Sample records for orbiter camera narrow

  1. Lunar Reconnaissance Orbiter Camera (LROC) instrument overview

    USGS Publications Warehouse

    Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr, J.; Ravine, M.A.; Caplinger, M.A.; Ghaemi, F.T.; Schaffner, J.A.; Malin, M.C.; Mahanti, P.; Bartels, A.; Anderson, J.; Tran, T.N.; Eliason, E.M.; McEwen, A.S.; Turtle, E.; Jolliff, B.L.; Hiesinger, H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards.

  2. Ten-Meter Scale Topography and Roughness of Mars Exploration Rovers Landing Sites and Martian Polar Regions

    NASA Technical Reports Server (NTRS)

    Ivanov, Anton B.

    2003-01-01

    The Mars Orbiter Camera (MOC) has been operating on board of the Mars Global Surveyor (MGS) spacecraft since 1998. It consists of three cameras - Red and Blue Wide Angle cameras (FOV=140 deg.) and Narrow Angle camera (FOV=0.44 deg.). The Wide Angle camera allows surface resolution down to 230 m/pixel and the Narrow Angle camera - down to 1.5 m/pixel. This work is a continuation of the project, which we have reported previously. Since then we have refined and improved our stereo correlation algorithm and have processed many more stereo pairs. We will discuss results of our stereo pair analysis located in the Mars Exploration rovers (MER) landing sites and address feasibility of recovering topography from stereo pairs (especially in the polar regions), taken during MGS 'Relay-16' mode.

  3. Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Wagner, R. V.; Robinson, M. S.; Licht, A.; Thomas, P. C.; Becker, K.; Anderson, J.; Brylow, S. M.; Humm, D. C.; Tschimmel, M.

    2016-04-01

    The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90∘ field of view in monochrome mode and 60∘ field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.

  4. ARC-1986-A86-7024

    NASA Image and Video Library

    1986-01-24

    P-29508BW Range: 1.12 million kilometers (690,000 miles) This clear-filter view of the Uranian rings delta, gamma, eta, beta and alpha (from top) was taken with Voyager 2's narrow-angle camera and clearly illustrates the broad outer component and narrow inner component of the eta ring, which orbits Uranus at a radius of some 47,000 km (29,000 mi). The broad component is considerably more transparent than the dense, narrow inner eta component, as well as the other narrow rings shown. Resolution here is about 10 km (6 mi).

  5. Reflecting on Icy Rhea

    NASA Image and Video Library

    2009-11-03

    Bright sunlight on Rhea shows off the cratered surface of Saturn second largest moon in this image captured by NASA Cassini Orbiter. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Sept. 21, 2009.

  6. Inflight Calibration of the Lunar Reconnaissance Orbiter Camera Wide Angle Camera

    NASA Astrophysics Data System (ADS)

    Mahanti, P.; Humm, D. C.; Robinson, M. S.; Boyd, A. K.; Stelling, R.; Sato, H.; Denevi, B. W.; Braden, S. E.; Bowman-Cisneros, E.; Brylow, S. M.; Tschimmel, M.

    2016-04-01

    The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) has acquired more than 250,000 images of the illuminated lunar surface and over 190,000 observations of space and non-illuminated Moon since 1 January 2010. These images, along with images from the Narrow Angle Camera (NAC) and other Lunar Reconnaissance Orbiter instrument datasets are enabling new discoveries about the morphology, composition, and geologic/geochemical evolution of the Moon. Characterizing the inflight WAC system performance is crucial to scientific and exploration results. Pre-launch calibration of the WAC provided a baseline characterization that was critical for early targeting and analysis. Here we present an analysis of WAC performance from the inflight data. In the course of our analysis we compare and contrast with the pre-launch performance wherever possible and quantify the uncertainty related to various components of the calibration process. We document the absolute and relative radiometric calibration, point spread function, and scattered light sources and provide estimates of sources of uncertainty for spectral reflectance measurements of the Moon across a range of imaging conditions.

  7. Mapping the Apollo 17 landing site area based on Lunar Reconnaissance Orbiter Camera images and Apollo surface photography

    NASA Astrophysics Data System (ADS)

    Haase, I.; Oberst, J.; Scholten, F.; Wählisch, M.; Gläser, P.; Karachevtseva, I.; Robinson, M. S.

    2012-05-01

    Newly acquired high resolution Lunar Reconnaissance Orbiter Camera (LROC) images allow accurate determination of the coordinates of Apollo hardware, sampling stations, and photographic viewpoints. In particular, the positions from where the Apollo 17 astronauts recorded panoramic image series, at the so-called “traverse stations”, were precisely determined for traverse path reconstruction. We analyzed observations made in Apollo surface photography as well as orthorectified orbital images (0.5 m/pixel) and Digital Terrain Models (DTMs) (1.5 m/pixel and 100 m/pixel) derived from LROC Narrow Angle Camera (NAC) and Wide Angle Camera (WAC) images. Key features captured in the Apollo panoramic sequences were identified in LROC NAC orthoimages. Angular directions of these features were measured in the panoramic images and fitted to the NAC orthoimage by applying least squares techniques. As a result, we obtained the surface panoramic camera positions to within 50 cm. At the same time, the camera orientations, North azimuth angles and distances to nearby features of interest were also determined. Here, initial results are shown for traverse station 1 (northwest of Steno Crater) as well as the Apollo Lunar Surface Experiment Package (ALSEP) area.

  8. Acapulco, Mexico taken with electronic still camera

    NASA Image and Video Library

    1995-10-29

    STS073-E-5275 (3 Nov. 1995) --- Resort City of Acapulco appears in this north-looking view, photographed from the Earth-orbiting space shuttle Columbia with the Electronic Still Camera (ESC). The airport lies on a narrow neck of land between the sea and a large coastal lagoon. This mission marks the first time NASA has released in mid-flight electronically-downlinked color images that feature geographic subject matter.

  9. High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images

    USGS Publications Warehouse

    Kirk, R.L.; Howington-Kraus, E.; Redding, B.; Galuszka, D.; Hare, T.M.; Archinal, B.A.; Soderblom, L.A.; Barrett, J.M.

    2003-01-01

    We analyzed narrow-angle Mars Orbiter Camera (MOC-NA) images to produce high-resolution digital elevation models (DEMs) in order to provide topographic and slope information needed to assess the safety of candidate landing sites for the Mars Exploration Rovers (MER) and to assess the accuracy of our results by a variety of tests. The mapping techniques developed also support geoscientific studies and can be used with all present and planned Mars-orbiting scanner cameras. Photogrammetric analysis of MOC stereopairs yields DEMs with 3-pixel (typically 10 m) horizontal resolution, vertical precision consistent with ???0.22 pixel matching errors (typically a few meters), and slope errors of 1-3??. These DEMs are controlled to the Mars Orbiter Laser Altimeter (MOLA) global data set and consistent with it at the limits of resolution. Photoclinometry yields DEMs with single-pixel (typically ???3 m) horizontal resolution and submeter vertical precision. Where the surface albedo is uniform, the dominant error is 10-20% relative uncertainty in the amplitude of topography and slopes after "calibrating" photoclinometry against a stereo DEM to account for the influence of atmospheric haze. We mapped portions of seven candidate MER sites and the Mars Pathfinder site. Safety of the final four sites (Elysium, Gusev, Isidis, and Meridiani) was assessed by mission engineers by simulating landings on our DEMs of "hazard units" mapped in the sites, with results weighted by the probability of landing on those units; summary slope statistics show that most hazard units are smooth, with only small areas of etched terrain in Gusev crater posing a slope hazard.

  10. Flight Calibration of the LROC Narrow Angle Camera

    NASA Astrophysics Data System (ADS)

    Humm, D. C.; Tschimmel, M.; Brylow, S. M.; Mahanti, P.; Tran, T. N.; Braden, S. E.; Wiseman, S.; Danton, J.; Eliason, E. M.; Robinson, M. S.

    2016-04-01

    Characterization and calibration are vital for instrument commanding and image interpretation in remote sensing. The Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) takes 500 Mpixel greyscale images of lunar scenes at 0.5 meters/pixel. It uses two nominally identical line scan cameras for a larger crosstrack field of view. Stray light, spatial crosstalk, and nonlinearity were characterized using flight images of the Earth and the lunar limb. These are important for imaging shadowed craters, studying ˜1 meter size objects, and photometry respectively. Background, nonlinearity, and flatfield corrections have been implemented in the calibration pipeline. An eight-column pattern in the background is corrected. The detector is linear for DN = 600--2000 but a signal-dependent additive correction is required and applied for DN<600. A predictive model of detector temperature and dark level was developed to command dark level offset. This avoids images with a cutoff at DN=0 and minimizes quantization error in companding. Absolute radiometric calibration is derived from comparison of NAC images with ground-based images taken with the Robotic Lunar Observatory (ROLO) at much lower spatial resolution but with the same photometric angles.

  11. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera (LROC) data

    USGS Publications Warehouse

    Gustafson, J. Olaf; Bell, James F.; Gaddis, Lisa R.R.; Hawke, B. Ray Ray; Giguere, Thomas A.

    2012-01-01

    We used a Lunar Reconnaissance Orbiter Camera (LROC) global monochrome Wide-angle Camera (WAC) mosaic to conduct a survey of the Moon to search for previously unidentified pyroclastic deposits. Promising locations were examined in detail using LROC multispectral WAC mosaics, high-resolution LROC Narrow Angle Camera (NAC) images, and Clementine multispectral (ultraviolet-visible or UVVIS) data. Out of 47 potential deposits chosen for closer examination, 12 were selected as probable newly identified pyroclastic deposits. Potential pyroclastic deposits were generally found in settings similar to previously identified deposits, including areas within or near mare deposits adjacent to highlands, within floor-fractured craters, and along fissures in mare deposits. However, a significant new finding is the discovery of localized pyroclastic deposits within floor-fractured craters Anderson E and F on the lunar farside, isolated from other known similar deposits. Our search confirms that most major regional and localized low-albedo pyroclastic deposits have been identified on the Moon down to ~100 m/pix resolution, and that additional newly identified deposits are likely to be either isolated small deposits or additional portions of discontinuous, patchy deposits.

  12. In-Flight performance of MESSENGER's Mercury dual imaging system

    USGS Publications Warehouse

    Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.

    2009-01-01

    The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.

  13. Coordinates of anthropogenic features on the Moon

    NASA Astrophysics Data System (ADS)

    Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer, E. J.; Mazarico, E.

    2017-02-01

    High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates (<12 m) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.

  14. Coordinates of Anthropogenic Features on the Moon

    NASA Technical Reports Server (NTRS)

    Wagner, R. V.; Nelson, D. M.; Plescia, J. B.; Robinson, M. S.; Speyerer , E. J.; Mazarico, E.

    2016-01-01

    High-resolution images from the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) reveal the landing locations of recent and historic spacecraft and associated impact sites across the lunar surface. Using multiple images of each site acquired between 2009 and 2015, an improved Lunar Reconnaissance Orbiter (LRO) ephemeris, and a temperature-dependent camera orientation model, we derived accurate coordinates ( less than 12 meters) for each soft-landed spacecraft, rover, deployed scientific payload, and spacecraft impact crater that we have identified. Accurate coordinates enhance the scientific interpretations of data returned by the surface instruments and of returned samples of the Apollo and Luna sites. In addition, knowledge of the sizes and positions of craters formed as the result of impacting spacecraft provides key benchmarks into the relationship between energy and crater size, as well as calibration points for reanalyzing seismic measurements acquired during the Apollo program. We identified the impact craters for the three spacecraft that impacted the surface during the LRO mission by comparing before and after NAC images.

  15. Photogrammetric application of viking orbital photography

    USGS Publications Warehouse

    Wu, S.S.C.; Elassal, A.A.; Jordan, R.; Schafer, F.J.

    1982-01-01

    Special techniques are described for the photogrammetric compilation of topographic maps and profiles from stereoscopic photographs taken by the two Viking Orbiter spacecraft. These techniques were developed because the extremely narrow field of view of the Viking cameras precludes compilation by conventional photogrammetric methods. The techniques adjust for internal consistency the Supplementary Experiment Data Record (SEDR-the record of spacecraft orientation when photographs were taken) and the computation of geometric orientation parameters of the stereo models. A series of contour maps of Mars is being compiled by these new methods using a wide variety of Viking Orbiter photographs, to provide the planetary research community with topographic information. ?? 1982.

  16. Optical design of space cameras for automated rendezvous and docking systems

    NASA Astrophysics Data System (ADS)

    Zhu, X.

    2018-05-01

    Visible cameras are essential components of a space automated rendezvous and docking (AR and D) system, which is utilized in many space missions including crewed or robotic spaceship docking, on-orbit satellite servicing, autonomous landing and hazard avoidance. Cameras are ubiquitous devices in modern time with countless lens designs that focus on high resolution and color rendition. In comparison, space AR and D cameras, while are not required to have extreme high resolution and color rendition, impose some unique requirements on lenses. Fixed lenses with no moving parts and separated lenses for narrow and wide field-of-view (FOV) are normally used in order to meet high reliability requirement. Cemented lens elements are usually avoided due to wide temperature swing and outgassing requirement in space environment. The lenses should be designed with exceptional straylight performance and minimum lens flare given intense sun light and lacking of atmosphere scattering in space. Furthermore radiation resistant glasses should be considered to prevent glass darkening from space radiation. Neptec has designed and built a narrow FOV (NFOV) lens and a wide FOV (WFOV) lens for an AR and D visible camera system. The lenses are designed by using ZEMAX program; the straylight performance and the lens baffles are simulated by using TracePro program. This paper discusses general requirements for space AR and D camera lenses and the specific measures for lenses to meet the space environmental requirements.

  17. First NAC Image Obtained in Mercury Orbit

    NASA Image and Video Library

    2017-12-08

    NASA image acquired: March 29, 2011 This is the first image of Mercury taken from orbit with MESSENGER’s Narrow Angle Camera (NAC). MESSENGER’s camera system, the Mercury Dual Imaging System (MDIS), has two cameras: the Narrow Angle Camera and the Wide Angle Camera (WAC). Comparison of this image with MESSENGER’s first WAC image of the same region shows the substantial difference between the fields of view of the two cameras. At 1.5°, the field of view of the NAC is seven times smaller than the 10.5° field of view of the WAC. This image was taken using MDIS’s pivot. MDIS is mounted on a pivoting platform and is the only instrument in MESSENGER’s payload capable of movement independent of the spacecraft. The other instruments are fixed in place, and most point down the spacecraft’s boresight at all times, relying solely on the guidance and control system for pointing. The 90° range of motion of the pivot gives MDIS a much-needed extra degree of freedom, allowing MDIS to image the planet’s surface at times when spacecraft geometry would normally prevent it from doing so. The pivot also gives MDIS additional imaging opportunities by allowing it to view more of the surface than that at which the boresight-aligned instruments are pointed at any given time. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft ever to orbit the planet Mercury. The mission is currently in the commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  18. Cartography of the Luna-21 landing site and Lunokhod-2 traverse area based on Lunar Reconnaissance Orbiter Camera images and surface archive TV-panoramas

    NASA Astrophysics Data System (ADS)

    Karachevtseva, I. P.; Kozlova, N. A.; Kokhanov, A. A.; Zubarev, A. E.; Nadezhdina, I. E.; Patratiy, V. D.; Konopikhin, A. A.; Basilevsky, A. T.; Abdrakhimov, A. M.; Oberst, J.; Haase, I.; Jolliff, B. L.; Plescia, J. B.; Robinson, M. S.

    2017-02-01

    The Lunar Reconnaissance Orbiter Camera (LROC) system consists of a Wide Angle Camera (WAC) and Narrow Angle Camera (NAC). NAC images (∼0.5 to 1.7 m/pixel) reveal details of the Luna-21 landing site and Lunokhod-2 traverse area. We derived a Digital Elevation Model (DEM) and an orthomosaic for the study region using photogrammetric stereo processing techniques with NAC images. The DEM and mosaic allowed us to analyze the topography and morphology of the landing site area and to map the Lunokhod-2 rover route. The total range of topographic elevation along the traverse was found to be less than 144 m; and the rover encountered slopes of up to 20°. With the orthomosaic tied to the lunar reference frame, we derived coordinates of the Lunokhod-2 landing module and overnight stop points. We identified the exact rover route by following its tracks and determined its total length as 39.16 km, more than was estimated during the mission (37 km), which until recently was a distance record for planetary robotic rovers held for more than 40 years.

  19. Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.

    2009-12-01

    The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust fault scarps. In this presentation we review the geologic characteristics and context of these newly-identified, potentially tectonic landforms. The lengths and relief of some of these linear and curvilinear features are consistent with previously identified lobate scarps. Most of these features are in the highlands, though a few occur along the edges of mare and/or crater ejecta deposits. In many cases the resolution of the Metric Camera frames (~10 m/pix) is not adequate to unequivocally determine the origin of these features. Thus, to assess if the newly identified features have tectonic or other origins, we are examining them in higher-resolution Panoramic Camera (currently being scanned) and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera images [Watters et al., this meeting, 2009].

  20. Schiaparelli Crater Rim and Interior Deposits

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A portion of the rim and interior of the large impact crater Schiaparelli is seen at different resolutions in images acquired October 18, 1997 by the Mars Global Surveyor Orbiter Camera (MOC) and by the Viking Orbiter 1 twenty years earlier. The left image is a MOC wide angle camera 'context' image showing much of the eastern portion of the crater at roughly 1 km (0.6 mi) per picture element. The image is about 390 by 730 km (240 X 450 miles). Shown within the wide angle image is the outline of a portion of the best Viking image (center, 371S53), acquired at a resolution of about 240 m/pixel (790 feet). The area covered is 144 X 144 km (89 X 89 miles). The right image is the high resolution narrow angle camera view. The area covered is very small--3.9 X 10.2 km (2.4 X 6.33 mi)--but is seen at 63 times higher resolution than the Viking image. The subdued relief and bright surface are attributed to blanketing by dust; many small craters have been completely filled in, and only the most recent (and very small) craters appear sharp and bowl-shaped. Some of the small craters are only 10-12 m (30-35 feet) across. Occasional dark streaks on steeper slopes are small debris slides that have probably occurred in the past few decades. The two prominent, narrow ridges in the center of the image may be related to the adjustment of the crater floor to age or the weight of the material filling the basin.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. Olympus Mons in Color

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Sections of MOC images P024_01 and P024_02, shown here in color composite form, were acquired with the low resolution red and blue wide angle cameras over a 5 minute period starting when Mars Global Surveyor was at its closest point to the planet at the beginning of its 24th orbit (around 4:00 AM PDT on October 20, 1997). To make this image, a third component (green) was synthesized from the red and blue images. During the imaging period, the camera was pointed straight down towards the martian surface, 176 km (109 miles) below the spacecraft. During the time it took to acquire the image, the spacecraft rose to an altitude of 310 km (193 miles). Owing to data camera scanning rate and data volume constraints, the image was acquired at a resolution of roughly 1 km (0.609 mile) per pixel. The image shown here covers an area from 12o to 26o N latitude and 126o N to 138o W longitude. The image is oriented with north to the top.

    As has been noted in other MOC releases, Olympus Mons is the largest of the major Tharsis volcanoes, rising 25 km (15.5 miles) and stretching over nearly 550 km (340 miles) east-west. The summit caldera, a composite of as many as seven roughly circular collapse depressions, is 66 by 83 km (41 by 52 miles) across. Also seen in this image are water-ice clouds that accumulate around and above the volcano during the late afternoon (at the time the image was acquired, the summit was at 5:30 PM local solar time). To understand the value of orbital observations, compare this image with the two taken during approach (PIA00929 and PIA00936), that are representative of the best resolution from Earth.

    Through Monday, October 28, the MOC had acquired a total of 132 images, most of which were at low sun elevation angles. Of these images, 74 were taken with the high resolution narrow angle camera and 58 with the low resolution wide angle cameras. Twenty-eight narrow angle and 24 wide angle images were taken after the suspension of aerobraking. These images, including the one shown above, are among the best returned so far.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The original mission plan called for using friction with the planet's atmosphere to reduce the orbital energy, leading to a two-year mapping mission from close, circular orbit (beginning in March 1998). Owing to difficulties with one of the two solar panels, aerobraking was suspended in mid-October and is scheduled to resume in mid-November. Many of the original objectives of the mission, and in particular those of the camera, are likely to be accomplished as the mission progresses.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  2. Imaging experiment: The Viking Mars orbiter

    USGS Publications Warehouse

    Carr, M.H.; Baum, W.A.; Briggs, G.A.; Masursky, H.; Wise, D.W.; Montgomery, D.R.

    1972-01-01

    The general objectives of the Imaging Experiment on the Viking Orbiter are to aid the selection of Viking Lander sites, to map and monitor the chosen sites during lander operations, to aid in the selection of future landing sites, and to extend our knowledge of the planet. The imaging system consists of two identical vidicon cameras each attached to a 1026 mm T/8 telescope giving approximately 1?? square field of view. From an altitude of 1500 km the picture elements will be approximately 24m apart. The vidicon is coupled with an image intensifier which provides increased sensitivity and permits electronic shuttering and image motion compensation. A vidicon readout time of 2.24 sec enables pictures to be taken in rapid sequence for contiguous coverage at high resolution. The camera differs from those previously flown to Mars by providing contiguous coverage at high resolution on a single orbital pass, by having sufficient sensitivity to use narrow band color filters at maximum resolution, and by having response in the ultraviolet. These capabilities will be utelized to supplement lander observations and to extend our knowledge particularly of volcanic, erosional, and atmospheric phenomena on Mars. ?? 1972.

  3. Epimetheus Above the Rings

    NASA Image and Video Library

    2015-11-09

    Although Epimetheus appears to be lurking above the rings here, it's actually just an illusion resulting from the viewing angle. In reality, Epimetheus and the rings both orbit in Saturn's equatorial plane. Inner moons and rings orbit very near the equatorial plane of each of the four giant planets in our solar system, but more distant moons can have orbits wildly out of the equatorial plane. It has been theorized that the highly inclined orbits of the outer, distant moons are remnants of the random directions from which they approached the planets they orbit. This view looks toward the unilluminated side of the rings from about -0.3 degrees below the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 26, 2015. The view was obtained at a distance of approximately 500,000 miles (800,000 kilometers) from Epimetheus and at a Sun-Epimetheus-spacecraft, or phase, angle of 62 degrees. Image scale is 3 miles (5 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18342

  4. Reconditioning of Cassini Narrow-Angle Camera

    NASA Image and Video Library

    2002-07-23

    These five images of single stars, taken at different times with the narrow-angle camera on NASA Cassini spacecraft, show the effects of haze collecting on the camera optics, then successful removal of the haze by warming treatments.

  5. 4 Vesta in Color: High Resolution Mapping from Dawn Framing Camera Images

    NASA Technical Reports Server (NTRS)

    Reddy, V.; LeCorre, L.; Nathues, A.; Sierks, H.; Christensen, U.; Hoffmann, M.; Schroeder, S. E.; Vincent, J. B.; McSween, H. Y.; Denevi, B. W.; hide

    2011-01-01

    Rotational surface variations on asteroid 4 Vesta have been known from ground-based and HST observations, and they have been interpreted as evidence of compositional diversity. NASA s Dawn mission entered orbit around Vesta on July 16, 2011 for a year-long global characterization. The framing cameras (FC) onboard the Dawn spacecraft will image the asteroid in one clear (broad) and seven narrow band filters covering the wavelength range between 0.4-1.0 microns. We present color mapping results from the Dawn FC observations of Vesta obtained during Survey orbit (approx.3000 km) and High-Altitude Mapping Orbit (HAMO) (approx.950 km). Our aim is to create global color maps of Vesta using multi spectral FC images to identify the spatial extent of compositional units and link them with other available data sets to extract the basic mineralogy. While the VIR spectrometer onboard Dawn has higher spectral resolution (864 channels) allowing precise mineralogical assessment of Vesta s surface, the FC has three times higher spatial resolution in any given orbital phase. In an effort to extract maximum information from FC data we have developed algorithms using laboratory spectra of pyroxenes and HED meteorites to derive parameters associated with the 1-micron absorption band wing. These parameters will help map the global distribution of compositionally related units on Vesta s surface. Interpretation of these units will involve the integration of FC and VIR data.

  6. Photogrammetric Processing of Planetary Linear Pushbroom Images Based on Approximate Orthophotos

    NASA Astrophysics Data System (ADS)

    Geng, X.; Xu, Q.; Xing, S.; Hou, Y. F.; Lan, C. Z.; Zhang, J. J.

    2018-04-01

    It is still a great challenging task to efficiently produce planetary mapping products from orbital remote sensing images. There are many disadvantages in photogrammetric processing of planetary stereo images, such as lacking ground control information and informative features. Among which, image matching is the most difficult job in planetary photogrammetry. This paper designs a photogrammetric processing framework for planetary remote sensing images based on approximate orthophotos. Both tie points extraction for bundle adjustment and dense image matching for generating digital terrain model (DTM) are performed on approximate orthophotos. Since most of planetary remote sensing images are acquired by linear scanner cameras, we mainly deal with linear pushbroom images. In order to improve the computational efficiency of orthophotos generation and coordinates transformation, a fast back-projection algorithm of linear pushbroom images is introduced. Moreover, an iteratively refined DTM and orthophotos scheme was adopted in the DTM generation process, which is helpful to reduce search space of image matching and improve matching accuracy of conjugate points. With the advantages of approximate orthophotos, the matching results of planetary remote sensing images can be greatly improved. We tested the proposed approach with Mars Express (MEX) High Resolution Stereo Camera (HRSC) and Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) images. The preliminary experimental results demonstrate the feasibility of the proposed approach.

  7. Co-registration of Laser Altimeter Tracks with Digital Terrain Models and Applications in Planetary Science

    NASA Technical Reports Server (NTRS)

    Glaeser, P.; Haase, I.; Oberst, J.; Neumann, G. A.

    2013-01-01

    We have derived algorithms and techniques to precisely co-register laser altimeter profiles with gridded Digital Terrain Models (DTMs), typically derived from stereo images. The algorithm consists of an initial grid search followed by a least-squares matching and yields the translation parameters at sub-pixel level needed to align the DTM and the laser profiles in 3D space. This software tool was primarily developed and tested for co-registration of laser profiles from the Lunar Orbiter Laser Altimeter (LOLA) with DTMs derived from the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) stereo images. Data sets can be co-registered with positional accuracy between 0.13 m and several meters depending on the pixel resolution and amount of laser shots, where rough surfaces typically result in more accurate co-registrations. Residual heights of the data sets are as small as 0.18 m. The software can be used to identify instrument misalignment, orbit errors, pointing jitter, or problems associated with reference frames being used. Also, assessments of DTM effective resolutions can be obtained. From the correct position between the two data sets, comparisons of surface morphology and roughness can be made at laser footprint- or DTM pixel-level. The precise co-registration allows us to carry out joint analysis of the data sets and ultimately to derive merged high-quality data products. Examples of matching other planetary data sets, like LOLA with LRO Wide Angle Camera (WAC) DTMs or Mars Orbiter Laser Altimeter (MOLA) with stereo models from the High Resolution Stereo Camera (HRSC) as well as Mercury Laser Altimeter (MLA) with Mercury Dual Imaging System (MDIS) are shown to demonstrate the broad science applications of the software tool.

  8. Extracting accurate and precise topography from LROC narrow angle camera stereo observations

    NASA Astrophysics Data System (ADS)

    Henriksen, M. R.; Manheim, M. R.; Burns, K. N.; Seymour, P.; Speyerer, E. J.; Deran, A.; Boyd, A. K.; Howington-Kraus, E.; Rosiek, M. R.; Archinal, B. A.; Robinson, M. S.

    2017-02-01

    The Lunar Reconnaissance Orbiter Camera (LROC) includes two identical Narrow Angle Cameras (NAC) that each provide 0.5 to 2.0 m scale images of the lunar surface. Although not designed as a stereo system, LROC can acquire NAC stereo observations over two or more orbits using at least one off-nadir slew. Digital terrain models (DTMs) are generated from sets of stereo images and registered to profiles from the Lunar Orbiter Laser Altimeter (LOLA) to improve absolute accuracy. With current processing methods, DTMs have absolute accuracies better than the uncertainties of the LOLA profiles and relative vertical and horizontal precisions less than the pixel scale of the DTMs (2-5 m). We computed slope statistics from 81 highland and 31 mare DTMs across a range of baselines. For a baseline of 15 m the highland mean slope parameters are: median = 9.1°, mean = 11.0°, standard deviation = 7.0°. For the mare the mean slope parameters are: median = 3.5°, mean = 4.9°, standard deviation = 4.5°. The slope values for the highland terrain are steeper than previously reported, likely due to a bias in targeting of the NAC DTMs toward higher relief features in the highland terrain. Overlapping DTMs of single stereo sets were also combined to form larger area DTM mosaics that enable detailed characterization of large geomorphic features. From one DTM mosaic we mapped a large viscous flow related to the Orientale basin ejecta and estimated its thickness and volume to exceed 300 m and 500 km3, respectively. Despite its ∼3.8 billion year age the flow still exhibits unconfined margin slopes above 30°, in some cases exceeding the angle of repose, consistent with deposition of material rich in impact melt. We show that the NAC stereo pairs and derived DTMs represent an invaluable tool for science and exploration purposes. At this date about 2% of the lunar surface is imaged in high-resolution stereo, and continued acquisition of stereo observations will serve to strengthen our knowledge of the Moon and geologic processes that occur across all of the terrestrial planets.

  9. Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits

    NASA Astrophysics Data System (ADS)

    Krüger, T.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.

  10. Hellas as a Possible Site of Ancient Ice-Covered Lakes on Mars

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Wilhelms, Don E.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Based on topographic, morphologic, and stratigraphic evidence, we propose that ancient water-laid sediment is the dominant component of deposits within Hellas Planitia, Mars. Multiply layered sediment is manifested by alternating benches and scarps visible in Mars Orbiting Camera narrow-angle (MOC NA) images. Viking Orbiter camera and MOC NA images were used to map contacts and stratigraphically order the different materials units within Hellas. Mar's Orbiting Laser Altimeter (MOLA) data reveal that the contacts of these sedimentary units, as well as a number of scarps or other abrupt changes in landscape texture, trace contours of constant elevation for thousands of km, and in one case all around the basin. Channels, consensually interpreted to be cut by water, lead into the basin. MOLA results indicate that the area encompassed by greater Hellas' highest closed contour is nearly one-fifth that of the entire northern plains, making the Hellas 'drainage' area much larger than previously reported. If lakes formed under climatic conditions similar to the modern Martian climate, they would develop thick ice carapaces, then the lakes would eventually sublimate away. Two units within Hellas exhibit a reticulate or honeycomb pattern we speculate are impressions made by lake-lowered ice blocks grounding into initially soft mud.

  11. Hellas as a possible site of ancient ice-covered lakes on Mars

    USGS Publications Warehouse

    Moore, Johnnie N.; Wilhelms, D.E.

    2001-01-01

    Based on topographic, morphologic, and stratigraphic evidence, we propose that ancient water-laid sediment is the dominant component of deposits within Hellas Planitia, Mars. Multiple-layered sediment is manifested by alternating benches and scarps visible in Mars orbiting camera narrow-angle (MOC NA) images. Viking Orbiter camera and MOC NA images were used to map contacts and stratigraphically order the different materials units within Hellas. Mars orbiting laser altimeter (MOLA) data reveal that the contacts of these sedimentary units, as well as a number of scarps or other abrupt changes in landscape texture, trace contours of constant elevation for thousands of km, and in one case all around the basin. Channels, consensually interpreted to be cut by water, lead into the basin. MOLA results indicate that the area encompassed by greater Hellas' highest closed contour is nearly one-fifth that of the entire northern plains, making the Hellas "drainage" area much larger than previously reported. If lakes formed under climatic conditions similar to the modern Martian climate, they would develop thick ice carapaces, then the lakes would eventually sublimate away. Two units within Hellas exhibit a reticulate or honeycomb pattern, which we speculate are impressions made by lake-lowered ice blocks grounding into initially soft mud.

  12. Two Tiny Moons

    NASA Image and Video Library

    2016-10-03

    Two tiny moons of Saturn, almost lost amid the planet's enormous rings, are seen orbiting in this image. Pan, visible within the Encke Gap near lower-right, is in the process of overtaking the slower Atlas, visible at upper-left. All orbiting bodies, large and small, follow the same basic rules. In this case, Pan (17 miles or 28 kilometers across) orbits closer to Saturn than Atlas (19 miles or 30 kilometers across). According to the rules of planetary motion deduced by Johannes Kepler over 400 years ago, Pan orbits the planet faster than Atlas does. This view looks toward the sunlit side of the rings from about 39 degrees above the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 9, 2016. The view was acquired at a distance of approximately 3.4 million miles (5.5 million kilometers) from Atlas and at a Sun-Atlas-spacecraft, or phase, angle of 71 degrees. Image scale is 21 miles (33 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20501

  13. Mars Global Surveyor: 7 Years in Orbit!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 September 2004 Today, 12 September 2004, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) team celebrates 7 Earth years orbiting Mars. MGS first reached the red planet and performed its critical orbit insertion burn on 12 September 1997. Over the past 7 years, MOC has returned over 170,000 images; its narrow angle camera has covered about 4.5% of the surface, and its wide angle cameras have viewed 100% of the planet nearly everyday.

    At this time, MOC is not acquiring data because Mars is on the other side of the Sun relative to Earth. This period, known as Solar Conjunction, occurs about once every 26 months. During Solar Conjunction, no radio communications from spacecraft that are orbiting or have landed on Mars can be received. MOC was turned off on 7 September and is expected to resume operations on 25 September 2004, when Mars re-emerges from behind the Sun.

    The rotating color image of Mars shown here was compiled from MOC red and blue wide angle daily global images acquired exactly 1 Mars year ago on 26 October 2002 (Ls 86.4o). In other words, Mars today (12 September 2004) should look about the same as the view provided here. Presently, Mars is in very late northern spring, and the north polar cap has retreated almost to its summer configuration. Water ice clouds form each afternoon at this time of year over the large volcanoes in the Tharsis and Elysium regions. A discontinuous belt of clouds forms over the martian equator; it is most prominent north of the Valles Marineris trough system. In the southern hemisphere, it is late autumn and the giant Hellas Basin floor is nearly white with seasonal frost cover. The south polar cap is not visible, it is enveloped in seasonal darkness. The northern summer and southern winter seasons will begin on 20 September 2004.

  14. Thermal Effects on Camera Focal Length in Messenger Star Calibration and Orbital Imaging

    NASA Astrophysics Data System (ADS)

    Burmeister, S.; Elgner, S.; Preusker, F.; Stark, A.; Oberst, J.

    2018-04-01

    We analyse images taken by the MErcury Surface, Space ENviorment, GEochemistry, and Ranging (MESSENGER) spacecraft for the camera's thermal response in the harsh thermal environment near Mercury. Specifically, we study thermally induced variations in focal length of the Mercury Dual Imaging System (MDIS). Within the several hundreds of images of star fields, the Wide Angle Camera (WAC) typically captures up to 250 stars in one frame of the panchromatic channel. We measure star positions and relate these to the known star coordinates taken from the Tycho-2 catalogue. We solve for camera pointing, the focal length parameter and two non-symmetrical distortion parameters for each image. Using data from the temperature sensors on the camera focal plane we model a linear focal length function in the form of f(T) = A0 + A1 T. Next, we use images from MESSENGER's orbital mapping mission. We deal with large image blocks, typically used for the production of a high-resolution digital terrain models (DTM). We analyzed images from the combined quadrangles H03 and H07, a selected region, covered by approx. 10,600 images, in which we identified about 83,900 tiepoints. Using bundle block adjustments, we solved for the unknown coordinates of the control points, the pointing of the camera - as well as the camera's focal length. We then fit the above linear function with respect to the focal plane temperature. As a result, we find a complex response of the camera to thermal conditions of the spacecraft. To first order, we see a linear increase by approx. 0.0107 mm per degree temperature for the Narrow-Angle Camera (NAC). This is in agreement with the observed thermal response seen in images of the panchromatic channel of the WAC. Unfortunately, further comparisons of results from the two methods, both of which use different portions of the available image data, are limited. If leaving uncorrected, these effects may pose significant difficulties in the photogrammetric analysis, specifically these may be responsible for erroneous longwavelength trends in topographic models.

  15. Mars Orbiter Camera Views the 'Face on Mars' - Best View from Viking

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.

    The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.

    This Viking Orbiter image is one of the best Viking pictures of the area Cydonia where the 'Face' is located. Marked on the image are the 'footprint' of the high resolution (narrow angle) Mars Orbiter Camera image and the area seen in enlarged views (dashed box). See PIA01440-1442 for these images in raw and processed form.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  16. Recurring Lineae on Slopes at Hale Crater, Mars

    NASA Image and Video Library

    2015-09-28

    Dark, narrow streaks on Martian slopes such as these at Hale Crater are inferred to be formed by seasonal flow of water on contemporary Mars. The streaks are roughly the length of a football field. The imaging and topographical information in this processed, false-color view come from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. These dark features on the slopes are called "recurring slope lineae" or RSL. Planetary scientists using observations with the Compact Reconnaissance Imaging Spectrometer on the same orbiter detected hydrated salts on these slopes at Hale Crater, corroborating the hypothesis that the streaks are formed by briny liquid water. The image was produced by first creating a 3-D computer model (a digital terrain map) of the area based on stereo information from two HiRISE observations, and then draping a false-color image over the land-shape model. The vertical dimension is exaggerated by a factor of 1.5 compared to horizontal dimensions. The camera records brightness in three wavelength bands: infrared, red and blue-green. The draped image is one product from HiRISE observation ESP_03070_1440. http://photojournal.jpl.nasa.gov/catalog/PIA19916

  17. Alpha and Omega

    NASA Image and Video Library

    2017-11-27

    These two images illustrate just how far Cassini traveled to get to Saturn. On the left is one of the earliest images Cassini took of the ringed planet, captured during the long voyage from the inner solar system. On the right is one of Cassini's final images of Saturn, showing the site where the spacecraft would enter the atmosphere on the following day. In the left image, taken in 2001, about six months after the spacecraft passed Jupiter for a gravity assist flyby, the best view of Saturn using the spacecraft's high-resolution (narrow-angle) camera was on the order of what could be seen using the Earth-orbiting Hubble Space Telescope. At the end of the mission (at right), from close to Saturn, even the lower resolution (wide-angle) camera could capture just a tiny part of the planet. The left image looks toward Saturn from 20 degrees below the ring plane and was taken on July 13, 2001 in wavelengths of infrared light centered at 727 nanometers using the Cassini spacecraft narrow-angle camera. The view at right is centered on a point 6 degrees north of the equator and was taken in visible light using the wide-angle camera on Sept. 14, 2017. The view on the left was acquired at a distance of approximately 317 million miles (510 million kilometers) from Saturn. Image scale is about 1,900 miles (3,100 kilometers) per pixel. The view at right was acquired at a distance of approximately 360,000 miles (579,000 kilometers) from Saturn. Image scale is 22 miles (35 kilometers) per pixel. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21353

  18. LROC Stereo Observations

    NASA Astrophysics Data System (ADS)

    Beyer, Ross A.; Archinal, B.; Li, R.; Mattson, S.; Moratto, Z.; McEwen, A.; Oberst, J.; Robinson, M.

    2009-09-01

    The Lunar Reconnaissance Orbiter Camera (LROC) will obtain two types of multiple overlapping coverage to derive terrain models of the lunar surface. LROC has two Narrow Angle Cameras (NACs), working jointly to provide a wider (in the cross-track direction) field of view, as well as a Wide Angle Camera (WAC). LRO's orbit precesses, and the same target can be viewed at different solar azimuth and incidence angles providing the opportunity to acquire `photometric stereo' in addition to traditional `geometric stereo' data. Geometric stereo refers to images acquired by LROC with two observations at different times. They must have different emission angles to provide a stereo convergence angle such that the resultant images have enough parallax for a reasonable stereo solution. The lighting at the target must not be radically different. If shadows move substantially between observations, it is very difficult to correlate the images. The majority of NAC geometric stereo will be acquired with one nadir and one off-pointed image (20 degree roll). Alternatively, pairs can be obtained with two spacecraft rolls (one to the left and one to the right) providing a stereo convergence angle up to 40 degrees. Overlapping WAC images from adjacent orbits can be used to generate topography of near-global coverage at kilometer-scale effective spatial resolution. Photometric stereo refers to multiple-look observations of the same target under different lighting conditions. LROC will acquire at least three (ideally five) observations of a target. These observations should have near identical emission angles, but with varying solar azimuth and incidence angles. These types of images can be processed via various methods to derive single pixel resolution topography and surface albedo. The LROC team will produce some topographic models, but stereo data collection is focused on acquiring the highest quality data so that such models can be generated later.

  19. The soft gamma-ray detector (SGD) onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Goldwurm, Andrea; Hagino, Kouichi; Hayashi, Katsuhiro; Ichinohe, Yuto; Kataoka, Jun; Katsuta, Junichiro; Kitaguchi, Takao; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakano, Toshio; Nakazawa, Kazuhiro; Noda, Hirofumu; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shinya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2016-07-01

    The Soft Gamma-ray Detector (SGD) is one of science instruments onboard ASTRO-H (Hitomi) and features a wide energy band of 60{600 keV with low backgrounds. SGD is an instrument with a novel concept of "Narrow field-of-view" Compton camera where Compton kinematics is utilized to reject backgrounds which are inconsistent with the field-of-view defined by the active shield. After several years of developments, the flight hardware was fabricated and subjected to subsystem tests and satellite system tests. After a successful ASTRO-H (Hitomi) launch on February 17, 2016 and a critical phase operation of satellite and SGD in-orbit commissioning, the SGD operation was moved to the nominal observation mode on March 24, 2016. The Compton cameras and BGO-APD shields of SGD worked properly as designed. On March 25, 2016, the Crab nebula observation was performed, and, the observation data was successfully obtained.

  20. Two-Camera Acquisition and Tracking of a Flying Target

    NASA Technical Reports Server (NTRS)

    Biswas, Abhijit; Assad, Christopher; Kovalik, Joseph M.; Pain, Bedabrata; Wrigley, Chris J.; Twiss, Peter

    2008-01-01

    A method and apparatus have been developed to solve the problem of automated acquisition and tracking, from a location on the ground, of a luminous moving target in the sky. The method involves the use of two electronic cameras: (1) a stationary camera having a wide field of view, positioned and oriented to image the entire sky; and (2) a camera that has a much narrower field of view (a few degrees wide) and is mounted on a two-axis gimbal. The wide-field-of-view stationary camera is used to initially identify the target against the background sky. So that the approximate position of the target can be determined, pixel locations on the image-detector plane in the stationary camera are calibrated with respect to azimuth and elevation. The approximate target position is used to initially aim the gimballed narrow-field-of-view camera in the approximate direction of the target. Next, the narrow-field-of view camera locks onto the target image, and thereafter the gimbals are actuated as needed to maintain lock and thereby track the target with precision greater than that attainable by use of the stationary camera.

  1. Performance Characteristics For The Orbiter Camera Payload System's Large Format Camera (LFC)

    NASA Astrophysics Data System (ADS)

    MoIIberg, Bernard H.

    1981-11-01

    The Orbiter Camera Payload System, the OCPS, is an integrated photographic system which is carried into Earth orbit as a payload in the Shuttle Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC) which is a precision wide-angle cartographic instrument that is capable of produc-ing high resolution stereophotography of great geometric fidelity in multiple base to height ratios. The primary design objective for the LFC was to maximize all system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment.

  2. Up Close to Mimas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    During its approach to Mimas on Aug. 2, 2005, the Cassini spacecraft narrow-angle camera obtained multi-spectral views of the moon from a range of 228,000 kilometers (142,500 miles).

    This image is a narrow angle clear-filter image which was processed to enhance the contrast in brightness and sharpness of visible features.

    Herschel crater, a 140-kilometer-wide (88-mile) impact feature with a prominent central peak, is visible in the upper right of this image.

    This image was obtained when the Cassini spacecraft was above 25 degrees south, 134 degrees west latitude and longitude. The Sun-Mimas-spacecraft angle was 45 degrees and north is at the top.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  3. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry

    2015-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well to help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  4. Small Orbital Stereo Tracking Camera Technology Development

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; MacLeod, Todd; Gagliano, Larry

    2016-01-01

    On-Orbit Small Debris Tracking and Characterization is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crew. This poses a major risk of MOD damage to ISS and Exploration vehicles. In 2015 this technology was added to NASA's Office of Chief Technologist roadmap. For missions flying in or assembled in or staging from LEO, the physical threat to vehicle and crew is needed in order to properly design the proper level of MOD impact shielding and proper mission design restrictions. Need to verify debris flux and size population versus ground RADAR tracking. Use of ISS for In-Situ Orbital Debris Tracking development provides attitude, power, data and orbital access without a dedicated spacecraft or restricted operations on-board a host vehicle as a secondary payload. Sensor Applicable to in-situ measuring orbital debris in flux and population in other orbits or on other vehicles. Could enhance safety on and around ISS. Some technologies extensible to monitoring of extraterrestrial debris as well To help accomplish this, new technologies must be developed quickly. The Small Orbital Stereo Tracking Camera is one such up and coming technology. It consists of flying a pair of intensified megapixel telephoto cameras to evaluate Orbital Debris (OD) monitoring in proximity of International Space Station. It will demonstrate on-orbit optical tracking (in situ) of various sized objects versus ground RADAR tracking and small OD models. The cameras are based on Flight Proven Advanced Video Guidance Sensor pixel to spot algorithms (Orbital Express) and military targeting cameras. And by using twin cameras we can provide Stereo images for ranging & mission redundancy. When pointed into the orbital velocity vector (RAM), objects approaching or near the stereo camera set can be differentiated from the stars moving upward in background.

  5. Janus Stands Alone

    NASA Image and Video Library

    2015-05-18

    Although Janus should be the least lonely of all moons -- sharing its orbit with Epimetheus -- it still spends most of its orbit far from other moons, alone in the vastness of space. Janus (111 miles or 179 kilometers across) and Epimetheus have the same average distance from Saturn, but they take turns being a little closer or a little farther from Saturn, swapping positions approximately every 4 years. See PIA08348 for more. This view looks toward the sunlit side of the rings from about 19 degrees above the ringplane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Feb. 4, 2015. The view was acquired at a distance of approximately 1.6 million miles (2.5 million kilometers) from Janus and at a Sun-Janus-spacecraft, or phase, angle of 91 degrees. Image scale is 9 miles (15 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18315

  6. Characterization of the UV detector of Solar Orbiter/Metis

    NASA Astrophysics Data System (ADS)

    Uslenghi, Michela; Schühle, Udo H.; Teriaca, Luca; Heerlein, Klaus; Werner, Stephan

    2017-08-01

    Metis, one of the instruments of the ESA mission Solar Orbiter (to be launched in February 2019), is a coronograph able to perform broadband polarization imaging in the visible range (580-640 nm), and narrow band imaging in UV (HI Lyman-α 121.6 nm) . The detector of the UV channel is an intensified camera, based on a Star-1000 rad-hard CMOS APS coupled via a 2:1 fiber optic taper to a single stage Microchannel Plate intensifier, sealed with an entrance MgF2 window and provided with an opaque KBr photocathode. Before integration in the instrument, the UVDA (UV Detector Assembly) Flight Model has been characterized at the MPS laboratory and calibrated in the UV range using the detector calibration beamline of the Metrology Light Source synchrotron of the Physikalisch-Technische Bundesanstalt (PTB). Linearity, spectral calibration, and response uniformity at 121.6 nm have been measured. Preliminary results are reported in this paper.

  7. Solar Conjunction Ends: Nirgal Vallis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    28 September 2004 For the past several weeks, Mars was on the other side of the Sun relative to Earth. During this period, known as solar conjunction, radio communication with spacecraft orbiting and roving on Mars was limited. As is always done during solar conjunction, on 7 September 2004, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) was turned off. On Saturday, 25 September 2004, the MOC team gathered at Malin Space Science Systems to command the instrument to turn back on again. After a successful turn-on, MOC acquired its first narrow angle camera image, shown here, on orbit 24808 (24,808th orbit since the start of the Mapping phase of the MGS mission in March 1999).

    The 25 September image shows a portion of Nirgal Vallis, an ancient valley system in the Mare Erythraeum region of Mars. The valley floor is covered by large, ripple-like bedforms created by wind. This early southern winter image is located near 27.4oS, 42.9oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

    This was the 4th solar conjunction period that MGS and MOC have been through since the spacecraft reached the red planet in September 1997. The four solar conjunction periods, where MOC was turned off, were:

    First solar conjunction: 29 April - 1 June 1998 Second solar conjunction: 22 June - 12 July 2000 Third solar conjunction: 1 August - 18 August 2002 Fourth solar conjunction: 7 September - 25 September 2004.

    In late October, MGS MOC will mark the start of its fourth Mars year since the beginning of the Mapping Phase of the mission in March 1999. MGS and MOC have already been orbiting Mars for more than 4 Mars years, including the pre-Mapping aerobrake and science phasing orbit insertion periods.

  8. Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Tschimmel, M.; Robinson, M. S.; Humm, D. C.; Denevi, B. W.; Lawrence, S. J.; Brylow, S.; Ravine, M.; Ghaemi, T.

    2008-12-01

    The Lunar Reconnaissance Orbiter Camera (LROC) onboard the NASA Lunar Reconnaissance Orbiter (LRO) spacecraft consists of three cameras: the Wide-Angle Camera (WAC) and two identical Narrow Angle Cameras (NAC-L, NAC-R). The WAC is push-frame imager with 5 visible wavelength filters (415 to 680 nm) at a spatial resolution of 100 m/pixel and 2 UV filters (315 and 360 nm) with a resolution of 400 m/pixel. In addition to the multicolor imaging the WAC can operate in monochrome mode to provide a global large- incidence angle basemap and a time-lapse movie of the illumination conditions at both poles. The WAC has a highly linear response, a read noise of 72 e- and a full well capacity of 47,200 e-. The signal-to-noise ratio in each band is 140 in the worst case. There are no out-of-band leaks and the spectral response of each filter is well characterized. Each NAC is a monochrome pushbroom scanner, providing images with a resolution of 50 cm/pixel from a 50-km orbit. A single NAC image has a swath width of 2.5 km and a length of up to 26 km. The NACs are mounted to acquire side-by-side imaging for a combined swath width of 5 km. The NAC is designed to fully characterize future human and robotic landing sites in terms of topography and hazard risks. The North and South poles will be mapped on a 1-meter-scale poleward of 85.5° latitude. Stereo coverage can be provided by pointing the NACs off-nadir. The NACs are also highly linear. Read noise is 71 e- for NAC-L and 74 e- for NAC-R and the full well capacity is 248,500 e- for NAC-L and 262,500 e- for NAC- R. The focal lengths are 699.6 mm for NAC-L and 701.6 mm for NAC-R; the system MTF is 28% for NAC-L and 26% for NAC-R. The signal-to-noise ratio is at least 46 (terminator scene) and can be higher than 200 (high sun scene). Both NACs exhibit a straylight feature, which is caused by out-of-field sources and is of a magnitude of 1-3%. However, as this feature is well understood it can be greatly reduced during ground processing. All three cameras were calibrated in the laboratory under ambient conditions. Future thermal vacuum tests will characterize critical behaviors across the full range of lunar operating temperatures. In-flight tests will check for changes in response after launch and provide key data for meeting the requirements of 1% relative and 10% absolute radiometric calibration.

  9. Editorial Introduction: Lunar Reconnaissance Orbiter, Part II

    NASA Technical Reports Server (NTRS)

    Petro, Noah E.; Keller, John W.; Gaddis, Lisa R.

    2016-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission has shifted our understanding of the history of the Moon. The seven instruments on LRO each have contributed to creating new paradigms for the evolution of the Moon by providing unprecedented measurements of the surface, subsurface, and lunar environment. In this second volume of the LRO Special Issue, we present 21 papers from a broad range of the areas of investigation from LRO, from the volatile inventory, to the shape of the Moon's surface, to its rich volcanic history, and the interactions between the lunar surface and the space environment. These themes provide rich science for the instrument teams, as well as for the broader science com- munity who continue to use the LRO data in their research. Each paper uses publicly available data from one or more instruments on LRO, illustrating the value of a robust spacecraft. For example, the production of high-resolution topographic data products from the LRO Camera Narrow Angle Camera (Henriksen et al., pp. 122-137, this issue) rely on the accurate geodetic grid produced by the LOLA instrument (Mao et al., pp. 55-69, this issue; Smith et al., pp. 70-91, this issue). Additionally, analysis of LRO data coupled with other spacecraft data, such as LADEE (Hurley et al., pp. 31-37, this issue) and GRAIL (e.g., Jozwiak et al., pp. 224-231, this issue) illustrate the utility of merging not only data from multiple instruments, but also multiple orbital platforms. These synergistic studies show the value of the inter-team approach adopted by the LRO mission. This second volume represents the culmination of an extensive effort to highlight the high-quality science still being produced by the LRO instrument teams, even after more than seven years in orbit at the Moon.

  10. Geomorphometric multi-scale analysis for the recognition of Moon surface features using multi-resolution DTMs

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Jianping; Sofia, Giulia; Tarolli, Paolo

    2014-05-01

    Moon surface features have great significance in understanding and reconstructing the lunar geological evolution. Linear structures like rilles and ridges are closely related to the internal forced tectonic movement. The craters widely distributed on the moon are also the key research targets for external forced geological evolution. The extremely rare availability of samples and the difficulty for field works make remote sensing the most important approach for planetary studies. New and advanced lunar probes launched by China, U.S., Japan and India provide nowadays a lot of high-quality data, especially in the form of high-resolution Digital Terrain Models (DTMs), bringing new opportunities and challenges for feature extraction on the moon. The aim of this study is to recognize and extract lunar features using geomorphometric analysis based on multi-scale parameters and multi-resolution DTMs. The considered digital datasets include CE1-LAM (Chang'E One, Laser AltiMeter) data with resolution of 500m/pix, LRO-WAC (Lunar Reconnaissance Orbiter, Wide Angle Camera) data with resolution of 100m/pix, LRO-LOLA (Lunar Reconnaissance Orbiter, Lunar Orbiter Laser Altimeter) data with resolution of 60m/pix, and LRO-NAC (Lunar Reconnaissance Orbiter, Narrow Angle Camera) data with resolution of 2-5m/pix. We considered surface derivatives to recognize the linear structures including Rilles and Ridges. Different window scales and thresholds for are considered for feature extraction. We also calculated the roughness index to identify the erosion/deposits area within craters. The results underline the suitability of the adopted methods for feature recognition on the moon surface. The roughness index is found to be a useful tool to distinguish new craters, with higher roughness, from the old craters, which present a smooth and less rough surface.

  11. Lunar Reconnaissance Orbiter Data Enable Science and Terrain Analysis of Potential Landing Sites in South Pole-Aitken Basin

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.

    2017-12-01

    Exploring the South Pole-Aitken basin (SPA), one of the key unsampled geologic terranes on the Moon, is a high priority for Solar System science. As the largest and oldest recognizable impact basin on the Moon, it anchors the heavy bombardment chronology. It is thus a key target for sample return to better understand the impact flux in the Solar System between formation of the Moon and 3.9 Ga when Imbrium, one of the last of the great lunar impact basins, formed. Exploration of SPA has implications for understanding early habitable environments on the terrestrial planets. Global mineralogical and compositional data exist from the Clementine UV-VIS camera, the Lunar Prospector Gamma Ray Spectrometer, the Moon Mineralogy Mapper (M3) on Chandrayaan-1, the Chang'E-1 Imaging Interferometer, the spectral suite on SELENE, and the Lunar Reconnaissance Orbiter Cameras (LROC) Wide Angle Camera (WAC) and Diviner thermal radiometer. Integration of data sets enables synergistic assessment of geology and distribution of units across multiple spatial scales. Mineralogical assessment using hyperspectral data indicates spatial relationships with mineralogical signatures, e.g., central peaks of complex craters, consistent with inferred SPA basin structure and melt differentiation (Moriarty & Pieters, 2015, JGR-P 118). Delineation of mare, cryptomare, and nonmare surfaces is key to interpreting compositional mixing in the formation of SPA regolith to interpret remotely sensed data, and for scientific assessment of landing sites. LROC Narrow Angle Camera (NAC) images show the location and distribution of >0.5 m boulders and fresh craters that constitute the main threats to automated landers and thus provide critical information for landing site assessment and planning. NAC images suitable for geometric stereo derivation and digital terrain models so derived, controlled with Lunar Orbiter Laser Altimeter (LOLA) data, and oblique NAC images made with large slews of the spacecraft, are crucial to both scientific and landing-site assessments. These images, however, require favorable illumination and significant spacecraft resources. Thus they make up only a small percentage of all of the images taken. It is essential for future exploration to support LRO continued operation for these critical datasets.

  12. Prometheus and Pandora

    NASA Image and Video Library

    2004-04-15

    Cassini has sighted Prometheus and Pandora, the two F-ring-shepherding moons whose unpredictable orbits both fascinate scientists and wreak havoc on the F ring. Prometheus (102 kilometers, or 63 miles across) is visible left of center in the image, inside the F ring. Pandora (84 kilometers, or 52 miles across) appears above center, outside the ring. The dark shadow cast by the planet stretches more than halfway across the A ring, the outermost main ring. The mottled pattern appearing in the dark regions of the image is 'noise' in the signal recorded by the camera system, which has subsequently been magnified by the image processing. The F ring is a narrow, ribbon-like structure, with a width seen in this geometry equivalent to a few kilometers. The two small, irregularly shaped moons exert a gravitational influence on particles that make up the F ring, confining it and possibly leading to the formation of clumps, strands and other structures observed there. Pandora prevents the F ring from spreading outward and Prometheus prevents it from spreading inward. However, their interaction with the ring is complex and not fully understood. The shepherds are also known to be responsible for many of the observed structures in Saturn's A ring. The moons, which were discovered in images returned by the Voyager 1 spacecraft in 1980, are in chaotic orbits--their orbits can change unpredictably when the moons get very close to each other. This strange behavior was first noticed in ground-based and Hubble Space Telescope observations in 1995, when the rings were seen nearly edge-on from Earth and the usual glare of the rings was reduced, making the satellites more readily visible than usual. The positions of both satellites at that time were different than expected based on Voyager data. One of the goals for the Cassini-Huygens mission is to derive more precise orbits for Prometheus and Pandora. Seeing how their orbits change over the duration of the mission will help to determine their masses, which in turn will help constrain models of their interiors and provide a more complete understanding of their effect on the rings. This narrow angle camera image was snapped through the broadband green spectral filter, centered at 568 nanometers, on March 10, 2004, when the spacecraft was 55.5 million kilometers (34.5 million miles) from the planet. Image scale is approximately 333 kilometers (207 miles) per pixel. Contrast has been greatly enhanced, and the image has been magnified to aid visibility of the moons as well as structure in the rings. http://photojournal.jpl.nasa.gov/catalog/PIA05387

  13. Feasibility evaluation and study of adapting the attitude reference system to the Orbiter camera payload system's large format camera

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A design concept that will implement a mapping capability for the Orbital Camera Payload System (OCPS) when ground control points are not available is discussed. Through the use of stellar imagery collected by a pair of cameras whose optical axis are structurally related to the large format camera optical axis, such pointing information is made available.

  14. Image quality enhancement method for on-orbit remote sensing cameras using invariable modulation transfer function.

    PubMed

    Li, Jin; Liu, Zilong

    2017-07-24

    Remote sensing cameras in the visible/near infrared range are essential tools in Earth-observation, deep-space exploration, and celestial navigation. Their imaging performance, i.e. image quality here, directly determines the target-observation performance of a spacecraft, and even the successful completion of a space mission. Unfortunately, the camera itself, such as a optical system, a image sensor, and a electronic system, limits the on-orbit imaging performance. Here, we demonstrate an on-orbit high-resolution imaging method based on the invariable modulation transfer function (IMTF) of cameras. The IMTF, which is stable and invariable to the changing of ground targets, atmosphere, and environment on orbit or on the ground, depending on the camera itself, is extracted using a pixel optical focal-plane (PFP). The PFP produces multiple spatial frequency targets, which are used to calculate the IMTF at different frequencies. The resulting IMTF in combination with a constrained least-squares filter compensates for the IMTF, which represents the removal of the imaging effects limited by the camera itself. This method is experimentally confirmed. Experiments on an on-orbit panchromatic camera indicate that the proposed method increases 6.5 times of the average gradient, 3.3 times of the edge intensity, and 1.56 times of the MTF value compared to the case when IMTF is not used. This opens a door to push the limitation of a camera itself, enabling high-resolution on-orbit optical imaging.

  15. Calibration of the venµs super-spectral camera

    NASA Astrophysics Data System (ADS)

    Topaz, Jeremy; Sprecher, Tuvia; Tinto, Francesc; Echeto, Pierre; Hagolle, Olivier

    2017-11-01

    A high-resolution super-spectral camera is being developed by Elbit Systems in Israel for the joint CNES- Israel Space Agency satellite, VENμS (Vegetation and Environment monitoring on a new Micro-Satellite). This camera will have 12 narrow spectral bands in the Visible/NIR region and will give images with 5.3 m resolution from an altitude of 720 km, with an orbit which allows a two-day revisit interval for a number of selected sites distributed over some two-thirds of the earth's surface. The swath width will be 27 km at this altitude. To ensure the high radiometric and geometric accuracy needed to fully exploit such multiple data sampling, careful attention is given in the design to maximize characteristics such as signal-to-noise ratio (SNR), spectral band accuracy, stray light rejection, inter- band pixel-to-pixel registration, etc. For the same reasons, accurate calibration of all the principle characteristics is essential, and this presents some major challenges. The methods planned to achieve the required level of calibration are presented following a brief description of the system design. A fuller description of the system design is given in [2], [3] and [4].

  16. ARC-1989-A89-7004

    NASA Image and Video Library

    1989-08-19

    Range : 8.6 million kilometers (5.3 million miles) The Voyager took this 61 second exposure through the clear filter with the narrow angle camera of Neptune. The Voyager cameras were programmed to make a systematic search for faint ring arcs and new satellites. The bright upper corner of the image is due to a residual image from a previous long exposure of the planet. The portion of the arc visible here is approximately 35 degrees in longitudinal extent, making it approximately 38,000 kilometers (24,000 miles) in length, and is broken up into three segments separated from each other by approximately 5 degrees. The trailing edge is at the upper right and has an abrupt end while the leading edge seems to fade into the background more gradually. This arc orbits very close to one of the newly discovered Neptune satellites, 1989N4. Close-up studies of this ring arc will be carried out in the coming days which will give higher spatial resolution at different lighting angles. (JPL Ref: P-34617)

  17. CONSTRUCTION OF A SMALL AUTOMATED CORONAGRAPH FOR OBSERVATIONS OF THE LUNAR Na EXOSPHERE

    NASA Astrophysics Data System (ADS)

    Tucker, Roy; Morgan, T. H.; Killen, R. M.

    2013-10-01

    We report on the final optical and mechanical design and the construction and initial testing of a small coronagraph at the Winer Observatory, near Sonoita, Arizona. The coronagraph includes a narrow band filter and low-light level camera to observe lunar exospheric sodium in the resonance lines of that element near 590 nm. Without the use of a coronagraph, the signal from sodium would be lost against light scattered by the Earth’s atmosphere and scattered light in the telescope. The design uses Commercial Off the Shelf Technology (COTS), and our goal is to obtain observations while the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission is still in orbit.

  18. The Orbiter camera payload system's large-format camera and attitude reference system

    NASA Technical Reports Server (NTRS)

    Schardt, B. B.; Mollberg, B. H.

    1985-01-01

    The Orbiter camera payload system (OCPS) is an integrated photographic system carried into earth orbit as a payload in the Space Transportation System (STS) Orbiter vehicle's cargo bay. The major component of the OCPS is a large-format camera (LFC), a precision wide-angle cartographic instrument capable of producing high-resolution stereophotography of great geometric fidelity in multiple base-to-height ratios. A secondary and supporting system to the LFC is the attitude reference system (ARS), a dual-lens stellar camera array (SCA) and camera support structure. The SCA is a 70 mm film system that is rigidly mounted to the LFC lens support structure and, through the simultaneous acquisition of two star fields with each earth viewing LFC frame, makes it possible to precisely determine the pointing of the LFC optical axis with reference to the earth nadir point. Other components complete the current OCPS configuration as a high-precision cartographic data acquisition system. The primary design objective for the OCPS was to maximize system performance characteristics while maintaining a high level of reliability compatible with rocket launch conditions and the on-orbit environment. The full OCPS configuration was launched on a highly successful maiden voyage aboard the STS Orbiter vehicle Challenger on Oct. 5, 1984, as a major payload aboard the STS-41G mission.

  19. High-Resolution Mars Camera Test Image of Moon (Infrared)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This crescent view of Earth's Moon in infrared wavelengths comes from a camera test by NASA's Mars Reconnaissance Orbiter spacecraft on its way to Mars. The mission's High Resolution Imaging Science Experiment camera took the image on Sept. 8, 2005, while at a distance of about 10 million kilometers (6 million miles) from the Moon. The dark feature on the right is Mare Crisium. From that distance, the Moon would appear as a star-like point of light to the unaided eye. The test verified the camera's focusing capability and provided an opportunity for calibration. The spacecraft's Context Camera and Optical Navigation Camera also performed as expected during the test.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

  20. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Richard Parker, with NASA, watches a monitor showing images from a camera inserted beneath tiles of the orbiter Endeavour to inspect for corrosion.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Richard Parker, with NASA, watches a monitor showing images from a camera inserted beneath tiles of the orbiter Endeavour to inspect for corrosion.

  1. Volunteers Help Decide Where to Point Mars Camera

    NASA Image and Video Library

    2015-07-22

    This series of images from NASA's Mars Reconnaissance Orbiter successively zooms into "spider" features -- or channels carved in the surface in radial patterns -- in the south polar region of Mars. In a new citizen-science project, volunteers will identify features like these using wide-scale images from the orbiter. Their input will then help mission planners decide where to point the orbiter's high-resolution camera for more detailed views of interesting terrain. Volunteers will start with images from the orbiter's Context Camera (CTX), which provides wide views of the Red Planet. The first two images in this series are from CTX; the top right image zooms into a portion of the image at left. The top right image highlights the geological spider features, which are carved into the terrain in the Martian spring when dry ice turns to gas. By identifying unusual features like these, volunteers will help the mission team choose targets for the orbiter's High Resolution Imaging Science Experiment (HiRISE) camera, which can reveal more detail than any other camera ever put into orbit around Mars. The final image is this series (bottom right) shows a HiRISE close-up of one of the spider features. http://photojournal.jpl.nasa.gov/catalog/PIA19823

  2. Public-Requested Mars Image: Crater on Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-481, 12 September 2003

    This image is in the first pair obtained in the Public Target Request program, which accepts suggestions for sites to photograph with the Mars Orbiter Camera on NASA's Mars Global Surveyor spacecraft.

    It is a narrow-angle (high-resolution) view of a portion of the lower wall and floor of the caldera at the top of a martian volcano named Pavonis Mons. A companion picture is a wide-angle context image, taken at the same time as the high-resolution view. The white box in the context frame shows the location of the high-resolution picture.

    [figure removed for brevity, see original site]

    Pavonis Mons is a broad shield volcano. Its summit region is about 14 kilometers (8.7 miles) above the martian datum (zero-elevation reference level). The caldera is about 4.6 kilometers (2.8 miles) deep. The caldera formed by collapse--long ago--as molten rock withdrew to greater depths within the volcano. The high-resolution picture shows that today the floor and walls of this caldera are covered by a thick, textured mantle of dust, perhaps more than 1 meter (1 yard) deep. Larger boulders and rock outcroppings poke out from within this dust mantle. They are seen as small, dark dots and mounds on the lower slopes of the wall in the high-resolution image.

    The narrow-angle Mars Orbiter Camera image has a resolution of 1.5 meters (about 5 feet) per pixel and covers an area 1.5 kilometers (0.9 mile) wide by 9 kilometers (5.6 miles) long. The context image, covering much of the summit region of Pavonis Mons, is about 115 kilometers (72 miles) wide. Sunlight illuminates both images from the lower left; north is toward the upper right; east to the right. The high-resolution view is located near 0.4 degrees north latitude, 112.8 degrees west longitude.

  3. Frequency-Range Distribution of Boulders Around Cone Crater: Relevance to Landing Site Hazard Avoidance

    NASA Technical Reports Server (NTRS)

    Clegg-Watkins, R. N.; Jolliff, B. L.; Lawrence, S. J.

    2016-01-01

    Boulders represent a landing hazard that must be addressed in the planning of future landings on the Moon. A boulder under a landing leg can contribute to deck tilt and boulders can damage spacecraft during landing. Using orbital data to characterize boulder populations at locations where landers have safely touched down (Apollo, Luna, Surveyor, and Chang'e-3 sites) is important for determining landing hazard criteria for future missions. Additionally, assessing the distribution of boulders can address broader science issues, e.g., how far craters distribute boulders and how this distribution varies as a function of crater size and age. The availability of new Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images [1] enables the use of boulder size- and range frequency distributions for a variety of purposes [2-6]. Boulders degrade over time and primarily occur around young or fresh craters that are large enough to excavate bedrock. Here we use NAC images to analyze boulder distributions around Cone crater (340 m diameter) at the Apollo 14 site. Cone crater (CC) was selected because it is the largest crater where astronaut surface photography is available for a radial traverse to the rim. Cone crater is young (approximately 29 Ma [7]) relative to the time required to break down boulders [3,8], giving us a data point for boulder range-frequency distributions (BRFDs) as a function of crater age.

  4. ARC-1986-A86-7011

    NASA Image and Video Library

    1986-01-14

    Range : 2.52 million miles (1.56 million miles) P-29481B/W Voyager 2 returned this photograph with all nine known Uranus rings visible from a 15 sec. exposure through the narrow angle camera. The rings are quite dark and very narrow. The most prominent and outermost of the nine, Epsilon, is seen at top. The next three in toward Uranus, called Delta, Gamma, and Eta, are much fainter and more narrow than Epsilon ring. Then come Beta and Alpha rings, and finally, the innermost grouping, known simply as the 4,5, & 6 rings. The last three are very faint and are at the limit of detection for the Voyager camera. Uranus' rings range in width from about 100 km. (60 mi.) at the widest part of the Epsilon ring, to only a few kilometers for most of the others. this iamge was processed to enhance narrow features; the bright dots are imperfections on the camera detector. The resolution scale is about 50 km. (30 mi.)

  5. KSC-2009-2986

    NASA Image and Video Library

    2009-05-08

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., a technician checks the thermal blanket around the LROC narrow angle camera during closeout on the Lunar Reconnaissance Orbiter, or LRO, before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Above the LROC is the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  6. High-Resolution Topomapping of Mars: Life After MER Site Selection

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Howington-Kraus, E.; Hare, T. M.; Soricone, R.; Ross, K.; Weller, L.; Rosiek, M.; Redding, B.; Galuszka, D.; Haldemann, A. F. C.

    2004-01-01

    In this abstract we describe our ongoing use of high-resolution images from the Mars Global Surveyor Mars Orbiter Camera Narrow-Angle subsystem (MGS MOC-NA) to derive quantitative topographic and slope data for the martian surface at 3 - 10-m resolution. Our efforts over the past several years focused on assessment of candidate landing sites for the Mars Exploration Rovers (MER) and culminated in the selection of sites in Gusev crater and Meridiani Planum as safe as well as scientifically compelling. As of this writing, MER-A (Spirit) has landed safely in Gusev and we are performing a limited amount of additional mapping near the landing point to support localization of the lander and rover operations planning. The primary focus of our work, however, has been extending our techniques to sample a variety of geologic terrains planetwide to support both a variety of geoscientific studies and planning and data analysis for missions such as Mars Express, Mars Reconnaissance Orbiter, and Phoenix.

  7. Activities of JAXA's Innovative Technology Center on Space Debris Observation

    NASA Astrophysics Data System (ADS)

    Yanagisawa, T.; Kurosaki, H.; Nakajima, A.

    The innovative technology research center of JAXA is developing observational technologies for GEO objects in order to cope with the space debris problem. The center had constructed the optical observational facility for space debris at Mt. Nyukasa, Nagano in 2006. As observational equipments such as CCD cameras and telescopes were set up, the normal observation started. In this paper, the detail of the facilities and its activities are introduced. The observational facility contains two telescopes and two CCD cameras. The apertures of the telescopes are 35cm and 25 cm, respectively. One CCD camera in which 2K2K chip is installed can observe a sky region of 1.3 times 1.3-degree using the 35cm telescope. The other CCD camera that contains two 4K2K chips has an ability to observe 2.6 times 2.6-degree's region with the 25cm telescope. One of our main objectives is to detect faint GEO objects that are not catalogued. Generally, the detection limit of GEO object is determined by the aperture of the telescope. However, by improving image processing techniques, the limit may become low. We are developing some image processing methods that use many CCD frames to detect faint objects. We are trying to use FPGA (Field Programmable Gate Array) system to reduce analyzing time. By applying these methods to the data taken by a large telescope, the detection limit will be significantly lowered. The orbital determination of detected GEO debris is one of the important things to do. Especially, the narrow field view of an optical telescope hinders us from re-detection of the GEO debris for the orbital determination. Long observation time is required for one GEO object for the orbital determination that is inefficient. An effective observation strategy should be considered. We are testing one observation method invented by Umehara that observes one inertia position in the space. By observing one inertia position for two nights, a GEO object that passed through the position in the first night must pass through the position in the second night. The rough orbit is determined from two nights' data. The test observation showed that this method was able to detect many GEO objects and determined their orbits by three nights' observations. We also joined the campaign observations of IADC(Inter-Agency Space Debris Coordination Committee). By analyzing the observed data with the method that we developed, 88 catalogued and 38 un-catalogued objects were detected. The magnitude of the faintest object detected in this campaign observation was 18.5. The object is un-detectable by human inspection.

  8. Moon Zoo: Making the public part of a crater survey algorithm

    NASA Astrophysics Data System (ADS)

    Gay, P. L.; Brown, S.; Huang, D.; Daus, C.; Lehan, C.; Robbins, S.

    2011-10-01

    The Moon Zoo citizen science website launched in May 2010 and invited the public to annotate images from the Lunar Reconnaissance Orbiter's Narrow Angle Camera (NAC). Tasks included marking the edges of craters with an ellipse tool, indicating where linear features (e.g. scarps) and special types of craters (e.g. dark haloed) are located with a box, and rating the number of boulders in an image. The goal of this project is to create crater and feature catalogues for large areas of the moon. In addition to doing science, Moon Zoo also seeks to educate its audience through educational content, to engage them through social media, and to understand them through research into their motivations and behaviors.

  9. Postcard from the Ring Plane

    NASA Image and Video Library

    2018-05-07

    On March 13, 2006 Cassini's narrow-angle camera captured this look at Saturn and its rings, seen here nearly edge on. The frame also features Mimas and tiny Janus (above the rings), and Tethys (below the rings). "Above" and "below" the rings is mostly a matter of perspective here. All three moons and the rings orbit Saturn in roughly the same plane. The night side of Mimas is gently illuminated by "Saturnshine," sunlight reflected from the planet's cloud tops. Images taken using red, green and blue spectral filters were combined to create this natural color view, taken at a distance of approximately 1.7 million miles (2.7 million kilometers) from Saturn. The Cassini spacecraft ended its mission on Sept. 15, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA18323

  10. Engineering study for pallet adapting the Apollo laser altimeter and photographic camera system for the Lidar Test Experiment on orbital flight tests 2 and 4

    NASA Technical Reports Server (NTRS)

    Kuebert, E. J.

    1977-01-01

    A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.

  11. The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin`ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Atsushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji

    2014-11-01

    The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60-600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0-2.0 keV (FWHM) at 60 keV and 1.6-2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.

  12. Lakes Through the Haze

    NASA Image and Video Library

    2013-12-23

    Using a special spectral filter, the high-resolution camera aboard NASA's Cassini spacecraft was able to peer through the hazy atmosphere of Saturn's moon Titan. It captured this image, which features the largest seas and some of the many hydrocarbon lakes that are present on Titan's surface. Titan is the only place in the solar system, other than Earth, that has stable liquids on its surface. In this case, the liquid consists of ethane and methane rather than water. This view looks towards the side of Titan (3,200 miles or 5,150 kilometers across) that leads in its orbit around Saturn. North on Titan is up and rotated 36 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The images were taken with the Cassini spacecraft narrow-angle camera on Oct. 7, 2013. The view was acquired at a distance of approximately 809,000 miles (1.303 million kilometers) from Titan. Image scale is 5 miles (8 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17179

  13. Toward high-resolution global topography of Mercury from MESSENGER orbital stereo imaging: A prototype model for the H6 (Kuiper) quadrangle

    NASA Astrophysics Data System (ADS)

    Preusker, Frank; Stark, Alexander; Oberst, Jürgen; Matz, Klaus-Dieter; Gwinner, Klaus; Roatsch, Thomas; Watters, Thomas R.

    2017-08-01

    We selected approximately 10,500 narrow-angle camera (NAC) and wide-angle camera (WAC) images of Mercury acquired from orbit by MESSENGER's Mercury Dual Imaging System (MDIS) with an average resolution of 150 m/pixel to compute a digital terrain model (DTM) for the H6 (Kuiper) quadrangle, which extends from 22.5°S to 22.5°N and from 288.0°E to 360.0°E. From the images, we identified about 21,100 stereo image combinations consisting of at least three images each. We applied sparse multi-image matching to derive approximately 250,000 tie-points representing 50,000 ground points. We used the tie-points to carry out a photogrammetric block adjustment, which improves the image pointing and the accuracy of the ground point positions in three dimensions from about 850 m to approximately 55 m. We then applied high-density (pixel-by-pixel) multi-image matching to derive about 45 billion tie-points. Benefitting from improved image pointing data achieved through photogrammetric block adjustment, we computed about 6.3 billion surface points. By interpolation, we generated a DTM with a lateral spacing of 221.7 m/pixel (192 pixels per degree) and a vertical accuracy of about 30 m. The comparison of the DTM with Mercury Laser Altimeter (MLA) profiles obtained over four years of MESSENGER orbital operations reveals that the DTM is geometrically very rigid. It may be used as a reference to identify MLA outliers (e.g., when MLA operated at its ranging limit) or to map offsets of laser altimeter tracks, presumably caused by residual spacecraft orbit and attitude errors. After the relevant outlier removals and corrections, MLA profiles show excellent agreement with topographic profiles from H6, with a root mean square height difference of only 88 m.

  14. Camera Ready to Install on Mars Reconnaissance Orbiter

    NASA Image and Video Library

    2005-01-07

    A telescopic camera called the High Resolution Imaging Science Experiment, or HiRISE, right was installed onto the main structure of NASA Mars Reconnaissance Orbiter left on Dec. 11, 2004 at Lockheed Martin Space Systems, Denver.

  15. HIGH SPEED CAMERA

    DOEpatents

    Rogers, B.T. Jr.; Davis, W.C.

    1957-12-17

    This patent relates to high speed cameras having resolution times of less than one-tenth microseconds suitable for filming distinct sequences of a very fast event such as an explosion. This camera consists of a rotating mirror with reflecting surfaces on both sides, a narrow mirror acting as a slit in a focal plane shutter, various other mirror and lens systems as well as an innage recording surface. The combination of the rotating mirrors and the slit mirror causes discrete, narrow, separate pictures to fall upon the film plane, thereby forming a moving image increment of the photographed event. Placing a reflecting surface on each side of the rotating mirror cancels the image velocity that one side of the rotating mirror would impart, so as a camera having this short a resolution time is thereby possible.

  16. Cassini Camera Contamination Anomaly: Experiences and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Haemmerle, Vance R.; Gerhard, James H.

    2006-01-01

    We discuss the contamination 'Haze' anomaly for the Cassini Narrow Angle Camera (NAC), one of two optical telescopes that comprise the Imaging Science Subsystem (ISS). Cassini is a Saturn Orbiter with a 4-year nominal mission. The incident occurred in 2001, five months after Jupiter encounter during the Cruise phase and ironically at the resumption of planned maintenance decontamination cycles. The degraded optical performance was first identified by the Instrument Operations Team with the first ISS Saturn imaging six weeks later. A distinct haze of varying size from image to image marred the images of Saturn. A photometric star calibration of the Pleiades, 4 days after the incident, showed stars with halos. Analysis showed that while the halo's intensity was only 1 - 2% of the intensity of the central peak of a star, the halo contained 30 - 70% of its integrated flux. This condition would impact science return. In a review of our experiences, we examine the contamination control plan, discuss the analysis of the limited data available and describe the one-year campaign to remove the haze from the camera. After several long conservative heating activities and interim analysis of their results, the contamination problem as measured by the camera's point spread function was essentially back to preanomaly size and at a point where there would be more risk to continue. We stress the importance of the flexibility of operations and instrument design, the need to do early infight instrument calibration and continual monitoring of instrument performance.

  17. Exploring the Moon at High-Resolution: First Results From the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Robinson, Mark; Hiesinger, Harald; McEwen, Alfred; Jolliff, Brad; Thomas, Peter C.; Turtle, Elizabeth; Eliason, Eric; Malin, Mike; Ravine, A.; Bowman-Cisneros, Ernest

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on an Atlas V 401 rocket from the Cape Canaveral Air Force Station Launch Complex 41 on June 18, 2009. After spending four days in Earth-Moon transit, the spacecraft entered a three month commissioning phase in an elliptical 30×200 km orbit. On September 15, 2009, LRO began its planned one-year nominal mapping mission in a quasi-circular 50 km orbit. A multi-year extended mission in a fixed 30×200 km orbit is optional. The Lunar Reconnaissance Orbiter Camera (LROC) consists of a Wide Angle Camera (WAC) and two Narrow Angle Cameras (NACs). The WAC is a 7-color push-frame camera, which images the Moon at 100 and 400 m/pixel in the visible and UV, respectively, while the two NACs are monochrome narrow-angle linescan imagers with 0.5 m/pixel spatial resolution. LROC was specifically designed to address two of the primary LRO mission requirements and six other key science objectives, including 1) assessment of meter-and smaller-scale features in order to select safe sites for potential lunar landings near polar resources and elsewhere on the Moon; 2) acquire multi-temporal synoptic 100 m/pixel images of the poles during every orbit to unambiguously identify regions of permanent shadow and permanent or near permanent illumination; 3) meter-scale mapping of regions with permanent or near-permanent illumination of polar massifs; 4) repeat observations of potential landing sites and other regions to derive high resolution topography; 5) global multispectral observations in seven wavelengths to characterize lunar resources, particularly ilmenite; 6) a global 100-m/pixel basemap with incidence angles (60° -80° ) favorable for morphological interpretations; 7) sub-meter imaging of a variety of geologic units to characterize their physical properties, the variability of the regolith, and other key science questions; 8) meter-scale coverage overlapping with Apollo-era panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972. LROC allows us to determine the recent impact rate of bolides in the size range of 0.5 to 10 meters, which is currently not well known. Determining the impact rate at these sizes enables engineering remediation measures for future surface operations and interplanetary travel. The WAC has imaged nearly the entire Moon in seven wavelengths. A preliminary global WAC stereo-based topographic model is in preparation [1] and global color processing is underway [2]. As the mission progresses repeat global coverage will be obtained as lighting conditions change providing a robust photometric dataset. The NACs are revealing a wealth of morpho-logic features at the meter scale providing the engineering and science constraints needed to support future lunar exploration. All of the Apollo landing sites have been imaged, as well as the majority of robotic landing and impact sites. Through the use of off-nadir slews a collection of stereo pairs is being acquired that enable 5-m scale topographic mapping [3-7]. Impact mor-phologies (terraces, impact melt, rays, etc) are preserved in exquisite detail at all Copernican craters and are enabling new studies of impact mechanics and crater size-frequency distribution measurements [8-12]. Other topical studies including, for example, lunar pyroclastics, domes, and tectonics are underway [e.g., 10-17]. The first PDS data release of LROC data will be in March 2010, and will include all images from the commissioning phase and the first 3 months of the mapping phase. [1] Scholten et al. (2010) 41st LPSC, #2111; [2] Denevi et al. (2010a) 41st LPSC, #2263; [3] Beyer et al. (2010) 41st LPSC, #2678; [4] Archinal et al. (2010) 41st LPSC, #2609; [5] Mattson et al. (2010) 41st LPSC, #1871; [6] Tran et al. (2010) 41st LPSC, #2515; [7] Oberst et al. (2010) 41st LPSC, #2051; [8] Bray et al. (2010) 41st LPSC, #2371; [9] Denevi et al. (2010b) 41st LPSC, #2582; [10] Hiesinger et al. (2010a) 41st LPSC, #2278; [11] Hiesinger et al. (2010b) 41st LPSC, #2304; [12] van der Bogert et al. (2010) 41st LPSC, #2165; [13] Plescia et al. (2010) 41st LPSC, #2160; [14] Lawrence et al. (2010) 41st LPSC, #1906; [15] Gaddis et al. (2010) 41st LPSC, #2059; [16] Watters et al. (2010) 41st LPSC, #1863; [17] Garry et al. (2010) 41st LPSC, #2278.

  18. Mission Report on the Orbiter Camera Payload System (OCPS) Large Format Camera (LFC) and Attitude Reference System (ARS)

    NASA Technical Reports Server (NTRS)

    Mollberg, Bernard H.; Schardt, Bruton B.

    1988-01-01

    The Orbiter Camera Payload System (OCPS) is an integrated photographic system which is carried into earth orbit as a payload in the Space Transportation System (STS) Orbiter vehicle's cargo bay. The major component of the OCPS is a Large Format Camera (LFC), a precision wide-angle cartographic instrument that is capable of producing high resolution stereo photography of great geometric fidelity in multiple base-to-height (B/H) ratios. A secondary, supporting system to the LFC is the Attitude Reference System (ARS), which is a dual lens Stellar Camera Array (SCA) and camera support structure. The SCA is a 70-mm film system which is rigidly mounted to the LFC lens support structure and which, through the simultaneous acquisition of two star fields with each earth-viewing LFC frame, makes it possible to determine precisely the pointing of the LFC optical axis with reference to the earth nadir point. Other components complete the current OCPS configuration as a high precision cartographic data acquisition system. The primary design objective for the OCPS was to maximize system performance characteristics while maintaining a high level of reliability compatible with Shuttle launch conditions and the on-orbit environment. The full-up OCPS configuration was launched on a highly successful maiden voyage aboard the STS Orbiter vehicle Challenger on October 5, 1984, as a major payload aboard mission STS 41-G. This report documents the system design, the ground testing, the flight configuration, and an analysis of the results obtained during the Challenger mission STS 41-G.

  19. Feasibility study for the application of the large format camera as a payload for the Orbiter program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The large format camera (LFC) designed as a 30 cm focal length cartographic camera system that employs forward motion compensation in order to achieve the full image resolution provided by its 80 degree field angle lens is described. The feasibility of application of the current LFC design to deployment in the orbiter program as the Orbiter Camera Payload System was assessed and the changes that are necessary to meet such a requirement are discussed. Current design and any proposed design changes were evaluated relative to possible future deployment of the LFC on a free flyer vehicle or in a WB-57F. Preliminary mission interface requirements for the LFC are given.

  20. Colors and Photometry of Bright Materials on Vesta as Seen by the Dawn Framing Camera

    NASA Technical Reports Server (NTRS)

    Schroeder, S. E.; Li, J.-Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.; hide

    2012-01-01

    The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.

  1. A Glimpse of Atlas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's little moon Atlas orbits Saturn between the outer edge of the A ring and the fascinating, twisted F ring. This image just barely resolves the disk of Atlas, and also shows some of the knotted structure for which the F ring is known. Atlas is 32 kilometers (20 miles) across.

    The bright outer edge of the A ring is overexposed here, but farther down the image several bright ring features can be seen.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 25, 2005, at a distance of approximately 2.4 million kilometers (1.5 million miles) from Atlas and at a Sun-Atlas-spacecraft, or phase, angle of 60 degrees. Resolution in the original image was 14 kilometers (9 miles) per pixel.

  2. ARC-1989-A89-7041

    NASA Image and Video Library

    1989-07-30

    P-34540 Range: 37.3 million kilometers (23.6 million miles) This image captured by the Voyager 2 spacecraft was used to confirm the discovery of three new satellites orbiting Neptune. The 46-second exposure was taken with the narrow angle camera and shows the large globe of the planet to be severely overexposed and almost pure white in appearance. The image has been computer-processed to accentuate the new moons, which otherwise would be hard to distinguish from background noise. The satellite 1989N1, at right in this frame, was discovered by Voyager 2 in early July 1989. The new satellites confirmed later are 1989N2, 1989N3 and 1989N4. Each of the moons appears as a small streak, an effect caused by movement of the spacecraft during the long exposure. The new moons occupy nearly circular and equatorial orbits ranging from about 27,300 to 48,300 kilometers (17,000 to 30,000 miles) from Neptunes's cloud tops, and are estimated to range in diameter from about 100 to 200 kilometers (about 60 to 125 miles).

  3. Haze on the Horizon

    NASA Image and Video Library

    2017-07-24

    This false-color view from NASA's Cassini spacecraft gazes toward the rings beyond Saturn's sunlit horizon. Along the limb (the planet's edge) at left can be seen a thin, detached haze. This haze vanishes toward the left side of the scene. Cassini will pass through Saturn's upper atmosphere during the final five orbits of the mission, before making a fateful plunge into Saturn on Sept. 15, 2017. The region through which the spacecraft will fly on those last orbits is well above the haze seen here, which is in Saturn's stratosphere. In fact, even when Cassini plunges toward Saturn to meet its fate, contact with the spacecraft is expected to be lost before it reaches the depth of this haze. This view is a false-color composite made using images taken in red, green and ultraviolet spectral filters. The images were obtained using the Cassini spacecraft narrow-angle camera on July 16, 2017, at a distance of about 777,000 miles (1.25 million kilometers) from Saturn. Image scale is about 4 miles (7 kilometers) per pixel on Saturn. https://photojournal.jpl.nasa.gov/catalog/PIA21621

  4. Two F Ring Views

    NASA Technical Reports Server (NTRS)

    2005-01-01

    These views, taken two hours apart, demonstrate the dramatic variability in the structure of Saturn's intriguing F ring.

    In the image at the left, ringlets in the F ring and Encke Gap display distinctive kinks, and there is a bright patch of material on the F ring's inner edge. Saturn's moon Janus (181 kilometers, or 113 miles across) is shown here, partly illuminated by reflected light from the planet.

    At the right, Prometheus (102 kilometers, or 63 miles across) orbits ahead of the radial striations in the F ring, called 'drapes' by scientists. The drapes appear to be caused by successive passes of Prometheus as it reaches the greatest distance (apoapse) in its orbit of Saturn. Also in this image, the outermost ringlet visible in the Encke Gap displays distinctive bright patches.

    These views were obtained from about three degrees below the ring plane.

    The images were taken in visible light with the Cassini spacecraft narrow-angle camera on June 29, 2005, when Cassini was about 1.5 million kilometers (900,000 miles) from Saturn. The image scale is about 9 kilometers (6 miles) per pixel.

  5. Mounted Video Camera Captures Launch of STS-112, Shuttle Orbiter Atlantis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A color video camera mounted to the top of the External Tank (ET) provided this spectacular never-before-seen view of the STS-112 mission as the Space Shuttle Orbiter Atlantis lifted off in the afternoon of October 7, 2002, The camera provided views as the the orbiter began its ascent until it reached near-orbital speed, about 56 miles above the Earth, including a view of the front and belly of the orbiter, a portion of the Solid Rocket Booster, and ET. The video was downlinked during flight to several NASA data-receiving sites, offering the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. Atlantis carried the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. Landing on October 18, 2002, the Orbiter Atlantis ended its 11-day mission.

  6. Mounted Video Camera Captures Launch of STS-112, Shuttle Orbiter Atlantis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A color video camera mounted to the top of the External Tank (ET) provided this spectacular never-before-seen view of the STS-112 mission as the Space Shuttle Orbiter Atlantis lifted off in the afternoon of October 7, 2002. The camera provided views as the orbiter began its ascent until it reached near-orbital speed, about 56 miles above the Earth, including a view of the front and belly of the orbiter, a portion of the Solid Rocket Booster, and ET. The video was downlinked during flight to several NASA data-receiving sites, offering the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. Atlantis carried the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. Landing on October 18, 2002, the Orbiter Atlantis ended its 11-day mission.

  7. Report Of The HST Strategy Panel: A Strategy For Recovery

    DTIC Science & Technology

    1991-01-01

    orbit change out: the Wide Field/Planetary Camera II (WFPC II), the Near-Infrared Camera and Multi- Object Spectrometer (NICMOS) and the Space ...are the Space Telescope Imaging Spectrograph (STB), the Near-Infrared Camera and Multi- Object Spectrom- eter (NICMOS), and the second Wide Field and...expected to fail to lock due to duplicity was 20%; on- orbit data indicates that 10% may be a better estimate, but the guide stars were preselected

  8. ARC-1989-A89-7042

    NASA Image and Video Library

    1989-08-11

    P-34578 BW One of two new ring arcs, or partial rings, discovered by Voyager 2, is faintly visible just outside the orbit of the Neptunian moon 1989N4.The 155-second exposure taken by the spacecraft's narrow-angle camera shows the glare of an overexposed Neptune to the right of the moon and ring arc. The two bright streaks below the moon and ring arc are stars. The ring arc is approximately 50,000 kilometers (30,000 miles) long. The second ring arc, not apparent here, is about 10,000 kilometers (6,000 miles) long and is assoiciated with moon 1989N3. The ring arc, along with 1989N4, orbits about 62,000 kilometers (38,000 miles) from the planet's cloud tops. Astronomers long suspected the existence of such an irregular ring system around Neptune. Data from repeated ground-based observations hinted at the existence of irregular strands of partial rings orbiting Neptune. Voyager's photographs of the ring arcs are the first photographic evidence that such a ring system exists. Voyager scientists said the ring arcs may be comprised of debris associated with the nearby moons, or may be the remnants of moons that have been torn apart or ground down through collisions. Close-up studies of the ring arcs by Voyager 2 will help determine their composition.

  9. Stellar Occultations in the Coma of Comet 67/P Chuyumov-Gerasimenko Observed by the OSIRIS Camera System

    NASA Astrophysics Data System (ADS)

    Moissl, Richard; Kueppers, Michael

    2016-10-01

    In this paper we present the results of an analysis on a large part of the existing Image data from the OSIRIS camera system onboard the Rosetta Spacecraft, in which stars of sufficient brightness (down to a limiting magnitude of 6) have been observed through the coma of Comet 67/P Churyumov-Gerasimenko ("C-G"). Over the course of the Rosetta main mission the Coma of the comet underwent large changes in density and structure, owed to the changing insolation along the orbit of C-G. We report on the changes of the stellar signals in the wavelength ranges, covered by the filters of the OSIRIS Narrow-Angle (NAC) and Wide-Angle (WAC) cameras.Acknowledgements: OSIRIS was built by a consortium led by the Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany, in collaboration with CISAS, University of Padova, Italy, the Laboratoire d'Astrophysique de Marseille, France, the Instituto de Astrofísica de Andalucia, CSIC, Granada, Spain, the Scientific Support Office of the European Space Agency, Noordwijk, The Netherlands, the Instituto Nacional de Técnica Aeroespacial, Madrid, Spain, the Universidad Politéchnica de Madrid, Spain, the Department of Physics and Astronomy of Uppsala University, Sweden, and the Institut für Datentechnik und Kommunikationsnetze der Technischen Universität Braunschweig, Germany.

  10. Clumps in the F Ring

    NASA Image and Video Library

    2004-03-12

    Scientists have only a rough idea of the lifetime of clumps in Saturn's rings - a mystery that Cassini may help answer. The latest images taken by the Cassini-Huygens spacecraft show clumps seemingly embedded within Saturn's narrow, outermost F ring. The narrow angle camera took the images on Feb. 23, 2004, from a distance of 62.9 million kilometers (39 million miles). The two images taken nearly two hours apart show these clumps as they revolve about the planet. The small dot at center right in the second image is one of Saturn's small moons, Janus, which is 181 kilometers, (112 miles) across. Like all particles in Saturn's ring system, these clump features orbit the planet in the same direction in which the planet rotates. This direction is clockwise as seen from Cassini's southern vantage point below the ring plane. Two clumps in particular, one of them extended, is visible in the upper part of the F ring in the image on the left, and in the lower part of the ring in the image on the right. Other knot-like irregularities in the ring's brightness are visible in the image on the right. The core of the F ring is about 50 kilometers (31miles) wide, and from Cassini's current distance, is not fully visible. The imaging team enhanced the contrast of the images and magnified them to aid visibility of the F ring and the clump features. The camera took the images with the green filter, which is centered at 568 nanometers. The image scale is 377 kilometers (234 miles) per pixel. NASA's two Voyager spacecraft that flew past Saturn in 1980 and 1981 were the first to see these clumps. The Voyager data suggest that the clumps change very little and can be tracked as they orbit for 30 days or more. No clump survived from the time of the first Voyager flyby to the Voyager 2 flyby nine months later. Scientists are not certain of the cause of these features. Among the theories proposed are meteoroid bombardments and inter-particle collisions in the F ring. http://photojournal.jpl.nasa.gov/catalog/PIA05382

  11. Daphnis Up Close

    NASA Image and Video Library

    2017-01-18

    The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet. Daphnis (5 miles or 8 kilometers across) orbits within the 42-kilometer (26-mile) wide Keeler Gap. Cassini's viewing angle causes the gap to appear narrower than it actually is, due to foreshortening. The little moon's gravity raises waves in the edges of the gap in both the horizontal and vertical directions. Cassini was able to observe the vertical structures in 2009, around the time of Saturn's equinox (see PIA11654). Like a couple of Saturn's other small ring moons, Atlas and Pan, Daphnis appears to have a narrow ridge around its equator and a fairly smooth mantle of material on its surface -- likely an accumulation of fine particles from the rings. A few craters are obvious at this resolution. An additional ridge can be seen further north that runs parallel to the equatorial band. Fine details in the rings are also on display in this image. In particular, a grainy texture is seen in several wide lanes which hints at structures where particles are clumping together. In comparison to the otherwise sharp edges of the Keeler Gap, the wave peak in the gap edge at left has a softened appearance. This is possibly due to the movement of fine ring particles being spread out into the gap following Daphnis' last close approach to that edge on a previous orbit. A faint, narrow tendril of ring material follows just behind Daphnis (to its left). This may have resulted from a moment when Daphnis drew a packet of material out of the ring, and now that packet is spreading itself out. The image was taken in visible (green) light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21056

  12. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, while Greg Harlow, with United Space Alliance (USA) (above) threads a camera under the tiles of the orbiter Endeavour, Peggy Ritchie, USA, (behind the stand) and NASA’s Richard Parker (seated) watch the images on a monitor to inspect for corrosion.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, while Greg Harlow, with United Space Alliance (USA) (above) threads a camera under the tiles of the orbiter Endeavour, Peggy Ritchie, USA, (behind the stand) and NASA’s Richard Parker (seated) watch the images on a monitor to inspect for corrosion.

  13. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, while Greg Harlow, with United Space Alliance (USA), (above) threads a camera under the tiles of the orbiter Endeavour, NASA’s Richard Parker (below left) and Peggy Ritchie, with USA, (at right) watch the images on a monitor to inspect for corrosion.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, while Greg Harlow, with United Space Alliance (USA), (above) threads a camera under the tiles of the orbiter Endeavour, NASA’s Richard Parker (below left) and Peggy Ritchie, with USA, (at right) watch the images on a monitor to inspect for corrosion.

  14. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, while Greg Harlow, with United Space Alliance (USA), (above) threads a camera under the tiles of the orbiter Endeavour, Peggy Ritchie, with USA, (behind the stand) and NASA’s Richard Parker watch the images on a monitor to inspect for corrosion.

    NASA Image and Video Library

    2003-09-04

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, while Greg Harlow, with United Space Alliance (USA), (above) threads a camera under the tiles of the orbiter Endeavour, Peggy Ritchie, with USA, (behind the stand) and NASA’s Richard Parker watch the images on a monitor to inspect for corrosion.

  15. Hybrid Image Fusion for Sharpness Enhancement of Multi-Spectral Lunar Images

    NASA Astrophysics Data System (ADS)

    Awumah, Anna; Mahanti, Prasun; Robinson, Mark

    2016-10-01

    Image fusion enhances the sharpness of a multi-spectral (MS) image by incorporating spatial details from a higher-resolution panchromatic (Pan) image [1,2]. Known applications of image fusion for planetary images are rare, although image fusion is well-known for its applications to Earth-based remote sensing. In a recent work [3], six different image fusion algorithms were implemented and their performances were verified with images from the Lunar Reconnaissance Orbiter (LRO) Camera. The image fusion procedure obtained a high-resolution multi-spectral (HRMS) product from the LRO Narrow Angle Camera (used as Pan) and LRO Wide Angle Camera (used as MS) images. The results showed that the Intensity-Hue-Saturation (IHS) algorithm results in a high-spatial quality product while the Wavelet-based image fusion algorithm best preserves spectral quality among all the algorithms. In this work we show the results of a hybrid IHS-Wavelet image fusion algorithm when applied to LROC MS images. The hybrid method provides the best HRMS product - both in terms of spatial resolution and preservation of spectral details. Results from hybrid image fusion can enable new science and increase the science return from existing LROC images.[1] Pohl, Cle, and John L. Van Genderen. "Review article multisensor image fusion in remote sensing: concepts, methods and applications." International journal of remote sensing 19.5 (1998): 823-854.[2] Zhang, Yun. "Understanding image fusion." Photogramm. Eng. Remote Sens 70.6 (2004): 657-661.[3] Mahanti, Prasun et al. "Enhancement of spatial resolution of the LROC Wide Angle Camera images." Archives, XXIII ISPRS Congress Archives (2016).

  16. CMOS image sensor with organic photoconductive layer having narrow absorption band and proposal of stack type solid-state image sensors

    NASA Astrophysics Data System (ADS)

    Takada, Shunji; Ihama, Mikio; Inuiya, Masafumi

    2006-02-01

    Digital still cameras overtook film cameras in Japanese market in 2000 in terms of sales volume owing to their versatile functions. However, the image-capturing capabilities such as sensitivity and latitude of color films are still superior to those of digital image sensors. In this paper, we attribute the cause for the high performance of color films to their multi-layered structure, and propose the solid-state image sensors with stacked organic photoconductive layers having narrow absorption bands on CMOS read-out circuits.

  17. LROC Targeted Observations for the Next Generation of Scientific Exploration

    NASA Astrophysics Data System (ADS)

    Jolliff, B. L.

    2015-12-01

    Imaging of the Moon at high spatial resolution (0.5 to 2 mpp) by the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NAC) plus topographic data derived from LROC NAC and WAC (Wide Angle Camera) and LOLA (Lunar Orbiting Laser Altimeter), coupled with recently obtained hyperspectral NIR and thermal data, permit studies of composition, mineralogy, and geologic context at essentially an outcrop scale. Such studies pave the way for future landed and sample return missions for high science priority targets. Among such targets are (1) the youngest volcanic rocks on the Moon, including mare basalts formed as recently as ~1 Ga, and irregular mare patches (IMPs) that appear to be even younger [1]; (2) volcanic rocks and complexes with compositions more silica-rich than mare basalts [2-4]; (3) differentiated impact-melt deposits [5,6], ancient volcanics, and compositional anomalies within the South Pole-Aitken basin; (4) exposures of recently discovered key crustal rock types in uplifted structures such as essentially pure anorthosite [7] and spinel-rich rocks [8]; and (5) frozen volatile-element-rich deposits in polar areas [9]. Important data sets include feature sequences of paired NAC images obtained under similar illumination conditions, NAC geometric stereo, from which high-resolution DTMs can be made, and photometric sequences useful for assessing composition in areas of mature cover soils. Examples of each of these target types will be discussed in context of potential future missions. References: [1] Braden et al. (2014) Nat. Geo. 7, 787-791. [2] Glotch et al. (2010) Science, 329, 1510-1513. [3] Greenhagen et al. (2010) Science, 329, 1507-1509. [4] Jolliff et al. (2011) Nat. Geo. 4, 566-571. [5] Vaughan et al (2013) PSS 91, 101-106. [6] Hurwitz and Kring (2014) J. Geophys. Res. 119, 1110-1133 [7] Ohtake et al. (2009) Nature, 461, 236-241 [8] Pieters et al. (2014) Am. Min. 99, 1893-1910. [9] Colaprete et al. (2010) Science 330, 463-468.

  18. 2MASS J00423991+3017515: An AGN On The Run?

    NASA Astrophysics Data System (ADS)

    Hogg, James

    2016-10-01

    We have discovered a peculiar AGN, 2MASS J00423991+3017515, in a local (z=0.14), disturbed galaxy whose optical spectrum has multiple broad lines that are consistently offset from the narrow line emission and host galaxy absorption by 1530 km/s. The morphology of the host galaxy and spectral properties thus suggest this AGN may be a recoiling supermassive black hole (SMBH). Gravitational-wave recoil kicks result from the coalescence of two SMBHs and have implications for the early growth of high-redshift quasars and SMBH-galaxy co-evolution. We propose high-resolution imaging in the NIR, optical, and UV with the WFC3 camera on Hubble and high-resolution X-ray imaging and spectral follow-ups with the ACIS camera on Chandra to determine if the source of the kinematically-offset broad line emission is also spatially offset from the nucleus of the host galaxy. We request 3 orbits with Hubble and 8 ksec with Chandra to conduct these follow-up observations. If a single, spatially offset AGN is detected, this source will be strongest candidate for a recoiling AGN candidate discovered to date, providing a new, indirect constraint on SMBH spin evolution and merger rates.

  19. NASA Releases New High-Resolution Earthrise Image

    NASA Image and Video Library

    2017-12-08

    NASA's Lunar Reconnaissance Orbiter (LRO) recently captured a unique view of Earth from the spacecraft's vantage point in orbit around the moon. "The image is simply stunning," said Noah Petro, Deputy Project Scientist for LRO at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "The image of the Earth evokes the famous 'Blue Marble' image taken by Astronaut Harrison Schmitt during Apollo 17, 43 years ago, which also showed Africa prominently in the picture." In this composite image we see Earth appear to rise over the lunar horizon from the viewpoint of the spacecraft, with the center of the Earth just off the coast of Liberia (at 4.04 degrees North, 12.44 degrees West). The large tan area in the upper right is the Sahara Desert, and just beyond is Saudi Arabia. The Atlantic and Pacific coasts of South America are visible to the left. On the moon, we get a glimpse of the crater Compton, which is located just beyond the eastern limb of the moon, on the lunar farside. LRO was launched on June 18, 2009, and has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the moon. LRO experiences 12 earthrises every day; however the spacecraft is almost always busy imaging the lunar surface so only rarely does an opportunity arise such that its camera instrument can capture a view of Earth. Occasionally LRO points off into space to acquire observations of the extremely thin lunar atmosphere and perform instrument calibration measurements. During these movements sometimes Earth (and other planets) pass through the camera's field of view and dramatic images such as the one shown here are acquired. This image was composed from a series of images taken Oct. 12, when LRO was about 83 miles (134 kilometers) above the moon's farside crater Compton. Capturing an image of the Earth and moon with LRO's Lunar Reconnaissance Orbiter Camera (LROC) instrument is a complicated task. First the spacecraft must be rolled to the side (in this case 67 degrees), then the spacecraft slews with the direction of travel to maximize the width of the lunar horizon in LROC's Narrow Angle Camera image. All this takes place while LRO is traveling faster than 3,580 miles per hour (over 1,600 meters per second) relative to the lunar surface below the spacecraft! The high-resolution Narrow Angle Camera (NAC) on LRO takes black-and-white images, while the lower resolution Wide Angle Camera (WAC) takes color images, so you might wonder how we got a high-resolution picture of the Earth in color. Since the spacecraft, Earth, and moon are all in motion, we had to do some special processing to create an image that represents the view of the Earth and moon at one particular time. The final Earth image contains both WAC and NAC information. WAC provides the color, and the NAC provides high-resolution detail. "From the Earth, the daily moonrise and moonset are always inspiring moments," said Mark Robinson of Arizona State University in Tempe, principal investigator for LROC. "However, lunar astronauts will see something very different: viewed from the lunar surface, the Earth never rises or sets. Since the moon is tidally locked, Earth is always in the same spot above the horizon, varying only a small amount with the slight wobble of the moon. The Earth may not move across the 'sky', but the view is not static. Future astronauts will see the continents rotate in and out of view and the ever-changing pattern of clouds will always catch one's eye, at least on the nearside. The Earth is never visible from the farside; imagine a sky with no Earth or moon - what will farside explorers think with no Earth overhead?" NASA's first Earthrise image was taken with the Lunar Orbiter 1 spacecraft in 1966. Perhaps NASA's most iconic Earthrise photo was taken by the crew of the Apollo 8 mission as the spacecraft entered lunar orbit on Christmas Eve Dec. 24, 1968. That evening, the astronauts -- Commander Frank Borman, Command Module Pilot Jim Lovell, and Lunar Module Pilot William Anders -- held a live broadcast from lunar orbit, in which they showed pictures of the Earth and moon as seen from their spacecraft. Said Lovell, "The vast loneliness is awe-inspiring and it makes you realize just what you have back there on Earth." Credit: NASA/Goddard/Arizona State University NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Now You See Me ...

    NASA Image and Video Library

    2006-05-18

    Enceladus briefly passes behind the crescent of Rhea in these images, which are part of a "mutual event" sequence taken by Cassini. These sequences help scientists refine our understanding of the orbits of Saturn's moons. The images were taken one minute apart as smaller Enceladus (505 kilometers, or 314 miles across) darted behind Rhea (1,528 kilometers, or 949 miles across) as seen from the Cassini spacecraft's point of view. The images were taken in visible light with the Cassini spacecraft narrow-angle camera on April 14, 2006, at a distance of approximately 3.4 million kilometers (2.1 million miles) from Rhea and 4.1 million kilometers (2.5 million miles) from Enceladus. The image scale is 20 kilometers (13 miles) per pixel on Rhea and 24 kilometers (15 miles) per pixel on Enceladus. http://photojournal.jpl.nasa.gov/catalog/PIA08180

  1. STS-34 Pilot Michael J. McCulley uses ARRIFLEX camera equipment

    NASA Image and Video Library

    1989-04-13

    STS-34 Atlantis, Orbiter Vehicle (OV) 104, Pilot Michael J. McCulley squints while looking through ARRIFLEX camera eye piece during camera briefing at JSC. McCulley rests part of the camera on his shoulder as he operates it.

  2. The emplacement of long lava flows in Mare Imbrium, the Moon

    NASA Astrophysics Data System (ADS)

    Garry, W. B.

    2012-12-01

    Lava flow margins are scarce on the lunar surface. The best developed lava flows on the Moon occur in Mare Imbrium where flow margins are traceable nearly their entire flow length. The flow field originates in the southwest part of the basin from a fissure or series of fissures and cones located in the vicinity of Euler crater and erupted in three phases (Phases I, II, III) over a period of 0.5 Billion years (3.0 - 2.5 Ga). The flow field was originally mapped with Apollo and Lunar Orbiter data by Schaber (1973) and shows the flow field extends 200 to 1200 km from the presumed source area and covers an area of 2.0 x 10^5 km^2 with an estimated eruptive volume of 4 x 10^4 km^3. Phase I flows extend 1200 km and have the largest flow volume, but interestingly do not exhibit visible topography and are instead defined by difference in color from the surrounding mare flows. Phases II and III flows have well-defined flow margins (10 - 65 m thick) and channels (0.4 - 2.0 km wide, 40 - 70 m deep), but shorter flow lengths, 600 km and 400 km respectively. Recent missions, including Lunar Reconnaissance Orbiter (LRO), Kaguya (Selene), and Clementine, provide high resolution data sets of these lava flows. Using a combination of data sets including images from LRO Wide-Angle-Camera (WAC)(50-100 m/pixel) and Narrow-Angle-Camera (NAC) (up to 0.5m/pixel), Kaguya Terrain Camera (TC) (10 m/pixel), and topography from LRO Lunar Orbiter Laser Altimeter (LOLA), the morphology has been remapped and topographic measurements of the flow features have been made in an effort to reevaluate the emplacement of the flow field. Morphologic mapping reveals a different flow path for Phase I compared to the original mapping completed by Schaber (1973). The boundaries of the Phase I flow field have been revised based on Moon Mineralogy Mapper color ratio images (Staid et al., 2011). This has implications for the area covered and volume erupted during this stage, as well as, the age of Phase I. Flow features and margins have been identified in the Phase I flow within the LROC WAC mosaic and in Narrow Angle Camera (NAC) images. These areas have a mottled appearance. LOLA profiles over the more prominent flow lobes in Phase I reveal these margins are less 10 m thick. Phase II and III morphology maps are similar to previous flow maps. Phase III lobes near Euler are 10-12 km wide and 20-30 m thick based on measurements of the LOLA 1024ppd Elevation Digital Terrain Model (DTM) in JMoon. One of the longer Phase III lobes varies between 15 to 50 km wide and 25 to 60 m thick, with the thickest section at the distal end of the lobe. The Phase II lobe is 15 to 25 m thick and up to 35 km wide. The eruptive volume of the Mare Imbrium lava flows has been compared to terrestrial flood basalts. The morphology of the lobes in Phase II and III, which includes levees, thick flow fronts, and lobate margins suggests these could be similar to terrestrial aa-style flows. The Phase I flows might be more representative of sheet flows, pahoehoe-style flows, or inflated flows. Morphologic comparisons will be made with terrestrial flows at Askja volcano in Iceland, a potential analog to compare different styles of emplacement for the flows in Mare Imbrium.

  3. Camera for detection of cosmic rays of energy more than 10 Eev on the ISS orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garipov, G. K.; Khrenov, B. A.; Panasyuk, M. I.

    1998-06-15

    Concept of the EHE CR observation from the ISS orbit is discussed. A design of the camera at the Russian segment of the ISS comprising a large area (60 m{sup 2}) parabolic mirror with a photo multiplier pixel retina in its focal plane is described.

  4. Mars South Polar Cap 'Fingerprint' Terrain

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This picture is illuminated by sunlight from the upper left.

    Some portions of the martian south polar residual cap have long, somewhat curved troughs instead of circular pits. These appear to form in a layer of material that may be different than that in which 'swiss cheese' circles and pits form, and none of these features has any analog in the north polar cap or elsewhere on Mars. This picture shows the 'fingerprint' terrain as a series of long, narrow depressions considered to have formed by collapse and widening by sublimation of ice. Unlike the north polar cap, the south polar region stays cold enough in summer to retain frozen carbon dioxide. Viking Orbiter observations during the late 1970s showed that very little water vapor comes off the south polar cap during summer, indicating that any frozen water that might be there remains solid throughout the year.

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image was obtained in early southern spring on August 4, 1999. It shows an area 3 x 5 kilometers (1.9 x 3.1 miles) at a resolution of about 7.3 meters (24 ft) per pixel. Located near 86.0oS, 53.9oW.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  5. Present status of the Japanese Venus climate orbiter

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Imamura, T.; Abe, T.; Ishii, N.

    The code name of 24th science spacecraft of ISAS/JAXA is Planet-C. It is the first Venus Climate Orbiter (VCO) of Japan. The ministry of finance of Japan finally agreed to start phase B study of VCO from this April, 2004. We plan 1-2 years phase B study followed by 2 years of flight model integration. The spacecraft will be launched between 2009 and 2010. After arriving Venus, 2 years of operation is expected. VCO will complemet the ESA's Venus Express mission which have several spectrometers and will reveal the composition of the Venusian atmosphere. On the other hand, VCO is designed to reveal the details of the atmospheric motion on Venus and approach the dynamics of the Venusian climate. Cooperation between Japanese VCO and ESA's Venus Express, in the colaboration framework of U.S., Europian, and Japanese scienctist is very important. To elucidate the driving mechanism of the 4-days super-rotation is one of our main targets. We have 4 cameras to take snap shots of the planets in different wave lengths. They are the IR1 camera (1 micron-meter), the IR2 camera (2.4 micron-meter), the LIR camera (10-12 micron-meter), and the UVI camera (340nm). They are attached to the side panel of the 3-axis stabilized spacecraft, and are directed to Venus with the spacecraft's attitude control. Snap shots are expected to be taken every 2 hours. The spacecraft has an orbit of 300km x 13Rv (Venusian radii) with 172 degrees inclination. Orbital period is 30 hours. The angular position of the spacecraft on this orbit is synchronized for 20 hours at its apoapsis with the global atmospheric circulation at the altitude of 50km, thus the snap shots of every 2 hours will be the images of the same side of the atmosphere. In addition to these 4 cameras, we have a Lightning and Airglow camera (LAC) in visible range. This will be operated when the orbiter is close to the planet.

  6. Full-Frame Reference for Test Photo of Moon

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This pair of views shows how little of the full image frame was taken up by the Moon in test images taken Sept. 8, 2005, by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The Mars-bound camera imaged Earth's Moon from a distance of about 10 million kilometers (6 million miles) away -- 26 times the distance between Earth and the Moon -- as part of an activity to test and calibrate the camera. The images are very significant because they show that the Mars Reconnaissance Orbiter spacecraft and this camera can properly operate together to collect very high-resolution images of Mars. The target must move through the camera's telescope view in just the right direction and speed to acquire a proper image. The day's test images also demonstrate that the focus mechanism works properly with the telescope to produce sharp images.

    Out of the 20,000-pixel-by-6,000-pixel full frame, the Moon's diameter is about 340 pixels, if the full Moon could be seen. The illuminated crescent is about 60 pixels wide, and the resolution is about 10 kilometers (6 miles) per pixel. At Mars, the entire image region will be filled with high-resolution information.

    The Mars Reconnaissance Orbiter, launched on Aug. 12, 2005, is on course to reach Mars on March 10, 2006. After gradually adjusting the shape of its orbit for half a year, it will begin its primary science phase in November 2006. From the mission's planned science orbit about 300 kilometers (186 miles) above the surface of Mars, the high resolution camera will be able to discern features as small as one meter or yard across.

    The Mars Reconnaissance Orbiter mission is managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Science Mission Directorate. Lockheed Martin Space Systems, Denver, prime contractor for the project, built the spacecraft. Ball Aerospace & Technologies Corp., Boulder, Colo., built the High Resolution Imaging Science Experiment instrument for the University of Arizona, Tucson, to provide to the mission. The HiRISE Operations Center at the University of Arizona processes images from the camera.

  7. Coregistration of high-resolution Mars orbital images

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2015-04-01

    The systematic orbital imaging of the Martian surface started 4 decades ago from NASA's Viking Orbiter 1 & 2 missions, which were launched in August 1975, and acquired orbital images of the planet between 1976 and 1980. The result of this reconnaissance was the first medium-resolution (i.e. ≤ 300m/pixel) global map of Mars, as well as a variety of high-resolution images (reaching up to 8m/pixel) of special regions of interest. Over the last two decades NASA has sent 3 more spacecraft with onboard instruments for high-resolution orbital imaging: Mars Global Surveyor (MGS) having onboard the Mars Orbital Camera - Narrow Angle (MOC-NA), Mars Odyssey having onboard the Thermal Emission Imaging System - Visual (THEMIS-VIS) and the Mars Reconnaissance Orbiter (MRO) having on board two distinct high-resolution cameras, Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE). Moreover, ESA has the multispectral High resolution Stereo Camera (HRSC) onboard ESA's Mars Express with resolution up to 12.5m since 2004. Overall, this set of cameras have acquired more than 400,000 high-resolution images, i.e. with resolution better than 100m and as fine as 25 cm/pixel. Notwithstanding the high spatial resolution of the available NASA orbital products, their accuracy of areo-referencing is often very poor. As a matter of fact, due to pointing inconsistencies, usually form errors in roll attitude, the acquired products may actually image areas tens of kilometers far away from the point that they are supposed to be looking at. On the other hand, since 2004, the ESA Mars Express has been acquiring stereo images through the High Resolution Stereo Camera (HRSC), with resolution that is usually 12.5-25 metres per pixel. The achieved coverage is more than 64% for images with resolution finer than 20 m/pixel, while for ~40% of Mars, Digital Terrain Models (DTMs) have been produced with are co-registered with MOLA [Gwinner et al., 2010]. The HRSC images and DTMs represent the best available 3D reference frame for Mars showing co-registration with MOLA<25m (loc.cit.). In our work, the reference generated by HRSC terrain corrected orthorectified images is used as a common reference frame to co-register all available high-resolution orbital NASA products into a common 3D coordinate system, thus allowing the examination of the changes that happen on the surface of Mars over time (such as seasonal flows [McEwen et al., 2011] or new impact craters [Byrne, et al., 2009]). In order to accomplish such a tedious manual task, we have developed an automatic co-registration pipeline that produces orthorectified versions of the NASA images in realistic time (i.e. from ~15 minutes to 10 hours per image depending on size). In the first step of this pipeline, tie-points are extracted from the target NASA image and the reference HRSC image or image mosaic. Subsequently, the HRSC areo-reference information is used to transform the HRSC tie-points pixel coordinates into 3D "world" coordinates. This way, a correspondence between the pixel coordinates of the target NASA image and the 3D "world" coordinates is established for each tie-point. This set of correspondences is used to estimate a non-rigid, 3D to 2D transformation model, which transforms the target image into the HRSC reference coordinate system. Finally, correlation of the transformed target image and the HRSC image is employed to fine-tune the orthorectification results, thus generating results with sub-pixel accuracy. This method, which has been proven to be accurate, robust to resolution differences and reliable when dealing with partially degraded data and fast, will be presented, along with some example co-registration results that have been achieved by using it. Acknowledgements: The research leading to these results has received partial funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] K. F. Gwinner, et al. (2010) Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: characteristics and performance. Earth and Planetary Science Letters 294, 506-519, doi:10.1016/j.epsl.2009.11.007. [2] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science , 333 (6043): 740-743. [3] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676.

  8. A system for simulating aerial or orbital TV observations of geographic patterns

    NASA Technical Reports Server (NTRS)

    Latham, J. P.

    1972-01-01

    A system which simulates observation of the earth surface by aerial or orbiting television devices has been developed. By projecting color slides of photographs taken by aircraft and orbiting sensors upon a rear screen system, and altering scale of projected image, screen position, or TV camera position, it is possible to simulate alternatives of altitude, or optical systems. By altering scan line patterns in COHU 3200 series camera from 525 to 945 scan lines, it is possible to study implications of scan line resolution upon the detection and analysis of geographic patterns observed by orbiting TV systems.

  9. Mars Odyssey from Two Distances in One Image

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1: Why There are Two Images of Odyssey

    NASA's Mars Odyssey spacecraft appears twice in the same frame in this image from the Mars Orbiter Camera aboard NASA's Mars Global Surveyor. The camera's successful imaging of Odyssey and of the European Space Agency's Mars Express in April 2005 produced the first pictures of any spacecraft orbiting Mars taken by another spacecraft orbiting Mars.

    Mars Global Surveyor and Mars Odyssey are both in nearly circular, near-polar orbits. Odyssey is in an orbit slightly higher than that of Global Surveyor in order to preclude the possibility of a collision. However, the two spacecraft occasionally come as close together as 15 kilometers (9 miles).

    The images were obtained by the Mars Global Surveyor operations teams at Lockheed Martin Space System, Denver; JPL and Malin Space Science Systems.

    The two views of Mars Odyssey in this image were acquired a little under 7.5 seconds apart as Odyssey receded from a close flyby of Mars Global Surveyor. The geometry of the flyby (see Figure 1) and the camera's way of acquiring an image line-by-line resulted in the two views of Odyssey in the same frame. The first view (right) was taken when Odyssey was about 90 kilometers (56 miles) from Global Surveyor and moving more rapidly than Global Surveyor was rotating, as seen from Global Surveyor. A few seconds later, Odyssey was farther away -- about 135 kilometers (84 miles) -- and appeared to be moving more slowly. In this second view of Odyssey (left), the Mars Orbiter Camera's field-of-view overtook Odyssey.

    The Mars Orbiter Camera can resolve features on the surface of Mars as small as a few meters or yards across from Mars Global Surveyor's orbital altitude of 350 to 405 kilometers (217 to 252 miles). From a distance of 100 kilometers (62 miles), the camera would be able to resolve features substantially smaller than 1 meter or yard across.

    Mars Odyssey was launched on April 7, 2001, and reached Mars on Oct. 24, 2001. Mars Global Surveyor left Earth on Nov. 7, 1996, and arrived in Mars orbit on Sept. 12, 1997. Both orbiters are in an extended mission phase, both have relayed data from the Mars Exploration Rovers, and both are continuing to return exciting new results from Mars. JPL, a division of the California Institute of Technology, Pasadena, manages both missions for NASA's Science Mission Directorate, Washington, D.C.

  10. A new look at formation and timing of thrust fault scarps on the Moon

    NASA Astrophysics Data System (ADS)

    Watters, T. R.; Robinson, M. S.; Beyer, R. A.; Bell, J. F.; Pritchard, M. E.; Banks, M. E.; Garry, W. B.; Williams, N. R.

    2009-12-01

    The current view of lunar tectonics is that most crustal deformation is directly associated with mare basins. Lunar lobate scarps, in contrast to nearside mare wrinkle ridges, and graben, are found most often in the highlands and are the dominant tectonic landform on the farside. Lunar scarps are relatively small-scale tectonic landforms, only easily resolved in the highest resolution Apollo Panoramic Camera and Lunar Orbiter images. These scarps are interpreted to be the surface expression of thrust faults, yet they have not been well characterized and their global spatial distribution remains unknown. Images from the Lunar Reconnaissance Orbiter Camera (LROC) reveal previously undetected scarps as well as remarkable new features related to some previously known lobate scarps. LROC Narrow Angle Camera (NAC) 1 to 2 m/pixel images show meter-scale tectonic landforms associated with the Lee-Lincoln scarp. The Lee-Lincoln thrust fault scarp cuts across the mare basalt-filled Taurus-Littrow valley near the Apollo 17 landing site, trending roughly north-south between two highland massifs. The fault scarp extends into the highlands of North Massif where it cuts up slope for a short distance and abruptly changes trend to the northwest cutting along slope for kilometers. NAC stereo-derived topography shows a narrow rise associated with the scarp segment in the valley floor. Spatially correlated with the rise is an array of fractures and shallow extensional troughs or graben. The small-scale graben have maximum widths of ~25 m and are typically 100-200 meters in length. The rise is interpreted to be the result of flexural bending of the valley floor basalts with bending stresses causing extension of the upper regolith. Lobate scarps appear to be among the youngest tectonic landforms on the Moon based on their generally crisp appearance and a lack of superposed, relatively large-diameter (>500 m), impact craters. NAC images of known and newly detected scarps reveal evidence of crosscut impact craters as small as ~5-10 m-in-diameter. Crosscut meter-scale craters indicate a young age for the lobate scarps. Until now, the identification of lobate scarps has been limited by the lack of high resolution images with optimal lighting geometry for most of the Moon. The vast majority of the known lunar scarps are confined to the equatorial zone in areas imaged by the Apollo Panoramic Cameras. LROC NAC imaging now makes global detection of the small-scale scarps possible. A previously undetected lobate scarp has been found in the north polar region at ~88 degrees N. This discovery suggests that thrust fault scarps may be globally distributed. The young age of the lobate scarps indicated by crosscutting relations with impact craters and the discovery of a high-latitude scarp suggests global-scale, late-stage contraction. If thrust fault scarps are proven to be globally distributed, this discovery has important implications for the thermal history of the Moon.

  11. Preliminary Mapping of Permanently Shadowed and Sunlit Regions Using the Lunar Reconnaissance Orbiter Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Speyerer, E.; Koeber, S.; Robinson, M. S.

    2010-12-01

    The spin axis of the Moon is tilted by only 1.5° (compared with the Earth's 23.5°), leaving some areas near the poles in permanent shadow while other nearby regions remain sunlit for a majority of the year. Theory, radar data, neutron measurements, and Lunar CRater Observation and Sensing Satellite (LCROSS) observations suggest that volatiles may be present in the cold traps created inside these permanently shadowed regions. While areas of near permanent illumination are prime locations for future lunar outposts due to benign thermal conditions and near constant solar power. The Lunar Reconnaissance Orbiter (LRO) has two imaging systems that provide medium and high resolution views of the poles. During almost every orbit the LROC Wide Angle Camera (WAC) acquires images at 100 m/pixel of the polar region (80° to 90° north and south latitude). In addition, the LROC Narrow Angle Camera (NAC) targets selected regions of interest at 0.7 to 1.5 m/pixel [Robinson et al., 2010]. During the first 11 months of the nominal mission, LROC acquired almost 6,000 WAC images and over 7,300 NAC images of the polar region (i.e., within 2° of pole). By analyzing this time series of WAC and NAC images, regions of permanent shadow and permanent, or near-permanent illumination can be quantified. The LROC Team is producing several reduced data products that graphically illustrate the illumination conditions of the polar regions. Illumination movie sequences are being produced that show how the lighting conditions change over a calendar year. Each frame of the movie sequence is a polar stereographic projected WAC image showing the lighting conditions at that moment. With the WAC’s wide field of view (~100 km at an altitude of 50 km), each frame has repeat coverage between 88° and 90° at each pole. The same WAC images are also being used to develop multi-temporal illumination maps that show the percent each 100 m × 100 m area is illuminated over a period of time. These maps are derived by stacking all the WAC frames, selecting a threshold to determine if the surface is illuminated, and summing the resulting binary images. In addition, mosaics of NAC images are also being produced for regions of interest at a scale of 0.7 to 1.5 m/pixel. The mosaics produced so far have revealed small illuminated surfaces on the tens of meters scale that were previously thought to be shadowed during that time. The LROC dataset of the polar regions complements previous illumination analysis of Clementine images [Bussey et al., 1999], Kaguya topography [Bussey et al., 2010], and the current efforts underway by the Lunar Orbiter Laser Altimeter (LOLA) Team [Mazarico et al., 2010] and provide an important new dataset for science and exploration. References: Bussey et al. (1999), Illumination conditions at the lunar south pole, Geophysical Research Letters, 26(9), 1187-1190. Bussey et al. (2010), Illumination conditions of the south pole of the Moon derived from Kaguya topography, Icarus, 208, 558-564. Mazarico et al. (2010), Illumination of the lunar poles from the Lunar Orbiter Laser Altimeter (LOLA) Topography Data, paper presented at 41st LPSC, Houston, TX. Robinson et al. (2010), Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview, Space Sci Rev, 150, 81-124.

  12. Surveying the Lunar Surface for New Craters with Mini-RF/Goldstone X-Band Bistatic Observations

    NASA Astrophysics Data System (ADS)

    Cahill, J. T.; Patterson, G.; Turner, F. S.; Morgan, G.; Stickle, A. M.; Speyerer, E. J.; Espiritu, R. C.; Thomson, B. J.

    2017-12-01

    A multi-look temporal imaging survey by Speyerer et al. (2016) using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) has highlighted detectable and frequent impact bombardment processes actively modifying the lunar surface. Over 220 new resolvable impacts have been detected since NASA's Lunar Reconnaissance Orbiter (LRO) entered orbit around the Moon, at a flux that is substantially higher than anticipated from previous studies (Neukum et al., 2001). The Miniature Radio Frequency (Mini-RF) instrument aboard LRO is a hybrid dual-polarized synthetic aperture radar (SAR) that now operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34-meter antenna DSS-13 to collect S- and X-band (12.6 and 4.2 cm, respectively) bistatic radar data of the Moon, respectively. Here we targeted some of the larger (>30 m) craters identified by Speyerer et al. (2016) and executed bistatic X-band radar observations both to evaluate our ability to detect and resolve these impact features and further characterize the spatial extent and material size of their ejecta outside optical wavelengths. Data acquired during Mini-RF monostatic operations, when the transmitter was active, show no coverage of the regions in question before or after two of the new impacts occurred. This makes Mini-RF and Earth-based bistatic observations all the more valuable for examination of these fresh new geologic features. Preliminary analyses of Arecibo/Greenbank and Mini-RF/Goldstone observations are unable to resolve the new crater cavities (due to our current resolving capability of 100 m/px), but they further confirm lunar surface roughness changes occurred between 2008 and 2017. Mini-RF X-band observations show newly ejected material was dispersed on the order of 100-300 meters from the point of impact. Scattering observed in the X-band data suggests the presence of rocky ejecta 4 - 45 cm in diameter on the surface and buried to depths of at least 0.5 m.

  13. KSC-04PD-1812

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, United Space Alliance worker Craig Meyer fits an External Tank (ET) digital still camera in the right-hand liquid oxygen umbilical well on Space Shuttle Atlantis. NASA is pursuing use of the camera, beginning with the Shuttles Return To Flight, to obtain and downlink high-resolution images of the ET following separation of the ET from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  14. KSC-04PD-1813

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, an External Tank (ET) digital still camera is positioned into the right-hand liquid oxygen umbilical well on Space Shuttle Atlantis to determine if it fits properly. NASA is pursuing use of the camera, beginning with the Shuttles Return To Flight, to obtain and downlink high-resolution images of the ET following separation of the ET from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  15. KSC-04pd1813

    NASA Image and Video Library

    2004-09-17

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an External Tank (ET) digital still camera is positioned into the right-hand liquid oxygen umbilical well on Space Shuttle Atlantis to determine if it fits properly. NASA is pursuing use of the camera, beginning with the Shuttle’s Return To Flight, to obtain and downlink high-resolution images of the ET following separation of the ET from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  16. KSC-04pd1812

    NASA Image and Video Library

    2004-09-17

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Craig Meyer fits an External Tank (ET) digital still camera in the right-hand liquid oxygen umbilical well on Space Shuttle Atlantis. NASA is pursuing use of the camera, beginning with the Shuttle’s Return To Flight, to obtain and downlink high-resolution images of the ET following separation of the ET from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  17. Pinhole Cameras: For Science, Art, and Fun!

    ERIC Educational Resources Information Center

    Button, Clare

    2007-01-01

    A pinhole camera is a camera without a lens. A tiny hole replaces the lens, and light is allowed to come in for short amount of time by means of a hand-operated shutter. The pinhole allows only a very narrow beam of light to enter, which reduces confusion due to scattered light on the film. This results in an image that is focused, reversed, and…

  18. NASA's Optical Program on Ascension Island: Bringing MCAT to Life as the Eugene Stansbery-Meter Class Autonomous Telescope (ES-MCAT)

    NASA Astrophysics Data System (ADS)

    Lederer, S. M.; Hickson, P.; Cowardin, H. M.; Buckalew, B.; Frith, J.; Alliss, R.

    In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA’s Orbital Debris Program Office (ODPO), in honour of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosyncronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA’s Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs).

  19. NASA's Optical Program on Ascension Island: Bringing MCAT to Life as the Eugene Stansbery-Meter Class Autonomous Telescope (ES-MCAT)

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Hickson, P.; Cowardin, H. M.; Buckalew, B.; Frith, J.; Alliss, R.

    2017-01-01

    In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA's Orbital Debris Program Office (ODPO), in honor of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosynchronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA's Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs).

  20. Staggering Structure

    NASA Image and Video Library

    2017-09-06

    This view from NASA's Cassini spacecraft shows a wave structure in Saturn's rings known as the Janus 2:1 spiral density wave. Resulting from the same process that creates spiral galaxies, spiral density waves in Saturn's rings are much more tightly wound. In this case, every second wave crest is actually the same spiral arm which has encircled the entire planet multiple times. This is the only major density wave visible in Saturn's B ring. Most of the B ring is characterized by structures that dominate the areas where density waves might otherwise occur, but this innermost portion of the B ring is different. The radius from Saturn at which the wave originates (toward lower-right in this image) is 59,796 miles (96,233 kilometers) from the planet. At this location, ring particles orbit Saturn twice for every time the moon Janus orbits once, creating an orbital resonance. The wave propagates outward from the resonance (and away from Saturn), toward upper-left in this view. For reasons researchers do not entirely understand, damping of waves by larger ring structures is very weak at this location, so this wave is seen ringing for hundreds of bright wave crests, unlike density waves in Saturn's A ring. The image gives the illusion that the ring plane is tilted away from the camera toward upper-left, but this is not the case. Because of the mechanics of how this kind of wave propagates, the wavelength decreases with distance from the resonance. Thus, the upper-left of the image is just as close to the camera as the lower-right, while the wavelength of the density wave is simply shorter. This wave is remarkable because Janus, the moon that generates it, is in a strange orbital configuration. Janus and Epimetheus share practically the same orbit and trade places every four years. Every time one of those orbit swaps takes place, the ring at this location responds, spawning a new crest in the wave. The distance between any pair of crests corresponds to four years' worth of the wave propagating downstream from the resonance, which means the wave seen here encodes many decades' worth of the orbital history of Janus and Epimetheus. According to this interpretation, the part of the wave at the very upper-left of this image corresponds to the positions of Janus and Epimetheus around the time of the Voyager flybys in 1980 and 1981, which is the time at which Janus and Epimetheus were first proven to be two distinct objects (they were first observed in 1966). Epimetheus also generates waves at this location, but they are swamped by the waves from Janus, since Janus is the larger of the two moons. This image was taken on June 4, 2017, with the Cassini spacecraft narrow-angle camera. The image was acquired on the sunlit side of the rings from a distance of 47,000 miles (76,000 kilometers) away from the area pictured. The image scale is 1,730 feet (530 meters) per pixel. The phase angle, or sun-ring-spacecraft angle, is 90 degrees. https://photojournal.jpl.nasa.gov/catalog/PIA21627

  1. Thermophysical properties of the MER and Beagle II landing site regions on Mars

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.; Hynek, Brian M.; Pelkey, Shannon M.; Mellon, Michael T.; Martínez-Alonso, Sara; Putzig, Nathaniel E.; Murphy, Nate; Christensen, Philip R.

    2006-08-01

    We analyzed remote-sensing observations of the Isidis Basin, Gusev Crater, and Meridiani Planum landing sites for Beagle II, MER-A Spirit, and MER-B Opportunity spacecraft, respectively. We emphasized the thermophysical properties using daytime and nighttime radiance measurements from the Mars Global Surveyor (MGS) Thermal Emission Spectrometer and Mars Odyssey Thermal Emission Imaging System (THEMIS) and thermal inertias derived from nighttime data sets. THEMIS visible images, MGS Mars Orbiter Camera (MOC) narrow-angle images, and MGS Mars Orbiter Laser Altimeter (MOLA) data are incorporated as well. Additionally, the remote-sensing data were compared with ground-truth at the MER sites. The Isidis Basin surface layer has been shaped by aeolian processes and erosion by slope winds coming off of the southern highlands and funneling through notches between massifs. In the Gusev region, surface materials of contrasting thermophysical properties have been interpreted as rocks or bedrock, duricrust, and dust deposits; these are consistent with a complex geological history dominated by volcanic and aeolian processes. At Meridiani Planum the many layers having different thermophysical and erosional properties suggest periodic deposition of differing sedimentological facies possibly related to clast size, grain orientation and packing, or mineralogy.

  2. KSC-2009-2989

    NASA Image and Video Library

    2009-05-08

    CAPE CANAVERAL, Fla. – At Astrotech Space Operations in Titusville, Fla., technicians photograph the Lunar Reconnaissance Orbiter, or LRO, during closeout before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Instruments on the LRO include the LEND that will measure the flux of neutrons from the moon; the LROC, a narrow angle camera that will provide panchromatic images; the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration; and at top, the CRaTER, which will characterize the global lunar radiation environment and its biological impacts. At right is the solar panel. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  3. Windblown Dunes and Ripples

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-411, 4 July 2003

    July 4, 2003, is the 6th anniversary of the Mars Pathfinder landing. One of the elements carried to the red planet by Pathfinder was the Wind Sock Experiment. This project was designed to measure wind activity by taking pictures of three aluminum 'wind socks.' While the winds at the Mars Pathfinder site did not blow particularly strong during the course of that mission, dust storms seen from orbit and Earth-based telescopes attest to the fact that wind is a major force of change on the dry, desert surface of Mars today. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) narrow angle image shows dark sand dunes and lighter-toned ripples trapped among the mountainous central peak of an old impact crater in Terra Tyrrhena near 13.9oS, 246.7oW. The dune slip faces--the steepest slope on the larger dunes--indicate sand transport is from the top/upper left toward the bottom/lower right. North is toward the top/upper right; the picture is 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left. This picture was obtained in April 2003.

  4. The first demonstration of the concept of "narrow-FOV Si/CdTe semiconductor Compton camera"

    NASA Astrophysics Data System (ADS)

    Ichinohe, Yuto; Uchida, Yuusuke; Watanabe, Shin; Edahiro, Ikumi; Hayashi, Katsuhiro; Kawano, Takafumi; Ohno, Masanori; Ohta, Masayuki; Takeda, Shin`ichiro; Fukazawa, Yasushi; Katsuragawa, Miho; Nakazawa, Kazuhiro; Odaka, Hirokazu; Tajima, Hiroyasu; Takahashi, Hiromitsu; Takahashi, Tadayuki; Yuasa, Takayuki

    2016-01-01

    The Soft Gamma-ray Detector (SGD), to be deployed on board the ASTRO-H satellite, has been developed to provide the highest sensitivity observations of celestial sources in the energy band of 60-600 keV by employing a detector concept which uses a Compton camera whose field-of-view is restricted by a BGO shield to a few degree (narrow-FOV Compton camera). In this concept, the background from outside the FOV can be heavily suppressed by constraining the incident direction of the gamma ray reconstructed by the Compton camera to be consistent with the narrow FOV. We, for the first time, demonstrate the validity of the concept using background data taken during the thermal vacuum test and the low-temperature environment test of the flight model of SGD on ground. We show that the measured background level is suppressed to less than 10% by combining the event rejection using the anti-coincidence trigger of the active BGO shield and by using Compton event reconstruction techniques. More than 75% of the signals from the field-of-view are retained against the background rejection, which clearly demonstrates the improvement of signal-to-noise ratio. The estimated effective area of 22.8 cm2 meets the mission requirement even though not all of the operational parameters of the instrument have been fully optimized yet.

  5. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    NASA Astrophysics Data System (ADS)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  6. KSC-04PD-1810

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, from left, United Space Alliance workers Loyd Turner, Craig Meyer and Erik Visser prepare to conduct a fit check of an External Tank (ET) digital still camera in the right-hand liquid oxygen umbilical well on Space Shuttle Atlantis. NASA is pursuing use of the camera, beginning with the Shuttles Return To Flight, to obtain and downlink high-resolution images of the ET following separation of the ET from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  7. KSC-04PD-1811

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility, from left, United Space Alliance workers Loyd Turner, Craig Meyer and Erik Visser conduct a fit check of an External Tank (ET) digital still camera in the right-hand liquid oxygen umbilical well on Space Shuttle Atlantis. NASA is pursuing use of the camera, beginning with the Shuttles Return To Flight, to obtain and downlink high-resolution images of the ET following separation of the ET from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  8. KSC-04pd1811

    NASA Image and Video Library

    2004-09-17

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, from left, United Space Alliance workers Loyd Turner, Craig Meyer and Erik Visser conduct a fit check of an External Tank (ET) digital still camera in the right-hand liquid oxygen umbilical well on Space Shuttle Atlantis. NASA is pursuing use of the camera, beginning with the Shuttle’s Return To Flight, to obtain and downlink high-resolution images of the ET following separation of the ET from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  9. KSC-04pd1810

    NASA Image and Video Library

    2004-09-17

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, from left, United Space Alliance workers Loyd Turner, Craig Meyer and Erik Visser prepare to conduct a fit check of an External Tank (ET) digital still camera in the right-hand liquid oxygen umbilical well on Space Shuttle Atlantis. NASA is pursuing use of the camera, beginning with the Shuttle’s Return To Flight, to obtain and downlink high-resolution images of the ET following separation of the ET from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  10. Fisheye Multi-Camera System Calibration for Surveying Narrow and Complex Architectures

    NASA Astrophysics Data System (ADS)

    Perfetti, L.; Polari, C.; Fassi, F.

    2018-05-01

    Narrow spaces and passages are not a rare encounter in cultural heritage, the shape and extension of those areas place a serious challenge on any techniques one may choose to survey their 3D geometry. Especially on techniques that make use of stationary instrumentation like terrestrial laser scanning. The ratio between space extension and cross section width of many corridors and staircases can easily lead to distortions/drift of the 3D reconstruction because of the problem of propagation of uncertainty. This paper investigates the use of fisheye photogrammetry to produce the 3D reconstruction of such spaces and presents some tests to contain the degree of freedom of the photogrammetric network, thereby containing the drift of long data set as well. The idea is that of employing a multi-camera system composed of several fisheye cameras and to implement distances and relative orientation constraints, as well as the pre-calibration of the internal parameters for each camera, within the bundle adjustment. For the beginning of this investigation, we used the NCTech iSTAR panoramic camera as a rigid multi-camera system. The case study of the Amedeo Spire of the Milan Cathedral, that encloses a spiral staircase, is the stage for all the tests. Comparisons have been made between the results obtained with the multi-camera configuration, the auto-stitched equirectangular images and a data set obtained with a monocular fisheye configuration using a full frame DSLR. Results show improved accuracy, down to millimetres, using a rigidly constrained multi-camera.

  11. The Halo

    NASA Image and Video Library

    2013-12-23

    NASA's Cassini spacecraft looks towards the dark side of Saturn's largest moon, Titan, capturing the blue halo caused by a haze layer that hovers high in the moon's atmosphere. The haze that permeates Titan's atmosphere scatters sunlight and produces the orange color seen here. More on Titan's orange and blue hazes can be found at PIA14913. This view looks towards the side of Titan (3,200 miles or 5,150 kilometers across) that leads in its orbit around Saturn. North on Titan is up and rotated 40 degrees to the left. Images taken using red, green and blue spectral filters were combined to create this natural-color view. The images were taken with the Cassini spacecraft narrow-angle camera on Nov. 3, 2013. The view was acquired at a distance of approximately 2.421 million miles (3.896 million kilometers) from Titan. Image scale is 14 miles (23 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA17180

  12. ARC-1986-AC86-7018

    NASA Image and Video Library

    1986-01-25

    P-29502C Range: 1.04 million kilometers (650,000 miles) This color photo of Umbriel, the darkest of Uranus' five large moons was synthesized from frames exposed with the Voyager narrow-angle camera's violet and clear filters and has a resolution of 19 km (12 mi.). Umbriel is characterized by the darkest surface and smallest brightness variations of any of the large satellites of Uranus. As seen here, the surface is also generally gray and colorless. Nevertheless, at this resolution, considerable topographic detail is revealed, showing that Umbriel's surface is covered by impact craters. The brightest spot (shown at top near the equator at approxiamately 270 ° longitude) appears as a bright ring. Its geological significance is not yet understood. Umbriel has a diameter of about 1,200 km (750 miles) and orbits 267,000 km (166,000 mi) from Uranus' center. The satellite's name, from Alexander Pope's 'Rape of the Lock,' means 'dark angel'.

  13. ARC-1986-AC86-7012

    NASA Image and Video Library

    1986-01-12

    Range : 2.77 million miles (1.72 million miles) resolution : 51 km. (32 mi.) P-29495C This Voyager 2 photograph of the outermost Uranian satellite, Oberon is a computer reconstruction of three frames , exposed through the narrow angle camera's blue, green, and orange filters. the grayness or apparent lack of strong color is a distinctive characteristic of the satellites and the rings of Uranus and can serve as one indicator of the possible composition of the satellites' surfaces. Oberon has a diameter of about 1,600 km. (1,000 mi.) and orbits the planet at a radial distance of 586,000 km. (364,000 mi.). Oberon's surface displays areas of lighter and darker material, probably associated in part with impact craters formed during its long exposure to bombardment by cosmic debris. Thr resolution of this particular image is not sufficient, however, to reveal with confidece the nature of these features.

  14. Measuring the Orbital Period of the Moon Using a Digital Camera

    ERIC Educational Resources Information Center

    Hughes, Stephen W.

    2006-01-01

    A method of measuring the orbital velocity of the Moon around the Earth using a digital camera is described. Separate images of the Moon and stars taken 24 hours apart were loaded into Microsoft PowerPoint and the centre of the Moon marked on each image. Four stars common to both images were connected together to form a "home-made" constellation.…

  15. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    NASA Astrophysics Data System (ADS)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  16. High-Resolution Mars Camera Test Image of Moon Infrared

    NASA Image and Video Library

    2005-09-13

    This crescent view of Earth Moon in infrared wavelengths comes from a camera test by NASA Mars Reconnaissance Orbiter spacecraft on its way to Mars. This image was taken by taken by the High Resolution Imaging Science Experiment camera Sept. 8, 2005.

  17. Boulder Distributions at Legacy Landing Sites: Assessing Regolith Production Rates and Landing Site Hazards

    NASA Technical Reports Server (NTRS)

    Watkins, R. N.; Jolliff, B. L.; Lawrence, S. J.; Hayne, P. O.; Ghent, R. R.

    2017-01-01

    Understanding how the distribution of boulders on the lunar surface changes over time is key to understanding small-scale erosion processes and the rate at which rocks become regolith. Boulders degrade over time, primarily as a result of micrometeorite bombardment so their residence time at the surface can inform the rate at which rocks become regolith or become buried within regolith. Because of the gradual degradation of exposed boulders, we expect that the boulder population around an impact crater will decrease as crater age increases. Boulder distributions around craters of varying ages are needed to understand regolith production rates, and Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images provide one of the best tools for conducting these studies. Using NAC images to assess how the distribution of boulders varies as a function of crater age provides key constraints for boulder erosion processes. Boulders also represent a potential hazard that must be addressed in the planning of future lunar landings. A boulder under a landing leg can contribute to deck tilt, and boulders can damage spacecraft during landing. Using orbital data to characterize boulder populations at locations where landers have safely touched down (Apollo, Luna, Surveyor, Chang'e-3) provides validation for landed mission hazard avoidance planning. Additionally, counting boulders at legacy landing sites is useful because: 1) LROC has extensive coverage of these sites at high resolutions (approximately 0.5 meters per pixel). 2) Returned samples from craters at these sites have been radiometrically dated, allowing assessment of how boulder distributions vary as a function of crater age. 3) Surface photos at these sites can be used to correlate with remote sensing measurements.

  18. The Days Dwindle Down to a Precious Few

    NASA Image and Video Library

    2015-04-27

    This image is located just inside the southern rim of Chong Chol crater and was obtained on April 25, 2015, the day following NASA MESSENGER final orbital correction maneuver. The spacecraft fuel tanks are now completely empty, and there is no means to prevent the Sun's gravity from pulling MESSENGER's orbit closer and closer to the surface of Mercury. Impact is expected to occur on April 30, 2015. The image is located just inside the southern rim of Chong Chol crater, named for a Korean poet of the 1500s. It is challenging to obtain good images when the spacecraft is very low above the planet, because of the high speed at which the camera's field of view is moving across the surface. Very short exposure times are used to limit smear, and this image was binned from its original size of 1024 x 1024 pixels to 512 x 512 to improve the image quality. The title of today's image is a line from "September Song" (composed by Kurt Weill, with lyrics by Maxwell Anderson. The song was subsequently covered by artists including Ian McCulloch of Echo & the Bunnymen, Lou Reed, and Bryan Ferry). Date acquired: April 25, 2015 Image Mission Elapsed Time (MET): 72264694 Image ID: 8392292 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 45.43° N Center Longitude: 298.62° E Resolution: 2.1 meters/pixel Scale: The scene is about 2.1 km (1.3 miles) across. This image has not been map projected. Incidence Angle: 69.9° Emission Angle: 20.1° Phase Angle: 90.0° http://photojournal.jpl.nasa.gov/catalog/PIA19436

  19. Focus adjustment method for CBERS 3 and 4 satellites Mux camera to be performed in air condition and its experimental verification for best performance in orbital vacuum condition

    NASA Astrophysics Data System (ADS)

    Scaduto, Lucimara C. N.; Malavolta, Alexandre T.; Modugno, Rodrigo G.; Vales, Luiz F.; Carvalho, Erica G.; Evangelista, Sérgio; Stefani, Mario A.; de Castro Neto, Jarbas C.

    2017-11-01

    The first Brazilian remote sensing multispectral camera (MUX) is currently under development at Opto Eletronica S.A. It consists of a four-spectral-band sensor covering a 450nm to 890nm wavelength range. This camera will provide images within a 20m ground resolution at nadir. The MUX camera is part of the payload of the upcoming Sino-Brazilian satellites CBERS 3&4 (China-Brazil Earth Resource Satellite). The preliminary alignment between the optical system and the CCD sensor, which is located at the focal plane assembly, was obtained in air condition, clean room environment. A collimator was used for the performance evaluation of the camera. The preliminary performance evaluation of the optical channel was registered by compensating the collimator focus position due to changes in the test environment, as an air-to-vacuum environment transition leads to a defocus process in this camera. Therefore, it is necessary to confirm that the alignment of the camera must always be attained ensuring that its best performance is reached for an orbital vacuum condition. For this reason and as a further step on the development process, the MUX camera Qualification Model was tested and evaluated inside a thermo-vacuum chamber and submitted to an as-orbit vacuum environment. In this study, the influence of temperature fields was neglected. This paper reports on the performance evaluation and discusses the results for this camera when operating within those mentioned test conditions. The overall optical tests and results show that the "in air" adjustment method was suitable to be performed, as a critical activity, to guarantee the equipment according to its design requirements.

  20. In-flight Video Captured by External Tank Camera System

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this July 26, 2005 video, Earth slowly fades into the background as the STS-114 Space Shuttle Discovery climbs into space until the External Tank (ET) separates from the orbiter. An External Tank ET Camera System featuring a Sony XC-999 model camera provided never before seen footage of the launch and tank separation. The camera was installed in the ET LO2 Feedline Fairing. From this position, the camera had a 40% field of view with a 3.5 mm lens. The field of view showed some of the Bipod area, a portion of the LH2 tank and Intertank flange area, and some of the bottom of the shuttle orbiter. Contained in an electronic box, the battery pack and transmitter were mounted on top of the Solid Rocker Booster (SRB) crossbeam inside the ET. The battery pack included 20 Nickel-Metal Hydride batteries (similar to cordless phone battery packs) totaling 28 volts DC and could supply about 70 minutes of video. Located 95 degrees apart on the exterior of the Intertank opposite orbiter side, there were 2 blade S-Band antennas about 2 1/2 inches long that transmitted a 10 watt signal to the ground stations. The camera turned on approximately 10 minutes prior to launch and operated for 15 minutes following liftoff. The complete camera system weighs about 32 pounds. Marshall Space Flight Center (MSFC), Johnson Space Center (JSC), Goddard Space Flight Center (GSFC), and Kennedy Space Center (KSC) participated in the design, development, and testing of the ET camera system.

  1. STS-32 photographic equipment (cameras,lenses,film magazines) on flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-32 photographic equipment is displayed on the aft flight deck of Columbia, Orbiter Vehicle (OV) 102. On the payload station are a dual camera mount with two handheld HASSELBLAD cameras, camera lenses, and film magazines. This array of equipment will be used to record onboard activities and observations of the Earth's surface.

  2. The on-orbit calibration of geometric parameters of the Tian-Hui 1 (TH-1) satellite

    NASA Astrophysics Data System (ADS)

    Wang, Jianrong; Wang, Renxiang; Hu, Xin; Su, Zhongbo

    2017-02-01

    The on-orbit calibration of geometric parameters is a key step in improving the location accuracy of satellite images without using Ground Control Points (GCPs). Most methods of on-orbit calibration are based on the self-calibration using additional parameters. When using additional parameters, different number of additional parameters may lead to different results. The triangulation bundle adjustment is another way to calibrate the geometric parameters of camera, which can describe the changes in each geometric parameter. When triangulation bundle adjustment method is applied to calibrate geometric parameters, a prerequisite is that the strip model can avoid systematic deformation caused by the rate of attitude changes. Concerning the stereo camera, the influence of the intersection angle should be considered during calibration. The Equivalent Frame Photo (EFP) bundle adjustment based on the Line-Matrix CCD (LMCCD) image can solve the systematic distortion of the strip model, and obtain high accuracy location without using GCPs. In this paper, the triangulation bundle adjustment is used to calibrate the geometric parameters of TH-1 satellite cameras based on LMCCD image. During the bundle adjustment, the three-line array cameras are reconstructed by adopting the principle of inverse triangulation. Finally, the geometric accuracy is validated before and after on-orbit calibration using 5 testing fields. After on-orbit calibration, the 3D geometric accuracy is improved to 11.8 m from 170 m. The results show that the location accuracy of TH-1 without using GCPs is significantly improved using the on-orbit calibration of the geometric parameters.

  3. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    USGS Publications Warehouse

    Hobbs, Michael T.; Brehme, Cheryl S.

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  4. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates.

    PubMed

    Hobbs, Michael T; Brehme, Cheryl S

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing.

  5. Phootprint - A Phobos sample return mission study

    NASA Astrophysics Data System (ADS)

    Koschny, Detlef; Svedhem, Håkan; Rebuffat, Denis

    Introduction ESA is currently studying a mission to return a sample from Phobos, called Phootprint. This study is performed as part of ESA’s Mars Robotic Exploration Programme. Part of the mission goal is to prepare technology needed for a sample return mission from Mars itself; the mission should also have a strong scientific justification, which is described here. 1. Science goal The main science goal of this mission will be to Understand the formation of the Martian moons Phobos and put constraints on the evolution of the solar system. Currently, there are several possibilities for explaining the formation of the Martian moons: (a) co-formation with Mars (b) capture of objects coming close to Mars (c) Impact of a large body onto Mars and formation from the impact ejecta The main science goal of this mission is to find out which of the three scenarios is the most probable one. To do this, samples from Phobos would be returned to Earth and analyzed with extremely high precision in ground-based laboratories. An on-board payload is foreseen to provide information to put the sample into the necessary geological context. 2. Mission Spacecraft and payload will be based on experience gained from previous studies to Martian moons and asteroids. In particular the Marco Polo and MarcoPolo-R asteroid sample return mission studies performed at ESA were used as a starting point. Currently, industrial studies are ongoing. The initial starting assumption was to use a Soyuz launcher. Uunlike the initial Marco Polo and MarcoPolo-R studies to an asteroid, a transfer stage will be needed. Another main difference to an asteroid mission is the fact that the spacecraft actually orbits Mars, not Phobos or Deimos. It is possible to select a spacecraft orbit, which in a Phobos- or Deimos-centred reference system would give an ellipse around the moon. The following model payload is currently foreseen: - Wide Angle Camera, - Narrow Angle Camera, - Close-Up Camera, - Context camera for sampling context, - visible-IR spectrometer - thermal IR spectrometer - and a Radio Science investigation. It is expected that with these instruments the necessary context for the sample can be provided. The paper will focus on the current status of the mission study.

  6. Dust Devil Tracks and Wind Streaks in the North Polar Region of Mars: A Study of the 2007 Phoenix Mars Lander Sites

    NASA Technical Reports Server (NTRS)

    Drake, Nathan B.; Tamppari, Leslie K.; Baker, R. David; Cantor, Bruce A.; Hale, Amy S.

    2006-01-01

    The 65-72 latitude band of the North Polar Region of Mars, where the 2007 Phoenix Mars Lander will land, was studied using satellite images from the Mars Global Surveyor (MGS) Mars Orbiter Camera Narrow-Angle (MOC-NA) camera. Dust devil tracks (DDT) and wind streaks (WS) were observed and recorded as surface evidence for winds. No active dust devils (DDs) were observed. 162 MOC-NA images, 10.3% of total images, contained DDT/WS. Phoenix landing Region C (295-315W) had the highest concentration of images containing DDT/WS per number of available images (20.9%); Region D (130-150W) had the lowest (3.5%). DDT and WS direction were recorded for Phoenix landing regions A (110-130W), B (240-260W), and C to infer local wind direction. Region A showed dominant northwest-southeast DDT/WS, Region B showed dominant north-south, east-west and northeast-southwest DDT/WS, and region C showed dominant west/northwest - east/southeast DDT/ WS. Results indicate the 2007 Phoenix Lander has the highest probability of landing near DDT/WS in landing Region C. Based on DDT/WS linearity, we infer Phoenix would likely encounter directionally consistent background wind in any of the three regions.

  7. Soft gamma-ray detector for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2012-09-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.

  8. Hα imaging for BeXRBs in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Maravelias, G.; Zezas, A.; Antoniou, V.; Hatzidimitriou, D.; Haberl, F.

    2017-11-01

    The Small Magellanic Cloud (SMC) hosts a large number of high-mass X-ray binaries, and in particular of Be/X-ray Binaries (BeXRBs; neutron stars orbiting OBe-type stars), offering a unique laboratory to address the effect of metalicity. One key property of their optical companion is Hα in emission, which makes them bright sources when observed through a narrow-band Hα filter. We performed a survey of the SMC Bar and Wing regions using wide-field cameras (WFI@MPG/ESO and MOSAIC@CTIO/Blanco) in order to identify the counterparts of the sources detected in our XMM-Newton survey of the same area. We obtained broad-band R and narrow-band Hα photometry, and identified ~10000 Hα emission sources down to a sensitivity limit of 18.7 mag (equivalent to ~B8 type Main Sequence stars). We find the fraction of OBe/OB stars to be 13% down to this limit, and by investigating this fraction as a function of the brightness of the stars we deduce that Hα excess peaks at the O9-B2 spectral range. Using the most up-to-date numbers of SMC BeXRBs we find their fraction over their parent population to be ~0.002 - 0.025 BeXRBs/OBe, a direct measurement of their formation rate.

  9. Voyager spacecraft images of Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Birnbaum, M. M.

    1982-01-01

    The Voyager imaging system is described, noting that it is made up of a narrow-angle and a wide-angle TV camera, each in turn consisting of optics, a filter wheel and shutter assembly, a vidicon tube, and an electronics subsystem. The narrow-angle camera has a focal length of 1500 mm; its field of view is 0.42 deg and its focal ratio is f/8.5. For the wide-angle camera, the focal length is 200 mm, the field of view 3.2 deg, and the focal ratio of f/3.5. Images are exposed by each camera through one of eight filters in the filter wheel on the photoconductive surface of a magnetically focused and deflected vidicon having a diameter of 25 mm. The vidicon storage surface (target) is a selenium-sulfur film having an active area of 11.14 x 11.14 mm; it holds a frame consisting of 800 lines with 800 picture elements per line. Pictures of Jupiter, Saturn, and their moons are presented, with short descriptions given of the area being viewed.

  10. Mission Specialist Michael Lopez-Alegria changes out film in camera

    NASA Image and Video Library

    1995-11-05

    STS073-335-009 (20 October-5 November 1995) --- Astronaut Michael E. Lopez-Alegria, STS-73 mission specialist, changes the film in a 35mm camera on the flight deck of the Earth-orbiting Space Shuttle Columbia. Alegria joined four other NASA astronauts and two guest researchers for almost 16-days of Earth-orbit research in support of the U.S. Microgravity Laboratory (USML-2) mission.

  11. Infrared On-Orbit RCC Inspection With the EVA IR Camera: Development of Flight Hardware From a COTS System

    NASA Technical Reports Server (NTRS)

    Gazanik, Michael; Johnson, Dave; Kist, Ed; Novak, Frank; Antill, Charles; Haakenson, David; Howell, Patricia; Jenkins, Rusty; Yates, Rusty; Stephan, Ryan; hide

    2005-01-01

    In November 2004, NASA's Space Shuttle Program approved the development of the Extravehicular (EVA) Infrared (IR) Camera to test the application of infrared thermography to on-orbit reinforced carbon-carbon (RCC) damage detection. A multi-center team composed of members from NASA's Johnson Space Center (JSC), Langley Research Center (LaRC), and Goddard Space Flight Center (GSFC) was formed to develop the camera system and plan a flight test. The initial development schedule called for the delivery of the system in time to support STS-115 in late 2005. At the request of Shuttle Program managers and the flight crews, the team accelerated its schedule and delivered a certified EVA IR Camera system in time to support STS-114 in July 2005 as a contingency. The development of the camera system, led by LaRC, was based on the Commercial-Off-the-Shelf (COTS) FLIR S65 handheld infrared camera. An assessment of the S65 system in regards to space-flight operation was critical to the project. This paper discusses the space-flight assessment and describes the significant modifications required for EVA use by the astronaut crew. The on-orbit inspection technique will be demonstrated during the third EVA of STS-121 in September 2005 by imaging damaged RCC samples mounted in a box in the Shuttle's cargo bay.

  12. Curiosity Spotted on Parachute by Orbiter

    NASA Image and Video Library

    2012-08-06

    NASA Curiosity rover and its parachute were spotted by NASA Mars Reconnaissance Orbiter as Curiosity descended to the surface. The HiRISE camera captured this image of Curiosity while the orbiter was listening to transmissions from the rover.

  13. Mars Express Seen by Mars Global Surveyor

    NASA Image and Video Library

    2005-05-19

    This picture of the European Space Agency Mars Express spacecraft by the Mars Orbiter Camera on NASA Mars Global Surveyor is from the first successful imaging of any spacecraft orbiting Mars taken by another spacecraft orbiting Mars.

  14. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+.

    PubMed

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J; Song, David H

    2015-02-01

    Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons' point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon's perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera's automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video.

  15. STS-47 MS Apt with LINHOF camera on JSC's Bldg 1 rooftop during training

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Jerome Apt sets LINHOF camera lens during photography training session conducted on JSC's Project Management Building Bldg 1 rooftop. Using such a high vantage point as this nine-floor facility, Apt was able to become familiar with Earth Observations camera hadware such as the LINHOF camera.

  16. Lunar orbital photogaphic planning charts for candidate Apollo J-missions

    NASA Technical Reports Server (NTRS)

    Hickson, P. J.; Piotrowski, W. L.

    1971-01-01

    A technique is presented for minimizing Mapping Camera film usage by reducing redundant coverage while meeting the desired sidelap of greater than or equal to 55%. The technique uses the normal groundtrack separation determined as a function of the number of revolutions between the respective tracks, of the initial and final nodal azimuths (or orbital inclination), and of the lunar latitude. The technique is also applicable for planning Panoramic Camera photography such that photographic contiguity is attained but redundant coverage is minimized. Graphs are included for planning mapping camera (MC) and panoramic camera (PC) photographic passes for a specific mission (i.e., specific groundtracks) to Descartes (Apollo 16), for specific missions to potential Apollo 17 sites such as Alphonsus, Proclus, Gassendi, Davy, and Tycho, and for a potential Apollo orbit-only mission with a nodal azimuth of 85 deg. Graphs are also included for determining the maximum number of revolutions which can elapse between successive MC and PC passes, for greater than or equal 55% sidelap and rectified contiguity respectively, for nodal azimuths between 5 deg and 85 deg.

  17. An improved camera trap for amphibians, reptiles, small mammals, and large invertebrates

    PubMed Central

    2017-01-01

    Camera traps are valuable sampling tools commonly used to inventory and monitor wildlife communities but are challenged to reliably sample small animals. We introduce a novel active camera trap system enabling the reliable and efficient use of wildlife cameras for sampling small animals, particularly reptiles, amphibians, small mammals and large invertebrates. It surpasses the detection ability of commonly used passive infrared (PIR) cameras for this application and eliminates problems such as high rates of false triggers and high variability in detection rates among cameras and study locations. Our system, which employs a HALT trigger, is capable of coupling to digital PIR cameras and is designed for detecting small animals traversing small tunnels, narrow trails, small clearings and along walls or drift fencing. PMID:28981533

  18. STS-125 Space Shuttle Atlantis Documentation

    NASA Image and Video Library

    2009-06-01

    Multiple camera documentation of STS-125 Atlantis landing and turnaround at Nasa Dryden Flight Research Center. Highlights: • 5th and final HST servicing mission • IMAX camera used to document mission highlights • 5 EVA’s • Orbital Altitude: 338.67 statute miles • Orbits: 197 (landed on orbit 198) • Duration: 12D 21H 37M 18S • Traveled: 5.28 million statute miles • 1st Shuttle landing on the refurbished EDW concrete runway • Orbiter Turnaround: 7 Days Crew: CDR: Scott Altman PLT: Gregory “Greg” Johnson MS1/EV4: Michael “Mike” Good MS2: Megan MacArthur MS3/EV1: John Grunsfeld MS4/EV3: Michael Massamino MS5/EV2: Andrew “Drew” Feustel

  19. Research on camera on orbit radial calibration based on black body and infrared calibration stars

    NASA Astrophysics Data System (ADS)

    Wang, YuDu; Su, XiaoFeng; Zhang, WanYing; Chen, FanSheng

    2018-05-01

    Affected by launching process and space environment, the response capability of a space camera must be attenuated. So it is necessary for a space camera to have a spaceborne radiant calibration. In this paper, we propose a method of calibration based on accurate Infrared standard stars was proposed for increasing infrared radiation measurement precision. As stars can be considered as a point target, we use them as the radiometric calibration source and establish the Taylor expansion method and the energy extrapolation model based on WISE catalog and 2MASS catalog. Then we update the calibration results from black body. Finally, calibration mechanism is designed and the technology of design is verified by on orbit test. The experimental calibration result shows the irradiance extrapolation error is about 3% and the accuracy of calibration methods is about 10%, the results show that the methods could satisfy requirements of on orbit calibration.

  20. Lunar Reconnaissance Orbiter Camera Observations Relating to Science and Landing Site Selection in South Pole-Aitken Basin for a Robotic Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Clegg-Watkins, R. N.; Petro, N. E.; Lawrence, S. L.

    2016-01-01

    The Moon's South Pole-Aitken basin (SPA) is a high priority target for Solar System exploration, and sample return from SPA is a specific objective in NASA's New Frontiers program. Samples returned from SPA will improve our understanding of early lunar and Solar System events, mainly by placing firm timing constraints on SPA formation and the post-SPA late-heavy bombardment (LHB). Lunar Reconnaissance Orbiter Camera (LROC) images and topographic data, especially Narrow Angle Camera (NAC) scale (1-3 mpp) morphology and digital terrain model (DTM) data are critical for selecting landing sites and assessing landing hazards. Rock components in regolith at a given landing site should include (1) original SPA impact-melt rocks and breccia (to determine the age of the impact event and what materials were incorporated into the melt); (2) impact-melt rocks and breccia from large craters and basins (other than SPA) that represent the post-SPA LHB interval; (3) volcanic basalts derived from the sub-SPA mantle; and (4) older, "cryptomare" (ancient buried volcanics excavated by impact craters, to determine the volcanic history of SPA basin). All of these rock types are sought for sample return. The ancient SPA-derived impact-melt rocks and later-formed melt rocks are needed to determine chronology, and thus address questions of early Solar System dynamics, lunar history, and effects of giant impacts. Surface compositions from remote sensing are consistent with mixtures of SPA impactite and volcanic materials, and near infrared spectral data distinguish areas with variable volcanic contents vs. excavated SPA substrate. Estimating proportions of these rock types in the regolith requires knowledge of the surface deposits, evaluated via morphology, slopes, and terrain ruggedness. These data allow determination of mare-cryptomare-nonmare deposit interfaces in combination with compositional and mineralogical remote sensing to establish the types and relative proportions of materials expected at a given site. Remote sensing compositions, e.g., FeO, also constrain the relative abundances of components. Landing-site assessments use crater and boulder distributions, and slope and terrain rugge

  1. Investigating at the Moon With new Eyes: The Lunar Reconnaissance Orbiter Mission Camera (LROC)

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Robinson, M. S.; McEwen, A. S.; Turtle, E. P.; Eliason, E. M.; Jolliff, B. L.; Malin, M. C.; Thomas, P. C.

    The Lunar Reconnaissance Orbiter Mission Camera (LROC) H. Hiesinger (1,2), M.S. Robinson (3), A.S. McEwen (4), E.P. Turtle (4), E.M. Eliason (4), B.L. Jolliff (5), M.C. Malin (6), and P.C. Thomas (7) (1) Brown Univ., Dept. of Geological Sciences, Providence RI 02912, Harald_Hiesinger@brown.edu, (2) Westfaelische Wilhelms-University, (3) Northwestern Univ., (4) LPL, Univ. of Arizona, (5) Washington Univ., (6) Malin Space Science Systems, (7) Cornell Univ. The Lunar Reconnaissance Orbiter (LRO) mission is scheduled for launch in October 2008 as a first step to return humans to the Moon by 2018. The main goals of the Lunar Reconnaissance Orbiter Camera (LROC) are to: 1) assess meter and smaller- scale features for safety analyses for potential lunar landing sites near polar resources, and elsewhere on the Moon; and 2) acquire multi-temporal images of the poles to characterize the polar illumination environment (100 m scale), identifying regions of permanent shadow and permanent or near permanent illumination over a full lunar year. In addition, LROC will return six high-value datasets such as 1) meter-scale maps of regions of permanent or near permanent illumination of polar massifs; 2) high resolution topography through stereogrammetric and photometric stereo analyses for potential landing sites; 3) a global multispectral map in 7 wavelengths (300-680 nm) to characterize lunar resources, in particular ilmenite; 4) a global 100-m/pixel basemap with incidence angles (60-80 degree) favorable for morphologic interpretations; 5) images of a variety of geologic units at sub-meter resolution to investigate physical properties and regolith variability; and 6) meter-scale coverage overlapping with Apollo Panoramic images (1-2 m/pixel) to document the number of small impacts since 1971-1972, to estimate hazards for future surface operations. LROC consists of two narrow-angle cameras (NACs) which will provide 0.5-m scale panchromatic images over a 5-km swath, a wide-angle camera (WAC) to acquire images at about 100 m/pixel in seven color bands over a 100-km swath, and a common Sequence and Compressor System (SCS). Each NAC has a 700-mm-focal-length optic that images onto a 5000-pixel CCD line-array, providing a cross-track field-of-view (FOV) of 2.86 degree. The NAC readout noise is better than 100 e- , and the data are sampled at 12 bits. Its internal buffer holds 256 MB of uncompressed data, enough for a full-swath image 25-km long or a 2x2 binned image 100-km long. The WAC has two 6-mm- focal-length lenses imaging onto the same 1000 x 1000 pixel, electronically shuttered CCD area-array, one imaging in the visible/near IR, and the other in the UV. Each has a cross-track FOV of 90 degree. From the nominal 50-km orbit, the WAC will have a resolution of 100 m/pixel in the visible, and a swath width of ˜100 km. The seven-band color capability of the WAC is achieved by color filters mounted directly 1 over the detector, providing different sections of the CCD with different filters [1]. The readout noise is less than 40 e- , and, as with the NAC, pixel values are digitized to 12-bits and may be subsequently converted to 8-bit values. The total mass of the LROC system is about 12 kg; the total LROC power consumption averages at 22 W (30 W peak). Assuming a downlink with lossless compression, LRO will produce a total of 20 TeraBytes (TB) of raw data. Production of higher-level data products will result in a total of 70 TB for Planetary Data System (PDS) archiving, 100 times larger than any previous missions. [1] Malin et al., JGR, 106, 17651-17672, 2001. 2

  2. Current status of Polish Fireball Network

    NASA Astrophysics Data System (ADS)

    Wiśniewski, M.; Żołądek, P.; Olech, A.; Tyminski, Z.; Maciejewski, M.; Fietkiewicz, K.; Rudawska, R.; Gozdalski, M.; Gawroński, M. P.; Suchodolski, T.; Myszkiewicz, M.; Stolarz, M.; Polakowski, K.

    2017-09-01

    The Polish Fireball Network (PFN) is a project to monitor regularly the sky over Poland in order to detect bright fireballs. In 2016 the PFN consisted of 36 continuously active stations with 57 sensitive analogue video cameras and 7 high resolution digital cameras. In our observations we also use spectroscopic and radio techniques. A PyFN software package for trajectory and orbit determination was developed. The PFN project is an example of successful participation of amateur astronomers who can provide valuable scientific data. The network is coordinated by astronomers from Copernicus Astronomical Centre in Warsaw, Poland. In 2011-2015 the PFN cameras recorded 214,936 meteor events. Using the PFN data and the UFOOrbit software 34,609 trajectories and orbits were calculated. In the following years we are planning intensive modernization of the PFN network including installation of dozens of new digital cameras.

  3. STS-32 Commander Brandenstein adjusts IMAX camera during training session

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Commander Daniel C. Brandenstein adjusts IMAX camera setting during briefing and training session as technician looks on. The session was conducted in the JSC Mockup and Integration Laboratory (MAIL) Bldg 9B. The IMAX camera will be used onboard Columbia, Orbiter Vehicle (OV) 102, during the STS-32 mission.

  4. MS Kavandi with camera in Service Module

    NASA Image and Video Library

    2001-07-16

    STS104-E-5125 (16 July 2001) --- Astronaut Janet L. Kavandi, STS-104 mission specialist, uses a camera as she floats through the Zvezda service module aboard the International Space Station (ISS). The five STS-104 crew members were visiting the orbital outpost to perform various tasks. The image was recorded with a digital still camera.

  5. Investigating Mars: Ascraeus Mons

    NASA Image and Video Library

    2017-08-28

    This image shows part of the southeastern flank of Ascraeus Mons. The narrow flows of the volcano dominate the top of the image, while younger volcanic plains cover the bottom of the image. The relative age designation is based on the fact that the brighter plains flows lap up against and cover the flank flows of Ascraeus Mons. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 10339 Latitude: 9.01699 Longitude: 257.294 Instrument: VIS Captured: 2004-04-13 17:23 https://photojournal.jpl.nasa.gov/catalog/PIA21820

  6. KSC-2009-2988

    NASA Image and Video Library

    2009-05-08

    CAPE CANAVERAL, Fla. – Another view of the Lunar Reconnaissance Orbiter, or LRO, at Astrotech Space Operations in Titusville, Fla., during closeout before its mating with NASA's Lunar CRater Observation and Sensing Satellite, known as LCROSS, spacecraft. Instruments seen, at left, are (from bottom) the LEND that will measure the flux of neutrons from the moon; the LROC, a narrow angle camera that will provide panchromatic images; the LOLA, which will provide a precise global lunar topographic model and geodetic grid; and top right, the DIVINER, which will measure lunar surface temperatures at scales that provide essential information for future surface operations and exploration; and at top, the CRaTER, which will characterize the global lunar radiation environment and its biological impacts. At right is the solar panel. The satellite's primary mission is to search for water ice on the moon in a permanently shadowed crater near one of the lunar poles. LCROSS is a low-cost, accelerated-development, companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO. LCROSS and LRO are the first missions in NASA's plan to return humans to the moon and begin establishing a lunar outpost by 2020. Launch is targeted for no earlier than June 2 from Cape Canaveral Air Force Station in Florida. Photo credit: NASA/Jack Pfaller

  7. Mars South Polar Cap "Fingerprint" Terrain

    NASA Image and Video Library

    2000-04-24

    This picture is illuminated by sunlight from the upper left. Some portions of the martian south polar residual cap have long, somewhat curved troughs instead of circular pits. These appear to form in a layer of material that may be different than that in which "swiss cheese" circles and pits form, and none of these features has any analog in the north polar cap or elsewhere on Mars. This picture shows the "fingerprint" terrain as a series of long, narrow depressions considered to have formed by collapse and widening by sublimation of ice. Unlike the north polar cap, the south polar region stays cold enough in summer to retain frozen carbon dioxide. Viking Orbiter observations during the late 1970s showed that very little water vapor comes off the south polar cap during summer, indicating that any frozen water that might be there remains solid throughout the year. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image was obtained in early southern spring on August 4, 1999. It shows an area 3 x 5 kilometers (1.9 x 3.1 miles) at a resolution of about 7.3 meters (24 ft) per pixel. Located near 86.0°S, 53.9°W. http://photojournal.jpl.nasa.gov/catalog/PIA02373

  8. Mars Global Coverage by Context Camera on MRO

    NASA Image and Video Library

    2017-03-29

    In early 2017, after more than a decade of observing Mars, the Context Camera (CTX) on NASA's Mars Reconnaissance Orbiter (MRO) surpassed 99 percent coverage of the entire planet. This mosaic shows that global coverage. No other camera has ever imaged so much of Mars in such high resolution. The mosaic offers a resolution that enables zooming in for more detail of any region of Mars. It is still far from the full resolution of individual CTX observations, which can reveal the shapes of features smaller than the size of a tennis court. As of March 2017, the Context Camera has taken about 90,000 images since the spacecraft began examining Mars from orbit in late 2006. In addition to covering 99.1 percent of the surface of Mars at least once, this camera has observed more than 60 percent of Mars more than once, checking for changes over time and providing stereo pairs for 3-D modeling of the surface. http://photojournal.jpl.nasa.gov/catalog/PIA21488

  9. Clouds over Tharsis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Color composite of condensate clouds over Tharsis made from red and blue images with a synthesized green channel. Mars Orbiter Camera wide angle frames from Orbit 48.

    Figure caption from Science Magazine

  10. KSC-05PD-0565

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, a digital still camera has been mounted in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following ET separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  11. KSC-05PD-0562

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers check the digital still camera they will mount in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following the tank's separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  12. KSC-05PD-0564

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, a worker mounts a digital still camera in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following the ET separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  13. KSC-05PD-0561

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers prepare a digital still camera they will mount in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following its separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  14. KSC-05PD-0563

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Vehicle Assembly Building at NASAs Kennedy Space Center, workers prepare a digital still camera they will mount in the External Tank (ET) umbilical well on the aft end of Space Shuttle Discovery. The camera is being used to obtain and downlink high-resolution images of the disconnect point on the ET following the ET separation from the orbiter after launch. The Kodak camera will record 24 images, at one frame per 1.5 seconds, on a flash memory card. After orbital insertion, the crew will transfer the images from the memory card to a laptop computer. The files will then be downloaded through the Ku-band system to the Mission Control Center in Houston for analysis.

  15. Line drawing Scientific Instrument Module and lunar orbital science package

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A line drawing of the Scientific Instrument Module (SIM) with its lunar orbital science package. The SIM will be mounted in a previously vacant sector of the Apollo Service Module. It will carry specialized cameras and instrumentation for gathering lunar orbit scientific data.

  16. KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (facing camera) talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

    NASA Image and Video Library

    2003-09-26

    KENNEDY SPACE CENTER, FLA. - NASA Vehicle Manager Scott Thurston (facing camera) talks to the media in the Orbiter Processing Facility. The media was invited to see the orbiter Atlantis as it is being prepared for Return to Flight. Both local and national reporters representing print and TV networks were able to see work in progress on Atlantis, including the reinstallation of the Reinforced Carbon-Carbon panels on the orbiter’s wing leading edge; wiring inspections; and checks of the engines in the Orbital Maneuvering System.

  17. Astronaut Akers packs IMAX camera film roll

    NASA Image and Video Library

    1996-09-23

    STS79-E-5274 (23 September 1996) --- Onboard Spacehab, in the Earth-orbiting Space Shuttle Atlantis, astronaut Thomas D. Akers stows an exposed film can from the IMAX in-cabin camera, during Flight Day 8.

  18. Rotated Perspective View of Nirgal Vallis

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is the full-resolution, rotated perspective image of Nirgal Vallis, a subset of PIA00942. Nirgal Vallis is one of a number of canyons called valley networks or runoff channels. Much of the debate concerning the origin of these valleys centers on whether they were formed by water flowing across the surface, or by collapse and upslope erosion associated with groundwater processes. At the resolution of this image, it is just barely possible to discern an interwoven pattern of lines on the highland surrounding the valley, but it is not possible to tell whether this is a pattern of surficial debris (sand or dust), as might be expected with the amount of crater burial seen, or a pattern of drainage channels. With 4X better resolution from its mapping orbit, MOC should easily be able to tell the difference between these two possibilities.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The spacecraft has been using atmospheric drag to reduce the size of its orbit for the past three weeks, and will achieve a circular orbit only 400 km (248 mi) above the surface early next year. Mapping operations begin in March 1998. At that time, MOC narrow angle images will be 5-10 times higher resolution than these pictures.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  19. Hardy Objects in Saturn F Ring

    NASA Image and Video Library

    2017-02-24

    As NASA's Cassini spacecraft continues its weekly ring-grazing orbits, diving just past the outside of Saturn F ring, it is tracking several small, persistent objects there. These images show two such objects that Cassini originally detected in spring 2016, as the spacecraft transitioned from more equatorial orbits to orbits at increasingly high inclination about the planet's equator. Imaging team members studying these objects gave them the informal designations F16QA (right image) and F16QB (left image). The researchers have observed that objects such as these occasionally crash through the F ring's bright core, producing spectacular collisional structures.While these objects may be mostly loose agglomerations of tiny ring particles, scientists suspect that small, fairly solid bodies lurk within each object, given that they have survived several collisions with the ring since their discovery. The faint retinue of dust around them is likely the result of the most recent collision each underwent before these images were obtained. The researchers think these objects originally form as loose clumps in the F ring core as a result of perturbations triggered by Saturn's moon Prometheus. . If they survive subsequent encounters with Prometheus, their orbits can evolve, eventually leading to core-crossing clumps that produce spectacular features, even though they collide with the ring at low speeds. The images were obtained using the Cassini spacecraft narrow-angle camera on Feb. 5, 2017, at a distance of 610,000 miles (982,000 kilometers, left image) and 556,000 miles (894,000 kilometers, right image) from the F ring. Image scale is about 4 miles (6 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21432

  20. Relative attitude dynamics and control for a satellite inspection mission

    NASA Astrophysics Data System (ADS)

    Horri, Nadjim M.; Kristiansen, Kristian U.; Palmer, Phil; Roberts, Mark

    2012-02-01

    The problem of conducting an inspection mission from a chaser satellite orbiting a target spaceraft is considered. It is assumed that both satellites follow nearly circular orbits. The relative orbital motion is described by the Hill-Clohessy-Wiltshire equation. In the case of an elliptic relative orbit, it is shown that an inspection mission is feasible when the chaser is inertially pointing, provided that the camera mounted on the chaser satellite has sufficiently large field of view. The same possibility is shown when the optical axis of the chaser's camera points in, or opposite to, the tangential direction of the local vertical local horizontal frame. For an arbitrary relative orbit and arbitrary initial conditions, the concept of relative Euler angles is defined for this inspection mission. The expression of the desired relative angular velocity vector is derived as a function of Cartesian coordinates of the relative orbit. A quaternion feedback controller is then designed and shown to perform relative attitude control with admissible internal torques. Three different types of relative orbits are considered, namely the elliptic, Pogo and drifting relative orbits. Measurements of the relative orbital motion are assumed to be available from optical navigation.

  1. Stray light lessons learned from the Mars reconnaissance orbiter's optical navigation camera

    NASA Astrophysics Data System (ADS)

    Lowman, Andrew E.; Stauder, John L.

    2004-10-01

    The Optical Navigation Camera (ONC) is a technical demonstration slated to fly on NASA"s Mars Reconnaissance Orbiter in 2005. Conventional navigation methods have reduced accuracy in the days immediately preceding Mars orbit insertion. The resulting uncertainty in spacecraft location limits rover landing sites to relatively safe areas, away from interesting features that may harbor clues to past life on the planet. The ONC will provide accurate navigation on approach for future missions by measuring the locations of the satellites of Mars relative to background stars. Because Mars will be a bright extended object just outside the camera"s field of view, stray light control at small angles is essential. The ONC optomechanical design was analyzed by stray light experts and appropriate baffles were implemented. However, stray light testing revealed significantly higher levels of light than expected at the most critical angles. The primary error source proved to be the interface between ground glass surfaces (and the paint that had been applied to them) and the polished surfaces of the lenses. This paper will describe troubleshooting and correction of the problem, as well as other lessons learned that affected stray light performance.

  2. On-orbit Passive Thermography

    NASA Technical Reports Server (NTRS)

    Howell, Patricia A.; Winfree, William P.; Cramer, K. Elliott

    2008-01-01

    On July 12, 2006, British-born astronaut Piers Sellers became the first person to conduct thermal nondestructive evaluation experiments in space, demonstrating the feasibility of a new tool for detecting damage to the reinforced carbon-carbon (RCC) structures of the Shuttle. This new tool was an EVA (Extravehicular Activity, or spacewalk) compatible infrared camera developed by NASA engineers. Data was collected both on the wing leading edge of the Orbiter and on pre-damaged samples mounted in the Shuttle s cargo bay. A total of 10 infrared movies were collected during the EVA totaling over 250 megabytes of data. Images were downloaded from the orbiting Shuttle to Johnson Space Center for analysis and processing. Results are shown to be comparable to ground-based thermal inspections performed in the laboratory with the same type of camera and simulated solar heating. The EVA camera system detected flat-bottom holes as small as 2.54cm in diameter with 50% material loss from the back (hidden) surface in RCC during this first test of the EVA IR Camera. Data for the time history of the specimen temperature and the capability of the inspection system for imaging impact damage are presented.

  3. Saturnian Snowman

    NASA Image and Video Library

    2015-10-15

    NASA's Cassini spacecraft spied this tight trio of craters as it approached Saturn's icy moon Enceladus for a close flyby on Oct. 14, 2015. The craters, located at high northern latitudes, are sliced through by thin fractures -- part of a network of similar cracks that wrap around the snow-white moon. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Oct. 14, 2015 at a distance of approximately 6,000 miles (10,000 kilometers) from Enceladus. Image scale is 197 feet (60 meters) per pixel. The image was taken with the Cassini spacecraft narrow-angle camera on Oct. 14, 2015 using a spectral filter which preferentially admits wavelengths of ultraviolet light centered at 338 nanometers. http://photojournal.jpl.nasa.gov/catalog/PIA20011

  4. Orbit analysis of a bright Southern sigma Sagittariids fireball

    NASA Astrophysics Data System (ADS)

    Koukal, Jakub

    2018-02-01

    During twilight on June 14, 2017, CEMeNt network cameras recorded a long and bright fireball with an absolute magnitude of -7.9 ± 0.2m, whose atmospheric path began over the northwest of Romania and ended up above southern Poland. This fireball belongs to the Southern sigma Sagittariids meteor shower and was recorded from 9 cameras of the CEMeNt network. The atmospheric path of the fireball as well as the heliocentric orbit of the meteoroid are analyzed in this article.

  5. THE MARS ORBITER CAMERA IS INSTALLED ON THE MARS GLOBAL SURVEYOR

    NASA Technical Reports Server (NTRS)

    1996-01-01

    In the Payload Hazardous Servicing Facility at KSC, installation is under way of the Mars Orbiter Camera (MOC) on the Mars Global Surveyor spacecraft. The MOC is one of a suite of six scientific instruments that will gather data during a two-year period about Martian topography, mineral distribution and weather. The Mars Global Surveyor is slated for launch aboard a Delta II expendable launch vehicle on November 6, the beginning of a 20-day launch period.

  6. Clouds over Tharsis

    NASA Image and Video Library

    1998-03-13

    Color composite of condensate clouds over Tharsis made from red and blue images with a synthesized green channel. Mars Orbiter Camera wide angle frames from Orbit 48. http://photojournal.jpl.nasa.gov/catalog/PIA00812

  7. MS Walheim poses with a Hasselblad camera on the flight deck of Atlantis during STS-110

    NASA Image and Video Library

    2002-04-08

    STS110-E-5017 (8 April 2002) --- Astronaut Rex J. Walheim, STS-110 mission specialist, holds a camera on the aft flight deck of the Space Shuttle Atlantis. A blue and white Earth is visible through the overhead windows of the orbiter. The image was taken with a digital still camera.

  8. Mars Orbiter Camera High Resolution Images: Some Results From The First 6 Weeks In Orbit

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images acquired shortly after orbit insertion were relatively poor in both resolution and image quality. This poor performance was solely the result of low sunlight conditions and the relative distance to the planet, both of which have been progressively improving over the past six weeks. Some of the better images are used here (see PIA01021 through PIA01029) to illustrate how the MOC images provide substantially better views of the martian surface than have ever been recorded previously from orbit.

    This U.S. Geological Survey shaded relief map provides an overall context for the MGS MOC images of the Tithonium/Ius Chasma, Ganges Chasma, and Schiaparelli Crater. Closeup images of the Tithonium/Ius Chasma area are visible in PIA01021 through PIA01023. Closeups of Ganges Chasma are available as PIA01027 through PIA01029, and Schiaparelli Crater is shown in PIA01024 through PIA01026. The Mars Pathfinder landing site is shown to the north of the sites of the MGS images.

    Launched on November 7, 1996, Mars Global Surveyor entered Mars orbit on Thursday, September 11, 1997. The original mission plan called for using friction with the planet's atmosphere to reduce the orbital energy, leading to a two-year mapping mission from close, circular orbit (beginning in March 1998). Owing to difficulties with one of the two solar panels, aerobraking was suspended in mid-October and resumed in November 8. Many of the original objectives of the mission, and in particular those of the camera, are likely to be accomplished as the mission progresses.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  9. Imaging of Adult Ocular and Orbital Pathology - a Pictorial Review

    PubMed Central

    Grech, Reuben; Cornish, Kurt Spiteri; Galvin, Patrick Leo; Grech, Stephan; Looby, Seamus; O’Hare, Alan; Mizzi, Adrian; Thornton, John; Brennan, Paul

    2014-01-01

    Orbital pathology often presents a diagnostic challenge to the reporting radiologist. The aetiology is protean, and clinical input is therefore often necessary to narrow the differential diagnosis. With this manuscript, we provide a pictorial review of adult ocular and orbital pathology. PMID:24967016

  10. Wrist Camera Orientation for Effective Telerobotic Orbital Replaceable Unit (ORU) Changeout

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Aldridge, Hal A.; Vazquez, Sixto L.

    1997-01-01

    The Hydraulic Manipulator Testbed (HMTB) is the kinematic replica of the Flight Telerobotic Servicer (FTS). One use of the HMTB is to evaluate advanced control techniques for accomplishing robotic maintenance tasks on board the Space Station. Most maintenance tasks involve the direct manipulation of the robot by a human operator when high-quality visual feedback is important for precise control. An experiment was conducted in the Systems Integration Branch at the Langley Research Center to compare several configurations of the manipulator wrist camera for providing visual feedback during an Orbital Replaceable Unit changeout task. Several variables were considered such as wrist camera angle, camera focal length, target location, lighting. Each study participant performed the maintenance task by using eight combinations of the variables based on a Latin square design. The results of this experiment and conclusions based on data collected are presented.

  11. Coordinated Global Measurements of TLEs from the Space Shuttle and Ground Stations during MEIDEX

    NASA Astrophysics Data System (ADS)

    Yair, Y.; Price, C.; Levin, Z.; Israelevitch, P.; Devir, A.; Ziv, B.; Jospeh, J.; Mekler, Y.

    2001-12-01

    The Mediterranean Israeli Dust Experiment (MEIDEX) is scheduled to fly on-board the Columbia in May 2002, in a 39º inclination orbit for 16 days, passing over the major thunderstorm regions on Earth. The primary science instrument is a Xybion IMC-201 image-intensified radiometric camera with 6 narrow band filters (340nm, 380nm, 470nm, 555nm, 665nm, 860nm). A Sekai color video camera is a boresighted wide-FOV viewfinder. The cameras are mounted on a single-axis gimbal with a cross-track scan of ±22º degrees, inside a pressurized canister sealed with a coated quartz window that is mounted in the shuttle cargo bay. Data will be recorded in 3 digital VCRs and downlinked to the ground. During the night-side of the orbit there will be dedicated observations toward the Earth's limb above areas of active thunderstorms, in an effort to image TLEs from space. While earlier shuttle flights have succeeded in recording several ionospheric discharges by using cargo bay video cameras, MEIDEX offers a unique opportunity to conduct targeted observations with a calibrated, multispectral instrument. The Xybion camera has a rectangular FOV of 14.04(H) x 10.76 (V) degrees, that covers a volume of 466km (H) x 358km (V) at the Earth's limb, 1900km away from the shuttle. The spatial resolution is 665m (H) x 745m (V) per pixel, enabling to resolve some structural features of TLEs. Optical observations from space will be conducted with the 665nm filter that matches the observed wide peak centered at 670nm that typifies red sprites, and also with the 380 and 470nm filters to record blue jets. Observations will consist of a continuous recording of the Earth's limb, from the direction of the dusk terminator towards the night side. Areas of high convective activity will be forecast by using global aviation SIG maps, and uplinked to the crew before the observation. The astronaut will direct the camera toward areas with lightning activity, observed visually through the windows and on monitors in the crew cabin. Simultaneously with the optical observations from space, dedicated ground measurements will be conducted on a global scale. Two field sites in the Negev Desert in Israel will be used to collect electromagnetic data in the ELF and VLF frequency range. Additional ground stations in Germany, Hungary, USA, Antarctica, Chile, South Africa, Australia, Taiwan and Japan will also record Schumann Resonance and VLF signals. The coordinated measurements from various locations on Earth and from space will enable us to triangulate the location, and determine the polarity and charge moment of the parent lightning of the optically observed TLEs. The success of the campaign will further clarify the global picture of TLE occurrence.

  12. The 1997 Spring Regression of the Martian South Polar Cap: Mars Orbiter Camera Observations

    USGS Publications Warehouse

    James, P.B.; Cantor, B.A.; Malin, M.C.; Edgett, K.; Carr, M.H.; Danielson, G.E.; Ingersoll, A.P.; Davies, M.E.; Hartmann, W.K.; McEwen, A.S.; Soderblom, L.A.; Thomas, P.C.; Veverka, J.

    2000-01-01

    The Mars Orbiter cameras (MOC) on Mars Global Surveyor observed the south polar cap of Mars during its spring recession in 1997. The images acquired by the wide angle cameras reveal a pattern of recession that is qualitatively similar to that observed by Viking in 1977 but that does differ in at least two respects. The 1977 recession in the 0o to 120o longitude sector was accelerated relative to the 1997 observations after LS = 240o; the Mountains of Mitchel also detached from the main cap earlier in 1997. Comparison of the MOC images with Mars Orbiter Laser Altimeter data shows that the Mountains of Mitchel feature is controlled by local topography. Relatively dark, low albedo regions well within the boundaries of the seasonal cap were observed to have red-to-violet ratios that characterize them as frost units rather than unfrosted or partially frosted ground; this suggests the possibility of regions covered by CO2 frost having different grain sizes.

  13. Comparing wind directions inferred from Martian dust devil tracks analysis with those predicted by the Mars Climate Database

    NASA Astrophysics Data System (ADS)

    Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon

    2016-10-01

    We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.

  14. Processing ISS Images of Titan's Surface

    NASA Technical Reports Server (NTRS)

    Perry, Jason; McEwen, Alfred; Fussner, Stephanie; Turtle, Elizabeth; West, Robert; Porco, Carolyn; Knowles, Ben; Dawson, Doug

    2005-01-01

    One of the primary goals of the Cassini-Huygens mission, in orbit around Saturn since July 2004, is to understand the surface and atmosphere of Titan. Surface investigations are primarily accomplished with RADAR, the Visual and Infrared Mapping Spectrometer (VIMS), and the Imaging Science Subsystem (ISS) [1]. The latter two use methane "windows", regions in Titan's reflectance spectrum where its atmosphere is most transparent, to observe the surface. For VIMS, this produces clear views of the surface near 2 and 5 microns [2]. ISS uses a narrow continuum band filter (CB3) at 938 nanometers. While these methane windows provide our best views of the surface, the images produced are not as crisp as ISS images of satellites like Dione and Iapetus [3] due to the atmosphere. Given a reasonable estimate of contrast (approx.30%), the apparent resolution of features is approximately 5 pixels due to the effects of the atmosphere and the Modulation Transfer Function of the camera [1,4]. The atmospheric haze also reduces contrast, especially with increasing emission angles [5].

  15. Dark, Recurring Streaks on Walls of Garni Crater

    NASA Image and Video Library

    2015-09-28

    Dark narrow streaks, called "recurring slope lineae," emanate from the walls of Garni Crater on Mars, in this view constructed from observations by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The dark streaks here are up to few hundred yards, or meters, long. They are hypothesized to be formed by flow of briny liquid water on Mars. The image was produced by first creating a 3-D computer model (a digital terrain map) of the area based on stereo information from two HiRISE observations, and then draping an image over the land-shape model. The vertical dimension is exaggerated by a factor of 1.5 compared to horizontal dimensions. The draped image is a red waveband (monochrome) product from HiRISE observation ESP_031059_1685, taken on March 12, 2013 at 11.5 degrees south latitude, 290.3 degrees east longitude. Other image products from this observation are at http://hirise.lpl.arizona.edu/ESP_031059_1685. http://photojournal.jpl.nasa.gov/catalog/PIA19917

  16. MESSENGER Final Image

    NASA Image and Video Library

    2015-04-30

    Today, the MESSENGER spacecraft sent its final image. Originally planned to orbit Mercury for one year, the mission exceeded all expectations, lasting for over four years and acquiring extensive datasets with its seven scientific instruments and radio science investigation. This afternoon, the spacecraft succumbed to the pull of solar gravity and impacted Mercury's surface. The image shown here is the last one acquired and transmitted back to Earth by the mission. The image is located within the floor of the 93-kilometer-diameter crater Jokai. The spacecraft struck the planet just north of Shakespeare basin. Date acquired: April 30, 2015 Image Mission Elapsed Time (MET): 72716050 Image ID: 8422953 Instrument: Narrow Angle Camera (NAC) of the Mercury Dual Imaging System (MDIS) Center Latitude: 72.0° Center Longitude: 223.8° E Resolution: 2.1 meters/pixel Scale: This image is about 1 kilometers (0.6 miles) across Incidence Angle: 57.9° Emission Angle: 56.5° Phase Angle: 40.7° http://photojournal.jpl.nasa.gov/catalog/PIA19448

  17. View of Gulf coast area of Louisiana from Skylab space station

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A vertical view of the Gulf coast area of Louisiana (29.0N, 92.0W) as seen from the Skylab space station in Earth orbit. A Skylab 4 crewman used a hand-held 70mm Hasselblad camera to take this picture. This view extends from White Lake and Pecan Island (bottom border) eastward to the Mississippi River delta (top left). Atchafalaya Bay (red) is in the center. The Bayou Teche area is included in this view. A prominent feature of this photograph is two large white smoke plumes extending from Louisiana south into the Gulf of Mexico. The larger smoke plume originates on the southern shore of Vermillion Bay. The other plume extends from the southern shore of Marsh Island. The prononced narrow width and length of the plumes indicate that a strong offshore wind is present. Approximately 100 miles of the plumes are visible in this photograph; but they probably extend well into the Gulf of Mexico.

  18. Flying Over Mimas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie was made of narrow-angle images taken over a period of seven hours during Cassini's close encounter with Saturn's moon Mimas on Aug. 2, 2005.

    In the movie the moon appears to rotate through about 115 degrees and the range varies from 253,000 to 64,000 kilometers (158,000 to 40,000 miles). The image scale in the final pan across the surface is about 760 meters (about 2,500 feet) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  19. The variations in eccentricity and apse precession rate of a narrow ring perturbed by a close satellite

    NASA Technical Reports Server (NTRS)

    Borderies, N.; Goldreich, P.; Tremaine, S.

    1983-01-01

    The first-order perturbations of orbital eccentricity and apse precession rate for the case of a narrow ring, due to a close satellite whose orbit is also eccentric, are described by means of a Hamiltonian. The present treatment covers cases in which the satellite crosses the ring, and the level curves of the Hamiltonian are displayed for several parameter values. The results obtained are applied to the interaction of Saturn's F ring with its inner shepherd satellite.

  20. Schiaparelli Crater Rim and Interior Deposits - High Resolution Image

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A portion of the rim and interior of the large impact crater Schiaparelli is seen at high resolution in this image acquired October 18, 1997 by the Mars Global Surveyor Orbiter Camera (MOC). The area covered is very small--3.9 X 10.2 km (2.4 X 6.33 mi)--but is seen at 63 times higher resolution than the Viking image. The subdued relief and bright surface are attributed to blanketing by dust; many small craters have been completely filled in, and only the most recent (and very small) craters appear sharp and bowl-shaped. Some of the small craters are only 10-12 m (30-35 feet) across. Occasional dark streaks on steeper slopes are small debris slides that have probably occurred in the past few decades. The two prominent, narrow ridges in the center of the image may be related to the adjustment of the crater floor to age or the weight of the material filling the basin.

    Malin Space Science Systems (MSSS) and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  1. Observation of the spin-orbit components of the 3B 2g( 3A 2g) ground state in the system Ni 2+:MgF 2 by fluorescence line narrowing

    NASA Astrophysics Data System (ADS)

    Tonucci, R. J.; Jacobsen, S. M.; Yen, W. M.

    1990-10-01

    Using a tunable narrow-band infrared laser, we demonstrate for the first time infrared-fluorescnece line narrowing in the system Ni 2+:MgF 2. High-resolution emission spectra were obtained by pumping the lowest spin-orbit component B 3 ( 3T 2g) (orthorhombic notation with octahedral notation in parentheses) of the 3T 2g multiplet and observing the B 3( 3T 2g)→B 1, A, B 2( 3A 2g) luminescent transitions at low temperature. By tuning the narrow-band laser over the B 3( 3T 2g) band, resonant and non-resonant fluorescence were obtained which narrowed with respect to the inhomogeneously broadened profile, and additional lines were observed. The spectra can be understood in terms of a simultaneous excitation of two different subsets of Ni 2+ ions which have their B 2( 3A 2g)→B 3( 3T 2g) and A( 3A 2g)→B 3( 3T 2g) transitions in resonance with the laser. The A( 3A 2g) and B 1( 3A 2g) spin-orbit components of the ground-state multiplet lie 1.9 cm -1 and 6.5 cm -1 above the B 2( 3A 2g) ground state, respectively, at 2 K.

  2. Application of narrow-band television to industrial and commercial communications

    NASA Technical Reports Server (NTRS)

    Embrey, B. C., Jr.; Southworth, G. R.

    1974-01-01

    The development of narrow-band systems for use in space systems is presented. Applications of the technology to future spacecraft requirements are discussed along with narrow-band television's influence in stimulating development within the industry. The transferral of the technology into industrial and commercial communications is described. Major areas included are: (1) medicine; (2) education; (3) remote sensing for traffic control; and (5) weather observation. Applications in data processing, image enhancement, and information retrieval are provided by the combination of the TV camera and the computer.

  3. Geocam Space: Enhancing Handheld Digital Camera Imagery from the International Space Station for Research and Applications

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lee, Yeon Jin; Dille, Michael

    2016-01-01

    Handheld astronaut photography of the Earth has been collected from the International Space Station (ISS) since 2000, making it the most temporally extensive remotely sensed dataset from this unique Low Earth orbital platform. Exclusive use of digital handheld cameras to perform Earth observations from the ISS began in 2004. Nadir viewing imagery is constrained by the inclined equatorial orbit of the ISS to between 51.6 degrees North and South latitude, however numerous oblique images of land surfaces above these latitudes are included in the dataset. While unmodified commercial off-the-shelf digital cameras provide only visible wavelength, three-band spectral information of limited quality current cameras used with long (400+ mm) lenses can obtain high quality spatial information approaching 2 meters/ground pixel resolution. The dataset is freely available online at the Gateway to Astronaut Photography of Earth site (http://eol.jsc.nasa.gov), and now comprises over 2 million images. Despite this extensive image catalog, use of the data for scientific research, disaster response, commercial applications and visualizations is minimal in comparison to other data collected from free-flying satellite platforms such as Landsat, Worldview, etc. This is due primarily to the lack of fully-georeferenced data products - while current digital cameras typically have integrated GPS, this does not function in the Low Earth Orbit environment. The Earth Science and Remote Sensing (ESRS) Unit at NASA Johnson Space Center provides training in Earth Science topics to ISS crews, performs daily operations and Earth observation target delivery to crews through the Crew Earth Observations (CEO) Facility on board ISS, and also catalogs digital handheld imagery acquired from orbit by manually adding descriptive metadata and determining an image geographic centerpoint using visual feature matching with other georeferenced data, e.g. Landsat, Google Earth, etc. The lack of full geolocation information native to the data makes it difficult to integrate astronaut photographs with other georeferenced data to facilitate quantitative analysis such as urban land cover/land use classification, change detection, or geologic mapping. The manual determination of image centerpoints is both time and labor-intensive, leading to delays in releasing geolocated and cataloged data to the public, such as the timely use of data for disaster response. The GeoCam Space project was funded by the ISS Program in 2015 to develop an on-orbit hardware and ground-based software system for increasing the efficiency of geolocating astronaut photographs from the ISS (Fig. 1). The Intelligent Robotics Group at NASA Ames Research Center leads the development of both the ground and on-orbit systems in collaboration with the ESRS Unit. The hardware component consists of modified smartphone elements including cameras, central processing unit, wireless Ethernet, and an inertial measurement unit (gyroscopes/accelerometers/magnetometers) reconfigured into a compact unit that attaches to the base of the current Nikon D4 camera - and its replacement, the Nikon D5 - and connects using the standard Nikon peripheral connector or USB port. This provides secondary, side and downward facing cameras perpendicular to the primary camera pointing direction. The secondary cameras observe calibration targets with known internal X, Y, and Z position affixed to the interior of the ISS to determine the camera pose corresponding to each image frame. This information is recorded by the GeoCam Space unit and indexed for correlation to the camera time recorded for each image frame. Data - image, EXIF header, and camera pose information - is transmitted to the ground software system (GeoRef) using the established Ku-band USOS downlink system. Following integration on the ground, the camera pose information provides an initial geolocation estimate for the individual film frame. This new capability represents a significant advance in geolocation from the manual feature-matching approach for both nadir and off-nadir viewing imagery. With the initial geolocation estimate, full georeferencing of an image is completed using the rapid tie-pointing interface in GeoRef, and the resulting data is added to the Gateway to Astronaut Photography of Earth online database in both Geotiff and Keyhole Markup Language (kml) formats. The integration of the GeoRef software component of Geocam Space into the CEO image cataloging workflow is complete, and disaster response imagery acquired by the ISS crew is now fully georeferenced as a standard data product. The on-orbit hardware component (GeoSens) is in final prototyping phase, and is on-schedule for launch to the ISS in late 2016. Installation and routine use of the Geocam Space system for handheld digital camera photography from the ISS is expected to significantly improve the usefulness of this unique dataset for a variety of public- and private-sector applications.

  4. Clementine Images of Earth and Moon

    NASA Technical Reports Server (NTRS)

    1997-01-01

    During its flight and lunar orbit, the Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth.

    The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the mission

  5. Slight Blurring in Newer Image from Mars Orbiter

    NASA Image and Video Library

    2018-02-09

    These two frames were taken of the same place on Mars by the same orbiting camera before (left) and after some images from the camera began showing unexpected blur. The images are from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. They show a patch of ground about 500 feet or 150 meters wide in Gusev Crater. The one on the left, from HiRISE observation ESP_045173_1645, was taken March 16, 2016. The one on the right was taken Jan. 9, 2018. Gusev Crater, at 15 degrees south latitude and 176 degrees east longitude, is the landing site of NASA's Spirit Mars rover in 2004 and a candidate landing site for a rover to be launched in 2020. HiRISE images provide important information for evaluating potential landing sites. The smallest boulders with measurable diameters in the left image are about 3 feet (90 centimeters) wide. In the blurred image, the smallest measurable are about double that width. As of early 2018, most full-resolution images from HiRISE are not blurred, and the cause of the blur is still under investigation. Even before blurred images were first seen, in 2017, observations with HiRISE commonly used a technique that covers more ground area at half the resolution. This shows features smaller than can be distinguished with any other camera orbiting Mars, and little blurring has appeared in these images. https://photojournal.jpl.nasa.gov/catalog/PIA22215

  6. A view of the ET camera on STS-112

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - A view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  7. A view of the ET camera on STS-112

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  8. Video Capture of Plastic Surgery Procedures Using the GoPro HERO 3+

    PubMed Central

    Graves, Steven Nicholas; Shenaq, Deana Saleh; Langerman, Alexander J.

    2015-01-01

    Background: Significant improvements can be made in recoding surgical procedures, particularly in capturing high-quality video recordings from the surgeons’ point of view. This study examined the utility of the GoPro HERO 3+ Black Edition camera for high-definition, point-of-view recordings of plastic and reconstructive surgery. Methods: The GoPro HERO 3+ Black Edition camera was head-mounted on the surgeon and oriented to the surgeon’s perspective using the GoPro App. The camera was used to record 4 cases: 2 fat graft procedures and 2 breast reconstructions. During cases 1-3, an assistant remotely controlled the GoPro via the GoPro App. For case 4 the GoPro was linked to a WiFi remote, and controlled by the surgeon. Results: Camera settings for case 1 were as follows: 1080p video resolution; 48 fps; Protune mode on; wide field of view; 16:9 aspect ratio. The lighting contrast due to the overhead lights resulted in limited washout of the video image. Camera settings were adjusted for cases 2-4 to a narrow field of view, which enabled the camera’s automatic white balance to better compensate for bright lights focused on the surgical field. Cases 2-4 captured video sufficient for teaching or presentation purposes. Conclusions: The GoPro HERO 3+ Black Edition camera enables high-quality, cost-effective video recording of plastic and reconstructive surgery procedures. When set to a narrow field of view and automatic white balance, the camera is able to sufficiently compensate for the contrasting light environment of the operating room and capture high-resolution, detailed video. PMID:25750851

  9. STS-52 MS Shepherd during camera equipment training on JSC's Bldg 1 rooftop

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) William M. Shepherd aims a 35mm camera at a distant subject from his vantage point atop the roof of JSC's nine-story Project Management Building Bldg 1. The training session familiarized Shepherd with camera equipment to be used in Earth observation documentation during STS-52.

  10. First results from the TOPSAT camera

    NASA Astrophysics Data System (ADS)

    Greenway, Paul; Tosh, Ian; Morris, Nigel; Burton, Gary; Cawley, Steve

    2017-11-01

    The TopSat camera is a low cost remote sensing imager capable of producing 2.5 metre resolution panchromatic imagery, funded by the British National Space Centre's Mosaic programme. The instrument was designed and assembled at the Space Science & Technology Department of the CCLRC's Rutherford Appleton Laboratory (RAL) in the UK, and was launched on the 27th October 2005 from Plesetsk Cosmodrome in Northern Russia on a Kosmos-3M. The camera utilises an off-axis three mirror system, which has the advantages of excellent image quality over a wide field of view, combined with a compactness that makes its overall dimensions smaller than its focal length. Keeping the costs to a minimum has been a major design driver in the development of this camera. The camera is part of the TopSat mission, which is a collaboration between four UK organisations; QinetiQ, Surrey Satellite Technology Ltd (SSTL), RAL and Infoterra. Its objective is to demonstrate provision of rapid response high resolution imagery to fixed and mobile ground stations using a low cost minisatellite. The paper "Development of the TopSat Camera" presented by RAL at the 5th ICSO in 2004 described the opto-mechanical design, assembly, alignment and environmental test methods implemented. Now that the spacecraft is in orbit and successfully acquiring images, this paper presents the first results from the camera and makes an initial assessment of the camera's in-orbit performance.

  11. Memoris, A Wide Angle Camera For Bepicolombo

    NASA Astrophysics Data System (ADS)

    Cremonese, G.; Memoris Team

    In order to answer to the Announcement of Opportunity of ESA for the BepiColombo payload, we are working on a wide angle camera concept named MEMORIS (MEr- cury MOderate Resolution Imaging System). MEMORIS will performe stereoscopic images of the whole Mercury surface using two different channels at +/- 20 degrees from the nadir point. It will achieve a spatial resolution of 50m per pixel at 400 km from the surface (peri-Herm), corresponding to a vertical resolution of about 75m with the stereo performances. The scientific objectives will be addressed by MEMORIS may be identified as follows: Estimate of surface age based on crater counting Crater morphology and degrada- tion Stratigraphic sequence of geological units Identification of volcanic features and related deposits Origin of plain units from morphological observations Distribution and type of the tectonic structures Determination of relative age among the structures based on cross-cutting relationships 3D Tectonics Global mineralogical mapping of main geological units Identification of weathering products The last two items will come from the multispectral capabilities of the camera utilizing 8 to 12 (TBD) broad band filters. MEMORIS will be equipped by a further channel devoted to the observations of the tenuous exosphere. It will look at the limb on a given arc of the BepiColombo orbit, in so doing it will observe the exosphere above a surface latitude range of 25-75 degrees in the northern emisphere. The exosphere images will be obtained above the surface just observed by the other two channels, trying to find possible relantionship, as ground-based observations suggest. The exospheric channel will have four narrow-band filters centered on the sodium and potassium emissions and the adjacent continua.

  12. Tenth Anniversary Image from Camera on NASA Mars Orbiter

    NASA Image and Video Library

    2012-02-29

    NASA Mars Odyssey spacecraft captured this image on Feb. 19, 2012, 10 years to the day after the camera recorded its first view of Mars. This image covers an area in the Nepenthes Mensae region north of the Martian equator.

  13. Regular and transitory showers of comet C/1979 Y1 (Bradfield)

    NASA Astrophysics Data System (ADS)

    Hajduková, M.; Neslušan, L.

    2017-09-01

    Aims: We intend to map the whole meteor complex of the long-period comet C/1979 Y1 (Bradfield), which is a proposed parent body of the July Pegasids, No. 175 in the list of meteor showers established by the Meteor Data Center (MDC) of the International Astronomical Union (IAU). Methods: For five perihelion passages of the parent comet in the past, we model associated theoretical stream, its parts, each consisting of 10 000 test particles, and follow the dynamical evolution of these parts up to the present. Subsequently, we analyze the mean orbital characteristics of those particles of the parts that approach the Earth's orbit and, thus, create a shower or showers. The showers are compared with their observed counterparts separated from photographic, radio, and several video databases. Results: The modeled stream of C/1979 Y1 approaches the Earth's orbit in two filaments that correspond to two regular (annual) showers. We confirm the generic relationship between the studied parent comet and 175 July Pegasids. The other predicted shower is a daytime shower with the mean radiant situated symmetrically to the July Pegasids with respect to the apex of the Earth's motion. This shower is not in the IAU MDC list, but we separated it from the Cameras-for-Allsky-Meteor-Surveillance (CAMS) and SonotaCo video data as a new shower. We suggest naming it α-Microscopiids. The stronger influence of the Poynting-Robertson drag deflects the stream away from the Earth's orbit in those sections that correspond to the July Pegasids and the predicted daytime shower, but it makes the stream cross the Earth's orbit in other sections. Corresponding showers are, however, only expected to survive during a limited period and to consist of particles of sizes in a narrow interval. We identified one of these "transitory" filaments to the 104 γ-Bootids in the IAU MDC list of meteor showers.

  14. Miranda

    NASA Image and Video Library

    1999-08-24

    One wide-angle and eight narrow-angle camera images of Miranda, taken by NASA Voyager 2, were combined in this view. The controlled mosaic was transformed to an orthographic view centered on the south pole.

  15. Removal of instrument signature from Mariner 9 television images of Mars

    NASA Technical Reports Server (NTRS)

    Green, W. B.; Jepsen, P. L.; Kreznar, J. E.; Ruiz, R. M.; Schwartz, A. A.; Seidman, J. B.

    1975-01-01

    The Mariner 9 spacecraft was inserted into orbit around Mars in November 1971. The two vidicon camera systems returned over 7300 digital images during orbital operations. The high volume of returned data and the scientific objectives of the Television Experiment made development of automated digital techniques for the removal of camera system-induced distortions from each returned image necessary. This paper describes the algorithms used to remove geometric and photometric distortions from the returned imagery. Enhancement processing of the final photographic products is also described.

  16. Space Telescope maintenance and refurbishment

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.

    1983-01-01

    The Space Telescope (ST) represents a new concept regarding spaceborne astronomical observatories. Maintenance crews will be brought to the orbital worksite to make repairs and replace scientific instruments. For major overhauls the telescope can be temporarily returned to earth with the aid of the Shuttle. It will, thus, be possible to conduct astronomical studies with the ST for two decades or more. The five first-generation scientific instruments used with the ST include a wide field/planetary camera, a faint object camera, a faint object spectrograph, a high resolution spectrograph, and a high speed photometer. Attention is given to the optical telescope assembly, the support systems module, aspects of mission and science operations, unscheduled maintenance, contingency orbital maintenance, planned on-orbit maintenance, ground maintenance, ground refurbishment, and ground logistics.

  17. STS-36 Mission Specialist Hilmers with AEROLINHOF camera on aft flight deck

    NASA Image and Video Library

    1990-03-03

    STS-36 Mission Specialist (MS) David C. Hilmers points the large-format AEROLINHOF camera out overhead window W7 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Hilmers records Earth imagery using the camera. Hilmers and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.

  18. STS-32 Mission Specialist (MS) Ivins peers into IMAX camera viewfinder

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 Mission Specialist (MS) Marsha S. Ivins looks through IMAX camera viewfinder during briefing and training session conducted in the JSC Mockup and Integration Laboratory (MAIL) Bldg 9B. Technicians on either side of Ivins are ready to assist with the training activity. The IMAX camera will be used onboard Columbia, Orbiter Vehicle (OV) 102, during the STS-32 mission.

  19. Cassini-Huygens makes first close approach to Titan

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Purple zaze hi-res Size hi-res: 88 kb Credits: NASA/JPL/Space Science Institute Purple haze around Titan This NASA/ESA/ASI Cassini-Huygens image of Titan was taken with the narrow-angle camera on 3 July 2004, from a distance of about 789 000 kilometres from Titan. The image scale is 4.7 kilometres per pixel. This image shows two thin haze layers. The outer haze layer is detached and appears to float high in the atmosphere. Because of its thinness, the high haze layer is best seen at the moon's limb. The image was taken using a spectral filter sensitive to wavelengths of ultraviolet light centred at 338 nanometres. The image has been falsely coloured, the globe of Titan retains the pale orange hue our eyes would usually see, but both the main atmospheric haze and the thin detached layer have been brightened and given a purple colour to enhance their visibility. At the time of the closest approach, which is scheduled for 18:44 CEST, the spacecraft will be travelling only 1200 kilometres above the surface of the moon, almost grazing the outer atmosphere, at a speed of six kilometres per second (21 800 kilometres per hour)! Confirmation that the fly-by was successful and that all the data were received will not take place until 03:30 CEST on 27 October. This fly-by not only allows important surface science to be performed, such as radar analysis at close quarters, but also it significantly changes the orbit of the spacecraft around Saturn. Currently Cassini-Huygens has an orbital period of four months, which will change to 48 days, thus setting the course for the next close Titan fly-by on 13 December 2004 and the Huygens probe release on 25 December. Several of the observations performed during this fly-by will provide important information for ESA’s Huygens team, who will be using the data gathered to double-check atmospheric models for entry and descent on 14 January 2005. The Huygens probe will need to perform reliably in some of the most challenging and remote environments ever attempted by a man-made object. On this pass, the Huygens touchdown site will be visible at around 167 degrees East and 10.7 degrees South on the sunlit face of Titan before reaching the point of closest approach. Data from the imaging and radar instrumentation on board Cassini-Huygens should provide a tantalising idea of what the surface of Titan could be like. A second view of the Huygens touchdown site will be possible on the second close fly-by in December. Jean-Pierre Lebreton, ESA’s Huygens Mission Manager and Project Scientist, said: “This first close-up look at Titan should enable us to find out just how precisely our atmospheric models fit with the real situation and of course we are excited about the prospect of discovering just what type of surface the Huygens probe could impact on early next year.” Today’s fly-by will also be looking at other aspects of Titan which, although it is the second largest moon in the Solar System after Jupiter’s Ganymede, we know relatively little about. The instruments on board the Cassini orbiter will be looking at the surface characteristics, atmospheric properties and interactions with Saturn’s magnetosphere. Huygens is dormant during the fly-by. The first images are expected at 03:30 CEST on 28 October. However, at the point of closest approach, Titan will have an apparent size far exceeding the field of view of the Cassini orbiter’s narrow-angle camera. Details below a 100-metre resolution may be seen if the camera can pierce the haze and fog. Spectacular multicolour images at 1-2 kilometre resolution are also anticipated from the Visual Infrared and Mapping Spectrometer and may reveal details about Titan surface structure and composition. However, the excitement does not stop after 26 October. On 28 October, at about 12:30 CEST, there is a close encounter with Tethys, another of the significant moons of Saturn. Tethys is a ball of solid ice about 1060 kilometres in diameter which orbits Saturn at a distance of 295 000 kilometres. The Cassini-Huygens spacecraft will pass within 246 000 kilometres of this moon at a speed of 13.8 kilometres per second. At this distance the narrow-angle camera should be able to resolve features down to about 1.4 kilometres in size. Note to Editors The Cassini-Huygens mission to Saturn is the most ambitious effort in planetary space exploration ever mounted. A cooperative endeavour of the European Space Agency (ESA), NASA and the Italian space agency, Agenzia Spaziale Italiana (ASI), Cassini-Huygens is sending a sophisticated robotic spacecraft to orbit the ringed planet and study the Saturnian system in detail over a four-year period. On board Cassini is a scientific probe called Huygens, provided by ESA, which will be released from the main spacecraft to parachute through the atmosphere to the surface of Saturn’s largest and most interesting moon, Titan. For more information about the Cassini-Huygens mission please see: http://saturn.esa.int

  20. Clementine Images of Earth and Moon

    NASA Image and Video Library

    1999-06-12

    During its flight and lunar orbit, NASA’s Clementine spacecraft returned images of the planet Earth and the Moon. This collection of UVVIS camera Clementine images shows the Earth from the Moon and 3 images of the Earth. The image on the left shows the Earth as seen across the lunar north pole; the large crater in the foreground is Plaskett. The Earth actually appeared about twice as far above the lunar horizon as shown. The top right image shows the Earth as viewed by the UVVIS camera while Clementine was in transit to the Moon; swirling white cloud patterns indicate storms. The two views of southeastern Africa were acquired by the UVVIS camera while Clementine was in low Earth orbit early in the mission. http://photojournal.jpl.nasa.gov/catalog/PIA00432

  1. Earth Reflectivity from Deep Space Climate Observatory (DSCOVR) Earth Polychromatic Camera (EPIC)

    NASA Astrophysics Data System (ADS)

    Song, W.; Knyazikhin, Y.; Wen, G.; Marshak, A.; Yan, G.; Mu, X.; Park, T.; Chen, C.; Xu, B.; Myneni, R. B.

    2017-12-01

    Earth reflectivity, which is also specified as Earth albedo or Earth reflectance, is defined as the fraction of incident solar radiation reflected back to space at the top of the atmosphere. It is a key climate parameter that describes climate forcing and associated response of the climate system. Satellite is one of the most efficient ways to measure earth reflectivity. Conventional polar orbit and geostationary satellites observe the Earth at a specific local solar time or monitor only a specific area of the Earth. For the first time, the NASA's Earth Polychromatic Imaging Camera (EPIC) onboard NOAA's Deep Space Climate Observatory (DSCOVR) collects simultaneously radiance data of the entire sunlit earth at 8 km resolution at nadir every 65 to 110 min. It provides reflectivity images in backscattering direction with the scattering angle between 168º and 176º at 10 narrow spectral bands in ultraviolet, visible, and near-Infrared (NIR) wavelengths. We estimate the Earth reflectivity using DSCOVR EPIC observations and analyze errors in Earth reflectivity due to sampling strategy of polar orbit Terra/Aqua MODIS and geostationary Goddard Earth Observing System-R series missions. We also provide estimates of contributions from ocean, clouds, land and vegetation to the Earth reflectivity. Graphic abstract shows enhanced RGB EPIC images of the Earth taken on July-24-2016 at 7:04GMT and 15:48 GMT. Parallel lines depict a 2330 km wide Aqua MODIS swath. The plot shows diurnal courses of mean Earth reflectance over the Aqua swath (triangles) and the entire image (circles). In this example the relative difference between the mean reflectances is +34% at 7:04GMT and -16% at 15:48 GMT. Corresponding daily averages are 0.256 (0.044) and 0.231 (0.025). The relative precision estimated as root mean square relative error is 17.9% in this example.

  2. Improved iris localization by using wide and narrow field of view cameras for iris recognition

    NASA Astrophysics Data System (ADS)

    Kim, Yeong Gon; Shin, Kwang Yong; Park, Kang Ryoung

    2013-10-01

    Biometrics is a method of identifying individuals by their physiological or behavioral characteristics. Among other biometric identifiers, iris recognition has been widely used for various applications that require a high level of security. When a conventional iris recognition camera is used, the size and position of the iris region in a captured image vary according to the X, Y positions of a user's eye and the Z distance between a user and the camera. Therefore, the searching area of the iris detection algorithm is increased, which can inevitably decrease both the detection speed and accuracy. To solve these problems, we propose a new method of iris localization that uses wide field of view (WFOV) and narrow field of view (NFOV) cameras. Our study is new as compared to previous studies in the following four ways. First, the device used in our research acquires three images, one each of the face and both irises, using one WFOV and two NFOV cameras simultaneously. The relation between the WFOV and NFOV cameras is determined by simple geometric transformation without complex calibration. Second, the Z distance (between a user's eye and the iris camera) is estimated based on the iris size in the WFOV image and anthropometric data of the size of the human iris. Third, the accuracy of the geometric transformation between the WFOV and NFOV cameras is enhanced by using multiple matrices of the transformation according to the Z distance. Fourth, the searching region for iris localization in the NFOV image is significantly reduced based on the detected iris region in the WFOV image and the matrix of geometric transformation corresponding to the estimated Z distance. Experimental results showed that the performance of the proposed iris localization method is better than that of conventional methods in terms of accuracy and processing time.

  3. Spectrum of 100-kyr glacial cycle: Orbital inclination, not eccentricity

    PubMed Central

    Muller, Richard A.; MacDonald, Gordon J.

    1997-01-01

    Spectral analysis of climate data shows a strong narrow peak with period ≈100 kyr, attributed by the Milankovitch theory to changes in the eccentricity of the earth’s orbit. The narrowness of the peak does suggest an astronomical origin; however the shape of the peak is incompatible with both linear and nonlinear models that attribute the cycle to eccentricity or (equivalently) to the envelope of the precession. In contrast, the orbital inclination parameter gives a good match to both the spectrum and bispectrum of the climate data. Extraterrestrial accretion from meteoroids or interplanetary dust is proposed as a mechanism that could link inclination to climate, and experimental tests are described that could prove or disprove this hypothesis. PMID:11607741

  4. Possible Extent of Ancient Lake in Gale Crater, Mars

    NASA Image and Video Library

    2013-12-09

    This illustration depicts a concept for the possible extent of an ancient lake inside Gale Crater. The base map combines image data from the Context Camera on NASA Mars Reconnaissance Orbiter and color information from Viking Orbiter imagery.

  5. Cloud formation over South America - fifth orbit pass

    NASA Image and Video Library

    1962-10-03

    S62-06612 (3 Oct. 1962) --- Cloud formation over South America taken during the fifth orbit pass of the Mercury-Atlas 8 (MA-8) mission by astronaut Walter M. Schirra Jr. with a hand-held camera. Photo credit: NASA

  6. Oblique View of Victoria Crater

    NASA Image and Video Library

    2009-08-12

    This image of Victoria Crater in the Meridiani Planum region of Mars was taken by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter at more of a sideways angle than earlier orbital images of this crater.

  7. NICMOS Focus and HST Breathing

    NASA Astrophysics Data System (ADS)

    Suchkov, A.; Hershey, J.

    1998-09-01

    The program 7608 monitored on a biweekly basis NICMOS camera foci from June 9, 1997, through February 18, 1998. Each of the biweekly observations included 17 measurements of focus position (focus sweeps), individually for each of the three cameras. The measurements for camera 1 and camera 3 foci covered one or two HST orbital periods. Comparison of these measurements with the predictions of the three OTA focus breathing models has shown the following. (1). Focus variations seen in NICMOS focus sweeps correlate well with the OTA focus thermal breathing as predicted by breathing models (“4- temperature”, “full-temperature”, and “attitude” models). Thus they can be attributed mostly to the HST orbital temperature variation. (2). The amount of breathing (breathing amplitude) has been found to be on average larger in the first orbit after a telescope slew to a new target. This is explained as being due to additional thermal perturbations caused by the change in the HST attitude as the telescope repoints to a new target. (3). In the first orbit, the amount of focus change predicted by the 4-temperature model is about the same as that seen in the focus sweeps data (breathing scale factor ~1). However the full-temperature model predicts a two times smaller breathing amplitude (breathing scale factor ~1.7). This suggests that the light shield temperatures are more responsive to the attitude change than temperatures from the other temperature sensors. The results of this study may help to better understand the HST thermal cycles and to improve the models describing the impact of those on both the OTA and NICMOS focus.

  8. Astronaut Alan Bean looks over data acquisition camera on Skylab trainer

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut Alan L. Bean, commander for Skylab 3, the second manned Skylab mission, looks over the data acquisition camera mounted on the water tank in the upper level of the Orbital Workshop (OWS) one-G trainer at the Manned Spacecraft Center (MSC).

  9. SHUTTLE - PAYLOADS (STS-41G) - KSC

    NASA Image and Video Library

    1984-10-05

    Payload canister transporter in Vertical Processing Facility Clean Room loaded with Earth Radiation Budget Experiment (ERBS), Large Format Camera (LFC), and Orbital Reservicing System (ORS) for STS-41G Mission. 1. STS-41G - EXPERIMENTS 2. CAMERAS - LFC KSC, FL Also available in 4x5 CN

  10. Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

    NASA Astrophysics Data System (ADS)

    Ou, Yangwei; Zhang, Hongbo; Li, Bin

    2018-04-01

    The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.

  11. Earth elevation map production and high resolution sensing camera imaging analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  12. Astronaut Bean - Acrobatics - Orbital Workshop (OWS)

    NASA Image and Video Library

    1973-08-20

    S73-32632 (19 Aug. 1973) --- Astronaut Alan L. Bean, Skylab 3 commander, performs acrobatics and simulated gymnastics in the dome area of the Orbital Workshop in this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station in Earth orbit. Bean appears to be floating in a diving position. Photo credit: NASA

  13. Orbital docking system centerline color television camera system test

    NASA Technical Reports Server (NTRS)

    Mongan, Philip T.

    1993-01-01

    A series of tests was run to verify that the design of the centerline color television camera (CTVC) system is adequate optically for the STS-71 Space Shuttle Orbiter docking mission with the Mir space station. In each test, a mockup of the Mir consisting of hatch, docking mechanism, and docking target was positioned above the Johnson Space Center's full fuselage trainer, which simulated the Orbiter with a mockup of the external airlock and docking adapter. Test subjects viewed the docking target through the CTVC under 30 different lighting conditions and evaluated target resolution, field of view, light levels, light placement, and methods of target alignment. Test results indicate that the proposed design will provide adequate visibility through the centerline camera for a successful docking, even with a reasonable number of light failures. It is recommended that the flight deck crew have individual switching capability for docking lights to provide maximum shadow management and that centerline lights be retained to deal with light failures and user preferences. Procedures for light management should be developed and target alignment aids should be selected during simulated docking runs.

  14. Using Engineering Cameras on Mars Landers and Rovers to Retrieve Atmospheric Dust Loading

    NASA Astrophysics Data System (ADS)

    Wolfe, C. A.; Lemmon, M. T.

    2014-12-01

    Dust in the Martian atmosphere influences energy deposition, dynamics, and the viability of solar powered exploration vehicles. The Viking, Pathfinder, Spirit, Opportunity, Phoenix, and Curiosity landers and rovers each included the ability to image the Sun with a science camera that included a neutral density filter. Direct images of the Sun provide the ability to measure extinction by dust and ice in the atmosphere. These observations have been used to characterize dust storms, to provide ground truth sites for orbiter-based global measurements of dust loading, and to help monitor solar panel performance. In the cost-constrained environment of Mars exploration, future missions may omit such cameras, as the solar-powered InSight mission has. We seek to provide a robust capability of determining atmospheric opacity from sky images taken with cameras that have not been designed for solar imaging, such as lander and rover engineering cameras. Operational use requires the ability to retrieve optical depth on a timescale useful to mission planning, and with an accuracy and precision sufficient to support both mission planning and validating orbital measurements. We will present a simulation-based assessment of imaging strategies and their error budgets, as well as a validation based on archival engineering camera data.

  15. KSC-02pd1374

    NASA Image and Video Library

    2002-09-26

    KENNEDY SPACE CENTER, FLA. - A view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  16. KSC-02pd1376

    NASA Image and Video Library

    2002-09-26

    KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  17. KSC-02pd1375

    NASA Image and Video Library

    2002-09-26

    KENNEDY SPACE CENTER, FLA. - A closeup view of the camera mounted on the external tank of Space Shuttle Atlantis. The color video camera mounted to the top of Atlantis' external tank will provide a view of the front and belly of the orbiter and a portion of the solid rocket boosters (SRBs) and external tank during the launch of Atlantis on mission STS-112. It will offer the STS-112 team an opportunity to monitor the shuttle's performance from a new angle. The camera will be turned on fifteen minutes prior to launch and will show the orbiter and solid rocket boosters on the launch pad. The video will be downlinked from the external tank during flight to several NASA data-receiving sites and then relayed to the live television broadcast. The camera is expected to operate for about 15 minutes following liftoff. At liftoff, viewers will see the shuttle clearing the launch tower and, at two minutes after liftoff, see the right SRB separate from the external tank. When the external tank separates from Atlantis about eight minutes into the flight, the camera is expected to continue its live feed for about six more minutes although NASA may be unable to pick up the camera's signal because the tank may have moved out of range.

  18. MESSENGER Departs Mercury

    NASA Image and Video Library

    2008-01-30

    After NASA MESSENGER spacecraft completed its successful flyby of Mercury, the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS, took these images of the receding planet. This is a frame from an animation.

  19. Study of Pitch Attitude Estimation Using a High-Definition TV (HDTV) Camera on the Japanese Lunar Explorer SELENE (KAGUYA)

    NASA Astrophysics Data System (ADS)

    Sobue, Shinichi; Yamazaki, Junichi; Matsumoto, Shuichi; Konishi, Hisahiro; Maejima, Hironori; Sasaki, Susumu; Kato, Manabu; Mitsuhashi, Seiji; Tachino, Junichi

    The lunar explorer SELENE (also called KAGUYA) carried thirteen scientific mission instruments to reveal the origin and evolution of Moon and to investigate the possible future utilization of Moon. In addition to the scientific instruments, a high-definition TV (HDTV) camera provided by the Japan Broadcasting Corporation (NHK) was carried on KAGUYA to promote public outreach. We usually use housekeeping telemetry data to derive the satellite attitude along with orbital determination and propagated information. However, it takes time to derive this information, since orbital determination and propagation calculation require the use of the orbital model. When a malfunction of the KAGUYA reaction wheel occurred, we could not have correct attitude information. This means that we don’t have a correct orbital determination in timely fashion. However, when we checked HDTV movies, we found that horizon information on the lunar surface derived from HDTV moving images as a horizon sensor was very useful for the detection of the attitude of KAGUYA. We then compared this information with the attitude information derived from orbital telemetry to validate the accuracy of the HDTV derived estimation. As a result of this comparison, there are good pitch attitude estimation using HDTV derived estimation and we could estimate the pitch angle change during the KAGUYA mission operation simplify and quickly. In this study, we show the usefulness of this HDTV camera as a horizon sensor.

  20. Telescope and mirrors development for the monolithic silicon carbide instrument of the osiris narrow angle camera

    NASA Astrophysics Data System (ADS)

    Calvel, Bertrand; Castel, Didier; Standarovski, Eric; Rousset, Gérard; Bougoin, Michel

    2017-11-01

    The international Rosetta mission, now planned by ESA to be launched in January 2003, will provide a unique opportunity to directly study the nucleus of comet 46P/Wirtanen and its activity in 2013. We describe here the design, the development and the performances of the telescope of the Narrow Angle Camera of the OSIRIS experiment et its Silicon Carbide telescope which will give high resolution images of the cometary nucleus in the visible spectrum. The development of the mirrors has been specifically detailed. The SiC parts have been manufactured by BOOSTEC, polished by STIGMA OPTIQUE and ion figured by IOM under the prime contractorship of ASTRIUM. ASTRIUM was also in charge of the alignment. The final optical quality of the aligned telescope is 30 nm rms wavefront error.

  1. Neptune Great Dark Spot in High Resolution

    NASA Image and Video Library

    1999-08-30

    This photograph shows the last face on view of the Great Dark Spot that Voyager will make with the narrow angle camera. The image was shuttered 45 hours before closest approach at a distance of 2.8 million kilometers (1.7 million miles). The smallest structures that can be seen are of an order of 50 kilometers (31 miles). The image shows feathery white clouds that overlie the boundary of the dark and light blue regions. The pinwheel (spiral) structure of both the dark boundary and the white cirrus suggest a storm system rotating counterclockwise. Periodic small scale patterns in the white cloud, possibly waves, are short lived and do not persist from one Neptunian rotation to the next. This color composite was made from the clear and green filters of the narrow-angle camera. http://photojournal.jpl.nasa.gov/catalog/PIA00052

  2. Image Relayed by MAVEN Mars Orbiter from Curiosity Mars Rover

    NASA Image and Video Library

    2014-11-10

    The first demonstration of NASA MAVEN Mars orbiter capability to relay data from a Mars surface mission, on Nov. 6, 2014, included this image, taken Oct. 23, 2014, by Curiosity Navigation Camera, showing part of Pahrump Hills outcrop.

  3. Polar Views of Planet Earth.

    ERIC Educational Resources Information Center

    Brochu, Michel

    1983-01-01

    In August, 1981, National Aeronautics and Space Administration launched Dynamics Explorer 1 into polar orbit equipped with three cameras built to view the Northern Lights. The cameras can photograph aurora borealis' faint light without being blinded by the earth's bright dayside. Photographs taken by the satellite are provided. (JN)

  4. First-principles study of Mn-S codoped anatase TiO2

    NASA Astrophysics Data System (ADS)

    Li, Senlin; Huang, Jinliang; Ning, Xiangmei; Chen, Yongcha; Shi, Qingkui

    2018-04-01

    In this work, the CASTEP program in Materials Studio 2017 software package was applied to calculate the electronic structures and optical properties of pure anatase TiO2, S-doped, Mn-doped and Mn-S co-doped anatase TiO2 by GGA + U methods based on the density function theory (DFT). The results indicate that the lattice is distorted and the lattice constant is reduce due to doping. The doping also introduces impurity energy levels into the forbidden band. After substitution of Mn for Ti atom, band gap narrowing of anatase TiO2 is caused by the impurity energy levels appearance in the near Fermi surface, which are contributed by Mn-3d orbital, Ti-3d orbital and O-2p orbital hybridization. After substitution of S for O atom, band gap narrowing is creited with the shallow accepter level under the conduction hand of S-3p orbital. The Mn-S co-doped anatase TiO2 could be a potential candidate for a photocatalyst because of tis enhanced absorption ability of visible light. The results can well explain the immanent cause of a band gap narrowing as well as a red shift in the spectrum for doped anatase TiO2.

  5. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less

  6. On-ground and in-orbit characterisation plan for the PLATO CCD normal cameras

    NASA Astrophysics Data System (ADS)

    Gow, J. P. D.; Walton, D.; Smith, A.; Hailey, M.; Curry, P.; Kennedy, T.

    2017-11-01

    PLAnetary Transits and Ocillations (PLATO) is the third European Space Agency (ESA) medium class mission in ESA's cosmic vision programme due for launch in 2026. PLATO will carry out high precision un-interrupted photometric monitoring in the visible band of large samples of bright solar-type stars. The primary mission goal is to detect and characterise terrestrial exoplanets and their systems with emphasis on planets orbiting in the habitable zone, this will be achieved using light curves to detect planetary transits. PLATO uses a novel multi- instrument concept consisting of 26 small wide field cameras The 26 cameras are made up of a telescope optical unit, four Teledyne e2v CCD270s mounted on a focal plane array and connected to a set of Front End Electronics (FEE) which provide CCD control and readout. There are 2 fast cameras with high read-out cadence (2.5 s) for magnitude ~ 4-8 stars, being developed by the German Aerospace Centre and 24 normal (N) cameras with a cadence of 25 s to monitor stars with a magnitude greater than 8. The N-FEEs are being developed at University College London's Mullard Space Science Laboratory (MSSL) and will be characterised along with the associated CCDs. The CCDs and N-FEEs will undergo rigorous on-ground characterisation and the performance of the CCDs will continue to be monitored in-orbit. This paper discusses the initial development of the experimental arrangement, test procedures and current status of the N-FEE. The parameters explored will include gain, quantum efficiency, pixel response non-uniformity, dark current and Charge Transfer Inefficiency (CTI). The current in-orbit characterisation plan is also discussed which will enable the performance of the CCDs and their associated N-FEE to be monitored during the mission, this will include measurements of CTI giving an indication of the impact of radiation damage in the CCDs.

  7. IMAX camera (12-IML-1)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The IMAX camera system is used to record on-orbit activities of interest to the public. Because of the extremely high resolution of the IMAX camera, projector, and audio systems, the audience is afforded a motion picture experience unlike any other. IMAX and OMNIMAX motion picture systems were designed to create motion picture images of superior quality and audience impact. The IMAX camera is a 65 mm, single lens, reflex viewing design with a 15 perforation per frame horizontal pull across. The frame size is 2.06 x 2.77 inches. Film travels through the camera at a rate of 336 feet per minute when the camera is running at the standard 24 frames/sec.

  8. SKYLAB (SL)-4 - CREW TRAINING (ORBITAL WORKSHOP [OWS]) - JSC

    NASA Image and Video Library

    1973-08-22

    S73-32840 (10 Sept. 1973) --- Scientist-astronaut Edward G. Gibson, Skylab 4 science pilot, turns on a switch on the control box of the S190B camera, one of the components of the Earth Resources Experiments Package (EREP). The single lens Earth Terrain Camera takes five-inch photographs. Behind Gibson is the stowed suit of astronaut Gerald P. Carr, commander for the third manned mission. The crew's other member is astronaut William R. Pogue, pilot. The training exercise took place in the Orbital Workshop one-G trainer at Johnson Space Center. Photo credit: NASA

  9. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and Comparison with ISS-LIS and GLM

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Lang, Timothy J.; Leake, Skye; Runco, Mario, Jr.; Blakeslee, Richard J.

    2017-01-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how geo referenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration.

  10. Geodetic results from ISAGEX data. [for obtaining center of mass coordinates for geodetic camera sites

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Douglas, B. C.; Walls, D. M.

    1974-01-01

    Laser and camera data taken during the International Satellite Geodesy Experiment (ISAGEX) were used in dynamical solutions to obtain center-of-mass coordinates for the Astro-Soviet camera sites at Helwan, Egypt, and Oulan Bator, Mongolia, as well as the East European camera sites at Potsdam, German Democratic Republic, and Ondrejov, Czechoslovakia. The results are accurate to about 20m in each coordinate. The orbit of PEOLE (i=15) was also determined from ISAGEX data. Mean Kepler elements suitable for geodynamic investigations are presented.

  11. Active 3D camera design for target capture on Mars orbit

    NASA Astrophysics Data System (ADS)

    Cottin, Pierre; Babin, François; Cantin, Daniel; Deslauriers, Adam; Sylvestre, Bruno

    2010-04-01

    During the ESA Mars Sample Return (MSR) mission, a sample canister launched from Mars will be autonomously captured by an orbiting satellite. We present the concept and the design of an active 3D camera supporting the orbiter navigation system during the rendezvous and capture phase. This camera aims at providing the range and bearing of a 20 cm diameter canister from 2 m to 5 km within a 20° field-of-view without moving parts (scannerless). The concept exploits the sensitivity and the gating capability of a gated intensified camera. It is supported by a pulsed source based on an array of laser diodes with adjustable amplitude and pulse duration (from nanoseconds to microseconds). The ranging capability is obtained by adequately controlling the timing between the acquisition of 2D images and the emission of the light pulses. Three modes of acquisition are identified to accommodate the different levels of ranging and bearing accuracy and the 3D data refresh rate. To come up with a single 3D image, each mode requires a different number of images to be processed. These modes can be applied to the different approach phases. The entire concept of operation of this camera is detailed with an emphasis on the extreme lighting conditions. Its uses for other space missions and terrestrial applications are also highlighted. This design is implemented in a prototype with shorter ranging capabilities for concept validation. Preliminary results obtained with this prototype are also presented. This work is financed by the Canadian Space Agency.

  12. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  13. View of Scientific Instrument Module to be flown on Apollo 15

    NASA Image and Video Library

    1971-06-27

    S71-2250X (June 1971) --- A close-up view of the Scientific Instrument Module (SIM) to be flown for the first time on the Apollo 15 lunar landing mission. Mounted in a previously vacant sector of the Apollo Service Module (SM), the SIM carries specialized cameras and instrumentation for gathering lunar orbit scientific data. SIM equipment includes a laser altimeter for accurate measurement of height above the lunar surface; a large-format panoramic camera for mapping, correlated with a metric camera and the laser altimeter for surface mapping; a gamma ray spectrometer on a 25-feet extendible boom; a mass spectrometer on a 21-feet extendible boom; X-ray and alpha particle spectrometers; and a subsatellite which will be injected into lunar orbit carrying a particle and magnetometer, and the S-Band transponder.

  14. Medium-sized aperture camera for Earth observation

    NASA Astrophysics Data System (ADS)

    Kim, Eugene D.; Choi, Young-Wan; Kang, Myung-Seok; Kim, Ee-Eul; Yang, Ho-Soon; Rasheed, Ad. Aziz Ad.; Arshad, Ahmad Sabirin

    2017-11-01

    Satrec Initiative and ATSB have been developing a medium-sized aperture camera (MAC) for an earth observation payload on a small satellite. Developed as a push-broom type high-resolution camera, the camera has one panchromatic and four multispectral channels. The panchromatic channel has 2.5m, and multispectral channels have 5m of ground sampling distances at a nominal altitude of 685km. The 300mm-aperture Cassegrain telescope contains two aspheric mirrors and two spherical correction lenses. With a philosophy of building a simple and cost-effective camera, the mirrors incorporate no light-weighting, and the linear CCDs are mounted on a single PCB with no beam splitters. MAC is the main payload of RazakSAT to be launched in 2005. RazakSAT is a 180kg satellite including MAC, designed to provide high-resolution imagery of 20km swath width on a near equatorial orbit (NEqO). The mission objective is to demonstrate the capability of a high-resolution remote sensing satellite system on a near equatorial orbit. This paper describes the overview of the MAC and RarakSAT programmes, and presents the current development status of MAC focusing on key optical aspects of Qualification Model.

  15. Orbital Debris Detection and Tracking Strategies for the NASA/AFRL Meter Class Autonomous Telescope (MCAT)

    NASA Technical Reports Server (NTRS)

    Mulrooney, M.; Hickson, P.; Stansbery, Eugene G.

    2010-01-01

    MCAT (Meter-Class Autonomous Telescope) is a 1.3m f/4 Ritchey-Chr tien on a double horseshoe equatorial mount that will be deployed in early 2011 to the western pacific island of Legan in the Kwajalein Atoll to perform orbital debris observations. MCAT will be capable of tracking earth orbital objects at all inclinations and at altitudes from 200 km to geosynchronous. MCAT s primary objective is the detection of new orbital debris in both low-inclination low-earth orbits (LEO) and at geosynchronous earth orbit (GEO). MCAT was thus designed with a fast focal ratio and a large unvignetted image circle able to accommodate a detector sized to yield a large field of view. The selected primary detector is a close-cycle cooled 4Kx4K 15um pixel CCD camera that yields a 0.9 degree diagonal field. For orbital debris detection in widely spaced angular rate regimes, the camera must offer low read-noise performance over a wide range of framing rates. MCAT s 4-port camera operates from 100 kHz to 1.5 MHz per port at 2 e- and 10 e- read noise respectively. This enables low-noise multi-second exposures for GEO observations as well as rapid (several frames per second) exposures for LEO. GEO observations will be performed using a counter-sidereal time delay integration (TDI) technique which NASA has used successfully in the past. For MCAT the GEO survey, detection, and follow-up prediction algorithms will be automated. These algorithms will be detailed herein. For LEO observations two methods will be employed. The first, Orbit Survey Mode (OSM), will scan specific orbital inclination and altitude regimes, detect new orbital debris objects against trailed background stars, and adjust the telescope track to follow the detected object. The second, Stare and Chase Mode (SCM), will perform a stare, then detect and track objects that enter the field of view which satisfy specific rate and brightness criteria. As with GEO, the LEO operational modes will be fully automated and will be described herein. The automation of photometric and astrometric processing (thus streamlining data collection for environmental modeling) will also be discussed.

  16. STS-27 MS Mullane on aft flight deck with camera equipment

    NASA Image and Video Library

    1988-12-06

    STS027-10-021 (2-6 Dec. 1988) --- Astronaut Richard M. (Mike) Mullane, STS-27 mission specialist, is able to handle a number of cameras with the aid of the microgravity in the shirt sleeve environment of the Earth-orbiting space shuttle Atlantis. Photo credit: NASA

  17. Orbiter View of Curiosity From Nearly Straight Overhead

    NASA Image and Video Library

    2012-08-31

    Details such as the shadow of the mast on NASA Mars rover Curiosity appear in an image taken Aug. 17, 2012, by the HiRISE camera on NASA Mars Reconnaissance Orbiter, from more directly overhead than previous HiRISE images of Curiosity.

  18. Color View From Orbit Showing Opportunity in Botany Bay

    NASA Image and Video Library

    2013-07-17

    This image taken by the HiRISE camera on NASA Mars Reconnaissance Orbiter, captures Opportunity traversing south at the end of the white arrow to new science targets and a winter haven at Solander Point, another portion of the Endeavour rim.

  19. Horizon photo of Western horizon over South America - sixth orbit pass

    NASA Image and Video Library

    1962-10-03

    S62-06604 (3 Oct. 1962) --- Western horizon over South America taken during the sixth orbit pass of the Mercury-Atlas 8 (MA-8) mission by astronaut Walter M. Schirra Jr. with a hand-held camera. Photo credit: NASA

  20. Horizon photo of Western horizon over South America - sixth orbit pass

    NASA Image and Video Library

    1962-10-03

    S62-06607 (3 Oct. 1962) --- Western horizon over South America taken during the sixth orbit pass of the Mercury-Atlas 8 (MA-8) mission by astronaut Walter M. Schirra Jr. with a hand-held camera. Photo credit: NASA

  1. Erosion Patterns May Guide Mars Rover to Rocks Recently Exposed

    NASA Image and Video Library

    2013-12-09

    These two images come from the HiRISE camera on NASA Mars Reconnaissance Orbiter. Images of locations in Gale Crater taken from orbit around Mars reveal evidence of erosion in recent geological times and development of small scarps, or vertical surfaces

  2. The Value of Photographic Observations in Improving the Accuracy of Satellite Orbits.

    DTIC Science & Technology

    1982-02-01

    cameras in the years 1971 -3 have recently become available, particularly of the balloon-satellite Explorer 19, from the observing stations at Riga...from the Russian AFU-75 cameras in the years 1971 -1973 have recently become available, particularly of the balloon- satellite Explorer 19, from the...large numbers of observations frum the Russian AFU-75 cameras have become available, covering the years 1971 -3. The observations, made during the

  3. STS-36 Mission Specialist Mullane uses 70mm HASSELBLAD camera on flight deck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-36 Mission Specialist Richard M. Mullane points 70mm HASSELBLAD camera out overhead window W8 on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104. Mullane is recording Earth imagery with the camera. Mullane and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission. Note: Mullane is wearing a orange 'Tigers' t-shirt.

  4. MESSENGER Reveals Mercury in New Detail

    NASA Image and Video Library

    2008-01-16

    As NASA MESSENGER approached Mercury on January 14, 2008, the spacecraft Narrow-Angle Camera on the Mercury Dual Imaging System MDIS instrument captured this view of the planet rugged, cratered landscape illuminated obliquely by the Sun.

  5. Still from Red Spot Movie

    NASA Image and Video Library

    2000-11-21

    This image is one of seven from the narrow-angle camera on NASA Cassini spacecraft assembled as a brief movie of cloud movements on Jupiter. The smallest features visible are about 500 kilometers about 300 miles across.

  6. Inferred Lunar Boulder Distributions at Decimeter Scales

    NASA Technical Reports Server (NTRS)

    Baloga, S. M.; Glaze, L. S.; Spudis, P. D.

    2012-01-01

    Block size distributions of impact deposits on the Moon are diagnostic of the impact process and environmental effects, such as target lithology and weathering. Block size distributions are also important factors in trafficability, habitability, and possibly the identification of indigenous resources. Lunar block sizes have been investigated for many years for many purposes [e.g., 1-3]. An unresolved issue is the extent to which lunar block size distributions can be extrapolated to scales smaller than limits of resolution of direct measurement. This would seem to be a straightforward statistical application, but it is complicated by two issues. First, the cumulative size frequency distribution of observable boulders rolls over due to resolution limitations at the small end. Second, statistical regression provides the best fit only around the centroid of the data [4]. Confidence and prediction limits splay away from the best fit at the endpoints resulting in inferences in the boulder density at the CPR scale that can differ by many orders of magnitude [4]. These issues were originally investigated by Cintala and McBride [2] using Surveyor data. The objective of this study was to determine whether the measured block size distributions from Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC) images (m-scale resolution) can be used to infer the block size distribution at length scales comparable to Mini-RF Circular Polarization Ratio (CPR) scales, nominally taken as 10 cm. This would set the stage for assessing correlations of inferred block size distributions with CPR returns [6].

  7. The PAUCam readout electronics system

    NASA Astrophysics Data System (ADS)

    Jiménez, Jorge; Illa, José M.; Cardiel-Sas, Laia; de Vicente, Juan; Castilla, Javier; Casas, Ricard

    2016-08-01

    The PAUCam is an optical camera with a wide field of view of 1 deg x 1 deg and up to 46 narrow and broad band filters. The camera is already installed on the William Herschel Telescope (WHT) in the Canary Islands, Spain and successfully commissioned during the first period of 2015. The paper presents the main results from the readout electronics commissioning tests and include an overview of the whole readout electronics system, its configuration and current performance.

  8. Serious Gaming Technologies Support Human Factors Investigations of Advanced Interfaces for Semi-Autonomous Vehicles

    DTIC Science & Technology

    2006-06-01

    conventional camera vs. thermal imager vs. night vision; camera field of view (narrow, wide, panoramic); keyboard + mouse vs. joystick control vs...motorised platform which could scan the immediate area, producing a 360o panorama of “stitched-together” digital pictures. The picture file, together with...VBS was used to automate the process of creating a QuickTime panorama (.mov or .qt), which includes the initial retrieval of the images, the

  9. MEANS FOR VISUALIZING FLUID FLOW PATTERNS

    DOEpatents

    Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.

    1961-05-16

    An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.

  10. Reconditioning of Cassini Narrow-Angle Camera

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These five images of single stars, taken at different times with the narrow-angle camera on NASA's Cassini spacecraft, show the effects of haze collecting on the camera's optics, then successful removal of the haze by warming treatments.

    The image on the left was taken on May 25, 2001, before the haze problem occurred. It shows a star named HD339457.

    The second image from left, taken May 30, 2001, shows the effect of haze that collected on the optics when the camera cooled back down after a routine-maintenance heating to 30 degrees Celsius (86 degrees Fahrenheit). The star is Maia, one of the Pleiades.

    The third image was taken on October 26, 2001, after a weeklong decontamination treatment at minus 7 C (19 F). The star is Spica.

    The fourth image was taken of Spica January 30, 2002, after a weeklong decontamination treatment at 4 C (39 F).

    The final image, also of Spica, was taken July 9, 2002, following three additional decontamination treatments at 4 C (39 F) for two months, one month, then another month.

    Cassini, on its way toward arrival at Saturn in 2004, is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  11. The Wide Angle Camera of the ROSETTA Mission

    NASA Astrophysics Data System (ADS)

    Barbieri, C.; Fornasier, S.; Verani, S.; Bertini, I.; Lazzarin, M.; Rampazzi, F.; Cremonese, G.; Ragazzoni, R.; Marzari, F.; Angrilli, F.; Bianchini, G. A.; Debei, S.; Dececco, M.; Guizzo, G.; Parzianello, G.; Ramous, P.; Saggin, B.; Zaccariotto, M.; Da Deppo, V.; Naletto, G.; Nicolosi, G.; Pelizzo, M. G.; Tondello, G.; Brunello, P.; Peron, F.

    This paper aims to give a brief description of the Wide Angle Camera (WAC), built by the Centro Servizi e AttivitàSpaziali (CISAS) of the University of Padova for the ESA ROSETTA Mission to comet 46P/Wirtanen and asteroids 4979 Otawara and 140 Siwa. The WAC is part of the OSIRIS imaging system, which comprises also a Narrow Angle Camera (NAC) built by the Laboratoire d'Astrophysique Spatiale (LAS) of Marseille. CISAS had also the responsibility to build the shutter and the front cover mechanism for the NAC. The flight model of the WAC was delivered in December 2001, and has been already integrated on ROSETTA.

  12. Observation sequences and onboard data processing of Planet-C

    NASA Astrophysics Data System (ADS)

    Suzuki, M.; Imamura, T.; Nakamura, M.; Ishi, N.; Ueno, M.; Hihara, H.; Abe, T.; Yamada, T.

    Planet-C or VCO Venus Climate Orbiter will carry 5 cameras IR1 IR 1micrometer camera IR2 IR 2micrometer camera UVI UV Imager LIR Long-IR camera and LAC Lightning and Airglow Camera in the UV-IR region to investigate atmospheric dynamics of Venus During 30 hr orbiting designed to quasi-synchronize to the super rotation of the Venus atmosphere 3 groups of scientific observations will be carried out i image acquisition of 4 cameras IR1 IR2 UVI LIR 20 min in 2 hrs ii LAC operation only when VCO is within Venus shadow and iii radio occultation These observation sequences will define the scientific outputs of VCO program but the sequences must be compromised with command telemetry downlink and thermal power conditions For maximizing science data downlink it must be well compressed and the compression efficiency and image quality have the significant scientific importance in the VCO program Images of 4 cameras IR1 2 and UVI 1Kx1K and LIR 240x240 will be compressed using JPEG2000 J2K standard J2K is selected because of a no block noise b efficiency c both reversible and irreversible d patent loyalty free and e already implemented as academic commercial software ICs and ASIC logic designs Data compression efficiencies of J2K are about 0 3 reversible and 0 1 sim 0 01 irreversible The DE Digital Electronics unit which controls 4 cameras and handles onboard data processing compression is under concept design stage It is concluded that the J2K data compression logics circuits using space

  13. A Topographic Image Map of The Mc-18 Quadrangle "coprates" At 1: 2,000,000 Using Data Obtained From The Mars Orbiter Camera and The Mars Orbiter Laser Altimeter of Mars Global Surveyor

    NASA Astrophysics Data System (ADS)

    Niedermaier, G.; Wählisch, M.; van Gasselt, S.; Scholten, F.; Wewel, F.; Roatsch, T.; Matz, K.-D.; Jaumann, R.

    We present a new topographic image map of Mars using 8 bit data obtained from the Mars Orbiter Camera (MOC) of the Mars Global Surveyor (MGS) [1]. The new map covers the Mars surface from 270 E (90 W) to 315 E (45 W) and from 0 North to 30 South with a resolution of 231.529 m/pixel (256 pixel/degree). For map creation, digital image processing methods have been applied. Furthermore, we managed to de- velop a general processing method for creating image mosaics based on MOC data. From a total amount of 66,081 images, 4,835 images (4,339 Context and 496 Geodesy images [3]) were finally used for the creation of the mosaic. After radiometric and brightness corrections, the images were Mars referenced [5], geometrically [6] cor- rected and sinusoidal map projected [4] using a global Martian Digital Terrain Model (DTM), developed by the DLR and based on MGS Mars Orbiter Laser Altimeter (MOLA) topographic datasets [2]. Three layers of MOC mosaics were created, which were stacked afterwards. The upper layer contains the context images with a resolution < 250 m/pixel. The middle layer contains the images of the Geodesy Campaign with a resolution < 250 m/pixel. The bottom layer consists of the Geodesy Campaign im- ages with a resolution > 250 m/pixel and < 435 m/pixel. The contour lines have been extracted from the global Martian DTM, developed at DLR. The contour data were imported as vector data into Macromedia Freehand as separate layer and corrected interactively. The map format of 1,15 m × 1,39 m represents the western part of the MDIM2 j quadrangle. The map is used for geological and morphological interpreta- tions in order to review and improve our current Viking-based knowledge about the Martian surface. References: [1] www.msss.com [2] wufs.wustl.edu [3] Caplinger, M. and M. Malin, The Mars Orbiter Camera Geodesy Campaign, JGR, in press. [4] Scholten, F., Vol XXXI, Part B2, Wien, 1996, p.351-356 [5] naif.jpl.nasa.gov [6] Kirk, R.L. et al., Geometric Calibration of the Mars Orbiter Cameras and Coalignment with Mars Orbiter Laser Altimeter, (abstract #1863), LPSC XXXII, 2001

  14. Wide-Angle Polarimetric Camera for Korea Pathfinder Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Choi, Y. J.; Kim, S.; Kang, K. I.

    2016-12-01

    A polarimetry data contains valuable information about the lunar surface such as the grain size and porosity of the regolith. However, a polarimetry toward the Moon in its orbit has not been performed. We plan to perform the polarimetry in lunar orbit through Korea Pathfinder Lunar Orbiter (KPLO), which will be launched around 2018/2019 as the first Korean lunar mission. Wide-Angle Polarimetric Camera (PolCam) is selected as one of the onboard instrument for KPLO. The science objectives are ; (1) To obtain the polarization data of the whole lunar surface at wavelengths of 430nm and 650nm for phase angle range from 0° to 120° with a spatial resolution of 80 m. (2) To obtain the reflectance ratios at 320 nm and 430 nm for the whole lunar surface with a spatial resolution of 80m. We will summarize recent results of lunar surface from ground-based polarimetric observations and will briefly introduce the science rationals and operation concept of PolCam.

  15. Miniaturized Autonomous Extravehicular Robotic Camera (Mini AERCam)

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.

    2001-01-01

    The NASA Johnson Space Center (JSC) Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a low-volume, low-mass free-flying camera system . AERCam project team personnel recently initiated development of a miniaturized version of AERCam known as Mini AERCam. The Mini AERCam target design is a spherical "nanosatellite" free-flyer 7.5 inches in diameter and weighing 1 0 pounds. Mini AERCam is building on the success of the AERCam Sprint STS-87 flight experiment by adding new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving enhanced capability in a smaller package depends on applying miniaturization technology across virtually all subsystems. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion system , rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides beneficial on-orbit views unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by EVA crewmembers.

  16. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  17. Orbit/attitude estimation with LANDSAT Landmark data

    NASA Technical Reports Server (NTRS)

    Hall, D. L.; Waligora, S.

    1979-01-01

    The use of LANDSAT landmark data for orbit/attitude and camera bias estimation was studied. The preliminary results of these investigations are presented. The Goddard Trajectory Determination System (GTDS) error analysis capability was used to perform error analysis studies. A number of questions were addressed including parameter observability and sensitivity, effects on the solve-for parameter errors of data span, density, and distribution an a priori covariance weighting. The use of the GTDS differential correction capability with acutal landmark data was examined. The rms line and element observation residuals were studied as a function of the solve-for parameter set, a priori covariance weighting, force model, attitude model and data characteristics. Sample results are presented. Finally, verfication and preliminary system evaluation of the LANDSAT NAVPAK system for sequential (extended Kalman Filter) estimation of orbit, and camera bias parameters is given.

  18. Ridges and Cliffs on Mercury Surface

    NASA Image and Video Library

    2008-01-20

    A complex history of geological evolution is recorded in this frame from the Narrow Angle Camera NAC, part of the Mercury Dual Imaging System MDIS instrument, taken during NASA MESSENGER close flyby of Mercury on January 14, 2008.

  19. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-09-13

    ISS041-E-013683 (13 Sept. 2014) --- Photographed with a mounted automated camera, this is one of a number of images featuring the European Space Agency?s Automated Transfer Vehicle (ATV-5 or Georges Lemaitre) docked with the International Space Station. Except for color changes, the images are almost identical. The variation in color from frame to frame is due to the camera?s response to the motion of the orbital outpost, relative to the illumination from the sun.

  20. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-09-13

    ISS041-E-013687 (13 Sept. 2014) --- Photographed with a mounted automated camera, this is one of a number of images featuring the European Space Agency?s Automated Transfer Vehicle (ATV-5 or Georges Lemaitre) docked with the International Space Station. Except for color changes, the images are almost identical. The variation in color from frame to frame is due to the camera?s response to the motion of the orbital outpost, relative to the illumination from the sun.

  1. Earth Observations taken by Expedition 41 crewmember

    NASA Image and Video Library

    2014-09-13

    ISS041-E-013693 (13 Sept. 2014) --- Photographed with a mounted automated camera, this is one of a number of images featuring the European Space Agency?s Automated Transfer Vehicle (ATV-5 or Georges Lemaitre) docked with the International Space Station. Except for color changes, the images are almost identical. The variation in color from frame to frame is due to the camera?s response to the motion of the orbital outpost, relative to the illumination from the sun.

  2. Plenoptic background oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Klemkowsky, Jenna N.; Fahringer, Timothy W.; Clifford, Christopher J.; Bathel, Brett F.; Thurow, Brian S.

    2017-09-01

    The combination of the background oriented schlieren (BOS) technique with the unique imaging capabilities of a plenoptic camera, termed plenoptic BOS, is introduced as a new addition to the family of schlieren techniques. Compared to conventional single camera BOS, plenoptic BOS is capable of sampling multiple lines-of-sight simultaneously. Displacements from each line-of-sight are collectively used to build a four-dimensional displacement field, which is a vector function structured similarly to the original light field captured in a raw plenoptic image. The displacement field is used to render focused BOS images, which qualitatively are narrow depth of field slices of the density gradient field. Unlike focused schlieren methods that require manually changing the focal plane during data collection, plenoptic BOS synthetically changes the focal plane position during post-processing, such that all focal planes are captured in a single snapshot. Through two different experiments, this work demonstrates that plenoptic BOS is capable of isolating narrow depth of field features, qualitatively inferring depth, and quantitatively estimating the location of disturbances in 3D space. Such results motivate future work to transition this single-camera technique towards quantitative reconstructions of 3D density fields.

  3. Astronaut Alan Bean looks over data acquisition camera on Skylab trainer

    NASA Image and Video Library

    1972-09-01

    S72-39256 (1972) --- Astronaut Alan L. Bean, commander for Skylab 3, the second manned Skylab mission, looks over the data acquisition camera mounted on the water tank in the upper level of the Orbital Workshop (OWS) one-G trainer at the Manned Spacecraft Center (MSC). Photo credit: NASA

  4. Astronaut John Grunsfeld uses camera to record ASTRO-2 payload

    NASA Image and Video Library

    1995-03-17

    STS067-377-008 (2-18 March 1995) --- Astronaut John M. Grunsfeld, mission specialist, uses a handheld Hasselblad camera to record the Astro-2 payload. Orbiting Earth at 190 nautical miles, Grunsfeld joined four other NASA astronauts and two scientists for almost 17 days conducting research in support of the Astro-2 mission.

  5. 'Santa Anita' Panorama

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site] Click on the image for 'Santa Anita' Panorama (QTVR)

    This color mosaic taken on May 21, 25 and 26, 2004, by the panoramic camera on NASA's Mars Exploration Rover Spirit was acquired from a position roughly three-fourths the way between 'Bonneville Crater' and the base of the 'Columbia Hills.' The area is within a low thermal inertia unit (an area that heats up and cools off quickly) identified from orbit by the Mars Odyssey thermal emission imaging system instrument. The rover was roughly 600 meters (1,968 feet) from the base of the hills.

    This mosaic, referred to as the 'Santa Anita Panorama,' is comprised of 64 pointings, acquired with six of the panoramic camera's color filters, including one designed specifically to allow comparisons between orbital and surface brightness data. A total of 384 images were acquired as part of this panorama. The mosaic is an approximate true-color rendering constructed from images using the camera's 750-, 530- and and 480-nanometer filters, and is presented at the full resolution of the camera.

  6. Mars Odyssey Observes Martian Moons

    NASA Image and Video Library

    2018-02-22

    Phobos and Deimos, the moons of Mars, are seen by the Mars Odyssey orbiter's Thermal Emission Imaging System, or THEMIS, camera. The images were taken in visible-wavelength light. THEMIS also recorded thermal-infrared imagery in the same scan. The apparent motion is due to progression of the camera's pointing during the 17-second span of the February 15, 2018, observation, not from motion of the two moons. This was the second observation of Phobos by Mars Odyssey; the first was on September 29, 2017. Researchers have been using THEMIS to examine Mars since early 2002, but the maneuver turning the orbiter around to point the camera at Phobos was developed only recently. The distance to Phobos from Odyssey during the observation was about 3,489 miles (5,615 kilometers). The distance to Deimos from Odyssey during the observation was about 12,222 miles (19,670 kilometers). An animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22248

  7. A real-time MTFC algorithm of space remote-sensing camera based on FPGA

    NASA Astrophysics Data System (ADS)

    Zhao, Liting; Huang, Gang; Lin, Zhe

    2018-01-01

    A real-time MTFC algorithm of space remote-sensing camera based on FPGA was designed. The algorithm can provide real-time image processing to enhance image clarity when the remote-sensing camera running on-orbit. The image restoration algorithm adopted modular design. The MTF measurement calculation module on-orbit had the function of calculating the edge extension function, line extension function, ESF difference operation, normalization MTF and MTFC parameters. The MTFC image filtering and noise suppression had the function of filtering algorithm and effectively suppressing the noise. The algorithm used System Generator to design the image processing algorithms to simplify the design structure of system and the process redesign. The image gray gradient dot sharpness edge contrast and median-high frequency were enhanced. The image SNR after recovery reduced less than 1 dB compared to the original image. The image restoration system can be widely used in various fields.

  8. Ladder beam and camera video recording system for evaluating forelimb and hindlimb deficits after sensorimotor cortex injury in rats.

    PubMed

    Soblosky, J S; Colgin, L L; Chorney-Lane, D; Davidson, J F; Carey, M E

    1997-12-30

    Hindlimb and forelimb deficits in rats caused by sensorimotor cortex lesions are frequently tested by using the narrow flat beam (hindlimb), the narrow pegged beam (hindlimb and forelimb) or the grid-walking (forelimb) tests. Although these are excellent tests, the narrow flat beam generates non-parametric data so that using more powerful parametric statistical analyses are prohibited. All these tests can be difficult to score if the rat is moving rapidly. Foot misplacements, especially on the grid-walking test, are indicative of an ongoing deficit, but have not been reliably and accurately described and quantified previously. In this paper we present an easy to construct and use horizontal ladder-beam with a camera system on rails which can be used to evaluate both hindlimb and forelimb deficits in a single test. By slow motion videotape playback we were able to quantify and demonstrate foot misplacements which go beyond the recovery period usually seen using more conventional measures (i.e. footslips and footfaults). This convenient system provides a rapid and reliable method for recording and evaluating rat performance on any type of beam and may be useful for measuring sensorimotor recovery following brain injury.

  9. Developing a Low-Cost System for 3d Data Acquisition

    NASA Astrophysics Data System (ADS)

    Kossieris, S.; Kourounioti, O.; Agrafiotis, P.; Georgopoulos, A.

    2017-11-01

    In this paper, a developed low-cost system is described, which aims to facilitate 3D documentation fast and reliably by acquiring the necessary data in outdoor environment for the 3D documentation of façades especially in the case of very narrow streets. In particular, it provides a viable solution for buildings up to 8-10m high and streets as narrow as 2m or even less. In cases like that, it is practically impossible or highly time-consuming to acquire images in a conventional way. This practice would lead to a huge number of images and long processing times. The developed system was tested in the narrow streets of a medieval village on the Greek island of Chios. There, in order to by-pass the problem of short taking distances, it was thought to use high definition action cameras together with a 360˚ camera, which are usually provided with very wide-angle lenses and are capable of acquiring images, of high definition, are rather cheap and, most importantly, extremely light. Results suggest that the system can perform fast 3D data acquisition adequate for deliverables of high quality.

  10. Automatic hot wire GTA welding of pipe offers speed and increased deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sykes, I.; Digiacomo, J.

    1995-07-01

    Heavy-wall pipe welding for the power and petrochemical industry must meet code requirements. Contractors strive to meet these requirements in the most productive way possible. The challenge put to orbital welding equipment manufacturers is to produce pipe welding equipment that cost-effectively produces code-quality welds. Orbital welding equipment using the GTA process has long produced outstanding quality results but has lacked the deposition rate to compete cost effectively with other manual and semiautomatic processes such as SMAW, FCAW and GMAW. In recent years, significant progress has been made with the use of narrow-groove weld joint designs to reduce weld joint volumemore » and improve welding times. Astro Arc Polysoude, an orbital welding equipment manufacturer based in Sun Valley, Calif., and Nantes, France, has combined the hot wire GTAW process with orbital welding equipment using a narrow-groove weld joint design. Field test results show this process and procedure is a good alternative for many heavy-wall-pipe welding applications.« less

  11. Eye on Io.

    ERIC Educational Resources Information Center

    Lewis, Scott M.

    1985-01-01

    "Io," one of four satellites of Jupiter, orbits its mother planet in roughly the same plane as Earth orbits the sun. Guidelines for collecting data about Io using a reflecting telescope, 35mm camera, and adapter are presented. A computer program used in studying Io's maximum distance from Jupiter is available. (DH)

  12. ARC-1989-A89-7045

    NASA Image and Video Library

    1989-08-26

    Range : 280,000 km. ( 170,000 miles ) P-34726 BW Two 10 minute exposures of Neptune's rings clearly show the two main rings , as well as the inner faint ring and the faint band that extends planetward from roughly halfway between the two bright rings. Both bright rings have material throughout their entire orbit, and are therefore continuous. The inner ring and the broad band are much fainter than the two narrow main rings. These images were taken 1 hour and 27 minutes aprt, using the clear filter on Voyager 2's wide angle camera. These long exposures images were taken while the rings were backlit by the sun. This viewing geometry enhances the visibility of dust and allows optically thinner parts of the rings to be seen. The bright glare in the center is due to overexposure of the crescent of Neptune . The two gaps in the upper part of the outer ring in the image on the left are due to the removal of blemishes during computer processing of the images. Numerous bright stars are evident in the background.

  13. First Imaging Results from the Iapetus B/C Flyby of the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Denk, T.; Neukum, G.; Roatsch, T.; McEwen, A. S.; Turtle, E. P.; Thomas, P. C.; Helfenstein, P.; Wagner, R. J.; Porco, C.C.; Perry, J. E.

    2005-01-01

    The first of two relatively close Iapetus flybys in Cassini's primary mission occured on Dec 31, 2004 18:49 UTC near apoapsis from orbit "B" to "C" at an altitude of approximately 123,400 km over the northern leading hemisphere, resulting in a minimum pixel scale of 740 m for the ISS narrow angle camera (NAC). Data revealed details of a greater than 1300-km-long ridge that had been discovered just one week earlier in optical navigation images. Individual mountains within the western part of the ridge reach heights of approximately 20 km over surrounding terrain. The data set provides constraints on the origin of the albedo dichotomy. It appears very likely that the dark material is overlying an ice crust, but no evidence for emplacement of dark material via surface flows is apparent. Instead, signs for dark-material emplacement through processes that included ballistic transportation are visible. No bright-floor ("punch-through") craters have been found on the dark hemisphere. The ridge discovery may revive the idea of an endogenic origin of the dark side.

  14. Waving Goodbye

    NASA Image and Video Library

    2017-05-30

    Before NASA's Cassini entered its Grand Finale orbits, it acquired unprecedented views of the outer edges of the main ring system. For example, this close-up view of the Keeler Gap, which is near the outer edge of Saturn's main rings, shows in great detail just how much the moon Daphnis affects the edges of the gap. Daphnis creates waves in the edges of the gap through its gravitational influence. Some clumping of ring particles can be seen in the perturbed edge, similar to what was seen on the edges of the Encke Gap back when Cassini arrived at Saturn in 2004. This view looks toward the sunlit side of the rings from about 3 degrees above the ring plane. The view was acquired at a distance of approximately 18,000 miles (30,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 69 degrees. Image scale is 581 feet (177 meters) per pixel. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Jan. 16, 2017. https://photojournal.jpl.nasa.gov/catalog/PIA21329

  15. Chasms on Dione

    NASA Image and Video Library

    2015-08-17

    While not bursting with activity like its sister satellite Enceladus, the surface of Dione is definitely not boring. Some parts of the surface are covered by linear features, called chasmata, which provide dramatic contrast to the round impact craters that typically cover moons. The bright network of fractures on Dione (698 miles or 1123 kilometers across) was seen originally at poor resolution in Voyager images and was labeled as "wispy terrain." The nature of this terrain was unclear until Cassini showed that they weren't surface deposits of frost, as some had suspected, but rather a pattern of bright icy cliffs among myriad fractures. One possibility is that this stress pattern may be related to Dione's orbital evolution and the effect of tidal stresses over time. This view looks toward the trailing hemisphere of Dione. North on Dione is up. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 11, 2015. The view was acquired at a distance of approximately 68,000 miles (110,000 kilometers) from Dione. Image scale is 2,200 feet (660 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18327

  16. Worlds Apart

    NASA Image and Video Library

    2015-10-12

    Although Mimas and Pandora, shown here, both orbit Saturn, they are very different moons. Pandora, "small" by moon standards (50 miles or 81 kilometers across) is elongated and irregular in shape. Mimas (246 miles or 396 kilometers across), a "medium-sized" moon, formed into a sphere due to self-gravity imposed by its higher mass. The shapes of moons can teach us much about their history. For example, one explanation for Pandora's elongated shape and low density is that it may have formed by gathering ring particles onto a dense core. This view looks toward the unilluminated side of the rings from 0.26 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 26, 2015. The view was obtained at a distance of approximately 485,000 miles (781,000 kilometers) from Pandora. Image scale is 3 miles (5 kilometers) per pixel. Mimas is 904,000 miles (1.4 million kilometers) from the spacecraft in this image. The scale on Mimas is 5.4 miles (8.4 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA18339

  17. The Lunar Orbiter: A Spacecraft to Advance Lunar Exploration

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The film describes the Lunar Orbiter's mission to photograph landing areas on the Moon. The Orbiter will be launched from Cape Kennedy using an Atlas Agena booster rocket. Once it is boosted in a trajectory toward the Moon, the Orbiter will deploy two-way earth communication antennas and solar panels for electricity. Attitude control jets will position the solar panels toward the sun and a tracker for a fix on its navigational star. The Orbiter will be put in an off-center orbit around the Moon where it will circle from four to six days. Scientists on Earth will study the effects of the Moon's gravitational field on the spacecraft, then the orbit will be lowered to 28 miles above the Moon's surface. Engineers will control the Orbiter manually or by computer to activate two camera lenses. The cameras will capture pictures of 12,000 square miles of lunar surface in 25 and 400 square mile increments. Pictures will be sent back to Earth using solar power to transmit electrical signals. The signals will be received by antennas at Goldstone, CA, and in Australia and Spain. Incoming photographic data will be electronically converted and processed to produce large-scale photographic images. The mission will be directed from the Space Flight Operations Facility in Pasadena, CA by NASA and Boeing engineers. After the photographic mission, the Orbiter will continue to circle the Moon providing information about micrometeoroids and radiation in the vicinity.

  18. Impacts on the Hubble Space Telescope Wide Field and Planetary Camera 2: Experimental Simulation of Micrometeoroid Capture

    NASA Technical Reports Server (NTRS)

    Price, M. C.; Kearsley, A. T.; Wozniakiewicz, P. J.; Spratt, J.; Burchell, M. J.; Cole, M. J.; Anz-Meador, P.; Liou, J. C.; Ross, D. K.; Opiela, J.; hide

    2014-01-01

    Hypervelocity impact features have been recognized on painted surfaces returned from the Hubble Space Telescope (HST). Here we describe experiments that help us to understand their creation, and the preservation of micrometeoroid (MM) remnants. We simulated capture of silicate and sulfide minerals on the Zinc orthotitanate (ZOT) paint and Al alloy plate of the Wide Field and Planetary Camera 2 (WFPC2) radiator, which was returned from HST after 16 years in low Earth orbit (LEO). Our results also allow us to validate analytical methods for identification of MM (and orbital debris) impacts in LEO.

  19. STS-36 Mission Specialist Thuot operates 16mm camera on OV-104's middeck

    NASA Image and Video Library

    1990-03-03

    STS-36 Mission Specialist (MS) Pierre J. Thuot operates 16mm ARRIFLEX motion picture camera mounted on the open airlock hatch via a bracket. Thuot uses the camera to record activity of his fellow STS-36 crewmembers on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Positioned between the airlock hatch and the starboard wall-mounted sleep restraints, Thuot, wearing a FAIRFAX t-shirt, squints into the cameras eye piece. Thuot and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.

  20. STS-36 Mission Specialist Thuot operates 16mm camera on OV-104's middeck

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-36 Mission Specialist (MS) Pierre J. Thuot operates 16mm ARRIFLEX motion picture camera mounted on the open airlock hatch via a bracket. Thuot uses the camera to record activity of his fellow STS-36 crewmembers on the middeck of Atlantis, Orbiter Vehicle (OV) 104. Positioned between the airlock hatch and the starboard wall-mounted sleep restraints, Thuot, wearing a FAIRFAX t-shirt, squints into the cameras eye piece. Thuot and four other astronauts spent four days, 10 hours and 19 minutes aboard OV-104 for the Department of Defense (DOD) devoted mission.

  1. Imaging Detonations of Explosives

    DTIC Science & Technology

    2016-04-01

    made using a full-color single-camera pyrometer where wavelength resolution is achieved using the Bayer-type mask covering the sensor chip17 and a...many CHNO- based explosives (e.g., TNT [C7H5N3O6], the formulation C-4 [92% RDX, C3H6N6O6]), hot detonation products are mainly soot and permanent...unreferenced). Essentially, 2 light sensors (cameras), each filtered over a narrow wavelength region, observe an event over the same line of sight. The

  2. Neptune

    NASA Image and Video Library

    1999-07-25

    This image of Neptune was taken through the clear filter of the narrow-angle camera on July 16, 1989 by NASA Voyager 2 spacecraft. The image was processed by computer to show the newly resolved dark oval feature embedded in the middle of the dusky south

  3. Solar System Portrait - View of the Sun, Earth and Venus

    NASA Image and Video Library

    1996-09-13

    This color image of the sun, Earth and Venus was taken by the Voyager 1 spacecraft Feb. 14, 1990, when it was approximately 32 degrees above the plane of the ecliptic and at a slant-range distance of approximately 4 billion miles. It is the first -- and may be the only -- time that we will ever see our solar system from such a vantage point. The image is a portion of a wide-angle image containing the sun and the region of space where the Earth and Venus were at the time with two narrow-angle pictures centered on each planet. The wide-angle was taken with the camera's darkest filter (a methane absorption band), and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky as seen from Voyager's perspective at the edge of the solar system but is still eight million times brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics in the camera. The "rays" around the sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. The two narrow-angle frames containing the images of the Earth and Venus have been digitally mosaiced into the wide-angle image at the appropriate scale. These images were taken through three color filters and recombined to produce a color image. The violet, green and blue filters were used; exposure times were, for the Earth image, 0.72, 0.48 and 0.72 seconds, and for the Venus frame, 0.36, 0.24 and 0.36, respectively. Although the planetary pictures were taken with the narrow-angle camera (1500 mm focal length) and were not pointed directly at the sun, they show the effects of the glare from the nearby sun, in the form of long linear streaks resulting from the scattering of sunlight off parts of the camera and its sun shade. From Voyager's great distance both Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. Detailed analysis also suggests that Voyager detected the moon as well, but it is too faint to be seen without special processing. Venus was only 0.11 pixel in diameter. The faint colored structure in both planetary frames results from sunlight scattered in the optics. http://photojournal.jpl.nasa.gov/catalog/PIA00450

  4. Solar System Portrait - View of the Sun, Earth and Venus

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This color image of the sun, Earth and Venus was taken by the Voyager 1 spacecraft Feb. 14, 1990, when it was approximately 32 degrees above the plane of the ecliptic and at a slant-range distance of approximately 4 billion miles. It is the first -- and may be the only -- time that we will ever see our solar system from such a vantage point. The image is a portion of a wide-angle image containing the sun and the region of space where the Earth and Venus were at the time with two narrow-angle pictures centered on each planet. The wide-angle was taken with the camera's darkest filter (a methane absorption band), and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky as seen from Voyager's perspective at the edge of the solar system but is still eight million times brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics in the camera. The 'rays' around the sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. The two narrow-angle frames containing the images of the Earth and Venus have been digitally mosaiced into the wide-angle image at the appropriate scale. These images were taken through three color filters and recombined to produce a color image. The violet, green and blue filters were used; exposure times were, for the Earth image, 0.72, 0.48 and 0.72 seconds, and for the Venus frame, 0.36, 0.24 and 0.36, respectively. Although the planetary pictures were taken with the narrow-angle camera (1500 mm focal length) and were not pointed directly at the sun, they show the effects of the glare from the nearby sun, in the form of long linear streaks resulting from the scattering of sunlight off parts of the camera and its sun shade. From Voyager's great distance both Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. Detailed analysis also suggests that Voyager detected the moon as well, but it is too faint to be seen without special processing. Venus was only 0.11 pixel in diameter. The faint colored structure in both planetary frames results from sunlight scattered in the optics.

  5. Lunar geodesy and cartography: a new era

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Smith, David; Robinson, Mark; Zuber, Maria T.; Neumann, Gregory; Danton, Jacob; Oberst, Juergen; Archinal, Brent; Glaeser, Philipp

    The Lunar Reconnaissance Orbiter (LRO) ushers in a new era in precision lunar geodesy and cartography. LRO was launched in June, 2009, completed its Commissioning Phase in Septem-ber 2009 and is now in its Primary Mission Phase on its way to collecting high precision, global topographic and imaging data. Aboard LRO are the Lunar Orbiter Laser Altimeter (LOLA -Smith, et al., 2009) and the Lunar Reconnaissance Orbiter Camera (LROC -Robinson, et al., ). LOLA is a derivative of the successful MOLA at Mars that produced the global reference surface being used for all precision cartographic products. LOLA produces 5 altimetry spots having footprints of 5 m at a frequency of 28 Hz, significantly bettering MOLA that produced 1 spot having a footprint of 150 m at a frequency of 10 Hz. LROC has twin narrow angle cameras having pixel resolutions of 0.5 meters from a 50 km orbit and a wide-angle camera having a pixel resolution of 75 m and in up to 7 color bands. One of the two NACs looks to the right of nadir and the other looks to the left with a few hundred pixel overlap in the nadir direction. LOLA is mounted on the LRO spacecraft to look nadir, in the overlap region of the NACs. The LRO spacecraft has the ability to look nadir and build up global coverage as well as looking off-nadir to provide stereo coverage and fill in data gaps. The LROC wide-angle camera builds up global stereo coverage naturally from its large field-of-view overlap from orbit to orbit during nadir viewing. To date, the LROC WAC has already produced global stereo coverage of the lunar surface. This report focuses on the registration of LOLA altimetry to the LROC NAC images. LOLA has a dynamic range of tens of km while producing elevation data at sub-meter precision. LOLA also has good return in off-nadir attitudes. Over the LRO mission, multiple LOLA tracks will be in each of the NAC images at the lunar equator and even more tracks in the NAC images nearer the poles. The registration of LOLA altimetry to NAC images is aided by the 5 spots showing regional and local slopes, along and cross-track, that are easily correlated visually to features within the images. Once can precisely register each of the 5 LOLA spots to specific pixels in LROC images of distinct features such as craters and boulders. This can be performed routinely for features at the 100 m level and larger. However, even features at the several m level can also be registered if a single LOLA spots probes the depth of a small crater while the other 4 spots are on the surrounding surface or one spot returns from the top of a small boulder seen by NAC. The automatic registration of LOLA tracks with NAC stereo digital terrain models should provide for even higher accuracy. Also the LOLA pulse spread of the returned signal, which is sensitive to slopes and roughness, is an additional source of information to help match the LOLA tracks to the images As the global coverage builds, LOLA will provide absolute coordinates in latitude, longitude and radius of surface features with accuracy at the meter level or better. The NAC images will then be reg-istered to the LOLA reference surface in the production of precision, controlled photomosaics, having spatial resolutions as good as 0.5 m/pixel. For hundreds of strategic sites viewed in stereo, even higher precision and more complete surface coverage is possible for the produc-tion of digital terrain models and mosaics. LRO, with LOLA and LROC, will improve the relative and absolute accuracy of geodesy and cartography by orders of magnitude, ushering in a new era for lunar geodesy and cartography. Robinson, M., et al., Space Sci. Rev., DOI 10.1007/s11214-010-9634-2, Date: 2010-02-23, in press. Smith, D., et al., Space Sci. Rev., DOI 10.1007/s11214-009-9512-y, published online 16 May 2009.

  6. Side View of 'Endurance Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This picture from the rear hazard-avoidance camera on NASA's Mars Exploration Rover Opportunity shows a side view of 'Endurance Crater.' Opportunity took the image on sol 188 (Aug. 4, 2004), before transmitting it and other data to the European Space Agency's Mars Express orbiter. The orbiter then relayed the data to Earth.

  7. Clementine mission

    NASA Astrophysics Data System (ADS)

    Rustan, Pedro L.

    1995-01-01

    The U.S. Department of Defense (DoD) and the National Aeronautics and Space Administration (NASA) started a cooperative program in 1992 to flight qualify recently developed lightweight technologies in a radiation stressed environment. The spacecraft, referred to as Clementine, was designed, built, and launched in less than a two year period. The spacecraft was launched into a high inclination orbit from Vandenburg Air Force Base in California on a Titan IIG launch vehicle in January 1994. The spacecraft was injected into a 420 by 3000 km orbit around the Moon and remained there for over two months. Unfortunately, after successfully completing the Lunar phase of the mission, a software malfunction prevented the accomplishment of the near-Earth asteroid (NEA) phase. Some of the technologies incorporated in the Clementine spacecraft include: a 370 gram, 7 watt star tracker camera; a 500 gram, 6 watt, UV/Vis camera; a 1600 gram, 30 watt Indium Antimonide focal plane array NIR camera; a 1650 gram, 30 watt, Mercury Cadmium Telluride LWIR camera; a LIDAR camera which consists of a Nd:YAG diode pumped laser for ranging and an intensified photocathode charge-coupled detector for imaging. The scientific results of the mission will be first analyzed by a NASA selected team, and then will be available to the entire community.

  8. STS-31 crew activity on the middeck of the Earth-orbiting Discovery, OV-103

    NASA Image and Video Library

    1990-04-29

    STS031-05-002 (24-29 April 1990) --- A 35mm camera with a "fish eye" lens captured this high angle image on Discovery's middeck. Astronaut Kathryn D. Sullivan works with the IMAX camera in foreground, while Astronaut Steven A. Hawley consults a checklist in corner. An Arriflex motion picture camera records student ion arc experiment in apparatus mounted on stowage locker. The experiment was the project of Gregory S. Peterson, currently a student at Utah State University.

  9. The Very Low Mass Component of the Gliese 105 System

    NASA Astrophysics Data System (ADS)

    Golimowski, David A.; Henry, Todd J.; Krist, John E.; Schroeder, Daniel J.; Marcy, Geoffrey W.; Fischer, Debra A.; Butler, R. Paul

    2000-10-01

    Multiple-epoch, multicolor images of the astrometric binary Gliese 105A and its very low mass companion Gliese 105C have been obtained using the Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2) and near-infrared camera and multiobject spectrometer (NICMOS). The optical and near-infrared colors of Gl 105C strongly suggest a spectral type of M7 V for that star. Relative astrometric measurements spanning 3 yr reveal the first evidence of Gl 105C's orbital motion. Previous long-term astrometric studies at Sproul and McCormick Observatories have shown that the period of Gl 105A's perturbation is ~60 yr. To satisfy both the observed orbital motion and Gl 105A's astrometric period, Gl 105C's orbit must have an eccentricity of ~0.75 and a semimajor axis of ~15 AU. Measurements of Gl 105A's radial velocity over 12 yr show a linear trend with a slope of 11.3 m s-1 yr-1, which is consistent with these orbital constraints and a nearly face-on orbit. As no other faint companions to Gl 105A have been detected, we conclude that Gl 105C is probably the source of the 60 yr astrometric perturbation.

  10. Apollo 17 Command/Service modules photographed from lunar module in orbit

    NASA Image and Video Library

    1972-12-14

    AS17-145-22254 (14 Dec. 1972) --- An excellent view of the Apollo 17 Command and Service Modules (CSM) photographed from the Lunar Module (LM) "Challenger" during rendezvous and docking maneuvers in lunar orbit. The LM ascent stage, with astronauts Eugene A. Cernan and Harrison H. Schmitt aboard, had just returned from the Taurus-Littrow landing site on the lunar surface. Astronaut Ronald E. Evans remained with the CSM in lunar orbit. Note the exposed Scientific Instrument Module (SIM) Bay in Sector 1 of the Service Module (SM). Three experiments are carried in the SIM bay: S-209 lunar sounder, S-171 infrared scanning spectrometer, and the S-169 far-ultraviolet spectrometer. Also mounted in the SIM bay are the panoramic camera, mapping camera and laser altimeter used in service module photographic tasks. A portion of the LM is on the right.

  11. STS-109 Crew Interviews - Currie

    NASA Technical Reports Server (NTRS)

    2002-01-01

    STS-109 Mission Specialist 2 Nancy Jane Currie is seen during a prelaunch interview. She answers questions about her inspiration to become an astronaut and her career path. She gives details on the Columbia Orbiter mission which has as its main tasks the maintenance and augmentation of the Hubble Space Telescope (HST). While she will do many things during the mission, the most important will be her role as the primary operator of the robotic arm, which is responsible for grappling the HST, bringing it to the Orbiter bay, and providing support for the astronauts during their EVAs (Extravehicular Activities). Additionally, the robotic arm will be responsible for transferring new and replacement equipment from the Orbiter to the HST. This equipment includes: two solar arrays, a Power Control Unit (PCU), the Advanced Camera for Surveys, and a replacement cooling system for NICMOS (Near Infrared Camera Multi-Object Spectrometer).

  12. Fuzzy logic in autonomous orbital operations

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.; Jani, Yashvant

    1991-01-01

    Fuzzy logic can be used advantageously in autonomous orbital operations that require the capability of handling imprecise measurements from sensors. Several applications are underway to investigate fuzzy logic approaches and develop guidance and control algorithms for autonomous orbital operations. Translational as well as rotational control of a spacecraft have been demonstrated using space shuttle simulations. An approach to a camera tracking system has been developed to support proximity operations and traffic management around the Space Station Freedom. Pattern recognition and object identification algorithms currently under development will become part of this camera system at an appropriate level in the future. A concept to control environment and life support systems for large Lunar based crew quarters is also under development. Investigations in the area of reinforcement learning, utilizing neural networks, combined with a fuzzy logic controller, are planned as a joint project with the Ames Research Center.

  13. Deployment of the RCA Satcom K-2 communications satellite

    NASA Image and Video Library

    1985-11-28

    61B-38-36W (28 Nov 1985) --- The 4,144-pound RCA Satcom K-2 communications satellite is photographed as it spins from the cargo bay of the Earth-orbiting Atlantis. A TV camera at right records the deployment for a later playback to Earth. This frame was photographed with a handheld Hasselblad camera inside the spacecraft.

  14. STS-46 aft flight deck payload station 'Marsha's workstation' aboard OV-104

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-46 payload station nicknamed 'Marsha's (Ivins) workstation' on the aft flight deck of Atlantis, Orbiter Vehicle (OV) 104, is cluttered with food, cameras, camera gear, cassettes, flight text material, and other paraphernalia. This area is just behind the commanders station. Fellow crewmembers nicknamed the station and good-naturedly kidded Ivins about the mess.

  15. The California All-sky Meteor Surveillance (CAMS) System

    NASA Astrophysics Data System (ADS)

    Gural, P. S.

    2011-01-01

    A unique next generation multi-camera, multi-site video meteor system is being developed and deployed in California to provide high accuracy orbits of simultaneously captured meteors. Included herein is a description of the goals, concept of operations, hardware, and software development progress. An appendix contains a meteor camera performance trade study made for video systems circa 2010.

  16. The Tactile Vision Substitution System: Applications in Education and Employment

    ERIC Educational Resources Information Center

    Scadden, Lawrence A.

    1974-01-01

    The Tactile Vision Substitution System converts the visual image from a narrow-angle television camera to a tactual image on a 5-inch square, 100-point display of vibrators placed against the abdomen of the blind person. (Author)

  17. Grooves and Kinks in the Rings

    NASA Image and Video Library

    2017-06-19

    Many of the features seen in Saturn's rings are shaped by the planet's moons. This view from NASA's Cassini spacecraft shows two different effects of moons that cause waves in the A ring and kinks in a faint ringlet. The view captures the outer edge of the 200-mile-wide (320-kilometer-wide) Encke Gap, in the outer portion of Saturn's A ring. This is the same region features the large propeller called Earhart. Also visible here is one of several kinked and clumpy ringlets found within the gap. Kinks and clumps in the Encke ringlet move about, and even appear and disappear, in part due to the gravitational effects of Pan -- which orbits in the gap and whose gravitational influence holds it open. The A ring, which takes up most of the image on the left side, displays wave features caused by Pan, as well as the moons Pandora and Prometheus, which orbit a bit farther from Saturn on both sides of the planet's F ring. This view was taken in visible light with the Cassini spacecraft narrow-angle camera on March 22, 2017, and looks toward the sunlit side of the rings from about 22 degrees above the ring plane. The view was acquired at a distance of approximately 63,000 miles (101,000 kilometers) from Saturn and at a phase angle (the angle between the sun, the rings and the spacecraft) of 59 degrees. Image scale is 1,979 feet (603 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21333

  18. ARC-1990-AC79-7127

    NASA Image and Video Library

    1990-02-14

    Range : 4 billion miles from Earth, at 32 degrees to the ecliptic. P-36057C This color image of the Sun, Earth, and Venus is one of the first, and maybe, only images that show are solar system from such a vantage point. The image is a portion of a wide angle image containing the sun and the region of space where the Earth and Venus were at the time, with narrow angle cameras centered on each planet. The wide angle was taken with the cameras darkest filter, a methane absorption band, and the shortest possible exposure, one two-hundredth of a second, to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large in the sky, as seen from Voyager's perpective at the edge of the solar system. Yet, it is still 8xs brighter than the brightest star in Earth's sky, Sirius. The image of the sun you see is far larger than the actual dimension of the solar disk. The result of the brightness is a bright burned out image with multiple reflections from the optics of the camera. The rays around th sun are a diffraction pattern of the calibration lamp which is mounted in front of the wide angle lens. the 2 narrow angle frames containing the images of the Earth and Venus have been digitally mosaicked into the wide angle image at the appropriate scale. These images were taken through three color filters and recombined to produce the color image. The violet, green, and blue filters used , as well as exposure times of .72,.48, and .72 for Earth, and .36, .24, and .36 for Venus.The images also show long linear streaks resulting from scatering of sulight off parts of the camera and its shade.

  19. The world state of orbital debris measurements and modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2004-02-01

    For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.

  20. Orbital Debris Quarterly News, Volume 13, No. 3

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    This issue of the Orbital Debris Quarterly contains articles on the congressional hearing that was held on orbital debris and space traffic; the update received by the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) on the collision of the Iridium 33 and Cosmos 2251 satellites; the micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope Wide Field Planetary Camera; an analysis of the reentry survivability of the Global Precipitation Measurement (GPM) spacecraft; an update on recent major breakup fragments; and a graph showing the current debris environment in low Earth orbit.

  1. Conditions that influence the accuracy of anthropometric parameter estimation for human body segments using shape-from-silhouette

    NASA Astrophysics Data System (ADS)

    Mundermann, Lars; Mundermann, Annegret; Chaudhari, Ajit M.; Andriacchi, Thomas P.

    2005-01-01

    Anthropometric parameters are fundamental for a wide variety of applications in biomechanics, anthropology, medicine and sports. Recent technological advancements provide methods for constructing 3D surfaces directly. Of these new technologies, visual hull construction may be the most cost-effective yet sufficiently accurate method. However, the conditions influencing the accuracy of anthropometric measurements based on visual hull reconstruction are unknown. The purpose of this study was to evaluate the conditions that influence the accuracy of 3D shape-from-silhouette reconstruction of body segments dependent on number of cameras, camera resolution and object contours. The results demonstrate that the visual hulls lacked accuracy in concave regions and narrow spaces, but setups with a high number of cameras reconstructed a human form with an average accuracy of 1.0 mm. In general, setups with less than 8 cameras yielded largely inaccurate visual hull constructions, while setups with 16 and more cameras provided good volume estimations. Body segment volumes were obtained with an average error of 10% at a 640x480 resolution using 8 cameras. Changes in resolution did not significantly affect the average error. However, substantial decreases in error were observed with increasing number of cameras (33.3% using 4 cameras; 10.5% using 8 cameras; 4.1% using 16 cameras; 1.2% using 64 cameras).

  2. Surveillance of medium and high Earth orbits using large baseline stereovision

    NASA Astrophysics Data System (ADS)

    Danescu, Radu; Ciurte, Anca; Oniga, Florin; Cristea, Octavian; Dolea, Paul; Dascal, Vlad; Turcu, Vlad; Mircea, Liviu; Moldovan, Dan

    2014-11-01

    The Earth is surrounded by a swarm of satellites and associated debris known as Resident Space Objects (RSOs). All RSOs will orbit the Earth until they reentry into Earth's atmosphere. There are three main RSO categories: Low Earth Orbit (LEO), when the satellite orbits at an altitude below 1 500 km; a Medium Earth Orbit (MEO) for Global Navigation Satellite Systems (GNSS) at an altitude of around 20 000 km, and a Geostationary Earth Orbit (GEO) (also sometimes called the Clarke orbit), for geostationary satellites, at an altitude of 36 000 km. The Geostationary Earth Orbits and the orbits of higher altitude are also known as High Earth Orbits (HEO). Crucial for keeping an eye on RSOs, the Surveillance of Space (SofS) comprises detection, tracking, propagation of orbital parameters, cataloguing and analysis of these objects. This paper presents a large baseline stereovision based approach for detection and ranging of RSO orbiting at medium to high altitudes. Two identical observation systems, consisting of camera, telescope, control computer and GPS receiver are located 37 km apart, and set to observe the same region of the sky. The telescopes are placed on equatorial mounts able to compensate for the Earth's rotation, so that the stars appear stationary in the acquired images, and the satellites will appear as linear streaks. The two cameras are triggered simultaneously. The satellite streaks are detected in each image of the stereo pair using its streak-like appearance against point-like stars, the motion of the streaks between successive frames, and the stereo disparity. The detected satellite pixels are then put into correspondence using the epipolar geometry, and the 3D position of the satellite in the Earth Center, Earth Fixed (ECEF) reference frame is computed using stereo triangulation. Preliminary tests have been performed, for both MEO and HEO orbits. The preliminary results indicate a very high detection rate for MEO orbits, and good detection rate for HEO orbits, dependent on the satellite's rotation.

  3. Mini AERCam: A Free-Flying Robot for Space Inspection

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven

    2001-01-01

    The NASA Johnson Space Center Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a free-flying camera system for remote viewing and inspection of human spacecraft. The AERCam project team is currently developing a miniaturized version of AERCam known as Mini AERCam, a spherical nanosatellite 7.5 inches in diameter. Mini AERCam development builds on the success of AERCam Sprint, a 1997 Space Shuttle flight experiment, by integrating new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving these productivity-enhancing capabilities in a smaller package depends on aggressive component miniaturization. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion, rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for laboratory demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides on-orbit views of the Space Shuttle and International Space Station unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by space-walking crewmembers.

  4. Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit

    NASA Technical Reports Server (NTRS)

    Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.

    2013-01-01

    This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.

  5. LAUNCH (SOLID ROCKET BOOSTER [SRB]) - STS-1

    NASA Image and Video Library

    1981-04-12

    S81-30505 (12 April 1981) --- Separation of space shuttle Columbia?s external tank, photographed by motion picture cameras in the umbilical bays, occurred following the shutdown of the vehicle?s three main engines. Columbia?s cameras were able to record the bottom side of the tank as the orbiter headed toward its Earth-orbital mission with astronauts John W. Young and Robert L. Crippen aboard and the fuel tank fell toward Earth, passing through the atmosphere rapidly. Liquid oxygen and liquid hydrogen umbilical connectors can be seen at the bottom of the tank. For orientation, the photo should be held with the rounded end at bottom of the frame. Photo credit: NASA

  6. Geometric calibration of Colour and Stereo Surface Imaging System of ESA's Trace Gas Orbiter

    NASA Astrophysics Data System (ADS)

    Tulyakov, Stepan; Ivanov, Anton; Thomas, Nicolas; Roloff, Victoria; Pommerol, Antoine; Cremonese, Gabriele; Weigel, Thomas; Fleuret, Francois

    2018-01-01

    There are many geometric calibration methods for "standard" cameras. These methods, however, cannot be used for the calibration of telescopes with large focal lengths and complex off-axis optics. Moreover, specialized calibration methods for the telescopes are scarce in literature. We describe the calibration method that we developed for the Colour and Stereo Surface Imaging System (CaSSIS) telescope, on board of the ExoMars Trace Gas Orbiter (TGO). Although our method is described in the context of CaSSIS, with camera-specific experiments, it is general and can be applied to other telescopes. We further encourage re-use of the proposed method by making our calibration code and data available on-line.

  7. Skylab 3 crewmen shown eating in Orbital Workshop wardroom

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The three Skylab 3 crewmen are shown eating in the Orbital Workshop (OWS) wardroom of the Skylab space station in Earth orbit, in this photographic reproduction taken from a television transmission made by a color TV camera aboard the OWS. Astronaut Alan L. Bean (right), commander, illustrates eating under zero gravity conditions upsidedown. The two other crewmen are Scientist-Astronaut Owen K. Garriott (left), science pilot; and Astronaut Jack R. Lousma, pilot.

  8. Regolith Gardening Caused by Recent Lunar Impacts Observed by the Lunar Reconnaissance Obiter Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.

    2016-12-01

    Temporal observations by the Lunar Reconnaissance Obiter Camera (LROC) Narrow Angle Camera (NAC) enable us to map and measure the spatial distribution of ejecta as well as quantify faint distal zones that may be the result of early stage jetting caused by meteoroid impacts. These detailed before and after observations enable the examination of surface reflectance changes as well as the analysis of nearby features (i.e. highly degraded craters, secondary craters, and new/spatially shifted boulders). In addition, NAC temporal pairs reveal numerous areas where the regolith has been churned and modified. These features, which we refer to as splotches, are most likely caused by small secondary impacts due to their high population near recent impact events [Robinson et al., 2015]. Using over 14,000 NAC temporal pairs, we identified over 47,000 splotches and quantified their spatial coverage and rate of formation. Based on the observed size frequency distribution, our models indicate that 99% of the entire lunar surface is modified by 1 m in diameter and larger splotches over a period of 8.1x10^4 years. These splotches have the potential to churn the upper few cm of regolith, which influence the local surface roughness and ultimately the surface reflectance observed from orbit. This new churning rate estimate is consistent with previous analysis of regolith properties within drive core samples acquired during the Apollo missions; these cores reveal that the upper 2 cm was rapidly and continuously modified over periods of <=10^5 years [Fruchter et al., 1977]. Overall, the examination of LROC NAC temporal pairs enables detailed studies of the impact process on a scale that exceeds laboratory experiments. Continued collection of NAC temporal pairs during the LRO Cornerstone Mission and future extended missions will aid in the discovery of new, larger impact craters and other contemporary surface changes. References:Fruchter et al. 1977. Proc. Lunar Planet Sci. Conf. 8th. pp. 3595-3605. Robinson et al. 2015. Icarus 252, 229-235.

  9. Impressions from Cassini

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's turbulent atmosphere is reminiscent of a Van Gogh painting in this view from Cassini. However, unlike the famous impressionist painter, Cassini records the world precisely as it appears to the spacecraft's cameras.

    The feathery band that cuts across from the upper left corner to the right side of this scene has a chevron, or arrow, shape near the right. The center of the chevron is located at the latitude (about 28 degrees South) of an eastward-flowing zonal jet in the atmosphere. Counter-flowing eastward and westward jets are the dominant dynamic features seen in the giant planet atmospheres. A chevron-shaped feature with the tip pointed east means that this is a local maximum in the eastward wind and a region of horizontal wind shear, where clouds to the north and south of the jet are being swept back by the slower currents on the sides of the jet.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 6, 2005, at a distance of approximately 2.5 million kilometers (1.5 million miles) from Saturn using a filter sensitive to wavelengths of infrared light centered at 727 nanometers. The image scale is 14 kilometers (9 miles) per pixel.

    The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

    For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov . The Cassini imaging team homepage is at http://ciclops.org .

  10. Morphologic Analysis of Lunar Craters in the Simple-to-Complex Transition

    NASA Astrophysics Data System (ADS)

    Chandnani, M.; Herrick, R. R.; Kramer, G. Y.

    2015-12-01

    The diameter range of 15 km to 20 km on the Moon is within the transition from simple to complex impact craters. We examined 207 well preserved craters in this diameter range distributed across the moon using high resolution Lunar Reconnaissance Orbiter Camera Wide Angle Camera Mosaic (WAC) and Narrow Angle Camera (NAC) data. A map of the distribution of the 207 craters on the Moon using the global LROC WAC mosaic has been attahced with the abstract. By examining craters of similar diameter, impact energy is nearly constant, so differences in shape and morphology must be due to either target (e.g., porosity, density, coherence, layering) or impactor (e.g., velocity, density) properties. On the basis of the crater morphology, topographic profiles and depth-diameter ratio, the craters were classified into simple, craters with slumped walls, craters with both slumping and terracing, those containing a central uplift only, those with a central uplift and slumping, and the craters with a central uplift accompanied by both slumping and terracing, as shown in the image. It was observed that simple craters and craters with slumped walls occur predominately on the lunar highlands. The majority of the craters with terraced walls and all classes of central uplifts were observed predominately on the mare. In short, in this size range craters in the highlands were generally simple craters with occasionally some slumped material in the center, and the more developed features (terracing, central peak) were associated with mare craters. This is somewhat counterintuitive, as we expect the highlands to be generally weaker and less consolidated than the mare. We hypothesize that the presence of rheologic layering in the mare may be the cause of the more complex features that we observe. Relatively weak layers in the mare could develop through regolith formation between individual flows, or perhaps by variations within or between the flows themselves.

  11. Astronaut Alan Bean shaves while aboard Skylab

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, uses battery powered shaver while in the crew quarters of the Skylab space station's Orbital Workshop (OWS) crew quarters. This photograph was taken with a 35mm Nikon camera held by one of Bean's fellow crewmen during the 56.5 day second manned Skylab mission in Earth orbit.

  12. Viking survey paper

    NASA Technical Reports Server (NTRS)

    Soffen, G.

    1976-01-01

    The paper reviews Viking injection into Mars orbit, the landing, and the Orbiter. The following Viking investigations are discussed: the search for life (photosynthetic analysis, metabolic analysis, and respiration), molecular analysis, inorganic chemistry, water detection, thermal mapping, radio science, and physical and seismic characteristics. Also considered are the imaging system, the lander camera, entry science, and Mars weather.

  13. Processing of A New Digital Orthoimage Map of The Martian Western Hemisphere Using Data Obtained From The Mars Orbiter Camera At A Resolution of 256 Pixel/deg

    NASA Astrophysics Data System (ADS)

    Wählisch, M.; Niedermaier, G.; van Gasselt, S.; Scholten, F.; Wewel, F.; Roatsch, T.; Matz, K.-D.; Jaumann, R.

    We present a new digital orthoimage map of Mars using data obtained from the CCD line scanner Mars Orbiter Camera (MOC) of the Mars Global Surveyor Mis- sion (MGS) [1,2]. The map covers the Mars surface from 0 to 180 West and from 60 South to 60 North with the MDIM2 resolution of 256 pixel/degree and size. Image data processing has been performed using multiple programs, developed by DLR, Technical University of Berlin [3], JPL, and the USGS. 4,339 Context and 183 Geodesy images [2] were included. After radiometric corrections, the images were Mars referenced [4], geometrically corrected [5] and orthoprojected using a global Martian Digital Terrain Model (DTM) with a resolution of 64 pixel/degree, developed at DLR and based on MGS Mars Orbiter Laser Altimeter (MOLA) data [6]. To elim- inate major differences in brightness between the individual images of the mosaics, high- and low-pass filter processing techniques were applied for each image. After filtering, the images were mosaicked without registering or using block adjustment techniques in order to improve the geometric quality. It turns out that the accuracy of the navigation data has such a good quality that the orthoimages fit very well to each other. When merging the MOC mosaic with the MOLA data using IHS- trans- formation, we recognized very good correspondence between these two datasets. We create a topographic image map of the Coprates region (MC­18) adding contour lines derived from the global DTM to the mosaic. These maps are used for geological and morphological interpretations in order to review and improve our current Viking-based knowledge about the Martian surface. References: [1] www.mssss.com, [2] Caplinger, M. and M. Malin, "The Mars Or- biter Camera Geodesy Campaign, JGR, in press, [3] Scholten, F., Vol XXXI, Part B2, Wien 1996, p.351-356, [4] naïf.jpl.nasa.gov, [5] R.L.Kirk. et al. (2001), "Geometric Calibration of the Mars Orbiter Cameras and Coalignment with Mars Orbiter Laser Altimeter", LPSC XXXII, [6] wufs.wustl.edu

  14. Neptune Through a Clear Filter

    NASA Image and Video Library

    1999-07-25

    On July 23, 1989, NASA Voyager 2 spacecraft took this picture of Neptune through a clear filter on its narrow-angle camera. The image on the right has a latitude and longitude grid added for reference. Neptune Great Dark Spot is visible on the left.

  15. DETECTION OF REMNANT DUST CLOUD ASSOCIATED WITH THE 2007 OUTBURST OF 17P/HOLMES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiguro, Masateru; Kim, Yoonyoung; Kwon, Yuna G.

    2016-01-20

    This article reports a new optical observation of 17P/Holmes one orbital period after the historical outburst event in 2007. We detected not only a common dust tail near the nucleus but also a long narrow structure that extended along the position angle 274.°6 ± 0.°1 beyond the field of view (FOV) of the Kiso Wide Field Camera, i.e., >0.°2 eastward and >2.°0 westward from the nuclear position. The width of the structure decreased westward with increasing distance from the nucleus. We obtained the total cross section of the long extended structure in the FOV, C{sub FOV} = (2.3 ± 0.5) × 10{sup 10} m{sup 2}. From themore » position angle, morphology, and mass, we concluded that the long narrow structure consists of materials ejected during the 2007 outburst. On the basis of the dynamical behavior of dust grains in the solar radiation field, we estimated that the long narrow structure would be composed of 1 mm–1 cm grains having an ejection velocity of >50 m s{sup −1}. The velocity was more than one order of magnitude faster than that of millimeter–centimeter grains from typical comets around a heliocentric distance r{sub h} of 2.5 AU. We considered that sudden sublimation of a large amount of water-ice (≈10{sup 30} mol s{sup −1}) would be responsible for the high ejection velocity. We finally estimated a total mass of M{sub TOT} = (4–8) × 10{sup 11} kg and a total kinetic energy of E{sub TOT} = (1–6) × 10{sup 15} J for the 2007 outburst ejecta, which are consistent with those of previous studies that were conducted soon after the outburst.« less

  16. Fifty Years of Mars Imaging: from Mariner 4 to HiRISE

    NASA Image and Video Library

    2017-11-20

    This image from NASA's Mars Reconnaissance Orbiter (MRO) shows Mars' surface in detail. Mars has captured the imagination of astronomers for thousands of years, but it wasn't until the last half a century that we were able to capture images of its surface in detail. This particular site on Mars was first imaged in 1965 by the Mariner 4 spacecraft during the first successful fly-by mission to Mars. From an altitude of around 10,000 kilometers, this image (the ninth frame taken) achieved a resolution of approximately 1.25 kilometers per pixel. Since then, this location has been observed by six other visible cameras producing images with varying resolutions and sizes. This includes HiRISE (highlighted in yellow), which is the highest-resolution and has the smallest "footprint." This compilation, spanning Mariner 4 to HiRISE, shows each image at full-resolution. Beginning with Viking 1 and ending with our HiRISE image, this animation documents the historic imaging of a particular site on another world. In 1976, the Viking 1 orbiter began imaging Mars in unprecedented detail, and by 1980 had successfully mosaicked the planet at approximately 230 meters per pixel. In 1999, the Mars Orbiter Camera onboard the Mars Global Surveyor (1996) also imaged this site with its Wide Angle lens, at around 236 meters per pixel. This was followed by the Thermal Emission Imaging System on Mars Odyssey (2001), which also provided a visible camera producing the image we see here at 17 meters per pixel. Later in 2012, the High-Resolution Stereo Camera on the Mars Express orbiter (2003) captured this image of the surface at 25 meters per pixel. In 2010, the Context Camera on the Mars Reconnaissance Orbiter (2005) imaged this site at about 5 meters per pixel. Finally, in 2017, HiRISE acquired the highest resolution image of this location to date at 50 centimeters per pixel. When seen at this unprecedented scale, we can discern a crater floor strewn with small rocky deposits, boulders several meters across, and wind-blown deposits in the floors of small craters and depressions. This compilation of Mars images spanning over 50 years gives us a visual appreciation of the evolution of orbital Mars imaging over a single site. The map is projected here at a scale of 50 centimeters (19.7 inches) per pixel. [The original image scale is 52.2 centimeters (20.6 inches) per pixel (with 2 x 2 binning); objects on the order of 156 centimeters (61.4 inches) across are resolved.] North is up. https://photojournal.jpl.nasa.gov/catalog/PIA22115

  17. Engineer's drawing of Skylab 4 Far Ultraviolet Electronographic camera

    NASA Image and Video Library

    1973-11-19

    S73-36910 (November 1973) --- An engineer's drawing of the Skylab 4 Far Ultraviolet Electronographic camera (Experiment S201). Arrows point to various features and components of the camera. As the Comet Kohoutek streams through space at speeds of 100,000 miles per hour, the Skylab 4 crewmen will use the S201 UV camera to photograph features of the comet not visible from the Earth's surface. While the comet is some distance from the sun, the camera will be pointed through the scientific airlock in the wall of the Skylab space station Orbital Workshop (OWS). By using a movable mirror system built for the Ultraviolet Stellar Astronomy (S019) Experiment and rotating the space station, the S201 camera will be able to photograph the comet around the side of the space station. Photo credit: NASA

  18. KSC-02pd1131

    NASA Image and Video Library

    2002-07-10

    KENNEDY SPACE CENTER, FLA. -- Scott Minnick, with United Space Alliance, places a fiber-optic camera inside the flow line on Endeavour. Minnick wears a special viewing apparatus that sees where the camera is going. The inspection is the result of small cracks being discovered on the LH2 Main Propulsion System (MPS) flow liners in other orbiters. Endeavour is next scheduled to fly on mission STS-113.

  19. KSC-02pd1128

    NASA Image and Video Library

    2002-07-10

    KENNEDY SPACE CENTER, FLA. -- Scott Minnick, with United Space Alliance, places a fiber-optic camera inside the flow line on Endeavour. Minnick wears a special viewing apparatus that sees where the camera is going. The inspection is the result of small cracks being discovered on the LH2 Main Propulsion System (MPS) flow liners in other orbiters. Endeavour is next scheduled to fly on mission STS-113.

  20. Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    NASA Technical Reports Server (NTRS)

    Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.

    2003-01-01

    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.

  1. Orbiter Camera Payload System

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Components for an orbiting camera payload system (OCPS) include the large format camera (LFC), a gas supply assembly, and ground test, handling, and calibration hardware. The LFC, a high resolution large format photogrammetric camera for use in the cargo bay of the space transport system, is also adaptable to use on an RB-57 aircraft or on a free flyer satellite. Carrying 4000 feet of film, the LFC is usable over the visible to near IR, at V/h rates of from 11 to 41 milliradians per second, overlap of 10, 60, 70 or 80 percent and exposure times of from 4 to 32 milliseconds. With a 12 inch focal length it produces a 9 by 18 inch format (long dimension in line of flight) with full format low contrast resolution of 88 lines per millimeter (AWAR), full format distortion of less than 14 microns and a complement of 45 Reseau marks and 12 fiducial marks. Weight of the OCPS as supplied, fully loaded is 944 pounds and power dissipation is 273 watts average when in operation, 95 watts in standby. The LFC contains an internal exposure sensor, or will respond to external command. It is able to photograph starfields for inflight calibration upon command.

  2. Solar System Portrait - 60 Frame Mosaic

    NASA Image and Video Library

    1996-09-13

    The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever portrait of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. http://photojournal.jpl.nasa.gov/catalog/PIA00451

  3. Solar System Portrait - 60 Frame Mosaic

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The cameras of Voyager 1 on Feb. 14, 1990, pointed back toward the sun and took a series of pictures of the sun and the planets, making the first ever 'portrait' of our solar system as seen from the outside. In the course of taking this mosaic consisting of a total of 60 frames, Voyager 1 made several images of the inner solar system from a distance of approximately 4 billion miles and about 32 degrees above the ecliptic plane. Thirty-nine wide angle frames link together six of the planets of our solar system in this mosaic. Outermost Neptune is 30 times further from the sun than Earth. Our sun is seen as the bright object in the center of the circle of frames. The wide-angle image of the sun was taken with the camera's darkest filter (a methane absorption band) and the shortest possible exposure (5 thousandths of a second) to avoid saturating the camera's vidicon tube with scattered sunlight. The sun is not large as seen from Voyager, only about one-fortieth of the diameter as seen from Earth, but is still almost 8 million times brighter than the brightest star in Earth's sky, Sirius. The result of this great brightness is an image with multiple reflections from the optics in the camera. Wide-angle images surrounding the sun also show many artifacts attributable to scattered light in the optics. These were taken through the clear filter with one second exposures. The insets show the planets magnified many times. Narrow-angle images of Earth, Venus, Jupiter, Saturn, Uranus and Neptune were acquired as the spacecraft built the wide-angle mosaic. Jupiter is larger than a narrow-angle pixel and is clearly resolved, as is Saturn with its rings. Uranus and Neptune appear larger than they really are because of image smear due to spacecraft motion during the long (15 second) exposures. From Voyager's great distance Earth and Venus are mere points of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun.

  4. Photogrammetric measurement of 3D freeform millimetre-sized objects with micro features: an experimental validation of the close-range camera calibration model for narrow angles of view

    NASA Astrophysics Data System (ADS)

    Percoco, Gianluca; Sánchez Salmerón, Antonio J.

    2015-09-01

    The measurement of millimetre and micro-scale features is performed by high-cost systems based on technologies with narrow working ranges to accurately control the position of the sensors. Photogrammetry would lower the costs of 3D inspection of micro-features and would be applicable to the inspection of non-removable micro parts of large objects too. Unfortunately, the behaviour of photogrammetry is not known when photogrammetry is applied to micro-features. In this paper, the authors address these issues towards the application of digital close-range photogrammetry (DCRP) to the micro-scale, taking into account that in literature there are research papers stating that an angle of view (AOV) around 10° is the lower limit to the application of the traditional pinhole close-range calibration model (CRCM), which is the basis of DCRP. At first a general calibration procedure is introduced, with the aid of an open-source software library, to calibrate narrow AOV cameras with the CRCM. Subsequently the procedure is validated using a reflex camera with a 60 mm macro lens, equipped with extension tubes (20 and 32 mm) achieving magnification of up to 2 times approximately, to verify literature findings with experimental photogrammetric 3D measurements of millimetre-sized objects with micro-features. The limitation experienced by the laser printing technology, used to produce the bi-dimensional pattern on common paper, has been overcome using an accurate pattern manufactured with a photolithographic process. The results of the experimental activity prove that the CRCM is valid for AOVs down to 3.4° and that DCRP results are comparable with the results of existing and more expensive commercial techniques.

  5. Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System

    NASA Astrophysics Data System (ADS)

    Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.

    2018-02-01

    We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.

  6. Regolith thickness over Sinus Iridum: Results from morphology and size-frequency distribution of small impact craters

    NASA Astrophysics Data System (ADS)

    Fa, Wenzhe; Liu, Tiantian; Zhu, Meng-Hua; Haruyama, Junichi

    2014-08-01

    High-resolution optical images returned from recent lunar missions provide a new chance for estimation of lunar regolith thickness using morphology and the size-frequency distribution of small impact craters. In this study, regolith thickness over the Sinus Iridum region is estimated using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) images. A revised relationship between crater geometry and regolith thickness is proposed based on old experimental data that takes into considering the effect of the illumination angle of the images. In total, 227 high-resolution LROC NAC images are used, and 378,556 impact craters with diameters from 4.2 to 249.8 m are counted, and their morphologies are identified. Our results show that 50% of the Sinus Iridum region has a regolith thickness between 5.1 and 10.7 m, and the mean and median regolith thicknesses are 8.5 and 8.0 m, respectively. There are substantial regional variations in the regolith thickness, with its median value varying from 2.6 to 12.0 m for most regions. Local variations of regolith thickness are found to be correlated with the lunar surface age: the older the surface, the greater the thickness. In addition, sporadically distributed impact ejecta and crater rays are associated with relatively larger regolith thickness, which might result from excavation and transport of materials during the formation of the secondaries of Copernican-aged craters. Our estimated regolith thickness can help with future analysis of Chang'E-3 lunar penetrating radar echoes and studies of the subsurface stratigraphic structure of the Moon.

  7. Topological quantum pump in serpentine-shaped semiconducting narrow channels

    NASA Astrophysics Data System (ADS)

    Pandey, Sudhakar; Scopigno, Niccoló; Gentile, Paola; Cuoco, Mario; Ortix, Carmine

    2018-06-01

    We propose and analyze theoretically a one-dimensional solid-state electronic setup that operates as a topological charge pump in the complete absence of superimposed oscillating local voltages. The system consists of a semiconducting narrow channel with a strong Rashba spin-orbit interaction patterned in a mesoscale serpentine shape. A rotating planar magnetic field serves as the external ac perturbation, and cooperates with the Rashba spin-orbit interaction, which is modulated by the geometric curvature of the electronic channel to realize the topological pumping protocol, originally introduced by Thouless, in a different fashion. We expect the precise pumping of electric charges in our mesoscopic quantum device to be relevant for quantum metrology purposes.

  8. Background correction in forensic photography. II. Photography of blood under conditions of non-uniform illumination or variable substrate color--practical aspects and limitations.

    PubMed

    Wagner, John H; Miskelly, Gordon M

    2003-05-01

    The combination of photographs taken at wavelengths at and bracketing the peak of a narrow absorbance band can lead to enhanced visualization of the substance causing the narrow absorbance band. This concept can be used to detect putative bloodstains by division of a linear photographic image taken at or near 415 nm with an image obtained by averaging linear photographs taken at or near 395 and 435 nm. Nonlinear images can also be background corrected by substituting subtraction for the division. This paper details experimental applications and limitations of this technique, including wavelength selection of the illuminant and at the camera. Characterization of a digital camera to be used in such a study is also detailed. Detection limits for blood using the three wavelength correction method under optimum conditions have been determined to be as low as 1 in 900 dilution, although on strongly patterned substrates blood diluted more than twenty-fold is difficult to detect. Use of only the 435 nm photograph to estimate the background in the 415 nm image lead to a twofold improvement in detection limit on unpatterned substrates compared with the three wavelength method with the particular camera and lighting system used, but it gave poorer background correction on patterned substrates.

  9. Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraiskii, A V; Mironova, T V; Sultanov, T T

    2010-09-10

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases. (laser applications and other topics in quantum electronics)

  10. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Measurement of the surface wavelength distribution of narrow-band radiation by a colorimetric method

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. V.; Mironova, T. V.; Sultanov, T. T.

    2010-09-01

    A method is suggested for determining the wavelength of narrow-band light from a digital photograph of a radiating surface. The digital camera used should be appropriately calibrated. The accuracy of the wavelength measurement is better than 1 nm. The method was tested on the yellow doublet of mercury spectrum and on the adjacent continuum of the incandescent lamp radiation spectrum. By means of the method suggested the homogeneity of holographic sensor swelling was studied in stationary and transient cases.

  11. Background and imaging simulations for the hard X-ray camera of the MIRAX mission

    NASA Astrophysics Data System (ADS)

    Castro, M.; Braga, J.; Penacchioni, A.; D'Amico, F.; Sacahui, R.

    2016-07-01

    We report the results of detailed Monte Carlo simulations of the performance expected both at balloon altitudes and at the probable satellite orbit of a hard X-ray coded-aperture camera being developed for the Monitor e Imageador de RAios X (MIRAX) mission. Based on a thorough mass model of the instrument and detailed specifications of the spectra and angular dependence of the various relevant radiation fields at both the stratospheric and orbital environments, we have used the well-known package GEANT4 to simulate the instrumental background of the camera. We also show simulated images of source fields to be observed and calculated the detailed sensitivity of the instrument in both situations. The results reported here are especially important to researchers in this field considering that we provide important information, not easily found in the literature, on how to prepare input files and calculate crucial instrumental parameters to perform GEANT4 simulations for high-energy astrophysics space experiments.

  12. The Hubble Tarantula Treasury Project

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena; Lennon, D. J.; Anderson, J.; Van Der Marel, R. P.; Aloisi, A.; Boyer, M. L.; Cignoni, M.; De Marchi, G.; de Mink, S. E.; Evans, C. J.; Gallagher, J. S.; Gordon, K. D.; Gouliermis, D.; Grebel, E.; Koekemoer, A. M.; Larsen, S. S.; Panagia, N.; Ryon, J. E.; Smith, L. J.; Tosi, M.; Zaritsky, D. F.

    2014-01-01

    The Tarantula Nebula (a.k.a. 30 Doradus) in the Large Magellanic Cloud is one of the most famous objects in astronomy, with first astronomical references being more than 150 years old. Today the Tarantula Nebula and its ionizing cluster R136 are considered one of the few known starburst regions in the Local Group and an ideal test bed to investigate the temporal and spatial evolution of a prototypical starburst on a sub-cluster scale. The Hubble Tarantula Treasury Project (HTTP) is a panchromatic imaging survey of the stellar populations and ionized gas in the Tarantula Nebula that reaches into the sub-solar mass regime (<0.5 M⊙). HTTP utilizes the capability of the Hubble Space Telescope to operate the Advanced Camera for Surveys and the Wide Field Camera 3 in parallel to study this remarkable region in the near-ultraviolet, optical, and near-infrared spectral regions, including narrow-band Hα images. The program was awarded 60 orbits of HST time and is built on the existing 30 orbits monochromatic proper motion program GO-12499 (PI Lennon). The combination of all these bands provides a unique view of the region: the resulting maps of the Tarantula’s stellar content provide the basis for investigations of star formation in an environment resembling the extreme conditions found in starburst galaxies and in the early universe. At the same time access to detailed properties of individual stars allows us to begin to reconstruct the temporal and spatial evolution of the Tarantula Nebula over space and time on a sub-parsec scale. We will deliver high-level data products (i.e. star and cluster catalogs, co-registered stacked images). HTTP will become the definitive catalog of the field, and have lasting value for future. HTTP also has an educational and public outreach component aimed to stimulate interest in STEM disciplines among people with visual impairments. “Reach for the Stars: Touch, Look, Listen, Learn” is a free eBook that explains how stars form and evolve using images from HTTP. The eBook utilizes emerging technology that works in conjunction with the built-in accessibility features in the Apple iPad to allow totally blind users to interactively explore complex astronomical images.

  13. The Formation of Lunar Impact Basins: Observational Constraints from LRO Datasets and Comparisons with Models

    NASA Astrophysics Data System (ADS)

    Baker, D. M. H.; Head, J. W., III

    2016-12-01

    Impact basins provide windows into the subsurface and through time on a planetary body. However, meaningful geologic interpretations rely on a detailed understanding of their formation and the origin of basin materials. Data from the Lunar Reconnaissance Orbiter (LRO) have been critical to advancing our understanding of the formation of impact basins. We present a number of recent observations, including measurements of basin morphometry, mineralogy, and gravity anomalies, which provide a framework for constraining current formation models. Image data from the LRO Wide Angle Camera (WAC) and altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) were used to refine the recognition of both fresh and degraded impact basins, including their ring structures. Analyses of gravity anomalies from the GRAIL mission show that mantle uplifts confined within the inner basin rings are characteristics that basins acquire from the onset. We used LOLA data to also make new measurements of basin morphometry. Small basins possessing two concentric rings ("peak-ring basins") have unique topographic signatures, consisting of inner depressions bounded by a peak ring and a higher annulus that grades to steeper wall material. LRO Narrow Angle Camera (NAC) images and Diviner rock abundance maps were used to identify boulder-rich outcrops in basin rings, which focused mineralogical analyses using Moon Mineralogy Mapper hyperspectral data. Crystalline plagioclase and candidate shock plagioclase outcrops were found to be abundant within basins of all sizes. These observations combined with crater scaling laws and lunar crustal thickness constrain the depth of origin of basin peak rings to be near the maximum depth of excavation. Comparisons between iSALE numerical models and observations show important consistencies and inconsistencies that can help to refine current models. In particular, improvements in the match between observed and modeled morphometry of craters transitional between complex craters with central peaks and peak-ring basins are needed. Models of the predicted gravity signature for a range of basin sizes could also benefit from additional comparisons with those observed. This work also provides a framework for understanding the degraded impact-basin record on Earth, including the Chicxulub basin.

  14. Real-Time Visualization of Tissue Ischemia

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H. (Inventor); Chrien, Thomas D. (Inventor); Eastwood, Michael L. (Inventor)

    2000-01-01

    A real-time display of tissue ischemia which comprises three CCD video cameras, each with a narrow bandwidth filter at the correct wavelength is discussed. The cameras simultaneously view an area of tissue suspected of having ischemic areas through beamsplitters. The output from each camera is adjusted to give the correct signal intensity for combining with, the others into an image for display. If necessary a digital signal processor (DSP) can implement algorithms for image enhancement prior to display. Current DSP engines are fast enough to give real-time display. Measurement at three, wavelengths, combined into a real-time Red-Green-Blue (RGB) video display with a digital signal processing (DSP) board to implement image algorithms, provides direct visualization of ischemic areas.

  15. Colors of active regions on comet 67P

    NASA Astrophysics Data System (ADS)

    Oklay, N.; Vincent, J.-B.; Sierks, H.; Besse, S.; Fornasier, S.; Barucci, M. A.; Lara, L.; Scholten, F.; Preusker, F.; Lazzarin, M.; Pajola, M.; La Forgia, F.

    2015-10-01

    The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) scientific imager (Keller et al. 2007) is successfully delivering images of comet 67P/Churyumov-Gerasimenko from its both wide angle camera (WAC) and narrow angle camera (NAC) since ESA's spacecraft Rosetta's arrival to the comet. Both cameras are equipped with filters covering the wavelength range of about 200 nm to 1000 nm. The comet nucleus is mapped with different combination of the filters in resolutions up to 15 cm/px. Besides the determination of the surface morphology in great details (Thomas et al. 2015), such high resolution images provided us a mean to unambiguously link some activity in the coma to a series of pits on the nucleus surface (Vincent et al. 2015).

  16. Lens and Camera Arrays for Sky Surveys and Space Surveillance

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Cox, D.; McGraw, J.; Zimmer, P.

    2016-09-01

    In recent years, a number of sky survey projects have chosen to use arrays of commercial cameras coupled with commercial photographic lenses to enable low-cost, wide-area observation. Projects such as SuperWASP, FAVOR, RAPTOR, Lotis, PANOPTES, and DragonFly rely on multiple cameras with commercial lenses to image wide areas of the sky each night. The sensors are usually commercial astronomical charge coupled devices (CCDs) or digital single reflex (DSLR) cameras, while the lenses are large-aperture, highend consumer items intended for general photography. While much of this equipment is very capable and relatively inexpensive, this approach comes with a number of significant limitations that reduce sensitivity and overall utility of the image data. The most frequently encountered limitations include lens vignetting, narrow spectral bandpass, and a relatively large point spread function. Understanding these limits helps to assess the utility of the data, and identify areas where advanced optical designs could significantly improve survey performance.

  17. Ultra-fast framing camera tube

    DOEpatents

    Kalibjian, Ralph

    1981-01-01

    An electronic framing camera tube features focal plane image dissection and synchronized restoration of the dissected electron line images to form two-dimensional framed images. Ultra-fast framing is performed by first streaking a two-dimensional electron image across a narrow slit, thereby dissecting the two-dimensional electron image into sequential electron line images. The dissected electron line images are then restored into a framed image by a restorer deflector operated synchronously with the dissector deflector. The number of framed images on the tube's viewing screen is equal to the number of dissecting slits in the tube. The distinguishing features of this ultra-fast framing camera tube are the focal plane dissecting slits, and the synchronously-operated restorer deflector which restores the dissected electron line images into a two-dimensional framed image. The framing camera tube can produce image frames having high spatial resolution of optical events in the sub-100 picosecond range.

  18. Apollo 8 crew shown during intravehicular activity during mission

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Astronaut Frank Borman, commander, is shown during intravehicular activity on the Apollo 8 lunar orbit mission. This still print was made from movie film taken by an on-board 16mm motion picture camera (56531); Astronaut William A. Anders, lunar module pilot, is shown during intravehicular activity on the Apollo 8 lunar orbit mission (56532); Astronaut James A. Lovell Jr., command module milot, is shown during intravehicular activity on the Apollo 8 lunar orbit mission (56533).

  19. Still from Processed Movie of Zonal Jets

    NASA Image and Video Library

    2000-11-21

    This image is one frame from a movie clip of cloud motions on Jupiter, from the side of the planet opposite to the Great Red Spot. It was taken in the first week of October 2000 by the narrow-angle camera on NASA Cassini spacecraft,

  20. Landing Area Narrowed for 2016 InSight Mission to Mars

    NASA Image and Video Library

    2013-09-04

    The process of selecting a site for NASA's next landing on Mars, planned for September 2016, has narrowed to four semifinalist sites located close together in the Elysium Planitia region of Mars. The mission known by the acronym InSight will study the Red Planet's interior, rather than surface features, to advance understanding of the processes that formed and shaped the rocky planets of the inner solar system, including Earth. The location of the cluster of semifinalist landing sites for InSight is indicated on this near-global topographic map of Mars, which also indicates landing sites of current and past NASA missions to the surface of Mars. The mission's full name is Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport. The location of Elysium Planitia close to the Martian equator meets an engineering requirement for the stationary InSight lander to receive adequate solar irradiation year-round on its photovoltaic array. The location also meets an engineering constraint for low elevation, optimizing the amount of atmosphere the spacecraft can use for deceleration during its descent to the surface. The number of candidate landing sites for InSight was trimmed from 22 down to four in August 2013. This down-selection facilitates focusing the efforts to further evaluate the four sites. Cameras on NASA's Mars Reconnaissance Orbiter will be used to gather more information about them before the final selection. The topographic map uses data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor spacecraft. The color coding on this map indicates elevation relative to a reference datum, since Mars has no "sea level." The lowest elevations are presented as dark blue; the highest as white. The difference between green and orange in the color coding is about 2.5 miles (4 kilometers) vertically. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA17357

  1. Global calibration of multi-cameras with non-overlapping fields of view based on photogrammetry and reconfigurable target

    NASA Astrophysics Data System (ADS)

    Xia, Renbo; Hu, Maobang; Zhao, Jibin; Chen, Songlin; Chen, Yueling

    2018-06-01

    Multi-camera vision systems are often needed to achieve large-scale and high-precision measurement because these systems have larger fields of view (FOV) than a single camera. Multiple cameras may have no or narrow overlapping FOVs in many applications, which pose a huge challenge to global calibration. This paper presents a global calibration method for multi-cameras without overlapping FOVs based on photogrammetry technology and a reconfigurable target. Firstly, two planar targets are fixed together and made into a long target according to the distance between the two cameras to be calibrated. The relative positions of the two planar targets can be obtained by photogrammetric methods and used as invariant constraints in global calibration. Then, the reprojection errors of target feature points in the two cameras’ coordinate systems are calculated at the same time and optimized by the Levenberg–Marquardt algorithm to find the optimal solution of the transformation matrix between the two cameras. Finally, all the camera coordinate systems are converted to the reference coordinate system in order to achieve global calibration. Experiments show that the proposed method has the advantages of high accuracy (the RMS error is 0.04 mm) and low cost and is especially suitable for on-site calibration.

  2. SKYLAB (SL)-4 - CREW TRAINING (ORBITAL WORKSTATION [OWS]) - JSC

    NASA Image and Video Library

    1973-08-22

    S73-32848 (10 Sept. 1973) --- Scientist-astronaut Edward G. Gibson, science pilot for the third manned Skylab mission (Skylab 4), reads the markings on a magazine of 400 feet of film for the 16mm Data Acquisition Camera (DAC), during a training exercise in the Orbital Workshop (OWS) trainer at Johnson Space Center. Photo credit: NASA

  3. Magnetospheric Multiscale Mission Micrometeoroid/Orbital Debris Impacts

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Sedlak, Joseph; Shulman, Seth

    2017-01-01

    The MMS spacecraft are highly instrumented (accelerometers, star cameras, Sun sensors, science experiments for plasmas etc.). This presentation will discuss how data from these systems has allowed two micrometeoroid/orbital debris events to be studied: the Feb. 2, 2016 impact with an MMS4 shunt resistor, and the June 12, 2016 impact with an MMS4 wire boom.

  4. Space telescope low scattered light camera - A model

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Kuper, T. G.; Shack, R. V.

    1982-01-01

    A design approach for a camera to be used with the space telescope is given. Camera optics relay the system pupil onto an annular Gaussian ring apodizing mask to control scattered light. One and two dimensional models of ripple on the primary mirror were calculated. Scattered light calculations using ripple amplitudes between wavelength/20 wavelength/200 with spatial correlations of the ripple across the primary mirror between 0.2 and 2.0 centimeters indicate that the detection of an object a billion times fainter than a bright source in the field is possible. Detection of a Jovian type planet in orbit about alpha Centauri with a camera on the space telescope may be possible.

  5. Hubble Space Telescope photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-008 (4 Dec 1993) --- This view of the Earth-orbiting Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC), and down linked to ground controllers soon afterward. This view was taken during rendezvous operations. Endeavour's crew captured the HST on December 4, 1993 in order to service the telescope. Over a period of five days, four of the crew members will work in alternating pairs outside Endeavour's shirt sleeve environment. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  6. Apollo 8 Mission image

    NASA Image and Video Library

    1968-12-21

    Apollo 8,Moon, Latitude 15 degrees South,Longitude 170 degrees West. Camera Tilt Mode: High Oblique. Direction: Southeast. Sun Angle 17 degrees. Original Film Magazine was labeled E. Camera Data: 70mm Hasselblad; F-Stop: F-5.6; Shutter Speed: 1/250 second. Film Type: Kodak SO-3400 Black and White,ASA 40. Other Photographic Coverage: Lunar Orbiter 1 (LO I) S-3. Flight Date: December 21-27,1968.

  7. The Kaguya Mission Overview

    NASA Astrophysics Data System (ADS)

    Kato, Manabu; Sasaki, Susumu; Takizawa, Yoshisada

    2010-07-01

    The Japanese lunar orbiter Kaguya (SELENE) was successfully launched by an H2A rocket on September 14, 2007. On October 4, 2007, after passing through a phasing orbit 2.5 times around the Earth, Kaguya was inserted into a large elliptical orbit circling the Moon. After the apolune altitude was lowered, Kaguya reached its nominal 100 km circular polar observation orbit on October 19. During the process of realizing the nominal orbit, two subsatellites Okina (Rstar) and Ouna (Vstar) were released into elliptical orbits with 2400 km and 800 km apolune, respectively; both elliptical orbits had 100 km perilunes. After the functionality of bus system was verified, four radar antennas and a magnetometer boom were extended, and a plasma imager was deployed. Acquisition of scientific data was carried out for 10 months of nominal mission that began in mid-December 2007. During the 8-month extended mission, magnetic fields and gamma-rays from lower orbits were measured; in addition to this, low-altitude observations were carried out using a Terrain Camera, a Multiband Imager, and an HDTV camera. New data pertaining to an intense magnetic anomaly and GRS data with higher spatial resolution were acquired to study magnetism and the elemental distribution of the Moon. After some orbital maneuvers were performed by using the saved fuel, the Kaguya spacecraft finally impacted on the southeast part of the Moon. The Kaguya team has archived the initial science data, and since November 2, 2009, the data has been made available to public, and can be accessed at the Kaguya homepage of JAXA. The team continues to also study and publish initial results in international journals. Science purposes of the mission and onboard instruments including initial science results are described in this overview.

  8. From a Million Miles Away, NASA Camera Shows Moon Crossing Face of Earth

    NASA Image and Video Library

    2015-08-05

    This animation still image shows the far side of the moon, illuminated by the sun, as it crosses between the DISCOVR spacecraft's Earth Polychromatic Imaging Camera (EPIC) camera and telescope, and the Earth - one million miles away. Credits: NASA/NOAA A NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the moon as it moved in front of the sunlit side of Earth last month. The series of test images shows the fully illuminated “dark side” of the moon that is never visible from Earth. The images were captured by NASA’s Earth Polychromatic Imaging Camera (EPIC), a four megapixel CCD camera and telescope on the DSCOVR satellite orbiting 1 million miles from Earth. From its position between the sun and Earth, DSCOVR conducts its primary mission of real-time solar wind monitoring for the National Oceanic and Atmospheric Administration (NOAA).

  9. IMAX camera in payload bay

    NASA Image and Video Library

    1995-12-20

    STS074-361-035 (12-20 Nov 1995) --- This medium close-up view centers on the IMAX Cargo Bay Camera (ICBC) and its associated IMAX Camera Container Equipment (ICCE) at its position in the cargo bay of the Earth-orbiting Space Shuttle Atlantis. With its own ?space suit? or protective covering to protect it from the rigors of space, this version of the IMAX was able to record scenes not accessible with the in-cabin cameras. For docking and undocking activities involving Russia?s Mir Space Station and the Space Shuttle Atlantis, the camera joined a variety of in-cabin camera hardware in recording the historical events. IMAX?s secondary objectives were to film Earth views. The IMAX project is a collaboration between NASA, the Smithsonian Institution?s National Air and Space Museum (NASM), IMAX Systems Corporation, and the Lockheed Corporation to document significant space activities and promote NASA?s educational goals using the IMAX film medium.

  10. STS-56 ESC Earth observation of New York City at night

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows New York City at night as recorded on the 64th orbit of Discovery, Orbiter Vehicle (OV) 103. The image was recorded with an image intensifier on the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates on this image are 40.665 degrees north latitude and 74.048 degrees west longitude. (1/60 second exposure). Digital file name is ESC04034.IMG.

  11. STS-56 ESC Earth observation of New Zealand (South Island)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 electronic still camera (ESC) Earth observation image shows New Zealand (South Island) as recorded on the 45th orbit of Discovery, Orbiter Vehicle (OV) 103. Westport is easily delineated in the image, which was recorded by the Hand-held, Earth-oriented, Real-time, Cooperative, User-friendly, Location-targeting and Environmental System (HERCULES). HERCULES is a device that makes it simple for shuttle crewmembers to take pictures of Earth as they merely point a modified 35mm camera and shoot any interesting feature, whose latitude and longitude are automatically determined in real-time. Center coordinates are 41.836 degrees south latitude and 171.641 degrees east longitude. (300mm lens, no filter). Digital file name is ESC07007.IMG.

  12. Detection of VHF lightning from GPS orbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suszcynsky, D. M.

    2003-01-01

    Satellite-based VHF' lightning detection is characterized at GPS orbit by using a VHF receiver system recently launched on the GPS SVN 54 satellite. Collected lightning triggers consist of Narrow Bipolar Events (80%) and strong negative return strokes (20%). The results are used to evaluate the performance of a future GPS-satellite-based VHF global lightning monitor.

  13. 2D Measurements of the Balmer Series in Proto-MPEX using a Fast Visible Camera Setup

    NASA Astrophysics Data System (ADS)

    Lindquist, Elizabeth G.; Biewer, Theodore M.; Ray, Holly B.

    2017-10-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device with densities up to 1020 m-3 and temperatures up to 20 eV. Broadband spectral measurements show the visible emission spectra are solely due to the Balmer lines of deuterium. Monochromatic and RGB color Sanstreak SC1 Edgertronic fast visible cameras capture high speed video of plasmas in Proto-MPEX. The color camera is equipped with a long pass 450 nm filter and an internal Bayer filter to view the Dα line at 656 nm on the red channel and the Dβ line at 486 nm on the blue channel. The monochromatic camera has a 434 nm narrow bandpass filter to view the Dγ intensity. In the setup, a 50/50 beam splitter is used so both cameras image the same region of the plasma discharge. Camera images were aligned to each other by viewing a grid ensuring 1 pixel registration between the two cameras. A uniform intensity calibrated white light source was used to perform a pixel-to-pixel relative and an absolute intensity calibration for both cameras. Python scripts that combined the dual camera data, rendering the Dα, Dβ, and Dγ intensity ratios. Observations from Proto-MPEX discharges will be presented. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  14. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    NASA Technical Reports Server (NTRS)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA's Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. Scientists from the Image Science and Analysis Laboratory (ISAL) at NASA s Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (approx.185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. There are four major systems or spheres of Earth. They are: Atmosphere, Biosphere, Hydrosphe, and Litho/Geosphere.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    The setting sun and the thin blue airglow line at Earth's horizon was captured by the International Space Station's (ISS) Expedition Three crewmembers with a digital camera. Some of the Station's components are silhouetted in the foreground. The crew was launched aboard the Space Shuttle Orbiter Discovery STS-105 mission, on August 10, 2001, replacing the Expedition Two crew. After marning the orbiting ISS for 128 consecutive days, the three returned to Earth on December 17, 2001, aboard the STS-108 mission Space Shuttle Orbiter Endeavour.

  16. Skylab 3 crewmen shown eating in Orbital Workshop wardroom

    NASA Image and Video Library

    1973-08-01

    S73-31705 (1 Aug. 1973) --- The three Skylab 3 crewmen are shown eating in the Orbital Workshop (OWS) wardroom of the Skylab space station in Earth orbit, in this photographic reproduction taken from a television transmission made by a color TV camera aboard the OWS. Astronaut Alan L. Bean (right), commander, illustrates eating under zero-gravity conditions upsidedown. The two other crewmen are scientist-astronaut Owen K. Garriott (left), science pilot; and astronaut Jack R. Lousma, pilot. Photo credit: NASA

  17. Acidalia and Chryse Plains, Mars

    NASA Image and Video Library

    2000-06-14

    Somewhere down there sits the Mars Pathfinder lander and Sojourner rover. This Mars Global Surveyor Mars Orbiter Camera view of the red planet shows the region that includes Ares Vallis and the Chryse Plains upon which both Mars Pathfinder and the Viking 1 landed in 1997 and 1976, respectively. Acidalia Planitia is the dark surface that dominates the center left. The Pathfinder site is immediately south of Acidalia, just left of center in this view. Also shown--the north polar cap is at the top, and Arabia Terra and Sinus Meridiani are to the right. The bluish-white features are clouds. This is a color composite of 9 red and 9 blue image strips taken by the Mars Global Surveyor Mars Orbiter Camera on 9 successive orbits from pole-to-pole during the calibration phase of the mission in March 1999. The color is computer-enhanced and is not shown as it would actually appear to the human eye. http://photojournal.jpl.nasa.gov/catalog/PIA02000

  18. KSC-04pd1672

    NASA Image and Video Library

    2004-08-23

    KENNEDY SPACE CENTER, FLA. - The Remote Manipulator System (RMS), also known as the Canadian robotic arm, for the orbiter Discovery has arrived at KSC’s Vehicle Assembly Building Lab. Seen on the left end is the shoulder pitch joint. The wrist and shoulder joints on the RMS allow the basic structure of the arm to maneuver similar to a human arm. The RMS is used to deploy and retrieve payloads, provide a mobile extension ladder or foot restraints for crew members during extravehicular activities; and to aid the flight crew members in viewing surfaces of the orbiter or payloads through a television camera on the RMS. The arm is also serving as the base for the new Orbiter Boom Sensor System (OBSS), one of the safety measures for Return to Flight, equipping the Shuttle with cameras and laser systems to inspect the Shuttle’s Thermal Protection System while in space. Discovery is scheduled for a launch planning window of March 2005 on mission STS-114.

  19. A Computer Program for Mapping Satellite-borne Narrow-Beam Antenna Footprints on Earth. Memorandum Number 72/3.

    ERIC Educational Resources Information Center

    Stagl, Thomas W.; Singh, Jai P.

    Written primarily to define the area of the earth covered by a narrow-beam antenna carried on a synchronous satellite in circular, near equatorial orbits, a computer program has been developed that computes the locus of intersection of a quadric cone and a sphere. The program, which outputs a list of the longitude and latitude coordinates of the…

  20. Enhancing catalytic activity by narrowing local energy gaps--X-ray studies of a manganese water oxidation catalyst.

    PubMed

    Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F

    2015-03-01

    Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of Camera Model and Geometric Calibration/validation of Xsat IRIS Imagery

    NASA Astrophysics Data System (ADS)

    Kwoh, L. K.; Huang, X.; Tan, W. J.

    2012-07-01

    XSAT, launched on 20 April 2011, is the first micro-satellite designed and built in Singapore. It orbits the Earth at altitude of 822 km in a sun synchronous orbit. The satellite carries a multispectral camera IRIS with three spectral bands - 0.52~0.60 mm for Green, 0.63~0.69 mm for Red and 0.76~0.89 mm for NIR at 12 m resolution. In the design of IRIS camera, the three bands were acquired by three lines of CCDs (NIR, Red and Green). These CCDs were physically separated in the focal plane and their first pixels not absolutely aligned. The micro-satellite platform was also not stable enough to allow for co-registration of the 3 bands with simple linear transformation. In the camera model developed, this platform stability was compensated with 3rd to 4th order polynomials for the satellite's roll, pitch and yaw attitude angles. With the camera model, the camera parameters such as the band to band separations, the alignment of the CCDs relative to each other, as well as the focal length of the camera can be validated or calibrated. The results of calibration with more than 20 images showed that the band to band along-track separation agreed well with the pre-flight values provided by the vendor (0.093° and 0.046° for the NIR vs red and for green vs red CCDs respectively). The cross-track alignments were 0.05 pixel and 5.9 pixel for the NIR vs red and green vs red CCDs respectively. The focal length was found to be shorter by about 0.8%. This was attributed to the lower operating temperature which XSAT is currently operating. With the calibrated parameters and the camera model, a geometric level 1 multispectral image with RPCs can be generated and if required, orthorectified imagery can also be produced.

  2. QuadCam - A Quadruple Polarimetric Camera for Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Skuljan, J.

    A specialised quadruple polarimetric camera for space situational awareness, QuadCam, has been built at the Defence Technology Agency (DTA), New Zealand, as part of collaboration with the Defence Science and Technology Laboratory (Dstl), United Kingdom. The design was based on a similar system originally developed at Dstl, with some significant modifications for improved performance. The system is made up of four identical CCD cameras looking in the same direction, but in a different plane of polarisation at 0, 45, 90 and 135 degrees with respect to the reference plane. A standard set of Stokes parameters can be derived from the four images in order to describe the state of polarisation of an object captured in the field of view. The modified design of the DTA QuadCam makes use of four small Raspberry Pi computers, so that each camera is controlled by its own computer in order to speed up the readout process and ensure that the four individual frames are taken simultaneously (to within 100-200 microseconds). In addition, a new firmware was requested from the camera manufacturer so that an output signal is generated to indicate the state of the camera shutter. A specialised GPS unit (also developed at DTA) is then used to monitor the shutter signals from the four cameras and record the actual time of exposure to an accuracy of about 100 microseconds. This makes the system well suited for the observation of fast-moving objects in the low Earth orbit (LEO). The QuadCam is currently mounted on a Paramount MEII robotic telescope mount at the newly built DTA space situational awareness observatory located on Whangaparaoa Peninsula near Auckland, New Zealand. The system will be used for tracking satellites in low Earth orbit and geostationary belt as well. The performance of the camera has been evaluated and a series of test images have been collected in order to derive the polarimetric signatures for selected satellites.

  3. The Nimbus 4 data catalog. Volume 3: Data orbits 1124-1956, 1 July - 31 August 1970

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The Nimbus 4 satellite catalog for the period of 1 July through 31 August, 1970 is presented. The subjects discussed are: (1) summary of operations, (2) orbital elements and daily sensors on table, (3) image dissector camera system montages, and (4) temperature-humidity infrared radiometer montages. Data are presented as tables and photographs.

  4. GEMINI-TITAN (GT)-9 TEST - ASTRONAUT BEAN, ALAN - KSC

    NASA Image and Video Library

    1973-08-14

    S73-31973 (August 1973) --- Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, looks at a map of Earth at the food table in the ward room of the Orbital Workshop (OWS). In this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station cluster in Earth orbit. Photo credit: NASA

  5. Magnificent Mars 10 Years of Mars Reconnaissance Orbiter

    NASA Image and Video Library

    2016-03-09

    NASA's Mars Reconnaissance Orbiter has clocked more than a decade of service at the Red Planet and has yielded scientific discoveries and magnificent views of a distant world. Video uses spacecraft animation and stills set to music. These images taken by MRO's HiRISE camera are not in true color because they include infrared information in order to be optimized for geological science.

  6. SKYLAB (SL)-2 - TELEVISION (INFLIGHT)

    NASA Image and Video Library

    1973-05-27

    S73-26776 (26 May 1973) --- An interior view of the Orbital Workshop of the Skylab 1 space station cluster in Earth orbit can be seen in this reproduction taken from a color television transmission made by a TV camera aboard the space station. Astronaut Charles Conrad Jr., Skylab 2 commander, is floating up through the hatch. Food lockers are in the foreground. Photo credit: NASA

  7. Orbital-science investigation: Part C: photogrammetry of Apollo 15 photography

    USGS Publications Warehouse

    Wu, Sherman S.C.; Schafer, Francis J.; Jordan, Raymond; Nakata, Gary M.; Derick, James L.

    1972-01-01

    Mapping of large areas of the Moon by photogrammetric methods was not seriously considered until the Apollo 15 mission. In this mission, a mapping camera system and a 61-cm optical-bar high-resolution panoramic camera, as well as a laser altimeter, were used. The mapping camera system comprises a 7.6-cm metric terrain camera and a 7.6-cm stellar camera mounted in a fixed angular relationship (an angle of 96° between the two camera axes). The metric camera has a glass focal-plane plate with reseau grids. The ground-resolution capability from an altitude of 110 km is approximately 20 m. Because of the auxiliary stellar camera and the laser altimeter, the resulting metric photography can be used not only for medium- and small-scale cartographic or topographic maps, but it also can provide a basis for establishing a lunar geodetic network. The optical-bar panoramic camera has a 135- to 180-line resolution, which is approximately 1 to 2 m of ground resolution from an altitude of 110 km. Very large scale specialized topographic maps for supporting geologic studies of lunar-surface features can be produced from the stereoscopic coverage provided by this camera.

  8. Cassini ISS astrometry of the Saturnian satellites: Tethys, Dione, Rhea, Iapetus, and Phoebe 2004-2012

    NASA Astrophysics Data System (ADS)

    Tajeddine, R.; Lainey, V.; Cooper, N. J.; Murray, C. D.

    2015-03-01

    Context. The Cassini spacecraft has been orbiting Saturn since 2004 and has returned images of satellites with an astrometric resolution as high as a few hundred meters per pixel. Aims: We used the images taken by the Narrow Angle Camera (NAC) of the Image Science Subsystem (ISS) instrument on board Cassini, for the purpose of astrometry. Methods: We applied the same method that was previously developed to reduce Cassini NAC images of Mimas and Enceladus. Results: We provide 5463 astrometric positions in right ascension and declination (α, δ) of the satellites: Tethys, Dione, Rhea, Iapetus, and Phoebe, using images that were taken by Cassini NAC between 2004 and 2012. the mean residuals compared to the JPL ephemeris SAT365 are of the order of hundreds of meters with standard deviations of the order of a few kilometers. The frequency analysis of the residuals shows the remaining unmodelled effects of satellites on the dynamics of other satellites. Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A73

  9. The Propeller Belts in Saturn A Ring

    NASA Image and Video Library

    2017-01-30

    This image from NASA's Cassini mission shows a region in Saturn's A ring. The level of detail is twice as high as this part of the rings has ever been seen before. The view contains many small, bright blemishes due to cosmic rays and charged particle radiation near the planet. The view shows a section of the A ring known to researchers for hosting belts of propellers -- bright, narrow, propeller-shaped disturbances in the ring produced by the gravity of unseen embedded moonlets. Several small propellers are visible in this view. These are on the order of 10 times smaller than the large, bright propellers whose orbits scientists have routinely tracked (and which are given nicknames for famous aviators). This image is a lightly processed version, with minimal enhancement, preserving all original details present in the image. he image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 18, 2016. The view was obtained at a distance of approximately 33,000 miles (54,000 kilometers) from the rings and looks toward the unilluminated side of the rings. Image scale is about a quarter-mile (330 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21059

  10. NICMOS status and plans

    NASA Technical Reports Server (NTRS)

    Thompson, Rodger I.

    1997-01-01

    Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has been in orbit for about 8 months. This is a report on its current status and future plans. Also included are some comments on particular aspects of data analysis concerning dark subtraction, shading, and removal of cosmic rays. At present NICMOS provides excellent images of high scientific content. Most of the observations utilize cameras 1 and 2 which are in excellent focus. Camera 3 is not yet within the range of the focus adjustment mechanism, but its current images are still quite excellent. In this paper we will present the status of various aspects of the NICMOS instrument.

  11. The narrow rings of Jupiter, Saturn and Uranus

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Murray, C. D.; Sinclair, A. T.

    1980-01-01

    The origin of the newly discovered narrow ring systems around Jupiter, Saturn and Uranus is considered. It is pointed out that both the Uranian and Jovian ring systems have mean orbital radii of 1.8 planetary radii and lie within the Roche zones of their respective planets, and it is suggested that the Jovian ring is the product of the disintegration of a satellite that entered the Roche zone, and that large numbers of small particles are now in horseshoe orbits about the Lagrangian equilibrium points of the remnant chunks. Analysis of the path of a ring particle in a horseshoe orbit is shown to result in ring structures in agreement with those observed for the circular rings of Jupiter and the highly eccentric ring of Uranus. The stability of these ring systems is then considered, and it is suggested that the F ring of Saturn, which lies outside the Roche zone, represents primordial matter not yet accreted by small satellites just inside the Mimas first-order resonances.

  12. STS-28 Columbia, OV-102, MS Brown uses ARRIFLEX camera on aft flight deck

    NASA Image and Video Library

    1989-08-13

    STS028-17-033 (August 1989) --- Astronaut Mark N. Brown, STS-28 mission specialist, pauses from a session of motion-picture photography conducted through one of the aft windows on the flight deck of the Earth-orbiting Space Shuttle Columbia. He is using an Arriflex camera. The horizon of the blue and white appearing Earth and its airglow are visible in the background.

  13. The Atlases of Vesta derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2013-12-01

    The Dawn Framing Camera acquired during its two HAMO (High Altitude Mapping Orbit) phases in 2011 and 2012 about 6,000 clear filter images with a resolution of about 60 m/pixel. We combined these images in a global ortho-rectified mosaic of Vesta (60 m/pixel resolution). Only very small areas near the northern pole were still in darkness and are missing in the mosaic. The Dawn Framing Camera also acquired about 10,000 high-resolution clear filter images (about 20 m/pixel) of Vesta during its Low Altitude Mapping Orbit (LAMO). Unfortunately, the northern part of Vesta was still in darkness during this phase, good illumination (incidence angle < 70°) was only available for 66.8 % of the surface [1]. We used the LAMO images to calculate another global mosaic of Vesta, this time with 20 m/pixel resolution. Both global mosaics were used to produce atlases of Vesta: a HAMO atlas with 15 tiles at a scale of 1:500,000 and a LAMO atlas with 30 tiles at a scale between 1:200,000 and 1:225,180. The nomenclature used in these atlases is based on names and places historically associated with the Roman goddess Vesta, and is compliant with the rules of the IAU. 65 names for geological features were already approved by the IAU, 39 additional names are currently under review. Selected examples of both atlases will be shown in this presentation. Reference: [1]Roatsch, Th., etal., High-resolution Vesta Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planetary and Space Science (2013), http://dx.doi.org/10.1016/j.pss.2013.06.024i

  14. Characterization and performance of PAUCam filters

    NASA Astrophysics Data System (ADS)

    Casas, R.; Cardiel-Sas, L.; Castander, F. J.; Díaz, C.; Gaweda, J.; Jiménez Rojas, J.; Jiménez, S.; Lamensans, M.; Padilla, C.; Rodriguez, F. J.; Sanchez, E.; Sevilla Noarbe, I.

    2016-08-01

    PAUCam is a large field of view camera designed to exploit the field delivered by the prime focus corrector of the William Herschel Telescope, at the Observatorio del Roque de los Muchachos. One of the new features of this camera is its filter system, placed within a few millimeters of the focal plane using eleven trays containing 40 narrow band and 6 broad band filters, working in vacuum at an operational temperature of 250K and in a focalized beam. In this contribution, we describe the performance of these filters both in the characterization tests at the laboratory.

  15. Volume three-dimensional flow measurements using wavelength multiplexing.

    PubMed

    Moore, Andrew J; Smith, Jason; Lawson, Nicholas J

    2005-10-01

    Optically distinguishable seeding particles that emit light in a narrow bandwidth, and a combination of bandwidths, were prepared by encapsulating quantum dots. The three-dimensional components of the particles' displacement were measured within a volume of fluid with particle tracking velocimetry (PTV). Particles are multiplexed to different hue bands in the camera images, enabling an increased seeding density and (or) fewer cameras to be used, thereby increasing the measurement spatial resolution and (or) reducing optical access requirements. The technique is also applicable to two-phase flow measurements with PTV or particle image velocimetry, where each phase is uniquely seeded.

  16. Jovian thundercloud observation with Jovian orbiter and ground-based telescope

    NASA Astrophysics Data System (ADS)

    Takahashi, Yukihiro; Nakajima, Kensuke; Takeuchi, Satoru; Sato, Mitsuteru; Fukuhara, Tetsuya; Watanabe, Makoto; Yair, Yoav; Fischer, Georg; Aplin, Karen

    The latest observational and theoretical studies suggest that thunderstorms in Jupiter's at-mosphere are very important subject not only for understanding of meteorology, which may determine the large scale structures such as belt/zone and big ovals, but also for probing the water abundance of the deep atmosphere, which is crucial to constrain the behavior of volatiles in early solar system. Here we suggest a very simple high-speed imager on board Jovian orbiter, Optical Lightning Detector, OLD, optimized for detecting optical emissions from lightning dis-charge in Jupiter. OLD consists of radiation-tolerant CMOS sensors and two H Balmer Alpha line (656.3nm) filters. In normal sampling mode the frame intervals is 29ms with a full frame format of 512x512 pixels and in high-speed sampling mode the interval could be reduced down to 0.1ms by concentrating a limited area of 30x30 pixels. Weight, size and power consump-tion are about 1kg, 16x7x5.5 cm (sensor) and 16x12x4 cm (circuit), and 4W, respectively, though they can be reduced according to the spacecraft resources and required environmental tolerance. Also we plan to investigate the optical flashes using a ground-based middle-sized telescope, which will be built by Hokkaido University, with narrow-band high speed imaging unit using an EM-CCD camera. Observational strategy with these optical lightning detectors and spectral imagers, which enables us to estimate the horizontal motion and altitude of clouds, will be introduced.

  17. The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission: Cloud morphology for the northern 2007 season

    NASA Astrophysics Data System (ADS)

    Rusch, D. W.; Thomas, G. E.; McClintock, W.; Merkel, A. W.; Bailey, S. M.; Russell, J. M., III; Randall, C. E.; Jeppesen, C.; Callan, M.

    2009-03-01

    The Aeronomy of Ice in the Mesosphere (AIM) mission was launched from Vandenberg Air Force Base in California at 4:26:03 EDT on April 25, 2007, becoming the first satellite mission dedicated to the study of noctilucent clouds (NLCs), also known as polar mesospheric clouds (PMC) when viewed from space. We present the first results from one of the three instruments on board the satellite, the Cloud Imaging and Particle Size (CIPS) instrument. CIPS has produced detailed morphology of the Northern 2007 PMC and Southern 2007/2008 seasons with 5 km horizontal spatial resolution. CIPS, with its very large angular field of view, images cloud structures at multiple scattering angles within a narrow spectral bandpass centered at 265 nm. Spatial coverage is 100% above about 70° latitude, where camera views overlap from orbit to orbit, and terminates at about 82°. Spatial coverage decreases to about 50% at the lowest latitudes where data are collected (35°). Cloud structures have for the first time been mapped out over nearly the entire summertime polar region. These structures include [`]ice rings', spatially small but bright clouds, and large regions ([`]ice-free regions') in the heart of the cloud season essentially devoid of ice particles. The ice rings bear a close resemblance to tropospheric convective outflow events, suggesting a point source of mesospheric convection. These rings (often circular arcs) are most likely Type IV NLC ([`]whirls' in the standard World Meteorological Organization (WMO) nomenclature).

  18. InfraCAM (trade mark): A Hand-Held Commercial Infrared Camera Modified for Spaceborne Applications

    NASA Technical Reports Server (NTRS)

    Manitakos, Daniel; Jones, Jeffrey; Melikian, Simon

    1996-01-01

    In 1994, Inframetrics introduced the InfraCAM(TM), a high resolution hand-held thermal imager. As the world's smallest, lightest and lowest power PtSi based infrared camera, the InfraCAM is ideal for a wise range of industrial, non destructive testing, surveillance and scientific applications. In addition to numerous commercial applications, the light weight and low power consumption of the InfraCAM make it extremely valuable for adaptation to space borne applications. Consequently, the InfraCAM has been selected by NASA Lewis Research Center (LeRC) in Cleveland, Ohio, for use as part of the DARTFire (Diffusive and Radiative Transport in Fires) space borne experiment. In this experiment, a solid fuel is ignited in a low gravity environment. The combustion period is recorded by both visible and infrared cameras. The infrared camera measures the emission from polymethyl methacrylate, (PMMA) and combustion products in six distinct narrow spectral bands. Four cameras successfully completed all qualification tests at Inframetrics and at NASA Lewis. They are presently being used for ground based testing in preparation for space flight in the fall of 1995.

  19. SKYLAB (SL)-3 - TELEVISION

    NASA Image and Video Library

    1973-09-29

    S73-34619 (28 July 1973) --- A composite of four frames taken from 16mm movie camera footage showing an overhead view of the Skylab space station cluster in Earth orbit. The Maurer motion picture camera scenes were being filmed during the Skylab 3 Command/Service Module's (CSM) first "fly around" inspection of the space station. Close comparison of the four frames reveals movement of the improvised parasol solar shield over the Orbital Workshop (OWS). The "flapping" of the sun shade was caused from the exhaust of the reaction control subsystem (RCS) thrusters of the Skylab 3 CSM. The one remaining solar array system wing on the OWS is in the lower left background. The solar panel in the lower left foreground is on the Apollo Telescope Mount (ATM). Photo credit: NASA

  20. Astronauts Sullivan and Leestma perform in-space simulation of refueling

    NASA Image and Video Library

    1984-10-14

    S84-43432 (11 Oct. 1984) --- Appearing small in the center background of this image, astronauts Kathryn D. Sullivan, left, and David C. Leestma, both 41-G mission specialists, perform an in-space simulation of refueling another spacecraft in orbit. Their station on the space shuttle Challenger is the orbital refueling system (ORS), positioned on the mission peculiar support structure (MPR ESS). The Large Format Camera (LFC) is left of the two mission specialists. In the left foreground is the antenna for the shuttle imaging radar (SIR-B) system onboard. The Canadian-built remote manipulator system (RMS) is positioned to allow close-up recording capability of the busy scene. A 50mm lens on a 70mm camera was used to photograph this scene. Photo credit: NASA

  1. Acquisition and visualization techniques for narrow spectral color imaging.

    PubMed

    Neumann, László; García, Rafael; Basa, János; Hegedüs, Ramón

    2013-06-01

    This paper introduces a new approach in narrow-band imaging (NBI). Existing NBI techniques generate images by selecting discrete bands over the full visible spectrum or an even wider spectral range. In contrast, here we perform the sampling with filters covering a tight spectral window. This image acquisition method, named narrow spectral imaging, can be particularly useful when optical information is only available within a narrow spectral window, such as in the case of deep-water transmittance, which constitutes the principal motivation of this work. In this study we demonstrate the potential of the proposed photographic technique on nonunderwater scenes recorded under controlled conditions. To this end three multilayer narrow bandpass filters were employed, which transmit at 440, 456, and 470 nm bluish wavelengths, respectively. Since the differences among the images captured in such a narrow spectral window can be extremely small, both image acquisition and visualization require a novel approach. First, high-bit-depth images were acquired with multilayer narrow-band filters either placed in front of the illumination or mounted on the camera lens. Second, a color-mapping method is proposed, using which the input data can be transformed onto the entire display color gamut with a continuous and perceptually nearly uniform mapping, while ensuring optimally high information content for human perception.

  2. Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Morgan, T.; Chin, G.

    2007-08-01

    NASA's Lunar Reconnaissance Orbiter (LRO) plans to launch in October 2008 with a companion secondary impactor mission, LCROSS, as the inaugural missions for the Exploration System Mission Directorate. LRO is a pathfinder whose objective is to obtain the needed information to prepare for eventual human return to the Moon. LRO will undertake at least one baseline year of operation with additional extended mission phase sponsored by NASA's Science Mission Directorate. LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search for possible polar surface ice in shadowed regions; Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well as wide-angle images to characterize polar illumination conditions and to identify potential resources; Lunar Exploration Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and will provide space radiation environment measurements that may be useful for future human exploration; Diviner Lunar Radiometer Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution to identify cold-traps and potential ice deposits; Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently shadowed regions illuminated only by starlight; Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging and interferometry using a light-weight synthetic aperture radar.

  3. Attempt to the detection of small wildfire by the uncooled micro bolometer camera onboard 50 kg class satellite

    NASA Astrophysics Data System (ADS)

    Fukuhara, T.; Kouyama, T.; Kato, S.; Nakamura, R.

    2016-12-01

    University International Formation Mission (UNIFORM) in Japan started in 2011 is an ambitious project that specialized to surveillance of small wildfire to contribute to provide fire information for initial suppression. Final aim of the mission is to construct a constellation with several 50 kg class satellites for frequent and exclusive observation. The uncooled micro-bolometer camera with 640 x 480 pixels based on commercial products has been newly developed for the first satellite. It has been successfully launched on 24 May 2014 and injected to the Sun-Synchronous orbit at local time of 12:00 with altitude of 628 km. The camera has been detected considerable hotspots not only wildfire but also volcanoes. Brightness temperature observed on orbit has been verified and scale of observed wildfire has been roughly presumed; the smallest wildfire ever detected has flame zone less than 2 x 103 m2. It is one tenth of initial requirement estimated in design process; our camera has enough ability to discover small wildfire and to provide beneficial information for fire control with low cost and quick fabrication; it would contribute to practical utility especially in developing nations. A next camera is available for new wildfire mission with satellite constellation; it has already developed for flight. Pixel arrays increasing to 1024 x 768, spatial resolution becomes fine to detect smaller wildfire whereas the swath of image is kept. This camera would be applied to the future planetary mission for Mars and Asteroid explore, too. When it observes planetary surface, thermal inertia can be estimated from continuous observation. When it observes atmosphere, cloud-top altitude can be estimated from horizontal temperature distribution.

  4. Retrieving Atmospheric Dust Loading on Mars Using Engineering Cameras and MSL's Mars Hand Lens Imager (MAHLI)

    NASA Astrophysics Data System (ADS)

    Wolfe, C. A.; Lemmon, M. T.

    2015-12-01

    Dust in the Martian atmosphere influences energy deposition, dynamics, and the viability of solar powered exploration vehicles. The Viking, Pathfinder, Spirit, Opportunity, Phoenix, and Curiosity landers and rovers each included the ability to image the Sun with a science camera equipped with a neutral density filter. Direct images of the Sun not only provide the ability to measure extinction by dust and ice in the atmosphere, but also provide a variety of constraints on the Martian dust and water cycles. These observations have been used to characterize dust storms, to provide ground truth sites for orbiter-based global measurements of dust loading, and to help monitor solar panel performance. In the cost-constrained environment of Mars exploration, future missions may omit such cameras, as the solar-powered InSight mission has. We seek to provide a robust capability of determining atmospheric opacity from sky images taken with cameras that have not been designed for solar imaging, such as the engineering cameras onboard Opportunity and the Mars Hand Lens Imager (MAHLI) on Curiosity. Our investigation focuses primarily on the accuracy of a method that determines optical depth values using scattering models that implement the ratio of sky radiance measurements at different elevation angles, but at the same scattering angle. Operational use requires the ability to retrieve optical depth on a timescale useful to mission planning, and with an accuracy and precision sufficient to support both mission planning and validating orbital measurements. We will present a simulation-based assessment of imaging strategies and their error budgets, as well as a validation based on the comparison of direct extinction measurements from archival Navcam, Hazcam, and MAHLI camera data.

  5. STS-61 Space Shuttle mission report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1994-01-01

    The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.

  6. Astronaut Jack Lousma looks at map of Earth in ward room of Skylab cluster

    NASA Image and Video Library

    1973-08-01

    S73-34193 (1 Aug. 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, looks at a map of Earth at the food table in the ward room of the Orbital Workshop (OWS). In this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station cluster in Earth orbit. Photo credit: NASA

  7. The Nimbus 4 data catalog. Volume 8: Data orbits 5206-10,120, 1 May 1971 - 30 April 1972

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Data from various instruments onboard the Nimbus 4 are presented, including the image dissector camera system, the temperature-humidity infrared radiometer, infrared interferometer spectrometer, and monitor of ultraviolet solar energy experiments. This data was collected from 1 May 1971 to 30 Apr. 1972. Orbital elements and daily sensor data are presented in tabular form.

  8. Accurate Mars Express orbits to improve the determination of the mass and ephemeris of the Martian moons

    NASA Astrophysics Data System (ADS)

    Rosenblatt, P.; Lainey, V.; Le Maistre, S.; Marty, J. C.; Dehant, V.; Pätzold, M.; Van Hoolst, T.; Häusler, B.

    2008-05-01

    The determination of the ephemeris of the Martian moons has benefited from observations of their plane-of-sky positions derived from images taken by cameras onboard spacecraft orbiting Mars. Images obtained by the Super Resolution Camera (SRC) onboard Mars Express (MEX) have been used to derive moon positions relative to Mars on the basis of a fit of a complete dynamical model of their motion around Mars. Since, these positions are computed from the relative position of the spacecraft when the images are taken, those positions need to be known as accurately as possible. An accurate MEX orbit is obtained by fitting two years of tracking data of the Mars Express Radio Science (MaRS) experiment onboard MEX. The average accuracy of the orbits has been estimated to be around 20-25 m. From these orbits, we have re-derived the positions of Phobos and Deimos at the epoch of the SRC observations and compared them with the positions derived by using the MEX orbits provided by the ESOC navigation team. After fit of the orbital model of Phobos and Deimos, the gain in precision in the Phobos position is roughly 30 m, corresponding to the estimated gain of accuracy of the MEX orbits. A new solution of the GM of the Martian moons has also been obtained from the accurate MEX orbits, which is consistent with previous solutions and, for Phobos, is more precise than the solution from the Mars Global Surveyor (MGS) and Mars Odyssey (ODY) tracking data. It will be further improved with data from MEX-Phobos closer encounters (at a distance less than 300 km). This study also demonstrates the advantage of combining observations of the moon positions from a spacecraft and from the Earth to assess the real accuracy of the spacecraft orbit. In turn, the natural satellite ephemerides can be improved and participate to a better knowledge of the origin and evolution of the Martian moons.

  9. Can we Use Low-Cost 360 Degree Cameras to Create Accurate 3d Models?

    NASA Astrophysics Data System (ADS)

    Barazzetti, L.; Previtali, M.; Roncoroni, F.

    2018-05-01

    360 degree cameras capture the whole scene around a photographer in a single shot. Cheap 360 cameras are a new paradigm in photogrammetry. The camera can be pointed to any direction, and the large field of view reduces the number of photographs. This paper aims to show that accurate metric reconstructions can be achieved with affordable sensors (less than 300 euro). The camera used in this work is the Xiaomi Mijia Mi Sphere 360, which has a cost of about 300 USD (January 2018). Experiments demonstrate that millimeter-level accuracy can be obtained during the image orientation and surface reconstruction steps, in which the solution from 360° images was compared to check points measured with a total station and laser scanning point clouds. The paper will summarize some practical rules for image acquisition as well as the importance of ground control points to remove possible deformations of the network during bundle adjustment, especially for long sequences with unfavorable geometry. The generation of orthophotos from images having a 360° field of view (that captures the entire scene around the camera) is discussed. Finally, the paper illustrates some case studies where the use of a 360° camera could be a better choice than a project based on central perspective cameras. Basically, 360° cameras become very useful in the survey of long and narrow spaces, as well as interior areas like small rooms.

  10. Comparison of myocardial perfusion imaging between the new high-speed gamma camera and the standard anger camera.

    PubMed

    Tanaka, Hirokazu; Chikamori, Taishiro; Hida, Satoshi; Uchida, Kenji; Igarashi, Yuko; Yokoyama, Tsuyoshi; Takahashi, Masaki; Shiba, Chie; Yoshimura, Mana; Tokuuye, Koichi; Yamashina, Akira

    2013-01-01

    Cadmium-zinc-telluride (CZT) solid-state detectors have been recently introduced into the field of myocardial perfusion imaging. The aim of this study was to prospectively compare the diagnostic performance of the CZT high-speed gamma camera (Discovery NM 530c) with that of the standard 3-head gamma camera in the same group of patients. The study group consisted of 150 consecutive patients who underwent a 1-day stress-rest (99m)Tc-sestamibi or tetrofosmin imaging protocol. Image acquisition was performed first on a standard gamma camera with a 15-min scan time each for stress and for rest. All scans were immediately repeated on a CZT camera with a 5-min scan time for stress and a 3-min scan time for rest, using list mode. The correlations between the CZT camera and the standard camera for perfusion and function analyses were strong within narrow Bland-Altman limits of agreement. Using list mode analysis, image quality for stress was rated as good or excellent in 97% of the 3-min scans, and in 100% of the ≥4-min scans. For CZT scans at rest, similarly, image quality was rated as good or excellent in 94% of the 1-min scans, and in 100% of the ≥2-min scans. The novel CZT camera provides excellent image quality, which is equivalent to standard myocardial single-photon emission computed tomography, despite a short scan time of less than half of the standard time.

  11. Effects of illumination differences on photometric stereo shape-and-albedo-from-shading for precision lunar surface reconstruction

    NASA Astrophysics Data System (ADS)

    Chung Liu, Wai; Wu, Bo; Wöhler, Christian

    2018-02-01

    Photoclinometric surface reconstruction techniques such as Shape-from-Shading (SfS) and Shape-and-Albedo-from-Shading (SAfS) retrieve topographic information of a surface on the basis of the reflectance information embedded in the image intensity of each pixel. SfS or SAfS techniques have been utilized to generate pixel-resolution digital elevation models (DEMs) of the Moon and other planetary bodies. Photometric stereo SAfS analyzes images under multiple illumination conditions to improve the robustness of reconstruction. In this case, the directional difference in illumination between the images is likely to affect the quality of the reconstruction result. In this study, we quantitatively investigate the effects of illumination differences on photometric stereo SAfS. Firstly, an algorithm for photometric stereo SAfS is developed, and then, an error model is derived to analyze the relationships between the azimuthal and zenith angles of illumination of the images and the reconstruction qualities. The developed algorithm and error model were verified with high-resolution images collected by the Narrow Angle Camera (NAC) of the Lunar Reconnaissance Orbiter Camera (LROC). Experimental analyses reveal that (1) the resulting error in photometric stereo SAfS depends on both the azimuthal and the zenith angles of illumination as well as the general intensity of the images and (2) the predictions from the proposed error model are consistent with the actual slope errors obtained by photometric stereo SAfS using the LROC NAC images. The proposed error model enriches the theory of photometric stereo SAfS and is of significance for optimized lunar surface reconstruction based on SAfS techniques.

  12. Documenting of Geologic Field Activities in Real-Time in Four Dimensions: Apollo 17 as a Case Study for Terrestrial Analogues and Future Exploration

    NASA Technical Reports Server (NTRS)

    Feist, B.; Bleacher, J. E.; Petro, N. E.; Niles, P. B.

    2018-01-01

    During the Apollo exploration of the lunar surface, thousands of still images, 16 mm videos, TV footage, samples, and surface experiments were captured and collected. In addition, observations and descriptions of what was observed was radioed to Mission Control as part of standard communications and subsequently transcribed. The archive of this material represents perhaps the best recorded set of geologic field campaigns and will serve as the example of how to conduct field work on other planetary bodies for decades to come. However, that archive of material exists in disparate locations and formats with varying levels of completeness, making it not easily cross-referenceable. While video and audio exist for the missions, it is not time synchronized, and images taken during the missions are not time or location tagged. Sample data, while robust, is not easily available in a context of where the samples were collected, their descriptions by the astronauts are not connected to them, or the video footage of their collection (if available). A more than five year undertaking to reconstruct and reconcile the Apollo 17 mission archive, from launch through splashdown, has generated an integrated record of the entire mission, resulting in searchable, synchronized image, voice, and video data, with geologic context provided at the time each sample was collected. Through www.apollo17.org the documentation of the field investigation conducted by the Apollo 17 crew is presented in chronologic sequence, with additional context provided by high-resolution Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) images and a corresponding digital terrain model (DTM) of the Taurus-Littrow Valley.

  13. Machine vision for real time orbital operations

    NASA Technical Reports Server (NTRS)

    Vinz, Frank L.

    1988-01-01

    Machine vision for automation and robotic operation of Space Station era systems has the potential for increasing the efficiency of orbital servicing, repair, assembly and docking tasks. A machine vision research project is described in which a TV camera is used for inputing visual data to a computer so that image processing may be achieved for real time control of these orbital operations. A technique has resulted from this research which reduces computer memory requirements and greatly increases typical computational speed such that it has the potential for development into a real time orbital machine vision system. This technique is called AI BOSS (Analysis of Images by Box Scan and Syntax).

  14. MS Musgrave conducts CFES experiment on middeck

    NASA Image and Video Library

    1983-04-09

    STS006-03-381 (4-9 April 1983) --- Astronaut F. Story Musgrave, STS-6 mission specialist, monitors the activity of a sample in the continuous flow electrophoresis system (CFES) aboard the Earth-orbiting space shuttle Challenger. Dr. Musgrave is in the middeck area of the spacecraft. He has mounted a 35mm camera to record the activity through the window of the experiment. This frame was also photographed with a 35mm camera. Photo credit: NASA

  15. Indirectly Funded Research and Exploratory Development at the Applied Physics Laboratory, Fiscal Year 1978.

    DTIC Science & Technology

    1979-12-01

    used to reduce costs ). The orbital data from the prototype ion composi- tion telescope will not only be of great scientific interest -pro- viding for...active device whose transfer function may be almost arbitrarily defined, and cost and production trends permit contemplation of networks containing...developing solid-state television camera systems based on CCD imagers. RICA hopes to produce a $500 color camera for consumer use. Fairchild and Texas

  16. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    NASA Astrophysics Data System (ADS)

    Kataoka, R.; Miyoshi, Y.; Shigematsu, K.; Hampton, D.; Mori, Y.; Kubo, T.; Yamashita, A.; Tanaka, M.; Takahei, T.; Nakai, T.; Miyahara, H.; Shiokawa, K.

    2013-09-01

    A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR) cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge) to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  17. Automatic helmet-wearing detection for law enforcement using CCTV cameras

    NASA Astrophysics Data System (ADS)

    Wonghabut, P.; Kumphong, J.; Satiennam, T.; Ung-arunyawee, R.; Leelapatra, W.

    2018-04-01

    The objective of this research is to develop an application for enforcing helmet wearing using CCTV cameras. The developed application aims to help law enforcement by police, and eventually resulting in changing risk behaviours and consequently reducing the number of accidents and its severity. Conceptually, the application software implemented using C++ language and OpenCV library uses two different angle of view CCTV cameras. Video frames recorded by the wide-angle CCTV camera are used to detect motorcyclists. If any motorcyclist without helmet is found, then the zoomed (narrow-angle) CCTV is activated to capture image of the violating motorcyclist and the motorcycle license plate in real time. Captured images are managed by database implemented using MySQL for ticket issuing. The results show that the developed program is able to detect 81% of motorcyclists on various motorcycle types during daytime and night-time. The validation results reveal that the program achieves 74% accuracy in detecting the motorcyclist without helmet.

  18. Earth observation

    NASA Image and Video Library

    2014-09-04

    ISS040-E-129950 (4 Sept. 2014) --- In this photograph. taken by one of the Expedition 40 crew members aboard the Earth-orbiting International Space Station, the orange spot located in the very center is the sun, which appears to be sitting on Earth's limb. At far right, a small bright spot is believed to be a reflection from somewhere in the camera system or something on the orbital outpost. When the photographed was exposed, the orbital outpost was flying at an altutude of 226 nautical miles above a point near French Polynesia in the Pacific Ocean.

  19. Astronaut Owen Garriott trims hair of Astronaut Alan Bean

    NASA Image and Video Library

    1973-08-19

    SL3-108-1292 (19 Aug. 1973) --- Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, trims the hair of astronaut Alan L. Bean, commander, in this onboard photograph from the Skylab Orbital Workshop (OWS) in Earth orbit. Astronaut Jack R. Lousma, pilot, took this picture with a 35mm Nikon camera. Bean holds a vacuum hose to gather in loose hair. The crew of the second manned Skylab flight went on to successfully complete 59 days aboard the Skylab space station cluster in Earth orbit. Photo credit: NASA

  20. Geographic Information Systems and Martian Data: Compatibility and Analysis

    NASA Technical Reports Server (NTRS)

    Jones, Jennifer L.

    2005-01-01

    Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.

  1. Payload canister transporter in VPF clean room

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Payload canister transporter in Vertical Processing Facility (VPF) Clean Room loaded with Earth Radiation Budget Satellite (ERBS), Large Format Camera (LFC) and Orbital Refueling System (ORS) for STS-41G mission.

  2. Staking out Curiosity Landing Site

    NASA Image and Video Library

    2012-08-09

    The geological context for the landing site of NASA Curiosity rover is visible in this image mosaic obtained by the High-Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  3. Faint F Ring and Prometheus

    NASA Image and Video Library

    2016-11-21

    Surface features are visible on Saturn's moon Prometheus in this view from NASA's Cassini spacecraft. Most of Cassini's images of Prometheus are too distant to resolve individual craters, making views like this a rare treat. Saturn's narrow F ring, which makes a diagonal line beginning at top center, appears bright and bold in some Cassini views, but not here. Since the sun is nearly behind Cassini in this image, most of the light hitting the F ring is being scattered away from the camera, making it appear dim. Light-scattering behavior like this is typical of rings comprised of small particles, such as the F ring. This view looks toward the unilluminated side of the rings from about 14 degrees below the ring plane. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on Sept. 24, 2016. The view was acquired at a distance of approximately 226,000 miles (364,000 kilometers) from Prometheus and at a sun-Prometheus-spacecraft, or phase, angle of 51 degrees. Image scale is 1.2 miles (2 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20508

  4. VizieR Online Data Catalog: Spectroscopy of luminous compact blue galaxies (Crawford+, 2016)

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Wirth, G. D.; Bershady, M. A.; Randriamampandry, S. M.

    2017-10-01

    Deep imaging data in UBRIz and two narrow bands were obtained with the Mini-Mosaic camera from the WIYN 3.5 m telescope for all five clusters between 1999 October and 2004 June. We obtained spectroscopic observations for a sample of cluster star-forming galaxies with the DEIMOS, Faber et al. 2003 on the Keck II Telescope during 2005 October and 2007 April. The narrow-band filters were specifically designed to detect [OII] λ3727 at the redshift of each cluster. All of the clusters have been the target of extensive observations with the HST, primarily using either WFPC2 or the Advanced Camera for Surveys (ACS). For all measurements, we have attempted to select data taken in a filter closest to the rest-frame B band. We have employed ACS imaging data whenever possible and substituted WFPC2 images only when required. For clusters observed in the far-infrared regime by the Spitzer Space Telescope, we extracted MIPS 24μm flux densities, S24, from images obtained through the Enhanced Imaging Products archive. (2 data files).

  5. Machine Vision for Relative Spacecraft Navigation During Approach to Docking

    NASA Technical Reports Server (NTRS)

    Chien, Chiun-Hong; Baker, Kenneth

    2011-01-01

    This paper describes a machine vision system for relative spacecraft navigation during the terminal phase of approach to docking that: 1) matches high contrast image features of the target vehicle, as seen by a camera that is bore-sighted to the docking adapter on the chase vehicle, to the corresponding features in a 3d model of the docking adapter on the target vehicle and 2) is robust to on-orbit lighting. An implementation is provided for the case of the Space Shuttle Orbiter docking to the International Space Station (ISS) with quantitative test results using a full scale, medium fidelity mock-up of the ISS docking adapter mounted on a 6-DOF motion platform at the NASA Marshall Spaceflight Center Flight Robotics Laboratory and qualitative test results using recorded video from the Orbiter Docking System Camera (ODSC) during multiple orbiter to ISS docking missions. The Natural Feature Image Registration (NFIR) system consists of two modules: 1) Tracking which tracks the target object from image to image and estimates the position and orientation (pose) of the docking camera relative to the target object and 2) Acquisition which recognizes the target object if it is in the docking camera Field-of-View and provides an approximate pose that is used to initialize tracking. Detected image edges are matched to the 3d model edges whose predicted location, based on the pose estimate and its first time derivative from the previous frame, is closest to the detected edge1 . Mismatches are eliminated using a rigid motion constraint. The remaining 2d image to 3d model matches are used to make a least squares estimate of the change in relative pose from the previous image to the current image. The changes in position and in attitude are used as data for two Kalman filters whose outputs are smoothed estimate of position and velocity plus attitude and attitude rate that are then used to predict the location of the 3d model features in the next image.

  6. Hypervelocity impact studies using a rotating mirror framing laser shadowgraph camera

    NASA Technical Reports Server (NTRS)

    Parker, Vance C.; Crews, Jeanne Lee

    1988-01-01

    The need to study the effects of the impact of micrometeorites and orbital debris on various space-based systems has brought together the technologies of several companies and individuals in order to provide a successful instrumentation package. A light gas gun was employed to accelerate small projectiles to speeds in excess of 7 km/sec. Their impact on various targets is being studied with the help of a specially designed continuous-access rotating-mirror framing camera. The camera provides 80 frames of data at up to 1 x 10 to the 6th frames/sec with exposure times of 20 nsec.

  7. Optical registration of spaceborne low light remote sensing camera

    NASA Astrophysics Data System (ADS)

    Li, Chong-yang; Hao, Yan-hui; Xu, Peng-mei; Wang, Dong-jie; Ma, Li-na; Zhao, Ying-long

    2018-02-01

    For the high precision requirement of spaceborne low light remote sensing camera optical registration, optical registration of dual channel for CCD and EMCCD is achieved by the high magnification optical registration system. System integration optical registration and accuracy of optical registration scheme for spaceborne low light remote sensing camera with short focal depth and wide field of view is proposed in this paper. It also includes analysis of parallel misalignment of CCD and accuracy of optical registration. Actual registration results show that imaging clearly, MTF and accuracy of optical registration meet requirements, it provide important guarantee to get high quality image data in orbit.

  8. Possible Impacts from MSL Hardware

    NASA Image and Video Library

    2013-10-16

    This cluster of small impact craters was spotted by the Context Camera on Mars Reconnaissance Orbiter in the region northwest of Gale Crater, the landing site of the Mars Science Laboratory MSL rover, Curiosity.

  9. An Overview of the HST Advanced Camera for Surveys' On-orbit Performance

    NASA Astrophysics Data System (ADS)

    Hartig, G. F.; Ford, H. C.; Illingworth, G. D.; Clampin, M.; Bohlin, R. C.; Cox, C.; Krist, J.; Sparks, W. B.; De Marchi, G.; Martel, A. R.; McCann, W. J.; Meurer, G. R.; Sirianni, M.; Tsvetanov, Z.; Bartko, F.; Lindler, D. J.

    2002-05-01

    The Advanced Camera for Surveys (ACS) was installed in the HST on 7 March 2002 during the fourth servicing mission to the observatory, and is now beginning science operations. The ACS provides HST observers with a considerably more sensitive, higher-resolution camera with wider field and polarimetric, coronagraphic, low-resolution spectrographic and solar-blind FUV capabilities. We review selected results of the early verification and calibration program, comparing the achieved performance with the advertised specifications. Emphasis is placed on the optical characteristics of the camera, including image quality, throughput, geometric distortion and stray-light performance. More detailed analyses of various aspects of the ACS performance are presented in other papers at this meeting. This work was supported by a NASA contract and a NASA grant.

  10. Testing of the Apollo 15 Metric Camera System.

    NASA Technical Reports Server (NTRS)

    Helmering, R. J.; Alspaugh, D. H.

    1972-01-01

    Description of tests conducted (1) to assess the quality of Apollo 15 Metric Camera System data and (2) to develop production procedures for total block reduction. Three strips of metric photography over the Hadley Rille area were selected for the tests. These photographs were utilized in a series of evaluation tests culminating in an orbitally constrained block triangulation solution. Results show that film deformations up to 25 and 5 microns are present in the mapping and stellar materials, respectively. Stellar reductions can provide mapping camera orientations with an accuracy that is consistent with the accuracies of other parameters in the triangulation solutions. Pointing accuracies of 4 to 10 microns can be expected for the mapping camera materials, depending on variations in resolution caused by changing sun angle conditions.

  11. Study of the detail content of Apollo orbital photography

    NASA Technical Reports Server (NTRS)

    Kinzly, R. E.

    1972-01-01

    The results achieved during a study of the Detail Content of Apollo Orbital Photography are reported. The effect of residual motion smear or image reproduction processes upon the detail content of lunar surface imagery obtained from the orbiting command module are assessed. Data and conclusions obtained from the Apollo 8, 12, 14 and 15 missions are included. For the Apollo 8, 12 and 14 missions, the bracket-mounted Hasselblad camera had no mechanism internal to the camera for motion compensation. If the motion of the command module were left totally uncompensated, these photographs would exhibit a ground smear varying from 12 to 27 meters depending upon the focal length of the lens and the exposure time. During the photographic sequences motion compensation was attempted by firing the attitude control system of the spacecraft at a rate to compensate for the motion relative to the lunar surface. The residual smear occurring in selected frames of imagery was assessed using edge analyses methods to obtain and achieved modulation transfer function (MTF) which was compared to a baseline MTF.

  12. Astronaut Alan Bean reads data from book while holding teleprinter tape

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, reads data from book in his right hand while holding teleprinter tape in his left hand, in the ward room of the Skylab space station's Orbital Workshop (OWS) crew quarters. This photograph was taken with a 35mm Nikon camera held by one of Bean's fellow crewmen during the 56.5 day second manned Skylab mission in Earth orbit.

  13. A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera

    NASA Technical Reports Server (NTRS)

    Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.

    2015-01-01

    We present an improved lunar digital elevation model (DEM) covering latitudes within +/-60 deg, at a horizontal resolution of 512 pixels per degree ( approx.60 m at the equator) and a typical vertical accuracy approx.3 to 4 m. This DEM is constructed from approx.4.5 ×10(exp 9) geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1 deg×1 deg) from the SELENE Terrain Camera (TC) ( approx.10(exp 10) pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of < 5 m compared to approx.50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to < 10 m horizontally and < 1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.

  14. JMISR INteractive eXplorer

    NASA Technical Reports Server (NTRS)

    Nelson, David L.; Diner, David J.; Thompson, Charles K.; Hall, Jeffrey R.; Rheingans, Brian E.; Garay, Michael J.; Mazzoni, Dominic

    2010-01-01

    MISR (Multi-angle Imaging SpectroRadiometer) INteractive eXplorer (MINX) is an interactive visualization program that allows a user to digitize smoke, dust, or volcanic plumes in MISR multiangle images, and automatically retrieve height and wind profiles associated with those plumes. This innovation can perform 9-camera animations of MISR level-1 radiance images to study the 3D relationships of clouds and plumes. MINX also enables archiving MISR aerosol properties and Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power along with the heights and winds. It can correct geometric misregistration between cameras by correlating off-nadir camera scenes with corresponding nadir scenes and then warping the images to minimize the misregistration offsets. Plots of BRF (bidirectional reflectance factor) vs. camera angle for points clicked in an image can be displayed. Users get rapid access to map views of MISR path and orbit locations and overflight dates, and past or future orbits can be identified that pass over a specified location at a specified time. Single-camera, level-1 radiance data at 1,100- or 275- meter resolution can be quickly displayed in color using a browse option. This software determines the heights and motion vectors of features above the terrain with greater precision and coverage than previous methods, based on an algorithm that takes wind direction into consideration. Human interpreters can precisely identify plumes and their extent, and wind direction. Overposting of MODIS thermal anomaly data aids in the identification of smoke plumes. The software has been used to preserve graphical and textural versions of the digitized data in a Web-based database.

  15. Mars Daily Global Image from April 1999

    NASA Image and Video Library

    2000-09-08

    Twelve orbits a day provide NASA Mars Global Surveyor MOC wide angle cameras a global napshot of weather patterns across the planet. Here, bluish-white water ice clouds hang above the Tharsis volcanoes.

  16. Dunes in Brashear

    NASA Image and Video Library

    2006-01-08

    This Mars Global Surveyor MGS Mars Orbiter Camera MOC image shows a field of dark sand dunes on the northwestern floor of Brashear Crater. The dunes formed largely from winds that blew from the southeast lower right

  17. Mountainous Crater Rim on Mars

    NASA Image and Video Library

    2013-10-17

    This is a screen shot from a high-definition simulated movie of Mojave Crater on Mars, based on images taken by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  18. Study of magnetic perturbations on SEC vidicon tubes. [large space telescope

    NASA Technical Reports Server (NTRS)

    Long, D. C.; Zucchino, P.; Lowrance, J.

    1973-01-01

    A laboratory measurements program was conducted to determine the tolerances that must be imposed to achieve optimum performance from SEC-vidicon data sensors in the LST mission. These measurements along with other data were used to formulate recommendations regarding the necessary telemetry and remote control for the television data sensors when in orbit. The study encompassed the following tasks: (1) Conducted laboratory measurements of the perturbations which an external magnetic field produces on a magnetically focused, SEC-vidicon. Evaluated shielding approaches. (2) Experimentally evaluated the effects produced on overall performance by variations of the tube electrode potentials, and the focus, deflection and alignment fields. (3) Recommended the extent of ground control of camera parameters and camera parameter telemetry required for optimizing the performance of the television system in orbit. The experimental data are summarized in a set of graphs.

  19. ``High energy Electron exPeriment (HEP)'' onboard the ERG satellite

    NASA Astrophysics Data System (ADS)

    Mitani, T.; Takashima, T.; Kasahara, S.; Miyake, W.; Hirahara, M.

    2017-12-01

    The Exploration of energization and Radiation in Geospace (ERG) satellite was successfully launched on December 20, 2016, and now explores how relativistic electrons in the radiation belts are generated during space storms. "High energy Electron exPeriment (HEP)" onboard the ERG satellite observes 70 keV - 2 MeV electrons and provides three-dimensional velocity distribution of electrons every spacecraft spin period. Electrons are observed by two types of camera designs, HEP-L and HEP-H, with regard to geometrical factor and energy range. HEP-L observes 0.1 - 1 MeV electrons and its geometrical factor (G-factor) is 10-3 cm2 str, and HEP-H observes 0.7 - 2 MeV and G-factor is 10-2 cm2 str. HEP-L and HEP-H each consist of three pin-hole type cameras, and each camera consist of mechanical collimator, stacked silicon semiconductor detectors and readout ASICs. HEP-H has larger opening angle of the collimator and more silicon detectors to observe higher energy electrons than HEP-L. The initial checkout in orbit was carried out in February 2017 and it was confirmed that there was no performance degradation by comparing the results of the initial checkout in orbit and the prelaunch function tests. Since late March, HEP has carried out normal observation. HEP observed losses and recovery of the outer radiation belt electrons several times up to now. In this presentation we introduce the HEP instrument design, prelaunch tests results and report the initial results in orbit.

  20. Precise Trajectory Reconstruction of CE-3 Hovering Stage By Landing Camera Images

    NASA Astrophysics Data System (ADS)

    Yan, W.; Liu, J.; Li, C.; Ren, X.; Mu, L.; Gao, X.; Zeng, X.

    2014-12-01

    Chang'E-3 (CE-3) is part of the second phase of the Chinese Lunar Exploration Program, incorporating a lander and China's first lunar rover. It was landed on 14 December, 2013 successfully. Hovering and obstacle avoidance stages are essential for CE-3 safety soft landing so that precise spacecraft trajectory in these stages are of great significance to verify orbital control strategy, to optimize orbital design, to accurately determine the landing site of CE-3, and to analyze the geological background of the landing site. Because the time consumption of these stages is just 25s, it is difficult to present spacecraft's subtle movement by Measurement and Control System or by radio observations. Under this background, the trajectory reconstruction based on landing camera images can be used to obtain the trajectory of CE-3 because of its technical advantages such as unaffecting by lunar gravity field spacecraft kinetic model, high resolution, high frame rate, and so on. In this paper, the trajectory of CE-3 before and after entering hovering stage was reconstructed by landing camera images from frame 3092 to frame 3180, which lasted about 9s, under Single Image Space Resection (SISR). The results show that CE-3's subtle changes during hovering stage can be emerged by the reconstructed trajectory. The horizontal accuracy of spacecraft position was up to 1.4m while vertical accuracy was up to 0.76m. The results can be used for orbital control strategy analysis and some other application fields.

  1. Formulation of image quality prediction criteria for the Viking lander camera

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Jobson, D. J.; Taylor, E. J.; Wall, S. D.

    1973-01-01

    Image quality criteria are defined and mathematically formulated for the prediction computer program which is to be developed for the Viking lander imaging experiment. The general objective of broad-band (black and white) imagery to resolve small spatial details and slopes is formulated as the detectability of a right-circular cone with surface properties of the surrounding terrain. The general objective of narrow-band (color and near-infrared) imagery to observe spectral characteristics if formulated as the minimum detectable albedo variation. The general goal to encompass, but not exceed, the range of the scene radiance distribution within single, commandable, camera dynamic range setting is also considered.

  2. The ET as it falls away from the orbiter after separation on STS-121

    NASA Image and Video Library

    2006-07-04

    S121-E-05006 (4 July 2006) --- This picture of the STS-121 external tank was taken with a digital still camera by an astronaut only seconds after separation from the Space Shuttle Discovery on launch day. Engineers, managers and flight controllers have carefully studied this image and other frames from this series as well as a number of pictures showing the falling ET as photographed from umbilical well cameras.

  3. The ET as it falls away from the orbiter after separation on STS-121

    NASA Image and Video Library

    2006-07-04

    STS121-E-05011 (4 July 2006)-- This picture of the STS-121 external tank was taken with a digital still camera by an astronaut only seconds after separation from the Space Shuttle Discovery on launch day. Engineers, managers and flight controllers have carefully studied this image and other frames from this series as well as a number of pictures showing the falling ET as photographed from umbilical well cameras.

  4. The ET as it falls away from the orbiter after separation on STS-121

    NASA Image and Video Library

    2006-07-04

    STS121-E-05008 (4 July 2006)-- This picture of the STS-121 external tank was taken with a digital still camera by an astronaut only seconds after separation from the Space Shuttle Discovery on launch day. Engineers, managers and flight controllers have carefully studied this image and other frames from this series as well as a number of pictures showing the falling ET as photographed from umbilical well cameras.

  5. Sellers and Fossum on the end of the OBSS during EVA1 on STS-121 / Expedition 13 joint operations

    NASA Image and Video Library

    2006-07-08

    STS121-323-011 (8 July 2006) --- Astronauts Piers J. Sellers and Michael E. Fossum, STS-121 mission specialists, work in tandem on Space Shuttle Discovery's Remote Manipulator System/Orbiter Boom Sensor System (RMS/OBSS) during the mission's first scheduled session of extravehicular activity (EVA). Also visible on the OBSS are the Laser Dynamic Range Imager (LDRI), Intensified Television Camera (ITVC) and Laser Camera System (LCS).

  6. KSC-02pd1130

    NASA Image and Video Library

    2002-07-10

    KENNEDY SPACE CENTER, FLA. -- With the engines removed from Endeavour, the flow line can be inspected. On the right, Gerry Kathka, with United Space Alliance, hands part of a fiber-optic camera system to Scott Minnick, left. Minnick wears a special viewing apparatus that sees where the camera is going. The inspection is the result of small cracks being discovered on the LH2 Main Propulsion System (MPS) flow liners in other orbiters. Endeavour is next scheduled to fly on mission STS-113.

  7. Background simulations of the wide-field coded-mask camera for X-/Gamma-ray of the French-Chinese mission SVOM

    NASA Astrophysics Data System (ADS)

    Godet, Olivier; Barret, Didier; Paul, Jacques; Sizun, Patrick; Mandrou, Pierre; Cordier, Bertrand

    SVOM (Space Variable Object Monitor) is a French-Chinese mission dedicated to the study of high-redshift GRBs, which is expected to be launched in 2012. The anti-Sun pointing strategy of SVOM along with a strong and integrated ground segment consisting of two wide-field robotic telescopes covering the near-IR and optical will optimise the ground-based GRB follow-ups by the largest telescopes and thus the measurements of spectroscopic redshifts. The central instrument of the science payload will be an innovative wide-field coded-mask camera for X- /Gamma-rays (4-250 keV) responsible for triggering and localising GRBs with an accuracy better than 10 arc-minutes. Such an instrument will be background-dominated so it is essential to estimate the background level expected once in orbit during the early phase of the instrument design in order to ensure good science performance. We present our Monte-Carlo simulator enabling us to compute the background spectrum taking into account the mass model of the camera and the main components of the space environment encountered in orbit by the satellite. From that computation, we show that the current design of the camera CXG will be more sensitive to high-redshift GRBs than the Swift-BAT thanks to its low-energy threshold of 4 keV.

  8. A low cost automatic detection and ranging system for space surveillance in the medium Earth orbit region and beyond.

    PubMed

    Danescu, Radu; Ciurte, Anca; Turcu, Vlad

    2014-02-11

    The space around the Earth is filled with man-made objects, which orbit the planet at altitudes ranging from hundreds to tens of thousands of kilometers. Keeping an eye on all objects in Earth's orbit, useful and not useful, operational or not, is known as Space Surveillance. Due to cost considerations, the space surveillance solutions beyond the Low Earth Orbit region are mainly based on optical instruments. This paper presents a solution for real-time automatic detection and ranging of space objects of altitudes ranging from below the Medium Earth Orbit up to 40,000 km, based on two low cost observation systems built using commercial cameras and marginally professional telescopes, placed 37 km apart, operating as a large baseline stereovision system. The telescopes are pointed towards any visible region of the sky, and the system is able to automatically calibrate the orientation parameters using automatic matching of reference stars from an online catalog, with a very high tolerance for the initial guess of the sky region and camera orientation. The difference between the left and right image of a synchronized stereo pair is used for automatic detection of the satellite pixels, using an original difference computation algorithm that is capable of high sensitivity and a low false positive rate. The use of stereovision provides a strong means of removing false positives, and avoids the need for prior knowledge of the orbits observed, the system being able to detect at the same time all types of objects that fall within the measurement range and are visible on the image.

  9. Laser line scan underwater imaging by complementary metal-oxide-semiconductor camera

    NASA Astrophysics Data System (ADS)

    He, Zhiyi; Luo, Meixing; Song, Xiyu; Wang, Dundong; He, Ning

    2017-12-01

    This work employs the complementary metal-oxide-semiconductor (CMOS) camera to acquire images in a scanning manner for laser line scan (LLS) underwater imaging to alleviate backscatter impact of seawater. Two operating features of the CMOS camera, namely the region of interest (ROI) and rolling shutter, can be utilized to perform image scan without the difficulty of translating the receiver above the target as the traditional LLS imaging systems have. By the dynamically reconfigurable ROI of an industrial CMOS camera, we evenly divided the image into five subareas along the pixel rows and then scanned them by changing the ROI region automatically under the synchronous illumination by the fun beams of the lasers. Another scanning method was explored by the rolling shutter operation of the CMOS camera. The fun beam lasers were turned on/off to illuminate the narrow zones on the target in a good correspondence to the exposure lines during the rolling procedure of the camera's electronic shutter. The frame synchronization between the image scan and the laser beam sweep may be achieved by either the strobe lighting output pulse or the external triggering pulse of the industrial camera. Comparison between the scanning and nonscanning images shows that contrast of the underwater image can be improved by our LLS imaging techniques, with higher stability and feasibility than the mechanically controlled scanning method.

  10. VizieR Online Data Catalog: Astrometric monitoring of ultracool dwarf binaries (Dupuy+, 2017)

    NASA Astrophysics Data System (ADS)

    Dupuy, T. J.; Liu, M. C.

    2017-09-01

    In Table 1 we list all 33 binaries in our Keck+CFHT astrometric monitoring sample, along with three other binaries that have published orbit and parallax measurements. We began obtaining resolved Keck AO astrometry in 2007-2008, and we combined our new astrometry with available data in the literature or public archives (e.g., HST and Gemini) to refine our orbital period estimates and thereby our prioritization for Keck observations. We present here new Keck/NIRC2 AO imaging and non-redundant aperture-masking observations, in addition to a re-analysis of our own previously published data and publicly available archival data for our sample binaries. Table 2 gives our measured astrometry and flux ratios for all Keck AO data used in our orbital analysis spanning 2003 Apr 15 to 2016 May 13. In total there are 339 distinct measurements (unique bandpass and epoch for a given target), where 302 of these are direct imaging and 37 are non-redundant aperture masking. Eight of the imaging measurements are from six unpublished archival data sets. See section 3.1.1 for further details. In addition to our Keck AO monitoring, we also obtained data for three T dwarf binaries over a three-year HST program using the Advanced Camera for Surveys (ACS) Wide Field Camera (WFC) in the F814W bandpass. See section 3.1.2 for further details. Many of our sample binaries have HST imaging data in the public archive. We have re-analyzed the available archival data coming from the WFPC2 Planetary Camera (WFPC2-PC1), ACS High Resolution Channel (ACS-HRC), and NICMOS Camera 1 (NICMOS-NIC1). See section 3.1.3 for further details. We present here an updated analysis of our data from the Hawaii Infrared Parallax Program that uses the CFHT facility infrared camera WIRCam. Our observing strategy and custom astrometry pipeline are described in detail in Dupuy & Liu (2012, J/ApJS/201/19). See section 3.2 for further explanations. (10 data files).

  11. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars

    NASA Astrophysics Data System (ADS)

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.

    2017-08-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges-emplaced from the rift zones, across the plains to the east of Pavonis Mons-and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.

  12. LROC Advances in Lunar Science

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.

    2012-12-01

    Since entering orbit in 2009 the Lunar Reconnaissance Orbiter Camera (LROC) has acquired over 700,000 Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images of the Moon. This new image collection is fueling research into the origin and evolution of the Moon. NAC images revealed a volcanic complex 35 x 25 km (60N, 100E), between Compton and Belkovich craters (CB). The CB terrain sports volcanic domes and irregular depressed areas (caldera-like collapses). The volcanic complex corresponds to an area of high-silica content (Diviner) and high Th (Lunar Prospector). A low density of impact craters on the CB complex indicates a relatively young age. The LROC team mapped over 150 volcanic domes and 90 volcanic cones in the Marius Hills (MH), many of which were not previously identified. Morphology and compositional estimates (Diviner) indicate that MH domes are silica poor, and are products of low-effusion mare lavas. Impact melt deposits are observed with Copernican impact craters (>10 km) on exterior ejecta, the rim, inner wall, and crater floors. Preserved impact melt flow deposits are observed around small craters (25 km diam.), and estimated melt volumes exceed predictions. At these diameters the amount of melt predicted is small, and melt that is produced is expected to be ejected from the crater. However, we observe well-defined impact melt deposits on the floor of highland craters down to 200 m diameter. A globally distributed population of previously undetected contractional structures were discovered. Their crisp appearance and associated impact crater populations show that they are young landforms (<1 Ga). NAC images also revealed small extensional troughs. Crosscutting relations with small-diameter craters and depths as shallow as 1 m indicate ages <50 Ma. These features place bounds on the amount of global radial contraction and the level of compressional stress in the crust. WAC temporal coverage of the poles allowed quantification of highly illuminated regions, including one site that remains lit for 94% of a year (longest eclipse period of 43 hours). Targeted NAC images provide higher resolution characterization of key sites with permanent shadow and extended illumination. Repeat WAC coverage provides an unparalleled photometric dataset allowing spatially resolved solutions (currently 1 degree) to Hapke's photometric equation - data invaluable for photometric normalization and interpreting physical properties of the regolith. The WAC color also provides the means to solve for titanium, and distinguish subtle age differences within Copernican aged materials. The longevity of the LRO mission allows follow up NAC and WAC observations of previously known and newly discovered targets over a range of illumination and viewing geometries. Of particular merit is the acquisition of NAC stereo pairs and oblique sequences. With the extended SMD phase, the LROC team is working towards imaging the whole Moon with pixel scales of 50 to 200 cm.

  13. Plateaus and Sinuous Ridges as the Fingerprints of Lava Flow Inflation in the Eastern Tharsis Plains of Mars

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Garry, W. Brent; Crumpler, Larry S.; Williams, David A.

    2017-01-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges-emplaced from the rift zones, across the plains to the east of Pavonis Mons-and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.

  14. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars

    USGS Publications Warehouse

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Garry, W. Brent; Crumpler, Larry S.; Williams, David A.

    2017-01-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai‘i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges—emplaced from the rift zones, across the plains to the east of Pavonis Mons—and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.

  15. Relative depths of simple craters and the nature of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Robinson, Mark S.; Barnouin, Olivier S.; McEwen, Alfred S.; Speyerer, Emerson J.; Henriksen, Megan R.; Sutton, Sarah S.

    2017-12-01

    We assessed the morphologies of more than 930 simple impact craters (diameters 40 m-10 km) on the Moon using digital terrain models (DTMs) of a variety of terrains in order to characterize the variability of fresh crater morphology as a function of crater diameter. From Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) DTMs, we determined depth-to-diameter (d/D) ratios for an extremely fresh set of these craters with diameters less than 400 m and found that their d/D ratios range from 0.11 to 0.17. Using both NAC and Kaguya Terrain Camera DTMs, we also determined the d/D ratios for the set of fresh simple craters larger than 400 m in diameter. The d/D ratios of these larger craters are typically near 0.21, as expected of gravity-dominated crater excavation. Fresh craters less than ∼400 m in diameter, on the other hand, exhibit significantly lower d/D ratios. Various possible factors affect the morphologies and relative depths (d/D ratios) of small strength-dominated craters, including impactor and target properties (e.g., effective strength, strength contrasts, porosity, pre-existing weaknesses), impact angle and velocity, and degradation state. While impact conditions resulting from secondary impacts can also affect crater morphologies, we found that d/D ratio alone was not a unique discriminator of small secondary craters. To investigate the relative influences of degradation and target properties on the d/D ratios of small strength-dominated craters, we examined a subset of fresh craters located on the geologically young rim deposits of Tycho crater. These craters are deeper and steeper than other craters of similar diameter and degradation state, consistent with their relative freshness and formation in the relatively coherent, melt-rich deposits in this region. The d/D ratios of globally distributed small craters of similar degradation state and size range, on the other hand, are relatively shallow with lower average wall slopes, consistent with crater excavation in a weak or poorly cohesive layer. The widespread predominance of these small, shallow craters is consistent with the pervasive, poorly cohesive upper regolith.

  16. Hurricane Matthew over Haiti seen by NASA MISR

    NASA Image and Video Library

    2016-10-04

    On the morning of October 4, 2016, Hurricane Matthew passed over the island nation of Haiti. A Category 4 storm, it made landfall around 7 a.m. local time (5 a.m. PDT/8 a.m. EDT) with sustained winds over 145 mph. This is the strongest hurricane to hit Haiti in over 50 years. On October 4, at 10:30 a.m. local time (8:30 a.m. PDT/11:30 a.m. EDT), the Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over Hurricane Matthew. This animation was made from images taken by MISR's downward-pointing (nadir) camera is 235 miles (378 kilometers) across, which is much narrower than the massive diameter of Matthew, so only the hurricane's eye and a portion of the storm's right side are visible. Haiti is completely obscured by Matthew's clouds, but part of the Bahamas is visible to the north. Several hot towers are visible within the central part of the storm, and another at the top right of the image. Hot towers are enormous thunderheads that punch through the tropopause (the boundary between the lowest layer of the atmosphere, the troposphere, and the next level, the stratosphere). The rugged topography of Haiti causes uplift within the storm, generating these hot towers and fueling even more rain than Matthew would otherwise dump on the country. MISR has nine cameras fixed at different angles, which capture images of the same point on the ground within about seven minutes. This animation was created by blending images from these nine cameras. The change in angle between the images causes a much larger motion from south to north than actually exists, but the rotation of the storm is real motion. From this animation, you can get an idea of the incredible height of the hot towers, especially the one to the upper right. The counter-clockwise rotation of Matthew around its closed (cloudy) eye is also visible. These data were acquired during Terra orbit 89345. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21070

  17. Setup for testing cameras for image guided surgery using a controlled NIR fluorescence mimicking light source and tissue phantom

    NASA Astrophysics Data System (ADS)

    Georgiou, Giota; Verdaasdonk, Rudolf M.; van der Veen, Albert; Klaessens, John H.

    2017-02-01

    In the development of new near-infrared (NIR) fluorescence dyes for image guided surgery, there is a need for new NIR sensitive camera systems that can easily be adjusted to specific wavelength ranges in contrast the present clinical systems that are only optimized for ICG. To test alternative camera systems, a setup was developed to mimic the fluorescence light in a tissue phantom to measure the sensitivity and resolution. Selected narrow band NIR LED's were used to illuminate a 6mm diameter circular diffuse plate to create uniform intensity controllable light spot (μW-mW) as target/source for NIR camera's. Layers of (artificial) tissue with controlled thickness could be placed on the spot to mimic a fluorescent `cancer' embedded in tissue. This setup was used to compare a range of NIR sensitive consumer's cameras for potential use in image guided surgery. The image of the spot obtained with the cameras was captured and analyzed using ImageJ software. Enhanced CCD night vision cameras were the most sensitive capable of showing intensities < 1 μW through 5 mm of tissue. However, there was no control over the automatic gain and hence noise level. NIR sensitive DSLR cameras proved relative less sensitive but could be fully manually controlled as to gain (ISO 25600) and exposure time and are therefore preferred for a clinical setting in combination with Wi-Fi remote control. The NIR fluorescence testing setup proved to be useful for camera testing and can be used for development and quality control of new NIR fluorescence guided surgery equipment.

  18. The Art of Astrophotography

    NASA Astrophysics Data System (ADS)

    Morison, Ian

    2017-02-01

    1. Imaging star trails; 2. Imaging a constellation with a DSLR and tripod; 3. Imaging the Milky Way with a DSLR and tracking mount; 4. Imaging the Moon with a compact camera or smartphone; 5. Imaging the Moon with a DSLR; 6. Imaging the Pleiades Cluster with a DSLR and small refractor; 7. Imaging the Orion Nebula, M42, with a modified Canon DSLR; 8. Telescopes and their accessories for use in astroimaging; 9. Towards stellar excellence; 10. Cooling a DSLR camera to reduce sensor noise; 11. Imaging the North American and Pelican Nebulae; 12. Combating light pollution - the bane of astrophotographers; 13. Imaging planets with an astronomical video camera or Canon DSLR; 14. Video imaging the Moon with a webcam or DSLR; 15. Imaging the Sun in white light; 16. Imaging the Sun in the light of its H-alpha emission; 17. Imaging meteors; 18. Imaging comets; 19. Using a cooled 'one shot colour' camera; 20. Using a cooled monochrome CCD camera; 21. LRGB colour imaging; 22. Narrow band colour imaging; Appendix A. Telescopes for imaging; Appendix B. Telescope mounts; Appendix C. The effects of the atmosphere; Appendix D. Auto guiding; Appendix E. Image calibration; Appendix F. Practical aspects of astroimaging.

  19. Preliminary calibration results of the wide angle camera of the imaging instrument OSIRIS for the Rosetta mission

    NASA Astrophysics Data System (ADS)

    Da Deppo, V.; Naletto, G.; Nicolosi, P.; Zambolin, P.; De Cecco, M.; Debei, S.; Parzianello, G.; Ramous, P.; Zaccariotto, M.; Fornasier, S.; Verani, S.; Thomas, N.; Barthol, P.; Hviid, S. F.; Sebastian, I.; Meller, R.; Sierks, H.; Keller, H. U.; Barbieri, C.; Angrilli, F.; Lamy, P.; Rodrigo, R.; Rickman, H.; Wenzel, K. P.

    2017-11-01

    Rosetta is one of the cornerstone missions of the European Space Agency for having a rendezvous with the comet 67P/Churyumov-Gerasimenko in 2014. The imaging instrument on board the satellite is OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System), a cooperation among several European institutes, which consists of two cameras: a Narrow (NAC) and a Wide Angle Camera (WAC). The WAC optical design is an innovative one: it adopts an all reflecting, unvignetted and unobstructed two mirror configuration which allows to cover a 12° × 12° field of view with an F/5.6 aperture and gives a nominal contrast ratio of about 10-4. The flight model of this camera has been successfully integrated and tested in our laboratories, and finally has been integrated on the satellite which is now waiting to be launched in February 2004. In this paper we are going to describe the optical characteristics of the camera, and to summarize the results so far obtained with the preliminary calibration data. The analysis of the optical performance of this model shows a good agreement between theoretical performance and experimental results.

  20. Saturn's F-Ring

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This narrow-angle camera image of Saturn's F Ring was taken through the Clear filter while at a distance of 6.9 million km from Saturn on 8 November 1980. The brightness variations of this tightly-constrained ring shown here indicate that the ring is less uniform in makeup than the larger rings. JPL managed the Voyager Project for NASA's Office of Space Science

  1. Vision and spectroscopic sensing for joint tracing in narrow gap laser butt welding

    NASA Astrophysics Data System (ADS)

    Nilsen, Morgan; Sikström, Fredrik; Christiansson, Anna-Karin; Ancona, Antonio

    2017-11-01

    The automated laser beam butt welding process is sensitive to positioning the laser beam with respect to the joint because a small offset may result in detrimental lack of sidewall fusion. This problem is even more pronounced in case of narrow gap butt welding, where most of the commercial automatic joint tracing systems fail to detect the exact position and size of the gap. In this work, a dual vision and spectroscopic sensing approach is proposed to trace narrow gap butt joints during laser welding. The system consists of a camera with suitable illumination and matched optical filters and a fast miniature spectrometer. An image processing algorithm of the camera recordings has been developed in order to estimate the laser spot position relative to the joint position. The spectral emissions from the laser induced plasma plume have been acquired by the spectrometer, and based on the measurements of the intensities of selected lines of the spectrum, the electron temperature signal has been calculated and correlated to variations of process conditions. The individual performances of these two systems have been experimentally investigated and evaluated offline by data from several welding experiments, where artificial abrupt as well as gradual deviations of the laser beam out of the joint were produced. Results indicate that a combination of the information provided by the vision and spectroscopic systems is beneficial for development of a hybrid sensing system for joint tracing.

  2. Photoplethysmographic imaging via spectrally demultiplexed erythema fluctuation analysis for remote heart rate monitoring

    NASA Astrophysics Data System (ADS)

    Deglint, Jason; Chung, Audrey G.; Chwyl, Brendan; Amelard, Robert; Kazemzadeh, Farnoud; Wang, Xiao Yu; Clausi, David A.; Wong, Alexander

    2016-03-01

    Traditional photoplethysmographic imaging (PPGI) systems use the red, green, and blue (RGB) broadband measurements of a consumer digital camera to remotely estimate a patients heart rate; however, these broadband RGB signals are often corrupted by ambient noise, making the extraction of subtle fluctuations indicative of heart rate difficult. Therefore, the use of narrow-band spectral measurements can significantly improve the accuracy. We propose a novel digital spectral demultiplexing (DSD) method to infer narrow-band spectral information from acquired broadband RGB measurements in order to estimate heart rate via the computation of motion- compensated skin erythema fluctuation. Using high-resolution video recordings of human participants, multiple measurement locations are automatically identified on the cheeks of an individual, and motion-compensated broadband reflectance measurements are acquired at each measurement location over time via measurement location tracking. The motion-compensated broadband reflectance measurements are spectrally demultiplexed using a non-linear inverse model based on the spectral sensitivity of the camera's detector. A PPG signal is then computed from the demultiplexed narrow-band spectral information via skin erythema fluctuation analysis, with improved signal-to-noise ratio allowing for reliable remote heart rate measurements. To assess the effectiveness of the proposed system, a set of experiments involving human motion in a front-facing position were performed under ambient lighting conditions. Experimental results indicate that the proposed system achieves robust and accurate heart rate measurements and can provide additional information about the participant beyond the capabilities of traditional PPGI methods.

  3. Dark Flows in Newton Crater Extending During Summer Six-Image Sequence

    NASA Image and Video Library

    2011-08-04

    This image comes from observations of Newton crater by the HiRISE camera onboard NASA Mars Reconnaissance Orbiter where features appear and incrementally grow during warm seasons and fade in cold seasons.

  4. Mars Odyssey Seen by Mars Global Surveyor

    NASA Image and Video Library

    2005-05-19

    This view is an enlargement of an image of NASA Mars Odyssey spacecraft taken by the Mars Orbiter Camera aboard NASA Mars Global Surveyor while the two spacecraft were about 90 kilometers 56 miles apart.

  5. Color Image of Phoenix Lander on Mars Surface

    NASA Image and Video Library

    2008-05-27

    This is an enhanced-color image from Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment HiRISE camera. It shows the NASA Mars Phoenix lander with its solar panels deployed on the Mars surface

  6. An Icy Crater on Mars

    NASA Image and Video Library

    2013-07-17

    These craters on Tharsis are first visible as new dark spots observed by NASA Mars Reconnaissance Orbiter Context Camera CTX, which can view much larger areas, and then imaged by HiRISE for a close-up look.

  7. High-Resolution Global Geologic Map of Ceres from NASA Dawn Mission

    NASA Astrophysics Data System (ADS)

    Williams, D. A.; Buczkowski, D. L.; Crown, D. A.; Frigeri, A.; Hughson, K.; Kneissl, T.; Krohn, K.; Mest, S. C.; Pasckert, J. H.; Platz, T.; Ruesch, O.; Schulzeck, F.; Scully, J. E. C.; Sizemore, H. G.; Nass, A.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2018-06-01

    This presentation will discuss the completed 1:4,000,000 global geologic map of dwarf planet Ceres derived from Dawn Framing Camera Low Altitude Mapping Orbit (LAMo) images, combining 15 quadrangle maps.

  8. A Rover Journey Begins

    NASA Image and Video Library

    2012-09-06

    Tracks from the first drives of NASA Curiosity rover are visible in this image captured by the High-Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter. The rover is seen where the tracks end.

  9. Large, Fresh Crater Surrounded by Smaller Craters

    NASA Image and Video Library

    2014-05-22

    The largest crater associated with a March 2012 impact on Mars has many smaller craters around it, revealed in this image from the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  10. KSC-05PD-0587

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility bay 1 at NASAs Kennedy Space Center, a worker rolls the plastic cover removed from the Orbital Boom Sensor System (OBSS), at right, which will be installed in the payload bay of Atlantis. The 50- foot-long OBSS attaches to the Remote Manipulator System, or Shuttle robotic arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. The Return to Flight mission STS-121 has a launch window of July 12 - July 31, 2005.

  11. KSC-05PD-0175

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. In the Orbiter Processing Facility bay 3, workers oversee the lowering of the Orbiter Boom Sensor System (OBSS) on the starboard side of Discoverys payload bay. At lower right is the Remote Manipulator System (RMS), or Shuttle robotic arm. The 50-foot-long OBSS attaches to the RMS, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttles Thermal Protection System while in space. The Return to Flight mission, STS-114, has a launch window of May 12 to June 3, 2005.

  12. Orbital selective directional conductor in the two-orbital Hubbard model

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Moreo, Adriana; ...

    2016-02-29

    Recently, we employed a developed many-body technique that allows for the incorporation of thermal effects, the rich phase diagram of a two-dimensional two-orbital (degenerate d xz and d yz) Hubbard model is presented varying temperature and the repulsion U. The main result is the finding at intermediate U of an antiferromagnetic orbital selective state where an effective dimensional reduction renders one direction insulating and the other metallic. Possible realizations of this state are discussed. Additionally, we also study nematicity above the N eel temperature. After a careful finite-size scaling analysis, the nematicity temperature window appears to survive in the bulkmore » limit, although it is very narrow.« less

  13. Compact Autonomous Hemispheric Vision System

    NASA Technical Reports Server (NTRS)

    Pingree, Paula J.; Cunningham, Thomas J.; Werne, Thomas A.; Eastwood, Michael L.; Walch, Marc J.; Staehle, Robert L.

    2012-01-01

    Solar System Exploration camera implementations to date have involved either single cameras with wide field-of-view (FOV) and consequently coarser spatial resolution, cameras on a movable mast, or single cameras necessitating rotation of the host vehicle to afford visibility outside a relatively narrow FOV. These cameras require detailed commanding from the ground or separate onboard computers to operate properly, and are incapable of making decisions based on image content that control pointing and downlink strategy. For color, a filter wheel having selectable positions was often added, which added moving parts, size, mass, power, and reduced reliability. A system was developed based on a general-purpose miniature visible-light camera using advanced CMOS (complementary metal oxide semiconductor) imager technology. The baseline camera has a 92 FOV and six cameras are arranged in an angled-up carousel fashion, with FOV overlaps such that the system has a 360 FOV (azimuth). A seventh camera, also with a FOV of 92 , is installed normal to the plane of the other 6 cameras giving the system a > 90 FOV in elevation and completing the hemispheric vision system. A central unit houses the common electronics box (CEB) controlling the system (power conversion, data processing, memory, and control software). Stereo is achieved by adding a second system on a baseline, and color is achieved by stacking two more systems (for a total of three, each system equipped with its own filter.) Two connectors on the bottom of the CEB provide a connection to a carrier (rover, spacecraft, balloon, etc.) for telemetry, commands, and power. This system has no moving parts. The system's onboard software (SW) supports autonomous operations such as pattern recognition and tracking.

  14. Apollo 8 Mission image,Target of Opportunity (T/O) 10

    NASA Image and Video Library

    1968-12-21

    Apollo 8,Moon,Target of Opportunity (T/O) 10, Various targets. Latitude 18 degrees South,Longitude 163.50 degrees West. Camera Tilt Mode: High Oblique. Direction: South. Sun Angle 12 degrees. Original Film Magazine was labeled E. Camera Data: 70mm Hasselblad; F-Stop: F-5.6; Shutter Speed: 1/250 second. Film Type: Kodak SO-3400 Black and White,ASA 40. Other Photographic Coverage: Lunar Orbiter 1 (LO I) S-3. Flight Date: December 21-27,1968.

  15. View of Jack Lousma's hands using silverware to gather food at food station

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A close-up view of Skylab 3 pilot Jack Lousma's hands using a silverware utensil to gather food at the food station, in this photographic reproduction taken from a television transmission made by a color TV camera aboard the Skylab space station in Earth orbit. Astronaut Alan L. Bean, commander, had just zoomed the TV camera in for this closeup of the food tray following a series of wide shots of Lousma at the food station.

  16. HTV-4 Re-entry camera 1 card 1.

    NASA Image and Video Library

    2013-09-07

    ISS036-E-041384 (7 Sept. 2013) --- A stationary camera onboard the International Space Station took this picture of the Japanese HTV-4 cargo spacecraft as it entered Earth’s atmosphere on Sept. 7, subsequently burning up. HTV-4 was launched by Japan's Aerospace Exploration Agency (JAXA) on Aug. 4 of this year in order to bring up supplies for the astronauts and cosmonauts onboard the station, and after spending a month docked to the orbital outpost, it was released on Sept. 4.

  17. Expedition One CDR Shepherd with IMAX camera

    NASA Image and Video Library

    2001-02-11

    STS98-E-5164 (11 February 2001) --- Astronaut William M. (Bill) Shepherd documents activity onboard the newly attached Destiny laboratory using an IMAX motion picture camera. The crews of Atlantis and the International Space Station on February 11 opened the Destiny laboratory and spent the first full day of what are planned to be years of work ahead inside the orbiting science and command center. Shepherd opened the Destiny hatch, and he and Shuttle commander Kenneth D. Cockrell ventured inside at 8:38 a.m. (CST). Members of both crews went to work quickly inside the new module, activating air systems, fire extinguishers, alarm systems, computers and internal communications. The crew also continued equipment transfers from the shuttle to the station and filmed several scenes onboard the station using an IMAX camera. This scene was recorded with a digital still camera.

  18. HST High Gain Antennae photographed by Electronic Still Camera

    NASA Image and Video Library

    1993-12-04

    S61-E-009 (4 Dec 1993) --- This view of one of two High Gain Antennae (HGA) on the Hubble Space Telescope (HST) was photographed with an Electronic Still Camera (ESC). The scene was down linked to ground controllers soon after the Space Shuttle Endeavour caught up to the orbiting telescope 320 miles above Earth. Shown here before grapple, the HST was captured on December 4, 1993 in order to service the telescope. Over a period of five days, four of the seven STS-61 crew members will work in alternating pairs outside Endeavour's shirt sleeve environment. Electronic still photography is a relatively new technology which provides the means for a handheld camera to electronically capture and digitize an image with resolution approaching film quality. The electronic still camera has flown as an experiment on several other shuttle missions.

  19. Multispectral Photography

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Model II Multispectral Camera is an advanced aerial camera that provides optimum enhancement of a scene by recording spectral signatures of ground objects only in narrow, preselected bands of the electromagnetic spectrum. Its photos have applications in such areas as agriculture, forestry, water pollution investigations, soil analysis, geologic exploration, water depth studies and camouflage detection. The target scene is simultaneously photographed in four separate spectral bands. Using a multispectral viewer, such as their Model 75 Spectral Data creates a color image from the black and white positives taken by the camera. With this optical image analysis unit, all four bands are superimposed in accurate registration and illuminated with combinations of blue green, red, and white light. Best color combination for displaying the target object is selected and printed. Spectral Data Corporation produces several types of remote sensing equipment and also provides aerial survey, image processing and analysis and number of other remote sensing services.

  20. Feasibility evaluation of a motion detection system with face images for stereotactic radiosurgery.

    PubMed

    Yamakawa, Takuya; Ogawa, Koichi; Iyatomi, Hitoshi; Kunieda, Etsuo

    2011-01-01

    In stereotactic radiosurgery we can irradiate a targeted volume precisely with a narrow high-energy x-ray beam, and thus the motion of a targeted area may cause side effects to normal organs. This paper describes our motion detection system with three USB cameras. To reduce the effect of change in illuminance in a tracking area we used an infrared light and USB cameras that were sensitive to the infrared light. The motion detection of a patient was performed by tracking his/her ears and nose with three USB cameras, where pattern matching between a predefined template image for each view and acquired images was done by an exhaustive search method with a general-purpose computing on a graphics processing unit (GPGPU). The results of the experiments showed that the measurement accuracy of our system was less than 0.7 mm, amounting to less than half of that of our previous system.

  1. Effects on Training Using Illumination in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Maida, James C.; Novak, M. S. Jennifer; Mueller, Kristian

    1999-01-01

    Camera based tasks are commonly performed during orbital operations, and orbital lighting conditions, such as high contrast shadowing and glare, are a factor in performance. Computer based training using virtual environments is a common tool used to make and keep CTW members proficient. If computer based training included some of these harsh lighting conditions, would the crew increase their proficiency? The project goal was to determine whether computer based training increases proficiency if one trains for a camera based task using computer generated virtual environments with enhanced lighting conditions such as shadows and glare rather than color shaded computer images normally used in simulators. Previous experiments were conducted using a two degree of freedom docking system. Test subjects had to align a boresight camera using a hand controller with one axis of rotation and one axis of rotation. Two sets of subjects were trained on two computer simulations using computer generated virtual environments, one with lighting, and one without. Results revealed that when subjects were constrained by time and accuracy, those who trained with simulated lighting conditions performed significantly better than those who did not. To reinforce these results for speed and accuracy, the task complexity was increased.

  2. NASA Shuttle Lightning Research: Observations of Nocturnal Thunderstorms and Lightning Displays as Seen During Recent Space Shuttle Missions

    NASA Technical Reports Server (NTRS)

    Vaughan, Otha H., Jr.

    1994-01-01

    A number of interesting lightning events have been observed using the low light level TV camera of the space shuttle during nighttime observations of thunderstorms near the limb of the Earth. Some of the vertical type lightning events that have been observed will be presented. Using TV cameras for observing lightning near the Earth's limb allows one to determine the location of the lightning and other characteristics by using the star field data and the shuttle's orbital position to reconstruct the geometry of the scene being viewed by the shuttle's TV cameras which are located in the payload bay of the shuttle.

  3. KSC-01pp1802

    NASA Image and Video Library

    2001-12-01

    KENNEDY SPACE CENTER, Fla. - STS-109 Mission Specialist Richard Lennehan (left) and Payload Commander John Grunsfeld get a feel for tools and equipment that will be used on the mission. The crew is at KSC to take part in Crew Equipment Interface Test activities that include familiarization with the orbiter and equipment. The goal of the mission is to service the HST, replacing Solar Array 2 with Solar Array 3, replacing the Power Control Unit, removing the Faint Object Camera and installing the Advanced Camera for Surveys, installing the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cooling System, and installing New Outer Blanket Layer insulation on bays 5 through 8. Mission STS-109 is scheduled for launch Feb. 14, 2002

  4. Monitoring of comets activity and composition with the TRAPPIST-North telescope

    NASA Astrophysics Data System (ADS)

    Moulane, Y.; Benkhaldoun, Z.; Jehin, E.; Opitom, C.; Gillon, M.; Daassou, A.

    2017-06-01

    TRAPPIST-North (TRAnsiting Planets and PlanetesImals Small Telescope) is a 60-cm robotic telescope that was installed in May 2016 at the Oukaimeden Observatory [1]. The project is led by the University of Liège (Belgium) and the Caddi Ayad University of Marrakech (Morocco). This telescope is a twin of the TRAPPIST-South telescope, which was installed at the ESO La Silla Observatory in 2010 [2]. The TRAPPIST telescopes are dedicated to the detection and characterization of planets orbiting stars other than our Sun (exoplanets) and the study of comets and other small bodies in our solar system. For the comets research, these telescopes have very sensitive CCD cameras with complete sets of narrow band filters to measure the production rates of several gases (OH, NH, CN, C3 and C2) and the dust [3]. With TRAPPIST-North we can also observe comets that would not be visible in the southern hemisphere. Therfore, with these two telescopes, we can now observe continuously the comets around their orbit. We project to study individually the evolution of the activity, chemical composition, dust properties, and coma morphology of several comets per year and of different origins (New comets and Jupiter Family comets) over a wide range of heliocentric distances, and on both sides of perihelion. We measure the production rates of each daughter molecules using a Haser model [4], in addition to the Afρ parameter to estimate the dust production in the coma. In this work, we present the first measurements of the production rates of comet C/2013 X1 (PANSTARRS) observed with TN in June 2016, and the measurements of comet C/2013 V5 (Oukaimeden) observed in 2014 with TRAPPIST-South.

  5. Warrego Valles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    3 October 2004 When viewed at 100 to 300 meters per pixel in old Mariner 9 and Viking orbiter images, Warrego Valles appears to be a grouping of intricately-carved networks of branching valleys. This region has often been used as the type example of martian valley networks, and key evidence that Mars may have once been warmer, wetter, and perhaps had precipitation in the form of rain or snow. However, when viewed at very high resolution (1.5 to 4.5 meters per pixel) with the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), the Warrego valleys break down into a series of vaguely continuous (in other words, not necessarily connected to each other) troughs that have been covered and partially filled by a material that has eroded to form a very rough-textured surface. None of the original valley floor or wall features are visible because of this rough-textured mantle, and thus very little can be said regarding whether the valleys represent the results of persistent flow and precipitation runoff. Despite the MOC observations and the relatively unique nature of these valleys relative to other valley networks on Mars, the Warrego Valles continue to be used by many as an example of typical martian valley networks. The picture shown here is a mosaic of three MOC narrow angle images obtained in 1999 and 2004: M07-02071, R15-00492, and R15-02626. The dark bar near the bottom center is the location of a data drop, lost during transmission. The 1 km scale bar is approximately equal to 0.62 miles. Sunlight illuminates the images from the upper left, north is up, and the scene is located near 42.4oS, 93.5oW.

  6. A Relationship Between Visible and Near-IR Global Spectral Reflectance based on DSCOVR/EPIC

    NASA Astrophysics Data System (ADS)

    Wen, G.; Marshak, A.; Song, W.; Knyazikhin, Y.

    2017-12-01

    The launch of Deep Space Climate Observatory (DSCOVR) to the Earth's first Lagrange point (L1) allows us to see a new perspective of the Earth. The Earth Polychromatic Imaging Camera (EPIC) on the DSCOVR measures the back scattered radiation of the entire sunlit side of the Earth at 10 narrow band wavelengths ranging from ultraviolet to visible and near-infrared. We analyzed EPIC global averaged reflectance data. We found that the global averaged visible reflectance has a unique non-linear relationship with near infrared (NIR) reflectance. This non-linear relationship was not observed by any other satellite observations due to a limited spatial and temporal coverage of either low earth orbit (LEO) or geostationary satellite. The non-linear relationship is associated with the changing in the coverages of ocean, cloud, land, and vegetation as the Earth rotates. We used Terra and Aqua MODIS daily global radiance data to simulate EPIC observations. Since MODIS samples the Earth in a limited swath (2330km cross track) at a specific local time (10:30 am for Terra, 1:30 pm for Aqua) with approximately 15 orbits per day, the global average reflectance at a given time may be approximated by averaging the reflectance in the MODIS nearest-time swaths in the sunlit hemisphere. We found that MODIS simulated global visible and NIR spectral reflectance captured the major feature of the EPIC observed non-linear relationship with some errors. The difference between the two is mainly due to the sampling limitation of polar satellite. This suggests that that EPIC observations can be used to reconstruct MODIS global average reflectance time series for studying Earth system change in the past decade.

  7. Orbit determination based on meteor observations using numerical integration of equations of motion

    NASA Astrophysics Data System (ADS)

    Dmitriev, V.; Lupovka, V.; Gritsevich, M.

    2014-07-01

    We review the definitions and approaches to orbital-characteristics analysis applied to photographic or video ground-based observations of meteors. A number of camera networks dedicated to meteors registration were established all over the word, including USA, Canada, Central Europe, Australia, Spain, Finland and Poland. Many of these networks are currently operational. The meteor observations are conducted from different locations hosting the network stations. Each station is equipped with at least one camera for continuous monitoring of the firmament (except possible weather restrictions). For registered multi-station meteors, it is possible to accurately determine the direction and absolute value for the meteor velocity and thus obtain the topocentric radiant. Based on topocentric radiant one further determines the heliocentric meteor orbit. We aim to reduce total uncertainty in our orbit-determination technique, keeping it even less than the accuracy of observations. The additional corrections for the zenith attraction are widely in use and are implemented, for example, here [1]. We propose a technique for meteor-orbit determination with higher accuracy. We transform the topocentric radiant in inertial (J2000) coordinate system using the model recommended by IAU [2]. The main difference if compared to the existing orbit-determination techniques is integration of ordinary differential equations of motion instead of addition correction in visible velocity for zenith attraction. The attraction of the central body (the Sun), the perturbations by Earth, Moon and other planets of the Solar System, the Earth's flattening (important in the initial moment of integration, i.e. at the moment when a meteoroid enters the atmosphere), atmospheric drag may be optionally included in the equations. In addition, reverse integration of the same equations can be performed to analyze orbital evolution preceding to meteoroid's collision with Earth. To demonstrate the developed technique, we provide calculated orbits for several cases, including well-known meteorite-producing fireballs. A comparison of our estimates with previously published ones is also provided.

  8. Location of Viking 1 Lander on the surface of Mars

    USGS Publications Warehouse

    Morris, E.C.; Jones, K.L.; Berger, J.P.

    1978-01-01

    A location of the Viking 1 Lander on the surface of Mars has been determined by correlating topographic features in the lander pictures with similar features in the Viking orbiter pictures. Radio tracking data narrowed the area of search for correlating orbiter and lander features and an area was found on the orbiter pictures in which there is good agreement with topographic features on the lander pictures. This location, when plotted on the 1:250,000 scale photomosaic of the Yorktown Region of Mars (U.S. Geological Survey, 1977) is at 22.487??N latitude and 48.041??W longitude. ?? 1978.

  9. The NASA Fireball Network

    NASA Technical Reports Server (NTRS)

    Cooke, William J.

    2013-01-01

    In the summer of 2008, the NASA Meteoroid Environments Office (MEO) began to establish a video fireball network, based on the following objectives: (1) determine the speed distribution of cm size meteoroids, (2) determine the major sources of cm size meteoroids (showers/sporadic sources), (3) characterize meteor showers (numbers, magnitudes, trajectories, orbits), (4) determine the size at which showers dominate the meteor flux, (5) discriminate between re-entering space debris and meteors, and 6) locate meteorite falls. In order to achieve the above with the limited resources available to the MEO, it was necessary that the network function almost fully autonomously, with very little required from humans in the areas of upkeep or analysis. With this in mind, the camera design and, most importantly, the ASGARD meteor detection software were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN), as NASA has a cooperative agreement with Western's Meteor Physics Group. 15 cameras have been built, and the network now consists of 8 operational cameras, with at least 4 more slated for deployment in calendar year 2013. The goal is to have 15 systems, distributed in two or more groups east of automatic analysis; every morning, this server also automatically generates an email and a web page (http://fireballs.ndc.nasa.gov) containing an automated analysis of the previous night's events. This analysis provides the following for each meteor: UTC date and time, speed, start and end locations (longitude, latitude, altitude), radiant, shower identification, light curve (meteor absolute magnitude as a function of time), photometric mass, orbital elements, and Tisserand parameter. Radiant/orbital plots and various histograms (number versus speed, time, etc) are also produced. After more than four years of operation, over 5,000 multi-station fireballs have been observed, 3 of which potentially dropped meteorites. A database containing data on all these events, including the videos and calibration information, has been developed and is being modified to include data from the SOMN and other camera networks.

  10. Mars Global Digital Dune Database; MC-1

    USGS Publications Warehouse

    Hayward, R.K.; Fenton, L.K.; Tanaka, K.L.; Titus, T.N.; Colaprete, A.; Christensen, P.R.

    2010-01-01

    The Mars Global Digital Dune Database presents data and describes the methodology used in creating the global database of moderate- to large-size dune fields on Mars. The database is being released in a series of U.S. Geological Survey (USGS) Open-File Reports. The first release (Hayward and others, 2007) included dune fields from 65 degrees N to 65 degrees S (http://pubs.usgs.gov/of/2007/1158/). The current release encompasses ~ 845,000 km2 of mapped dune fields from 65 degrees N to 90 degrees N latitude. Dune fields between 65 degrees S and 90 degrees S will be released in a future USGS Open-File Report. Although we have attempted to include all dune fields, some have likely been excluded for two reasons: (1) incomplete THEMIS IR (daytime) coverage may have caused us to exclude some moderate- to large-size dune fields or (2) resolution of THEMIS IR coverage (100m/pixel) certainly caused us to exclude smaller dune fields. The smallest dune fields in the database are ~ 1 km2 in area. While the moderate to large dune fields are likely to constitute the largest compilation of sediment on the planet, smaller stores of sediment of dunes are likely to be found elsewhere via higher resolution data. Thus, it should be noted that our database excludes all small dune fields and some moderate to large dune fields as well. Therefore, the absence of mapped dune fields does not mean that such dune fields do not exist and is not intended to imply a lack of saltating sand in other areas. Where availability and quality of THEMIS visible (VIS), Mars Orbiter Camera narrow angle (MOC NA), or Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) images allowed, we classified dunes and included some dune slipface measurements, which were derived from gross dune morphology and represent the prevailing wind direction at the last time of significant dune modification. It was beyond the scope of this report to look at the detail needed to discern subtle dune modification. It was also beyond the scope of this report to measure all slipfaces. We attempted to include enough slipface measurements to represent the general circulation (as implied by gross dune morphology) and to give a sense of the complex nature of aeolian activity on Mars. The absence of slipface measurements in a given direction should not be taken as evidence that winds in that direction did not occur. When a dune field was located within a crater, the azimuth from crater centroid to dune field centroid was calculated, as another possible indicator of wind direction. Output from a general circulation model (GCM) is also included. In addition to polygons locating dune fields, the database includes THEMIS visible (VIS) and Mars Orbiter Camera Narrow Angle (MOC NA) images that were used to build the database. The database is presented in a variety of formats. It is presented as an ArcReader project which can be opened using the free ArcReader software. The latest version of ArcReader can be downloaded at http://www.esri.com/software/arcgis/arcreader/download.html. The database is also presented in an ArcMap project. The ArcMap project allows fuller use of the data, but requires ESRI ArcMap(Registered) software. A fuller description of the projects can be found in the NP_Dunes_ReadMe file (NP_Dunes_ReadMe folder_ and the NP_Dunes_ReadMe_GIS file (NP_Documentation folder). For users who prefer to create their own projects, the data are available in ESRI shapefile and geodatabase formats, as well as the open Geography Markup Language (GML) format. A printable map of the dunes and craters in the database is available as a Portable Document Format (PDF) document. The map is also included as a JPEG file. (NP_Documentation folder) Documentation files are available in PDF and ASCII (.txt) files. Tables are available in both Excel and ASCII (.txt)

  11. Before-and-After Views Confirm Fresh Craters

    NASA Image and Video Library

    2014-05-22

    These images from the Context Camera on NASA Mars Reconnaissance Orbiter were taken before and after an apparent impact scar appeared in the area in March 2012. Comparing the images confirms that fresh craters appeared during the interval.

  12. Mars Odyssey Seen by Mars Global Surveyor 3-D

    NASA Image and Video Library

    2005-05-19

    This stereoscopic picture of NASA Mars Odyssey spacecraft was created from two views of that spacecraft taken by the Mars Orbiter Camera on NASA Mars Global Surveyor. 3D glasses are necessary to view this image.

  13. Warm-Season Flows on Slope in Horowitz Crater Nine-Image Sequence

    NASA Image and Video Library

    2011-08-04

    This image comes from observations of Horowitz crater by the HiRISE camera onboard NASA Mars Reconnaissance Orbiter. The features that extend down the slope during warm seasons are called recurring slope lineae.

  14. Caught in Action: Avalanches on North Polar Scarps

    NASA Image and Video Library

    2008-03-03

    Amazingly, this image has captured at least four Martian avalanches, or debris falls, in action. It was taken on February 19, 2008, by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  15. Dark Spots

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Dark spots (left) and 'fans' appear to scribble dusty hieroglyphics on top of the Martian south polar cap in two high-resolution Mars Global Surveyor, Mars Orbiter Camera images taken in southern spring. Each image is about 3-kilometers wide (2-miles).

  16. Ripple Trap

    NASA Image and Video Library

    2006-04-03

    This Mars Global Surveyor MGS Mars Orbiter Camera MOC image shows the margin of a lava flow on a cratered plain in the Athabasca Vallis region of Mars. Remarkably, the cratered plain in this scene is essentially free of bright, windblown ripples

  17. Phoenix Lander Amid Disappearing Spring Ice

    NASA Image and Video Library

    2010-01-11

    NASA Phoenix Mars Lander, its backshell and heatshield visible within this enhanced-color image of the Phoenix landing site taken on Jan. 6, 2010 by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  18. Phobos from 6,800 Kilometers Color

    NASA Image and Video Library

    2008-04-09

    The High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter took two images of the larger of Mars two moons, Phobos, within 10 minutes of each other on March 23, 2008. This is the first.

  19. Zooming in on Landing Site

    NASA Image and Video Library

    2008-05-24

    This animation zooms in on the area on Mars where NASA Phoenix Mars Lander will touchdown on May 25, 2008. The image was taken by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  20. End effector on orbiter's RMS arm

    NASA Image and Video Library

    2001-03-13

    STS102-E-5201 (13 March 2001) --- A view of the interior of the end effector apparatus on the end of the Canadian-built remote manipulator system (RMS) arm. The photograph was taken with a digital still camera.

Top