper ring contained the shower head and hose. To use the shower, the astronaut filled a pressurized portable bottle with heated water and attached the bottle to the ceiling. A flexible hose cornected the water bottle to a handheld shower head. The astronaut pulled the cylindrical shower wall up into position and bathed, using liquid soap. Both soap and water were carefully rationed, having been premeasured for economical use.

  15. Transport of Particle Swarms Through Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  16. Pyroclastic Deposits in the Floor-fractured Crater Alphonsus

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Donaldson-Hanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    Alphonsus, the 118 km diameter floor-fractured crater, is located immediately east of Mare Nubium. Eleven pyroclastic deposits have been identified on the crater's floor. Early telescopic spectra suggest that the floor of Alphonsus is noritic, and that the pyroclastic deposits contain mixtures of floor material and a juvenile component including basaltic glass. Head and Wilson contend that Nubium lavas intruded the breccia zone beneath Alphonsus, forming dikes and fractures on the crater floor. In this model, the magma ascended to the level of the mare but cooled underground, and a portion broke thru to the surface in vulcanian (explosive) eruptions. Alternatively, the erupted material could be from a source unrelated to the mare, in the style of regional pyroclastic deposits. High-resolution images and spectroscopy from the Moon Mineralogy Mapper (M3), Diviner Lunar Radiometer, and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (NAC) provide data to test these formation models. Spectra from M3 confirm that the crater floor is primarily composed of noritic material, and that the Nubium lavas are basaltic. Spectra from the three largest pyroclastic deposits in Alphonsus are consistent with a minor low- Ca pyroxene component in a glass-rich matrix. The centers of the 2 micron absorption bands have wavelengths too short to be of the same origin as the Nubium basalts. Diviner Christiansen feature (CF) values were used to estimate FeO abundances for the crater floor, Nubium soil, and pyroclastic deposits. The estimated abundance for the crater floor (7.5 +/- 1.4 wt.%) is within the range of FeO values for Apollo norite samples. However, the estimated FeO abundance for Nubium soil (13.4 +/- 1.4 wt.%) is lower than those measured in most mare samples. The difference may reflect contamination of the mare soil by highland ejecta. The Diviner-derived FeO abundance for the western pyroclastic deposit is 13.8 +/- 3.3 wt.%. This is lower than the values for mare soil

  17. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  18. [Fracture endoprosthesis of distal humerus fractures].

    PubMed

    Müller, L P; Wegmann, K; Burkhart, K J

    2013-08-01

    The treatment of choice for fractures of the distal humerus is double plate osteosynthesis. Due to anatomical preshaped angle stable plates the primary stability and management of soft tissues has been improved. However, osteoporotic comminuted fractures in the elderly are often not amenable to stable osteosynthesis and total elbow arthroplasty has been established as an alternative therapy. Although complication rates have been reduced, complications of total elbow arthroplasty are still much more frequent than in total hip replacement. Furthermore, patients are advised not to exceed a weight bearing of 5 kg. Therefore, the indications for elbow arthroplasty must be evaluated very strictly and should be reserved for comminuted distal humeral fractures in the elderly with poor bone quality that are not amenable to stable osteosynthesis or for simple fractures in cases of preexisting symptomatic osteoarthritis. This article introduces and discusses modern concepts of elbow arthroplasty, such as modular convertible prosthesis systems, hemiarthroplasty and radial head replacement in total elbow arthroplasty.

  19. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  20. Mars Observer Orbit Insertion Briefing

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Steve Wall is the host of this video entitled, "Return to the Red Planet". Live animation of the Mars Observer orbiting Mars is presented. Steve Wall explains the spacecraft insertion maneuver and also explains the purpose for the Mars Observer launch. Live coverage of the Cape Canaveral launch of the Mars Observer is also presented. Suzanne Dodd, Chief of the Mission Planning team describes the burn start and how the spacecraft will be captured by Mars' gravity. Glenn Cunningham, Mars Observer Project Manager, gives background information on the Mars Observer and describes the organizations behind the Mars Observer Spacecraft, such as the Deep Space Network, the Mission Operation Support Office, Science Investigators, the Flight Engineering Office, Operations Office, and the Ground Data System Office. Dr. William Piotrowski, Acting Director, Solar System Exploration Division, NASA, talks about the purpose of the Mars Pathfinder which is to develop the technology and systems for landing small science packages on Mars. Mr. Roger Gibbs, Former Mars Observer Spacecraft Systems Engineer, tells us how the Mars Observer was built and describes the structural elements on the Mars Observer. The 11-month cruise period for the spacecraft is given by Joseph Beerer, Manager of the Engineering office. The thrust for the Mars Orbit Insertion is described by Ronald Klemetson, Technical Manager, Propulsion Subsystem Jet Propulsion Laboratory (JPL). George Chen, Lead Engineer Attitude and Articulation Subsystem Spacecraft Team, explains the importance of the attitude control engines on the Spacecraft. Marvin Traxler, Manager of Tracking and Data Acquisition, describes how searching for a signal from the Mars Observer works. See NONP-NASA-VT-2000081555 for a continuation of this discussion with Marvin Traxler.

  1. Fracture corridors in carbonates

    NASA Astrophysics Data System (ADS)

    Chatelée, Sébastien; Lamarche, Juliette; Gauthier, Bertrand D. M.

    2015-04-01

    Among fractures, Fracture Corridors (FC) are anomalous structures made of highly persistent fracture clusters having a strong effect on multi-phase fluid flow in the subsurface. While mechanical and geological conditions for diffuse fracture systems are well constrained, FC genetic conditions remain a matter of questioning. FC can be localized in larger structures such as folds and fault zones but recent studies suggest that a large amount of fractures and FC also arise as distributed in the host rock and formed in tabular layers during burial with early rock mechanical differentiation. In addition, while the mechanical stratigraphy is of prime importance for fracture stratigraphy, it is still unknown which factor prevails on FC genesis among the local versus regional stress-state, the host rock mechanical stratigraphy or the sedimentary facies. We present a study of fractures in a 400×300 m wide quarry (Calvisson, SE France) dug in homogeneous marly limestones of Hauterivian age. The quarry exhibits diffuse fractures as well as 16 FC. The aim of this study is to reveal the genetics factor for FC development, their global geometry and internal morphologic variations, but also to clear the impact of fracture corridors on diffuse fracture. For that, we measured >2500 fractures (strike, dip, spacing, filling, aperture, etc.) and studied microstructures in 80 thin sections. We calculated fracture density and acquired LiDAR data with >90 million points with a resolution of 4 to 15mm. Diffuse fractures are organized as two perpendicular sets, a main set NE-SW-trending and minor set NW-SE-trending. The FC have the same trend, but the NW-SE trend prevail on the NE-SW one. The LiDAR acquisition allows to visualize the 3D lateral continuity with corridors with a minimal extension of 30m. We distinguish 4 internal morphologic types in FC, depending on fracture morphology, occurrence of breccia and number of zones. The types may occur in a single FC with a lateral transition

  2. Fracturing operations in a dry geothermal reservoir

    SciTech Connect

    Rowley, J.C.; Pettitt, R.A.; Hendron, R.H.; Sinclair, A.R.; Nicholson, R.W.

    1983-01-01

    Fracturing operations at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) Geothermal Test Site initiated unique developments necessary to solve problems caused by an extremely harsh downhole environment. Two deep wells were drilled to approximately 15,000 ft (4.6 km); formation temperatures are in excess of 600/sup 0/F (315/sup 0/C). The wells were drilled during 1979 to 1981, inclined at 35 degrees, one above the other, and directionally drilled in an azimuthal direction orthogonal to the least principal in-situ crustal stress field. Hydraulic fracturing experiments to connect the two wells have used openhole packers, hydraulic jet notching of the borehole wall, cemented-in insolation liners and casing packers. Problems were encountered with hole drag, high fracture gradients, H/sub 2/S in vent back fluids, stress corrosion cracking of tubulars, and the complex nature of three-dimensional fracture growth that requires very large volumes of injected water. Two fractured zones have been formed by hydraulic fracturing and defined by close-in, borehole deployed, microseismic detectors. Initial operations were focused in the injection wellbore near total depth, where water injection treatments totalling 51,000 bbls (8100 m/sup 3/) were accomplished by pumping through a cemented-in 4-1/2 in. liner/PBR assembly. Retrievable casing packers were used to inject 26,000 bbls (4100 m/sup 3/) in the upper section of the open hole. Surface injection pressures (ISIP) varied from 4000 to 5900 psi (27 to 41 MPa) and the fracture gradient ranged from 0.7 to 0.96 psi/ft.

  3. Orbital inflammation: Corticosteroids first.

    PubMed

    Dagi Glass, Lora R; Freitag, Suzanne K

    2016-01-01

    Orbital inflammation is common, and may affect all ages and both genders. By combining a thorough history and physical examination, targeted ancillary laboratory testing and imaging, a presumptive diagnosis can often be made. Nearly all orbital inflammatory pathology can be empirically treated with corticosteroids, thus obviating the need for histopathologic diagnosis prior to initiation of therapy. In addition, corticosteroids may be effective in treating concurrent systemic disease. Unless orbital inflammation responds atypically or incompletely, patients can be spared biopsy.

  4. Stress fractures in athletes.

    PubMed

    Fredericson, Michael; Jennings, Fabio; Beaulieu, Christopher; Matheson, Gordon O

    2006-10-01

    A stress fracture is a partial or complete bone fracture that results from repeated application of stress lower than the stress required to fracture the bone in a single loading. Otherwise healthy athletes, especially runners, sustain stress injuries or fractures. Prevention or early intervention is the preferable treatment. However, it is difficult to predict injury because runners vary with regard to biomechanical predisposition, training methods, and other factors such as diet, muscle strength, and flexibility. Stress fractures account for 0.7% to 20% of all sports medicine clinic injuries. Track-and-field athletes have the highest incidence of stress fractures compared with other athletes. Stress fractures of the tibia, metatarsals, and fibula are the most frequently reported sites. The sites of stress fractures vary from sport to sport (eg, among track athletes, stress fractures of the navicular, tibia, and metatarsal are common; in distance runners, it is the tibia and fibula; in dancers, the metatarsals). In the military, the calcaneus and metatarsals were the most commonly cited injuries, especially in new recruits, owing to the sudden increase in running and marching without adequate preparation. However, newer studies from the military show the incidence and distribution of stress fractures to be similar to those found in sports clinics. Fractures of the upper extremities are relatively rare, although most studies have focused only on lower-extremity injuries. The ulna is the upper-extremity bone injured most frequently. Imaging plays a key role in the diagnosis and management of stress injuries. Plain radiography is useful when positive, but generally has low sensitivity. Radionuclide bone scanning is highly sensitive, but lacks specificity and the ability to directly visualize fracture lines. In this article, we focus on magnetic resonance imaging, which provides highly sensitive and specific evaluation for bone marrow edema, periosteal reaction as well

  5. Particle Swarm Transport in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    intersections were larger in width than the individual fractures, enabling the swarm to expand freely because of less confinement from the fracture walls. When swarms were released in a fracture network supporting an ambient flow rate, the ability to transport cohesive swarms through the fracture network was a function of the flow rate and swarm volume. For low ambient flow rates (< 4 μl/min), the gravitational force on the swarm dominated, and swarm transport followed a path similar to that for a quiescent fluid. For flow rates > 4 μl/min, large swarms (30 μl) remained cohesive (i.e. low loss of particles) as swarms were driven through the network both in the direction of and opposite to the direction of gravity. These experiments demonstrate conditions under which colloidal-size contaminants can be driven through a fracture network. High-speed transport of cohesive swarms depends on the volume of the swarm and the ambient flow rates that provide a balance of forces that prevents significant loss of particle from the swarm or deposition of particles along the flow path. Swarms that are transported cohesively travel along a highly localized path through a fracture network. Acknowledgment: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DE-FG02-09ER16022) and NSF REU program in the Physics Department at Purdue University.

  6. Magnetospheric Multiscale (MMS) Orbit

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS) mission, a Solar-Terrestrial Probe mission comprising of four identically instrumented spacecraft that will study the Earth's magn...

  7. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  8. Introducing Earth's Orbital Eccentricity

    NASA Astrophysics Data System (ADS)

    Oostra, Benjamin

    2015-12-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is small, and its only effect on the seasons is their unequal durations. Here I show a pleasant way to guide students to the actual value of Earth's orbital eccentricity, starting from the durations of the four seasons. The date of perihelion is also found.

  9. Family of Orbiters

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the paths of three spacecraft currently in orbit around Mars, as well as the path by which NASA's Phoenix Mars Lander will approach and land on the planet. The t-shaped crosses show where the orbiters will be when Phoenix enters the atmosphere, while the x-shaped crosses show their location at landing time.

    All three orbiters, NASA's Mars Reconnaissance Orbiter, NASA's Mars Odyssey and the European Space Agency's Mars Express, will be monitoring Phoenix during the final steps of its journey to the Red Planet.

    Phoenix will land just south of Mars's north polar ice cap.

  10. Natural fracturing, by depth

    NASA Astrophysics Data System (ADS)

    Hooker, John; Laubach, Stephen

    2013-04-01

    Natural opening-mode fractures commonly fall upon a spectrum whose end-members are veins, which have wide ranges of sizes and are mostly or thoroughly cemented, and joints, which have little opening displacement and little or no cement. The vein end-member is common in metamorphic rocks, whose high temperature and pressure of formation place them outside typical reservoir settings; conversely, many uncemented joints likely form near the surface and so too have limited relevance to subsurface exploration. Sampling of cores retrieved from tight-gas sandstone reservoirs suggest that it is intermediate fractures, not true joints or veins, that provide natural porosity and permeability. Such fractures have abundant pore space among fracture-bridging cements, which may hold fractures open despite varying states of stress through time. Thus the more sophisticated our understanding of the processes that form veins and joints, i.e., how natural fracturing varies by depth, the better our ability to predict intermediate fractures. Systematic differences between veins and joints, in terms of size-scaling and lateral and stratigraphic spatial arrangement, have been explained in the literature by the mechanical effects of sedimentary layering, which likely exert more control over fracture patterns at shallower depths. Thus stratabound joints commonly have narrow size ranges and regular spacing; non-stratabound veins have a wide range of sizes and spacings. However, new fieldwork and careful literature review suggest that the effects of mechanical layering are only half the story. Although atypical, veins may be highly stratabound and yet spatially clustered; non-stratabound fractures may nonetheless feature narrow size ranges. These anomalous fracture arrangements are better explained by the presence of precipitating cements during fracture opening than by mechanical layering. Cement is thought to be highly important for fracture permeability, but potential effects of

  11. Multiple noncontiguous spine fractures.

    PubMed

    Henderson, R L; Reid, D C; Saboe, L A

    1991-02-01

    The data from a prospective study of 508 spine injuries were reviewed to determine the incidence of multiple noncontiguous spine fractures. All patients were examined at admission and at 1 and 2 years postinjury. This series identified 77 (15.2%) multilevel fractures. Motor vehicle accidents were the primary cause of these fractures. The incidence of neurologic injury was not significantly different between multiple noncontiguous and single fractures. Failure to use seat belts and ejection from the vehicle were the main factors associated with multiple noncontiguous spine injuries. Seven major fracture patterns were identified, which accounted for 60% of these injuries. The prognosis for multilevel spine fractures was not significantly worse that that for single-level injuries. PMID:2011766

  12. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    NASA Astrophysics Data System (ADS)

    Komine, Takashi; Aono, Tomosuke

    2016-05-01

    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  13. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  14. [Femoral neck fracture].

    PubMed

    Gierer, P; Mittlmeier, T

    2015-03-01

    The incidence of femoral neck fractures increases exponentially with rising age. Young patients are rarely affected but when they are it is mostly due to high energy accidents, whereas older patients suffer from femoral neck fractures by low energy trauma due to osteoporotic changes of the bone mineral density. Treatment options have not essentially changed over the last few years. Non-operative treatment may be a choice in non-dislocated and impacted fractures. Due to the high risk of secondary fracture displacement prophylactic screw osteosynthesis is recommended even in Garden type I fractures. Osteosynthetic fracture stabilization with cannulated screws or angle stable sliding screws, is usually applied in non-displaced fractures and fractures in younger patients. Older patients need rapid mobilization after surgery; therefore, total hip arthroplasty and hemiarthroplasty are commonly used with a low incidence of secondary complications. In addition to sufficient operative treatment a guideline conform osteoprosis therapy should be initiated for the prophylaxis of further fractures and patients should undertake a suitable rehabilitation.

  15. Pathological fractures in children

    PubMed Central

    De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.

    2012-01-01

    Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658

  16. Natural fracture systems studies

    SciTech Connect

    Lorenz, J.C.; Warpinski, N.R.

    1992-09-01

    The objectives of this program are (1) to develop a basinal-analysis methodology for natural fracture exploration and exploitation, and (2) to determine the important characteristics of natural fracture systems for use in completion, stimulation, and production operations. Natural-fracture basinal analysis begins with studies of fractures in outcrop, core and logs in order to determine the type of fracturing and the relationship of the fractures to the lithologic environment. Of particular interest are the regional fracture systems that are pervasive in western US tight sand basins. A Methodology for applying this analysis is being developed, with the goal of providing a structure for rationally characterizing natural fracture systems basin-wide. Such basin-wide characterizations can then be expanded and supplemented locally, at sites where production may be favorable. Initial application of this analysis is to the Piceance basin where there is a wealth of data from the Multiwell Experiment (MWX), DOE cooperative wells, and other basin studies conducted by Sandia, CER Corporation, and the USGS (Lorenz and Finley, 1989, Lorenz et aI., 1989, and Spencer and Keighin, 1984). Such a basinal approach has been capable of explaining the fracture characteristics found throughout the southern part of the Piceance basin and along the Grand Hogback.

  17. Sphenoid Sinus and Sphenoid Bone Fractures in Patients with Craniomaxillofacial Trauma

    PubMed Central

    Cantini Ardila, Jorge Ernesto; Mendoza, Miguel Ángel Rivera; Ortega, Viviana Gómez

    2013-01-01

    Background and Purpose Sphenoid bone fractures and sphenoid sinus fractures have a high morbidity due to its association with high-energy trauma. The purpose of this study is to describe individuals with traumatic injuries from different mechanisms and attempt to determine if there is any relationship between various isolated or combined fractures of facial skeleton and sphenoid bone and sphenoid sinus fractures. Methods We retrospectively studied hospital charts of all patients who reported to the trauma center at Hospital de San José with facial fractures from December 2009 to August 2011. All patients were evaluated by computed tomography scan and classified into low-, medium-, and high-energy trauma fractures, according to the classification described by Manson. Design This is a retrospective descriptive study. Results The study data were collected as part of retrospective analysis. A total of 250 patients reported to the trauma center of the study hospital with facial trauma. Thirty-eight patients were excluded. A total of 212 patients had facial fractures; 33 had a combination of sphenoid sinus and sphenoid bone fractures, and facial fractures were identified within this group (15.5%). Gender predilection was seen to favor males (77.3%) more than females (22.7%). The mean age of the patients was 37 years. Orbital fractures (78.8%) and maxillary fractures (57.5%) were found more commonly associated with sphenoid sinus and sphenoid bone fractures. Conclusions High-energy trauma is more frequently associated with sphenoid fractures when compared with medium- and low-energy trauma. There is a correlation between facial fractures and sphenoid sinus and sphenoid bone fractures. A more exhaustive multicentric case-control study with a larger sample and additional parameters will be essential to reach definite conclusions regarding the spectrum of fractures of the sphenoid bone associated with facial fractures. PMID:24436756

  18. Analyzing Shuttle Orbiter Trajectories

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1986-01-01

    LRBET4 program best-estimated-of-trajectory (BET) calculation for post-flight trajectory analysis of Shuttle orbiter. Produces estimated measurements for comparing predicted and actual trajectory of Earth-orbiting spacecraft. Kalman filter and smoothing filter applied to input data to estimate state vector, reduce noise, and produce BET. LRBET4 written in FORTRAN IV for batch execution.

  19. Titan Orbiter Aerorover Mission

    NASA Technical Reports Server (NTRS)

    Sittler Jr., E. C.; Acuna, M.; Burchell, M. J.; Coates, A.; Farrell, W.; Flasar, M.; Goldstein, B. E.; Gorevan, S.; Hartle, R. E.; Johnson, W. T. K.

    2001-01-01

    We propose a combined Titan orbiter and Titan Aerorover mission with an emphasis on both in situ and remote sensing measurements of Titan's surface, atmosphere, ionosphere, and magnetospheric interaction. The biological aspect of the Titan environment will be emphasized by the mission (i.e., search for organic materials which may include simple organics to 'amono' analogues of amino acids and possibly more complex, lightening detection and infrared, ultraviolet, and charged particle interactions with Titan's surface and atmosphere). An international mission is assumed to control costs. NASA will provide the orbiter, launch vehicle, DSN coverage and operations, while international partners will provide the Aerorover and up to 30% of the cost for the scientific instruments through collaborative efforts. To further reduce costs we propose a single PI for orbiter science instruments and a single PI for Aerorover science instruments. This approach will provide single command/data and power interface between spacecraft and orbiter instruments that will have redundant central DPU and power converter for their instruments. A similar approach could be used for the Aerorover. The mission profile will be constructed to minimize conflicts between Aerorover science, orbiter radar science, orbiter radio science, orbiter imaging science, and orbiter fields and particles (FP) science. Additional information is contained in the original extended abstract.

  20. Orbital Shape Representations.

    ERIC Educational Resources Information Center

    Kikuchi, Osamu; Suzuki, Keizo

    1985-01-01

    Discusses the use of orbital shapes for instructional purposes, emphasizing that differences between polar, contour, and three-dimensional plots must be made clear to students or misconceptions will occur. Also presents three-dimensional contour surfaces for the seven 4f atomic orbitals of hydrogen and discusses their computer generation. (JN)

  1. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The purpose of this mission is to study the climate history and the water distribution of Mars. Beautiful panoramic views of the shuttle on the launch pad, engine ignition, Rocket launch, and the separation and burnout of the Solid Rocket Boosters are shown. The footage also includes an animation of the mission. Detailed views of the path that the Orbiter traversed were shown. Once the Orbiter lands on the surface of Mars, it will dig a six to eight inch hole and collect samples from the planets' surface. The animation also included the prospective return of the Orbiter to Earth over the desert of Utah. The remote sensor on the Orbiter helps in finding the exact location of the Orbiter so that scientists may collect the sample and analyze it.

  2. Remote Controlled Orbiter Capability

    NASA Technical Reports Server (NTRS)

    Garske, Michael; delaTorre, Rafael

    2007-01-01

    The Remote Control Orbiter (RCO) capability allows a Space Shuttle Orbiter to perform an unmanned re-entry and landing. This low-cost capability employs existing and newly added functions to perform key activities typically performed by flight crews and controllers during manned re-entries. During an RCO landing attempt, these functions are triggered by automation resident in the on-board computers or uplinked commands from flight controllers on the ground. In order to properly route certain commands to the appropriate hardware, an In-Flight Maintenance (IFM) cable was developed. Currently, the RCO capability is reserved for the scenario where a safe return of the crew from orbit may not be possible. The flight crew would remain in orbit and await a rescue mission. After the crew is rescued, the RCO capability would be used on the unmanned Orbiter in an attempt to salvage this national asset.

  3. Investigating flow properties of partially cemented fractures in Travis Peak Formation using image-based pore-scale modeling

    NASA Astrophysics Data System (ADS)

    Tokan-Lawal, Adenike; Prodanović, Maša.; Eichhubl, Peter

    2015-08-01

    Natural fractures can provide preferred flow pathways in otherwise low-permeability reservoirs. In deep subsurface reservoirs including tight oil and gas reservoirs, as well as in hydrothermal systems, fractures are frequently lined or completely filled with mineral cement that reduces or occludes fracture porosity and permeability. Fracture cement linings potentially reduce flow connectivity between the fracture and host rock and increase fracture wall roughness, which constricts flow. We combined image-based fracture space characterization, mercury injection capillary pressure and permeability experiments, and numerical simulations to evaluate the influence of fracture-lining cement on single-phase and multiphase flows along a natural fracture from the Travis Peak Formation, a tight gas reservoir sandstone in East Texas. Using X-ray computed microtomographic image analysis, we characterized fracture geometry and the connectivity and geometric tortuosity of the fracture pore space. Combining level set method-based progressive quasistatic and lattice Boltzmann simulations, we assessed the capillary-dominated displacement properties and the (relative) permeability of a cement-lined fracture. Published empirical correlations between aperture and permeability for barren fractures provide permeability estimates that vary among each other, and differ from our results, vary by several orders of magnitude. Compared to barren fractures, cement increases the geometric tortuosity, aperture variation of the pore space, and capillary pressure while reducing the single-phase permeability by up to 2 orders of magnitude. For multiphase displacement, relative permeability and fluid entrapment geometry resemble those of porous media and differ from those characteristic of barren fractures.

  4. Orbital Causes of Incomitant Strabismus

    PubMed Central

    Lueder, Gregg T.

    2015-01-01

    Strabismus may result from abnormal innervation, structure, or function of the extraocular muscles. Abnormalities of the orbital bones or masses within the orbit may also cause strabismus due to indirect effects on the extraocular muscles. This paper reviews some disorders of the orbit that are associated with strabismus, including craniofacial malformations, orbital masses, trauma, and anomalous orbital structures. PMID:26180465

  5. Successful medical treatment of an orbital osteoma in a dog.

    PubMed

    Grozdanic, Sinisa; Riedesel, Elizabeth A; Ackermann, Mark R

    2013-03-01

    A 6-year-old neutered male German Shepherd-mixed breed with a 2-month history of bilateral conjunctival hyperemia, epiphora, and a firm, slowly progressive swelling of the medial canthal region of the left eye (OS) was examined. Ophthalmic examination OS revealed a firm and smooth mass, extending from the medial canthus toward the medial orbital wall. Indirect ophthalmoscopy revealed indentation of the nasal part OS, which corresponded to the position of the orbital mass. Orbital neoplastic diseases were the main differential considerations. Computerized tomography revealed a bony smooth orbital mass without bone destructive features. Biopsy was performed, and histologic features were suggestive of osteoma. Systemic nonsteroidal anti-inflammatory (NSAID) drugs resulted in complete mass regression and absence of clinical signs for 5 years following initial diagnosis. This report describes the first case of canine orbital osteoma, which was responsive to NSAIDs.

  6. On Water Flow in Hot Fractured Rock -- A Sensitivity Study on theImpact of Fracture-Matrix Heat Transfer

    SciTech Connect

    Birkholzer, Jens T.; Zhang, Yingqi

    2005-06-01

    Dual-continuum models have been widely used in modeling flowand transport in fractured porous rocks. Among many other applications,dual-continuum approaches were utilized in predictive models of thethermal-hydrological conditions near emplacement tunnels (drifts) atYucca Mountain, Nevada, the proposed site for a radioactive wasterepository in the U.S. In unsaturated formations such as those at YuccaMountain, the magnitude of mass and heat exchange between the twocontinua fracture network and matrix is largely dependent on the flowcharacteristics in the fractures, because channelized finger-type flowstrongly reduces the interface area between the matrix surfaces and theflowing liquid. This effect may have important implications, for example,during the time period that the fractured rock near the repository driftswould be heated above the boiling point of water. Depending on themagnitude of heat transfer from the matrix, water percolating down thefractures will either boil off in the hot rock region above drifts or maypenetrate all the way to the drift walls and possibly seep into the opencavities. In this paper, we describe a sensitivity analysis using avariety of approaches to treat fracture-matrix interaction in athree-dimensional dual-continuum setting. Our simulation example is alaboratory heater experiment described in the literature that providesevidence of rapid water flow in fractures, leading to drift seepagedespite above-boiling conditions in the adjacent fractured rock. Theexperimental finding can only be reproduced when the interface area forheat transfer between the matrix and fracture continua is reduced toaccount for flow channeling.

  7. Frequency-Dependent Seismic Waves in Fluid-Saturated Fractured Rock

    NASA Astrophysics Data System (ADS)

    Korneev, V. A.; Goloshubin, G.

    2015-12-01

    Fractures are the natural and essential elements of rock. Fracture systems are the most important features that define rock permeability and strength, as well as their anisotropy properties. Recent advancement in induced fracturing is a core part of the gas/oil shale technology, where fracture monitoring and control became a special topic of interest. Krauklis wave (K-wave) is the result of interaction between a fluid mass and elasticity of fracture walls, and it propagates primarily along the fracture systems in the fluid. At the fracture tips and fracture intersections it partially converts into the body waves. It is quite clear that incorporation of K-waves in a theory of wave propagation in fractured rock is one of the most important problems to solve for understanding of their seismic properties. One of the most fundamental properties of fractured rock is a fractal fracture distribution and it is rarely, if ever, taken into account in existing wave propagation theories. However, this property exists on a widest variety of scales and in particular reveals itself in a form of Gutenberg-Richter Law experimentally proven, starting from laboratory measurements and up to the global seismicity. We computed P and S-wave velocities of the rock containing fluid (and proppant) filled fractures, considering the effect of extremely slow and dispersive wave propagation within individual fractures. This was made possible by introducing the concept of "effective fracture-wave volume," and by evaluating the elastic constants of rock containing a complex, fractal network of fractures. These velocities were used to compute seismic waves reflected normally from a fractured reservoir. We demonstrate that by taking into account the Krauklis wave phenomenon for the fractally distributed fluid-filled fractures, it is possible to explain the observed low-frequency anomalies above the underground natural reservoirs. These anomalies include increase of amplitude and a phase delay of

  8. Inferring biological evolution from fracture patterns in teeth.

    PubMed

    Lawn, Brian R; Bush, Mark B; Barani, Amir; Constantino, Paul J; Wroe, Stephen

    2013-12-01

    It is hypothesised that specific tooth forms are adapted to resist fracture, in order to accommodate the high bite forces needed to secure, break down and consume food. Three distinct modes of tooth fracture are identified: longitudinal fracture, where cracks run vertically between the occlusal contact and the crown margin (or vice versa) within the enamel side wall; chipping fracture, where cracks run from near the edge of the occlusal surface to form a spall in the enamel at the side wall; and transverse fracture, where a crack runs horizontally through the entire section of the tooth to break off a fragment and expose the inner pulp. Explicit equations are presented expressing critical bite force for each fracture mode in terms of characteristic tooth dimensions. Distinctive transitions between modes occur depending on tooth form and size, and loading location and direction. Attention is focussed on the relatively flat, low-crowned molars of omnivorous mammals, including humans and other hominins and the elongate canines of living carnivores. At the same time, allusion to other tooth forms - the canines of the extinct sabre-tooth (Smilodon fatalis), the conical dentition of reptiles, and the columnar teeth of herbivores - is made to highlight the generality of the methodology. How these considerations impact on dietary behaviour in fossil and living taxa is discussed.

  9. Pneumothorax complicating isolated clavicle fracture.

    PubMed

    Hani, Redouane; Ennaciri, Badr; Jeddi, Idriss; El Bardouni, Ahmed; Mahfoud, Mustapha; Berrada, Mohamed Saleh

    2015-01-01

    Isolated clavicle fractures are among the commonest of traumatic fractures in the emergency department. Complications of isolated clavicle fractures are rare. Pneumothorax has been described as a complication of a fractured clavicle only rarely in English literature. In all the reported cases, the pneumothorax was treated by a thoracostomy and the clavicle fracture was treated conservatively. In our case, the pneumothorax required a chest drain insertion and the clavicle fracture was treated surgically with good result.

  10. Osteosynthesis of fragility fractures.

    PubMed

    Tarantino, Umberto; Iundusi, Riccardo; Lecce, Domenico; Tempesta, Valerio; Perrone, Fabio Luigi; Rao, Cecilia; Cerocchi, Irene; Gasbarra, Elena

    2011-04-01

    The deepening knowledge about bone pathophysiology, together with the development of less invasive bone implants, fitted for the treatment of fragility fractures, the continuous advances in the creation of osteoconductive and osteoinductive biomaterials, the availability of bone active agents, capable of modulating fracture healing, actually represent the orthopaedic "weapons" to improve the surgical outcome and quality of life in patients with osteoporosis.

  11. TIBIAL SHAFT FRACTURES

    PubMed Central

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2015-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures. PMID:27026999

  12. The Lamportian cell wall

    SciTech Connect

    Keiliszewski, M.; Lamport, D. )

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  13. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  14. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions.

  15. Harmonically excited orbital variations

    SciTech Connect

    Morgan, T.

    1985-08-06

    Rephrasing the equations of motion for orbital maneuvers in terms of Lagrangian generalized coordinates instead of Newtonian rectangular cartesian coordinates can make certain harmonic terms in the orbital angular momentum vector more readily apparent. In this formulation the equations of motion adopt the form of a damped harmonic oscillator when torques are applied to the orbit in a variationally prescribed manner. The frequencies of the oscillator equation are in some ways unexpected but can nonetheless be exploited through resonant forcing functions to achieve large secular variations in the orbital elements. Two cases are discussed using a circular orbit as the control case: (1) large changes in orbital inclination achieved by harmonic excitation rather than one impulsive velocity change, and (2) periodic and secular changes to the longitude of the ascending node using both stable and unstable excitation strategies. The implications of these equations are also discussed for both artificial satellites and natural satellites. For the former, two utilitarian orbits are suggested, each exploiting a form of harmonic excitation. 5 refs.

  16. Imaging of orbital disorders.

    PubMed

    Cunnane, Mary Beth; Curtin, Hugh David

    2016-01-01

    Diseases of the orbit can be categorized in many ways, but in this chapter we shall group them according to etiology. Inflammatory diseases of the orbits may be infectious or noninfectious. Of the infections, orbital cellulitis is the most common and typically arises as a complication of acute sinusitis. Of the noninfectious, inflammatory conditions, thyroid orbitopathy is the most common and results in enlargement of the extraocular muscles and proliferation of the orbital fat. Idiopathic orbital inflammatory syndrome is another cause of inflammation in the orbit, which may mimic thyroid orbitopathy or even neoplasm, but typically presents with pain. Masses in the orbit may be benign or malignant and the differential diagnosis primarily depends on the location of the mass lesion, and on the age of the patient. Lacrimal gland tumors may be lymphomas or epithelial lesions of salivary origin. Extraocular muscle tumors may represent lymphoma or metastases. Tumors of the intraconal fat are often benign, typically hemangiomas or schwannomas. Finally, globe tumors may be retinoblastomas (in children), or choroidal melanomas or metastases in adults. PMID:27432687

  17. Orbit Stabilization of Nanosat

    SciTech Connect

    JOHNSON,DAVID J.

    1999-12-01

    An algorithm is developed to control a pulsed {Delta}V thruster on a small satellite to allow it to fly in formation with a host satellite undergoing time dependent atmospheric drag deceleration. The algorithm uses four short thrusts per orbit to correct for differences in the average radii of the satellites due to differences in drag and one thrust to symmetrize the orbits. The radial difference between the orbits is the only input to the algorithm. The algorithm automatically stabilizes the orbits after ejection and includes provisions to allow azimuthal positional changes by modifying the drag compensation pulses. The algorithm gives radial and azimuthal deadbands of 50 cm and 3 m for a radial measurement accuracy of {+-} 5 cm and {+-} 60% period variation in the drag coefficient of the host. Approaches to further reduce the deadbands are described. The methodology of establishing a stable orbit after ejection is illustrated in an appendix. The results show the optimum ejection angle to minimize stabilization thrust is upward at 86{sup o} from the orbital velocity. At this angle the stabilization velocity that must be supplied by the thruster is half the ejection velocity. An ejection velocity of 0.02 m/sat 86{sup o} gives an azimuthal separation after ejection and orbit stabilization of 187 m. A description of liquid based gas thrusters suitable for the satellite control is included in an appendix.

  18. Fracture Characteristics in a Disposal Pit on Mesita del Buey, Los Alamos National Laboratory

    SciTech Connect

    David T. Vaniman; Steven L. Reneau

    1998-12-01

    The characteristics of fractures in unit 2 of the Tshirege Member of the Bandelier Tuff were documented in Pit 39, a newly excavated 13.7 m deep disposal pit at Material Disposal Area G on Mesita del Buey. The average spacing between fractures is about 1.0 to 1.3 m, the average fracture aperture is about 3 to 5 mm, and the average fracture dip is about 76o to 77o. Fracture spacing and dip in Pit 39 are generally consistent with that reported from other fracture studies on the Pajarito Plateau, although the fracture apertures in Pit 39 are less than reported elsewhere. Measured fracture orientations are strongly affected by biases imparted by the orientations of the pit walls, which, combined with a small data set, make identification of potential preferred orientations dlfflcult. The most prominent fracture orientations observed in Pit 39, about E-W and N20E, are often not well represented elsewhere on the Pajarito Plateau. Fracture fills contain smectite to about 3 m depth, and calcite and opal may occur at all depths, principally associated with roots or root fossils (rhizoliths). Roots of pifion pine extend in fractures to the bottom of the pit along the north side, perhaps indicating a zone of preferred infiltration of water. Finely powdered tuff with clay-sized particles occurs within a number of fractures and may record abrasive disaggregation associated with small amounts of displacement on minor local faults.

  19. Analysis of fracture patterns and local stress field variations in fractured reservoirs

    NASA Astrophysics Data System (ADS)

    Deckert, Hagen; Drews, Michael; Fremgen, Dominik; Wellmann, J. Florian

    2010-05-01

    A meaningful qualitative evaluation of permeabilities in fractured reservoirs in geothermal or hydrocarbon industry requires the spatial description of the existing discontinuity pattern within the area of interest and an analysis how these fractures might behave under given stress fields. This combined information can then be used for better estimating preferred fluid pathway directions within the reservoir, which is of particular interest for defining potential drilling sites. A description of the spatial fracture pattern mainly includes the orientation of rock discontinuities, spacing relationships between single fractures and their lateral extent. We have examined and quantified fracture patterns in several outcrops of granite at the Costa Brava, Spain, and in the Black Forest, Germany, for describing reservoir characteristics. For our analysis of fracture patterns we have used photogrammetric methods to create high-resolution georeferenced digital 3D images of outcrop walls. The advantage of this approach, compared to conventional methods for fracture analysis, is that it provides a better 3D description of the fracture geometry as the entity of position, extent and orientation of single fractures with respect to their surrounding neighbors is conserved. Hence for instance, the method allows generating fracture density maps, which can be used for a better description of the spatial distribution of discontinuities in a given outcrop. Using photogrammetric techniques also has the advantage to acquire very large data sets providing statistically sound results. To assess whether the recorded discontinuities might act as fluid pathways information on the stress field is needed. A 3D model of the regional tectonic structure was created and the geometry of the faults was put into a mechanical 3D Boundary Element (BE) Model. The model takes into account the elastic material properties of the geological units and the orientation of single fault segments. The

  20. Giant osteoma of the ethmoid sinus with orbital extension: craniofacial approach and orbital reconstruction.

    PubMed

    Sanchez Burgos, R; González Martín-Moro, J; Arias Gallo, J; Carceller Benito, F; Burgueño García, M

    2013-12-01

    Osteomas are the most common fibro-osseous lesions in the paranasal sinus. They are benign tumours characterized by slow growth and are often asymptomatic. Treatment is indicated in sphenoid osteomas that threaten the optic canal or orbital apex and in symptomatic cases. The choice of surgical management depends on the location, size and experience of the surgeon. An open approach allows tumour removal with direct visual control and remains the best option in large tumours, but the continued progression in endoscopic approaches is responsible for new indications in closed techniques. Immediate reconstruction allows aesthetic and functional restoration of neighbouring structures, which should one of the goals in the treatment of this benign entity. We report a case of a giant ethmoid osteoma with orbital invasion treated by a combined open craniofacial approach with reconstruction of the anterior cranial base and orbital walls. The literature is reviewed and aetiopathogenic theories, diagnostic procedures and surgical approaches are discussed.

  1. Transphyseal Distal Humerus Fracture.

    PubMed

    Abzug, Joshua; Ho, Christine Ann; Ritzman, Todd F; Brighton, Brian

    2016-01-01

    Transphyseal distal humerus fractures typically occur in children younger than 3 years secondary to birth trauma, nonaccidental trauma, or a fall from a small height. Prompt and accurate diagnosis of a transphyseal distal humerus fracture is crucial for a successful outcome. Recognizing that the forearm is not aligned with the humerus on plain radiographs may aid in the diagnosis of a transphyseal distal humerus fracture. Surgical management is most commonly performed with the aid of an arthrogram. Closed reduction and percutaneous pinning techniques similar to those used for supracondylar humerus fractures are employed. Cubitus varus caused by a malunion, osteonecrosis of the medial condyle, or growth arrest is the most common complication encountered in the treatment of transphyseal distal humerus fractures. A corrective lateral closing wedge osteotomy can be performed to restore a nearly normal carrying angle.

  2. Orbit Determination Issues for Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Beckman, Mark; Bauer, Frank (Technical Monitor)

    2002-01-01

    Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.

  3. Outcome analysis of sports-related multiple facial fractures.

    PubMed

    Hwang, Kun; You, Sun Hye; Lee, Hong Sik

    2009-05-01

    In this paper, we report a retrospective study of 236 patients with facial bone fractures from various sports who were treated at the Department of Plastic and Reconstructive Surgery, Inha University Hospital, Incheon, South Korea, between February 1996 and April 2007. The medical records of these patients were reviewed and analyzed to determine the clinical characteristics and treatment of the sports-related facial bone fractures. The highest frequency of sports-related facial bone fractures was in the age group 11 to 20 years (40.3%); there was a significant male predominance in all age groups (13.75:1). The most common causes of the injury were soccer (38.1%), baseball (16.1%), basketball (12.7%), martial arts (6.4%), and skiing or snowboarding (11%). Fractures of the nasal bone were the most common in all sports; mandible fractures were common in soccer and martial arts, orbital bone fractures were common in baseball, basketball, and ice sports, and fractures of the zygoma were frequently seen in soccer and martial arts. The main causes of the sports injuries were direct body contact (50.8%), and the most commonly associated soft tissue injuries were found in the head and neck regions (92.3%). Nasal bone fractures were the most common (54.2%), and tripod fractures were the most common type of complex injuries (4.2%). The complication rate was 3.0%. Long-term epidemiological data regarding the natural history of sports-related facial bone fractures are important for the evaluation of existing preventative measures and for the development of new methods of injury prevention and treatment.

  4. Application of a geocentrifuge and sterolithographically fabricated apertures to multiphase flow in complex fracture apertures.

    SciTech Connect

    Glenn E. McCreery; Robert D. Stedtfeld; Alan T. Stadler; Daphne L. Stoner; Paul Meakin

    2005-09-01

    A geotechnical centrifuge was used to investigate unsaturated multiphase fluid flow in synthetic fracture apertures under a variety of flow conditions. The geocentrifuge subjected the fluids to centrifugal forces allowing the Bond number to be systematically changed without adjusting the fracture aperture of the fluids. The fracture models were based on the concept that surfaces generated by the fracture of brittle geomaterials have a self-affine fractal geometry. The synthetic fracture surfaces were fabricated from a transparent epoxy photopolymer using sterolithography, and fluid flow through the transparent fracture models was monitored by an optical image acquisition system. Aperture widths were chosen to be representative of the wide range of geological fractures in the vesicular basalt that lies beneath the Idaho Nation Laboratory (INL). Transitions between different flow regimes were observed as the acceleration was changed under constant flow conditions. The experiments showed the transition between straight and meandering rivulets in smooth walled apertures (aperture width = 0.508 mm), the dependence of the rivulet width on acceleration in rough walled fracture apertures (average aperture width = 0.25 mm), unstable meandering flow in rough walled apertures at high acceleration (20g) and the narrowing of the wetted region with increasing acceleration during the penetration of water into an aperture filled with wetted particles (0.875 mm diameter glass spheres).

  5. Management of frontal sinus fractures--treatment decision based on metric dislocation extent.

    PubMed

    Dalla Torre, Daniel; Burtscher, Doris; Kloss-Brandstätter, Anita; Rasse, Michael; Kloss, Frank

    2014-10-01

    The treatment of frontal sinus fractures is still a matter of research in neurosurgical and craniofacial surgery. The present study aimed to determine new criteria regarding surgical or observational treatment, especially concerning the fracture dislocation. Clinical information on 164 consecutive patients with fractures of the frontal sinus, treated at the Department of Craniomaxillofacial Surgery of the Medical University of Innsbruck from 2006 to 2010, have been evaluated. 23 female (14%) and 141 male (86%) patients suffered mainly from traffic (31.7%) and sports accidents (28.0%), followed by work accidents (20.1%), violence (3.7%) and accidents at home (3.1%). 51.8% presented an isolated fracture of the anterior wall, 47.6% both anterior and posterior wall fracture, 0.6% an isolated posterior wall fracture. Injury of the nasofrontal duct was found in 29.2%, CSF liquorrhoea in 15.9%. In total, 44.5% of the patients underwent surgical therapy, 55.5% were treated conservatively by observation. Treatment decision depended significantly on concomitant injuries of the nasofrontal duct and the presence of rhinoliquorrhoea as well as on the fracture dislocation. A new classification of frontal sinus fractures depending on their maximum dislocation is proposed. In addition, a treatment algorithm considering displacement, liquorrhoea and injury of the nasofrontal duct is presented. PMID:24942098

  6. Fluidized wall for protecting fusion chamber walls

    DOEpatents

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  7. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  8. Orbiter thermal protection system

    NASA Technical Reports Server (NTRS)

    Dotts, R. L.; Curry, D. M.; Tillian, D. J.

    1985-01-01

    The major material and design challenges associated with the orbiter thermal protection system (TPS), the various TPS materials that are used, the different design approaches associated with each of the materials, and the performance during the flight test program are described. The first five flights of the Orbiter Columbia and the initial flight of the Orbiter Challenger provided the data necessary to verify the TPS thermal performance, structural integrity, and reusability. The flight performance characteristics of each TPS material are discussed, based on postflight inspections and postflight interpretation of the flight instrumentation data. Flights to date indicate that the thermal and structural design requirements for the orbiter TPS are met and that the overall performance is outstanding.

  9. Habitability study shuttle orbiter

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Studies of the habitability of the space shuttle orbiter are briefly summarized. Selected illustrations and descriptions are presented for: crew compartment, hygiene facilities, food system and galley, and storage systems.

  10. ARTEMIS Orbits Magnetic Moon

    NASA Video Gallery

    NASA's THEMIS spacecraft have completed their mission and are still working perfectly, so NASA is re-directing the outermost two spacecraft to special orbits around the Moon. Now called ARTEMIS, th...

  11. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  12. MMS Orbit Animation

    NASA Video Gallery

    This animation shows the orbits of Magnetospheric Multiscale (MMS)mission, a Solar Terrestrial Probes mission comprising of fouridentically instrumented spacecraft that will study the Earth’sm...

  13. Wall of fundamental constants

    SciTech Connect

    Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.

  14. Occult internal iliac arterial injury identified during open reduction internal fixation of an acetabular fracture: a report of two cases.

    PubMed

    Chaus, George W; Heng, Marilyn; Smith, Raymond M

    2015-07-01

    We present two cases of occult internal iliac arterial injury identified during operative reduction of a widely displaced posterior column posterior wall acetabular fracture. This complication was not recognised until reduction of the column fracture. There were no preoperative signs or symptoms indicative of a vascular injury. These cases emphasise the heightened awareness one must have when treating widely displaced posterior column fractures of the acetabulum, especially those fractures with extension into the greater sciatic notch, as previously formed clot can become dislodged and hemostasis lost. We also present management options when this complication occurs. We believe any surgeon treating acetabular fractures should be aware of this serious and potentially fatal complication.

  15. Effect of isolated fractures on accelerated flow in unsaturated porous rock

    USGS Publications Warehouse

    Su, G.W.; Nimmo, J.R.; Dragila, M.I.

    2003-01-01

    Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low-angled isolated fractures compared to high-angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.

  16. A tapestry of orbits

    SciTech Connect

    King-Hele, D.

    1992-01-01

    In this book, the author describes how orbital research developed to yield a rich harvest of knowledge about the earth and its atmosphere. King-Hele relates a personal account of this research based on analysis of satellite orbits between 1957 and 1990 conducted from the Royal Aircraft Establishment in Farnborough England. The early research methods used before the launch of Sputnik in 1957 are discussed.

  17. Orbits of 6 Binaries

    NASA Astrophysics Data System (ADS)

    Olevic, D.; Cvetkovic, Z.

    In this paper the orbits of binaries WDS 10093+2020 = A 2145, WDS 21074-0814 = BU 368 AB and WDS 22288-0001 = STF 2909 AB are recalculated because of significant deviations of more recent observations from the ephemerides. For binaries WDS 22384-0754 = A 2695, WDS 23474-7118 = FIN 375 Aa and WDS 23578+2508 = McA 76 the orbital elements are calculated for the first time.

  18. The Lunar Orbital Prospector

    NASA Technical Reports Server (NTRS)

    Redd, Frank J.; Cantrell, James N.; Mccurdy, Greg

    1992-01-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  19. The Lunar Orbital Prospector

    NASA Astrophysics Data System (ADS)

    Redd, Frank J.; Cantrell, James N.; McCurdy, Greg

    1992-09-01

    The establishment of lunar bases will not end the need for remote sensing of the lunar surface by orbiting platforms. Human and robotic surface exploration will necessarily be limited to some proximate distance from the support base. Near real-time, high-resolution, global characterization of the lunar surface by orbiting sensing systems will continue to be essential to the understanding of the Moon's geophysical structure and the location of exploitable minerals and deposits of raw materials. The Lunar Orbital Prospector (LOP) is an orbiting sensing platform capable of supporting a variety of modular sensing packages. Serviced by a lunar-based shuttle, the LOP will permit the exchange of instrument packages to meet evolving mission needs. The ability to recover, modify, and rotate sensing packages allows their reuse in varying combinations. Combining this flexibility with robust orbit modification capabilities and near real-time telemetry links provides considerable system responsiveness. Maintenance and modification of the LOP orbit are accomplished through use of an onboard propulsion system that burns lunar-supplied oxygen and aluminum. The relatively low performance of such a system is more than compensated for by the elimination of the need for Earth-supplied propellants. The LOP concept envisions a continuous expansion of capability through the incorporation of new instrument technologies and the addition of platforms.

  20. [Reappraise the value of orbital decompression for thyroid associated ophthalmopathy].

    PubMed

    Xiao, Li-hua

    2012-08-01

    Compressive optic neuropathy and exposure keratopathy is classical indications of orbital decompression surgery for thyroid associated ophthalmopathy. Recently, its therapeutic value should extend to cosmetic requirement, the entity of congestive orbitopathy, ocular hypertension and hormonal resistance. In order to improve the safe and efficacy of orbital decompressions, we need the graded decompression plans and the modified areas of bone removal. The preferred area of bone removal is deep lateral wall. In serious patients, a combined medial, inferior and deep lateral wall decompression is recommended. There have also been technical advances in the cosmetic incisions such as transconjunctival, eyelid crease or endoscopic access. Removing periorbital fat is a supplement skill for bony decompression. The removed amount and indications should be regulated strictly. Individual operative project is the tendency of development of orbital decompressions.

  1. Metatarsal shaft fractures and fractures of the proximal fifth metatarsal.

    PubMed

    Fetzer, Gary B; Wright, Rick W

    2006-01-01

    Metatarsal fractures represent a relatively common injury, especially in athletes. The pertinent anatomy, evaluation, diagnosis, classification, and treatment of acute and chronic (stress) metatarsal shaft fractures are discussed. Fractures of the proximal fifth metatarsal, which are unique and important injuries, are also discussed. Treatment remains relatively straightforward for the traumatic metatarsal injury, whereas traditional stress fractures typically heal with decreased activity. The problematic proximal fifth metatarsal fracture (Jones fracture) frequently requires surgical intervention in patients who want to avoid non-weight-bearing cast immobilization. The authors' current treatment for this fracture includes the option of intramedullary fixation versus cast immobilization.

  2. Overall view of the Orbiter Servicing Structure within the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of the Orbiter Servicing Structure within the Orbiter Processing Facility at Kennedy Space Center. Can you see any hint of the Orbiter Discovery? It is in there. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  3. Periprosthetic patellar fractures.

    PubMed

    Adigweme, Obinna O; Sassoon, Adam A; Langford, Joshua; Haidukewych, George J

    2013-10-01

    Periprosthetic patellar fractures represent a spectrum of injuries to a patient with a total knee arthroplasty. They range in severity from an inconsequential injury, which does not compromise function, to a severely debilitating injury that may require advanced reconstructive measures. This article will outline the epidemiology and risk factors associated with periprosthetic patellar fractures. Treatment options as they relate to injury mechanism, fracture severity, patellar component stability, and remaining bone stock will also be discussed. Finally, a review of the current literature regarding the results of treatment will be presented.

  4. [Orbital complications of sinusitis].

    PubMed

    Šuchaň, M; Horňák, M; Kaliarik, L; Krempaská, S; Koštialová, T; Kovaľ, J

    2014-12-01

    Orbital complications categorised by Chandler are emergency. They need early diagnosis and agresive treatment. Stage and origin of orbital complications are identified by rhinoendoscopy, ophtalmologic examination and CT of orbite and paranasal sinuses. Periorbital cellulitis and early stage of orbital cellulitis can be treated conservatively with i. v. antibiotics. Monitoring of laboratory parameters and ophtalmologic symptoms is mandatory. Lack of improvement or worsening of symptoms within 24-48 hours and advanced stages of orbital complications are indicated for surgery. The purpose of the study is to evaluate epidemiology, clinical features and management of sinogenic orbital complications. Retrospective data of 8 patients with suspicion of orbital complication admited to hospital from 2008 to 2013 were evaluated. Patients were analyzed in terms of gender, age, CT findings, microbiology, clinical features, stage and treatment. Male and female were afected in rate 1,66:1. Most of patients were young adult in 3rd. and 4th. decade of life (62,5 %). Acute and chronic sinusitis were cause of orbital complication in the same rate. The most common origin of orbital complication was ethmoiditis (62,5 %), than maxillary (25 %) and frontal (12,5 %) sinusitis. Polysinusitis with affection of ethmoidal, maxillary and frontal sinuses (75 %) was usual CT finding. Staphylococcus epidermidis and Staphylococcus aureus were etiological agens in half of cases. Periorbital oedema (100 %), proptosis, chemosis (50 %), diplopia and glaucoma (12,5 %) were observed. Based on examinations, diagnosis of periorbital oedema/preseptal cellulitis was made in 3 (37,5 %), orbital cellulitis in 3 (37,5 %) and subperiosteal abscess in 2 cases (25 %). All patients underwent combined therapy - i. v. antibiotics and surgery within 24 hours. Eradication of disease from ostiomeatal complex (OMC), drainage of affected sinuses and drainage of subperiosteal abscess were done via fuctional endonasal

  5. A Generalized Wall Function

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.

    1999-01-01

    The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.

  6. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  7. Surgery for scapula process fractures

    PubMed Central

    Anavian, Jack; Wijdicks, Coen A; Schroder, Lisa K; Vang, Sandy

    2009-01-01

    Background Generally, scapula process fractures (coracoid and acromion) have been treated nonoperatively with favorable outcome, with the exception of widely displaced fractures. Very little has been published, however, regarding the operative management of such fractures and the literature that is available involves very few patients. Our hypothesis was that operative treatment of displaced acromion and coracoid fractures is a safe and effective treatment that yields favorable surgical results. Methods We reviewed 26 consecutive patients (27 fractures) treated between 1998 and 2007. Operative indications for these process fractures included either a painful nonunion, a concomitant ipsilateral operative scapula fracture, ≥ 1 cm of displacement on X-ray, or a multiple disruption of the superior shoulder suspensory complex. All patients were followed until they were asymptomatic, displayed radiographic fracture union, and had recovered full motion with no pain. Patients and results 21 males and 5 females, mean age 36 (18–67) years, were included in the study. 18 patients had more than one indication for surgery. Of the 27 fractures, there were 13 acromion fractures and 14 coracoid fractures. 1 patient was treated for both a coracoid and an acromion fracture. Fracture patterns for the acromion included 6 acromion base fractures and 7 fractures distal to the base. Coracoid fracture patterns included 11 coracoid base fractures and 3 fractures distal to the base. Mean follow-up was 11 (2–42) months. All fractures united and all patients had recovered full motion with no pain at the time of final follow-up. 3 patients underwent removal of hardware due to irritation from hardware components that were too prominent. There were no other complications. Interpretation While most acromion and coracoid fractures can be treated nonoperatively with satisfactory results, operative management may be indicated for displaced fractures and double lesions of the superior shoulder

  8. Internal Arrangement of the Skylab Orbital Workshop

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The wardroom deck of the Orbital Workshop, showing the living quarters arrangement, is seen here in good detail. From left to right is the dining area, waste management, and sleeping quarters. Portable restraints are on the wall beside the sleeping quarters. The ergometer for the vectorcardiograph (Experiment - M093) and lower-body Negative Pressure (Experiment M092) unit, used in some of the medical experiments, are in the foreground. The round brown object in the center of the room is the trash disposal airlock.

  9. Mechanical Coal-Face Fracturer

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Radial points on proposed drill bit take advantage of natural fracture planes of coal. Radial fracture points retracted during drilling and impacted by piston to fracture coal once drilling halts. Group of bits attached to array of pneumatic drivers to fracture large areas of coal face.

  10. Mars Geoscience Orbiter and Lunar Geoscience Orbiter

    NASA Technical Reports Server (NTRS)

    Fuldner, W. V.; Kaskiewicz, P. F.

    1983-01-01

    The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.

  11. Experimental Hydromechanical Characterization and Numerical Modelling of a Fractured and Porous Sandstone

    NASA Astrophysics Data System (ADS)

    Souley, Mountaka; Lopez, Philippe; Boulon, Marc; Thoraval, Alain

    2015-05-01

    The experimental device previously used to study the hydromechanical behaviour of individual fractures on a laboratory scale, was adapted to make it possible to measure flow through porous rock mass samples in addition to fracture flows. A first series of tests was performed to characterize the hydromechanical behaviour of the fracture individually as well as the porous matrix (sandstone) comprising the fracture walls. A third test in this series was used to validate the experimental approach. These tests showed non-linear evolution of the contact area on the fracture walls with respect to effective normal stress. Consequently, a non-linear relationship was noted between the hydraulic aperture on the one hand, and the effective normal stress and mechanical opening on the other hand. The results of the three tests were then analysed by numerical modelling. The VIPLEF/HYDREF numerical codes used take into account the dual-porosity of the sample (fracture + rock matrix) and can be used to reproduce hydromechanical loading accurately. The analyses show that the relationship between the hydraulic aperture of the fracture and the mechanical closure has a significant effect on fracture flow rate predictions. By taking simultaneous measurements of flow in both fracture and rock matrix, we were able to carry out a global evaluation of the conceptual approach used.

  12. The role of local stress perturbation on the simultaneous opening of orthogonal fractures

    NASA Astrophysics Data System (ADS)

    Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension

  13. Cell wall integrity

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Bellincampi, Daniela; Zabotina, Olga

    2013-01-01

    The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways. PMID:23857352

  14. Ankle fracture - aftercare

    MedlinePlus

    ... that surgery can allow faster and more reliable healing. In children, the fracture involves the part of ... will use a special walking boot as the healing progresses. You will need to learn: How to ...

  15. Fracture Characterization of Meteorites

    NASA Astrophysics Data System (ADS)

    Bryson, K. L.; Agrawal, P.; Ostrowski, D. R.; Sears, D. W. G.

    2015-07-01

    NASA ARC has been tasked with understanding the behavior of ~100m asteroids entering the atmosphere and quantifying the impact hazard. As part of this task, we report the initial results of a survey of the fracture properties of meteorites.

  16. Geothermal Ultrasonic Fracture Imager

    SciTech Connect

    Patterson, Doug; Leggett, Jim

    2013-07-29

    The Geothermal Ultrasonic Fracture Imager project has a goal to develop a wireline ultrasonic imager that is capable of operating in temperatures up to 300°C (572°F) and depths up to 10 km (32,808 ft). This will address one of the critical needs in any EGS development of understanding the hydraulic flow paths in the reservoir. The ultrasonic imaging is well known in the oil and gas industry as one of the best methods for fracture evaluation; providing both high resolution and complete azimuthal coverage of the borehole. This enables fracture detection and characterization, both natural and induced, providing information as to their location, dip direction and dip magnitude. All of these factors are critical to fully understand the fracture system to enable the optimization of the thermal drainage through injectors and producers in a geothermal resource.

  17. Management of condylar fractures.

    PubMed

    Montazem, André H; Anastassov, George

    2009-03-01

    Management of condylar fractures remains a source of ongoing controversy. While it appears that many condylar fractures can be managed nonsurgically, recognition of cases that require surgical intervention and selection of an appropriate procedure are paramount to success in treating these injuries. There are a variety of special considerations that are peculiar to the condylar region. This article discusses anatomic considerations, classification of condylar fractures, indications for surgery, treatment options, and complications. The goals of treatment include restoration of function and esthetics. Careful consideration and attention to the principles of fracture management, and the role of the condyle as an articulating unit and growth center, must be taken into account for the successful management of these injuries.

  18. Etiology of zygomatic fractures.

    PubMed

    Cotter, C J; Ogunbowale, A; Beirne, C

    2005-01-01

    We report on the etiology of zygomatic fractures in an Irish population. More than half of these injuries are related to interpersonal assault. Treatment of these injuries places a considerable burden on the health service. PMID:16445148

  19. Sprains, Strains and Fractures

    MedlinePlus

    ... are useful for finding soft issue injuries (including torn ligaments) and stress fractures. Treatment will depend on ... weeks. Professional athletes may undergo surgery to repair torn ligaments. Oral anti-inflammatory medication, such as ibuprofen, ...

  20. Lisfranc (Midfoot) Fractures

    MedlinePlus

    ... broken or ligaments that support the midfoot are torn. The severity of the injury can vary from ... bones are broken (fractured) or the ligaments are torn (ruptured). Injuries can vary, from a simple injury ...

  1. Clavicle Fracture (Broken Collarbone)

    MedlinePlus

    ... place and the fragments are severely out of alignment. A large bump over the fracture site may ... bone fragments are first repositioned into their normal alignment, and then held in place with special screws ...

  2. Hay balers' fractures.

    PubMed

    Mayba, I I

    1984-03-01

    Two cases of fractures of the sternum and T12 vertebra are presented, which appear to be a characteristic combination of injuries to farmers when hay bales fall on them. The mechanism of injury proposed is a severe forward flexion, producing vertebral collapse at the dorsolumbar junction, and fracture of the sternum from direct trauma against the steering wheel. These fractures should always be suspected in persons injured while baling hay. It is proposed to call this complex of injuries hay balers' fractures. Preventive measures suggested are: operator caution when hay bales are lifted; addition of locks to the loader forks; increasing the size of the loader, or placing a screen or cage over the operators to keep hay bales from falling on them.

  3. Hay balers' fractures.

    PubMed

    Mayba, I I

    1984-03-01

    Two cases of fractures of the sternum and T12 vertebra are presented, which appear to be a characteristic combination of injuries to farmers when hay bales fall on them. The mechanism of injury proposed is a severe forward flexion, producing vertebral collapse at the dorsolumbar junction, and fracture of the sternum from direct trauma against the steering wheel. These fractures should always be suspected in persons injured while baling hay. It is proposed to call this complex of injuries hay balers' fractures. Preventive measures suggested are: operator caution when hay bales are lifted; addition of locks to the loader forks; increasing the size of the loader, or placing a screen or cage over the operators to keep hay bales from falling on them. PMID:6708148

  4. The orbits in cancer imaging

    PubMed Central

    Chong, V F H

    2006-01-01

    Primary malignant lesions in the orbit are relatively uncommon. However, the orbits are frequently involved in haematogeneous metastasis or by direct extension from malignancies originating from the adjacent nasal cavity or paranasal sinuses. This paper focuses on the more commonly encountered primary orbital malignancies and the mapping of tumour spread into the orbits. PMID:17114076

  5. Elliptical Orbit Performance Computer Program

    NASA Technical Reports Server (NTRS)

    Myler, T.

    1984-01-01

    Elliptical Orbit Performance (ELOPE) computer program for analyzing orbital performance of space boosters uses orbit insertion data obtained from trajectory simulation to generate parametric data on apogee and perigee altitudes as function of payload data. Data used to generate presentation plots that display elliptical orbit performance capability of space booster.

  6. Metallic Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan Michael (Inventor); Hofer, Richard Robert (Inventor); Mikellides, Ioannis G. (Inventor)

    2016-01-01

    A Hall thruster apparatus having walls constructed from a conductive material, such as graphite, and having magnetic shielding of the walls from the ionized plasma has been demonstrated to operate with nearly the same efficiency as a conventional non-magnetically shielded design using insulators as wall components. The new design is believed to provide the potential of higher power and uniform operation over the operating life of a thruster device.

  7. Interlaminar fracture of composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1984-01-01

    Fracture mechanics has been found to be a useful tool for understanding composite delamination. Analyses for calculating strain energy release rates associated with delamination growth have been developed. These analyses successfully characterized delamination onset and growth for particular sources of delamination. Low velocity impact has been found to be the most severe source of composite delamination. A variety of test methods for measuring interlaminar fracture toughness are being developed to identify new composite materials with enhanced delamination resistance.

  8. Orbital Fluid Resupply Assessment

    NASA Technical Reports Server (NTRS)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  9. Orbital spacecraft resupply technology

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Tracey, T. R.; Bailey, W. J.

    1986-01-01

    The resupplying of orbital spacecraft using the Space Shuttle, Orbital Maneuvering Vehicle, Orbital Transfer Vehicle or a depot supply at a Space Station is studied. The governing factor in fluid resupply designs is the system size with respect to fluid resupply quantities. Spacecraft propellant management for tankage via diaphragm or surface tension configurations is examined. The capabilities, operation, and application of adiabatic ullage compression, ullage exchange, vent/fill/repressurize, and drain/vent/no-vent fill/repressurize, which are proposed transfer methods for spacecraft utilizing tankage configurations, are described. Selection of the appropriate resupply method is dependent on the spacecraft design features. Hydrazine adiabatic compression/detonation, liquid-free vapor venting to prevent freezing, and a method for no-vent liquid filling are analyzed. Various procedures for accurate measurements of propellant mass in low gravity are evaluated; a system of flowmeters with a PVT system was selected as the pressurant solubility and quantity gaging technique. Monopropellant and bipropellant orbital spacecraft consumable resupply system tanks which resupply 3000 lb of hydrazine and 7000 lb of MMH/NTO to spacecraft on orbit are presented.

  10. Long-Term Results of Orbital Roof Repair with Titanium Mesh in a Case of Traumatic Intraorbital Encephalocele: A Case Report and Review of Literature.

    PubMed

    Arslan, Erhan; Arslan, Selçuk; Kalkısım, Selçuk; Arslan, Ahmet; Kuzeyli, Kayhan

    2016-09-01

    Orbital roof fractures associated with cranial and maxillofacial trauma are rarely encountered. Traumatic intraorbital encephaloceles due to orbital roof fractures developing in the early posttraumatic period are even rarer. A variety of materials, such as alloplastic implants or autogenous materials, have been used for the reconstruction of orbital roof, but data regarding the long-term results of these materials are very limited. We report a case of intraorbital encephalocele developing in the early posttraumatic period (2 days) in a child patient and the long-term results of titanium mesh used for the reconstruction of the orbital roof. The case is presented with a pertinent review of literature. PMID:27516843

  11. Mars Telecommunications Orbiter, Artist's Concept

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This illustration depicts a concept for NASA's Mars Telecommunications Orbiter in flight around Mars. The orbiter is in development to be the first spacecraft with a primary function of providing communication links while orbiting a foreign planet. The project's plans call for launch in September 2009, arrival at Mars in August 2010 and a mission of six to 10 years while in orbit. Mars Telecommunication Orbiter would serve as the Mars hub for an interplanetery Internet, greatly increasing the information payoff from other future Mars missions. The mission is designed to orbit Mars more than 10 times farther from the planet than orbiters dedicated primarily to science. The high-orbit design minimizes the time that Mars itself blocks the orbiter from communicating with Earth and maximizes the time that the orbiter is above the horizon -- thus capable of communications relay -- for rovers and stationary landers on Mars' surface.

  12. Transport of Particle Swarms Through Variable Aperture Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  13. Treatment of Thoracolumbar Fracture

    PubMed Central

    Kim, Byung-Guk; Shin, Dong-Eun

    2015-01-01

    The most common fractures of the spine are associated with the thoracolumbar junction. The goals of treatment of thoracolumbar fracture are leading to early mobilization and rehabilitation by restoring mechanical stability of fracture and inducing neurologic recovery, thereby enabling patients to return to the workplace. However, it is still debatable about the treatment methods. Neurologic injury should be identified by thorough physical examination for motor and sensory nerve system in order to determine the appropriate treatment. The mechanical stability of fracture also should be evaluated by plain radiographs and computed tomography. In some cases, magnetic resonance imaging is required to evaluate soft tissue injury involving neurologic structure or posterior ligament complex. Based on these physical examinations and imaging studies, fracture stability is evaluated and it is determined whether to use the conservative or operative treatment. The development of instruments have led to more interests on the operative treatment which saves mobile segments without fusion and on instrumentation through minimal invasive approach in recent years. It is still controversial for the use of these treatments because there have not been verified evidences yet. However, the morbidity of patients can be decreased and good clinical and radiologic outcomes can be achieved if the recent operative treatments are used carefully considering the fracture pattern and the injury severity. PMID:25705347

  14. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  15. Fracture toughness of graphene.

    PubMed

    Zhang, Peng; Ma, Lulu; Fan, Feifei; Zeng, Zhi; Peng, Cheng; Loya, Phillip E; Liu, Zheng; Gong, Yongji; Zhang, Jiangnan; Zhang, Xingxiang; Ajayan, Pulickel M; Zhu, Ting; Lou, Jun

    2014-04-29

    Perfect graphene is believed to be the strongest material. However, the useful strength of large-area graphene with engineering relevance is usually determined by its fracture toughness, rather than the intrinsic strength that governs a uniform breaking of atomic bonds in perfect graphene. To date, the fracture toughness of graphene has not been measured. Here we report an in situ tensile testing of suspended graphene using a nanomechanical device in a scanning electron microscope. During tensile loading, the pre-cracked graphene sample fractures in a brittle manner with sharp edges, at a breaking stress substantially lower than the intrinsic strength of graphene. Our combined experiment and modelling verify the applicability of the classic Griffith theory of brittle fracture to graphene. The fracture toughness of graphene is measured as the critical stress intensity factor of and the equivalent critical strain energy release rate of 15.9 J m(-2). Our work quantifies the essential fracture properties of graphene and provides mechanistic insights into the mechanical failure of graphene.

  16. Subduction of fracture zones

    NASA Astrophysics Data System (ADS)

    Constantin Manea, Vlad; Gerya, Taras; Manea, Marina; Zhu, Guizhi; Leeman, William

    2013-04-01

    Since Wilson proposed in 1965 the existence of a new class of faults on the ocean floor, namely transform faults, the geodynamic effects and importance of fracture zone subduction is still little studied. It is known that oceanic plates are characterized by numerous fracture zones, and some of them have the potential to transport into subduction zones large volumes of water-rich serpentinite, providing a fertile water source for magma generated in subduction-related arc volcanoes. In most previous geodynamic studies, subducting plates are considered to be homogeneous, and there is no clear indication how the subduction of a fracture zone influences the melting pattern in the mantle wedge and the slab-derived fluids distribution in the subarc mantle. Here we show that subduction of serpentinized fracture zones plays a significant role in distribution of melt and fluids in the mantle wedge above the slab. Using high-resolution tree-dimensional coupled petrological-termomechanical simulations of subduction, we show that fluids, including melts and water, vary dramatically in the region where a serpentinized fracture zone enters into subduction. Our models show that substantial hydration and partial melting tend to concentrate where fracture zones are being subducted, creating favorable conditions for partially molten hydrous plumes to develop. These results are consistent with the along-arc variability in magma source compositions and processes in several regions, as the Aleutian Arc, the Cascades, the Southern Mexican Volcanic Arc, and the Andean Southern Volcanic Zone.

  17. A Rare Orbital Complication of Eye Exodeviation With Limited Abduction During Monobloc Le Fort III Distraction Osteogenesis.

    PubMed

    Hariri, Firdaus; Cheung, Lim Kwong; Rahman, Zainal Ariff Bin Abdul; Ramasamy, Sundrarajan Naidu; Ganesan, Dharmendra

    2015-07-01

    Monobloc Le Fort III distraction osteogenesis allows superior skeletal advancement in treating severe syndromic craniosynostosis. We report a rare orbital complication in a 3-year-old boy with Crouzon syndrome who developed right-eye exodeviation with limited abduction during the intradistraction period following this surgery. Images from a computed tomography scan confirmed direct impingement of the distracted right lateral orbital wall to the lateral rectus muscle. The impingement was surgically relieved via lateral orbital wall osteotomy. Ten months postdistraction, a review showed normal eye movement. A lateral orbital osteotomy cut for a monobloc Le Fort III distraction should be designed near the rim to prevent this complication. PMID:25007030

  18. Deceleration Orbit Improvements

    SciTech Connect

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  19. Orbital motions of bubbles in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shirota, Minori; Yamashita, Ko; Inamura, Takao

    2012-09-01

    This experimental study aims to clarify the mechanism of orbital motion of two oscillating bubbles in an acoustic field. Trajectory of the orbital motion on the wall of a spherical levitator was observed using a high-speed video camera. Because of a good repeatability in volume oscillation of bubbles, we were also able to observe the radial motion driven at 24 kHz by stroboscopic like imaging technique. The orbital motions of bubbles raging from 0.13 to 0.18 mm were examined with different forcing amplitude and in different viscous oils. As a result, we found that pairs of bubbles revolve along an elliptic orbit around the center of mass of the bubbles. We also found that the two bubbles perform anti-phase radial oscillation. Although this radial oscillation should result in a repulsive secondary Bjerknes force, the bubbles kept a constant separate distance of about 1 mm, which indicates the existence of centripetal primary Bjerknes force.

  20. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  1. Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1997-01-01

    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data.

  2. Low-frequency fluid waves in fractures and pipes

    SciTech Connect

    Korneev, Valeri

    2010-09-01

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  3. Fracture-network 3D characterization in a deformed chalk reservoir analogue -- the Laegerdorf case

    SciTech Connect

    Koestler, A.G.; Reksten, K.

    1995-09-01

    Quantitative descriptions of 3D fracture networks in terms of fracture characteristics and connectivity are necessary for reservoir evaluation, management, and EOR programs of fractured reservoirs. The author`s research has focused on an analogue to North Sea fractured chalk reservoirs that is excellently exposed near Laegerdorf, northwest Germany. An underlying salt diapir uplifted and deformed Upper Cretaceous chalk; the cement industry now exploits it. The fracture network in the production wall of the quarry was characterized and mapped at different scales, and 12 profiles of the 230-m wide and 35-m high production wall were investigated as the wall receded 25 m. In addition, three wells were drilled into the chalk volume. The wells were cored and the wellbores were imaged with both the resistivity formation micro scanner (FMS) and the sonic circumferential borehole image logger (CBIL). The large amount of fracture data was analyzed with respect to parameters, such as fracture density distribution, orientation, and length distribution, and in terms of the representativity and predictability of data sets collected from restricted rock volumes.

  4. Improvement of Nasojugal Groove and Wrinkles Following a Skin-Muscle Flap Elevation Through a Subciliary Approach to the Orbital Rim.

    PubMed

    Hwang, Kun; Choi, Jong Hwan; Kim, Joo Ho

    2016-05-01

    The aim of this study is to see whether the nasojugal groove and wrinkles can be improved following a skin-muscle flap elevation through a subciliary approach to the orbital rim.Fifty-seven patients having fractures of the orbital floor, wall, or orbital rim were included. A subciliary incision was made 3 to 5 mm below the cilia. A skin-muscle flap was elevated and a 5-mm width of the periosteum of the anterior surface of the maxilla was exposed. Thereafter, the origin of the orbicularis oculi muscle was released from the underlying bony origin. An incision was made at the arcus marginalis. After reconstruction, the detached arcus marginalis was sutured to the periosteum of the infraorbital rim and the subciliary incision was closed. Preoperative and postoperative photographs were analyzed with the validated assessment scales for midface.In the 57 sides operated on, the postoperative, mean assessment score was significantly lower (0.56 ± 0.66) on the operated side than on the contralateral side (0.84 ± 1.00) (P = 0.002). In the 37 sides excluding the patients in whom the initial score was 0, and the postoperative, mean assessment score was significantly lower (0.84 ± 0.65) on the operated side than on the contralateral side (1.19 ± 1.05) (P = 0.010).The skin-muscle flap elevated through the subciliary approach to reach the orbital rim improved the nasojugal groove despite the fat removal or repositioning was not performed. The reason for this improvement the authors think is orbicularis oculi muscle had been separated from its origin. PMID:27100651

  5. The calculation of orbital positioning using standard orbital parameters.

    NASA Astrophysics Data System (ADS)

    Pritchard, W.

    1999-08-01

    Practical difficulties arise solving the deceptively simple Kepler's equation. Kepler's equation can be solved easily using the method Newton developed for doing so. The authors recommend that this method be used in any general approach to orbital calculations. Another practical point to be reckoned with, is the variation in true orbital parameters. It is important to note that inclined orbits, eccentric orbits, and low orbits all suffer from rapid changes in their parameters. They can be ignored only for simple calculations for just a few orbits. Any calculation covering a longer period of time must take these changes into account.

  6. ARTEMIS Lunar Orbit Insertion and Science Orbit Design Through 2013

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Sweetser, Theodore H.; Angelopoulos, Vassilis; Folta, David; Woodard, Mark

    2015-01-01

    As of late-July 2011, the ARTEMIS mission is transferring two spacecraft from Lissajous orbits around Earth-Moon Lagrange Point #1 into highly-eccentric lunar science orbits. This paper presents the trajectory design for the transfer from Lissajous orbit to lunar orbit insertion, the period reduction maneuvers, and the science orbits through 2013. The design accommodates large perturbations from Earth's gravity and restrictive spacecraft capabilities to enable opportunities for a range of heliophysics and planetary science measurements. The process used to design the highly-eccentric ARTEMIS science orbits is outlined. The approach may inform the design of future planetary moon missions.

  7. Particle Swarms in Fractures: Open Versus Partially Closed Systems

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2014-12-01

    In the field, fractures may be isolated or connected to fluid reservoirs anywhere along the perimeter of a fracture. These boundaries affect fluid circulation, flow paths and communication with external reservoirs. The transport of drop like collections of colloidal-sized particles (particle swarms) in open and partially closed systems was studied. A uniform aperture synthetic fracture was constructed using two blocks (100 x 100 x 50 mm) of transparent acrylic placed parallel to each other. The fracture was fully submerged a tank filled with 100cSt silicone oil. Fracture apertures were varied from 5-80 mm. Partially closed systems were created by sealing the sides of the fracture with plastic film. The four boundary conditions study were: (Case 1) open, (Case 2) closed on the sides, (Case 3) closed on the bottom, and (Case 4) closed on both the sides and bottom of the fracture. A 15 μL dilute suspension of soda-lime glass particles in oil (2% by mass) were released into the fracture. Particle swarms were illuminated using a green (525 nm) LED array and imaged with a CCD camera. The presence of the additional boundaries modified the speed of the particle swarms (see figure). In Case 1, enhanced swarm transport was observed for a range of apertures, traveling faster than either very small or very large apertures. In Case 2, swarm velocities were enhanced over a larger range of fracture apertures than in any of the other cases. Case 3 shifted the enhanced transport regime to lower apertures and also reduced swarm speed when compared to Case 2. Finally, Case 4 eliminated the enhanced transport regime entirely. Communication between the fluid in the fracture and an external fluid reservoir resulted in enhanced swarm transport in Cases 1-3. The non-rigid nature of a swarm enables drag from the fracture walls to modify the swarm geometry. The particles composing a swarm reorganize in response to the fracture, elongating the swarm and maintaining its density. Unlike a

  8. Surface Evolution from Orbital Decay on Phobos

    NASA Astrophysics Data System (ADS)

    Hurford, Terry; Asphaug, Erik; Spitale, Joseph; Hemingway, Douglas; Rhoden, Alyssa; Henning, Wade; Bills, Bruce; Kattenhorn, Simon; Walker, Matthew

    2015-11-01

    Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises, and will suffer tidal disruption before colliding with Mars. We calculate the surface stress field of the de-orbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos’ prominent grooves have an excellent correlation with computed stress orientations. The model predicts an interior that has very low strength on the tidal evolution timescale, overlain by a ~10-100 m exterior shell that has elastic properties similar to lunar regolith.Shortly after the Viking spacecraft obtained the first geomorphic images of Phobos, it was proposed that stresses from orbital decay cause grooves. But, assuming a homogeneous Phobos, it proved impossible to account for the build-up of failure stress in the exterior regardless of the value assumed for Phobos’ rigidity. Hence, the tidal model languished. Here, we revisit the tidal origin of surface fractures with a more detailed treatment that shows the production of significant stress in a surface layer, with a very strong correlation to the geometry of grooves.Our model results applied to surface observations imply that Phobos has a rubble pile interior that is nearly strengthless. A lunar-like cohesive regolith outer layer overlays the rubble pile interior. This outer layer behaves elastically and can experience significant tidal stress at levels able to drive tensile failure. Fissures can develop as the global body deforms due to increasing tides related to orbital decay. Phobos may have an active and evolving surface; an exciting target for further exploration. The interior predictions of this model can be evaluated by future detailed studies performed by an orbiter or lander.

  9. 'Stucco' Walls-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial 'clodding' or cementation of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) across and makes up half of the projected 'Stucco Walls' image.

  10. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  11. Domain wall filters

    SciTech Connect

    Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-03-15

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  12. Interactive Word Walls

    ERIC Educational Resources Information Center

    Jackson, Julie; Narvaez, Rose

    2013-01-01

    It is common to see word walls displaying the vocabulary that students have learned in class. Word walls serve as visual scaffolds and are a classroom strategy used to reinforce reading and language arts instruction. Research shows a strong relationship between student word knowledge and academic achievement (Stahl and Fairbanks 1986). As a…

  13. Treatment Options in Maxillofacial Fractures.

    PubMed

    Guerrissi, Jorge Orlando

    2016-07-01

    From 2000 to 2010, 720 patients with facial trauma were admitted in Plastic Surgery Service of Argerich Hospital, Buenos Aires, Argentina; 58 of them with panfacial fractures were included in this study. Height velocity impact is the principal etiology, and most concomitant extrafacial injuries are neurocranium and cervical spine. Common affected areas were orbits, nose, and malar-zygoma. The timing of the treatment was airway evaluation, control of bleeding and consciousness, treatment of associated injuries, and finally facial reconstruction. The applications of craniofacial surgical techniques complete facial treatment in only operatory time by means of standard approaches like coronal, subciliar palpebral, upper and lower vestibular. The treatment was exploration to open sky; reduction and fijation with titanium plates; replacement of comminuted bones with bone autografts harvested iliac crest, calvary, and costal bones. The results were classificated acceptables in 48 (85%) and not acceptables in 9 (15%) according to successful reconstruction of the both form and armony facial, persistent esthetic and functional sequels, and postoperative complications. Postoperative complications were detected in 18 patients. According to most authors the use of internal rigid fixation and bone autograf permits obtaining the best aesthetic and functional results decreasing complications and sequels. The recuperation of tridimensional aspect of the face and aesthetic and functional pretrauma state must be the goal standard. PMID:27391510

  14. Europa Orbiter Exploration Strategies

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.

    2001-01-01

    The Europa Orbiter mission is planned as the next stage of Europa exploration. Its primary goals are to search for definitive evidence of a subsurface ocean, to characterize the ice crust and ice/water interface, and to prepare for future surface/sub-surface missions. Additional information is contained in the original extended abstract.

  15. Sedna Orbit Animation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  16. Global orbit corrections

    SciTech Connect

    Symon, K.

    1987-11-01

    There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.

  17. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  18. Mars Climate Orbiter

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Surveyor '98 Climate Orbiter is shown here during acoustic tests that simulate launch conditions. The orbiter was to conduct a two year primary mission to profile the Martian atmosphere and map the surface. To carry out these scientific objectives, the spacecraft carried a rebuilt version of the pressure modulated infrared radiometer, lost with the Mars Observer spacecraft, and a miniaturized dual camera system the size of a pair of binoculars, provided by Malin Space Science Systems, Inc., San Diego, California. During its primary mission, the orbiter was to monitor Mars atmosphere and surface globally on a daily basis for one Martian year (two Earth years), observing the appearance and movement of atmospheric dust and water vapor, as well as characterizing seasonal changes of the planet's surface. Imaging of the surface morphology would also provide important clues about the planet's climate in its early history. The mission was part of NASA's Mars Surveyor program, a sustained program of robotic exploration of the red planet, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, Washington, DC. Lockheed Martin Astronautics was NASA's industrial partner in the mission. Unfortunately, Mars Climate Orbiter burned up in the Martian atmosphere on September 23, 1999, due to a metric conversion error that caused the spacecraft to be off course.

  19. Spin-orbit photonics

    NASA Astrophysics Data System (ADS)

    Cardano, Filippo; Marrucci, Lorenzo

    2015-12-01

    Spin-orbit optical phenomena involve the interaction of the photon spin with the light wave propagation and spatial distribution, mediated by suitable optical media. Here we present a short overview of the emerging photonic applications that rely on such effects.

  20. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    SciTech Connect

    Lorie M. Dilley

    2011-03-30

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the

  1. Role of multiple cusps in tooth fracture.

    PubMed

    Barani, Amir; Bush, Mark B; Lawn, Brian R

    2014-07-01

    The role of multiple cusps in the biomechanics of human molar tooth fracture is analysed. A model with four cusps at the bite surface replaces the single dome structure used in previous simulations. Extended finite element modelling, with provision to embed longitudinal cracks into the enamel walls, enables full analysis of crack propagation from initial extension to final failure. The cracks propagate longitudinally around the enamel side walls from starter cracks placed either at the top surface (radial cracks) or from the tooth base (margin cracks). A feature of the crack evolution is its stability, meaning that extension occurs steadily with increasing applied force. Predictions from the model are validated by comparison with experimental data from earlier publications, in which crack development was followed in situ during occlusal loading of extracted human molars. The results show substantial increase in critical forces to produce longitudinal fractures with number of cuspal contacts, indicating a capacity for an individual tooth to spread the load during mastication. It is argued that explicit critical force equations derived in previous studies remain valid, at the least as a means for comparing the capacity for teeth of different dimensions to sustain high bite forces.

  2. Thrower's fracture of the humerus.

    PubMed

    Miller, Andrew; Dodson, Christopher C; Ilyas, Asif M

    2014-10-01

    Thrower's fractures are spiral fractures of the humerus caused by forceful throwing of a ball. Although these fractures have been cited in the literature, little research exists regarding the significance of stress fractures and fatigue injuries that may precede these injuries. This article presents 3 cases of middle-aged recreational baseball pitchers who sustained mid to distal third spiral humerus fractures, reviews the biomechanics of a thrower's fracture, and provides a detailed review of the literature to help better understand this condition and guide treatment.

  3. Pelvic Insufficiency Fractures

    PubMed Central

    O’Connor, Timothy J.

    2014-01-01

    Pelvic insufficiency fractures may occur in the absence of trauma or as a result of low-energy trauma in osteoporotic bone. With a growing geriatric population, the incidence of pelvic insufficiency fracture has increased over the last 3 decades and will continue to do so. These fractures can cause considerable pain, loss of independence, and economic burden to both the patient and the health care system. While many of these injuries are identified and treated based on plain radiographs, some remain difficult to diagnose. The role of advanced imaging in these cases is discussed. In addition to treating the fracture, medical comorbidities contributing to osteoporosis should be identified and corrected. Specific attention has been given to 25-OH serum vitamin D screening and repletion. Treatment generally consists of providing pain control and assisting patients with mobilization while allowing weight bearing as tolerated. In those unable to do so, invasive techniques such as sacroplasty as well as internal fixation may be beneficial. The role of operative fixation in insufficiency fractures is also discussed. PMID:26246940

  4. Orbital Fluid Transfer System

    NASA Technical Reports Server (NTRS)

    Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.

    1998-01-01

    An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS

  5. The role of fracture coatings on water imbibition into unsaturated tuff from Yucca Mountain

    SciTech Connect

    Chekuri, V.S.; Tyler, S.W.; Fordham, J.W.

    1995-11-01

    Studies dealing with fracture flow at Yucca Mountain have generally assumed that any water flowing down in a fracture will be absorbed by the porous matrix. However, a thin lining of low permeability material on the fracture walls may significantly impede imbibition into the matrix of unsaturated tuff. In this research, imbibition was measured across the fracture surfaces in the laboratory. Samples were collected from surface outcrops of Tiva Canyon and Topopah Spring members of the Paintbrush tuff near Yucca Mountain. Sorptivity, a convenient measure of imbibition, was used to investigate the changes in hydraulic properties as a result of fracture coatings. Results from experimental analysis of Topopah Spring tuff showed decreased sorptivity across coated fracture surfaces. Statistically, the coatings on the Tiva Canyon samples do not significantly affect sorptivity. Scanning Electron Microscope analysis shows that coatings on the s grit Tiva Canyon samples are made up of iron, aluminum and to some extent magnesium. Coating material on the Topopah Spring samples is made up of calcium, magnesium, aluminum and iron. Coating significantly reduces the sorptivity for the Topopah Spring tuff. Numerical results are presented to show the effect of fracture coatings on water infiltration down a vertical fracture in simulated tuff. For the Topopah Spring tuff, the wetting front in the coated fracture travels deeper in the fracture and less into the matrix compared to the wetting front in the uncoated fracture. For the Tiva Canyon tuff, the wetting front in the uncoated fracture travels deeper in the fracture and less into the matrix as compared to the wetting front in the coated fracture.

  6. [Orbital decompression for Graves' ophthalmopathy].

    PubMed

    Boulétreau, P; Breton, P; Freidel, M

    2005-04-01

    Graves' ophthalmopathy is a complex orbital condition with a controversial pathogenesis. It is the clinical expression of a discordance between the inextensible orbit and hypertrophic muscular and fatty elements within the orbit responding to immunological stimulation. The relationship between the orbital and its content can be improved by surgical expansion which increases the useful volume of the orbit. This procedure can be combined with lipectomy to decrease the volume of the orbital contents. We briefly recall the history of surgical decompression techniques and present our experience with Graves' ophthalmopathy patients.

  7. Flow dynamics and solute transport in unsaturated rock fractures

    SciTech Connect

    Su, G. W.

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  8. Toughness of carbon nanotubes conforms to classic fracture mechanics

    PubMed Central

    Yang, Lin; Greenfeld, Israel; Wagner, H. Daniel

    2016-01-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT’s truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m0.5, typical of moderately brittle materials and applicable also to graphene. PMID:26989774

  9. Toughness of carbon nanotubes conforms to classic fracture mechanics.

    PubMed

    Yang, Lin; Greenfeld, Israel; Wagner, H Daniel

    2016-02-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT's truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m(0.5), typical of moderately brittle materials and applicable also to graphene.

  10. Misdiagnosis of Talar Body or Neck Fractures as Ankle Sprains in Low Energy Traumas

    PubMed Central

    Young, Ki-Won; Kim, Jin-Su; Cho, Hun-Ki; Choo, Ho-Sik; Park, Jang-Ho

    2016-01-01

    Background The talus has a very complex anatomical morphology and is mainly fractured by a major force caused by a fall or a traffic accident. Therefore, a talus fracture is not common. However, many recent reports have shown that minor injuries, such as sprains and slips during sports activities, can induce a talar fracture especially in the lateral or posterior process. Still, fractures to the main parts of the talus (neck and body) after ankle sprains have not been reported as occult fractures. Methods Of the total 102 cases from January 2005 to December 2012, 7 patients had confirmed cases of missed/delayed diagnosis of a talus body or neck fracture and were included in the study population. If available, medical records, X-rays, computed tomography scans, and magnetic resonance imaging of the confirmed cases were retrospectively reviewed and analyzed. Results In the 7-patient population, there were 3 talar neck fractures and 4 talar body fractures (coronal shearing type). The mechanisms of injuries were all low energy trauma episodes. The causes of the injuries included twisting of the ankle during climbing (n = 2), jumping to the ground from a 1-m high wall (n = 2), and twisting of the ankle during daily activities (n = 3). Conclusions A talar body fracture and a talar neck fracture should be considered in the differential diagnosis of patients with acute and chronic ankle pain after a minor ankle injury. PMID:27583114

  11. Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture

    SciTech Connect

    Crandall, D.M.; Ahmadi, Goodarz; Smith, D.H.

    2008-04-01

    Fluid flow through rock fractures can be orders of magnitude faster than through the adjacent low-permeability rock. Understanding how fluid moves through these pathways is important for the prediction of sequestered CO2 transport in geologic reservoirs. Reservoir-scale, discrete-fracture simulators use simplified models of flow through fractures to determine transport properties in complex fracture networks. A high level of approximation is required in these reservoir-scale simulations due to the number of fractures within the domain of interest and because of the limited amount of information that can be obtained from geophysical well-logs (Long et al. (1996)). For this study, flow simulations through a CT-scanned fracture were performed to evaluate different fluid transport parameters that are important in geological flow analysis. The ‘roughness’ of the fracture was varied to determine the effect of the bumpy fracture walls on the fluid flow. The permeability and effective aperture were determined for flow under a constant pressure head. The fracture roughness is shown to dramatically reduce the flow through the fracture, and various relations are described.

  12. Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock

    SciTech Connect

    Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

    2007-12-15

    We propose a new conceptual model of fracture-flow-enhanced matrix diffusion, which correlates with fracture-flow velocity, i.e., matrix diffusion enhancement induced by rapid fluid flow within fractures. According to the boundary-layer or film theory, fracture flow enhanced matrix diffusion may dominate mass-transfer processes at fracture-matrix interfaces, because rapid flow along fractures results in large velocity and concentration gradients at and near fracture-matrix interfaces, enhancing matrix diffusion at matrix surfaces. In this paper, we present a new formulation of the conceptual model for enhanced fracture-matrix diffusion, and its implementation is discussed using existing analytical solutions and numerical models. In addition, we use the enhanced matrix diffusion concept to analyze laboratory experimental results from nonreactive and reactive tracer breakthrough tests, in an effort to validate the new conceptual model.

  13. 5. Detail of bin wall, showing the thinner exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail of bin wall, showing the thinner exterior wall next to the inner wall with its alternating courses of channel tile and hollow tile. - Saint Anthony Elevator No. 3, 620 Malcom Avenue, Southeast, Minneapolis, Hennepin County, MN

  14. 22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  15. Unusual sclerosing orbital pseudotumor infiltrating orbits and maxillofacial regions.

    PubMed

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses.

  16. Unusual Sclerosing Orbital Pseudotumor Infiltrating Orbits and Maxillofacial Regions

    PubMed Central

    Toprak, Huseyin; Aralaşmak, Ayşe; Yılmaz, Temel Fatih; Ozdemir, Huseyin

    2014-01-01

    Idiopathic orbital pseudotumor (IOP) is a benign inflammatory condition of the orbit without identifiable local or systemic causes. Bilateral massive orbital involvement and extraorbital extension of the IOP is very rare. We present an unusual case of IOP with bilateral massive orbital infiltration extending into maxillofacial regions and discuss its distinctive magnetic resonance imaging (MRI) features that help to exclude other entities during differential diagnoses. PMID:24991481

  17. Comparison of Low Earth Orbit and Geosynchronous Earth Orbits

    NASA Technical Reports Server (NTRS)

    Drummond, J. E.

    1980-01-01

    The technological, environmental, social, and political ramifications of low Earth orbits as compared to geosynchronous Earth orbits for the solar power satellite (SPS) are assessed. The capital cost of the transmitting facilities is dependent on the areas of the antenna and rectenna relative to the requirement of high efficiency power transmission. The salient features of a low orbit Earth orbits are discussed in terms of cost reduction efforts.

  18. Shuttle on-orbit rendezvous targeting: Circular orbits

    NASA Technical Reports Server (NTRS)

    Bentley, E. L.

    1972-01-01

    The strategy and logic used in a space shuttle on-orbit rendezvous targeting program are described. The program generates ascent targeting conditions for boost to insertion into an intermediate parking orbit, and generates on-orbit targeting and timeline bases for each maneuver to effect rendezvous with a space station. Time of launch is determined so as to eliminate any plane change, and all work was performed for a near-circular space station orbit.

  19. Fracture Genesis and Fracture Filling In Hydrate Systems

    NASA Astrophysics Data System (ADS)

    Daigle, H.; Dugan, B.

    2009-12-01

    Steady-state models of coupled flow through fractures and porous media predict that millions of years are required to accumulate the very high hydrate saturation (>50%) necessary to form hydraulic fractures by fluid pressure buildup; however, once a fracture system is formed, it will fill with hydrate in roughly 15 kyr. This modeling is a first step towards understanding heterogeneous, fracture-hosted methane hydrate deposits that have been observed in marine hydrate systems worldwide. In fine-grained sediments, methane hydrate is frequently observed in pores as well as in veins and fractures. One possible explanation is hydrate forms in pores and fluid pressure increases until fractures form. Fluid then flows through the fractures and forms hydrate-filled fractures. To study this, we ran 1-D numerical simulations with a prescribed flow rate of methane-charged fluid through a porous medium. As hydrate forms, pores are occluded and permeability is reduced, causing an increase in fluid pressure to maintain the constant flow rate. We assume that hydraulic fractures form when the fluid pressure reaches 90% of the overburden stress. Simulations of Blake Ridge (offshore South Carolina) indicate that fractures occur after 7.4 million years with a hydrate saturation (Sh) of 95% at the base of the methane hydrate stability zone (MHSZ). Simulations of Keathley Canyon (Gulf of Mexico) achieve the fracture criterion after 7.9 million years with Sh = 54% at the base of the MHSZ. Once fractures are formed they fill with hydrate after 15,000 years. Our results indicate that the time scale of pressure buildup assuming present-day fluxes is very long, and that lower-permeability sediments require lower hydrate saturations to reach the fracture criterion. However, once fractures form, they are filled with hydrate rapidly. This suggests that fractures may provide short-term migration pathways between higher-permeability layers, but also that additional research is needed to constrain

  20. Estimating fracture geometry in the naturally fractured Antrim Shale

    SciTech Connect

    Hopkins, C.W.; Frantz, J.H. Jr.; Hill, D.G.

    1995-12-31

    The Antrim Shale of the Michigan Basin has been an active gas play with over 3,500 wells drilled over the last 5 years. There is substantial evidence that the Antrim must be fracture stimulated to be economical and that two-stage treatments provide the best results. However, due to the shallow depths (500-2300 ft) and naturally fractured nature of the Antrim, fracture geometry is complex, and determination of optimal fracture treatments is not straight forward. Because historical field comparisons did not provide insight on the optimal fracture treatments, the Gas Research Institute (GRI) instituted a field-based project for the specific purpose of evaluating the geometry of hydraulic fractures in the Antrim. Open- and cased-hole tests were performed on two separate Antrim wells - a shallow producer (600 {+-} ft) and a deep producer (1550 {+-} ft). Open-hole testing and data collection consisted of in-situ stress and mechanical property testing with Halliburton`s THE{trademark} Tool (9 tests) and a detailed suite of geophysical logs including dipole sonic logs and natural fracture detection logs. Cased-hole testing consisted of pre- and post-fracture injection/falloff tests, minifracture treatments, multiple isotope tracer and tracer logs, and treating pressure and production data analysis. The shallow depths, low in-situ stresses, and extremely fractured nature of the Antrim probably results in the preferential opening of existing fractures instead of the creation of new fracture planes. As a result, the creation of multiple fractures and severe near wellbore tortuosity is likely. Therefore, the natural fractures are responsible for increased leakoff and will greatly impact created fracture geometry. The results also suggest that creating long propped hydraulic fractures in the Antrim is not likely due to the creation of multiple fractures.

  1. Treatment of Clavicle Fractures

    PubMed Central

    Paladini, P; Pellegrini, A; Merolla, G; Campi, F; Porcellini, G

    2012-01-01

    Summary Clavicle fractures are very common injuries in adults (2–5%) and children (10–15%) (1) and represent the 44–66% of all shoulder fractures (2). Despite the high frequency the choice of proper treatment is still a challenge for the orthopedic surgeon. With this review we wants to focus the attention on the basic epidemiology, anatomy, classification, evaluation and management of surgical treatments in relationship with the gravity of injuries. Both conservative and surgical management are possible, and surgeons must choose the most appropriate management modality according to the biologic age, functional demands, and type of lesion. We performed a review of the English literature thought PubMed to produce an evidence-based review of current concept and management of clavicle fracture. We finished taking a comparison with our survey in order to underline our direct experience. PMID:23905044

  2. Pediatric foot fractures.

    PubMed

    Ribbans, William J; Natarajan, Ramanathan; Alavala, Sairam

    2005-03-01

    Fractures of the foot in children usually have a good prognosis and generally are treated nonoperatively. Displaced fractures of the talus and calcaneus and tarsometatarsal dislocations are rare in children and their outcome is generally good in the younger child. Older adolescents with these injuries need treatment similar to how an adult would be treated for the same injury in order to achieve a good result. Foot fractures in children may pose a diagnostic challenge particularly in the absence of obvious radiographic changes. Repeated clinical examination and judicious use of imaging techniques such as isotope bone scans and magnetic resonance imaging are needed to establish a diagnosis. Knowledge of the anatomy and significance of accessory bones of the foot and disorders of the growing foot skeleton are helpful in managing injuries of child's foot. In this study, we review common injuries of a child's foot and include a discussion on differential diagnosis.

  3. DEM Particle Fracture Model

    SciTech Connect

    Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.

    2015-12-01

    An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.

  4. Fracture of the cuboid.

    PubMed

    Borrelli, Joseph; De, Sayan; VanPelt, Michael

    2012-07-01

    Cuboid fracture accounts for a minority of all foot fractures in adults and often is indicative of a multiply injured foot. Understanding the normal anatomy and function of the cuboid and its relation to foot biomechanics is necessary for appropriate management. Clinical evaluation includes history, physical examination, and thorough assessment of the skin and soft tissues. Plain radiographs and CT are helpful in preoperative planning. Cuboid fractures may be managed either nonsurgically (splinting or casting) or surgically (closed reduction and external fixation or open reduction and internal fixation). Careful handling of the soft tissues is important, as is restoration of articular congruity, lateral column length, and a stable midfoot. Postoperative care consists of prolonged immobilization followed by 3 months of progressive weight bearing. Published reports of long-term outcomes and functional postoperative assessments are lacking. PMID:22751166

  5. Fracking, fracture, and permeability

    NASA Astrophysics Data System (ADS)

    Turcotte, D. L.; Norris, J.; Rundle, J. B.

    2013-12-01

    Injections of large volumes of water into tight shale reservoirs allows the extraction of oil and gas not previously accessible. This large volume 'super' fracking induces damage that allows the oil and/or gas to flow to an extraction well. The purpose of this paper is to provide a model for understanding super fracking. We assume that water is injected from a small spherical cavity into a homogeneous elastic medium. The high pressure of the injected water generates hoop stresses that reactivate natural fractures in the tight shales. These fractures migrate outward as water is added creating a spherical shell of damaged rock. The porosity associated with these fractures is equal to the water volume injected. We obtain an analytic expression for this volume. We apply our model to a typical tight shale reservoir and show that the predicted water volumes are in good agreement with the volumes used in super fracking.

  6. Semiautomatic fracture zone tracking

    NASA Astrophysics Data System (ADS)

    Wessel, Paul; Matthews, Kara J.; Müller, R. Dietmar; Mazzoni, Aline; Whittaker, Joanne M.; Myhill, Robert; Chandler, Michael T.

    2015-07-01

    Oceanic fracture zone traces are widely used in studies of seafloor morphology and plate kinematics. Satellite altimetry missions have resulted in high-resolution gravity maps in which all major fracture zones and other tectonic fabric can be identified, and numerous scientists have digitized such lineaments. We have initiated a community effort to maintain low-cost infrastructure that allows seafloor fabric lineaments to be stored, accessed, and updated. A key improvement over past efforts is our processing software (released as a GMT5 supplement) that allows for semiautomatic corrections to previously digitized fracture zone traces given improved gridded data sets. Here we report on our seafloor fabric processing tools, which complement our database of seafloor fabric lineations, magnetic anomaly identifications, and plate kinematic models.

  7. Talar neck fractures.

    PubMed

    Berlet, G C; Lee, T H; Massa, E G

    2001-01-01

    Clinical management of talar neck fractures is complex and fraught with complications. As Gaius Julius Caesar stated: "The die is cast"; often the outcome of a talar neck fracture is determined at the time of injury. The authors believe, however, that better results can be achieved by following some simple guidelines. The authors advocate prompt and precise anatomic surgical reduction, preferring the medial approach with secondary anterolateral approach. Preservation of blood supply can be achieved by a thorough understanding of vascular pathways and efforts to stay within appropriate surgical intervals. The authors advocate bone grafting of medial neck comminution (if present) to prevent varus malalignment and rigid internal fixation to allow for joint mobilization postoperatively. These guidelines may seem simple, but when dealing with the complexity of talar neck fractures, the foot and ankle surgeon needs to focus and rely on easily grasped concepts to reduce poor outcomes. PMID:11465133

  8. Conversion of a Micro-CT Scanned Rock Fracture Into a Useful Model

    SciTech Connect

    Crandall, Dustin; Bromhal, Grant; Smith, Duane

    2009-01-01

    Within geologic reservoirs the flow of fluids through fractures is often orders of magnitude greater than through the surrounding, low-permeability rock. Because of the number and size of fractures in geological fields, reservoir-scale discrete-fracture simulators often model fluid motion through fractures as flow through narrow, parallel plates. In reality fractures within rock are narrow openings between two rough rock surfaces. In order to model the geometry of an actual fracture in rock, a ~9 cm by 2.5 cm fracture within Berea sandstone was created and the aperture distribution was obtained with micro-Computed Tomography (CT) scans by Karpyn et al. [1]. The original scans had a volume-pixel (voxel) resolution of 27 by 27 by 32 microns. This data was up-scaled to voxels with 120 microns to a side to facilitate data transfer and for practicality of use. Using three separate reconstruction techniques, six different fracture meshes were created from this up-scaled data set, each with slightly different final geometries. Flow through each of these fracture meshes was evaluated using the finite-volume simulator FLUENT. While certain features of the fracture meshes, such as the shape of the fracture aperture distributions and overall volume of the void, remained similar between the different geometric reconstructions, the flow in different models was observed to vary dramatically. Rough fracture walls induced more tortuous flow paths and a higher resistance to flow. Natural fractures do vary in-situ, due to sidewall dissolution and mineral precipitation, smoothing and coarsening fracture walls respectively. Thus for our study the range of fracture properties was actually beneficial, allowing us to describe the flow through a range of fracture types. A compromise between capturing the geometric details within a domain of interest and a tractable computational mesh must always be addressed when flow through a physical geometry is modeled. The fine level of detail that

  9. Estimation of deformation and stiffness of fractures close to tunnels using data from single-hole hydraulic testing and grouting

    SciTech Connect

    Fransson, A.; Tsang, C.-F.; Rutqvist, J.; Gustafson, G.

    2010-05-01

    Sealing of tunnels in fractured rocks is commonly performed by pre- or post-excavation grouting. The grouting boreholes are frequently drilled close to the tunnel wall, an area where rock stresses can be low and fractures can more easily open up during grout pressurization. In this paper we suggest that data from hydraulic testing and grouting can be used to identify grout-induced fracture opening, to estimate fracture stiffness of such fractures, and to evaluate its impact on the grout performance. A conceptual model and a method are presented for estimating fracture stiffness. The method is demonstrated using grouting data from four pre-excavation grouting boreholes at a shallow tunnel (50 m) in Nygard, Sweden, and two post-excavation grouting boreholes at a deep tunnel (450 m) in Aespoe HRL, Sweden. The estimated stiffness of intersecting fractures for the boreholes at the shallow Nygard tunnel are low (2-5 GPa/m) and in agreement with literature data from field experiments at other fractured rock sites. Higher stiffness was obtained for the deeper tunnel boreholes at Aespoe which is reasonable considering that generally higher rock stresses are expected at greater depths. Our method of identifying and evaluating the properties and impact of deforming fractures might be most applicable when grouting takes place in boreholes adjacent to the tunnel wall, where local stresses might be low and where deforming (opening) fractures may take most of the grout.

  10. Spacecraft Orbital Debris Reentry: Aerothermal Analysis

    NASA Technical Reports Server (NTRS)

    Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Reynolds, Robert C.; Johnson, Nicholas L.

    1997-01-01

    In the past 40 years, thousands of objects have been placed in Earth orbit and are being tracked. Space hardware reentry survivability must be evaluated to assess risks to human life and property on the ground. The objective of this paper is to present results of a study to determine altitude of demise (burn-up) or survivability of reentering objects. Two NASA/JSC computer codes - Object Reentry Survival Analysis Tool (ORSAT) and Miniature ORSAT (MORSAT) were used to determine trajectories, aerodynamic aerothermal environment, and thermal response of selected spacecraft components. The methodology of the two codes is presented, along with results of a parametric study of reentering objects modeled as spheres and cylinders. Parameters varied included mass, diameter, wall thickness, ballistic coefficient, length, type of material, and mode of tumbling/spinning. Two fragments of a spent Delta second stage undergoing orbital decay, stainless steel cylindrical propellant tank and titanium pressurization sphere, were evaluated with ORSAT and found to survive entry, as did the actual objects. Also, orbital decay reentry predictions of the Japanese Advanced Earth Observing Satellite (ADEOS) aluminum and nickel box-type components and the Russian COSMOS 954 satellite beryllium cylinders were made with MORSAT. These objects were also shown to survive reentry.

  11. Plasma Flowfields Around Low Earth Orbit Objects: Aerodynamics to Underpin Orbit Predictions

    NASA Astrophysics Data System (ADS)

    Capon, Christopher; Boyce, Russell; Brown, Melrose

    2016-07-01

    Interactions between orbiting bodies and the charged space environment are complex. The large variation in passive body parameters e.g. size, geometry and materials, makes the plasma-body interaction in Low Earth Orbit (LEO) a region rich in fundamental physical phenomena. The aerodynamic interaction of LEO orbiting bodies with the neutral environment constitutes the largest non-conservative force on the body. However in general, study of the LEO plasma-body interaction has not been concerned with external flow physics, but rather with the effects on surface charging. The impact of ionospheric flow physics on the forces on space debris (and active objects) is not well understood. The work presented here investigates the contribution that plasma-body interactions have on the flow structure and hence on the total atmospheric force vector experienced by a polar orbiting LEO body. This work applies a hybrid Particle-in-Cell (PIC) - Direct Simulation Monte Carlo (DSMC) code, pdFoam, to self-consistently model the electrostatic flowfield about a cylinder with a uniform, fixed surface potential. Flow conditions are representative of the mean conditions experienced by the Earth Observing Satellite (EOS) based on the International Reference Ionosphere model (IRI-86). The electron distribution function is represented by a non-linear Boltzmann electron fluid and ion gas-surface interactions are assumed to be that of a neutralising, conducting, thermally accommodating solid wall with diffuse reflections. The variation in flowfield and aerodynamic properties with surface potential at a fixed flow condition is investigated, and insight into the relative contributions of charged and neutral species to the flow physics experienced by a LEO orbiting body is provided. This in turn is intended to help improve the fidelity of physics-based orbit predictions for space debris and other near-Earth space objects.

  12. Close up view of the Orbiter Discovery in the Orbiter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close up view of the Orbiter Discovery in the Orbiter Processing Facility at Kennedy Space Center. The view is a detail of the aft, starboard landing gear and a general view of the Thermal Protection System tiles around the landing-gear housing. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Quantifying Danger To Spacecraft Crews From Orbital Debris

    NASA Technical Reports Server (NTRS)

    Williamsen, Joel

    1996-01-01

    MSCSurv computer program designed to quantify conditional probability of losing one or more crew members following remote likelihood of penetration of orbital debris into cluster of spacecraft modules containing crew members. Contributions to probability of losing one or more crew members quantified from three significant penetration-induced hazards: rupture of pressure wall (explosive decompression), injuries induced by fragments, and "slow" depressurization. Uses Monte Carlo-style subroutine to simulate penetration of thousands of orbital debris particles of various sizes, velocities, and angles of approach into spacecraft of selected exterior geometry. Written in FORTRAN 77.

  14. Clostridium septicum gas gangrene in the orbit: a case report.

    PubMed

    Fejes, I; Dégi, R; Végh, M

    2013-02-01

    Our report presents a case of Clostridium septicum gas gangrene in an unusual, orbital localization. The predisposing factors are typical: colon tumour and lymphatic malignancy. Most probably bacteria from the intestinal flora entered the bloodstream through the compromised intestinal wall and settled in the orbit resulting in the development of an abscess containing gas. At the site of the gas gangrene, an indolent B cell lymphoma was present. After surgery and antibiotic treatment, the patient healed from the C. septicum infection; but subsequently died as a consequence of the tumour.

  15. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its

  16. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  17. SPECS: Orbital debris removal

    NASA Astrophysics Data System (ADS)

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  18. Swimming Near the Wall

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel; Moored, Keith; Dewey, Peter; Lauder, George; Smits, Alexander

    2012-11-01

    The aerodynamic loads on rectangular panels undergoing heave and pitch oscillations near a solid wall were measured using a 6-axis ATI sensor. Over a range of Strouhal numbers, reduced frequencies and flexibilities, swimming near the wall was found to increase thrust and therefore the self-propelled swimming speed. Experimental particle image velocimetry revealed an asymmetric wake structure with a momentum jet angled away from the wall. Both the thrust amplification and the asymmetric wake structure were verified and investigated further using an in-house inviscid panel method code. Supported by ONR MURI Grant N00014-08-1-0642.

  19. [Supracondylar fractures in children].

    PubMed

    Petrov, N; Gucev, S; Kirkov, Lj; Dajljevik, S; Ruso, B

    1982-01-01

    In the Department of Pediatric surgery, during the last ten years, 190 patients with supracondylar fractures (second and third degree, according to Bauman's classification) have been treated. The operation was performed in only 5% of all hospitalized cases. There were only one patient with neurological and vascular complications in the early stage, but without any complications in the late stage. The presented cases showed a high percentage of flexion type of fractures. The conservative treatment by a reposition has given the most satisfactory results.

  20. Complications of mandibular fractures.

    PubMed

    Zweig, Barry E

    2009-03-01

    Before any definitive treatment of mandibular fractures, the patient needs to be evaluated for more potentially life-threatening injuries. Complications can and do occur with treatment of mandibular fractures and can occur during any of the phases of treatment. The development of an accurate diagnosis and appropriate treatment plan is vital in achieving optimal success and decreasing complications. Knowledge of the anatomy and the principles of bone healing is also an important factor in preventing complications. To limit long-term untoward effects, complications should be recognized early and the appropriate treatment should be started before a minor complication becomes a complex one that is more difficult to manage.

  1. Fractured Petroleum Reservoirs

    SciTech Connect

    Firoozabadi, Dr. Abbas

    2000-01-18

    In this report the results of experiments of water injection in fractured porous media comprising a number of water-wet matrix blocks are reported for the first time. The blocks experience an advancing fracture-water level (FWL). Immersion-type experiments are performed for comparison; the dominant recovery mechanism changed from co-current to counter-current imbibition when the boundary conditions changed from advancing FWL to immersion-type. Single block experiments of co-current and counter-current imbibition was performed and co-current imbibition leads to more efficient recovery was found.

  2. Tracer Testing for Estimating Heat Transfer Area in Fractured Reservoirs

    SciTech Connect

    Pruess, Karsten; van Heel, Ton; Shan, Chao

    2004-05-12

    A key parameter governing the performance and life-time of a Hot Fractured Rock (HFR) reservoir is the effective heat transfer area between the fracture network and the matrix rock. We report on numerical modeling studies into the feasibility of using tracer tests for estimating heat transfer area. More specifically, we discuss simulation results of a new HFR characterization method which uses surface-sorbing tracers for which the adsorbed tracer mass is proportional to the fracture surface area per unit volume. Sorption in the rock matrix is treated with the conventional formulation in which tracer adsorption is volume-based. A slug of solute tracer migrating along a fracture is subject to diffusion across the fracture walls into the adjacent rock matrix. Such diffusion removes some of the tracer from the fluid in the fractures, reducing and retarding the peak in the breakthrough curve (BTC) of the tracer. After the slug has passed the concentration gradient reverses, causing back-diffusion from the rock matrix into the fracture, and giving rise to a long tail in the BTC of the solute. These effects become stronger for larger fracture-matrix interface area, potentially providing a means for estimating this area. Previous field tests and modeling studies have demonstrated characteristic tailing in BTCs for volatile tracers in vapor-dominated reservoirs. Simulated BTCs for solute tracers in single-phase liquid systems show much weaker tails, as would be expected because diffusivities are much smaller in the aqueous than in the gas phase, by a factor of order 1000. A much stronger signal of fracture-matrix interaction can be obtained when sorbing tracers are used. We have performed simulation studies of surface-sorbing tracers by implementing a model in which the adsorbed tracer mass is assumed proportional to the fracture-matrix surface area per unit volume. The results show that sorbing tracers generate stronger tails in BTCs, corresponding to an effective

  3. Bone fracture repair - series (image)

    MedlinePlus

    The three main treatment options for bone fractures are: Casting Open reduction, and internal fixation- this involves a surgery to repair the fracture-frequently, metal rods, screws or plates are used to repair the ...

  4. Fracture After Total Hip Replacement

    MedlinePlus

    ... er Total Hip Replacement cont. • Dislocation • Limb length inequality • Poor fracture healing • Repeat fracture • Lack of in- ... Surgeons (AAOS). To learn more about your orthopaedic health, please visit orthoinfo.org. Page ( 5 ) AAOS does ...

  5. Distal Radius Fracture (Broken Wrist)

    MedlinePlus

    ... choice depends on many factors, such as the nature of the fracture, your age and activity level, ... causing the cast to loosen. Depending on the nature of the fracture, your doctor may closely monitor ...

  6. Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2008-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.

  7. Vertebroplasty for Spine Fracture Pain

    MedlinePlus

    MENU Return to Web version Vertebroplasty for Spine Fracture Pain Vertebroplasty for Spine Fracture Pain More than 40 million people in the United States have osteoporosis (a decrease in the amount ...

  8. LRO Enters Lunar Orbit (Highlights)

    NASA Video Gallery

    After a four and a half day journey from the Earth, the Lunar Reconnaissance Orbiter, or LRO, successfully entered orbit around the moon. Engineers at NASA's Goddard Space Flight Center in Greenbel...

  9. Lunar Reconnaissance Orbiter Mission Highlights

    NASA Video Gallery

    Since launch on June 18, 2009 as a precursor mission, the Lunar Reconnaissance Orbiter (LRO) has remained in orbit around the moon, collecting vast amounts of science data in support of NASA's expl...

  10. The Orbital Acceleration Research Experiment

    NASA Astrophysics Data System (ADS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  11. The Orbital Acceleration Research Experiment

    NASA Technical Reports Server (NTRS)

    Blanchard, R. C.; Hendrix, M. K.; Fox, J. C.; Thomas, D. J.; Nicholson, J.

    1986-01-01

    The hardware and software of NASA's proposed Orbital Acceleration Research Experiment (OARE) are described. The OARE is to provide aerodynamic acceleration measurements along the Orbiter's principal axis in the free-molecular flow-flight regime at orbital attitude and in the transition regime during reentry. Models considering the effects of electromagnetic effects, solar radiation pressure, orbiter mass attraction, gravity gradient, orbital centripetal acceleration, out-of-orbital-plane effects, orbiter angular velocity, structural noise, mass expulsion signal sources, crew motion, and bias on acceleration are examined. The experiment contains an electrostatically balanced cylindrical proofmass accelerometer sensor with three orthogonal sensing axis outputs. The components and functions of the experimental calibration system and signal processor and control subsystem are analyzed. The development of the OARE software is discussed. The experimental equipment will be enclosed in a cover assembly that will be mounted in the Orbiter close to the center of gravity.

  12. Orbitals and orbital energies in DFT and TDDFT

    NASA Astrophysics Data System (ADS)

    Baerends, Evert Jan

    The status and meaning of orbitals and orbital energies in the Kohn-Sham one-electron model of DFT has been controversial, in contrast to Hartree-Fock orbitals and orbital energies. We will argue the opposite: the exact Kohn-Sham orbitals of DFT are ''better'' than HF orbitals and their orbital energies are much closer to ionization energies than HF orbital energies are. This follows from the relation between the KS potential and the wavefunction, which can be cast in the form vs =vc , kin +vH +vxchole +vresp, where each term depends on the KS orbitals and the wavefunction (the one- or two-particle density matrices). The response potential vresp (r) = ∑ j ∞|/dj(r) | 2 ρ (r) Ij - ∑ i H|/ψs , i(r) | 2 ρ (r) (-ɛi) (dj is the Dyson orbital corresponding to ion state ΨjN - 1 , ψs , i is a Kohn-Sham orbital) enables the connection between ionization energies Ii and orbital energies ɛi to be made. For virtual orbitals and orbital energies similar statements can be made: the shapes and energies of the (exact) KS orbitals are much more realistic than those of the Hartree-Fock model or hybrid functionals. The HOMO-LUMO gap in molecules is very close to the optical gap, and very different from the fundamental gap. In solids the situation is very different, which is the well-known ''KS gap problem''. Again the response potential vresp (a good approximation to it) helps to solve this problem, affording a straigtforward correction method of the KS gap to the fundamental gap.

  13. Correlation of Hip Fracture with Other Fracture Types: Toward a Rational Composite Hip Fracture Endpoint

    PubMed Central

    Colón-Emeric, Cathleen; Pieper, Carl F.; Grubber, Janet; Van Scoyoc, Lynn; Schnell, Merritt L; Van Houtven, Courtney Harold; Pearson, Megan; Lafleur, Joanne; Lyles, Kenneth W.; Adler, Robert A.

    2016-01-01

    Purpose With ethical requirements to the enrollment of lower risk subjects, osteoporosis trials are underpowered to detect reduction in hip fractures. Different skeletal sites have different levels of fracture risk and response to treatment. We sought to identify fracture sites which cluster with hip fracture at higher than expected frequency; if these sites respond to treatment similarly, then a composite fracture endpoint could provide a better estimate of hip fracture reduction. Methods Cohort study using Veterans Affairs and Medicare administrative data. Male Veterans (n=5,036,536) aged 50-99 years receiving VA primary care between1999-2009 were included. Fractures were ascertained using ICD9 and CPT codes and classified by skeletal site. Pearson correlation coefficients, logistic regression and kappa statistics, were used to describe the correlation between each fracture type and hip fracture within individuals, without regards to the timing of the events. Results 595,579 (11.8%) men suffered 1 or more fractures and 179,597 (3.6%) suffered 2 or more fractures during the time under study. Of those with one or more fractures, rib was the most common site (29%), followed by spine (22%), hip (21%) and femur (20%). The fracture types most highly correlated with hip fracture were pelvic/acetabular (Pearson correlation coefficient 0.25, p<0.0001), femur (0.15, p<0.0001), and shoulder (0.11, p<0.0001). Conclusions Pelvic, acetabular, femur, and shoulder fractures cluster with hip fractures within individuals at greater than expected frequency. If we observe similar treatment risk reductions within that cluster, subsequent trials could consider use of a composite endpoint to better estimate hip fracture risk. PMID:26151123

  14. Mercury orbiter transport study

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A data base and comparative performance analyses of alternative flight mode options for delivering a range of payload masses to Mercury orbit are provided. Launch opportunities over the period 1980-2000 are considered. Extensive data trades are developed for the ballistic flight mode option utilizing one or more swingbys of Venus. Advanced transport options studied include solar electric propulsion and solar sailing. Results show the significant performance tradeoffs among such key parameters as trip time, payload mass, propulsion system mass, orbit size, launch year sensitivity and relative cost-effectiveness. Handbook-type presentation formats, particularly in the case of ballistic mode data, provide planetary program planners with an easily used source of reference information essential in the preliminary steps of mission selection and planning.

  15. Constant attitude orbit transfer

    NASA Astrophysics Data System (ADS)

    Cress, Peter; Evans, Michael

    A two-impulse orbital transfer technique is described in which the spacecraft attitude remains constant for both burns, eliminating the need for attitude maneuvers between the burns. This can lead to significant savings in vehicle weight, cost and complexity. Analysis is provided for a restricted class of applications of this transfer between circular orbits. For those transfers with a plane change less than 30 deg, the total velocity cost of the maneuver is less than twelve percent greater than that of an optimum plane split Hohmann transfer. While this maneuver does not minimize velocity requirement, it does provide a means of achieving necessary transfer while substantially reducing the cost and complexity of the spacecraft.

  16. Osteoporotic Hip and Spine Fractures

    PubMed Central

    Hill, Brian W.

    2014-01-01

    Hip and spine fractures represent just a portion of the burden of osteoporosis; however, these fractures require treatment and often represent a major change in lifestyle for the patient and their family. The orthopedic surgeon plays a crucial role, not only in the treatment of these injuries but also providing guidance in prevention of future osteoporotic fractures. This review provides a brief epidemiology of the fractures, details the surgical techniques, and outlines the current treatment guidelines for orthopedic surgeons. PMID:26246944

  17. Clinical consequences of vertebral fractures.

    PubMed

    Ross, P D

    1997-08-18

    People with vertebral fractures have greater pain, disability, and healthcare utilization, on average, than those without fractures. Most studies of acute pain and disability have been limited to patients with clinically diagnosed fractures (a subset of all symptomatic patients), representing about one third of all patients with fractures identified radiographically. Acute symptoms vary widely. Some patients experience intolerable pain that can be completely debilitating for several weeks or months, whereas about half of all patients with radiographically identified fractures report having had no symptoms. The reasons for this variability are unknown. Chronic pain and disability among patients with vertebral fractures are significantly greater on average than among people without fractures, even after adjusting for comorbid conditions that are common among the elderly. Similar to acute symptoms, chronic symptoms vary widely and often persist for at least several years. The risk of pain and disability increases progressively with the number and severity of vertebral deformities: the risk is multiplied several times with each additional fracture. On average, physical function is impaired among people with vertebral fractures, whether or not they currently report back pain. Declines in physical function and changes in appearance contribute to social isolation and loss of self-esteem, impairing quality of life. The cumulative impact of vertebral fractures on quality of life may rival that of hip fractures because hip fractures are less frequent and occur later in life. As many as 40% of symptomatic vertebral fractures are initially misdiagnosed, signaling a need for greater awareness among physicians and patients. Prevention of initial vertebral fractures should be actively encouraged; even if the initial fracture is asymptomatic, it indicates a greatly increased risk of subsequent fractures, pain, and physical impairment. PMID:9302895

  18. Talar fractures: three case studies.

    PubMed

    Jimenez, A L; Morgan, J H

    2001-09-01

    Three case studies of fractures are presented that demonstrate the potential morbidity that these injuries can cause as well as the acceptable outcomes if treated appropriately. Two of the cases are talar fracture dislocations; the third is an osteochondral fracture of the talus. The importance of early treatment with open reduction and internal fixation is demonstrated. Success following surgical intervention in a nonhealed osteochondral fracture of the talus is also demonstrated.

  19. Radionuclide Transport in Fracture-Granite Interface Zones

    SciTech Connect

    Hu, Q; Mori, A

    2007-09-12

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-based mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.

  20. Numerical Modeling of Fracture Propagation in Naturally Fractured Formations

    NASA Astrophysics Data System (ADS)

    Wang, W.; Prodanovic, M.; Olson, J. E.; Schultz, R.

    2015-12-01

    Hydraulic fracturing consists of injecting fluid at high pressure and high flowrate to the wellbore for the purpose of enhancing production by generating a complex fracture network. Both tensile failure and shear failure occur during the hydraulic fracturing treatment. The shear event can be caused by slip on existing weak planes such as faults or natural fractures. From core observation, partially cemented and fully cemented opening mode natural fractures, often with considerable thickness are widely present. Hydraulic fractures can propagate either within the natural fracture (tensile failure) or along the interface between the natural fracture and the rock matrix (tensile/shear failure), depending on the relative strength of cement and rock matrix materials, the bonding strength of interface, as well as the presence of any heterogeneities. In this study, we evaluate the fracture propagation both experimentally and numerically. We embed one or multiple inclusions of different mechanical properties within synthetic hydrostone samples in order to mimic cemented natural fractures and rock. A semi-circular bending test is performed for each set of properties. A finite element model built with ABAQUS is used to mimic the semi-circular bending test and study the fracture propagation path, as well as the matrix-inclusion bonding interface status. Mechanical properties required for the numerical model are measured experimentally. The results indicate that the match between experiment and modeling fracture path are extremely sensitive to the chosen interface (bonding) model and related parameters. The semi-circular bending test is dry and easily conducted, providing a good platform for validating numerical approaches. A validated numerical model will enable us to add pressurized fluid within the crack and simulate hydraulic fracture-natural fracture interaction in the reservoir conditions, ultimately providing insights into the extent of the fracture network.

  1. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  2. Small Mercury Relativity Orbiter

    NASA Technical Reports Server (NTRS)

    Bender, Peter L.; Vincent, Mark A.

    1989-01-01

    The accuracy of solar system tests of gravitational theory could be very much improved by range and Doppler measurements to a Small Mercury Relativity Orbiter. A nearly circular orbit at roughly 2400 km altitude is assumed in order to minimize problems with orbit determination and thermal radiation from the surface. The spacecraft is spin-stabilized and has a 30 cm diameter de-spun antenna. With K-band and X-band ranging systems using a 50 MHz offset sidetone at K-band, a range accuracy of 3 cm appears to be realistically achievable. The estimated spacecraft mass is 50 kg. A consider-covariance analysis was performed to determine how well the Earth-Mercury distance as a function of time could be determined with such a Relativity Orbiter. The minimum data set is assumed to be 40 independent 8-hour arcs of tracking data at selected times during a two year period. The gravity field of Mercury up through degree and order 10 is solved for, along with the initial conditions for each arc and the Earth-Mercury distance at the center of each arc. The considered parameters include the gravity field parameters of degree 11 and 12 plus the tracking station coordinates, the tropospheric delay, and two parameters in a crude radiation pressure model. The conclusion is that the Earth-Mercury distance can be determined to 6 cm accuracy or better. From a modified worst-case analysis, this would lead to roughly 2 orders of magnitude improvement in the knowledge of the precession of perihelion, the relativistic time delay, and the possible change in the gravitational constant with time.

  3. Spatial orbital tether constructions

    NASA Astrophysics Data System (ADS)

    Kogan, A. Yu.

    2016-09-01

    This paper is concerned with the problem of shape-retaining spatial tether configurations in a circular Keplerian orbit. Sufficient conditions of shape retention are described, which are imposed on the geometry of the structure, distribution of mass in the nodes, and parameters of rotation. The paper also mentions classes of structures with different properties of symmetry and motion, as well as specific examples of shaperetaining structures.

  4. 'Spider' in Earth Orbit

    NASA Technical Reports Server (NTRS)

    1969-01-01

    View of the Apollo 9 Lunar Module 'Spider' in a lunar landing configuration photographed by Command Module pilot David Scott inside the Command/Service Module 'Gumdrop' on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on 'Spider' has been deployed. lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were astronauts James A. McDivitt, Apollo 9 Commander; and Russell L. Schweickart, Lunar Module pilot.

  5. Spectrophotovoltaic orbital power generation

    NASA Technical Reports Server (NTRS)

    Onffroy, J. R.

    1980-01-01

    The feasibilty of a spectrophotovoltaic orbital power generation system that optically concentrates solar energy is demonstrated. A dichroic beam-splitting mirror is used to divide the solar spectrum into two wavebands. Absorption of these wavebands by GaAs and Si solar cell arrays with matched energy bandgaps increases the cell efficiency while decreasing the amount of heat that must be rejected. The projected cost per peak watt if this system is $2.50/W sub p.

  6. Fluid trapping during capillary displacement in fractures

    NASA Astrophysics Data System (ADS)

    Yang, Zhibing; Neuweiler, Insa; Méheust, Yves; Fagerlund, Fritjof; Niemi, Auli

    2016-09-01

    The spatial distribution of fluid phases and the geometry of fluid-fluid interfaces resulting from immiscible displacement in fractures cast decisive influence on a range of macroscopic flow parameters. Most importantly, these are the relative permeabilities of the fluids as well as the macroscopic irreducible saturations. They also influence parameters for component (solute) transport, as it usually occurs through one of the fluid phase only. Here, we present a numerical investigation on the critical role of aperture variation and spatial correlation on fluid trapping and the morphology of fluid phase distributions in a geological fracture. We consider drainage in the capillary dominated regime. The correlation scale, that is, the scale over which the two facing fracture walls are matched, varies among the investigated geometries between L/256 and L (self-affine fields), L being the domain/fracture length. The aperture variability is quantified by the coefficient of variation (δ), ranging among the various geometries from 0.05 to 0.25. We use an invasion percolation based model which has been shown to properly reproduce displacement patterns observed in previous experiments. We present a quantitative analysis of the size distribution of trapped fluid clusters. We show that when the in-plane curvature is considered, the amount of trapped fluid mass first increases with increasing correlation scale Lc and then decreases as Lc further increases from some intermediate scale towards the domain length scale L. The in-plane curvature contributes to smoothening the invasion front and to dampening the entrapment of fluid clusters of a certain size range that depends on the combination of random aperture standard deviation and spatial correlation.

  7. Fixation of sternal fracture using absorbable plating system, three years follow-up

    PubMed Central

    Katballe, Niels; Pilegaard, Hans

    2015-01-01

    Sternal fractures occur due to severe chest wall trauma in a small number of patients. They are often conservatively treated. The surgical intervention, although controversial, is indicated in case of deformity, severe pain, and ventilatory complications. We report the first case where absorbable plate has been used to fix a traumatic fracture in a 42-year-old female. After 3 years, the patient is still free of symptoms and CT scanning reveals intact sternal bone structure. PMID:26101659

  8. Circular-Orbit Maintenance Strategies for Primitive Body Orbiters

    NASA Technical Reports Server (NTRS)

    Wallace, Mark S.; Broschart, Stephen

    2013-01-01

    For missions to smaller primitive bodies, solar radiation pressure (SRP) is a significant perturbation to Keplerian dynamics. For most orbits, SRP drives large oscillations in orbit eccentricity, which leads to large perturbations from the irregular gravity field at periapsis. Ultimately, chaotic motion results that often escapes or impacts that body. This paper presents an orbit maintenance strategy to keep the orbit eccentricity small, thus avoiding the destabilizing secondary interaction with the gravity field. An estimate of the frequency and magnitude of the required maneuvers as a function of the orbit and body parameters is derived from the analytic perturbation equations.

  9. An Orbit Plan toward AKATSUKI Venus Reencounter and Orbit Injection

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro; Campagnola, Stefano; Hirose, Chikako; Ishii, Nobuaki

    2012-01-01

    On December 7, 2010, AKATSUKI, the Japanese Venus explorer reached its destination and tried to inject itself into Venus orbit. However, due to a malfunction of the propulsion system, the maneuver was interrupted and AKATSUKI again escaped out from the Venus into an interplanetary orbit. Telemetry data from AKATSUKI suggests the possibility to perform orbit maneuvers to reencounter the Venus and retry Venus orbit injection. Reported in this paper is an orbit plan investigated under this situation. The latest results reflecting the maneuvers conducted in the autumn 2011 is introduced as well.

  10. Flagellar propulsion near walls

    NASA Astrophysics Data System (ADS)

    Evans, Arthur; Lauga, Eric

    2010-11-01

    Confinement and wall effects are known to affect the kinematics and propulsive characteristics of swimming microorganisms. When a solid body is dragged through a viscous fluid at constant velocity, the presence of a wall increases fluid drag, and thus the net force required to maintain speed has to increase. In contrast, recent optical trapping experiments have revealed that the propulsive force generated by human spermatozoa is decreased by the presence of boundaries. Here we use simple models to analytically elucidate the propulsive effects of a solid boundary on passively actuated filaments and model eukaryotic flagella. We show that in some cases, the increase in fluid friction induced by the wall can lead to a change in the waveform expressed by the flagella which results in a decrease of their propulsive force near a no-slip wall.

  11. Anterior vaginal wall repair

    MedlinePlus

    ... your health care provider may have you learn pelvic floor muscle exercises ( Kegel exercises ), use estrogen cream in ... GM. Anatomic defects of the abdominal wall and pelvic floor: abdominal and inguinal hernias, cystocele, urethrocele, enterocele, rectocele, ...

  12. Radiation Propulsion For Maintaining Orbits

    NASA Technical Reports Server (NTRS)

    Richter, Robert

    1995-01-01

    Brief report proposes radiative propulsion systems for maintaining precise orbits of spacecraft. Radiation from electrical heaters directed outward by paraboloidal reflectors to produce small forces to oppose uncontrolled drag and solar-radiative forces perturbing orbits. Minimizes or eliminates need to fire rocket thrusters to correct orbits.

  13. Orbiter KU-band transmitter

    NASA Technical Reports Server (NTRS)

    Halterman, R.

    1976-01-01

    The design, build, and test of an engineering breadboard Ku band quadraphase shift keyed and wideband frequency modulated transmitter are described. This orbiter Ku band transmitter drawer is to simulate the orbiter transmitter and meet the functional requirements of the orbiter communication link.

  14. What is a MISR orbit?

    Atmospheric Science Data Center

    2014-12-08

    ... platform that carries MISR and other scientific instruments flies at an altitude of 705 km above sea level on a sun-synchronous orbit. It ... completes an orbit and initiates the next one, it actually flies over quite different regions. The orbit number thus also indicates the ...

  15. Orbiter Autoland reliability analysis

    NASA Technical Reports Server (NTRS)

    Welch, D. Phillip

    1993-01-01

    The Space Shuttle Orbiter is the only space reentry vehicle in which the crew is seated upright. This position presents some physiological effects requiring countermeasures to prevent a crewmember from becoming incapacitated. This also introduces a potential need for automated vehicle landing capability. Autoland is a primary procedure that was identified as a requirement for landing following and extended duration orbiter mission. This report documents the results of the reliability analysis performed on the hardware required for an automated landing. A reliability block diagram was used to evaluate system reliability. The analysis considers the manual and automated landing modes currently available on the Orbiter. (Autoland is presently a backup system only.) Results of this study indicate a +/- 36 percent probability of successfully extending a nominal mission to 30 days. Enough variations were evaluated to verify that the reliability could be altered with missions planning and procedures. If the crew is modeled as being fully capable after 30 days, the probability of a successful manual landing is comparable to that of Autoland because much of the hardware is used for both manual and automated landing modes. The analysis indicates that the reliability for the manual mode is limited by the hardware and depends greatly on crew capability. Crew capability for a successful landing after 30 days has not been determined yet.

  16. Management of osteoporotic vertebral fractures

    PubMed Central

    Dionyssiotis, Yannis

    2010-01-01

    Osteoporotic vertebral fractures are associated with considerable reduction of quality of life, morbidity, and mortality. The management of patients with vertebral fractures should include treatment for osteoporosis and measures to reduce pain and improve mobility. This article provides information for management and rehabilitation of vertebral fractures based on clinical experience and literature. PMID:20689689

  17. Frozen Orbital Plane Solutions for Satellites in Nearly Circular Orbit

    NASA Astrophysics Data System (ADS)

    Ulivieri, Carlo; Circi, Christian; Ortore, Emiliano; Bunkheila, Federico; Todino, Francesco

    2013-08-01

    This paper deals with the determination of the initial conditions (right ascension of the ascending node and inclination) that minimize the orbital plane variation for nearly circular orbits with a semimajor axis between 3 and 10 Earth radii. An analysis of two-line elements over the last 40 years for mid-, geostationary-, and high-Earth orbits has shown, for initially quasi-circular orbits, low eccentricity variations up to the geostationary altitude. This result makes the application of mathematical models based on satellite circular orbits advantageous for a fast prediction of long-term temporal evolution of the orbital plane. To this purpose, a previous model considering the combined effect due to the Earth's oblateness, moon, and sun (both in circular orbit) has been improved in terms of required computational time and accuracy. The eccentricity of the sun and moon and the equinoctial precession have been taken into account. Resonance phenomena with the lunar plane motion have been found in mid-Earth orbit. Dynamical properties concerning the precession motions of the orbital pole have been investigated, and frozen solutions for geosynchronous and navigation satellites have been proposed. Finally, an accurate model validation has also been carried out by comparing the obtained results with two-line elements of abandoned geostationary-Earth orbit and mid-Earth orbit satellites.

  18. Mathematical modeling of a non-Newtonian fluid flow in the main fracture inside permeable porous media

    NASA Astrophysics Data System (ADS)

    Ilyasov, A. M.; Bulgakova, G. T.

    2016-08-01

    This paper describes a mathematical model of the main fracture isolation in porous media by water-based mature gels. While modeling injection, water infiltration from the gel pack through fracture walls is taking into account, due to which the polymer concentration changes and the residual water resistance factor changes as a consequence. The salutation predicts velocity and pressure fields of the non-Newtonian incompressible fluid filtration for conditions of a non-deformable formation as well as a gel front trajectory in the fracture. The mathematical model of agent injection into the main fracture is based on the fundamental laws of continuum mechanics conservation describing the flow of non-Newtonian and Newtonian fluids separated by an interface plane in a flat channel with permeable walls. The mathematical model is based on a one-dimensional isothermal approximation, with dynamic parameters pressure and velocity, averaged over the fracture section.

  19. Injection through fractures

    SciTech Connect

    Johns, R.A.

    1987-05-01

    Tracer tests are conducted in geothermal reservoirs as an aid in forecasting thermal breakthrough of reinjection water. To interpret tracer tests, mathematical models have been developed based on the various transport mechanisms in these highly fractured reservoirs. These tracer flow models have been applied to interpret field tests. The resulting matches between the model and field data were excellent and the model parameters were used to estimate reservoir properties. However, model fitting is an indirect process and the model's ability to estimate reservoir properties cannot be judged solely on the quality of the match between field data and model predictions. The model's accuracy in determining reservoir characteristics must be independently verified in a closely controlled environment. In this study, the closely controlled laboratory environment was chosen to test the validity and accuracy of tracer flow models developed specifically for flow in fractured rocks. The laboratory tracer tests were performed by flowing potassium iodide (KI) through artificially fractured core samples. The tracer test results were then analyzed with several models to determine which best fit the measured data. A Matrix Diffusion model was found to provide the best match of the tracer experiments. The core properties, as estimated by the Matrix Diffusion model parameters generated from the indirect matching process, were then determined. These calculated core parameters were compared to the measured core properties and were found to be in agreement. This verifies the use of the Matrix Diffusion flow model in estimating fracture widths from tracer tests.

  20. Hip fracture surgery

    MedlinePlus

    ... thigh bone. The thigh bone is called the femur. It is part of the hip joint. Hip pain is a related topic. ... to 4 hours. If you have an intertrochanteric fracture (the area below the femur neck), your surgeon will use a special metal ...

  1. Femur fracture repair - discharge

    MedlinePlus

    ... surgery, your surgeon will make a cut to open your fracture. Your surgeon will then use special metal devices to hold your bones in place while they heal. These devices are called ... is open reduction and internal fixation (ORIF). In the most ...

  2. Fracture design modelling

    SciTech Connect

    Crichlow, H.B.; Crichlow, H.B.

    1980-02-07

    A design tool is discussed whereby the various components that enter the design process of a hydraulic fracturing job are combined to provide a realistic appraisal of a stimulation job in the field. An interactive computer model is used to solve the problem numerically to obtain the effects of various parameters on the overall behavior of the system.

  3. Infiltration into Fractured Bedrock

    SciTech Connect

    Salve, Rohit; Ghezzehei, Teamrat A.; Jones, Robert

    2007-09-01

    One potential consequence of global climate change and rapid changes in land use is an increased risk of flooding. Proper understanding of floodwater infiltration thus becomes a crucial component of our preparedness to meet the environmental challenges of projected climate change. In this paper, we present the results of a long-term infiltration experiment performed on fractured ash flow tuff. Water was released from a 3 x 4 m{sup 2} infiltration plot (divided into 12 square subplots) with a head of {approx}0.04 m, over a period of {approx}800 days. This experiment revealed peculiar infiltration patterns not amenable to current infiltration models, which were originally developed for infiltration into soils over a short duration. In particular, we observed that in part of the infiltration plot, the infiltration rate abruptly increased a few weeks into the infiltration tests. We suggest that these anomalies result from increases in fracture permeability during infiltration, which may be caused by swelling of clay fillings and/or erosion of infill debris. Interaction of the infiltration water with subsurface natural cavities (lithophysal cavities) could also contribute to such anomalies. This paper provides a conceptual model that partly describes the observed infiltration patterns in fractured rock and highlights some of the pitfalls associated with direct extension of soil infiltration models to fractured rock over a long period.

  4. Statistical Physics of Fracture

    SciTech Connect

    Alava, Mikko; Nukala, Phani K; Zapperi, Stefano

    2006-05-01

    Disorder and long-range interactions are two of the key components that make material failure an interesting playfield for the application of statistical mechanics. The cornerstone in this respect has been lattice models of the fracture in which a network of elastic beams, bonds, or electrical fuses with random failure thresholds are subject to an increasing external load. These models describe on a qualitative level the failure processes of real, brittle, or quasi-brittle materials. This has been particularly important in solving the classical engineering problems of material strength: the size dependence of maximum stress and its sample-to-sample statistical fluctuations. At the same time, lattice models pose many new fundamental questions in statistical physics, such as the relation between fracture and phase transitions. Experimental results point out to the existence of an intriguing crackling noise in the acoustic emission and of self-affine fractals in the crack surface morphology. Recent advances in computer power have enabled considerable progress in the understanding of such models. Among these partly still controversial issues, are the scaling and size-effects in material strength and accumulated damage, the statistics of avalanches or bursts of microfailures, and the morphology of the crack surface. Here we present an overview of the results obtained with lattice models for fracture, highlighting the relations with statistical physics theories and more conventional fracture mechanics approaches.

  5. Bipartite patella fracture.

    PubMed

    Canizares, George H; Selesnick, F Harlan

    2003-02-01

    Bipartite patella fracture is an uncommon injury that has rarely been described in the literature. It can be quite debilitating in the competitive athlete and is often overlooked by the treating physician. A bone scan can be helpful in confirming the diagnosis, and appropriate treatment often results in a successful outcome.

  6. Dorsal radiocarpal fracture dislocation.

    PubMed

    Tanzer, T L; Horne, J G

    1980-11-01

    A case of a rare radiocarpal fracture dislocation in a 17-year-old girl, with persisting loss of radiocarpal joint space following reduction under hematoma block, is described. The wrist joint was exposed, and two osteochondral fragments were rotated 90 degrees and secured with 2.7-mm AO screws. Satisfactory healing followed 3 months postinjury.

  7. Dissolved and colloidal transport of cesium in natural discrete fractures.

    PubMed

    Tang, Xiang-Yu; Weisbrod, Noam

    2010-01-01

    Transport of cesium (Cs) was investigated in a saturated natural chalk fracture with an average equivalent hydraulic aperture of 129 microm. The results show that Cs (inflow concentration of 0.22 mmol L(-1)) can be transported in its dissolved form and in association with montmorillonite. Humic acid (HA) did not sorb Cs but enhanced colloid-associated Cs transport by 12.5% in terms of breakthrough curve (BTC) recovery. The BTCs clearly showed desorption of Cs from the fracture walls during the artificial rainwater (ARW)-injection period. Cesium transport associated with montmorillonite colloids was significant, with a maximum colloid-associated Cs C/C(0) (outflow-to-inflow concentration ratio) value of 16.6 +/- 1.1% during the tracer (colloids and LiBr)-injection period. However, the relative contribution of colloid-associated Cs transport to total Cs transport was relatively low, amounting to 10.3 +/- 0.7% and 14.5 +/- 0.7% with montmorillonite (500 mg L(-1)) and the montmorillonite-HA (10 mg L(-1)) mixture, respectively. Readsorption of Cs onto the colloids occurred immediately on switching from the tracer suspension to the background solution of ARW. The significant colloid-associated Cs transport, the stripping effect of Cs from colloids, and the slow desorption of Cs from fracture walls reported in this study have important implications for risk assessments of Cs mobility in fractured carbonatic rocks. PMID:20400602

  8. Designing a monitoring network for contaminated ground water in fractured chalk

    SciTech Connect

    Nativ, R.; Adar, E.M.; Becker, A.

    1999-01-01

    One of the challenges of monitoring network design in a fractured rock setting is the heterogeneity of the rocks. This paper summarizes the activities and problems associated with the monitoring of contaminated groundwater in porous, low-permeability fractured chalk in the Negev Desert, Israel. Preferential flow documented in the study area required siting the monitoring boreholes in the predominant fracture systems. Lineaments traced from aerial photographs were examined in the field to sort out the large-extension, through-going, multilayer fracture systems crossing the study area. At each proposed drilling site, these fractures were exposed below the sediment cover using trenches. Slanted boreholes were drilled at a distance from the fracture systems so that each borehole would intersect the targeted fracture plane below the water table. Based on their short recovery period and contaminated ground water, these newly drilled, fracture-oriented boreholes appeared to be better connected to preferential flowpaths crossing the industrial site than the old boreholes existing on site. Other considerations concerning the drilling and logging of monitoring boreholes in a fractured media were: (1) coring provides better documentation of the vertical fracture distribution, but dry augering is less costly and enables immediate ground water sampling and the sampling of vadose rock for contaminant analysis; (2) caliper and TV camera logs appear to provide only partial information regarding the vertical fracture distribution; and (3) the information gained by deepening the monitoring boreholes and testing fractures crossing their uncased walls has to be carefully weighed against the risk of potential cross-contamination through the monitoring boreholes, which is enhanced in fractured media.

  9. From the Archives of the AFIP. Pediatric orbit tumors and tumorlike lesions: osseous lesions of the orbit.

    PubMed

    Chung, Ellen M; Murphey, Mark D; Specht, Charles S; Cube, Regino; Smirniotopoulos, James G

    2008-01-01

    Many extraocular masses involving the pediatric orbit have an osseous origin. The most common is the dermoid inclusion cyst; these cystic lesions may contain lipid and are most often found near the zygomaticofrontal suture, adjacent to an indolent-appearing erosion of bone. Some primary bone lesions may involve the orbit, producing a lytic or dense lesion with enlargement of the bone; these lesions include fibrous dysplasia, juvenile ossifying fibroma, and osteosarcoma. Fibrous dysplasia tends to produce a mass of ground-glass appearance with longitudinal osseous expansion, whereas juvenile ossifying fibroma is likely to produce a mixed lytic and sclerotic lesion and focal osseous enlargement. Osteosarcoma causes marked bone destruction and variable osteoid production. Langerhans cell histiocytosis, an idiopathic reticuloendothelial proliferative disorder, tends to involve the bones of the skull, especially the lateral orbital roof; it produces lytic destruction of bone with a sclerotic rim and a large intraorbital soft-tissue mass. Granulocytic sarcoma is a solid tumor that may occur in children with myelogenous leukemia. These tumors tend to arise in the subperiosteum of the lateral orbital wall, although they usually do not disrupt the bone. Finally, the orbit is a common site for bone metastases from neuroblastoma, which cause aggressive periosteal reaction in the orbital roof or lateral wall. The last three conditions are often bilateral. At imaging evaluation, osseous lesions may appear similar to each other and to nonosseous masses of the orbit. Knowledge of the pathologic features of these tumors and how these features are reflected in their imaging appearances may help radiologists differentiate them.

  10. Modified Kocher-Langenbeck approach in combined surgical exposures for acetabular fractures management

    PubMed Central

    Magu, Narender Kumar; Rohilla, Rajesh; Singh, Amanpreet; Wadhwani, Jitendra

    2016-01-01

    Background: Displaced fractures of the acetabulum are best treated with anatomical reduction and rigid internal fixation. Adequate visualization of some acetabular fracture types may necessitate extensile or combined anterior and posterior approaches. Simultaneous anterior iliofemoral and posterior Kocher-Langenbeck (K-L) exposures with two surgical teams have also been described. To assess whether modified Kocher-Langenbeck (K-L) approach can substitute standard K-L approach in the management of elementary acetabular fractures other than the anterior wall and anterior column fractures and complement anterior surgical approaches in the management of complex acetabular fractures. Materials and Methods: 20 patients with transverse and associated acetabular fractures requiring posterior exposure were included in this prospective study. In 9 cases (7 transverse, 1 transverse with posterior wall, and 1 posterior column with posterior wall), stabilization was done through modified K-L approach. In 11 cases (3 transverse and 8 associated fractures), initial stabilization through iliofemoral approach was followed by modified K-L approach. Results: The average operative time was 183 min for combined approach and 84 min for modified K-L approach. The postoperative reduction was anatomical in 17 patients and imperfect in 3 patients. The radiological outcome was excellent in 15, good in 4, and poor in one patient. The clinical outcome was excellent in 15, good in 3 and fair and poor in 1 each according to modified Merle d’Aubigne and Postel scoring system. Conclusion: We believe that modified K-L approach may be a good alternative for the standard K-L approach in the management of elementary fractures and associated fractures of the acetabulum when combined with an anterior surgical approach. It makes the procedure less invasive, shortens the operative time, minimizes blood loss and overcomes the exhaustion and fatigue of the surgical team. PMID:27053812

  11. Entablature: fracture types and mechanisms

    NASA Astrophysics Data System (ADS)

    Forbes, A. E. S.; Blake, S.; Tuffen, H.

    2014-05-01

    Entablature is the term used to describe zones or tiers of irregular jointing in basaltic lava flows. It is thought to form when water from rivers dammed by the lava inundates the lava flow surface, and during lava-meltwater interaction in subglacial settings. A number of different fracture types are described in entablature outcrops from the Búrfell lava and older lava flows in Þjórsárdalur, southwest Iceland. These are: striae-bearing, column-bounding fractures and pseudopillow fracture systems that themselves consist of two different fracture types—master fractures with dimpled surface textures and subsidiary fractures with curved striae. The interaction of pseudopillow fracture systems and columnar jointing in the entablature produces the chevron fracture patterns that are commonly observed in entablature. Cube-jointing is a more densely fractured version of entablature, which likely forms when more coolant enters the hot lava. The entablature tiers display closely spaced striae and dendritic crystal shapes which indicate rapid cooling. Master fracture surfaces show a thin band with an evolved composition at the fracture surface; mineral textures in this band also show evidence of quenching of this material. This is interpreted as gas-driven filter pressing of late-stage residual melt that is drawn into an area of low pressure immediately preceding or during master fracture formation by ductile extensional fracture of hot, partially crystallised lava. This melt is then quenched by an influx of water and/or steam when the master fracture fully opens. Our findings suggest that master fractures are the main conduit for coolant entering the lava flow during entablature formation.

  12. Significance of the orbital floor in zygomatic injuries.

    PubMed

    Crewe, T C

    1978-08-01

    Fifty years after the publication of Harold Gillies' work, an assessment of zygomatic injuries is made, in the light of a half century of medical advances. Recent experience suggests that the fractured orbital floor is the commonest and most significant component of all zygomatic injuries. Exploration of 582 floors in the last 5 years revealed that over 20% had true blowout fractures, without damage to the orbital rim. A further 5% had torn periosteum with only minimal bony damage. Only two cases (0.3%) had fractures of the rim without a blown-out floor. The significance of floor damage is considered. This is usually more severe than expected. Even minimal damage--torn periosteum alone--may be followed by severe late sequelae, out of proportion to the magnitude of the apparent injury. If such sequelae develop late, their relationship to the injury is not suspected. The related soft tissues are very vulnerable. Vigorous manipulation of the malar (or maxilla in LeFort II injuries) does as much damage to them, as did the original trauma. Our therapy should be designed to protect these tissues during necessary manipulation.

  13. The Role of Resorbable Plate and Artificial Bone Substitute in Reconstruction of Large Orbital Floor Defect

    PubMed Central

    Kwon, Ho; Kim, Ho Jun; Jeong, Yeon Jin; Jung, Sung-No

    2016-01-01

    It is essential to reduce and reconstruct bony defects adequately in large orbital floor fracture and defect. Among many reconstructive methods, alloplastic materials have attracted attention because of their safety and ease of use. We have used resorbable plates combined with artificial bone substitutes in large orbital floor defect reconstructions and have evaluated their long-term reliability compared with porous polyethylene plate. A total of 147 patients with traumatic orbital floor fracture were included in the study. Surgical results were evaluated by clinical evaluations, exophthalmometry, and computed tomography at least 12 months postoperatively. Both orbital floor height discrepancy and orbital volume change were calculated and compared with preoperative CT findings. The average volume discrepancy and vertical height discrepancies were not different between two groups. Also, exophthalmometric measurements were not significantly different between the two groups. No significant postoperative complication including permanent diplopia, proptosis, and enophthalmos was noted. Use of a resorbable plate with an artificial bone substitute to repair orbital floor defects larger than 2.5 cm2 in size yielded long-lasting, effective reconstruction without significant complications. We therefore propose our approach as an effective alternative method for large orbital floor reconstructions. PMID:27517041

  14. The Role of Resorbable Plate and Artificial Bone Substitute in Reconstruction of Large Orbital Floor Defect.

    PubMed

    Kwon, Ho; Kim, Ho Jun; Seo, Bommie F; Jeong, Yeon Jin; Jung, Sung-No; Shim, Hyung-Sup

    2016-01-01

    It is essential to reduce and reconstruct bony defects adequately in large orbital floor fracture and defect. Among many reconstructive methods, alloplastic materials have attracted attention because of their safety and ease of use. We have used resorbable plates combined with artificial bone substitutes in large orbital floor defect reconstructions and have evaluated their long-term reliability compared with porous polyethylene plate. A total of 147 patients with traumatic orbital floor fracture were included in the study. Surgical results were evaluated by clinical evaluations, exophthalmometry, and computed tomography at least 12 months postoperatively. Both orbital floor height discrepancy and orbital volume change were calculated and compared with preoperative CT findings. The average volume discrepancy and vertical height discrepancies were not different between two groups. Also, exophthalmometric measurements were not significantly different between the two groups. No significant postoperative complication including permanent diplopia, proptosis, and enophthalmos was noted. Use of a resorbable plate with an artificial bone substitute to repair orbital floor defects larger than 2.5 cm(2) in size yielded long-lasting, effective reconstruction without significant complications. We therefore propose our approach as an effective alternative method for large orbital floor reconstructions. PMID:27517041

  15. Global Orbit Feedback in RHIC

    SciTech Connect

    Minty, M.; Hulsart, R.; Marusic, A.; Michnoff, R.; Ptitsyn, V.; Robert-Demolaize, G.; Satogata, T.

    2010-05-23

    For improved reproducibility of good operating conditions and ramp commissioning efficiency, new dual-plane slow orbit feedback during the energy ramp was implemented during run-10 in the Relativistic Heavy Ion Collider (RHIC). The orbit feedback is based on steering the measured orbit, after subtraction of the dispersive component, to either a design orbit or to a previously saved reference orbit. Using multiple correctors and beam position monitors, an SVD-based algorithm is used for determination of the applied corrections. The online model is used as a basis for matrix computations. In this report we describe the feedback design, review the changes made to realize its implementation, and assess system performance.

  16. Orbital maneuvers and space rendezvous

    NASA Astrophysics Data System (ADS)

    Butikov, Eugene I.

    2015-12-01

    Several possibilities of launching a space vehicle from the orbital station are considered and compared. Orbital maneuvers discussed in the paper can be useful in designing a trajectory for a specific space mission. The relative motion of orbiting bodies is investigated on examples of spacecraft rendezvous with the space station that stays in a circular orbit around the Earth. An elementary approach is illustrated by an accompanying simulation computer program and supported by a mathematical treatment based on fundamental laws of physics and conservation laws. Material is appropriate for engineers and other personnel involved in space exploration, undergraduate and graduate students studying classical physics and orbital mechanics.

  17. Three-Dimensional Analysis of Zygomatic-Maxillary Complex Fracture Patterns

    PubMed Central

    Pau, Candace Y.; Barrera, Jose E.; Kwon, Jaehwan; Most, Sam P.

    2010-01-01

    Zygomatic-maxillary (ZMC) complex fractures are a common consequence of facial trauma. In this retrospective study, we present a novel method of ZMC fracture pattern analysis, utilizing three-dimensional visualization of computed tomography (CT) images to record displacement of the malar eminence in a three-dimensional coordinate plane. The pattern of fracture was then correlated with treatment outcome. Facial CT scans were obtained from 29 patients with unilateral ZMC fractures and 30 subjects without fractures and analyzed. Briefly, displacement of the malar eminence (ME) on the fractured side was measured in medial-lateral (x), superior-inferior (y), and anterior-posterior (z) dimensions, as well as Euclidean distance, by comparison to ME location on the unfractured side. Baseline natural variance in asymmetry was accounted for by comparing ME location on the left and right sides in subjects without fractures. Patients who required open reduction and internal fixation (ORIF) to repair the ZMC fracture alone had significantly greater cumulative ME displacements than patients who did not require ORIF (p = 0.02). Additionally, patients with a high fracture score of 3, 4, or 5 (assigned based on severity displacement in each dimension) had significantly higher rates of ORIF than patients with a low fracture score of 0, 1, or 2 (p = 0.05). Severe displacement in one or more dimensions was associated with higher rates of ORIF than seen in patients with only neutral or mild displacements in all dimensions (p = 0.05). Severe x displacement was most strongly correlated with surgical intervention (p = 0.02). Overall, orbital floor repair was less strongly associated with most displacement measures than ZMC repair alone; however, patients requiring orbital floor repair had greater Euclidean ME displacements than patients who did not require orbital floor repair (p = 0.02). Fracture severity, as determined by multiple parameters in this novel evaluation

  18. [Pathogenesis of atypical femoral fracture].

    PubMed

    Iwata, Ken; Mashiba, Tasuku

    2016-01-01

    We demonstrated microdamage accumulation in the fracture sites in the patients of subtrochanteric atypical femoral fracture with long term bisphosphonate therapy and of incomplete shaft fracture of lateral femoral bowing without bisphosphonate therapy. Based on these findings, pathogenesis of atypical femoral fracture is revealed stress fracture caused by accumulation of microdamages between distal to the lesser trochanter and proximal to the supracondylar flare in the femur in association with severely suppressed bone turnover and/or abnormal lower limb alignment, that causes stress concentration on the lateral side cortex of the femur. PMID:26728533

  19. Tibial Stress Fractures in Athletes.

    PubMed

    Feldman, John J; Bowman, Eric N; Phillips, Barry B; Weinlein, John C

    2016-10-01

    Tibial stress fractures are common in the athlete. There are various causes of these fractures, the most common being a sudden increase in training intensity. Most of these injuries are treated conservatively; however, some may require operative intervention. Intervention is mostly dictated by location of the fracture and failure of conservative treatment. There are several surgical options available to the treating surgeon, each with advantages and disadvantages. The physician must understand the nature of the fracture and the likelihood for it to heal in a timely manner in order to best treat these fractures in this patient subset. PMID:27637660

  20. Measurement of Fracture Geometry for Accurate Computation of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Chae, B.; Ichikawa, Y.; Kim, Y.

    2003-12-01

    Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. Fracture roughness and aperture was observed by a new confocal laser scanning microscope (CLSM; Olympus OLS1100). The wavelength of laser is 488nm, and the laser scanning is managed by a light polarization method using two galvano-meter scanner mirrors. The system improves resolution in the light axis (namely z) direction because of the confocal optics. The sampling is managed in a spacing 2.5 μ m along x and y directions. The highest measurement resolution of z direction is 0.05 μ m, which is the more accurate than other methods. For the roughness measurements, core specimens of coarse and fine grained granites were provided. Measurements were performed along three scan lines on each fracture surface. The measured data were represented as 2-D and 3-D digital images showing detailed features of roughness. Spectral analyses by the fast Fourier transform (FFT) were performed to characterize on the roughness data quantitatively and to identify influential frequency of roughness. The FFT results showed that components of low frequencies were dominant in the fracture roughness. This study also verifies that spectral analysis is a good approach to understand complicate characteristics of fracture roughness. For the aperture measurements, digital images of the aperture were acquired under applying five stages of uniaxial normal stresses. This method can characterize the response of aperture directly using the same specimen. Results of measurements show that reduction values of aperture are different at each part due to rough geometry of fracture walls. Laboratory permeability tests were also conducted to evaluate changes of hydraulic conductivities related to aperture variation due to different stress levels. The results showed non-uniform reduction of hydraulic conductivity under increase of the normal stress and different values of