Science.gov

Sample records for orbiter laser altimeter

  1. Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Zuber, Maria T.

    1997-01-01

    The objective of this study was to support the rebuild and implementation of the Mars Orbiter Laser Altimeter (MOLA) investigation and to perform scientific analysis of current Mars data relevant to the investigation. The instrument is part of the payload of the NASA Mars Global Surveyor (MGS) mission. The instrument is a rebuild of the Mars Observer Laser Altimeter that was originally flown on the ill-fated Mars Observer mission. The instrument is currently in orbit around Mars and has so far returned remarkable data.

  2. Refinement of Phobos Ephemeris Using Mars Orbiter Laser Altimeter Radiometry

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Bills, B. G.; Smith, D. E.; Zuber, M. T.

    2004-01-01

    Radiometric observations from the Mars Orbiter Laser Altimeter (MOLA) can be used to improve the ephemeris of Phobos, with particular interest in refining estimates of the secular acceleration due to tidal dissipation within Mars. We have searched the Mars Orbiter Laser Altimeter (MOLA) radiometry data for shadows cast by the moon Phobos, finding 7 such profiles during the Mapping and Extended Mission phases, and 5 during the last two years of radiometry operations. Preliminary data suggest that the motion of Phobos has advanced by one or more seconds beyond that predicted by the current ephemerides, and the advance has increased over the 5 years of Mars Global Surveyor (MGS) operations.

  3. Participation in the Mars Orbiting Laser Altimeter Experiment

    NASA Technical Reports Server (NTRS)

    Pettengill, Gordon H.

    2002-01-01

    This NASA Grant, 5-4434, has covered the active participation of the Principal Investigator, Prof. Gordon Pettengill, and his Co-Investigator, Peter Ford, in the Mars Orbiting Laser Altimeter (MOLA) Experiment, over a period of five years. This participation has included attending team meetings, planning observing operations, developing data-reduction software algorithms, and processing data, as well as presenting a number of oral reports at scientific meetings and published papers in refereed journals. This research has concentrated on the various types of Martian clouds that were detected by the laser altimeter.

  4. Lunar Topography: Results from the Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory; Smith, David E.; Zuber, Maria T.; Mazarico, Erwan

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter (LRO) has been operating nearly continuously since July 2009, accumulating over 6 billion measurements from more than 2 billion in-orbit laser shots. LRO's near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, with full coverage at the equator from more than 12000 orbital tracks averaging less than 1 km in spacing at the equator. LRO has obtained a global geodetic model of the lunar topography with 50-meter horizontal and 1-m radial accuracy in a lunar center-of-mass coordinate system, with profiles of topography at 20-m horizontal resolution, and 0.1-m vertical precision. LOLA also provides measurements of reflectivity and surface roughness down to its 5-m laser spot size. With these data LOLA has measured the shape of all lunar craters 20 km and larger. In the proposed extended mission commencing late in 2012, LOLA will concentrate observations in the Southern Hemisphere, improving the density of the polar coverage to nearly 10-m pixel resolution and accuracy to better than 20 m total position error. Uses for these data include mission planning and targeting, illumination studies, geodetic control of images, as well as lunar geology and geophysics. Further improvements in geodetic accuracy are anticipated from the use of re ned gravity fields after the successful completion of the Gravity Recovery and Interior Laboratory (GRAIL) mission in 2012.

  5. Participation in the Mars Orbiting Laser Altimeter Experiment

    NASA Technical Reports Server (NTRS)

    Pettengil, Gordon H.; Ford, Peter

    2004-01-01

    The Mars Orbiting Laser Altimeter (MOLA) instrument [1,2] carried aboard the Mars Global Surveyor (MGS) spacecraft, has observed strong echoes from cloud tops at 1.064 microns on 61% of its orbital passes over the winter north pole (235deg L(sub S), < 315deg) and on 58% of the passes over the winter south pole (45deg < L(sub S), < 135deg). The clouds are unlikely to be composed of water ice since the vapor pressure of H2O is very low at the Martian nighttime polar temperatures measured by the Thermal Emission Spectrometer (TES) [3], and by an analysis of MGS radio occultations [4]. Dust clouds can also be ruled out since no correlation is seen between clouds and global dust storms. The virtually certain composition for the winter polar clouds is CO2 ice.

  6. Research Participation in the Mars Orbiter Laser Altimeter Experiment

    NASA Technical Reports Server (NTRS)

    Pettengill, Gordon H.

    2003-01-01

    This report describes the tasks that have been completed by the Principal Investigator, Gordon Pettengill, and his team during the first year of this grant. Dr. Pettengill was assisted by Dr. Peter Ford and Ms. Joan Quigley. Our main task has been to analyze the polar clouds detected by MOLA (Mars Orbiter Laser Altimeter) during the nominal mission of the Mars Global Surveyor (MGS) in 1999-2001 and to correlate the results with other data sets, in particular that from TES, the MGS thermal emission spectrometer. Starting with the Martian cloud database that we constructed prior to the start of this grant, we have examined all TES footprints that overlap MOLA clouds in time and space, correlating the thermal signature against specific categories that we assign to MOLA clouds on the basis of visual inspection. We are particularly interested in clouds in the region of "cold spots", areas of anomalously low thermal brightness temperature that have been detected in the polar winter by several instruments beginning with IRIS on Mariner 9. They are thought to indicate regions of active CO2 sublimation or snowfall, and it is hoped that MOLA measurements may tell us more about these regions.

  7. The Lunar Orbiter Laser Altimeter (LOLA) Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Novo-Gradac, Anne Marie; Shaw, George B.; Unger, Glenn; Lukemire, Alan

    2008-01-01

    We present the final configuration of the space flight laser transmitter as delivered to the LOLA instrument. The laser consists of two oscillators with co-aligned outputs on a single bench, each capable of providing one billion plus shots.

  8. Laser Transmitter for the Lunar Orbit Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Novo-Gradac, Anne-Marie; Shaw, George B.; Li, Steven X.; Krebs, Danny C.; Ramos-Izquierdo, Luis A.; Unger, Glenn; Lukemire, Alan

    2008-01-01

    We present the final configuration of the space flight laser transmitter as delivered to the LOLA instrument. The laser consists of two oscillators on a single bench, each capable of providing one billion plus shots.

  9. Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

    NASA Astrophysics Data System (ADS)

    Lim, Hyung-Chul; Neumann, Gregory A.; Choi, Myeong-Hwan; Yu, Sung-Yeol; Bang, Seong-Cheol; Ka, Neung-Hyun; Park, Jong-Uk; Choi, Man-Soo; Park, Eunseo

    2016-09-01

    Korea’s lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

  10. Observations of Reflectivity of the Martian Surface in the Mars Orbiter Laser Altimeter (MOLA) Investigation

    NASA Technical Reports Server (NTRS)

    Ivanov, Anton B.; Muhleman, Duane O.

    2000-01-01

    We are presenting results of calculation of the surface albedo of Mars at 1 micron wavelength from the Mars Orbiter Laser Altimeter (MOLA) reflectivity measurements. The Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) 9 micron opacity is employed to remove opacity from the MOLA measurements.

  11. New Morphometric Measurements of Peak-Ring Basins on Mercury and the Moon: Results from the Mercury Laser Altimeter and Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank; Gwiner, Klaus

    2012-01-01

    Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.

  12. In-orbit Calibration of the Lunar Orbiter Laser Altimeter Via Two-Way Laser Ranging with an Earth Station

    NASA Astrophysics Data System (ADS)

    Sun, X.; Barker, M. K.; Mao, D.; Marzarico, E.; Neumann, G. A.; Skillman, D. R.; Zagwodzki, T. W.; Torrence, M. H.; Mcgarry, J.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Orbiting planetary laser altimeters have provided critical data on such bodies as the Earth, Mars, the Moon, Mercury, and 433 Eros. The measurement accuracy of these instruments depends on accurate knowledge of not only the position and attitude of the spacecraft, but also the pointing of the altimeter with respect to the spacecraft coordinate system. To that end, we have carried out several experiments to measure post-launch instrument characteristics for the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter. In these experiments, the spacecraft points away from the Moon and scans the Earth in a raster pattern as the LOLA laser fires (the downlink) while a ground station on Earth fires its own laser to the spacecraft (the uplink). The downlink pulse arrival times and digitized waveforms are recorded at the ground station, the Goddard Geophysical and Astronomical Observatory in Greenbelt, MD, and the uplink arrival times and pulse widths are measured by LOLA. From early in the mission, the experiments have helped to confirm a pointing anomaly when LOLA is facing towards deep space or the cold side of the Moon. Under these conditions, the downlink data indicate a laser bore-sight pointing offset of about -400 and 100 microradians in the cross-track and along-track directions, respectively. These corrections are consistent with an analysis of LOLA ground-track crossovers spread throughout the mission to determine lunar tidal flexure. The downlink data also allow the reconstruction of the laser far-field pattern. From the uplink data, we estimate a correction to the receiver telescope nighttime pointing of ~140 microradians in the cross-track direction. By comparing data from such experiments shortly after launch and nearly 5 years later, we have directly measured the changes in the laser characteristics and obtained critical data to understand the laser behavior and refine the instrument calibration.

  13. An Experiment to Detect Lunar Horizon Glow with the Lunar Orbit Laser Altimeter Laser Ranging Telescope

    NASA Astrophysics Data System (ADS)

    Smith, David E.; Zuber, Maria T.; Barker, Michael; Mazarico, Erwan; Neumann, Gregory A.; McClanahan, Timothy P.; Sun, Xiaoli

    2016-04-01

    Lunar horizon glow (LHG) was an observation by the Apollo astronauts of a brightening of the horizon around the time of sunrise. The effect has yet to be fully explained or confirmed by instruments on lunar orbiting spacecraft despite several attempts. The Lunar Reconnaissance Orbiter (LRO) spacecraft carries the laser altimeter (LOLA) instrument which has a 2.5 cm aperture telescope for Earth-based laser ranging (LR) mounted and bore-sighted with the high gain antenna (HGA). The LR telescope is connected to LOLA by a fiber-glass cable to one of its 5 detectors. For the LGH experiments the LR telescope is pointed toward the horizon shortly before lunar sunrise with the intent of observing any forward scattering of sunlight due to the presence of dust or particles in the field of view. Initially, the LR telescope is pointed at the dark lunar surface, which provides a measure of the dark count, and moves toward the lunar limb so as to measure the brightness of the sky just above the lunar limb immediately prior to lunar sunrise. At no time does the sun shine directly into the LR telescope, although the LR telescope is pointed as close to the sun as the 1.75-degree field of view permits. Experiments show that the LHG signal seen by the astronauts can be detected with a four-second integration of the noise counts.

  14. Regional Elevations in the Southern Hemisphere of Mars From the Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Zuber, M. T.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Muhleman, D. O.; Neumann, G. A.; Pettengill, G. H.; Phillips, R. J.; Solomon, S. C.

    1999-01-01

    The Mars Orbiter Laser Altimeter (MOLA) is an instrument on the Mars Global Surveyor (MGS) spacecraft that is currently providing the first high vertical and spatial resolution topographic measurements of surface elevations on Mars. The shot size in the mapping orbit is about 100 m and the shot-to-shot spacing is 330 m. The instrument has a vertical precision of 37.5 cm and a vertical accuracy that depends on the radial accuracy of the MGS orbit that is currently in the range 5-30 km. The initial focus on observations in the nominal mapping mission will be on the southern hemisphere, which was not sampled during the MGS aerobraking hiatus and Science Phasing orbits. During the first several weeks of global mapping there will be emphasis on producing a digital terrain model (DTM) of the Mars '98 landing site.

  15. Night and Day: The Opacity of Clouds Measured by the Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Wilson, R. J.

    2006-01-01

    The Mars Orbiter Laser Altimeter (MOLA) [l] on the Mars Global Surveyor spacecraft ranged to clouds over the course of nearly two Mars years [2] using an active laser ranging system. While ranging to the surface, the instrument was also able to measure the product of the surface reflectivity with the two-way atmospheric transmission at 1064 nm. Furthermore, the reflectivity has now been mapped over seasonal cycles using the passive radiometric capability built into MOLA [3]. Combining these measurements, the column opacity may be inferred. MOLA uniquely provides these measurements both night and day. This study examines the pronounced nighttime opacity of the aphelion season tropical water ice clouds, and the indiscernibly low opacity of the southern polar winter clouds. The water ice clouds (Figure 1) do not themselves trigger the altimeter but have measured opacities tau > 1.5 and are temporally and spatially correlated with temperature anomalies predicted by a Mars Global Circulation Model (MGCM) that incorporates cloud radiative effects [4]. The south polar CO2 ice clouds trigger the altimeter with a very high backscatter cross-section over a thickness of 3-9 m and are vertically dispersed over several km, but their total column opacities lie well below the MOLA measurement limit of tau = 0.7. These clouds correspond to regions of supercooled atmosphere that may form either very large specularly reflecting particles [2] or very compact, dense concentrations (>5x10(exp 6)/cu m) of 100-p particles

  16. Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter

    PubMed Central

    Mazarico, Erwan; Barker, Michael K; Neumann, Gregory A; Zuber, Maria T; Smith, David E

    2014-01-01

    The Lunar Orbiter Laser Altimeter instrument onboard the Lunar Reconnaissance Orbiter spacecraft collected more than 5 billion measurements in the nominal 50 km orbit over ∼10,000 orbits. The data precision, geodetic accuracy, and spatial distribution enable two-dimensional crossovers to be used to infer relative radial position corrections between tracks to better than ∼1 m. We use nearly 500,000 altimetric crossovers to separate remaining high-frequency spacecraft trajectory errors from the periodic radial surface tidal deformation. The unusual sampling of the lunar body tide from polar lunar orbit limits the size of the typical differential signal expected at ground track intersections to ∼10 cm. Nevertheless, we reliably detect the topographic tidal signal and estimate the associated Love number h2 to be 0.0371 ± 0.0033, which is consistent with but lower than recent results from lunar laser ranging. Key Points Altimetric data are used to create radial constraints on the tidal deformationThe body tide amplitude is estimated from the crossover dataThe estimated Love number is consistent with previous estimates but more precise PMID:26074646

  17. MESSENGER Laser Altimeter

    NASA Video Gallery

    MESSENGER's Mercury Laser Altimeter sends out laser pulses that hit the ground and return to the instrument. The amount of light that returns for each pulse gives the reflectance at that point on t...

  18. Precise Orbit Determination for GEOSAT Follow-On Using Satellite Laser Ranging Data and Intermission Altimeter Crossovers

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rowlands, David D.; Luthcke, Scott B.; Zelensky, Nikita P.; Chinn, Douglas S.; Pavlis, Despina E.; Marr, Gregory

    2001-01-01

    The US Navy's GEOSAT Follow-On Spacecraft was launched on February 10, 1998 with the primary objective of the mission to map the oceans using a radar altimeter. Following an extensive set of calibration campaigns in 1999 and 2000, the US Navy formally accepted delivery of the satellite on November 29, 2000. Satellite laser ranging (SLR) and Doppler (Tranet-style) beacons track the spacecraft. Although limited amounts of GPS data were obtained, the primary mode of tracking remains satellite laser ranging. The GFO altimeter measurements are highly precise, with orbit error the largest component in the error budget. We have tuned the non-conservative force model for GFO and the gravity model using SLR, Doppler and altimeter crossover data sampled over one year. Gravity covariance projections to 70x70 show the radial orbit error on GEOSAT was reduced from 2.6 cm in EGM96 to 1.3 cm with the addition of SLR, GFO/GFO and TOPEX/GFO crossover data. Evaluation of the gravity fields using SLR and crossover data support the covariance projections and also show a dramatic reduction in geographically-correlated error for the tuned fields. In this paper, we report on progress in orbit determination for GFO using GFO/GFO and TOPEX/GFO altimeter crossovers. We will discuss improvements in satellite force modeling and orbit determination strategy, which allows reduction in GFO radial orbit error from 10-15 cm to better than 5 cm.

  19. An Overview of the Topography of Mars from the Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, Maria T.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft has now completed more than half of its one-Mars-year mission to globally map Mars. During the MGS elliptical and circular orbit mapping phases, the Mars Orbiter Laser Altimeter (MOLA), an instrument on the MGS payload, has collected over 300 million precise elevation measurements. MOLA measures the range from the MGS spacecraft to the Martian surface and to atmospheric reflections. Range is converted to topography through knowledge of the MGS spacecraft orbit. Ranges from MOLA have resulted in a precise global topographic map of Mars. The instrument has also provided measurements of the width of the backscattered optical pulse and of the 1064 nm reflectivity of the Martian surface and atmosphere. The range resolution of the MOLA instrument is 37.5 cm and the along-track resolution of MOLA ground shots is approx. 300 m; the across-track spacing depends on latitude and time in the mapping orbit. The best current topographic grid has a spatial resolution of approx. 1/16 deg and vertical accuracy of approx. one meter. Additional information is contained in the original extended abstract.

  20. Multi-beam laser altimeter

    NASA Technical Reports Server (NTRS)

    Bufton, Jack L.; Harding, David J.; Ramos-Izquierdo, Luis

    1993-01-01

    Laser altimetry provides a high-resolution, high-accuracy method for measurement of the elevation and horizontal variability of Earth-surface topography. The basis of the measurement is the timing of the round-trip propagation of short-duration pulses of laser radiation between a spacecraft and the Earth's surface. Vertical resolution of the altimetry measurement is determined primarily by laser pulsewidth, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and sub-nsec resolution electronics, sub-meter vertical range resolution is possible from orbital attitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition-rate, laser transmitter beam configuration, and altimeter platform velocity determine the space between successive laser pulses. Multiple laser transitters in a singlaltimeter instrument provide across-track and along-track coverage that can be used to construct a range image of the Earth's surface. Other aspects of the multi-beam laser altimeter are discussed.

  1. Performance Assessment of the Mercury Laser Altimeter on MESSENGER from Mercury Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Mazarico, Edward M.

    2009-01-01

    The Mercury Laser Altimeter (MLA) is one of seven instruments on the MErcury Surface, Space ENvironment GEochemistry, and Ranging (MESSENGER) spacecraft,a mission in NASA's Discovery Program. MESSENGER was launched on August 3, 2004, and entered into orbit about Mercury on March 29, 2011. As of June 30, 2011 MLA started to collect science Measurements on March 29, 2011. As of June 30, 2011 MLA had accumulated about 3 million laser ranging measurements to the Mercury surface through one Mercury year, i.e ., one complete cycle of the spacecraft thermal environment. The average MLA laser output-pulse energy remained steady despite the harsh thermal environment, in which the laser bench temperature changed by as much as 15 C over a 35 min operating period . The laser beam-collimating telescope experienced a 30 C temperature swing over the same period, and the thermal cycling repeated every 12 hours. Nonetheless, MLA receiver optics appeared to be aligned and in focus throughout these temperature excursions. The maximum ranging distance of MLA was 1500 km at near-zero laser-beam incidence angle (and emission angle) and 600 km at 60 deg incidence angle. The MLA instrument performance in Mercury orbit has been consistent with the performance demonstrated during MESSENGER's Mercury flybys in January and October 2008 and during pre-launch testing. In addition to range measurements, MLA data are being used to estimate the surface reflectance of Mercury at 1064 nm wavelength, including regions of permanent shadow on the floors of polar craters. MLA also provides a measurement of the surface reflectance of sunlight at 1064 nm wavelength by its noise counters, for which output is a monotonic function of the background light.

  2. Geoscience Laser Altimeter System (GLAS) Loop Heat Pipes: An Eventual First Year On-Orbit

    NASA Technical Reports Server (NTRS)

    Grob, E.; Baker, C.; McCarthy, T.

    2004-01-01

    Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) is the sole scientific instrument on the Ice, Cloud and land Elevation Satellite (ICESat) that was launched on January 12, 2003 from Vandenberg AFB. A thermal control architecture based on propylene Loop Heat Pipe technology was developed to provide selectable/stable temperature control for the lasers and other electronics over the widely varying mission environment. Following a nominal LHP and instrument start-up, the mission was interrupted with the failure of the first laser after only 36 days of operation. During the 5-month failure investigation, the two GLAS LHPs and the electronics operated nominally, using heaters as a substitute for the laser heat load. Just prior to resuming the mission, following a seasonal spacecraft yaw maneuver, one of the LHPs deprimed and created a thermal runaway condition that resulted in an emergency shutdown of the GLAS instrument. This paper presents details of the LHP anomaly, the resulting investigation and recovery, along with on-orbit flight data during these critical events.

  3. A new lunar digital elevation model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Camera

    NASA Astrophysics Data System (ADS)

    Barker, M. K.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Haruyama, J.; Smith, D. E.

    2016-07-01

    We present an improved lunar digital elevation model (DEM) covering latitudes within ±60°, at a horizontal resolution of 512 pixels per degree (∼60 m at the equator) and a typical vertical accuracy ∼3 to 4 m. This DEM is constructed from ∼ 4.5 ×109 geodetically-accurate topographic heights from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter, to which we co-registered 43,200 stereo-derived DEMs (each 1° × 1°) from the SELENE Terrain Camera (TC) (∼1010 pixels total). After co-registration, approximately 90% of the TC DEMs show root-mean-square vertical residuals with the LOLA data of <5 m compared to ∼ 50% prior to co-registration. We use the co-registered TC data to estimate and correct orbital and pointing geolocation errors from the LOLA altimetric profiles (typically amounting to <10 m horizontally and <1 m vertically). By combining both co-registered datasets, we obtain a near-global DEM with high geodetic accuracy, and without the need for surface interpolation. We evaluate the resulting LOLA + TC merged DEM (designated as "SLDEM2015") with particular attention to quantifying seams and crossover errors.

  4. Radiometry Measurements of Mars at 1064nm Using the Mars Orbiter Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Neumann, G. A.; Zuber, M. T.

    2001-12-01

    Measurements by the Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) may be used to provides a radiometric measurement of Mars in addition to the topographic measurement. We will describe the principle of operation, a mathematical model, and the receiver calibration in this presentation. MOLA was designed primarily to measure Mars topography, surface roughness, and the bidirectional reflectance to the laser beam. To achieve the highest sensitivity, the receiver detection threshold is dynamically adjusted to be as low as possible while keeping a predetermined false alarm rate. The average false alarm rate is monitored in real time on board MOLA via a noise counter, whose output is fed to the threshold control loop. The false alarm rate at a given threshold is a function of the detector output noise, which is the sum of the photodetector shot noise due to the background light seen by the detector and the dark noise. A mathematical model has been developed that can be used to numerically solve for the optical background power given the MOLA threshold setting and the average noise count. The radiance of Mars can then be determined by dividing the optical power by the solid angle subtended by the MOLA receiver, the receiver optical bandwidth, and the Mars surface area within the receiver field of view. The phase angle which is the sun-Mars-MOLA angle is available from the MGS database. MOLA also measures simultaneously the bidirectional reflectance of Mars via its 1064nm laser beam at nadir with nearly zero phase angle. The optical bandwidth of the MOLA receiver is 2nm full width at half maximum (FWHM) and centered at 1064nm. The receiver field of view is 0.85mrad FWHM. The nominal spacecraft altitude is 400km and the ground track speed is about 3km/s. Under normal operation, the noise counters are read and the threshold levels are updated at 1Hz. The receiver sensitivity is limited by the detector dark noise to about 0.1nW, which corresponds

  5. Martian Polar Region Impact Craters: Geometric Properties From Mars Orbiter Laser Altimeter (MOLA) Observations

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.; Frawley, J. J.; Matias, A.

    1998-01-01

    The Mars Orbiter Laser Altimeter (MOLA) instrument onboard the Mars Global Surveyor (MGS) spacecraft has so far observed approximately 100 impact landforms in the north polar latitudes (>60 degrees N) of Mars. Correlation of the topography with Viking Orbiter images indicate that many of these are near-center profiles, and for some of the most northern craters, multiple data passes have been acquired. The northern high latitudes of Mars may contain substantial ground ice and be topped with seasonal frost (largely CO2 with some water), forming each winter. We have analyzed various diagnostic crater topologic parameters for this high-latitude crater population with the objective of characterizing impact features in north polar terrains, and we explore whether there is evidence of interaction with ground ice, frost, dune movement, or other polar processes. We find that there are substantial topographic variations from the characteristics of midlatitude craters in the polar craters that are not readily apparent from prior images. The transition from small simple craters to large complex craters is not well defined, as was observed in the midlatitude MOLA data (transition at 7-8 km). Additionally, there appear to be additional topographic complexities such as anomalously large central structures in many polar latitude impact features. It is not yet clear if these are due to target-induced differences in the formation of the crater or post-formation modifications from polar processes.

  6. Polar Dunes Resolved by the Mars Orbiter Laser Altimeter Gridded Topography and Pulse Widths

    NASA Technical Reports Server (NTRS)

    Neumann, Gregory A.

    2003-01-01

    The Mars Orbiter Laser Altimeter (MOLA) polar data have been refined to the extent that many features poorly imaged by Viking Orbiters are now resolved in densely gridded altimetry. Individual linear polar dunes with spacings of 0.5 km or more can be seen as well as sparsely distributed and partially mantled dunes. The refined altimetry will enable measurements of the extent and possibly volume of the north polar ergs. MOLA pulse widths have been recalibrated using inflight data, and a robust algorithm applied to solve for the surface optical impulse response. It shows the surface root-mean-square (RMS) roughness at the 75-m-diameter MOLA footprint scale, together with a geological map. While the roughness is of vital interest for landing site safety studies, a variety of geomorphological studies may also be performed. Pulse widths corrected for regional slope clearly delineate the extent of the polar dunes. The MOLA PEDR profile data have now been re-released in their entirety (Version L). The final Mission Experiment Gridded Data Records (MEGDR's) are now provided at up to 128 pixels per degree globally. Densities as high as 512 pixels per degree are available in a polar stereographic projection. A large computational effort has been expended in improving the accuracy of the MOLA altimetry themselves, both in improved orbital modeling and in after-the-fact adjustment of tracks to improve their registration at crossovers. The current release adopts the IAU2000 rotation model and cartographic frame recommended by the Mars Cartography Working Group. Adoption of the current standard will allow registration of images and profiles globally with an uncertainty of less than 100 m. The MOLA detector is still operational and is currently collecting radiometric data at 1064 nm. Seasonal images of the reflectivity of the polar caps can be generated with a resolution of about 300 m per pixel.

  7. Precise Orbit Determination for GEOSAT Follow-On Using Satellite Laser Ranging Data and Intermission Altimeter Crossovers

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Rowlands, D. D.; Luthcke, S. B.; Zelensky, N. P.; Chinn, D. S.; Pavlis, D. E.; Marr, G. C.

    2001-01-01

    The U.S. Navy's GEOSAT Follow-On Spacecraft was launched on February 10, 1998 and the primary objective of the mission was to map the oceans using a radar altimeter. Following an extensive set of calibration campaigns in 1999 and 2000, the US Navy formally accepted delivery of the satellite on November 29, 2000. The spacecraft is tracked by satellite laser ranging (SLR) and Doppler (Tranet-style) beacons. Although a limited amount of GPS data were obtained, the primary mode of tracking remains satellite laser ranging. In this paper, we report on progress in orbit determination for GFO using GFO/GFO and TOPEX/GFO altimeter crossovers. We have tuned the nonconservative force model for GFO and the gravity model using SLR, Doppler and altimeter crossover data spanning over one year. Preliminary results show that the predicted radial orbit error from the gravity field covariance to 70x70 on GEOSAT was reduced from 2.6 cm in EGM96 to 1.9 cm with the addition of only five months of the GFO SLR and GFO/GFO crossover data. Further progress is possible with the addition of more data, particularly the TOPEX/GFO crossovers. We will evaluate the tuned GFO gravity model (a derivative of EGM96) using altimeter data from the GEOSAT mission. In January 2000, a limited quantity of GPS data were obtained. We will use these GPS data in conjunction with the SLR and altimeter crossover data obtained over the same time span to compute quasi-reduced dynamic orbits which will also aid in the evaluation of the tuned GFO geopotential model.

  8. Observations of the north polar region of Mars from the Mars orbiter laser altimeter.

    PubMed

    Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-12-11

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  9. Observations of the north polar region of Mars from the Mars orbiter laser altimeter

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Smith, D. E.; Solomon, S. C.; Abshire, J. B.; Afzal, R. S.; Aharonson, O.; Fishbaugh, K.; Ford, P. G.; Frey, H. V.; Garvin, J. B.; Head, J. W.; Ivanov, A. B.; Johnson, C. L.; Muhleman, D. O.; Neumann, G. A.; Pettengill, G. H.; Phillips, R. J.; Sun, X.; Zwally, H. J.; Banerdt, W. B.; Duxbury, T. C.

    1998-01-01

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  10. Seasonal Changes in the Thickness of Martian Polar Crater Deposits From the Mars Orbiter Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Schmerr, N. C.; Garvin, J. B.; Neumann, G. A.; Sakimoto, S. E.

    2001-12-01

    This study uses near-repeat topographic profiles and gridded data from the Mars Orbiter Laser Altimeter to investigate temporal changes in several ice-filled craters in the North Polar Region of Mars. The craters we investigated are Korolev (73° N, 163° E), "Sasquatch" (77° N, 89° E) and "Frosty" (77° N, 215° E) [Garvin et. al., 2000, Icarus, 144, 329-352]. Profiles are corrected using crossovers that are not affected by seasonal changes. We find that spatially matched but temporally separated MOLA profiles of the central ice deposits within these craters show vertical variation on the order of 1-5 meters. This change in topography temporally correlates to the seasonal deposition and sublimation of frost in the North Polar Region of Mars [Zuber et al., this session] but is locally greater in magnitude. The change is also localized to the south-facing slopes of the ice deposits within the craters. This suggests that up to 5 m of carbon dioxide frost deposition and ablation may be taking place on the south-facing slopes of these craters each Martian year. This rapid change in ice deposit thickness provides a mechanism for geologically swift modification of the polar-layered terrains.

  11. On Orbit Receiver Performance Assessment of the Geoscience Laser Altimeter System (GLAS) on ICESAT

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Spinhirne, James D.; McGarry, Jan; Jester, Peggy L.; Yi, Donghui; Palm, Stephen P.; Lancaster, Redgie S.

    2006-01-01

    The GLAS instrument on the NASA's ICESat mission has provided over a billion measurements of the Earth surface elevation and atmosphere backscattering at both 532 and 1064-nm wavelengths. The receiver performance has stayed nearly unchanged since ICESat launch in January 2003. The altimeter receiver has achieved a less than 3-cm ranging accuracy when excluding the effects of the laser beam pointing angle determination uncertainties. The receiver can also detect surface echoes through clouds of one-way transmission as low as 5%. The 532-nm atmosphere backscattering receiver can measure aerosol and clouds with cross section as low as 1e-7/m.sr with a 1 second integration time and molecular backscattering from upper atmosphere with a 60 second integration time. The 1064-nm atmosphere backscattering receiver can measure aerosol and clouds with a cross section as low as 4e-6/m.sr. This paper gives a detailed assessment of the GLAS receiver performance based on the in-orbit calibration tests.

  12. Comparing the roughness of the Moon from Lunar Orbiter Laser Altimeter (LOLA) to asteroids and planets

    NASA Astrophysics Data System (ADS)

    Barnouin-Jha, O. S.; Zuber, M. T.; Smith, D. E.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Oberst, J.; Head, J. W.; Lucey, P. G.; Robinson, M. S.; Duxbury, T. C.

    2009-12-01

    The Lunar Orbiter Laser Altimeter (LOLA) is a unique instrument that measures the topography of Moon at vertical resolutions of 10 cm and horizontal resolutions of 25 m over 1000s of km. These data are used to compute the fractal roughness of the surface of the Moon at horizontal scales that overlap similar altimetry collected at the asteroids 25143 Itokawa and 433 Eros, and the planets Mercury and Mars. This comparative analysis provides new insights on the processes that create fractal versus non-fractal topography on the Moon. 2>0.5 where e is the elevation, and s is the distance between altimetric points. For fractal structures, σ obeys σ= Ch(B/Bo)H where Bo = 1 m, and Ch is a normalizing constant. The quantity H is called the Hurst exponent. 50 m, the Moon is significantly rougher than the rubble pile asteroid Itokawa. However, extrapolating the fractal distributions observed on the Moon to B~1m, the value of σ approximates those computed for the very smooth Muses-C regio on Itokawa, where on average <1m changes in elevation are seen over 5 m of lateral displacements. This is equivalent to slopes<12°. 10km). One possible explanation for this loss may be due to gravitational forces that limit the formation of topography in excess of 3-5 km. Gravity slows the construction of large topography by volcanism and enhances any fluvial erosional processes on Mars for example. Furthermore, the formation of broad (>15km) but shallow complex craters relative to small but simple bowl shaped ones occurs because the topography of large transient craters (>10 km on the Moon) cannot be maintained by the strength of the crustal rocks and collapse due to gravity.

  13. Lunar phase function at 1064 nm from Lunar Orbiter Laser Altimeter passive and active radiometry

    NASA Astrophysics Data System (ADS)

    Barker, M. K.; Sun, X.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2016-07-01

    We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be ∼5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermophysical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at ∼300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition and OMAT

  14. Lunar Phase Function at 1064 Nm from Lunar Orbiter Laser Altimeter Passive and Active Radiometry

    NASA Technical Reports Server (NTRS)

    Barker, M. K.; Sun, X.; Mazarico, E.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2016-01-01

    We present initial calibration and results of passive radiometry collected by the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter over the course of 12 months. After correcting for time- and temperature-dependent dark noise and detector responsivity variations, the LOLA passive radiometry measurements are brought onto the absolute radiance scale of the SELENE Spectral Profiler. The resulting photometric precision is estimated to be 5%. We leverage the unique ability of LOLA to measure normal albedo to explore the 1064 nm phase function's dependence on various geologic parameters. On a global scale, we find that iron abundance and optical maturity (quantified by FeO and OMAT) are the dominant controlling parameters. Titanium abundance (TiO2), surface roughness on decimeter to decameter scales, and soil thermo- physical properties have a smaller effect, but the latter two are correlated with OMAT, indicating that exposure age is the driving force behind their effects in a globally-averaged sense. The phase function also exhibits a dependence on surface slope at approximately 300 m baselines, possibly the result of mass wasting exposing immature material and/or less space weathering due to reduced sky visibility. Modeling the photometric function in the Hapke framework, we find that, relative to the highlands, the maria exhibit decreased backscattering, a smaller opposition effect (OE) width, and a smaller OE amplitude. Immature highlands regolith has a higher backscattering fraction and a larger OE width compared to mature highlands regolith. Within the maria, the backscattering fraction and OE width show little dependence on TiO2 and OMAT. Variations in the phase function shape at large phase angles are observed in and around the Copernican-aged Jackson crater, including its dark halo, a putative impact melt deposit. Finally, the phase function of the Reiner Gamma Formation behaves more optically immature than is typical for its composition

  15. Radiometry Measurements of Mars at 1064 nm Using the Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Sun, Xiao-Li; Abshire, James B.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E. (Technical Monitor)

    2001-01-01

    Measurements by the Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) may be used to provides a radiometric measurement of Mars in addition to the topographic measurement. We will describe the principle of operation, a mathematical model, and the receiver calibration in this presentation. MOLA was designed primarily to measure Mars topography, surface roughness end the bidirectional reflectance to the laser beam. To achieve the highest sensitivity the receiver detection threshold is dynamically adjusted to be as low as possible while keeping a predetermined false alarm rate. The average false alarm rate 29 monitored in real time on board MOLA via a noise counter, whose output is fed to the threshold control loop. The false alarm rate at a given threshold is a function of the detector output noise which is the sum of the photo detector, shot noise due to the background light seen by the detector and the dark noise. A mathematical model has been developed that can be used to numerically solve for the optical background power given the MOLA threshold setting and the average noise count. The radiance of Mars can then be determined by dividing the optical power by the solid angle subtended by the MOLA receiver, the receiver optical band-width, end the Mars surface area within the receiver field of view. The phase angle which is the sun-Mars-MOLA angle is available from the MGS database. MOLA also measures simultaneously the bidirectional reflectance of Mars vie its 106-lum loser beam at nadir with nearly zero phase angle. The optical bandwidth of the MOLA receiver is 2um full width at half maximum (FWHM) and centered at 106-lum. The receiver field of view is 0.95mrad FWHM. The nominated spacecraft altitude is 100km and the ground track speed is about 3km/s. Under normal operation, the noise counter are read and the threshold levels are updated at 1Hz. The receiver sensitivity is limited by the detector dark noise to about 0.1nW, which

  16. Mars 1064-nm Spectral Radiance Measurements from the Receiver Noise Response of the Mars Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Neumann, Gregory A.; Abshire, James B.; Zuber, Maria T.

    2005-01-01

    The Mars Orbiter Laser Altimeter not only provides surface topography from the laser pulse time-of-flight, but also two radiometric measurements, the active measurement of transmitted and reflected laser pulse energy, and the passive measurement of reflected solar illumination. The passive radiometry measurement is accomplished in a novel fashion by monitoring the noise density at the output of the photodetector and solving for the amount of background light. The passive radiometry measurements provide images of Mars at 1064-nm wavelength over a 2 nm bandwidth with sub-km spatial resolution and with 2% or better precision under full illumination. We describe in this paper the principle of operation, the receiver mathematical model, its calibration, and performance assessment from sample measurement data.

  17. Robust Control for the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Rosenberg, Jacob S.

    2006-01-01

    Mercury Laser Altimeter Science Algorithms is a software system for controlling the laser altimeter aboard the Messenger spacecraft, which is to enter into orbit about Mercury in 2011. The software will control the altimeter by dynamically modifying hardware inputs for gain, threshold, channel-disable flags, range-window start location, and range-window width, by using ranging information provided by the spacecraft and noise counts from instrument hardware. In addition, because of severe bandwidth restrictions, the software also selects returns for downlink.

  18. Vertical Roughness of the Polar Regions of Mars from Mars Orbiter Laser Altimeter Pulse-Width Measurements

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.

    2000-01-01

    The sub-kilometer scale vertical roughness of the martian surface in the polar regions can be investigated using calibrated, optical pulse width data provided by the Mars Orbiter Laser Altimeter (MOLA). Garvin and others have previously discussed initial observations of what we have called "total vertical roughness" or TVR, as derived from MOLA optical pulse width observations acquired during the pre-mapping phases of the Mars Global Surveyor (MGS) mission. Here we present the first assessment of the Mars polar region properties of the TVR parameter from more than nine months of continuous mapping by MOLA as part of the MGS mapping mission. Other than meter-scale surface properties directly inferred from Mars Orbiter Camera (MOC) images, MOLA measurements of footprint-scale TVR represent the only direct measurements of the local vertical structure of the martian surface at approx. 150 m length scales. These types of data have previously been shown to correlate with geologic process histories for terrestrial desert surfaces on the basis of Shuttle Laser Altimeter (SLA) observations. Additional information is obtained in the original extended abstract.

  19. Orientale Impact Basin and Vicinity: Topographic Characterization from Lunar Orbiter Laser Altimeter (LOLA) Data

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Fassett, C.; Mazarico, E.; Torrence, M. H.; Dickson, J.

    2009-12-01

    The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau and these data permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); this topographic configuration supports the interpretation that the MF consists of different facies of impact melt. The inner

  20. On the calibration of Mars Orbiter Laser Altimeter surface roughness estimates using high-resolution DTMs

    NASA Astrophysics Data System (ADS)

    Poole, W.; Muller, J.-P.; Gupta, S.

    2012-04-01

    Planetary surface roughness is critical in the selection of suitable landing sites for robotic lander or roving missions. It has also been used in the identification of terrain, for better calibration of radar returns and improved understanding of aerodynamic roughness [1]. One of the secondary science goals of the Mars Orbiter Laser Altimeter (MOLA) was the study of surface roughness at 100 m, using the backscatter pulse width of the laser pulse, which has a footprint of 168 m in diameter [2]. The pulse width values in the final release (version L) of the MOLA Precision Experiment Data Record (PEDR) have been corrected for across track slopes and the removal of 'bad points', and footprint diameter was revised to 75 m, with a 35 m response length in [3]. We look here at comparing surface roughness values derived from the MOLA pulse-width data with surface roughness estimates derived at various scales from high-resolution digital terrain models (DTMs) to determine if these theoretically derived surface roughness lengths are physically meaningful. The final four potential landing sites for Mars Science Laboratory were used in this study, as they have extensive HiRISE (1m) and HRSC (50m) DTM coverage [4]. Pulse width data from both the MOLA PEDR (version L) and the data used in [3] was collected and compared for each of the sites against surface roughness estimates at various scales from HiRISE, and HRSC, DTMs using the RMS height. This assumed a circular footprint for each MOLA footprint and that the horizontal geolocation of the PEDR MOLA footprints was sufficiently accurate to only extract those DTM points which lay inside the footprints. Results from the MOLA PEDR data were extremely poor, and show no correlation with surface roughness measurements from DTMs. Results using the corrected data in [3] were mixed. Eberswalde and Holden Craters both show significantly improved correlations for a variety of surface roughness scales. The best correlations were found to

  1. Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter.

    PubMed

    Smith, D E; Zuber, M T; Frey, H V; Garvin, J B; Head, J W; Muhleman, D O; Pettengill, G H; Phillips, R J; Solomon, S C; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-03-13

    The first 18 tracks of laser altimeter data across the northern hemisphere of Mars from the Mars Global Surveyor spacecraft show that the planet at latitudes north of 50 degrees is exceptionally flat; slopes and surface roughness increase toward the equator. The polar layered terrain appears to be a thick ice-rich formation with a non-equilibrium planform indicative of ablation near the periphery. Slope relations suggest that the northern Tharsis province was uplifted in the past. A profile across Ares Vallis channel suggests that the discharge through the channel was much greater than previously estimated. The martian atmosphere shows significant 1-micrometer atmospheric opacities, particularly in low-lying areas such as Valles Marineris.

  2. Topography of the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter.

    PubMed

    Smith, D E; Zuber, M T; Frey, H V; Garvin, J B; Head, J W; Muhleman, D O; Pettengill, G H; Phillips, R J; Solomon, S C; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-03-13

    The first 18 tracks of laser altimeter data across the northern hemisphere of Mars from the Mars Global Surveyor spacecraft show that the planet at latitudes north of 50 degrees is exceptionally flat; slopes and surface roughness increase toward the equator. The polar layered terrain appears to be a thick ice-rich formation with a non-equilibrium planform indicative of ablation near the periphery. Slope relations suggest that the northern Tharsis province was uplifted in the past. A profile across Ares Vallis channel suggests that the discharge through the channel was much greater than previously estimated. The martian atmosphere shows significant 1-micrometer atmospheric opacities, particularly in low-lying areas such as Valles Marineris. PMID:9497281

  3. Multibeam Laser Altimeter for Planetary Topographic Mapping

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Bufton, J. L.; Harding, D. J.

    1993-01-01

    Laser altimetry provides an active, high-resolution, high-accuracy method for measurement of planetary and asteroid surface topography. The basis of the measurement is the timing of the roundtrip propagation of short-duration pulses of laser radiation between a spacecraft and the surface. Vertical, or elevation, resolution of the altimetry measurement is determined primarily by laser pulse width, surface-induced spreading in time of the reflected pulse, and the timing precision of the altimeter electronics. With conventional gain-switched pulses from solid-state lasers and nanosecond resolution timing electronics, submeter vertical range resolution is possible anywhere from orbital altitudes of approximately 1 km to altitudes of several hundred kilometers. Horizontal resolution is a function of laser beam footprint size at the surface and the spacing between successive laser pulses. Laser divergence angle and altimeter platform height above the surface determine the laser footprint size at the surface, while laser pulse repetition rate, laser transmitter beam configuration, and altimeter platform velocity determine the spacing between successive laser pulses. Multiple laser transmitters in a single laser altimeter instrument that is orbiting above a planetary or asteroid surface could provide across-track as well as along-track coverage that can be used to construct a range image (i.e., topographic map) of the surface. We are developing a pushbroom laser altimeter instrument concept that utilizes a linear array of laser transmitters to provide contiguous across-track and along-track data. The laser technology is based on the emerging monolithic combination of individual, 1-sq cm diode-pumped Nd:YAG laser pulse emitters. Details of the multi-emitter laser transmitter technology, the instrument configuration, and performance calculations for a realistic Discovery-class mission will be presented.

  4. Improved calibration of reflectance data from the LRO Lunar Orbiter Laser Altimeter (LOLA) and implications for space weathering

    NASA Astrophysics Data System (ADS)

    Lemelin, M.; Lucey, P. G.; Neumann, G. A.; Mazarico, E. M.; Barker, M. K.; Kakazu, A.; Trang, D.; Smith, D. E.; Zuber, M. T.

    2016-07-01

    The Lunar Orbiter Laser Altimeter (LOLA) experiment on Lunar Reconnaissance Orbiter (LRO) is a laser altimeter that also measures the strength of the return pulse from the lunar surface. These data have been used to estimate the reflectance of the lunar surface, including regions lacking direct solar illumination. A new calibration of these data is presented that features lower uncertainties overall and more consistent results in the polar regions. We use these data, along with newly available maps of the distribution of lunar maria, also derived from LRO instrument data, to investigate a newly discovered dependence of the albedo of the lunar maria on latitude (Hemingway et al., [2015]). We confirm that there is an increase in albedo with latitude in the lunar maria, and confirm that this variation is not an artifact arising from the distribution of compositions within the lunar maria, using data from the Lunar Prospector Neutron Spectrometer. Radiative transfer modeling of the albedo dependence within the lunar maria is consistent with the very weak to absent dependence of albedo on latitude in the lunar highlands; the lower abundance of the iron source for space weathering products in the lunar highlands weakens the latitude dependence to the extent that it is only weakly detectable in current data. In addition, photometric models and normalization may take into account the fact that the lunar albedo is latitude dependent, but this dependence can cause errors in normalized reflectance of at most 2% for the majority of near-nadir geometries. We also investigate whether the latitude dependent albedo may have obscured detection of small mare deposits at high latitudes. We find that small regions at high latitudes with low roughness similar to the lunar maria are not mare deposits that may have been misclassified owing to high albedos imposed by the latitude dependence. Finally, we suggest that the only modest correlations among space weathering indicators defined

  5. The Geoscience Laser Altimeter System Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Dallas, J. L.; Yu, A. W.; Mamakos, W. A.; Lukemire, A.; Schroeder, B.; Malak, A.

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS), scheduled to launch in 2001, is a laser altimeter and lidar for tile Earth Observing System's (EOS) ICESat mission. The laser transmitter requirements, design and qualification test results for this space- based remote sensing instrument are presented.

  6. The steepest slopes on the Moon from Lunar Orbiter Laser Altimeter (LOLA) Data: Spatial Distribution and Correlation with Geologic Features

    NASA Astrophysics Data System (ADS)

    Kreslavsky, Mikhail A.; Head, James W.

    2016-07-01

    We calculated topographic gradients over the surface of the Moon at a 25 m baseline using data obtained by the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft. The relative spatial distribution of steep slopes can be reliably obtained, although some technical characteristics of the LOLA dataset preclude statistical studies of slope orientation. The derived slope-frequency distribution revealed a steep rollover for slopes close to the angle of repose. Slopes significantly steeper than the angle of repose are almost absent on the Moon due to (1) the general absence of cohesion/strength of the fractured and fragmented megaregolith of the lunar highlands, and (2) the absence of geological processes producing steep-slopes in the recent geological past. The majority of slopes steeper than 32°-35° are associated with relatively young large impact craters. We demonstrate that these impact craters progressively lose their steepest slopes. We also found that features of Early Imbrian and older ages have almost no slopes steeper than 35°. We interpret this to be due to removal of all steep slopes by the latest basin-forming impact (Orientale), probably by global seismic shaking. The global spatial distribution of the steepest slopes correlates moderately well with the predicted spatial distribution of impact rate; however, a significant paucity of steep slopes in the southern farside remains unexplained.

  7. In Orbit Performance of Si Avalanche Photodiode Single Photon Counting Modules in the Geoscience Laser Altimeter System on ICESat

    NASA Technical Reports Server (NTRS)

    Sun, X.; Jester, P. L.; Palm, S. P.; Abshire, J. B.; Spinhime, J. D.; Krainak, M. A.

    2006-01-01

    Si avalanche photodiode (APD) single photon counting modules (SPCMs) are used in the Geoscience Laser Altimeter System (GLAS) on Ice, Cloud, anti land Elevation Satellite (ICESat), currently in orbit measuring Earth surface elevation and atmosphere backscattering. These SPCMs are used to measure cloud and aerosol backscatterings to the GLAS laser light at 532-nm wavelength with 60-70% quantum efficiencies and up to 15 millions/s maximum count rates. The performance of the SPCMs has been closely monitored since ICESat launch on January 12, 2003. There has been no measurable change in the quantum efficiency, as indicated by the average photon count rates in response to the background light from the sunlit earth. The linearity and the afterpulsing seen from the cloud and surface backscatterings profiles have been the same as those during ground testing. The detector dark count rates monitored while the spacecraft was in the dark side of the globe have increased almost linearly at about 60 counts/s per day due to space radiation damage. The radiation damage appeared to be independent of the device temperature and power states. There was also an abrupt increase in radiation damage during the solar storm in 28-30 October 2003. The observed radiation damage is a factor of two to three lower than the expected and sufficiently low to provide useful atmosphere backscattering measurements through the end of the ICESat mission. To date, these SPCMs have been in orbit for more than three years. The accumulated operating time to date has reached 290 days (7000 hours). These SPCMs have provided unprecedented receiver sensitivity and dynamic range in ICESat atmosphere backscattering measurements.

  8. Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data

    NASA Technical Reports Server (NTRS)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.

  9. Engineering study for pallet adapting the Apollo laser altimeter and photographic camera system for the Lidar Test Experiment on orbital flight tests 2 and 4

    NASA Technical Reports Server (NTRS)

    Kuebert, E. J.

    1977-01-01

    A Laser Altimeter and Mapping Camera System was included in the Apollo Lunar Orbital Experiment Missions. The backup system, never used in the Apollo Program, is available for use in the Lidar Test Experiments on the STS Orbital Flight Tests 2 and 4. Studies were performed to assess the problem associated with installation and operation of the Mapping Camera System in the STS. They were conducted on the photographic capabilities of the Mapping Camera System, its mechanical and electrical interface with the STS, documentation, operation and survivability in the expected environments, ground support equipment, test and field support.

  10. Bench checkout equipment for spaceborne laser altimeter systems

    NASA Technical Reports Server (NTRS)

    Smith, James C.; Elman, Gregory C.; Christian, Kent D.; Cavanaugh, John F.; Ramos-Izquierdo, Luis; Hopf, Dan E.

    1993-01-01

    This paper addresses the requirements for testing and characterizing spaceborne laser altimeter systems. The Bench Checkout Equipment (BCE) system, test requirements, and flow-down traceability from the instrument system's functional requirements will also be presented. Mars Observer Laser Altimeter (MOLA) and the MOLA BCE are presented as representative of a 'typical' laser altimeter and its corresponding test system. The testing requirements of other or future laser altimeter systems may vary slightly due to the specific spacecraft interface and project requirements. MOLA, the first solid-state interplanetary laser altimeter, was designed to be operational in Mars orbit for two Earth years. MOLA transmits a 7.5 ns pulse at a wavelength of 1.064 microns with a 0.25 mr beam divergence and a pulse repetition rate of 10 Hz. The output energy is specified at 45 mj at the beginning of mapping orbit and 30 mj at the end of one Martian year. MOLA will measure the laser pulse transit time from the spacecraft to the Mars surface and return to a resolution of 1.5 meters.

  11. Stratigraphy, Sequence, and Crater Populations of Lunar Impact Basins from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for the Late Heavy Bombardment

    NASA Technical Reports Server (NTRS)

    Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2012-01-01

    New measurements of the topography of the Moon from the Lunar Orbiter Laser Altimeter (LOLA)[1] provide an excellent base-map for analyzing the large crater population (D.20 km)of the lunar surface [2, 3]. We have recently used this data to calculate crater size-frequency distributions (CSFD) for 30 lunar impact basins, which have implications for their stratigraphy and sequence. These data provide an avenue for assessing the timing of the transitions between distinct crater populations characteristic of ancient and young lunar terrains, which has been linked to the late heavy bombardment (LHB). We also use LOLA data to re-examine relative stratigraphic relationships between key lunar basins.

  12. The Ganymede Laser Altimeter (GALA)

    NASA Astrophysics Data System (ADS)

    Hussmann, H.

    2015-12-01

    The Ganymede Laser Altimeter (GALA) is one of the instruments selected for ESA's Jupiter Icy Moons Explorer (JUICE). A fundamental goal of any exploratory space mission is to characterize and measure the shape, topography, and rotation of the target bodies. A state of the art tool for this task is laser altimetry because it can provide absolute topographic height and position with respect to a body centered reference system. With respect to Ganymede, the GALA instrument aims at mapping of global, regional and local topography; confirming the global subsurface ocean and further characterization of the water-ice/liquid shell by monitoring the dynamic response of the ice shell to tidal forces; providing constraints on the forced physical librations and spin-axis obliquity; determining Ganymede's shape; obtaining detailed topographic profiles across the linear features of grooved terrain, impact structures, possible cryo-volcanic features and other different surface units; providing information about slope, roughness and albedo (at 1064nm) of Ganymede's surface. GALA uses the direct-detection (classical) approach of laser altimetry. Laser pulses are emitted at a wavelength of 1064 nm by using an actively Q-switched Nd:Yag laser. The pulse energy and pulse repetition frequency are 17 mJ at 30 Hz, respectively. The emission time of each pulse is measured by the detector. The beam is reflected from the surface and received at a 25 cm diameter F/1 telescope. The returning laser pulse is refocused onto a silicon avalanche photodiode (APD) through back-end optics including a narrow bandpass interference filter for isolating the 1064 nm wavelength. The APD-signal is then amplified, sampled and fed to a digital range finder. The minimum acceptable SNR is approx. 1.2. This system determines the time of flight, pulse intensity, width and full shape. The GALA instrument is developed in collaboration of institutes and industry from Germany, Japan, Switzerland and Spain.

  13. The transition from complex craters to multi-ring basins on the Moon: Quantitative geometric properties from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter (LOLA) data

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.

    2012-03-01

    The morphologic transition from complex impact craters, to peak-ring basins, and to multi-ring basins has been well-documented for decades. Less clear has been the morphometric characteristics of these landforms due to their large size and the lack of global high-resolution topography data. We use data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft to derive the morphometric characteristics of impact basins on the Moon, assess the trends, and interpret the processes involved in the observed morphologic transitions. We first developed a new technique for measuring and calculating the geometric/morphometric properties of impact basins on the Moon. This new method meets a number of criteria that are important for consideration in any topographic analysis of crater landforms (e.g., multiple data points, complete range of azimuths, systematic, reproducible analysis techniques, avoiding effects of post-event processes, robustness with respect to the statistical techniques). The resulting data more completely capture the azimuthal variation in topography that is characteristic of large impact structures. These new calculations extend the well-defined geometric trends for simple and complex craters out to basin-sized structures. Several new geometric trends for peak-ring basins are observed. Basin depth: A factor of two reduction in the depth to diameter (d/Dr) ratio in the transition from complex craters to peak-ring basins may be characterized by a steeper trend than known previously. The d/Dr ratio for peak-ring basins decreases with rim-crest diameter, which may be due to a non-proportional change in excavation cavity growth or scaling, as may occur in the simple to complex transition, or increased magnitude of floor uplift associated with peak-ring formation. Wall height, width, and slope: Wall height and width increase with increasing rim-crest diameter, while wall slope decreases; decreasing ratios

  14. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    NASA Technical Reports Server (NTRS)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  15. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    NASA Technical Reports Server (NTRS)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  16. Design and Performance Measurement of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Sun, Xiao-Li; Cavanaugh, John F.; Smith, James C.; Bartels, Arlin E.

    2004-01-01

    We report the design and test results of the Mercury Laser Altimeter on MESSENGER mission to be launched in May 2004. The altimeter will provide planet surface topography measurements via laser pulse time of flight.

  17. The Mars Observer laser altimeter investigation

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Smith, D. E.; Solomon, S. C.; Muhleman, D. O.; Head, J. W.; Garvin, J. B.; Abshire, J. B.; Bufton, J. L.

    1992-01-01

    The primary objective of the Mars Observer laser altimeter (MOLA) investigation is to determine globally the topography of Mars at a level suitable for addressing problems in geology and geophysics. Secondary objectives are to characterize the 1064-nm wavelength surface reflectivity of Mars to contribute to analyses of global surface mineralogy and seasonal albedo changes, to assist in addressing problems in atmospheric circulation, and to provide geodetic control and topographic context for the assessment of possible future Mars landing sites. The principal components of MOLA are a diode-pumped, neodymium-doped yttrium aluminum garnet laser transmitter that emits 1064-nm wavelength laser pulses, a 0.5-m-diameter telescope, a silicon avalanche photodiode detector, and a time interval unit with 10-ns resolution. MOLA will provide measurements of the topography of Mars within approximately 160-m footprints and a center-to-center along-track foot print spacing of 300 m along the Mars Observer subspacecraft ground track. The elevation measurements will be quantized with 1.5 m vertical resolution before correction for orbit- and pointing induced errors. MOLA profiles will be assembled into a global 0.2 deg x 0.2 deg grid that will be referenced to Mars' center of mass with an absolute accuracy of approximately 30 m. Other data products will include a global grid of topographic gradients, corrected individual profiles, and a global 0.2 deg x 0.2 deg grid of 1064-nm surface reflectivity.

  18. Thickness of Proximal Ejecta from the Orientale Basin from Lunar Orbiter Laser Altimeter (LOLA) Data: Implications for Multi-Ring Basin Formation

    NASA Technical Reports Server (NTRS)

    Fassett, Caleb I.a; Head, James W.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.

    2011-01-01

    Quantifying the ejecta distribution around large lunar basins is important to understanding the origin of basin rings, the volume of the transient cavity, the depth of sampling, and the nature of the basin formation processes. We have used newly obtained altimetry data of the Moon from the Lunar Orbiter Laser Altimeter (LOLA) instrument to estimate the thickness of ejecta in the region surrounding the Orientale impact basin, the youngest and best preserved large basin on the Moon. Our measurements yield ejecta thicknesses of approx.2900 m near the Cordillera Mountains, the topographic rim of Orientale, decaying to approx.1 km in thickness at a range of 215 km. These measurements imply a volume of ejecta in the region from the Cordillera ring to a radial range of one basin diameter of approx.2.9 x 10(exp 6)cu km and permit the derivation of an ejecta-thickness decay model, which can be compared with estimates for the volume of excavation and the size of the transient cavity. These data are consistent with the Outer Rook Mountains as the approximate location of the transient cavity s rim crest and suggest a volume of approx.4.8 x 10(exp 6)cu km for the total amount of basin ejecta exterior to this location.

  19. Laser Transmitter Design for the Geoscience Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Afzal, R. S.; Yu, A. W.; Mamakos, W.; Lukemire, A.; Dallas, J. L.; Schroeder, B.; Green, J. W.

    1998-01-01

    NASA is embarking on a new era of laser remote sensing instruments from space. This paper focuses specifically on the laser technology involved in one of the present NASA missions. The Geoscience Laser Altimeter System (GLAS) scheduled to launch in 2001 is a laser altimeter and lidar for the Earth Observing System's (EOS) ICESat mission. The laser transmitter for this space-based remote sensing instrument is discussed in the context of the mission requirements.

  20. BELA - The BepiColombo Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Thomas, N.; Christensen, U.; Oberst, J.; Seiferlin, K.; Michaelis, H.; Hilchenbach, M.; Gunderson, K.

    2005-12-01

    The BepiColombo Laser Altiometer BELA is being developed by a consortium led by Physikalisches Institut, Universitat Bern and the DLR Institute of Planetary Research Berlin. The laser is foreseen to be passively Q-switched and longitudinally pumped with pulse energy of up to 50mJ, a pulse frequency of 10Hz and a pulse duration of a few nanoseconds. BELA aims to measure the figure axes of the planet to 10m accuracy and the topography with a single-shot ranging accuracy of 1m and with a grid spacing of a few hundred meters along-track. In addition, attempts will be made to measure the tidal deformation of the planet which, as model calculations have shown, should be on the order of a meter. The Laser Altimeter data will also provide constraints on the surface roughness from the divergence of the reflected laser signal, terrain slopes, and the surface albedo. It is even possible that the Laser Altimeter may provide constraints on the possible existence of ice in permanently shaded craters near the poles. Here, the Laser Altimeter will profit from providing its own illumination source. The instrument will work synergetically with both the radio science experiment (for gravity field measurements) and the stereo camera on BepiColombo. The Laser Altimeter topography data will be used to correct the gravity measurements for the effects of surface topography and thereby allow an assessment of the interior structure of the planet including the lateral variations of the crust thickness and of the core radius. The Laser Altimeter and the stereo camera will work together to provide an accurate digital terrain model. This model will be used to make quantitative studies of surface morphology, and to assess the role of volcanism and the tectonics of the planet. Prominent features of the topography known to us today such as lobate scarps will be measured accurately and provide important constraints on the cooling history of the planet.

  1. Qualification of Laser Diode Arrays for Mercury Laser Altimeter Mission

    NASA Technical Reports Server (NTRS)

    Stephen, Mark; Vasilyev, Aleksey; Schafer, John; Allan, Graham R.

    2004-01-01

    NASA's requirements for high reliability, high performance satellite laser instruments have driven the investigation of many critical components; specifically, 808 nm laser diode array (LDA) pump devices. The MESSENGER mission is flying the Mercury Laser Altimeter (MLA) which is a diode-pumped Nd:YAG laser instrument designed to map the topography of Mercury. The environment imposed on the instrument by the orbital dynamics places special requirements on the laser diode arrays. In order to limit the radiative heating of the satellite from the surface of Mercury, the satellite is designed to have a highly elliptical orbit. The satellite will heat near perigee and cool near apogee. The laser power is cycled during these orbits so that the laser is on for only 30 minutes (perigee) in a 12 hour orbit. The laser heats 10 C while powered up and cools while powered down. In order to simulate these operational conditions, we designed a test to measure the LDA performance while being temperature and power cycled. Though the mission requirements are specific to NASA and performance requirements are derived from unique operating conditions, the results are general and widely applicable. We present results on the performance of twelve LDAs operating for several hundred million pulses. The arrays are 100 watt, quasi-CW, conductively-cooled, 808 nm devices. Prior to testing, we fully characterize each device to establish a baseline for individual array performance and status. Details of this characterization can be found in reference. Arrays are divided into four groups and subjected to the temperature and power cycling matrix are shown.

  2. The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.

    2012-01-01

    Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of

  3. Laser pointing determination for the geoscience laser altimeter system

    NASA Technical Reports Server (NTRS)

    Miller, Pamela S.; Sirota, J. Marcos

    1998-01-01

    The Geoscience Laser Altimeter System (GLAS) is a space-based lidar being developed to monitor changes in the mass balance of the Earth's polar ice sheets (Thomas et al. 1985). GLAS is part of NASA's Earth Observing System (Schutz 1995), and is being designed to launch into a 600 km circular polar orbit in the year 2001, for continuous operation over 3 to 5 years. The orbit's 94 degree inclination has been selected to allow good coverage and profile patterns over the ice sheets of Greenland and Antarctica. The GLAS mission uses a small dedicated spacecraft provided by Ball Aerospace, which is required to have a very stable nadir and zenith pointing platform which points to within approximately 100 urad (20 arcseconds) of Nadir. Accurate knowledge of the laser beam's pointing angle (in the far field) is critical since pointing the laser beam away from nadir biases the altimetry measurements (Gardner 1992, Bufton et al. 1991). This error is a function of the distance of the laser centroid off nadir multiplied by the orbit altitude and the tangent of the slope angle of the terrain. Most of the ice sheet surface slopes are less than 1? resulting in pointing knowledge bias of only 7.6 cm with 7.3 urad accuracy, and overall single shot height accuracy of approximately 15 cm. However, over a 3 deg surface slope pointing knowledge to approximately 7.3 urad is the largest error source (23 cm) in achieving 26 cm height accuracy. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field to an accuracy of 7.3 urad. The stellar reference system combines an attitude determination system (ADS) operating from 4 to 10 Hz coupled to a 40 Hz laser reference system (LRS) to perform this task.

  4. South Pole-Aitken Basin: Evidence for Post-Basin Resurfacing from Lunar Orbiter Laser Altimeter (LOLA) Data

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Fassett, C.; Kadish, S.; Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Mazarico, E.

    2010-12-01

    The lunar farside South Pole-Aitken Basin is the largest and oldest documented basin on the Moon and is thus of interest from the point of view of the scale of production of impact melt at large basin-event sizes and its ring structure and potential depth of sampling at such a large diameter. We used new LOLA data from the Lunar Reconnaissance Orbiter 1) to characterize the basin interior topography, 2) to assess the nature of the nearby and relatively pristine Orientale basin and compare it to the SPA interior, and 3) to compile a new global crater database of all lunar craters ≥20 km in diameter and to assess the population of impact craters superposed on the SPA interior and exterior. We find that impact crater size-frequency distribution plots show that the exterior of the SPA basin is similar to the most heavily cratered regions of the Moon, but that the interior of the basin has a deficiency of craters in the 20-64 km diameter crater range. One interpretation of these data is that some resurfacing process (or processes) has modified the superposed crater population. Among the candidates are 1) impact crater proximity weathering/degradation by adjacent (e.g., Apollo) and nearby (e.g., Orientale) impact basin ejecta, 2) volcanic resurfacing by early non-mare volcanism, cryptomaria and/or maria, and 3) viscous relaxation removing crater topography. We consider viscous relaxation of crater topography to be the least likely due to the wavelength dependence of the process (rim-crests should be preserved and thus detected in our crater counts). Careful analysis of the impact ejecta thickness radial decay suggests that it is an important resurfacing mechanism within a basin radius from the rim crest, but is unlikely to be sufficient to explain the observed deficiency. Morphometric analysis of impact craters, modeling, and simulations of volcanic flooding suggest that the deficiency may be related to the patchy distribution of cryptomaria, suspected from mineralogic

  5. Geoscience laser altimeter system - stellar reference system

    SciTech Connect

    Millar, Pamela S.; Sirota, J. Marcos

    1998-01-15

    GLAS is an EOS space-based laser altimeter being developed to profile the height of the Earth's ice sheets with {approx}15 cm single shot accuracy from space under NASA's Mission to Planet Earth (MTPE). The primary science goal of GLAS is to determine if the ice sheets are increasing or diminishing for climate change modeling. This is achieved by measuring the ice sheet heights over Greenland and Antarctica to 1.5 cm/yr over 100 kmx100 km areas by crossover analysis (Zwally 1994). This measurement performance requires the instrument to determine the pointing of the laser beam to {approx}5 urad (1 arcsecond), 1-sigma, with respect to the inertial reference frame. The GLAS design incorporates a stellar reference system (SRS) to relate the laser beam pointing angle to the star field with this accuracy. This is the first time a spaceborne laser altimeter is measuring pointing to such high accuracy. The design for the stellar reference system combines an attitude determination system (ADS) with a laser reference system (LRS) to meet this requirement. The SRS approach and expected performance are described in this paper.

  6. Diode-pumped laser altimeter

    NASA Technical Reports Server (NTRS)

    Welford, D.; Isyanova, Y.

    1993-01-01

    TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.

  7. Orientale Impact Basin: Topographic Characterization from Lunar Orbiter Laser Altimeter (LOLA) Data and Implications for Models of Basin Formation and Filling

    NASA Astrophysics Data System (ADS)

    Head, James; Smith, David; Zuber, Maria; Neumann, Gregory; Fassett, Caleb; Whitten, Jennifer; Garrick-Bethell, Ian

    2010-05-01

    The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the 630 km diameter Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau. These data aid in the understanding of the transition from peak-ring to multi-ringed basins and permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); also observed are depressions

  8. In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.

    2014-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.

  9. Short arc orbit determination for altimeter calibration and validation on TOPEX/POSEIDON

    NASA Astrophysics Data System (ADS)

    Williams, B. G.; Christensen, E. J.; Yuan, D. N.; McColl, K. C.; Sunseri, R. F.

    TOPEX/POSEIDON (T/P) is a joint mission of United States' National Aeronautics and Space Administration (NASA) and French Centre National d'Etudes Spatiales (CNES) design launched August 10, 1992. It carries two radar altimeters which alternately share a common antenna. There are two project designated verification sites, a NASA site off the coast at Pt. Conception, CA and a CNES site near Lampedusa Island in the Mediterranean Sea. Altimeter calibration and validation for T/P is performed over these highly instrumented sites by comparing the spacecraft's altimeter radar range to computed range based on in situ measurements which include the estimated orbit position. This paper presents selected results of orbit determination over each of these sites to support altimeter verification. A short arc orbit determination technique is used to estimate a locally accurate position determination of T/P from less than one revolution of satellite laser ranging (SLR) data. This technique is relatively insensitive to gravitational and non-gravitational force modeling errors and is demonstrated by covariance analysis and by comparison to orbits determined from longer arcs of data and other tracking data types, such as Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and Global Positioning System Demonstration Receiver (GPSDR) data.

  10. Cloud and Aerosol Lidar Channel Design and Performance of the Geoscience Laser Altimeter System on the ICESat Mission

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.; Krainak, Michael A.; Spinhirne, James D.; Palm, Steve S.; Lancaster, Redgie S.; Allan, Graham R.

    2004-01-01

    The design of the 532 and 1064nm wavelength atmosphere lidar channels of the Geoscience Laser Altimeter System on the ICESat spacecraft is described. The lidar channel performance per on orbit measurements data will be presented.

  11. Mapping Mars with a Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    2001-01-01

    In November 1996 the Mars Global Surveyor (MGS) spacecraft was launched to Mars. One of the instruments on the spacecraft was a laser altimeter, MOLA, for measuring the shape and topography of the planet. The altimeter has a diode pumped Q-switched ND:YAG laser at 1064nm, operating at 10Hz with an 8 nsec pulse width. The pulse energy is 48mJ, and the instrument has a 37cm ranging precision. The laser illuminates a spot on the surface of Mars approximately 160 meters in diameter and the instrument has accumulated over 600 million range measurements of the surface since arrival at Mars in September 1997. MOLA has operated continuously for over 2 years and has mapped the planet at a horizontal resolution of about 1 km and a radial accuracy of about a meter. MOLA has measured the shape of the planet, the heights of the volcanoes, the depths of the canyons, and the volumes of the polar icecaps. It has detected carbon dioxide clouds and measured the accumulation of seasonal CO2 on the polar icecaps. This new remote sensing tool has helped transform our understanding of Mars and its geological history, and opened a new door to planetary exploration.

  12. Sea test development of laser altimeter

    NASA Astrophysics Data System (ADS)

    Crittenden, E. C., Jr.; Rodeback, G. W.; Milne, E. A.; Cooper, A. W.

    1991-01-01

    Low altitude (81 m.) narrow-beam laser reflectance measurements were made from the nearly ocean-like water surface under the Golden Gate Bridge. For short wavelength waterways superimposed on swell, the signal amplitude probability distribution showed periods of zero return signal, even for vertical incidence, apparently due to tipping of the average water surface. The nonzero signals show an antilog-normal probability distribution, skewed toward higher signal than that provide by a normal (Gaussian) distribution. With incidence angle displaced from the vertical, the distribution shape is retained but with more frequent zero reflections. The decrease with angle of the average signal, including the zeros, is well fitted with a Gram-Charlier distribution, as seen by earlier observers using photographic techniques which masked these details of the structure. For the simpler wave pattern due to a long sustained wind direction, the signal amplitude probability distribution is log-normal with no zero signal periods, for this case, the distribution shifts toward exponential at large angles from the vertical. For surface states intermediate between the above two extremes the distribution is often normal. The larger return signal resulting from the skew toward larger amplitudes from lognormal are more favorable for disposable laser altimeters than previously believed. Also for an altimeter which may be swinging from a parachute or balloon, the return at angles from the vertical remains high. The presence of occasional zero return signal does degrade the accuracy of altitude somewhat for a descending altimeter, but the signal available assures performance at larger altitudes than previously expected.

  13. Altimeter and radiometer for a Venus orbiter mission

    NASA Technical Reports Server (NTRS)

    Bryan, J. W.; Richter, K. R.

    1971-01-01

    The concept, constraints, and capabilities of a radar altimeter type contour mapper for a Venus orbiter mission are presented. The system was developed for the proposed planetary explorer universal bus concept. A system with a height precision of 30meters over a surface area of 7200 square kilometers is achieved. Using this system and the orbit proposed in the orbiting bus concept, the northern hemisphere of Venus is mapped in one Venus day. The radar receiver system, is used in a radiometer mode to obtain a map of the diurnal and logitudinal variations of the Venus surface temperature with a resolution of 3.0 degrees Kelvin.

  14. The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xia-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Laser In space Technology Experiment, Shuttle Laser Altimeter and the Mars Observer Laser Altimeter have demonstrated accurate measurements of atmospheric backscatter and Surface heights from space. The recent MOLA measurements of the Mars surface have 40 cm vertical resolution and have reduced the global uncertainty in Mars topography from a few km to about 5 m. The Geoscience Laser Altimeter System (GLAS) is a next generation lidar for Earth orbit being developed as part of NASA's Icesat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS is being developed to fly on a small dedicated spacecraft in a polar orbit with a 590 630 km altitude at inclination of 94 degrees. GLAS is scheduled to launch in the summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will continuously measure the vertical distance from orbit to the Earth's surface with 1064 nm pulses from a ND:YAG laser at a 40 Hz rate. Each 5 nsec wide laser pulse is used to produce a single range measurement, and the laser spots have 66 m diameter and about 170 m center-center spacings. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a 1 m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes

  15. Gaussian Decomposition of Laser Altimeter Waveforms

    NASA Technical Reports Server (NTRS)

    Hofton, Michelle A.; Minster, J. Bernard; Blair, J. Bryan

    1999-01-01

    We develop a method to decompose a laser altimeter return waveform into its Gaussian components assuming that the position of each Gaussian within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform, and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points. Initial amplitude estimates are obtained using a non-negative least-squares method. To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method. If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians are included in the optimization procedure. The Gaussian decomposition method is demonstrated on data collected by the airborne Laser Vegetation Imaging Sensor (LVIS) in October 1997 over the Sequoia National Forest, California.

  16. GPS-Based Precision Orbit Determination for a New Era of Altimeter Satellites: Jason-1 and ICESat

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, David D.; Lemoine, Frank G.; Zelensky, Nikita P.; Williams, Teresa A.

    2003-01-01

    Accurate positioning of the satellite center of mass is necessary in meeting an altimeter mission's science goals. The fundamental science observation is an altimetric derived topographic height. Errors in positioning the satellite's center of mass directly impact this fundamental observation. Therefore, orbit error is a critical Component in the error budget of altimeter satellites. With the launch of the Jason-1 radar altimeter (Dec. 2001) and the ICESat laser altimeter (Jan. 2003) a new era of satellite altimetry has begun. Both missions pose several challenges for precision orbit determination (POD). The Jason-1 radial orbit accuracy goal is 1 cm, while ICESat (600 km) at a much lower altitude than Jason-1 (1300 km), has a radial orbit accuracy requirement of less than 5 cm. Fortunately, Jason-1 and ICESat POD can rely on near continuous tracking data from the dual frequency codeless BlackJack GPS receiver and Satellite Laser Ranging. Analysis of current GPS-based solution performance indicates the l-cm radial orbit accuracy goal is being met for Jason-1, while radial orbit accuracy for ICESat is well below the 54x1 mission requirement. A brief overview of the GPS precision orbit determination methodology and results for both Jason-1 and ICESat are presented.

  17. Space-qualified laser system for the BepiColombo Laser Altimeter.

    PubMed

    Kallenbach, Reinald; Murphy, Eamonn; Gramkow, Bodo; Rech, Markus; Weidlich, Kai; Leikert, Thomas; Henkelmann, Reiner; Trefzger, Boris; Metz, Bodo; Michaelis, Harald; Lingenauber, Kay; DelTogno, Simone; Behnke, Thomas; Thomas, Nicolas; Piazza, Daniele; Seiferlin, Karsten

    2013-12-20

    The space-qualified design of a miniaturized laser for pulsed operation at a wavelength of 1064 nm and at repetition rates up to 10 Hz is presented. This laser consists of a pair of diode-laser pumped, actively q-switched Nd:YAG rod oscillators hermetically sealed and encapsulated in an environment of dry synthetic air. The system delivers at least 300 million laser pulses with 50 mJ energy and 5 ns pulse width (FWHM). It will be launched in 2017 aboard European Space Agency's Mercury Planetary Orbiter as part of the BepiColombo Laser Altimeter, which, after a 6-years cruise, will start recording topographic data from orbital altitudes between 400 and 1500 km above Mercury's surface. PMID:24513938

  18. Lunar Observer Laser Altimeter observations for lunar base site selection

    NASA Technical Reports Server (NTRS)

    Garvin, James B.; Bufton, Jack L.

    1992-01-01

    One of the critical datasets for optimal selection of future lunar landing sites is local- to regional-scale topography. Lunar base site selection will require such data for both engineering and scientific operations purposes. The Lunar Geoscience Orbiter or Lunar Observer is the ideal precursory science mission from which to obtain this required information. We suggest that a simple laser altimeter instrument could be employed to measure local-scale slopes, heights, and depths of lunar surface features important to lunar base planning and design. For this reason, we have designed and are currently constructing a breadboard of a Lunar Observer Laser Altimeter (LOLA) instrument capable of acquiring contiguous-footprint topographic profiles with both 30-m and 300-m along-track resolution. This instrument meets all the severe weight, power, size, and data rate limitations imposed by Observer-class spacecraft. In addition, LOLA would be capable of measuring the within-footprint vertical roughness of the lunar surface, and the 1.06-micron relative surface reflectivity at normal incidence. We have used airborne laser altimeter data for a few representative lunar analog landforms to simulate and analyze LOLA performance in a 100-km lunar orbit. We demonstrate that this system in its highest resolution mode (30-m diameter footprints) would quantify the topography of all but the very smallest lunar landforms. At its global mapping resolution (300-m diameter footprints), LOLA would establish the topographic context for lunar landing site selection by providing the basis for constructing a 1-2 km spatial resolution global, geodetic topographic grid that would contain a high density of observations (e.g., approximately 1000 observations per each 1 deg by 1 deg cell at the lunar equator). The high spatial and vertical resolution measurements made with a LOLA-class instrument on a precursory Lunar Observer would be highly synergistic with high-resolution imaging datasets, and

  19. Geoscience Laser Altimeter System - Characteristics and Performance of the Altimeter Receiver

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Yi, D.

    2003-12-01

    The Geoscience Laser Altimeter System (GLAS) on board ICESat spacecraft measures the surface height (altimetry) via the time of flight of its 1064 nm laser pulse. The GLAS laser transmitter produces 6 ns wide pulses with 70 mJ energy at 1064 nm at a 40 Hz rate. The altimeter receiver consists of a telescope, aft optics, a silicon avalanche photodiode, and electronic amplifiers. The transmitted and echo pulse waveforms are digitized at 1 GHz rate. The laser pulse time of flight is determined on the ground from the two digitized pulse waveforms and their positions in the full digital waveform record (about 5.4 ms long) by computing the pulse centroids or by curve fitting. The GLAS receiver algorithms in on board software selects the two waveform segments containing the transmitted and the echo pulses and sends them to ground. The probability of echo pulse detection and the accuracy of time of flight measurement depend on the received signal level, the background light within the receiver field of view, the inherent detector and amplifier noise, the quantization of the digitizer, and some times by cloud obscurations. A receiver model has been developed to calculate the probability of detection and accuracy of the altimeter measurements with these noise sources. From pre-launch testing, the minimum detectable echo pulse energy for 90% detection probability was about 0.1 fJ/pulse onto the detector. Such a receiver sensitivity allows GLAS to measure the surface height through clouds with optical density less than 2. The echo pulse energy required to achieve 10cm ranging accuracy was found to be about 3 times higher than the minimum detectable signal level. The smallest single shot range measurement error, which was determined by ranging to a fixed target with strong echo pulses and no background light, was 2 to 3cm. The maximum linear response echo pulse energy was 10 fJ/pulse for the strongest echo signals, assuming a Lambertian scattering snow surface, clear sky

  20. Geoscience Laser Altimeter System: Characteristics and Performance of the Altimeter Receiver

    NASA Technical Reports Server (NTRS)

    Sun, Xiao-Li; Yi, Dong-Hui; Abshire, James B.

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS) on board ICESat spacecraft measures the surface height (altimetry) via the time of flight of its 1064 nm laser pulse. The GLAS laser transmitter produces 6 ns wide pulses with 70 mJ energy at 1064 nm at a 40 Hz rate. The altimeter receiver consists of a telescope, aft optics, a silicon avalanche photodiode, and electronic amplifiers. The transmitted and echo pulse waveforms are digitized at 1 GHz rate. The laser pulse time of flight is determined on the ground from the two digitized pulse waveforms and their positions in the full waveform record (about 5.4 ms ong) by computing the pulse centroids or by curve fitting. The GLAS receiver algorithms in on board software selects the two waveform segments containing the transmitted and the echo pulses and sends them to ground. The probability of echo pulse detection and the accuracy of time of flight measurement depend on the received signal level, the background light within the receiver field of view, the inherent detector and amplifier noise, the quantization of the digitizer, and some times by cloud obscurations. A receiver model has been developed to calculate the probability of detection and accuracy of the altimeter measurements with these noise sources. From prelaunch testing, the minimum detectable echo pulse energy for 90% detection probability was about 0.1 fj/pulse onto the detector. Such a receiver sensitivity allows GLAS to measure the surface height through clouds with optical density less than 2. The echo pulse energy required to achieve 10 cm ranging accuracy was found to be about 3 times higher than the minimum detectable signal level. The smallest single shot range measurement error, which was determined by ranging to a fixed target with strong echo pulses and no background light, was 2 to 3cm. The maximum linear response echo pulse energy was 10 fJ/pulse for the strongest echo signals, assuming a Lambertian scattering snow surface, clear sky atmosphere

  1. Summary of Skylab S-193 altimeter altitude results. [orbit calculation and studies of the ocean bottom

    NASA Technical Reports Server (NTRS)

    Mcgoogan, J. T.; Leitao, C. D.; Wells, W. T.

    1975-01-01

    The SKYLAB S-193 altimeter altitude results are presented in a concise format for further use and analysis by the scientific community. The altimeter mission and instrumentation is described along with the altimeter processing techniques and values of parameters used for processing. The determination of reference orbits is discussed, and the tracking systems utilized are tabulated. Techniques for determining satellite pointing are presented and a tabulation of pointing for each data mission included. The geographical location, the ocean bottom topography, the altimeter-determined ocean surface topography, and the altimeter automatic gain control history is presented. Some typical applications of this data are suggested.

  2. Co-registration of Laser Altimeter Tracks with Digital Terrain Models and Applications in Planetary Science

    NASA Technical Reports Server (NTRS)

    Glaeser, P.; Haase, I.; Oberst, J.; Neumann, G. A.

    2013-01-01

    We have derived algorithms and techniques to precisely co-register laser altimeter profiles with gridded Digital Terrain Models (DTMs), typically derived from stereo images. The algorithm consists of an initial grid search followed by a least-squares matching and yields the translation parameters at sub-pixel level needed to align the DTM and the laser profiles in 3D space. This software tool was primarily developed and tested for co-registration of laser profiles from the Lunar Orbiter Laser Altimeter (LOLA) with DTMs derived from the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) stereo images. Data sets can be co-registered with positional accuracy between 0.13 m and several meters depending on the pixel resolution and amount of laser shots, where rough surfaces typically result in more accurate co-registrations. Residual heights of the data sets are as small as 0.18 m. The software can be used to identify instrument misalignment, orbit errors, pointing jitter, or problems associated with reference frames being used. Also, assessments of DTM effective resolutions can be obtained. From the correct position between the two data sets, comparisons of surface morphology and roughness can be made at laser footprint- or DTM pixel-level. The precise co-registration allows us to carry out joint analysis of the data sets and ultimately to derive merged high-quality data products. Examples of matching other planetary data sets, like LOLA with LRO Wide Angle Camera (WAC) DTMs or Mars Orbiter Laser Altimeter (MOLA) with stereo models from the High Resolution Stereo Camera (HRSC) as well as Mercury Laser Altimeter (MLA) with Mercury Dual Imaging System (MDIS) are shown to demonstrate the broad science applications of the software tool.

  3. Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar

    NASA Technical Reports Server (NTRS)

    Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James

    1995-01-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test

  4. Shuttle Laser Altimeter (SLA): A pathfinder for space-based laser altimetry and lidar

    NASA Astrophysics Data System (ADS)

    Bufton, Jack; Blair, Bryan; Cavanaugh, John; Garvin, James

    1995-09-01

    The Shuttle Laser Altimeter (SLA) is a Hitchhiker experiment now being integrated for first flight on STS-72 in November 1995. Four Shuttle flights of the SLA are planned at a rate of about a flight every 18 months. They are aimed at the transition of the Goddard Space Flight Center airborne laser altimeter and lidar technology to low Earth orbit as a pathfinder for operational space-based laser remote sensing devices. Future alser altimeter sensors such as the Geoscience Laser Altimeter System (GLAS), an Earth Observing System facility instrument, and the Multi-Beam Laser Altimeter (MBLA), the land and vegetation laser altimeter for the NASA TOPSAT (Topography Satellite) Mission, will utilize systems and approaches being tested with SLA. The SLA Instrument measures the distance from the Space Shuttle to the Earth's surface by timing the two-way propagation of short (approximately 10 na noseconds) laser pulses. laser pulses at 1064 nm wavelength are generated in a laser transmitter and are detected by a telescope equipped with a silicon avalanche photodiode detector. The SLA data system makes the pulse time interval measurement to a precision of about 10 nsec and also records the temporal shape of the laser echo from the Earth's surface for interpretation of surface height distribution within the 100 m diam. sensor footprint. For example, tree height can be determined by measuring the characteristic double-pulse signature that results from a separation in time of laser backscatter from tree canopies and the underlying ground. This is accomplished with a pulse waveform digitizer that samples the detector output with an adjustable resolution of 2 nanoseconds or wider intervals in a 100 sample window centered on the return pulse echo. The digitizer makes the SLA into a high resolution surface lidar sensor. It can also be used for cloud and atmospheric aerosol lidar measurements by lengthening the sampling window and degrading the waveform resolution. Detailed test

  5. Optical System Design and Integration of the Mercury Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley, III; Schmidt, Stephen; Britt, Jamie; Mamakos, William; Trunzo, Raymond; Cavanaugh, John; Miller, Roger

    2005-01-01

    The Mercury Laser Altimeter (MLA). developed for the 2004 MESSENGER mission to Mercury, is designed to measure the planet's topography via laser ranging. A description of the MLA optical system and its measured optical performance during instrument-level and spacecraft-level integration and testing are presented.

  6. Mars laser altimeter based on a single photon ranging technique

    NASA Technical Reports Server (NTRS)

    Prochazka, Ivan; Hamal, Karel; Sopko, B.; Pershin, S.

    1993-01-01

    The Mars 94/96 Mission will carry, among others things, the balloon probe experiment. The balloon with the scientific cargo in the gondola underneath will drift in the Mars atmosphere, its altitude will range from zero, in the night, up to 5 km at noon. The accurate gondola altitude will be determined by an altimeter. As the Balloon gondola mass is strictly limited, the altimeter total mass and power consumption are critical; maximum allowed is a few hundred grams a few tens of mWatts of average power consumption. We did propose, design, and construct the laser altimeter based on the single photon ranging technique. Topics covered include the following: principle of operation, altimeter construction, and ground tests.

  7. Multi-Mission Laser Altimeter Data Processing and Storage at DLR/TUB

    NASA Astrophysics Data System (ADS)

    Matz, Klaus-Dieter; Roatsch, Thomas; Glaeser, Philipp; Waehlisch, Marita; Scholten, Frank; Oberst, Juergen; Araki, Hiroshi; Smith, David

    The Institute of Planetary Research (IPR) at DLR has a long tradition in the processing, analysis, and archiving of planetary mapping data. In the past years, we also have become interested in laser altimeter data sets from various planetary missions. Consequently, IPR has joined forces with Technical University of Berlin to develop a system for the processing and storage of laser altimeter datasets, which are typically very large. The system is based on a Linux server and uses PostgreSQL and PostGIS as database software. The system currently contains all data from the MOLA (Mars Global Surveyor) and LALT (Lunar Kaguya mission) experiments. Data from the LOLA (Lunar Reconnaissance Orbiter) experiment will be included shortly. The main purpose of the system is a fast search for laser altimeter data points in a specified area on the surface of the planetary body. Additional functions for recovery of housekeeping data, as well as the calculation of physical parameters like slope and roughness are also implemented. It is planned to use this laser data processing system also for the coming data from the Mercury laser altimeter experiments MLA (MESSENGER) and BELA (BepiColombo).

  8. Remote sensing of atmospheric pressure and sea state using laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1985-01-01

    Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.

  9. Single photon laser altimeter data processing, analysis and experimental validation

    NASA Astrophysics Data System (ADS)

    Vacek, Michael; Peca, Marek; Michalek, Vojtech; Prochazka, Ivan

    2015-10-01

    Spaceborne laser altimeters are common instruments on-board the rendezvous spacecraft. This manuscript deals with the altimeters using a single photon approach, which belongs to the family of time-of-flight range measurements. Moreover, the single photon receiver part of the altimeter may be utilized as an Earth-to-spacecraft link enabling one-way ranging, time transfer and data transfer. The single photon altimeters evaluate actual altitude through the repetitive detections of single photons of the reflected laser pulses. We propose the single photon altimeter signal processing and data mining algorithm based on the Poisson statistic filter (histogram method) and the modified Kalman filter, providing all common altimetry products (altitude, slope, background photon flux and albedo). The Kalman filter is extended for the background noise filtering, the varying slope adaptation and the non-causal extension for an abrupt slope change. Moreover, the algorithm partially removes the major drawback of a single photon altitude reading, namely that the photon detection measurement statistics must be gathered. The developed algorithm deduces the actual altitude on the basis of a single photon detection; thus, being optimal in the sense that each detected signal photon carrying altitude information is tracked and no altitude information is lost. The algorithm was tested on the simulated datasets and partially cross-probed with the experimental data collected using the developed single photon altimeter breadboard based on the microchip laser with the pulse energy on the order of microjoule and the repetition rate of several kilohertz. We demonstrated that such an altimeter configuration may be utilized for landing or hovering a small body (asteroid, comet).

  10. 3000 Mile Laser Altimeter Profile Across Northern Hemisphere of Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Topographic profile across the northern hemisphere of Mars from the Mars Orbiter Laser Altimeter (MOLA). The profile was obtained during the Mars Global Surveyor Capture Orbit Calibration Pass on September 15, 1997 and represents 20 minutes of data collection. The profile has a length of approximately 3000 miles (5000 kilometers). The large bulge is the western part of the Elysium rise, the second largest volcanic province on Mars, and shows over 3 miles (5 kilometers) of vertical relief. This area contains deep chasms that reflect tectonic, volcanic and erosional processes. In contrast is the almost 1featureless1 northern plains region of Mars, which shows only hundreds of meters of relief at scales the size of the United States. Plotted for comparison is the elevation of the Viking Lander 2 site, which is located 275 miles (445 kilometers) west of the profile. At the southernmost extent of the trace is the transition from the northern plains to the ancient southern highlands. Characterizing the fine-scale nature of topography in this chaotic region is crucial to testing theories for how the dichotomy between the geologically distinctive northern lowlands and southern uplands formed and subsequently evolved. The spatial resolution of the profile is approximately 1000 feet (330 meters) and the vertical resolution is approximately 3 feet (1 meter). When the Mars Global Surveyor mapping mission commences in March, 1998, the MOLA instrument will collect 72 times as much data every day for a period of two years.

  11. An Overview of the OSIRIS REx Laser Altimeter (OLA)

    NASA Astrophysics Data System (ADS)

    Dickinson, C. S.; Daly, M.; Barnouin, O.; Bierhaus, B.; Gaudreau, D.; Tripp, J.; Ilnicki, M.; Hildebrand, A.

    2012-03-01

    The Canadian Space Agency is contributing a scanning lidar system known as the OSIRIS-REx Laser Altimeter, or OLA, to the OSIRIS REx Mission. OLA will deliver high-density three-dimensional point cloud data, enabling reconstruction of an asteroid shape model.

  12. Scientific Measurements of Hayabusa-2 Laser Altimeter (LIDAR)

    NASA Astrophysics Data System (ADS)

    Noda, H.; Mizuno, T.; Namiki, N.; Senshu, H.; Yamada, R.; Hirata, N.; Lidar-Science Team

    2015-01-01

    As a successor of Japanese Hayabusa Asteroid mission, Hayabusa-2 is scheduled to be launched in winter 2014. The Laser Altimeter called LIDAR will contribute not only to the satellite bus system but also to the science of the target asteroid.

  13. Qualification testing of the laser transmitter part for ESA's BepiColombo Laser Altimeter (BELA)

    NASA Astrophysics Data System (ADS)

    Weidlich, K.; Rech, M.; Kallenbach, R.

    2011-10-01

    The BepiColombo Laser Altimeter (BELA) is one of 11 instruments aboard ESA's Mercury Planetary Orbiter (MPO) scheduled for launch in 2014. BELA will record the surface profile of the planet while orbiting around it at a distance of 400km to 1500km1. The altimetry data constitute an important prerequisite for a number of remote sensing and observation techniques residing on the same orbiter. The BELA instrument comprises a laser transmitter and a receiver part, the design of the former is being presented and discussed in this paper. The laser transmitter encompasses a pair of diode-pumped, actively Q-switched Nd:YAG rod oscillators which have been miniaturized, light-weighted and dimensioned for high electrical to optical efficiency. The key performance parameters of the laser will be presented. Laser design trades which are relevant for a space mission to Mercury and the BELA instrument in particular are discussed. An overview is given to the laser qualification programme which includes performance and environmental tests. Test results are presented which have been recorded during the qualification test campaign currently in progress at Carl Zeiss Optronics.

  14. Development of the Mars Observer Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Johnson, Bertrand L., Jr

    1993-01-01

    The Mars Observer (MO) spacecraft payload scientific mission is to gather data on Martian global topography, gravity, weather, magnetic field and its interaction with the solar flux, surface chemistry, and mineralogy over one Mars year. In mid-1988 the need for a replacement altimeter as part of the payload complement arose. The Mars Observer Laser Altimeter (MOLA) was proposed by GSFC as an in-house effort and shortly afterward was 'conditionally' accepted. Constraints on funding, schedule, power, and mass were imposed with periodic reviews during the instrument development to authorize continuation. MOLA was designed, tested, and delivered in less than 36 months and integrated with the spacecraft. During spacecraft payload testing, the laser failed due to contamination in the laser cavity. In only 6 months, the laser was removed, rebuilt from spare parts, retested, and the instrument reassembled, realigned, requalified, and again delivered for spacecraft integration. Other aspects of the development of the MOLA are presented.

  15. Geoscience Laser Altimeter System (GLAS) for the ICESat Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiaoli; Ketchum, Eleanor A.; Millar, Pamela S.; Riris, Haris

    2002-01-01

    The Geoscience Laser Altimeter System (GLAS) is a new generation lidar and is the primary science payload for NASA's ICESat Mission. The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, establish a grid of accurate height profiles of the Earth's land topography, and profile the vertical distribution of clouds and aerosols on a global scale. GLAS will be integrated onto a small spacecraft built by Ball Aerospace, and will be launched into a polar orbit with a 590-630 km altitude at an inclination of 94 degrees. ICESat is is currently planned to launch in winter 2002/03 and GLAS is designed to operate continuously in space for a minimum of 3 years. GLAS will measure the vertical distance from orbit to the Earth's surface with pulses from a ND:YAG laser at a 40 Hz rate. Each 6 nsec wide 1064 nm laser pulse is used to produce a single range measurement. On the surface, the laser footprints have 66 m diameter and approx. 170 m center-center spacings. The GLAS receiver uses a I m diameter telescope to detect laser backscatter and a Si APD to detect the 1064 nm signals. The detector's output is sampled by a digital ranging receiver, which records each transmitted pulse and surface echo waveform with 1 nsec (15 cm) resolution. Each echo pulse is digitized and is reported to ground with a record length of from 200 to 544 samples, depending on the spacecraft's location . The GLAS location and epoch times are measured by a precision GPS receiver carried on the ICESat spacecraft. Initial processing of the echo waveforms within GLAS permits discrimination between cloud and surface echoes for selecting appropriate waveform samples. This selection is guided by an on-board DEM which is used to set the boundaries for the echo pulse search algorithm. Subsequent ground-based echo pulse analysis, along with GPS-based clock frequency estimates, permit

  16. Simulation of Full-Waveform Laser Altimeter Echowaveform

    NASA Astrophysics Data System (ADS)

    Lv, Y.; Tong, X. H.; Liu, S. J.; Xie, H.; Luan, K. F.; Liu, J.

    2016-06-01

    Change of globe surface height is an important factor to study human living environment. The Geoscience Laser Altimeter System (GLAS) on ICESat is the first laser-ranging instrument for continuous global observations of the Earth. In order to have a comprehensive understanding of full-waveform laser altimeter, this study simulated the operating mode of ICESat and modeled different terrains' (platform terrain, slope terrain, and artificial terrain) echo waveforms based on the radar equation. By changing the characteristics of the system and the targets, numerical echo waveforms can be achieved. Hereafter, we mainly discussed the factors affecting the amplitude and size (width) of the echoes. The experimental results implied that the slope of the terrain, backscattering coefficient and reflectivity, target height, target position in the footprint and area reacted with the pulse all can affect the energy distribution of the echo waveform and the receiving time. Finally, Gaussian decomposition is utilized to decompose the echo waveform. From the experiment, it can be noted that the factors which can affect the echo waveform and by this way we can know more about large footprint full-waveform satellite laser altimeter.

  17. Return Echoes from Medium-Large Footprint Laser Altimeters

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.; Rabine, David L.

    1999-01-01

    For just over 10 years, NASA Goddard Space Flight Center has been at the forefront of developing return echo laser altimeters and analysis techniques for a variety of both space and airborne applications. In 1991, the Laser Remote Sensing Branch began investigating the use of medium-large diameter footprint return waveforms for measuring vegetation height and structure and sub-canopy topography. Over the last 8 years, using a variety of profiling and scanning laser altimeters (i.e. ATLAS, SLICER, SLA, and LVIS), we have collected return waveforms over a variety of terrestrial surface types. We describe the effects of instrument characteristics and within-footprint surface structure on the shape of the return waveform and suggest several techniques for extracting this information. Specifically for vegetation returns, we describe the effects of canopy parameters such as architecture and closure on the shape of the return waveform. Density profiles, statistics, and examples from a variety of vegetation types will be presented, as well as comparisons with small-footprint laser altimeter data.

  18. Multicolor laser altimeter for barometric measurements over the ocean - Experimental

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Kalshoven, J. E., Jr.

    1983-01-01

    Measurement theory and results from testing a breadboard multiwavelength (355-, 532- and 1064-nm) laser altimeter over horizontal paths are presented. They show that pressure accuracies of 3 mbar can be achieved when ranging at nadir to cube corner targets when using a 500-psec resolution waveform digitizer and utilizing new calibration techniques. Streak camera-based receivers will be required for the same or higher accuracies when ranging to the ocean surface. System design calculations for aircraft and spaceborne experiments are presented.

  19. Receiver characteristics of laser altimeters with avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Davidson, Frederic M.; Boutsikaris, Leo; Abshire, James B.

    1992-01-01

    The receiver characteristics of a laser altimeter system containing an avalanche photodiode photodetector are analyzed using the Gaussian approximation, the saddle-point approximation, and a nearly exact analysis. The last two methods are shown to yield very similar results except when the background noise is extremely low and the probability of false alarm is high. However, the Gaussian approximation method is shown to cause significant errors even under relatively high levels of background noise and received signal energy.

  20. Lessons Learned from the Advanced Topographic Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Garrison, Matt; Patel, Deepak; Bradshaw, Heather; Robinson, Frank; Neuberger, Dave

    2016-01-01

    The ICESat-2 Advanced Topographic Laser Altimeter System (ATLAS) instrument is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This presentation walks through the lessons learned from design, hardware, analysis and testing perspective. ATLAS lessons learned include general thermal design, analysis, hardware, and testing issues as well as lessons specific to laser systems, two-phase thermal control, and optical assemblies with precision alignment requirements.

  1. LASER ALTIMETER CANOPY HEIGHT PROFILES: METHODS AND VALIDATION FOR CLOSED-CANOPY, BROADLEAF FORESTS. (R828309)

    EPA Science Inventory

    Abstract

    Waveform-recording laser altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne laser altimeter waveform data was acquired using the Scanning Lid...

  2. On-orbit measurement of TOPEX/Poseidon altimeter antenna pattern

    NASA Technical Reports Server (NTRS)

    Callahan, Philip S.; Haub, David

    1995-01-01

    The NASA and CNES altimeters on the TOPEX/Poseidon satellite share a 1.5-m antenna. Early data from the NASA altimeter suggested that the beam was broader than measured preflight. An altimeter transponder was modified to output a relative measurement of received power. The instrument is briefly described. The instrument was deployed on the TOPEX ground track at the coast near Los Angeles, California. Measurements from three of these deployments are presented to show the on-orbit antenna pattern. The measured pattern is effectively broader than preflight in the central region, particularly the part of the pattern which corresponds to the tail of the altimeter waveform where the attitude is determined. This result is consistent with the general shape of both the TOPEX and Poseidon waveforms. As the TOPEX corrections which depend on values from the tail of the waveform have been compensated for deviations from the preflight measurements, no appreciable effect on the final data is expected.

  3. The geoscience laser altimeter system (GLAS)

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Smith, James C.; Schutz, Bob E.

    1998-01-01

    GLAS is a space-based lidar designed for NASA's Earth Science Enterprise's Icesat Mission. It is being designed to precisely measure the heights of the polar ice sheets, to determine the height profiles of the Earth's land topography, and to profile the vertical structure of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. The instrument is being developed to launch in July 2001 and to operate continuously at 40 Hz for a minimum of 3 years with a goal of 5 years.

  4. Multicolor laser altimeter for barometric measurements over the ocean - Theoretical

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Tsai, B. M.; Im, K. E.

    1983-01-01

    It is noted that the optical path length from a satellite to the earth's surface strongly depends on the atmospheric pressure along the propagation path. The theoretical basis of a surface pressure measurement technique, which uses a two-color laser altimeter to observe the change with wavelength in the optical path length from a satellite to the ocean surface, is evaluated. The statistical characteristics of the ocean-reflected pulses and the expected measurement accuracy are analyzed in terms of the altitude parameters. The results show that it is feasible to obtain a pressure accuracy of a few millibars.

  5. Measuring tidal deformations by laser altimetry. A performance model for the Ganymede Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Steinbrügge, G.; Stark, A.; Hussmann, H.; Sohl, F.; Oberst, J.

    2015-11-01

    Invaluable information about the interior of icy satellites orbiting close to the giant planets can be gained by monitoring the response of the satellite's surfaces to external tidal forces. Due to its geodetic accuracy, laser altimetry is the method of choice to measure time-dependent radial surface displacements from orbit. We present an instrument performance model with special focus on the capabilities to determine the corresponding tidal Love number h2 and apply the model to the Ganymede Laser Altimeter (GALA) on board of the Jupiter Icy Moons Explorer (JUICE). Based on the instrument and spacecraft performance, we derive the range error and the measurement capabilities of the GALA instrument to determine the amplitude of the tide induced radial displacement of Ganymede's surface using the cross-over technique. We find that h2 of Ganymede can be determined with an accuracy of better than 2% by using data acquired during the nominal mission. Furthermore, we show that this accuracy is sufficient to confirm the presence of a putative subsurface water ocean and, additionally, to constrain the thickness of the overlaying ice shell to ± 20km.

  6. Receiver Design, Performance Analysis, and Evaluation for Space-Borne Laser Altimeters and Space-to-Space Laser Ranging Systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1996-01-01

    This progress report consists of two separate reports. The first one describes our work on the use of variable gain amplifiers to increase the receiver dynamic range of space borne laser altimeters such as NASA's Geoscience Laser Altimeter Systems (GLAS). The requirement of the receiver dynamic range was first calculated. A breadboard variable gain amplifier circuit was made and the performance was fully characterized. The circuit will also be tested in flight on board the Shuttle Laser Altimeter (SLA-02) next year. The second report describes our research on the master clock oscillator frequency calibration for space borne laser altimeter systems using global positioning system (GPS) receivers.

  7. Remote sensing of atmospheric pressure and sea state from satellites using short-pulse multicolor laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.; Tsai, B. M.; Abshire, J. B.

    1983-01-01

    Short pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems was used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.

  8. Development of the Laser Altimeter (LIDAR) for Hayabusa2

    NASA Astrophysics Data System (ADS)

    Mizuno, T.; Kase, T.; Shiina, T.; Mita, M.; Namiki, N.; Senshu, H.; Yamada, R.; Noda, H.; Kunimori, H.; Hirata, N.; Terui, F.; Mimasu, Y.

    2016-02-01

    Hayabusa2 was launched on 3 December 2014 on an H-IIA launch vehicle from the Tanegashima Space Center, and is, at the time of writing, cruising toward asteroid 162137 Ryugu ( 1999JU3). After reaching the asteroid, it will stay for about 1.5 years to observe the asteroid and collect surface material samples. The light detection and ranging (LIDAR) laser altimeter on Hayabusa2 has a wide dynamic range, from 25 km to 30 m, because the LIDAR is used as a navigation sensor for rendezvous, approach, and touchdown procedures. Since it was designed for use in planetary explorers, its weight is a low 3.5 kg. The LIDAR can serve not only as a navigation sensor, but also as observation equipment for estimating the asteroid's topography, gravity and surface reflectivity (albedo). Since Hayabusa2 had a development schedule of just three years from the start of the project to launch, minimizing development time was a particular concern. A key to shortening the development period of Hayabusa2's LIDAR system was heritage technology from Hayabusa's LIDAR and the SELENE lunar explorer's LALT laser altimeter. Given that the main role of Hayabusa2's LIDAR is to serve as a navigation sensor, we discuss its development from an engineering viewpoint. However, detailed information about instrument development and test results is also important for scientific analysis of LIDAR data and for future laser altimetry in lunar and planetary exploration. Here we describe lessons learned from the Hayabusa LIDAR, as well as Hayabusa2's hardware, new technologies and system designs based on it, and flight model evaluation results. The monolithic laser used in the laser module is a characteristic technology of this LIDAR. It was developed to solve issues with low-temperature storage that were problematic when developing the LIDAR system for the first Hayabusa mission. The new module not only solves such problems but also improves reliability and miniaturization by reducing the number of parts.

  9. Atmospheric Measurements by the Geoscience Laser Altimeter System: Initial Results

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2003-01-01

    The Geoscience Laser Altimeter System launched in early 2003 is the first satellite instrument in space to globally observe the distribution of clouds and aerosol through laser remote sensing. The instrument is a basic backscatter lidar that operates at two wavelengths, 532 and 1064 nm. The mission data products for atmospheric observations include the calibrated, observed, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data is expected to significantly enhance knowledge in several areas of atmospheric science, in particular the distribution, transport and influence of atmospheric aerosol. Measurements of the coverage and height of polar and cirrus cloud should be significantly more accurate than previous global measurement. Initial result from the first several months of operation will be presented.

  10. Atmospheric Measurements by the 2002 Geoscience Laser Altimeter System Mission

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The NASA Earth Observing System (EOS) program is a multiple platform NASA initiative for the study of global change. As part of the EOS project, the Geoscience Laser Altimeter System (GLAS) was selected as a laser sensor filling complementary requirements for several earth science disciplines including atmospheric and surface applications. Late in 2002, the GaAs instrument is to be launched for a three to five year observational mission. For the atmosphere, the instrument is designed to full fill comprehensive requirements for profiling of radiatively significant cloud and aerosol. Algorithms have been developed to process the cloud and aerosol data and provide standard data products. After launch there will be a three-month project to analyze and understand the system performance and accuracy of the data products. As an EOS mission, the GaAs measurements and data products will be openly available to all investigators. An overview of the instrument, data products and evaluation plan is given.

  11. Test Port for Fiber-Optic-Coupled Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Ramos Izquierdo, Luis; Scott, V. Stanley; Rinis, Haris; Cavanaugh, John

    2011-01-01

    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as

  12. Brightening and Volatile Distribution Within Shackleton Crater Observed by the LRO Laser Altimeter.

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Zuber, M. T.; Head, J. W.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Aharonson, O.; Tye, A. R.; Fassett, C. I.; Rosengurg, M. A.; Melosh, H. J.

    2012-01-01

    Shackleton crater, whose interior lies largely in permanent shadow, is of interest due to its potential to sequester volatiles. Observations from the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter have enabled an unprecedented topographic characterization, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting little floor deposition since crater formation over 3 billion years ago. At 1064 nm the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explainable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a 1-mm-thick layer containing approx 20% surficial ice is an alternative possibility.

  13. Straylight analysis of the BepiColombo Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Weigel, T.; Rugi-Grond, E.; Kudielka, K.

    2008-09-01

    The BepiColombo Laser Altimeter (BELA) shall profile the surface of planet Mercury and operates on the day side as well as on the night side. Because of the high thermal loads, most interior surfaces of the front optics are highly reflective and specular, including the baffle. This puts a handicap on the straylight performance, which is needed to limit the solar background. We present the design measures used to reach an attenuation of about 10-8. We resume the method of backward straylight analysis which starts the rays at the detector and analyses the results in object space. The backward analysis can be quickly compiled and challenges computer resources rather than labor effort. This is very useful in a conceptual design phase when a design is iterated and trade-offs are to be performed. For one design, we compare the results with values obtained from a forward analysis.

  14. Laser altimeter observations from MESSENGER's first Mercury flyby.

    PubMed

    Zuber, Maria T; Smith, David E; Solomon, Sean C; Phillips, Roger J; Peale, Stanton J; Head, James W; Hauck, Steven A; McNutt, Ralph L; Oberst, Jürgen; Neumann, Gregory A; Lemoine, Frank G; Sun, Xiaoli; Barnouin-Jha, Olivier; Harmon, John K

    2008-07-01

    A 3200-kilometers-long profile of Mercury by the Mercury Laser Altimeter on the MESSENGER spacecraft spans approximately 20% of the near-equatorial region of the planet. Topography along the profile is characterized by a 5.2-kilometer dynamic range and 930-meter root-mean-square roughness. At long wavelengths, topography slopes eastward by 0.02 degrees , implying a variation of equatorial shape that is at least partially compensated. Sampled craters on Mercury are shallower than their counterparts on the Moon, at least in part the result of Mercury's higher gravity. Crater floors vary in roughness and slope, implying complex modification over a range of length scales. PMID:18599773

  15. One GHz digitizer for space based laser altimeter

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.

    1991-01-01

    This is the final report for the research and development of the one GHz digitizer for space based laser altimeter. A feasibility model was designed, built, and tested. Only partial testing of essential functions of the digitizer was completed. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of one GHz. The average power consumption of the one GHz digitizer is not more than 1.5 Watts. A one GHz oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communication with the host computer. The digitizer is equipped with an onboard microprocessor for this purpose.

  16. ICESat Laser Altimeter Pointing, Ranging and Timing Calibration from Integrated Residual Analysis: A Summary of Early Mission Results

    NASA Technical Reports Server (NTRS)

    Lutchke, Scott B.; Rowlands, David D.; Harding, David J.; Bufton, Jack L.; Carabajal, Claudia C.; Williams, Teresa A.

    2003-01-01

    On January 12, 2003 the Ice, Cloud and land Elevation Satellite (ICESat) was successfUlly placed into orbit. The ICESat mission carries the Geoscience Laser Altimeter System (GLAS), which consists of three near-infrared lasers that operate at 40 short pulses per second. The instrument has collected precise elevation measurements of the ice sheets, sea ice roughness and thickness, ocean and land surface elevations and surface reflectivity. The accurate geolocation of GLAS's surface returns, the spots from which the laser energy reflects on the Earth's surface, is a critical issue in the scientific application of these data Pointing, ranging, timing and orbit errors must be compensated to accurately geolocate the laser altimeter surface returns. Towards this end, the laser range observations can be fully exploited in an integrated residual analysis to accurately calibrate these geolocation/instrument parameters. Early mission ICESat data have been simultaneously processed as direct altimetry from ocean sweeps along with dynamic crossovers resulting in a preliminary calibration of laser pointing, ranging and timing. The calibration methodology and early mission analysis results are summarized in this paper along with future calibration activities

  17. Altimeter crossover methods for precision orbit determination and the mapping of geophysical parameters

    NASA Technical Reports Server (NTRS)

    Shum, C. K.; Schutz, B. E.; Tapley, B. D.; Zhang, B. H.

    1990-01-01

    Accurate orbit determination and the recovery of geophysical parameters are presently attempted via methodologies which use differenced height measurements at the points where the ground tracks of the altimetric satellite orbits intersect. Such 'crossover measurements' could significantly improve the earth's gravity field model. Attention is given to a novel technique employing crossover measurements from two satellites carrying altimeter instruments; this method can observe zonal harmonics of the earth's geopotential which are weakly observed through single-satellite crossovers. This dual-satellite crossover technique will be applicable to data from such future oceanographic satellites as ERS-1.

  18. A Boresight Adjustment Mechanism for use on Laser Altimeters

    NASA Technical Reports Server (NTRS)

    Hakun, Claef; Budinoff, Jason; Brown, Gary; Parong, Fil; Morell, Armando

    2004-01-01

    This paper describes the development of the Boresight Adjustment Mechanism (BAM) for the Geoscience Laser Altimeter System (GLAS) Instrument. The BAM was developed late in the integration and test phase of the GLAS instrument flight program. Thermal vacuum tests of the GLAS instrument indicated that the instrument boresight alignment stability over temperature may be marginal. To reduce the risk that GLAS may not be able to meet the boresight alignment requirements, an intensive effort was started to develop a BAM. Observatory-level testing and further evaluation of the boresight alignment data indicated that sufficient margin could be obtained utilizing existing instrument resources and therefore the BAM was never integrated onto the GLAS Instrument. However, the BAM was designed fabricated and fully qualified over a 4 month timeframe to be capable of precisely steering (< 1 arcsec over 300 arcsec) the output of three independent lasers to ensure the alignment between the transmit and receive paths of the GLAS instrument. The short timeline for the development of the mechanism resulted in several interesting design solutions. This paper discusses the requirement definition, design, and testing processes of the BAM development effort, how the design was affected by the extremely tight development schedule, and the lessons learned throughout the process.

  19. Atmospheric Science Measurements by the EOS Geoscience Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Spinhirne, James

    1999-01-01

    Scheduled for Launch in July 2001, the Geoscience Laser Altimeter System (GLAS) is to be the first satellite instrument to provide full global lidar profiling of clouds and aerosol in the earth's atmosphere. GLAS is an EOS program instrument that is on its own satellite, now called the Ice, Cloud and land Elevation Satellite. The instrument is both a surface laser ranging system and an atmospheric profiling lidar. A most important surface measurement for the instrument is to study the change in the mass balance of the polar ice sheets by measuring the change in regional altitudes to an accuracy of 1.5 cm per year. The strategy to combine the surface measurement with a Cloud and aerosol lidar profiling mission is based on the compatibility of the altimetry instrument requirements with those for the required lidar measurements. The primary atmospheric science goal of the GLAS cloud and aerosol measurement is to determine the radiative forcing and vertically resolved atmospheric heating rate due to cloud and aerosol by directly observing the vertical structure and magnitude of cloud and aerosol parameters that are important for the radiative balance of the earth-atmosphere system, but which are ambiguous or impossible to obtain from existing or planned passive remote sensors. A further goal is to directly measure the height of atmospheric transition layers (inversions) which are important for dynamics and mixing, the planetary boundary layer and lifting condensation level.

  20. Modeling Laser Altimeter Return Waveforms Over Complex Vegetation Using High-Resolution Elevation Data

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.

    1999-01-01

    The upcoming generation of laser altimeters record the interaction of emitted laser radiation with terrestrial surfaces in the form of a digitized waveform. We model these laser altimeter return waveforms as the sum of the reflections from individual surfaces within laser footprints, accounting for instrument-specific properties. We compare over 1000 modeled and recorded waveform pairs using the Pearson correlation. We show that we reliably synthesize the vertical structure information for vegetation canopies contained in a medium-large diameter laser footprint from a high-resolution elevation data set.

  1. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: Initial Science Measurement Performance

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiaoli; Riris, Haris; Sirota, Marcos; McGarry, J.; Palm, Steve

    2003-01-01

    The Geoscience Laser Altimeter System is the space lidar on the NASA ICESat mission. Its design combines an altimeter with 5 cm precision with a laser pointing angle determination system and a dual wavelength cloud and aerosol lidar. GLAS measures the range to the Earth s surface with 1064 nm laser pulses. Each laser pulse produces a precision pointing measurement from the stellar reference system (SRS) and an echo pulse waveform, which permits range determination and waveform spreading analysis. The single shot ranging accuracy is < 10 cm for ice surfaces with slopes < 2 degrees. GLAS also measures atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog Si APD detector and measure the height and profile the backscatter signal from thicker clouds. The measurements at 532 nm use photon counting detectors, and will measure the vertical height distributions of optically thin clouds and aerosol layers Before launch, the measurement performance of GLAS was evaluated using a lidar test instrument called the Bench Check Equipment (BCE). The BCE was developed in parallel with GLAS and served as an inverse altimeter, inverse lidar and a stellar source simulator. It was used to simulate the range of expected optical inputs to the GLAS receiver by illuminating its telescope with simulated background light as well as laser echoes with known powers, energy levels, widths and delay times. The BCE also allowed monitoring of the transmitted laser energy, the angle measurements of the SRS, the co-alignment of the transmitted laser beam to the receiver line of sight, and performance of the flight science algorithms. Performance was evaluated during the GLAS development, before and after environmental tests, and after delivery to the spacecraft. The ICESat observatory was launched into a 94 degree inclination, 590 km altitude circular polar orbit on January 12,2003. Beginning in early February, GLAS was powered on tested in stages. Its 1064 nm

  2. Mercury's rotational state from combined MESSENGER laser altimeter and image data

    NASA Astrophysics Data System (ADS)

    Stark, Alexander; Oberst, Jürgen; Preusker, Frank; Margot, Jean-Luc; Phillips, Roger J.; Neumann, Gregory A.; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.

    2016-04-01

    With orbital data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, we measured the rotational state of Mercury. We developed a novel approach that combined digital terrain models from stereo images (stereo DTMs) and laser altimeter data, and we applied it to 3 years of MESSENGER observations. We find a large libration amplitude, which in combination with the measured obliquity confirms that Mercury possesses a liquid outer core. Our results confirm previous Earth-based observations of Mercury's rotational state. However, we measured a rotation rate that deviates significantly from the mean resonant rotation rate. The larger rotation rate can be interpreted as the signature of a long-period libration cycle. From these findings we derived new constraints on the interior structure of Mercury. The measured rotational parameters define Mercury's body-fixed frame and are critical for the coordinate system of the planet as well as for planning the future BepiColombo spacecraft mission.

  3. An Overview of Observations of Mars' North Polar Region From the Mars Global Surveyor Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Smith, D. E.; Zuber, M. T.

    1998-01-01

    Since its arrival at Mars on September l5, 1997, the Mars Global Surveyor (MGS) has been in a near-polar elliptical orbit, with the orbital eccentricity decreasing during orbital periapse passes where the spacecraft aerobrakes through the martian atmosphere. The Mars Orbiter Laser Altimeter (MOLA), an instrument on the MGS, has the ability to range to the martian surface during nonaerobraking passes. MOLA can operate whenever the range from the spacecraft to the surface is less than 786 km, with the limit determined by the number of bits encoded for the range measurement During the capture orbit, aerobraking hiatus, and science phasing orbit (SPO) mission phases, MOLA acquired approximately 200 profiles across the northern hemisphere of Mars and provided more than 2,000,000 measurements of the radius of the planet. These observations cover the region from the north pole to about 10 degrees S latitude with a precision of a few tens of centimeters and an accuracy (at present) of about 30 in. Absolute accuracy of the elevations is limited by the knowledge of the MGS orbits; these should improve later in the mission due to a more optimal tracking geometry, an improved gravitational field, and the use of the high-gain antenna once the spacecraft achieves its approximately 400-km-altitude circular mapping orbit. MOLA measurements so far show a planet with a low, flat high-latitude region in the north and a higher, topographically rougher terrain nearer the equator. The north polar cap stands approximately 2-3 km above the surrounding terrain and displays deep chasms and complex structure. MOLA measurements of elevation, 1064-nm reflectivity, and backscattered pulse width indicate that the layered terrains are composed mainly of ice.

  4. Improvement of Europa's Gravity and Body Tides and Shape with a Laser Altimeter during a Flyby Tour

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Genova, A.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Laser altimeters have been primarily utilized with orbiter spacecraft. Recently, the Mercury Laser Altimeter on MESSENGER successfully operated at Mercury during two flybys and thousands of highly-elliptical orbits, and contributed greatly towards improved understanding of the innermost planet. We show that a laser altimeter instrument on a flyby tour mission such as the planned NASA Europa Clipper can constrain key geophysical parameters when supported by variable-frequency altimetric measurements over repeated ~145°-long arcs across the surface. Previous work by Park et al. (2011, GRL) showed through covariance analysis that a similar trajectory could yield the gravity tidal Love number k2 to good accuracy (0.05). Here, we conduct a full simulation of a 45-flyby trajectory in the Jupiter system with Europa as primary target. We consider reasonable tracking coverage and noise level (dominated by plasma noise), as well as gravity (degree 50) and topography (200m resolution supplemented by realistic fractal noise at shorter wavelengths), informed by relevant existing data (Galileo, Cassini). The simulation is initialized at pessimistic values, with C20, C22, k2, and h2 in error of 90%, 90%, 50%, and 50%, respectively. All other gravity coefficients up to degree 3 have zero a priori values. Assumed altimetric data sampling and noise are derived from the tour trajectory and the instrument performance described by Smith et al. (this meeting). This variable-frequency laser altimeter can greatly improve the surface coverage (for shape recovery) and the number of altimetric crossovers, the best measurement type to constrain the tidal surface deformation. We find from our simulation that the addition of altimetry data significantly improves the determination of the gravity tidal Love number k2 and enables the recovery of the body tidal Love number h2. Low-degree gravity and topography are most important to constrain the interior structure of Europa. Scientific objectives

  5. The Laser Vegetation Imaging Sensor (LVIS): An Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Bryan, J.; Rabine, David L.

    1998-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne laser altimeter designed to quickly and extensively map surface topography as well as the relative heights of other reflecting surfaces within the laser footprint. Since 1997, this instrument has primarily been used as the airborne simulator for the Vegetation Canopy Lidar (VCL) mission, a spaceborne mission designed to measure tree height, vertical structure and ground topography (including sub-canopy topography). LVIS is capable of operating from 500 m to 10 km above ground level with footprint sizes from 1 to 60 m. Laser footprints can be randomly spaced within the 7 degree telescope field-of-view, constrained only by the operating frequency of the ND:YAG Q-switched laser (500 Hz). A significant innovation of the LVIS altimeter is that all ranging, waveform recording, and range gating are performed using a single digitizer, clock base, and detector. A portion of the outgoing laser pulse is fiber-optically fed into the detector used to collect the return signal and this entire time history of the outgoing and return pulses is digitized at 500 Msamp/sec. The ground return is then located using software digital signal processing, even in the presence of visibly opaque clouds. The surface height distribution of all reflecting surfaces within the laser footprint can be determined, for example, tree height and ground elevation. To date, the LVIS system has been used to monitor topographic change at Long Valley caldera, CA, as part of NASA's Topography and Surface Change program, and to map tree structure and sub-canopy topography at the La Selva Biological Research Station in Costa Rica, as part of the pre-launch calibration activities for the VCL mission. We present results that show the laser altimeter consistently and accurately maps surface topography, including sub-canopy topography, and vegetation height and structure. These results confirm the measurement concept of VCL and highlight the benefits of

  6. A preliminary estimate of geoid-induced variations in repeat orbit satellite altimeter observations

    NASA Technical Reports Server (NTRS)

    Brenner, Anita C.; Beckley, B. D.; Koblinsky, C. J.

    1990-01-01

    Altimeter satellites are often maintained in a repeating orbit to facilitate the separation of sea-height variations from the geoid. However, atmospheric drag and solar radiation pressure cause a satellite orbit to drift. For Geosat this drift causes the ground track to vary by + or - 1 km about the nominal repeat path. This misalignment leads to an error in the estimates of sea surface height variations because of the local slope in the geoid. This error has been estimated globally for the Geosat Exact Repeat Mission using a mean sea surface constructed from Geos 3 and Seasat altimeter data. Over most of the ocean the geoid gradient is small, and the repeat-track misalignment leads to errors of only 1 to 2 cm. However, in the vicinity of trenches, continental shelves, islands, and seamounts, errors can exceed 20 cm. The estimated error is compared with direct estimates from Geosat altimetry, and a strong correlation is found in the vicinity of the Tonga and Aleutian trenches. This correlation increases as the orbit error is reduced because of the increased signal-to-noise ratio.

  7. Calibration and Validation of the ICESat Laser Altimeter

    NASA Astrophysics Data System (ADS)

    Magruder, L.; Silverberg, E.; Ricklefs, R.; Webb, C.; Bae, S.; Horstman, M.; Urban, T.; Schutz, B.

    2003-12-01

    ICESat, the altimetry mission devoted to determination of temporal variations in the Polar Regions, launched in January of 2003. The satellite is in a nearly circular orbit with an inclination of 94 deg and a mean altitude of 600 km. The science goals of ICESat are to perform repeat elevation measurements over time with an accuracy of 1.5 cm/yr for a 100 km by 100 km area. Achievement of the science goals partly depends on the accurate determination of the laser direction as well as identifying any biases in the timing and/or range measurements. The pointing or directional information of the laser in the celestial reference frame is provided by an innovative CCD camera onboard ICESat. The laser pointing accuracy requirement is 1.5 arc seconds. The pointing information and the range data product combine to produce a measured altitude vector. The Earth illuminated spot location is the vector sum of the altitude vector and the precision orbit position vector in the terrestrial reference frame. In order to verify that the laser directional information is appropriately accurate, several experiments have been implemented during the initial 35+ days of laser operation. These experiments, performed at White Sands (New Mexico) and Bonneville (Utah), contribute to the validation of the scalar altitude measurement, the time of measurement and the position of the laser footprint to within 4.5 meters (1.5 arc second). The two methodologies that will be conducted at one or both of the aforementioned locations are an airborne camera system that will photograph at least one ICESat laser spot on the ground, and a ground detection array that will `capture' multiple spots on the surface. Both techniques will provide independent measurements for comparison to the onboard laser directional data and the measurement timing. During the initial laser operations period (Feb 20th - Mar 29th), photographs were acquired and analyzed for position determination. Although the ground array did not

  8. On retrieving sea ice freeboard from ICESat laser altimeter

    NASA Astrophysics Data System (ADS)

    Khvorostovsky, Kirill; Rampal, Pierre

    2016-10-01

    Sea ice freeboard derived from satellite altimetry is the basis for the estimation of sea ice thickness using the assumption of hydrostatic equilibrium. High accuracy of altimeter measurements and freeboard retrieval procedure are, therefore, required. As of today, two approaches for estimating the freeboard using laser altimeter measurements from Ice, Cloud, and land Elevation Satellite (ICESat), referred to as tie points (TP) and lowest-level elevation (LLE) methods, have been developed and applied in different studies. We reproduced these methods for the ICESat observation periods (2003-2008) in order to assess and analyse the sources of differences found in the retrieved freeboard and corresponding thickness estimates of the Arctic sea ice as produced by the Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC). Three main factors are found to affect the freeboard differences when applying these methods: (a) the approach used for calculation of the local sea surface references in leads (TP or LLE methods), (b) the along-track averaging scales used for this calculation, and (c) the corrections for lead width relative to the ICESat footprint and for snow depth accumulated in refrozen leads. The LLE method with 100 km averaging scale, as used to produce the GSFC data set, and the LLE method with a shorter averaging scale of 25 km both give larger freeboard estimates comparing to those derived by applying the TP method with 25 km averaging scale as used for the JPL product. Two factors, (a) and (b), contribute to the freeboard differences in approximately equal proportions, and their combined effect is, on average, about 6-7 cm. The effect of using different methods varies spatially: the LLE method tends to give lower freeboards (by up to 15 cm) over the thick multiyear ice and higher freeboards (by up to 10 cm) over first-year ice and the thin part of multiyear ice; the higher freeboards dominate. We show that the

  9. Dynamic sea surface topography, gravity and improved orbit accuracies from the direct evaluation of SEASAT altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Lerch, F.; Koblinsky, C. J.; Klosko, S. M.; Robbins, J. W.; Williamson, R. G.; Patel, G. B.

    1989-01-01

    A method for the simultaneous solution of dynamic ocean topography, gravity and orbits using satellite altimeter data is described. A GEM-T1 based gravitational model called PGS-3337 that incorporates Seasat altimetry, surface gravimetry and satellite tracking data has been determined complete to degree and order 50. The altimeter data is utilized as a dynamic observation of the satellite's height above the sea surface with a degree 10 model of dynamic topography being recovered simultaneously with the orbit parameters, gravity and tidal terms in this model. PGS-3337 has a geoid uncertainty of 60 cm root-mean-square (RMS) globally, with the uncertainty over the altimeter tracked ocean being in the 25 cm range. Doppler determined orbits for Seasat, show large improvements, with the sub-30 cm radial accuracies being achieved. When altimeter data is used in orbit determination, radial orbital accuracies of 20 cm are achieved. The RMS of fit to the altimeter data directly gives 30 cm fits for Seasat when using PGS-3337 and its geoid and dynamic topography model. This performance level is two to three times better than that achieved with earlier Goddard earth models (GEM) using the dynamic topography from long-term oceanographic averages. The recovered dynamic topography reveals the global long wavelength circulation of the oceans with a resolution of 1500 km. The power in the dynamic topography recovery is now found to be closer to that of oceanographic studies than for previous satellite solutions. This is attributed primarily to the improved modeling of the geoid which has occurred. Study of the altimeter residuals reveals regions where tidal models are poor and sea state effects are major limitations.

  10. Comparison of Retracking Algorithms Using Airborne Radar and Laser Altimeter Measurements of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Ferraro, Ellen J.; Swift, Calvin T.

    1995-01-01

    This paper compares four continental ice sheet radar altimeter retracking algorithms using airborne radar and laser altimeter data taken over the Greenland ice sheet in 1991. The refurbished Advanced Application Flight Experiment (AAFE) airborne radar altimeter has a large range window and stores the entire return waveform during flight. Once the return waveforms are retracked, or post-processed to obtain the most accurate altitude measurement possible, they are compared with the high-precision Airborne Oceanographic Lidar (AOL) altimeter measurements. The AAFE waveforms show evidence of varying degrees of both surface and volume scattering from different regions of the Greenland ice sheet. The AOL laser altimeter, however, obtains a return only from the surface of the ice sheet. Retracking altimeter waveforms with a surface scattering model results in a good correlation with the laser measurements in the wet and dry-snow zones, but in the percolation region of the ice sheet, the deviation between the two data sets is large due to the effects of subsurface and volume scattering. The Martin et al model results in a lower bias than the surface scattering model, but still shows an increase in the noise level in the percolation zone. Using an Offset Center of Gravity algorithm to retrack altimeter waveforms results in measurements that are only slightly affected by subsurface and volume scattering and, despite a higher bias, this algorithm works well in all regions of the ice sheet. A cubic spline provides retracked altitudes that agree with AOL measurements over all regions of Greenland. This method is not sensitive to changes in the scattering mechanisms of the ice sheet and it has the lowest noise level and bias of all the retracking methods presented.

  11. Modeling Surface Structure Derived from Laser Altimeter Return Waveforms Using High-Resolution Elevation Data

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, M. A.

    1999-01-01

    The upcoming generation of operational spaceborne laser altimeters (i.e VCL and GLAS) record the interaction of emitted laser radiation with terrestrial surfaces in the form of a digitized waveform. We show that we can accurately model return laser altimeter waveforms as the sum of the reflections from individual surfaces within laser footprints. In one case, we predict return waveforms using high resolution elevation data generated by a small-footprint laser altimeter in a dense tropical forest. We compare over 3000 modeled and recorded waveform pairs using the Pearson correlation. The modeled and recorded waveforms are highly correlated, with a mean correlation of 0.90 and a median of 0.95. The mean correlation is highly dependent on the relative positions of the data sets. By shifting the relative locations of the two compared data sets, we infer that the data are colocated to within 0.4$\\sim$m horizontally and 0.12$\\sim$m vertically. The high degree of correlation shows that we can reliably synthesize the vertical structure information measured by medium-large footprint laser altimeters for complex, dense vegetation.

  12. The Geoscience Laser Altimeter System (GLAS) for the ICESAT Mission

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiao-Li; Ketchum, Eleanor A.; Afzal, Robert S.; Millar, Pamela S.

    1999-01-01

    Accurate measurements of surface heights and atmospheric backscatter have been demonstrated with the SLA, MOLA and LITE space lidar. Recent MOLA measurements of the Mars surface have 40 cm resolution and have reduced the global uncertainty in Mars topography from a few km to approx. 10 m. GLAS is a next generation lidar being developed as part of NASA's Icesat Mission for Earth orbit . The GLAS design combines a 10 cm precision surface lidar with a sensitive dual wavelength cloud and aerosol lidar. GLAS will precisely measure the heights of the Earth's polar ice sheets, determine the height profiles of the Earth's land topography, and profile the vertical backscatter of clouds and aerosols on a global scale. GLAS will fly on a small dedicated spacecraft in a polar orbit at 598 km altitude with an inclination of 94 degrees. GLAS is scheduled to launch in summer 2001 and to operate continuously for a minimum of 3 years with a goal of 5 years. The primary mission for GLAS is to measure the seasonal and annual changes in the heights of the Greenland and Antarctic ice sheets. GLAS will measure the vertical distance to the ice sheet from orbit with 1064 nm pulses from a Nd:Yag laser at 40 Hz. Each 5 nsec wide laser pulse is used for a single range measurement. When over land GLAS will profile the heights of the topography and vegetation. The GLAS receiver uses a I m diameter telescope and a Si APD detector. The detector signal is sampled by an all digital receiver which records each surface echo waveform with I nsec resolution and a stored echo record lengths of either 200, 400, or 600 samples. Analysis of the echo waveforms within the instrument permits discrimination between cloud and surface echoes. Ground based echo analysis permits precise ranging, determining the roughness or slopes of the surface as well as the vertical distributions of vegetation illuminated by the laser, Errors in knowledge of the laser beam pointing angle can bias height measurements of sloped

  13. The Use of Laser Altimetry in the Orbit and Attitude Determination of Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Rowlands, D. D.; Pavlis, D. E.; Lemoine, F. G.; Neumann, G. A.; Luthcke, S. B.

    1999-01-01

    Altimetry from the Mars Observer Laser Altimeter (MOLA) which is carried on board Mars Global Surveyor (MGS) has been analyzed for the period of the MOS mission known as Science Phasing Orbit 1 (SPO-1). We have used these altimeter ranges to improve orbit and attitude knowledge for MGS. This has been accomplished by writing crossover constraint equations that have been derived from short passes of MOLA data. These constraint equations differ from traditional Crossover constraints and exploit the small foot print associated with laser altimetry.

  14. Improvement in the radial accuracy of altimeter-satellite orbits due to the geopotential

    NASA Astrophysics Data System (ADS)

    Klokočník, J.; Kostelecký, J.; Wagner, C. A.

    2008-12-01

    The application of satellite altimetry in geosciences needs a precise computation of the orbit positions of the satellites with altimeters. In particular the knowledge of the radial orbit error is of high interest in this context. Rosborough's theory [Rosborough, G.W., 1986 Satellite Orbit Perturbations due to the Geopotential, CSR-86-1 rep., Center for Space Research, Univ. of Texas, Austin.], ammended by our newer works, describes Earth static gravity induced radial orbit error as a function of latitude, longitude and pass direction. Using this theory applied to precise long-term measurements of crossover altimetry we demonstrate the improvement in the accuracy of the orbit radius due to Earth gravity models, from the early 1980s (order of tens of meters), to the present (order of centimeters and less). The early models, with higher correlations between potential coefficients, show strong variations of the error in longitude as well as latitude, compared to the more recent fields. Currently the static gravity errors in the best of the Earth models are believed to be below the systematic environmental errors in the long-term altimetry.

  15. The OSIRIS-REx laser altimeter (OLA): Development progress

    NASA Astrophysics Data System (ADS)

    Daly, M.; Barnouin, O.; Johnson, C.; Bierhaus, E.; Seabrook, J.; Dickinson, C.; Haltigin, T.; Gaudreau, D.; Brunet, C.; Cunningham, G.; Lauretta, D.; Boynton, W.; Beshore, E.

    2014-07-01

    Introduction: The NASA New Frontiers Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission will be the first to sample the B-type asteroid (101955) Bennu [1]. This asteroid is thought to be primitive and carbonaceous, and is probably closely related to CI and/or CM meteorites [2]. The OSIRIS-REx mission hopes to better understand both the physical and geochemical origin and evolution of carbonaceous asteroids through its investigation of Bennu. The OSIRIS-REx spacecraft will launch in September 2016, and arrive at Bennu two years later. The Canadian Space Agency is contributing a scanning lidar system known as the OSIRIS-REx Laser Altimeter (OLA), to the OSIRIS-REx Mission. The OLA instrument is part of suite of onboard instruments [3] including cameras (OCAMS) [4], a visible and near- infrared spectrometer (OVIRS) [5], a thermal emission spectrometer (OTES), and an X-ray imaging spectrometer (REXIS) [6]. OLA Objectives: The OLA instrument has a suite of scientific and mission operations purposes. At a global scale, it will update the shape and mass of Bennu to provide insights on the geological origin and evolution of Bennu, by, for example, further refining constraints on its bulk density. With a carefully undertaken geodesy campaign, OLA-based precision ranges, constraints from radio science (2-way tracking) data and stereo OCAMS images, it will yield broad-scale, quantitative constraints on any internal heterogeneity of Bennu and hence provide further clues to Bennu's origin and subsequent collisional evolution. OLA-derived global asteroid maps of slopes, elevation relative to the asteroid geoid, and vertical roughness will provide quantitative insights on how local-regional surfaces on Bennu evolved subsequent to the formation of the asteroid. In addition, OLA data and derived products support the assessment of the safety and sampleability of potential sample sites. At the sample-site scale, the OLA instrument

  16. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1994-01-01

    Accomplishments in the following areas of research are presented: receiver performance study of spaceborne laser altimeters and cloud and aerosol lidars; receiver performance analysis for space-to-space laser ranging systems; and receiver performance study for the Mars Environmental Survey (MESUR).

  17. Orbit Determination of the Mars Global Surveyor Spacecraft Using Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Smith, David E.; Zuber, M. T.; Lemoine, F. G.; Rowlands, D. D.

    2001-01-01

    Many of the scientific investigations of the Mars Global Surveyor (MGS) mission require high precision orbital information and some are limited entirely by its quality. These include the laser altimeter (MOLA) the Mars gravity field and atmospheric occultation investigations by radio science, and the planetary dynamics and celestial mechanics investigations. The precision of the orbits can usually be assessed by comparing overlapping orbits for a given period; but these results tend to reflect the repeatability rather than the accuracy. The re-constructed orbits from the doppler and range tracking data on MGS are (to date) at the few meter level radially, and a few hundreds of meters horizontally, using the best gravity models, presently available. With the laser altimeter on MGS we have a mechanism to measure the quality and to actually make significant improvements in the orbital accuracy by incorporating the altimetry data as a tracking datatype. By adding the altimeter measurements at orbital cross-over locations we have been able to reduce die radial error to 1 meter of less on average and have reduced the along track and out of plane error by almost 2 orders of magnitude down to a few meters. It is apparent that the altimeter observation provides a geometric strength to the orbit that it is not possible to obtain from the present doppler and the range data alone. We discuss the results obtained for the first year of the MGS mapping orbit. This work is supported by the NASA Mars Program.

  18. Future Applications Using Return-Pulse Correlation from Imaging Laser Altimeters

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Hofton, Michelle A.; Rabine, David L.

    2000-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, wide-swath, digitization-only laser altimeter capable of collecting full return waveforms (i.e. echoes) from laser footprints ranging in diameter from 1 to 80 m across up to a 1 km wide data swath. The return waveform can be used to enhance the accuracy of laser ranging and to provide information about the vertical structure of vegetation and topography within each laser footprint. Although extremely small laser footprints (< 1 0 cm diameter) generally return simple, impulse responses to their target surface, larger footprints typically exhibit complex returns representing the diverse vertical distributions of surfaces contained in each footprint. Only a handful of airborne and spaceborne laser altimeters record the return echo or return pulse that is reflected from the Earth's surface (i.e. NASA's LVIS, SLA, VCL, and GLAS laser altimeters). Waveforms are currently interpreted to extract a timing or ranging point or points to represent the mean ground elevation or the vertical height of vegetation. But, recent progress using pulse shape correlation techniques shows promise for a variety of science applications involving change detection of surface topography and vegetation as well as potential for improving data processing by correlating images or crossovers to solve systematic biases. We show example correlation images from LVIS and discuss instrument design implications and potential science applications.

  19. Calibration of Mercury Laser Altimeter Data Using Digital Elevation Models Derived from Stereo Image Pairs

    NASA Astrophysics Data System (ADS)

    Bauer, R. S.; Barker, M. K.; Mazarico, E.; Neumann, G. A.

    2015-12-01

    Knowledge of Mercury's topography is crucial to understanding Mercury's complex geology and history, as well as its current rotation state. From onboard the MESSENGER spacecraft, the Mercury Laser Altimeter (MLA) made around 26 million measurements of Mercury's topography, with radial and horizontal accuracies of ~10 m and ~100 m, respectively. Prior to orbit insertion in 2011, MESSENGER conducted three gravity-assist flybys of Mercury. During the January and October 2008 flybys, MLA made its first altimetric measurements, but the radial and horizontal accuracies were respectively limited to ~100 and ~1000 meters due to uncertainties in the spacecraft and planetary ephemerides. To reduce these geolocation uncertainties, the MLA flyby data have been compared to images taken by the Mercury Dual Imaging System (MDIS), another instrument on MESSENGER. Stereo image pairs acquired by MDIS were selected from a database of over 500,000 image pairs located within 5 degrees of the equator. The selected stereo pairs have high surface resolutions (~200 m/pixel), large overlap areas (overlap ratio > 0.3), and well-matched illumination conditions. Using the NASA Ames Stereo Pipeline, digital elevation models (DEMs) were constructed from the image pairs that contained MLA flyby data points. We then ran an alignment program on these DEMs to match included MLA altimetry bounce points as closely as possible to the DEM surfaces. The resulting estimated track displacements were aggregated, and the general trends of these displacements can be used to perform a full-flyby orbit adjustment. Such an adjustment would enable more reliable determination of Mercury's surface elevation and MESSENGER's trajectory during the 2008 flybys. Accurate elevation measurements from these flybys are especially important because they passed over the southern hemisphere, where MLA coverage from the orbital mission is sparse. Calibration of these MLA data will improve our knowledge of Mercury's orientation

  20. Cloud Algorithm Design and Performance for the 2002 Geoscience Laser Altimeter System Mission

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hart, W. D.; Hlavka, D. L.; Mahesh, A.; Starr, David (Technical Monitor)

    2002-01-01

    A satellite borne lidar instrument, the Geoscience Laser Altimeter System (GLAS), is to be launched in late 2002 and will provide continuous profiling of atmospheric clouds and aerosol on a global basis. Data processing algorithms have been developed to provide operational data products in near real time. Basic data products for cloud observations are the height of the top and bottom of single to multiple cloud layers and the lidar calibrated observed backscatter cross section up to the level of signal attenuation. In addition the optical depth and vertical profile of visible extinction cross section of many transmissive cloud layers and most haze layers are to be derived. The optical thickness is derivable in some cases from the attenuation of the molecular scattering below cloud base. In other cases an assumption of the scattering phase function is required. In both cases a estimated correction for multiple scattering is required. The data processing algorithms have been tested in part from aircraft measurements used to simulated satellite data. The GLAS lidar observations will be made from an orbit that will allow inter comparison with all other existing satellite cloud measurements.

  1. Initial Validation and Results of Geoscience Laser Altimeter System Optical Properties Retrievals

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Hart, W. D.; Pal, S. P.; McGill, M.; Spinhirne, J. D.

    2004-01-01

    Verification of Geoscience Laser Altimeter System (GLAS) optical retrievals is . problematic in that passage over ground sites is both instantaneous and sparse plus space-borne passive sensors such as MODIS are too frequently out of sync with the GLAS position. In October 2003, the GLAS Validation Experiment was executed from NASA Dryden Research Center, California to greatly increase validation possibilities. The high-altitude NASA ER-2 aircraft and onboard instrumentation of Cloud Physics Lidar (CPL), MODIS Airborne Simulator (MAS), and/or MODIS/ASTER Airborne Simulator (MASTER) under-flew seven orbit tracks of GLAS for cirrus, smoke, and urban pollution optical properties inter-comparisons. These highly calibrated suite of instruments are the best data set yet to validate GLAS atmospheric parameters. In this presentation, we will focus on the inter-comparison with GLAS and CPL and draw preliminary conclusions about the accuracies of the GLAS 532nm retrievals of optical depth, extinction, backscatter cross section, and calculated extinction-to-backscatter ratio. Comparisons to an AERONET/MPL ground-based site at Monterey, California will be attempted. Examples of GLAS operational optical data products will be shown.

  2. Space Borne Cloud and Aerosol Measurements by the Geoscience Laser Altimeter System: Initial Results

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.; Hart, William D.; Mahesh, Ashwin; Welton, Ellsworth J.

    2003-01-01

    In January 2003 the Geoscience Laser Altimeter System (GLAS) was successfully launched into orbit. Beginning in March 2003 GLAS will provide global coverage lidar measurement of the height distribution of clouds and aerosol in the atmosphere for up to five years. The characteristic and value of the unique data will be presented. The instrument is a basic backscatter lidar that operates at two wavelengths, 532 and 1064 nm. The mission data products for atmospheric observations include the calibrated, observed, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data is expected to significantly enhance knowledge in several areas of atmospheric science, in particular the distribution, transport and influence of atmospheric aerosol and thin clouds. Measurements of the coverage and height of polar and cirrus cloud should be significantly more accurate than previous global observations. In March and April 2003, airborne and ground based data verification experiments will be carried out. Initial results from the verification experiments and the first several months of operation will be presented.

  3. Extraction of the tidal amplitude from synthetic topography data of the BepiColombo laser altimeter in the polar regions of Mercury

    NASA Astrophysics Data System (ADS)

    Koch, Ch.; Christensen, U. R.; Kallenbach, R.

    2008-09-01

    ABSTRACT BepiColombo is one of the cornerstone missions of ESA to investigate Mercury which is the least investigated planet in the Solar System. The weak magnetic field observed by Mariner 10 in 1974 can be explained by a partly liquid core. The tidal Love number h2 reveals information on the thickness of the liquid outer core. The BepiColombo laser altimeter (BELA) on board the MPO spacecraft will map the entire surface of Mercury and should in principle allow for the retrieval of the tidal elevation of order one meter caused by solar gravitation. The highest density of BELA data are to be expected in the polar regions of Mercury because MPO orbits Mercury on a nearly polar trajectory. In previous simulations, we have tested whether it is possible to retrieve the tidal Love number h2 simultaneously with a spherical harmonic analysis of the global static topography of Mercury. Here, the analysis of orbit crossing points is presented. This analysis contains three main sources of uncertainty: a) instrumental and spacecraft positioning uncertainties, b) uncertainties due to the small-scale topography between two laser altimeter measurements, and c) uncertainties from the interpolation between laser altimeter measurement points. It can be shown that the uncertainty of the Love number can be reduced to about 3% using the crossing-point method. This is sufficient to test present theoretical models on the interior structure of Mercury.

  4. Theoretical and experimental analysis of laser altimeters for barometric measurements over the ocean

    NASA Technical Reports Server (NTRS)

    Tsai, B. M.; Gardner, C. S.

    1984-01-01

    The statistical characteristics and the waveforms of ocean-reflected laser pulses are studied. The received signal is found to be corrupted by shot noise and time-resolved speckle. The statistics of time-resolved speckle and its effects on the timing accuracy of the receiver are studied in the general context of laser altimetry. For estimating the differential propagation time, various receiver timing algorithms are proposed and their performances evaluated. The results indicate that, with the parameters of a realistic altimeter, a pressure measurement accuracy of a few millibars is feasible. The data obtained from the first airborne two-color laser altimeter experiment are processed and analyzed. The results are used to verify the pressure measurement concept.

  5. 20,000 Photons Under the Snow: Subsurface Scattering of Visible Laser Light and the Implications for Laser Altimeters

    NASA Astrophysics Data System (ADS)

    Greeley, A.; Kurtz, N. T.; Shappirio, M.; Neumann, T.; Cook, W. B.; Markus, T.

    2014-12-01

    Existing visible light laser altimeters such as ATM (Airborne Topographical Mapper) with NASA's Operation IceBridge and NASA's MABEL (Multiple Altimeter Beam Experimental Lidar; a simulator for NASA's ICESat-2 mission) are providing scientists with a view of Earth's ice sheets, glaciers, and sea ice with unprecedented detail. Measuring how these surfaces evolve in the face of a rapidly changing climate requires the utmost attention to detail in the design and calibration of these instruments, as well as understanding the changing optical properties of these surfaces. As single photon counting lidars, MABEL and NASA's ATLAS (Advanced Topographic Laser Altimeter System) on the upcoming ICESat-2 mission provide fundamentally different information compared with waveform lidars such as ATM, or GLAS (Geoscience Laser Altimeter System) on NASA's previous ICESat-1 mission. By recording the travel times of individual photons, more detailed information about the surface, and potentially the subsurface, are available and must be considered in elevation retrievals from the observed photon cloud. Here, we investigate possible sources of uncertainty associated with monochromatic visible light scattering in subsurface snow, which may affect the precision and accuracy of elevation estimates. We also explore the capacity to estimate snow grain size in near surface snow using experimental visible light laser data obtained in laboratory experiments.

  6. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Sun, Xiaoli; Field, Christopher T.

    1994-01-01

    This interim report consists of two reports: 'Space Radiation Effects on Si APDs for GLAS' and 'Computer Simulation of Avalanche Photodiode and Preamplifier Output for Laser Altimeters.' The former contains a detailed description of our proton radiation test of Si APD's performed at the Brookhaven National Laboratory. The latter documents the computer program subroutines which were written for the upgrade of NASA's GLAS simulator.

  7. In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Grob, Eric; Baker, Charles; McCarthy, Tom

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.

  8. Receiver design, performance analysis, and evaluation for space-borne laser altimeters and space-to-space laser ranging systems

    NASA Technical Reports Server (NTRS)

    Davidson, Frederic M.; Field, Christopher T.; Sun, Xiaoli

    1996-01-01

    We report here the design and the performance measurements of the breadboard receiver of the Geoscience Laser Altimeter System (GLAS). The measured ranging accuracy was better than 2 cm and 10 cm for 5 ns and 30 ns wide received laser pulses under the expected received signal level, which agreed well with the theoretical analysis. The measured receiver sensitivity or the link margin was also consistent with the theory. The effects of the waveform digitizer sample rate and resolution were also measured.

  9. A Long Distance Laser Altimeter for Terrain Relative Navigation and Spacecraft Landing

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.

    2014-01-01

    A high precision laser altimeter was developed under the Autonomous Landing and Hazard Avoidance (ALHAT) project at NASA Langley Research Center. The laser altimeter provides slant-path range measurements from operational ranges exceeding 30 km that will be used to support surface-relative state estimation and navigation during planetary descent and precision landing. The altimeter uses an advanced time-of-arrival receiver, which produces multiple signal-return range measurements from tens of kilometers with 5 cm precision. The transmitter is eye-safe, simplifying operations and testing on earth. The prototype is fully autonomous, and able to withstand the thermal and mechanical stresses experienced during test flights conducted aboard helicopters, fixed-wing aircraft, and Morpheus, a terrestrial rocket-powered vehicle developed by NASA Johnson Space Center. This paper provides an overview of the sensor and presents results obtained during recent field experiments including a helicopter flight test conducted in December 2012 and Morpheus flight tests conducted during March of 2014.

  10. Removing orbital debris with lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Trebes, James E.; Victor George, E.; Marcovici, Bogdan; Reilly, James P.; Valley, Michael T.

    2012-05-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoules lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.

  11. Development of a New Flight Vent for the LOLA Laser Cavity

    NASA Technical Reports Server (NTRS)

    Ramsey, W. Lawrence; Rosecrans, Glenn

    2007-01-01

    The Lunar Orbiting Laser Altimeter (LOLA) will fly on the Lunar Reconnaissance Orbiter (LRO). The laser is based upon the one in the Mercury Laser Altimeter (MLA). LOLA will fly two lasers instead of one in the laser cavity. The MLA laser has a six year flight to station.

  12. Laser Ranging Experiment on Lunar Reconnaissance Orbiter: Clocks and Ranges

    NASA Astrophysics Data System (ADS)

    Mao, D.; Rowlands, D. D.; McGarry, J.; Zuber, M. T.; Smith, D. E.; Torrence, M. H.; Neumann, G. A.; Mazarico, E.; Sun, X.; Zagwodzki, T. W.; Cavanaugh, J. F.; Ramos-Izquierdo, L.

    2010-12-01

    Accurate ranges from Earth to the Lunar Reconnaissance Orbiter (LRO) spacecraft Laser Ranging (LR) system supplement the precision orbit determination (POD) of LRO. LRO is tracked by ten LR stations from the International Laser Ranging Service (ILRS), using H-maser, GPS steered Rb, and Cs standard oscillators as reference clocks. The LR system routinely makes one-way range measurements via laser time-of-flight from Earth to LRO. Uplink photons are received by a telescope mounted on the high-gain antenna on LRO , transferred through a fiber optic cable to the Lunar Orbiter Laser Altimeter (LOLA), and timed-tagged by the spacecraft clock. The range from the LR Earth station to LRO is derived from paired outgoing and received times. Accurate ranges can only be obtained after solving for both the spacecraft and ground station clock errors. The drift rate and aging rate of the LRO clock are calculated from data provided by the primary LR station, NASA's Next Generation Satellite Laser Ranging System (NGSLR) in Greenbelt, Maryland. The results confirm the LRO clock oscillator mid to long term stability measured during ground testing. These rates also agree well with those determined through POD. Simultaneous and near-simultaneous ranging to LRO from multiple LR stations in America, Europe, and Australia has been successfully achieved within a 10 hour window. Data analysis of these ranging experiments allows for precision modeling of the clock behaviors of each LR ground station and characterization of the station ground fire times.

  13. Polarimetric, Two-Color, Photon-Counting Laser Altimeter Measurements of Forest Canopy Structure

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-01-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiple-scattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  14. Polarimetric, two-color, photon-counting laser altimeter measurements of forest canopy structure

    NASA Astrophysics Data System (ADS)

    Harding, David J.; Dabney, Philip W.; Valett, Susan

    2011-10-01

    Laser altimeter measurements of forest stands with distinct structures and compositions have been acquired at 532 nm (green) and 1064 nm (near-infrared) wavelengths and parallel and perpendicular polarization states using the Slope Imaging Multi-polarization Photon Counting Lidar (SIMPL). The micropulse, single photon ranging measurement approach employed by SIMPL provides canopy structure measurements with high vertical and spatial resolution. Using a height distribution analysis method adapted from conventional, 1064 nm, full-waveform lidar remote sensing, the sensitivity of two parameters commonly used for above-ground biomass estimation are compared as a function of wavelength. The results for the height of median energy (HOME) and canopy cover are for the most part very similar, indicating biomass estimations using lidars operating at green and near-infrared wavelengths will yield comparable estimates. The expected detection of increasing depolarization with depth into the canopies due to volume multiplescattering was not observed, possibly due to the small laser footprint and the small detector field of view used in the SIMPL instrument. The results of this work provide pathfinder information for NASA's ICESat-2 mission that will employ a 532 nm, micropulse, photon counting laser altimeter.

  15. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: Science Measurement Performance since Launch

    NASA Technical Reports Server (NTRS)

    Sun, Xiao-Li; Abshire, James B.; Riris, Haris; McGarry, Jan; Sirota, Marcos

    2004-01-01

    The Geoscience Laser Altimeter System is the primary space lidar on NASA's ICESat mission. Since launch in January 2003 GLAS has produced about 544 million measurements of the Earth's surface and atmosphere. It has made global measurements of the Earth's icesheets, land topography and atmosphere with unprecedented vertical resolution and accuracy. GLAS was first activated for science measurements in February 2003. Since then its operation and performance has confirmed many pre-launch expectations and exceed a few of the most optimistic expectations in vertical resolution. However GLAS also suffered an unexpected failure of its first laser, and the GLAS measurements have yielded some surprises in other areas. The talk will give a post launch assessment of the science measurement performance of the GLAS instrument, and compare the science measurements and engineering operation to pre-launch expectations. It also will address some of what has been learned from the GLAS operations and data, which may benefit future space lidar.

  16. Some aspects of the ERS-1 radar altimeter calibration

    NASA Astrophysics Data System (ADS)

    Scharroo, R.; Wakker, K. F.; Overgaauw, B.; Ambrosius, B. A. C.

    1991-10-01

    The ERS-1 altimeter is capable of measuring the height of the satellite above the sea surface, ice or flat land areas with a precision of a few centimeters. However, the measurements may be corrupted by a constant bias. For the in-orbit calibration of the altimeter a procedure has been developed that is based on the selection of a 3-day repeat orbit, in which the satellite overflies an oceanographic platform in the Adriatic Sea every 3 days. Laser tracking data acquired by a network of European systems are used to compute the altitude of the satellite over this platform. The combination of this computed altitude with the altimeter height measurements and all kinds of local sea and atmospheric measurements taken at the platform provides an estimate of the altimeter bias. This paper addresses some aspects of the calibration concept and presents some intermediate results of the calibration analysis.

  17. The Global Surface Roughness of 433 Eros from the NEAR-Shoemaker Laser Altimeter (NLR)

    NASA Astrophysics Data System (ADS)

    Meyer Susorney, Hannah Celine; Barnouin, Olivier S.

    2016-10-01

    Surface roughness is the quantitative measure of the change in topography at a given scale. Previous studies have used surface roughness to map geologic units, choose landing sites, and understand the relative contribution of different geologic processes to topography. In this study we focus on understanding how surface roughness is linked to the geologic processes acting on asteroids, with a case study of 433 Eros through the generation of global surface roughness maps. The scale that surface roughness is measured at will dictate the geologic processes studied; the majority of studies of the surface roughness of asteroids have focused on centimeter scale roughness (derived from radar measurements). Spacecraft that rendezvous with asteroids and carry laser altimeters on board provide topographic data that allows surface roughness to be measured at the scale of meters to hundreds of meters.To calculate surface roughness on 433 Eros from 1 m to 300 m, we use the Near Earth Asteroid Rendezvous (NEAR)-Shoemaker's laser altimeter (NLR). We measure surface roughness as Root-Mean Square (RMS) deviation, which is simply the RMS difference in height over a given scale. RMS deviation is then used to calculate the Hurst exponent, which quantifies the fractal behavior of the surface and is indicative of the type of geologic processes controlling topography at that scale. The surface roughness on 433 Eros varies regionally, with smaller roughness values where regolith has accumulated, and more elevated roughness values along the walls of large craters or near linear grooves. The roughness seen in crater walls may be evidence for subsurface structures (visible as aligned blocks protruding from the crater walls). The surface roughness of 433 Eros is also remarkably fractal relative to other asteroids and planets. To understand in greater detail the geological origin of the surface roughness and fractal nature of Eros, this study presents the first global maps of surface roughness

  18. Improvement of the TOPEX and Jason Orbit Time Series: Precision Orbit Determination, Calibration, Validation and Improvement Through the Combined Reduction and Analysis of GPS, SLR, DORIS and Altimeter Data

    NASA Technical Reports Server (NTRS)

    Luthcke, Scott B.; Rowlands, D. D.; Lemoine, F. G.; Zelensky, N. P.; Beckley, B. D.

    2004-01-01

    Orbit error is a major component in the overall error budget of all altimeter satellite missions. Jason-I is no exception and a 1 cm radial orbit accuracy goal has been set, which represents a factor of two improvement over what is currently being achieved for TOPEX/Poseidon (TP). Our current analysis suggests this goal has been met and even improved upon, but the challenge is to be able to continually achieve this high accuracy, verify the performance and characterize and quantify the remaining errors over the lifetime of the mission. The computation, verification and error characterization of such high accuracy orbits requires the reduction and analysis of all available tracking data (GPS, SLR, DORIS and altimeter). Current analysis also indicates the history of TP orbits can be further improved employing new solution strategies developed and tested on Jason-I. Our research focuses on the calibration, validation and improvement of orbit accuracies using all available tracking data including altimetry. We will compute and distribute well centered Jason orbits with an accuracy of better than 1-cm in the radial component. In addition to the orbits themselves, a characterization of the orbit error will be distributed and accumulated as a time series of orbit performance metrics to track anomalies and trends. The long time series of orbit error characterization will enable a better understanding of the remaining orbit errors and its impact on the altimeter data analysis. As part of this research effort we are also significantly improving the current level of TP orbit accuracy, re-computing new high-accuracy TP orbits from the beginning of the TP mission and continuing into the future (as long as TP is healthy). Our funded research effort will result in a complete and consistent time series of improved orbits for both TP and Jason, significantly benefiting the long time series of altimeter data analysis and the TP/Jason dual mission. The resultant high accuracy orbits

  19. Spectral characteristics of time-dependent orbit errors in altimeter height measurements

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Schlax, Michael G.

    1993-01-01

    A mean reference surface and time-dependent orbit errors are estimated simultaneously for each exact-repeat ground track from the first two years of Geosat sea level estimates based on the Goddard Earth model (GEM)-T2 orbits. Motivated by orbit theory and empirical analysis of Geosat data, the time-dependent orbit errors are modeled as 1 cycle per revolution (cpr) sinusoids with slowly varying amplitude and phase. The method recovers the known 'bow tie effect' introduced by the existence of force model errors within the precision orbit determination (POD) procedure used to generate the GEM-T2 orbits. The bow tie pattern of 1-cpr orbit errors is characterized by small amplitudes near the middle and larger amplitudes (up to 160 cm in the 2 yr of data considered here) near the ends of each 5- to 6-day orbit arc over which the POD force model is integrated. A detailed examination of these bow tie patterns reveals the existence of daily modulations of the amplitudes of the 1-cpr sinusoid orbit errors with typical and maximum peak-to-peak ranges of about 14 cm and 30 cm, respectively. The method also identifies a daily variation in the mean orbit error with typical and maximum peak-to-peak ranges of about 6 and 30 cm, respectively, that is unrelated to the predominant 1-cpr orbit error. Application of the simultaneous solution method to the much less accurate Geosat height estimates based on the Naval Astronautics Group orbits concludes that the accuracy of POD is not important for collinear altimetric studies of time-dependent mesoscale variability (wavelengths shorter than 1000 km), as long as the time-dependent orbit errors are dominated by 1-cpr variability and a long-arc (several orbital periods) orbit error estimation scheme such as that presented here is used.

  20. System Accommodation of Propylene Loop Heat Pipes For The Geoscience Laser Altimeter System (GLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Grob, Eric W.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Loop Heat Pipes (LHP) are used for precise temperature control for NASA Goddard Space Flight Center's Geoscience Laser Altimeter System (GLAS) Instrument in a widely varying LEO thermal environment. Two propylene LHPs are utilized to provide separate thermal control for the Nd:YAG Lasers and the remaining avionics/detector components suite. Despite a rigorous engineering development and test plan to demonstrate the performance in the restrictive GLAS design, the flight units failed initial thermal vacuum acceptance testing at GSFC. Subsequent investigation revealed that compromises in the mechanical packaging of these systems resulted in inadequate charge levels for a concentric wick LHP. The redesign effort included larger compensation chambers that provide more fluid to the wick for start-up scenarios and highlighted the need to fully understand the limitations and accommodation requirements of new technologies in a system design application. Once again, seemingly minor departures from heritage configurations and limited resources led to performance and operational issues. This paper provides details into the GLAS LHP engineering development program and acceptance testing of the flight units, including the redesign effort.

  1. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  2. Two-color, Polarimetric Laser Altimeter Measurements of Forest Canopy Structure and Composition

    NASA Astrophysics Data System (ADS)

    Dabney, P.; Yu, A. W.; Harding, D. J.; Valett, S. R.; Hicks, E.; Shuman, C. A.; Vasilyev, A. A.

    2010-12-01

    Over the past decade lidar remote sensing has proven to be a highly effective method for characterization of forest canopy structure and estimation of biomass stocks. However, traditional measurements only provide information on the vertical distribution of surfaces without ability to differentiate surface types. Also, an unresolved aspect of traditional measurements is the contribution of within-canopy multiple scattering to the lidar profiles of canopy structure. Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) data was acquired in July and August, 2010 for three sites with well-characterized forest structure in order to address these issues. SIMPL is an airborne, four-beam laser altimeter developed through the NASA Earth Science Technology Office Instrument Incubator Program. It acquires single-photon laser ranging data at 532 and 1064 nm, recording range-resolved measurements of reflected energy parallel and perpendicular to the transmit pulse polarization plane. Prior work with a non-ranging, multi-wavelength laser polarimetry demonstrated differentiation of tree species types based on depolarization differences related to surface and volume multiple scattering at the leaf scale. By adding the ranging component, SIMPL provides a means to investigate the vertical and horizontal distribution of optical scattering properties to better understand the interaction of pulsed laser energy with the foliage, stem and branch components of forest canopies. Data were acquired for the deciduous forest cover at the Smithsonian Environmental Research Center in Maryland and mixed deciduous and pine cover in the New Jersey Pine Barrens, two sites being used by the ICESat-2 project to assess micropulse, single-photon measurements of forest canopies. A third site, in the Huron National Forest in Michigan, has had diverse forest silviculture management practices applied to pine stands. The contrasts in forest stands between these sites will be used to illustrate

  3. The use of laser altimetry data in Chang'E-1 precision orbit determination

    NASA Astrophysics Data System (ADS)

    Chang, Sheng-Qi; Huang, Yong; Li, Pei-Jia; Hu, Xiao-Gong; Fan, Min

    2016-09-01

    Accurate altimetric measurement not only can be applied to the calculation of a topography model but also can be used to improve the quality of the orbit reconstruction in the form of crossovers. Altimetry data from the Chang'E-1 (CE-1) laser altimeter are analyzed in this paper. The differences between the crossover constraint equation in the form of height discrepancies and in the form of minimum distances are mainly discussed. The results demonstrate that the crossover constraint equation in the form of minimum distances improves the CE-1 orbit precision. The overlap orbit performance has increased ∼ 30% compared to the orbit using only tracking data. External assessment using the topography model also shows orbit improvement. The results will be helpful for recomputing ephemeris and improving the CE-1 topography model.

  4. Improve the ZY-3 Height Accuracy Using Icesat/glas Laser Altimeter Data

    NASA Astrophysics Data System (ADS)

    Li, Guoyuan; Tang, Xinming; Gao, Xiaoming; Zhang, Chongyang; Li, Tao

    2016-06-01

    ZY-3 is the first civilian high resolution stereo mapping satellite, which has been launched on 9th, Jan, 2012. The aim of ZY-3 satellite is to obtain high resolution stereo images and support the 1:50000 scale national surveying and mapping. Although ZY-3 has very high accuracy for direct geo-locations without GCPs (Ground Control Points), use of some GCPs is still indispensible for high precise stereo mapping. The GLAS (Geo-science Laser Altimetry System) loaded on the ICESat (Ice Cloud and land Elevation Satellite), which is the first laser altimetry satellite for earth observation. GLAS has played an important role in the monitoring of polar ice sheets, the measuring of land topography and vegetation canopy heights after launched in 2003. Although GLAS has ended in 2009, the derived elevation dataset still can be used after selection by some criteria. In this paper, the ICESat/GLAS laser altimeter data is used as height reference data to improve the ZY-3 height accuracy. A selection method is proposed to obtain high precision GLAS elevation data. Two strategies to improve the ZY-3 height accuracy are introduced. One is the conventional bundle adjustment based on RFM and bias-compensated model, in which the GLAS footprint data is viewed as height control. The second is to correct the DSM (Digital Surface Model) straightly by simple block adjustment, and the DSM is derived from the ZY-3 stereo imaging after freedom adjustment and dense image matching. The experimental result demonstrates that the height accuracy of ZY-3 without other GCPs can be improved to 3.0 meter after adding GLAS elevation data. What's more, the comparison of the accuracy and efficiency between the two strategies is implemented for application.

  5. Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Douglas, Donya; Ku, Jentung; Kaya, Tarik

    1998-01-01

    This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.

  6. Topographic roughness of the northern high latitudes of Mercury from MESSENGER Laser Altimeter data

    NASA Astrophysics Data System (ADS)

    Fa, Wenzhe; Cai, Yuzhen; Xiao, Zhiyong; Tian, Wei

    2016-04-01

    We investigated topographic roughness for the northern hemisphere (>45°N) of Mercury using high-resolution topography data acquired by the Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. Our results show that there are distinct differences in the bidirectional slope and root-mean-square (RMS) height among smooth plains (SP), intercrater plains (ICP), and heavily cratered terrain (HCT), and that the ratios of the bidirectional slope and RMS height among the three geologic units are both about 1:2:2.4. Most of Mercury's surface exhibits fractal-like behavior on the basis of the linearity in the deviograms, with median Hurst exponents of 0.66, 0.80, and 0.81 for SP, ICP, and HCT, respectively. The median differential slope map shows that smooth plains are smooth at kilometer scale and become rough at hectometer scale, but they are always rougher than lunar maria at the scales studied. In contrast, intercrater plains and heavily cratered terrain are rough at kilometer scale and smooth at hectometer scale, and they are rougher than lunar highlands at scale <˜2 km but smoother at >˜2 km. We suggest that these scale-dependent roughness characteristics are mainly caused by the difference in density and shape of impact craters between Mercury and the Moon.

  7. Global Lidar Measurements of Clouds and Aerosols from Space Using the Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis L.; Palm, S. P.; Welton, E. J.; Hart, W. D.; Spinhirne, J. D.; McGill, M.; Mahesh, A.; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Geoscience Laser Altimeter System (GLAS) is scheduled for launch on the ICESat satellite as part of the NASA EOS mission in 2002. GLAS will be used to perform high resolution surface altimetry and will also provide a continuously operating atmospheric lidar to profile clouds, aerosols, and the planetary boundary layer with horizontal and vertical resolution of 175 and 76.8 m, respectively. GLAS is the first active satellite atmospheric profiler to provide global coverage. Data products include direct measurements of the heights of aerosol and cloud layers, and the optical depth of transmissive layers. In this poster we provide an overview of the GLAS atmospheric data products, present a simulated GLAS data set, and show results from the simulated data set using the GLAS data processing algorithm. Optical results from the ER-2 Cloud Physics Lidar (CPL), which uses many of the same processing algorithms as GLAS, show algorithm performance with real atmospheric conditions during the Southern African Regional Science Initiative (SAFARI 2000).

  8. Enhancements for the Geoscience Laser Altimeter System (GLAS) Data Products and Services

    NASA Astrophysics Data System (ADS)

    Fowler, D. K.; Haran, T. M.; McAllister, M.; Webster, D.

    2014-12-01

    The principle objective of the Ice, Cloud, and land Elevation Satellite (ICESat-1) mission was to measure ice sheet elevations and changes to elevation through time. Secondary objectives included measurement of cloud and aerosol height profiles, land elevation and vegetation cover, and sea ice thickness. The Geoscience Laser Altimeter System (GLAS), in operation from January 2003 through October 2009 was the sole instrument on ICESat-1. The data from this mission are archived and made available to the public at NASA's Distributed Active Archive Center located at the National Snow and Ice Data Center (NSIDC DAAC), University of Colorado in Boulder. Release 34 of ICESat-1 GLAS data completed in late 2014. These data were produced in the original binary format and also in HDF5. This release contains several important fixes to the altimetry data products which include a correction to the surface elevation, a dry tropospheric jitter correction, and adjustments to several confidence and characteristic flags. There are a variety of methods to obtain these data ranging from direct download from an online archive to using the Reverb Search and Order Tool which allows for spatial and temporal searches. Subsetting is also available for both the binary and HDF5 formats.

  9. Tropopause-level thin cirrus coverage revealed by ICESat/Geoscience Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Palm, S. P.; Hart, W. D.; Spinhirne, J. D.

    2006-04-01

    We analyze the distribution of thin (optical depth < 0.40) cirrus in the tropics at potential temperatures of 360, 370, 377.5, and 400 K, which are levels that bracket the tropical tropopause. The observations were obtained between 29 September and 17 November 2003 by the Geoscience Laser Altimeter System (GLAS), carried on board the Ice, Cloud, and land Elevation Satellite (ICESat). The GLAS data show that these thin, near-tropopause cirrus (TNTC) occur over broad regions of the latitude range 20°S to 30°N, with distinct maxima collocated with regions of intense convection, and that TNTC occurrence frequency decreases strongly with increasing altitude. At 377.5 K, approximately the level of the tropical tropopause, TNTC frequency over convection is two to six times larger than in the so-called "cold pool," the climatological temperature minimum located over the equatorial western Pacific where it has been suggested that dehydration of air entering the stratosphere is occurring. Comparisons between assimilated temperatures, outgoing longwave radiation (a proxy for deep convection), and TNTC frequency show that TNTC can be found where assimilated temperatures are low and deep convection is occurring. We find that assimilated temperatures, by themselves, are incomplete predictors of TNTC locations.

  10. Atmospheric and Surface Reflectance Measurements by the Geoscience Laser Altimeter System

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.; Hart, William D.; Mehesh, Ashwin; Welton, Ellsworth J.

    2004-01-01

    The Geoscience Laser Altimeter System launched in early 2003 is the first satellite instrument IC space to globally observe the distribution of clouds and aerosol through laser remote sensing. The instrument is a basic backscatter lidar that operates at two wavelengths, 532 and 1064 nm. The mission data products for atmospheric observations include the calibrated, observed, attenuated backscatter cross section for cloud and aerosol; height detection for multiple cloud layers; planetary boundary layer height; cirrus and aerosol optical depth and the height distribution of aerosol and cloud scattering cross section profiles. The data will enhance knowledge in several areas of atmospheric science: the distribution, transport and influence of atmospheric aerosol, significantly more accurate measurements of the coverage and height of cirrus and other clouds, polar cloud climatology and radiation influence, the dynamics planetary boundary layer and others. An overview and summary of initial results are presented. Initial results from the first months of operation show the detailed height structure of clouds and aerosol on a global basis as expected. The 532 nm channel was expected to be the more sensitive and primary channel for aerosol measurements, but extensive aerosol loading in many regions are observed by the 1064 nm channel. Sensitivities are down to a few times l0(exp 6) l/(m-sr), much better than originally expected. The 532 channel adds an order of magnitude addition sensitivity. Initial comparisons to aerosol models have been done. Similarly for global cloud cover, good results are obtained just from the 1064 nm channel and from both channels, a measurement of multiple layers and cloud overlap has been made. Antarctica observations show high levels of total cloud cover including unique low-level cirrus and blowing snow. Data products have been generated for cloud, aerosol and PBL presence and heights in addition to the basic scattering cross section profiles.

  11. Geoscience Laser Altimeter System (GLAS) Instrument: Flight Loop Heat Pipe (LHP) Acceptance Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Butler, Dan; Ku, Jentung; Grob, Eric; Swanson, Ted; Nikitkin, Michael; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Two loop heat pipes (LHPs) are to be used for tight thermal control of the Geoscience Laser Altimeter System (GLAS) instrument, planned for flight in late 2001. The LHPs are charged with Propylene as a working fluid. One LHP will be used to transport 110 W from a laser to a radiator, the other will transport 160 W from electronic boxes to a separate radiator. The application includes a large amount of thermal mass in each LHP system and low initial startup powers. The initial design had some non-ideal flight design compromises, resulted in a less than ideal charge level for this design concept with a symmetrical secondary wick. This less than ideal charge was identified as the source of inadequate performance of the flight LHPs during the flight thermal vacuum test in October of 2000. We modified the compensation chamber design, re-built and charged the LHPs for a final LHP acceptance thermal vacuum test. This test performed March of 2001 was 100% successful. This is the last testing to be performed on the LHPs prior to instrument thermal vacuum test. This sensitivity to charge level was shown through varying the charge on a Development Model Loop Heat Pipe (DM LHP) and evaluating performance at various fill levels. At lower fills similar to the original charge in the flight units, the same poor performance was observed. When the flight units were re-designed and filled to the levels similar to the initial successful DM LHP test, the flight units also successfully fulfilled all requirements. This final flight Acceptance test assessed performance with respect to startup, low power operation, conductance, and control heater power, and steady state control. The results of the testing showed that both LHPs operated within specification. Startup on one of the LHPs was better than the other LHP because of the starter heater placement and a difference in evaporator design. These differences resulted in a variation in the achieved superheat prior to startup. The LHP with

  12. Geoscience Laser Altimeter System (GLAS) Final Test Report of DM LHP TV Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles

    2000-01-01

    Two loop heat pipes (LHPs) are to be used for thermal control of the Geoscience Laser Altimeter System (GLAS), planned for flight in 2001. One LHP will be used to transport 100 W from a laser to the radiator, the other will transport 210 W from electronic boxes to the radiator. In order to verify the LHP design for the GLAS application, an LHP Development Model has been fabricated, and ambient and thermal vacuum tested. Two aluminum blocks of 15 kg and 30 kg, respectively, were attached to the LHP to simulate the thermal masses connected to the heat sources. A 20 W starter heater was installed on the evaporator to aid the loop startup. A new concept to thermally couple the vapor and liquid line was also incorporated in the LHP design. Such a thermal coupling would reduce the power requirement on the compensation chamber in order to maintain the loop set point temperature. To avoid freezing of the liquid in the condenser during cold cases, propylene was selected as the working fluid. The LHP was tested under reflux mode and with adverse elevation. Tests conducted included start-up, power cycle, steady state and transient operation during hot and cold cases, and heater power requirements for the set point temperature control of the LHP. Test results showed very successful operation of the LHP under all conditions. The 20 W starter heater proved necessary in order to start the loop when a large thermal mass was attached to the evaporator. The thermal coupling between the liquid line and the vapor line significantly reduced the heater power required for loop temperature control, which was less than 5 watts in all cases, including a cold radiator. The test also demonstrated successful operation with a propylene working fluid, with successful startups with condenser temperatures as low as 100 C. Furthermore, the test demonstrated accurate control of the loop operating temperature within +/- 0.2 C, and a successful shutdown of the loop during the survival mode of

  13. Removing orbital debris with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Trebes, James E.; George, E. Victor; Marcovici, Bogdan; Reilly, James P.; Valley, Michael T.

    2012-07-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight segmented design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most costeffective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.

  14. Mid-Infrared Laser Orbital Septal Tightening

    PubMed Central

    Chu, Eugene A.; Li, Michael; Lazarow, Frances B.; Wong, Brian J. F.

    2014-01-01

    IMPORTANCE Blepharoplasty is one of the most commonly performed facial aesthetic surgeries. While myriad techniques exist to improve the appearance of the lower eyelids, there is no clear consensus on the optimal management of the orbital septum. OBJECTIVES To evaluate the safety and feasibility of the use of the holmium:yttrium aluminum garnet (Ho:YAG) laser for orbital septal tightening, and to determine whether modest use of this laser would provide some degree of clinical efficacy. DESIGN, SETTING, AND PARTICIPANTS Direct laser irradiation of ex vivo bovine tissue was used to determine appropriate laser dosimetry using infrared thermal imaging and optical coherence tomography before conducting a pilot clinical study in 5 patients. Laser irradiation of the lower eyelid orbital septum was performed through a transconjunctival approach. Standardized preoperative and postoperative photographs were taken for each patient and evaluated by 6 unbiased aesthetic surgeons. EXPOSURE Use of the Ho:YAG laser for orbital septal tightening. MAIN OUTCOME AND MEASURE To determine appropriate laser dosimetry, infrared thermal imaging and optical coherence tomography were used to monitor temperature and tissue shape changes of ex vivo bovine tissue that was subjected to direct laser irradiation. For the clinical study, preoperative and postoperative photographs were evaluated by 6 surgeons on a 10-point Likert scale. RESULTS Optical coherence tomography demonstrated that laser irradiation of bovine tissue to a temperature range of 60°C to 80°C resulted in an increase in thickness of up to 2-fold. There were no complications or adverse cosmetic outcomes in the patient study. Patient satisfaction with the results of surgery averaged 7 on a 10-point Likert scale. For 3 patients, 3 (50%) of the evaluators believed there was a mild improvement in appearance of the lower eyelids after surgery. The remaining patients were thought to have no significant changes. CONCLUSIONS AND

  15. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  16. Combining multiple altimeter missions

    NASA Astrophysics Data System (ADS)

    Jacobs, G. A.; Mitchell, J. L.

    1997-10-01

    Viewing altimeter data only at the points where separate altimeter missions' ground tracks cross provides a method to observe long time period sea surface height (SSH) variations and avoids many of the problems inherent in combining separate altimeter data sets through an independently determined geoid. TOPEX/POSEIDON (T/P) data over the time period from January 1, 1993, to December 31, 1995, form a mean SSH that is used as a reference by other altimeter data sets. A least squares analysis of the mean T/P SSH determines the portion of the Geographically Correlated Orbit Error (GCOE) that may be observed through crossover differences and removes this portion of the GCOE. The analysis removes errors of 0.86 cm RMS at 1 cycle per orbit revolution (cpr) and indicates negligible errors at higher frequencies. After the GCOE removal, the accuracy of the T/P reference mean is better than 1 cm RMS as measured by crossover differences. The GCOE contained in the Geosat-Exact Repeat Mission (ERM) and ERS 1 data with orbit solutions using the Joint Gravity Model (JGM) 3 is evaluated through an adjustment to the T/P reference mean surface. The Geosat-ERM data indicate a bias of about 28 cm averaged over the globe, and the ERS 1 bias is 44 cm. The T/P data used here is not corrected for the oscillator drift correction error so that the actual bias is less by about 13 cm. Both the Geosat-ERM and ERS 1 GCOE are mainly 1 cpr. GCOE estimates at frequencies above 1 cpr indicate little actual orbit error but are more correlated to instrument correction errors (particularly water vapor). Simultaneous T/P and ERS 1 SSH anomalies to the T/P mean indicate good correlation.

  17. A High-altitude, Advanced-technology Scanning Laser Altimeter for the Elevation for the Nation Program

    NASA Astrophysics Data System (ADS)

    Harding, D. J.

    2007-12-01

    In January of this year the National Research Council's Committee on Floodplain Mapping Technologies recommended to Congress that an Elevation for the Nation program be initiated to enable modernization of the nation's floodplain maps and to support the many other nationwide programs reliant on high-accuracy elevation data. Their recommendation is to acquire a national, high-resolution, seamless, consistent, public-domain, elevation data set created using airborne laser swath mapping (ALSM). Although existing commercial ALSM assets can acquire elevation data of sufficient accuracy, achieving nationwide consistency in a cost-effective manner will be a challenge employing multiple low-flying commercial systems conducting local to regional mapping. This will be particularly true in vegetated terrain where reproducible measurements of ground topography and vegetation structure are required for change-detection purposes. An alternative approach using an advanced technology, wide-swath, high-altitude laser altimeter is described here, based on the Swath Imaging Multi-polarization Photon-counting Lidar (SIMPL) under development via funding from NASA's Instrument Incubator Program. The approach envisions a commercial, federal agency and state partnership, with the USGS providing program coordination, NASA implementing the advanced technology instrumentation, the commercial sector conducting data collection and processing and states defining map product requirements meeting their specific needs. An Instrument Synthesis and Analysis (ISAL) study conducted at Goddard Space Flight Center evaluated an instrument compliment deployed on a long-range Gulfstream G550 platform operating at 12 km altitude. The English Electric Canberra is an alternative platform also under consideration. Instrumentation includes a scanning, multi-beam laser altimeter that maps a 10 km wide swath, IMU and Star Trackers for attitude determination, JPL's Global Differential GPS implementation for

  18. Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal

    NASA Technical Reports Server (NTRS)

    Yang, Yuekui; Marshak, Alexander; Chiu, J. Christine; Wiscombe, Warren J.; Palm, Stephen P.; Davis, Anthony B.; Spangenberg, Douglas A.; Nguyen, Louis; Spinhirne, James D.; Minnis, Patrick

    2008-01-01

    Laser beams emitted from the Geoscience Laser Altimeter System (GLAS), as well as other space-borne laser instruments, can only penetrate clouds to a limit of a few optical depths. As a result, only optical depths of thinner clouds (< about 3 for GLAS) are retrieved from the reflected lidar signal. This paper presents a comprehensive study of possible retrievals of optical depth of thick clouds using solar background light and treating GLAS as a solar radiometer. To do so we first calibrate the reflected solar radiation received by the photon-counting detectors of GLAS' 532 nm channel, which is the primary channel for atmospheric products. The solar background radiation is regarded as a noise to be subtracted in the retrieval process of the lidar products. However, once calibrated, it becomes a signal that can be used in studying the properties of optically thick clouds. In this paper, three calibration methods are presented: (I) calibration with coincident airborne and GLAS observations; (2) calibration with coincident Geostationary Operational Environmental Satellite (GOES) and GLAS observations of deep convective clouds; (3) calibration from the first principles using optical depth of thin water clouds over ocean retrieved by GLAS active remote sensing. Results from the three methods agree well with each other. Cloud optical depth (COD) is retrieved from the calibrated solar background signal using a one-channel retrieval. Comparison with COD retrieved from GOES during GLAS overpasses shows that the average difference between the two retrievals is 24%. As an example, the COD values retrieved from GLAS solar background are illustrated for a marine stratocumulus cloud field that is too thick to be penetrated by the GLAS laser. Based on this study, optical depths for thick clouds will be provided as a supplementary product to the existing operational GLAS cloud products in future GLAS data releases.

  19. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1986-01-01

    Progress in the following areas is described: refining altimeter and altimeter crossover measurement models for precise orbit determination and for the solution of the earth's gravity field; performing experiments using altimeter data for the improvement of precise satellite ephemerides; and analyzing an optimal relative data weighting algorithm to combine various data types in the solution of the gravity field.

  20. Vegetation and topography mapping with an airborne laser altimeter using a high-efficiency laser and a scannable field-of-view telescope

    SciTech Connect

    Blair, J.B.; Coyle, D. B.

    1996-11-01

    A medium altitude airborne laser altimeter system has been designed and developed at NASA`s Goddard Space Flight Center to map surface height distributions (SHDs) across wide, nadir-centered, swaths. Instrument performance, data product quality, and the satellite-like footprint sizes are maintained using novel laser output and receiver field of view (FOV) scanning techniques. The laser transmitter was custom designed and built at GSFC to achieve 10% wallplug efficiency in a compact, rugged package. The laser output pulse is 2 nsec full width half max (FWHM) at a repetition rate of 500 Hz and with 6 mJ of output power evenly split into 1.064 nm and 0.532 nm wavelengths. A multiple-pass pump scheme along with variable conductance heatpipes (VCHPs) combine to increase the laser efficiency. The telescope was custom designed to have a throughput of > 85%, 20 cm aperture, 6{degrees} potential FOV, 0.5 {degrees} instantaneous FOV that is rapidly positioned anywhere in the potential FOV within 2 msec, permitting wide-swath scanning as well as real-time nadir control of the scan swath. The return echoes are recorded using a 500 MHz, 8-bit waveform digitizer. Possible applications range from simple topographic mapping to 3-dimensional vegetation structure determination. Tree heights, canopy architecture, and surface roughness can easily be extracted from the return echo. 3 refs., 3 figs.

  1. Observations of Dust Using the NASA Geoscience Laser Altimeter System (GLAS): New New Measurements of Aerosol Vertical Distribution From Space

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    On January 12, 2003 NASA launched the first satellite-based lidar, the Geoscience Laser -Altimeter System (GLAS), onboard the ICESat spacecraft. The GLAS atmospheric measurements introduce a fundamentally new and important tool for understanding the atmosphere and climate. In the past, aerosols have only been studied from space using images gathered by passive sensors. Analysis of this passive data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth's climate. However, these images do not show the aerosol's vertical distribution. As a result, a key piece of information has been missing. The measurements now obtained by GLAS will provide information on the vertical distribution of aerosols and clouds, and improve our ability to study their transport processes and aerosol-cloud interactions. Here we show an overview of GLAS, provide an update of its current status, and present initial observations of dust profiles. In particular, a strategy of characterizing the height profile of dust plumes over source regions will be presented.

  2. A ground track control algorithm for the Topographic Mapping Laser Altimeter (TMLA)

    NASA Technical Reports Server (NTRS)

    Blaes, V.; Mcintosh, R.; Roszman, L.; Cooley, J.

    1993-01-01

    The results of an analysis of an algorithm that will provide autonomous onboard orbit control using orbits determined with Global Positioning System (GPS) data. The algorithm uses the GPS data to (1) compute the ground track error relative to a fixed longitude grid, and (2) determine the altitude adjustment required to correct the longitude error. A program was written on a personal computer (PC) to test the concept for numerous altitudes and values of solar flux using a simplified orbit model including only the J sub 2 zonal harmonic and simple orbit decay computations. The algorithm was then implemented in a precision orbit propagation program having a full range of perturbations. The analysis showed that, even with all perturbations (including actual time histories of solar flux variation), the algorithm could effectively control the spacecraft ground track and yield more than 99 percent Earth coverage in the time required to complete one coverage cycle on the fixed grid (220 to 230 days depending on altitude and overlap allowance).

  3. Application of Reconfigurable Computing Technology to Multi-KiloHertz Micro-Laser Altimeter (MMLA) Data Processing

    NASA Technical Reports Server (NTRS)

    Powell, Wesley; Dabney, Philip; Hicks, Edward; Pinchinat, Maxime; Day, John H. (Technical Monitor)

    2002-01-01

    The Multi-KiloHertz Micro-Laser Altimeter (MMLA) is an aircraft based instrument developed by NASA Goddard Space Flight Center with several potential spaceflight applications. This presentation describes how reconfigurable computing technology was employed to perform MMLA signal extraction in real-time under realistic operating constraints. The MMLA is a "single-photon-counting" airborne laser altimeter that is used to measure land surface features such as topography and vegetation canopy height. This instrument has to date flown a number of times aboard the NASA P3 aircraft acquiring data at a number of sites in the Mid-Atlantic region. This instrument pulses a relatively low-powered laser at a very high rate (10 kHz) and then measures the time-of-flight of discrete returns from the target surface. The instrument then bins these measurements into a two-dimensional array (vertical height vs. horizontal ground track) and selects the most likely signal path through the array. Return data that does not correspond to the selected signal path are classified as noise returns and are then discarded. The MMLA signal extraction algorithm is very compute intensive in that a score must be computed for every possible path through the two dimensional array in order to select the most likely signal path. Given a typical array size with 50 x 6, up to 33 arrays must be processed per second. And for each of these arrays, roughly 12,000 individual paths must be scored. Furthermore, the number of paths increases exponentially with the horizontal size of the array, and linearly with the vertical size. Yet, increasing the horizontal and vertical sizes of the array offer science advantages such as improved range, resolution, and noise rejection. Due to the volume of return data and the compute intensive signal extraction algorithm, the existing PC-based MMLA data system has been unable to perform signal extraction in real-time unless the array is limited in size to one column, This

  4. The Laser Vegetation Imaging Sensor (LVIS): A Medium-Altitude, Digitization-Only, Airborne Laser Altimeter for Mapping Vegetation and Topography

    NASA Technical Reports Server (NTRS)

    Blair, J. Bryan; Rabine, David L.; Hofton, Michelle A.

    1999-01-01

    The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter designed and developed at NASA's Goddard Space Flight Center. LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25 m wide footprints. The entire time history of the outgoing and return pulses is digitized, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with decimeter accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 nsec, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the U.S. and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

  5. Orbit accuracy assessment for Seasat

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Tapley, B. D.

    1980-01-01

    Laser range measurements are used to determine the orbit of Seasat during the period from July 28, 1978, to Aug. 14, 1978, and the influence of the gravity field, atmospheric drag, and solar radiation pressure on the orbit accuracy is investigated. It is noted that for the orbits of three-day duration, little distinction can be made between the influence of different atmospheric models. It is found that the special Seasat gravity field PGS-S3 is most consistent with the data for three-day orbits, but an unmodeled systematic effect in radiation pressure is noted. For orbits of 18-day duration, little distinction can be made between the results derived from the PGS gravity fields. It is also found that the geomagnetic field is an influential factor in the atmospheric modeling during this time period. Seasat altimeter measurements are used to determine the accuracy of the altimeter measurement time tag and to evaluate the orbital accuracy.

  6. The GEOS-3 orbit determination investigation

    NASA Technical Reports Server (NTRS)

    Pisacane, V. L.; Eisner, A.; Yionoulis, S. M.; Mcconahy, R. J.; Black, H. D.; Pryor, L. L.

    1978-01-01

    The nature and improvement in satellite orbit determination when precise altimetric height data are used in combination with conventional tracking data was determined. A digital orbit determination program was developed that could singly or jointly use laser ranging, C-band ranging, Doppler range difference, and altimetric height data. Two intervals were selected and used in a preliminary evaluation of the altimeter data. With the data available, it was possible to determine the semimajor axis and eccentricity to within several kilometers, in addition to determining an altimeter height bias. When used jointly with a limited amount of either C-band or laser range data, it was shown that altimeter data can improve the orbit solution.

  7. Application of the Shuttle Laser Altimeter in an Accuracy Assessment of Global 1-Kilometer Digital Elevation Data

    NASA Technical Reports Server (NTRS)

    Harding, David J.; Carabajal, Claudia C.; Luthcke, Scott B.; Gesch, Dean B.

    1998-01-01

    Shuttle Laser Altimeter (SLA) data have been used to evaluate the accuracy of GTOPO30, the first comprehensive, 1 km resolution, global topographic data set. GTOPO30 was developed by the USGS Eros Data Center (EDC), in part, to address NASA's needs for a global topographic model in support of remote sensing instruments aboard the Earth Observing System AM-1 spacecraft. SLA flew as a part of the STS-72 mission in January, 1996 observing the latitude band from +/- 28.5 deg, and on STS-85 in August, 1997 extending the observations to +/- 57 deg. Combining the SLA ranging data with shuttle position and pointing knowledge yields surface elevation data of very high vertical accuracy in an Earth-centered, absolute reference frame (2.8 m rms difference for SLA-01 with respect to ocean reference surface). Use of the well-determined mean sea surface reference for calibration allows propagation of high accuracy altimetry onto the continents. 436,635 SLA-01 land elevations were compared to the GTOPO30 grid after conversion to a mean sea level vertical datum using the Earth Geoid Model 96, jointly developed by Goddard and NIMA. The comparison reveals systematic elevation biases in southern Asia, Africa, Australia, and south America on the order 10's to 100 meters in the GTOPO30 compilation on spatial scales of 100's to 1000's of kilometers. These biases are likely due to vertical datum errors in the topographic source materials used to compile GTOPO30, which primarily consist of Defense Mapping Agency (DMA) digital elevation and topographic map products. These biases imply that elevation corrections applied to land gravity measurements using these DMA source materials will be biased, leading to errors in geoid models incorporating these land gravity data.

  8. Geoscience Laser Altimeter System (GLAS): Final Test Report of DM LHP TV Testing. Revised

    NASA Technical Reports Server (NTRS)

    Baker, Charles

    2000-01-01

    The Demonstration Model (DM) Loop Heat Pipe (LHP) was tested at Goddard Space Flight Center (GSFC) during September and October, 1999. The LHP system was placed in the Dynavac 36 in. chamber in Building 4. The test lasted for about 6 weeks. The LHP was built, designed, and manufactured at Dynatherm Corporation, Inc. In Hunt Valley, MD according to GSFC specifications. The purpose of the test was to evaluate the performance of a propylene LHP for the Geoscience Laser Altimetry System (GLAS) instrument application.

  9. Reflected Signal Analysis and Surface Albedo in the Mars Orbiter Laser Altimeter (MOLA) Investigation

    NASA Technical Reports Server (NTRS)

    Ivanov, Anton B.; Muhleman, Duane O.

    2001-01-01

    This work presents results from the analysis of the reflectivity data from the MOLA investigation. We will discuss calculation of the surface albedo using the MGS TES 9 micron opacity. We will also overview reflectivity data collected to date. Additional information is contained in the original extended abstract.

  10. Free Space Laser Communication Experiments from Earth to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Zellar, Ronald S.; Fong, Wai H; Krainak, Michael A.; Neumann, Gregory A.; Smith, David E.

    2013-01-01

    Laser communication and ranging experiments were successfully conducted from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit. The experiments used 4096-ary pulse position modulation (PPM) for the laser pulses during one-way LRO Laser Ranging (LR) operations. Reed-Solomon forward error correction codes were used to correct the PPM symbol errors due to atmosphere turbulence and pointing jitter. The signal fading was measured and the results were compared to the model.

  11. SEASAT altimeter timing bias estimation

    NASA Astrophysics Data System (ADS)

    Marsh, J. G.; Williamson, R. G.

    1982-04-01

    The calibration of the altimeter observation time tags to the millisecond level of accuracy is fundamental to the processing of the data. Initial analyses of the SEASAT altimeter data indicated the presence of a time calibration bias which produced altimeter measurement errors in excess of a meter. A technique has been developed for the solution of the time tag bias based upon the analysis of sea surface height discrepancies at ground track intersections. This technique has permitted very good separation of the dominant once per revolution ephemeris error, which amounts to about 1.5 m rms, from the timing error signature. Furthermore, the technique does not depend upon the availability of precise geoid data. The application of this technique to a global set of SEASAT altimeter data covering the time period of July 28-August 9, 1978, has resulted in a value of -81.0±2 ms for the time tag bias. This value agrees to within 2.9 ms of the value derived at the University of Texas from a similar analysis of the altimeter data. Furthermore, these values corroborate the revised value of -79.4 ms derived at NASA/Wallops Flight Center and the Johns Hopkins University/Applied Physics Lab from a reexamination of the internal instrument time delays. The modeling of oceanic tides and the orbit computations are the major error sources in these analyses.

  12. Performance Considerations for the SIMPL Single Photon, Polarimetric, Two-Color Laser Altimeter as Applied to Measurements of Forest Canopy Structure and Composition

    NASA Technical Reports Server (NTRS)

    Dabney, Philip W.; Harding, David J.; Valett, Susan R.; Vasilyev, Aleksey A.; Yu, Anthony W.

    2012-01-01

    The Slope Imaging Multi-polarization Photon-counting Lidar (SIMPL) is a multi-beam, micropulse airborne laser altimeter that acquires active and passive polarimetric optical remote sensing measurements at visible and near-infrared wavelengths. SIMPL was developed to demonstrate advanced measurement approaches of potential benefit for improved, more efficient spaceflight laser altimeter missions. SIMPL data have been acquired for wide diversity of forest types in the summers of 2010 and 2011 in order to assess the potential of its novel capabilities for characterization of vegetation structure and composition. On each of its four beams SIMPL provides highly-resolved measurements of forest canopy structure by detecting single-photons with 15 cm ranging precision using a narrow-beam system operating at a laser repetition rate of 11 kHz. Associated with that ranging data SIMPL provides eight amplitude parameters per beam unlike the single amplitude provided by typical laser altimeters. Those eight parameters are received energy that is parallel and perpendicular to that of the plane-polarized transmit pulse at 532 nm (green) and 1064 nm (near IR), for both the active laser backscatter retro-reflectance and the passive solar bi-directional reflectance. This poster presentation will cover the instrument architecture and highlight the performance of the SIMPL instrument with examples taken from measurements for several sites with distinct canopy structures and compositions. Specific performance areas such as probability of detection, after pulsing, and dead time, will be highlighted and addressed, along with examples of their impact on the measurements and how they limit the ability to accurately model and recover the canopy properties. To assess the sensitivity of SIMPL's measurements to canopy properties an instrument model has been implemented in the FLIGHT radiative transfer code, based on Monte Carlo simulation of photon transport. SIMPL data collected in 2010 over

  13. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  14. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  15. Laser Systems for Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-01

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called "LIFE" laser system. Because a single "LIFE" beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  16. Full-waveform, Laser Altimeter Measurements of Vegetation Vertical Structure and Sub-canopy Topography in Support of the North American Carbon Program

    NASA Technical Reports Server (NTRS)

    Blair, B.; Hofton, M.; Rabine, D.; Padden, P.; Rhoads, J.

    2004-01-01

    Full-waveform, scanning laser altimeters (i.e. lidar) provide a unique and precise view of the vertical and horizontal structure of vegetation across wide swaths. These unique laser altimeters systems are able to simultaneously image sub-canopy topography and the vertical structure of any overlying vegetation. These data reveal the true 3-D distribution of vegetation in leaf-on conditions enabling important biophysical parameters such as canopy height and aboveground biomass to be estimated with unprecedented accuracy. An airborne lidar mission was conducted in the summer of 2003 in support of preliminary studies for the North America Carbon Program. NASA's Laser Vegetation Imaging Sensor (LVIS) was used to image approximately 2,000 sq km in Maine, New Hampshire, Massachusetts and Maryland. Areas with available ground and other data were included (e.g., experimental forests, FLUXNET sites) in order to facilitate numerous bio- and geophysical investigations. Data collected included ground elevation and canopy height measurements for each laser footprint, as well as the vertical distribution of intercepted surfaces (i.e. the return waveform). Data are currently available at the LVIS website (http://lvis.gsfc.nasa.gov/). Further details of the mission, including the lidar system technology, the locations of the mapped areas, and examples of the numerous data products that can be derived from the return waveform data products are available on the website and will be presented. Future applications including potential fusion with other remote sensing data sets and a spaceborne implementation of wide-swath, full-waveform imaging lidar will also be discussed.

  17. Evaluation of IGS Orbits with Satellite Laser Ranging

    NASA Technical Reports Server (NTRS)

    Watkins, M. M.; Bar-Sever, Y. E.; Yuan, D. N.

    1996-01-01

    The accuracy with which orbits for the Global Positioning System (GPS) spacecraft, can be computed directly affects the accuracy of the resulting site coordinates and polar motion. Several groups routinely analyze GPS ground tracking data to compute precise orbits and terrestrial reference frame solutions. In this paper, we infer the accuracy of the orbits of two of the GPS satellites by comparing to independent laser ranges of subcentimeter accuracy obtained by a small but reasonably well distributed network of tracking sites. We find that all seven International GPS Service for Geodynamics (IGS) analysis centers achieve range residual root mean square (rms) errors at or below the 100 mm level. The best orbit solutions, from JPL, CODE, and the IGS combined product, yield a residual rms of about 50 mm. These residuals are consistent with three dimensional orbit errors of less than 150 mm. Estimating yaw rates for the spacecraft during shadow events, and using these estimates to compute the laser residual, significantly improves the fit. A small mean residual value of -15 to -30 mm seems to exist for most centers and laser sites which is not fully explained at present, but may be due to uncertainties in the corrections to the laser data, such as the reflector to spacecraft center of mass vector or small reference frame differences between the SLR sites and the GPS orbits.

  18. NASA's Operation IceBridge: using instrumented aircraft to bridge the observational gap between ICESat and ICESat-2 laser altimeter measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Studinger, M.; Koenig, L.; Martin, S.; Sonntag, J. G.

    2010-12-01

    In 2009, the NASA satellite laser altimeter mission ICESat (Ice, Cloud and Land Elevation Satellite), which was launched in 2003, ceased to operate. To bridge the gap in polar laser observations between ICESat and its replacement ICESat-2, which is not scheduled for launch until 2015, Operation IceBridge, a six-year NASA airborne mission, was initiated in 2009. From a series of yearly polar flights, Operation IceBridge uses airborne instruments to map rapidly changing areas in the Arctic and Antarctic, building on two decades of repeat airborne and satellite measurements. Combined with previous aircraft observations, as well as ICESat, CryoSat-2 and the forthcoming ICESat-2 observations, Operation IceBridge will produce a cross-calibrated 17-year time series of ice sheet and sea-ice elevation data over Antarctica, as well as a 27-year time series over Greenland. These time series will be a critical resource for predictive models of sea ice and ice sheet behavior. In addition to laser altimetry, Operation IceBridge is using a comprehensive suite of instruments to produce a three-dimensional view of the Arctic and Antarctic ice sheets, ice shelves and the sea ice. The suite includes two NASA laser altimeters, the Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS); four radar systems from the University of Kansas’ Center for Remote Sensing of Ice Sheets (CReSIS), a Ku-band radar altimeter, accumulation radar, snow radar and the Multichannel Coherent Radar Depth Sounder (MCoRDS); a Sander Geophysics airborne gravimeter (AIRGrav) and a high resolution stereographic camera (DMS). The first Operation IceBridge flights were conducted between March and May 2009 over the Arctic and between October and November 2009 over Antarctica. Since its start in 2009, Operation IceBridge has flown 69 science missions, 580 flight hours and collected more than 350,000 km of data. All Operation IceBridge data are available at NSDIC: http

  19. NOSS altimeter algorithm specifications

    NASA Technical Reports Server (NTRS)

    Hancock, D. W.; Forsythe, R. G.; Mcmillan, J. D.

    1982-01-01

    A description of all algorithms required for altimeter processing is given. Each description includes title, description, inputs/outputs, general algebraic sequences and data volume. All required input/output data files are described and the computer resources required for the entire altimeter processing system were estimated. The majority of the data processing requirements for any radar altimeter of the Seasat-1 type are scoped. Additions and deletions could be made for the specific altimeter products required by other projects.

  20. A lunar rover powered by an orbiting laser diode array

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Williams, M. D.; Walker, G. H.; Schuster, G. L.; Lee, J. H.

    1991-01-01

    A conceptual design of a high-power, long-duration lunar rover powered by a laser beam is proposed. The laser transmitter in lunar orbit consists of an SP-100 nuclear reactor prime power source providing 100 kW of electricity to a laser array that emits 50 kW of laser radiation. The laser radiation is beamed to the lunar surface where it is received by a GaAlAs solid-state, laser-to-electric converter. This converter provides 22 kW of electrical power to the rover vehicle for science, locomotion, and crew needs. The mass of the laser transmitter is approximately 5000 kg, whereas the mass of the rover power supply is 520 kg. The rover power unit is significantly less massive than alternative rover power units.

  1. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  2. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  3. Satellite altimeter calibration techniques

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.; Martin, C. F.

    1990-01-01

    This paper examines calibration techniques which can most effectively satisfy the requirements of future satellites carrying high-accuracy radar altimeters, such as the ESA ERS-1 and the NASA/CNES Topex/Poseidon satellites scheduled for launch during the next five years. The calibration accuracies and the advantages and disadvantages of the four currently proposed calibration techniques for over-water calibration are discussed: (1) a tide gauge on a tower at-sea and a nearby laser, (2) a laser and a tide gauge on an island with an offshore satellite pass and a geoid tie between the satellite ground track and the laser, (3) a tide gauge on a tower at-sea with satellite positioning from multiple lasers and a GPS, and (4) a laser and a tide gauge on a tower at-sea. Error budgets for these techniques, developed on the basis of state-of-the-art tracking systems, were found to have one sigma height uncertainties in the 2.8 to 4.9 cm range.

  4. Satellite altimeter calibration techniques

    NASA Astrophysics Data System (ADS)

    Kolenkiewicz, R.; Martin, C. F.

    This paper examines calibration techniques which can most effectively satisfy the requirements of future satellites carrying high-accuracy radar altimeters, such as the ESA ERS-1 and the NASA/CNES Topex/Poseidon satellites scheduled for launch during the next five years. The calibration accuracies and the advantages and disadvantages of the four currently proposed calibration techniques for over-water calibration are discussed: (1) a tide gauge on a tower at-sea and a nearby laser, (2) a laser and a tide gauge on an island with an offshore satellite pass and a geoid tie between the satellite ground track and the laser, (3) a tide gauge on a tower at-sea with satellite positioning from multiple lasers and a GPS, and (4) a laser and a tide gauge on a tower at-sea. Error budgets for these techniques, developed on the basis of state-of-the-art tracking systems, were found to have one sigma height uncertainties in the 2.8 to 4.9 cm range.

  5. Precise orbit computation and sea surface modeling

    NASA Technical Reports Server (NTRS)

    Wakker, Karel F.; Ambrosius, B. A. C.; Rummel, R.; Vermaat, E.; Deruijter, W. P. M.; Vandermade, J. W.; Zimmerman, J. T. F.

    1991-01-01

    The research project described below is part of a long-term program at Delft University of Technology aiming at the application of European Remote Sensing satellite (ERS-1) and TOPEX/POSEIDON altimeter measurements for geophysical purposes. This program started in 1980 with the processing of Seasat laser range and altimeter height measurements and concentrates today on the analysis of Geosat altimeter data. The objectives of the TOPEX/POSEIDON research project are the tracking of the satellite by the Dutch mobile laser tracking system MTLRS-2, the computation of precise TOPEX/POSEIDON orbits, the analysis of the spatial and temporal distribution of the orbit errors, the improvement of ERS-1 orbits through the information obtained from the altimeter crossover difference residuals for crossing ERS-1 and TOPEX/POSEIDON tracks, the combination of ERS-1 and TOPEX/POSEIDON altimeter data into a single high-precision data set, and the application of this data set to model the sea surface. The latter application will focus on the determination of detailed regional mean sea surfaces, sea surface variability, ocean topography, and ocean currents in the North Atlantic, the North Sea, the seas around Indonesia, the West Pacific, and the oceans around South Africa.

  6. A Geos 3 Orbit determination experiment

    NASA Technical Reports Server (NTRS)

    Pisacane, V. L.; Eisner, A.; Yionoulis, S. M.; Mcconahy, R. J.; Black, H. D.; Pryor, L. L.

    1979-01-01

    The purpose of this experiment was to investigate the value of altimetry data in high-precision satellite orbit determination. To accomplish this, software was developed to process laser, C-band, doppler and altimeter data singly or jointly. Initially, orbit determination studies were undertaken using synthetic data to validate the software. As data became available, preliminary experiments were carried out. When all the data became available, an intensive study was made covering a 4-day span in 1976. The results showed that even with sparse altimeter data it was possible to accurately determine the semimajor axis and eccentricity with altimeter data only. When altimeter data was supplemented with (as few as) two C-band passes, high-precision ephemerides were obtained. Using two laser passes to supplement the altimetry data did not achieve that same high precision. This is probably because the geographic location (mid-Atlantic) of the highly accurate laser data were such that they did not ideally complement the available (south Atlantic and Indian Ocean) altimeter data.

  7. Orbit Determination Analysis Utilizing Radiometric and Laser Ranging Measurements for GPS Orbit

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2007-01-01

    While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current issues involve lowering the error in the GPS satellite ephemerides below their current level. In this document, the results of an orbit determination covariance assessment are provided. The analysis is intended to be the baseline orbit determination study comparing the benefits of adding laser ranging measurements from various numbers of ground stations. Results are shown for two starting longitude assumptions of the satellite location and for nine initial covariance cases for the GPS satellite state vector.

  8. Altimeter and gravity data analysis

    NASA Technical Reports Server (NTRS)

    Rapp, Richard H.

    1992-01-01

    The studies carried out under this grant fell into two broad areas. The first area was the analysis of surface gravity data with the ultimate goal of providing normal equations that could be used in combination with normal equations from the analysis of satellite orbit perturbations to obtain an optimal estimate of the gravitational potential coefficients of the Earth. The second main research activity was the estimation of gravity anomalies in ocean areas from satellite altimeter data. Such anomalies could enable the improved calibration of potential coefficient models derived solely from the analysis of orbital perturbation information. The studies in these two areas are discussed.

  9. Relative vertical positioning using ground-level transponders with the ERS-1 altimeter

    NASA Astrophysics Data System (ADS)

    Powell, R. J.

    1985-06-01

    A technique for using the ERS-1 altimeter to measure the relative vertical position of land-based transponders and the ocean geoid on 2000 km long segments of the satellite ground track is proposed. The absolute position accuracy is similar to that of the laser tracking stations, relative accuracy may be of the order of a few centimeters, and measurements of changes in transponder elevation during the 3 yr satellite life may be at the sub-centimeter level. The opportunity for such measurements is provided by exploiting together very accurate range measurements made to ground-based transponders and the demonstrated constancy of form of satellite short-arc orbits repeated over an identical ground track. Altimetric vertical position measurements of this accuracy make possible techniques for altimeter calibration, sea-state bias measurements, orbit measurement and seismic/geodetic study.

  10. Ground truth data requirements for altimeter performance verification

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1972-01-01

    The amount and type of ground truth required for an altimeter experiment is a function of the uncertainty in the satellite orbit, the altimeter error budget and the type of operation being performed. Ground truth requirements will be discussed with reference to three areas of operation: the global mode, the high intensity mode and calibration.

  11. Laser Remediation of Threats Posed by Small Orbital Debris

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  12. Benefits Derived From Laser Ranging Measurements for Orbit Determination of the GPS Satellite Orbit

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2007-01-01

    While navigation systems for the determination of the orbit of the Global Position System (GPS) have proven to be very effective, the current research is examining methods to lower the error in the GPS satellite ephemerides below their current level. Two GPS satellites that are currently in orbit carry retro-reflectors onboard. One notion to reduce the error in the satellite ephemerides is to utilize the retro-reflectors via laser ranging measurements taken from multiple Earth ground stations. Analysis has been performed to determine the level of reduction in the semi-major axis covariance of the GPS satellites, when laser ranging measurements are supplemented to the radiometric station keeping, which the satellites undergo. Six ground tracking systems are studied to estimate the performance of the satellite. The first system is the baseline current system approach which provides pseudo-range and integrated Doppler measurements from six ground stations. The remaining five ground tracking systems utilize all measurements from the current system and laser ranging measurements from the additional ground stations utilized within those systems. Station locations for the additional ground sites were taken from a listing of laser ranging ground stations from the International Laser Ranging Service. Results show reductions in state covariance estimates when utilizing laser ranging measurements to solve for the satellite s position component of the state vector. Results also show dependency on the number of ground stations providing laser ranging measurements, orientation of the satellite to the ground stations, and the initial covariance of the satellite's state vector.

  13. Project LOCOST: Laser or Chemical Hybrid Orbital Space Transport

    NASA Technical Reports Server (NTRS)

    Dixon, Alan; Kost, Alicia; Lampshire, Gregory; Larsen, Rob; Monahan, Bob; Wright, Geoff

    1990-01-01

    A potential mission in the late 1990s is the servicing of spacecraft assets located in GEO. The Geosynchronous Operations Support Center (GeoShack) will be supported by a space transfer vehicle based at the Space Station (SS). The vehicle will transport cargo between the SS and the GeoShack. A proposed unmanned, laser or chemical hybrid orbital space transfer vehicle (LOCOST) can be used to efficiently transfer cargo between the two orbits. A preliminary design shows that an unmanned, laser/chemical hybrid vehicle results in the fuel savings needed while still providing fast trip times. The LOCOST vehicle receives a 12 MW laser beam from one Earth orbiting, solar pumped, iodide Laser Power Station (LPS). Two Energy Relay Units (ERU) provide laser beam support during periods of line-of-sight blockage by the Earth. The baseline mission specifies a 13 day round trip transfer time. The ship's configuration consist of an optical train, one hydrogen laser engine, two chemical engines, a 18 m by 29 m box truss, a mission-flexible payload module, and propellant tanks. Overall vehicle dry mass is 8,000 kg. Outbound cargo mass is 20,000 kg, and inbound cargo mass is 6,000 kg. The baseline mission needs 93,000 kg of propellants to complete the scenario. Fully fueled, outbound mission mass is 121,000 kg. A regeneratively cooled, single plasma, laser engine design producing a maximum of 768 N of thrust is utilized along with two traditional chemical engines. The payload module is designed to hold 40,000 kg of cargo, though the baseline mission specifies less. A proposed design of a laser/chemical hybrid vehicle provides a trip time and propellant efficient means to transport cargo from the SS to a GeoShack. Its unique, hybrid propulsion system provides safety through redundancy, allows baseline missions to be efficiently executed, while still allowing for the possibility of larger cargo transfers.

  14. Altimeter waveform software design

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.; Miller, L. S.; Brown, G. S.

    1977-01-01

    Techniques are described for preprocessing raw return waveform data from the GEOS-3 radar altimeter. Topics discussed include: (1) general altimeter data preprocessing to be done at the GEOS-3 Data Processing Center to correct altimeter waveform data for temperature calibrations, to convert between engineering and final data units and to convert telemetered parameter quantities to more appropriate final data distribution values: (2) time "tagging" of altimeter return waveform data quantities to compensate for various delays, misalignments and calculational intervals; (3) data processing procedures for use in estimating spacecraft attitude from altimeter waveform sampling gates; and (4) feasibility of use of a ground-based reflector or transponder to obtain in-flight calibration information on GEOS-3 altimeter performance.

  15. Photon-Counting Multikilohertz Microlaser Altimeters for Airborne and Spaceborne Topographic Measurements

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulse-widths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on Post-Detection Poisson Filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. Practical technology issues, such as detector and/or receiver dead times, have also been considered in the analysis. We describe an airborne prototype, being developed under NASA's instrument Incubator Program, which is designed to operate at a 10 kHz rate from aircraft cruise altitudes up to 12 km with laser pulse energies on the order of a few microjoules. We also analyze a compact and power efficient system designed to operate from Mars orbit at an altitude of 300 km and sample the Martian surface at rates up to 4.3 kHz using a 1 watt laser transmitter and an 18 cm telescope. This yields a Power-Aperture Product of 0.24 W-square meter, corresponding to a value almost 4 times smaller than the Mars Orbiting Laser Altimeter (0. 88W-square meter), yet the sampling rate is roughly 400 times greater (4 kHz vs 10 Hz) Relative to conventional high power laser altimeters, advantages of photon-counting laser altimeters include: (1) a more efficient use of available laser photons providing up to two orders of magnitude greater surface sampling rates for a given laser power-telescope aperture product; (2) a simultaneous two order of magnitude reduction in the volume, cost and weight of the telescope system; (3) the unique ability to spatially resolve the source of the surface return in a photon counting mode through the use of pixellated or imaging detectors; and (4) improved vertical and

  16. Estimation of mean sea surfaces in the north Atlantic, the Pacific and the Indian Ocean using GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Martin, T. V.; Mccarthy, J. J.; Chovitz, P. S.

    1979-01-01

    The mean surfaces of several regions of the world's oceans were estimated using GEOS-3 altimeter data. The northwest Atlantic, the northeast Pacific off the coast of California, the Indian Ocean, the southwest Pacific, and the Phillipine Sea are included. These surfaces have been oriented with respect to a common earth center-of-mass system by constraining the separate solutions to conform to precisely determined laser reference control orbits. The same reference orbits were used for all regions assuring continuity of the separate solutions. Radial accuracies of the control orbits were in the order of one meter. The altimeter measured sea surface height crossover differences were minimized by the adjustment of tilt and bias parameters for each pass with the exception of laser reference control passes. The tilt and bias adjustments removed long wavelength errors which were primarily due to orbit error. Ocean tides were evaluated. The resolution of the estimated sea surfaces varied from 0.25 degrees off the east coast of the United States to about 2 degrees in part of the Indian Ocean near Australia. The rms crossover discrepancy after adjustment varied from 30 cm to 70 cm depending upon geographic location. Comparisons of the altimeter derived mean sea surface in the North Atlantic with the 5 feet x 5 feet GEM-8 detailed gravimetric geoid indicated a relative consistency of better than a meter.

  17. Ground-to-orbit laser propulsion: Advanced applications

    NASA Technical Reports Server (NTRS)

    Kare, Jordin T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance, particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10 to 1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of an order of $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for larger systems. Although the individual payload size would be smaller, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities - geosynchronous transfer, Earth escape, or beyond - at a relatively small premium over launches to LEO. The status of pulsed laser propulsion is briefly reviewed including proposals for advanced vehicles. Several applications appropriate to the early part of the next century and perhaps valuable well into the next millennium are discussed qualitatively: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  18. Laser propulsion to earth orbit. Has its time come?

    NASA Technical Reports Server (NTRS)

    Kantrowitz, Arthur

    1989-01-01

    Recent developments in high energy lasers, adaptive optics, and atmospheric transmission bring laser propulsion much closer to realization. Proposed here is a reference vehicle for study which consists of payload and solid propellant (e.g. ice). A suitable laser pulse is proposed for using a Laser Supported Detonation wave to produce thrust efficiently. It seems likely that a minimum system (10 Mw CO2 laser and 10 m dia. mirror) could be constructed for about $150 M. This minimum system could launch payloads of about 13 kg to a 400 km orbit every 10 minutes. The annual launch capability would be about 683 tons times the duty factor. Laser propulsion would be an order of magnitude cheaper than chemical rockets if the duty factor was 20 percent (10,000 launches/yr). Launches beyond that would be even cheaper. The chief problem which needs to be addressed before these possibilities could be realized is the design of a propellant to turn laser energy into thrust efficiently and to withstand the launch environment.

  19. Ground-to-orbit laser propulsion: Advanced applications

    SciTech Connect

    Kare, J.T.

    1990-01-01

    Laser propulsion uses a large fixed laser to supply energy to heat an inert propellant in a rocket thruster. Such a system has two potential advantages: extreme simplicity of the thruster, and potentially high performance -- particularly high exhaust velocity. By taking advantage of the simplicity of the thruster, it should be possible to launch small (10--1000 kg) payloads to orbit using roughly 1 MW of average laser power per kg of payload. The incremental cost of such launches would be of order $200/kg for the smallest systems, decreasing to essentially the cost of electricity to run the laser (a few times $10/kg) for large systems. Although the individual payload size would be small, a laser launch system would be inherently high-volume, with the capacity to launch tens of thousands of payloads per year. Also, with high exhaust velocity, a laser launch system could launch payloads to high velocities -- geosynchronous transfer, Earth escape, or beyond -- at a relatively small premium over launches to LEO. In this paper, we briefly review the status of pulsed laser propulsion, including proposals for advanced vehicles. We then discuss qualitatively several unique applications appropriate to the early part of the next century, and perhaps valuable well into the next millenium: space habitat supply, deep space mission supply, nuclear waste disposal, and manned vehicle launching.

  20. CGPS Implementation and Lidar/Laser Altimeter Experiences at l'Estartit, Ibiza and Barcelona Harbours for Sea Level Monitoring

    NASA Astrophysics Data System (ADS)

    Martinez-Benjamin, J.; Schutz, B.; Urban, T.; Ortiz Castellon, M.; Martinez-Garcia, M.; Ruiz, A.; Perez, B.; Rodriguez-Velasco, G.

    2008-12-01

    In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge and with a continuous GPS station nearby. The radar tide gauge is a Datamar 3000C device and a Thales Navigation Internet-Enabled GPS Continuous Geodetic Reference Station (iCGRS) with a choke ring antenna. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. Puertos del Estado (Spanish Harbours) installed the tide gauge station at Ibiza harbour in January 2003. The station belongs to the REDMAR network, composed at this moment by 21 stations distributed along the whole Spanish waters, including also the Canary islands. The tide gauge also belongs to the ESEAS (European Sea Level) network. At the Barcelona harbour they have installed a radar tide gauge near a GPS station belonging to Puerto de Barcelona. L'Estartit floating tide gauge was set up in 1990. Data are taken in graphics registers from each two hours the mean value is recorded in an electronic support. L'Estartit tide gauge series provides good quality information about the changes in the sea heights at centimeter level, that is the magnitude of the common tides in the Mediterranean. Two airborne calibration campaigns carrying an Optech Lidar ALTM-3025 (ICC) were made on June 16, 2007 with a Partenavia P-68 and October 12, 2007, with a Cessna Caravan 208B flying along two ICESat target tracks including crossover near l'Estartit. The validation of this new technology LIDAR may be useful to fill coastal areas where satellite radar altimeters are not measuring due to the large footprint and the resulting gaps of about 15-30 km within the coastline. Measurements with a GPS Buoy at l'Estartit harbour were made during the June experience and a GPS reference station was installed in Aiguablava. On October 12, 2007, another LIDAR campaign was

  1. Laser beaming demonstrations to high-orbit satellites

    SciTech Connect

    Lipinski, R.J.; Meister, D.C.; Tucker, S.

    1993-12-31

    Laser power beaming to satellites and orbital transfer vehicles requires the accurate pointing of a low-divergence laser beam to its target, whether the target is in the sunlight or the earth`s shadow. The Air Force Phillips Laboratory (AFPL) has demonstrated reduction in the image size of stars by a factor of 10 or more by using laser beacons and adaptive optics for atmospheric compensation. This same technology is applicable to reducing the divergence of laser beams propagated from earth to space. A team of Phillips Laboratory, COMSAT Laboratories, and Sandia National Laboratories plans to demonstrate the state of the art in this area with laser-beaming demonstrations to high-orbit satellites. The demonstrations will utilize the 1.5-m diameter telescope with adaptive optics at the AFPL Starfire Optical Range (SOR) and a ruby laser provided by the Air Force and Sandia (1--50 kill and 6 ms at 694.3 nm). The first targets will be corner-cube retro-reflectors left on the moon by the Apollo 11, 14, and 15 landings. We will attempt to use adaptive optics for atmospheric compensation to demonstrate accurate and reliable beam projection with a series of shots over a span of time and shot angle. We will utilize the return signal from the retro-reflectors to help determine the beam diameter on the moon and the variations in pointing accuracy caused by atmospheric tilt. This will be especially challenging because the retro-reflectors will need to be in the lunar shadow to allow detection over background light. If the results from this experiment are encouraging, we will at a later date direct the beam at a COMSAT satellite in geosynchronous orbit as it goes into the shadow of the earth. We will utilize an onboard monitor to measure the current generated in the solar panels on the satellite while the beam is present. A threshold irradiance of about 4 W/m{sup 2} on orbit is needed for this demonstration.

  2. Calibration validation for the GEOS-3 altimeter

    NASA Technical Reports Server (NTRS)

    Martin, C. F.; Kolenkiewicz, R.

    1980-01-01

    The absolute bias calibration for the GEOS-3 intensive mode altimeter was measured using two satellite passes whose groundtracks were within 1 km of the Bermuda laser station. The Bermuda laser tracked on the two passes, and was supported by two other NASA lasers on one pass and by the NASA Spacecraft Tracking and Data Network on the other pass. For each pass, the altimeter data around Bermuda was smoothed and extrapolated to the point closest to overhead at the laser site. After correcting for tide heights and sea state effects, the two passes give calibration biases which are in agreement to within 26 cm and have a weighted mean of -5.69 + or - 0.16m for correcting altimeter measurements to the center-of-mass of the spacecraft (i.e., including the antenna tracking point correction). It was found impossible to reconcile the two calibration passes, as well as a set of altimeter crossovers in the middle of the GEOS-3 calibration area, without allowing for a data time tag error. On the bias of a selected set of four crossovers, and an assessment of probable sources of timing error, it was concluded that one interpulse period (10.24 msec) should be added to the data time tags.

  3. Calibration validation for the GEOS-3 altimeter

    NASA Astrophysics Data System (ADS)

    Martin, C. F.; Kolenkiewicz, R.

    1980-06-01

    The absolute bias calibration for the GEOS-3 intensive mode altimeter was measured using two satellite passes whose groundtracks were within 1 km of the Bermuda laser station. The Bermuda laser tracked on the two passes, and was supported by two other NASA lasers on one pass and by the NASA Spacecraft Tracking and Data Network on the other pass. For each pass, the altimeter data around Bermuda was smoothed and extrapolated to the point closest to overhead at the laser site. After correcting for tide heights and sea state effects, the two passes give calibration biases which are in agreement to within 26 cm and have a weighted mean of -5.69 + or - 0.16m for correcting altimeter measurements to the center-of-mass of the spacecraft (i.e., including the antenna tracking point correction). It was found impossible to reconcile the two calibration passes, as well as a set of altimeter crossovers in the middle of the GEOS-3 calibration area, without allowing for a data time tag error. On the bias of a selected set of four crossovers, and an assessment of probable sources of timing error, it was concluded that one interpulse period (10.24 msec) should be added to the data time tags.

  4. Frequency of tropical precipitating clouds as observed by the Tropical Rainfall Measuring Mission Precipitation Radar and ICESat/Geoscience Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Casey, Sean P. F.; Dessler, Andrew E.; Schumacher, Courtney

    2007-07-01

    Convective clouds in the tropics can be grouped into three categories: shallow clouds with cloud top heights near 2 km above the surface, midlevel congestus clouds with tops near the 0°C level, and deep convective clouds capped by the tropopause. This trimodal distribution is visible in cloud data from the Geoscience Laser Altimeter System (GLAS), carried aboard the Ice, Cloud, and land Elevation Satellite (ICESat), as well as in precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). Fractional areal coverage (FAC) data is calculated at each of the three levels to describe how often optically thick clouds or precipitation are seen at each level. By dividing the FAC of TRMM PR-observed precipitation by the FAC of thick GLAS/ICESat-observed clouds, we derive the fraction of clouds that are precipitating. We find that the tropical mean precipitating cloud fraction is low: 3.7% for shallow clouds, 6.5% for midlevel clouds, and 24.1% for deep clouds.

  5. Web-based Altimeter Service

    NASA Astrophysics Data System (ADS)

    Callahan, P. S.; Wilson, B. D.; Xing, Z.; Raskin, R. G.

    2010-12-01

    We have developed a web-based system to allow updating and subsetting of TOPEX data. The Altimeter Service will be operated by PODAAC along with their other provision of oceanographic data. The Service could be easily expanded to other mission data. An Altimeter Service is crucial to the improvement and expanded use of altimeter data. A service is necessary for altimetry because the result of most interest - sea surface height anomaly (SSHA) - is composed of several components that are updated individually and irregularly by specialized experts. This makes it difficult for projects to provide the most up-to-date products. Some components are the subject of ongoing research, so the ability for investigators to make products for comparison or sharing is important. The service will allow investigators/producers to get their component models or processing into widespread use much more quickly. For coastal altimetry, the ability to subset the data to the area of interest and insert specialized models (e.g., tides) or data processing results is crucial. A key part of the Altimeter Service is having data producers provide updated or local models and data. In order for this to succeed, producers need to register their products with the Altimeter Service and to provide the product in a form consistent with the service update methods. We will describe the capabilities of the web service and the methods for providing new components. Currently the Service is providing TOPEX GDRs with Retracking (RGDRs) in netCDF format that has been coordinated with Jason data. Users can add new orbits, tide models, gridded geophysical fields such as mean sea surface, and along-track corrections as they become available and are installed by PODAAC. The updated fields are inserted into the netCDF files while the previous values are retained for comparison. The Service will also generate SSH and SSHA. In addition, the Service showcases a feature that plots any variable from files in netCDF. The

  6. Integrated Multi-Mission Altimeter Data for Climate Research

    NASA Astrophysics Data System (ADS)

    Beckley, B. D.; Ray, R. D.; Lemoine, F. G.; Zelensky, N. P.; Holmes, S. A.; Desai, S. D.; Brown, S.; Jacob, S.; Mitchum, G. T.; Nerem, R.

    2009-12-01

    The science value of satellite altimeter observations has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both past and present missions. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. These stringent accuracy requirements necessitate additional improvements to the historical, present, and future data sets. Our approach under the auspices of the NASA MEaSURE’s (Making Earth System data records for Use in Research Environments) program is to correct a number of consistency issues in the current and historical record, and in so doing to further reduce the overall error budget of the altimeter observations, to validate the accuracy of the resultant sea surface height measurement, and to provide a practical “research ready” product to the community. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the altimeter reference frame, and orbit error directly affects the altimeter measurement. Orbit error remains a major component in the error budget of all past and present altimeter missions. For example, inconsistencies in the ITRF used to produce the precision orbits at different times cause

  7. Concept studies for a laser powered orbital transfer vehicle

    NASA Astrophysics Data System (ADS)

    Bond, Alan; Martin, Anthony R.; Bond, Robert A.

    The concept of beamed energy propulsion, where power from a remote source is transmitted to a space vehicle and then converted into useful thrust, is an attempt to decouple the energy source from the rocket vehicle. It is hoped that in this way high thrust levels and high exhaust velocities can be produced while eliminating the need for a heavy on-board source. Instead of using energy from chemical reactions to heat a propellant, a powerful beam of energy is employed. The efficiency of microwave power generation, transmission, collection and rectification is much higher than for laser beams. However, rectennae dimensions of about 1 km radius are required for propagation over a few thousand kilometres, and a geostationary orbit system would need a radius of about 10 km. While such large systems are feasible, they are well beyond current technical capabilities, and hence the use of microwaves for powering space vehicles must be ruled out in favour of the use of laser powered systems, at least for the present. This paper describes concept studies carried out on a continuous laser power system. The studies suggested that the possibilities for the use of lasers in such a role were optimistic, with the vehicle involving nothing that was outside current technology. A round trip mission with a velocity increment of 10 km/s was considered. A vehicle with an initial mass of about 18 tonnes could propel a 7 tonnes payload on a round trip from low Earth orbit to geostationary altitude and back. The time taken for the mission would be of the same order as chemical systems, with transfer times measured in hours rather than days.

  8. Optical Performance Measurements of the BELA EQM and FM Transmitter Laser during AIV

    NASA Astrophysics Data System (ADS)

    Althaus, C.; Michaelis, H.; Lingenauber, K.; Behnke, T.; Togno, S. d.; Kallenbach, R.; Wickhusen, K.; Althaus, C.

    2014-04-01

    The BepiColombo Laser Altimeter (BELA) onboard the Mercury Planetary Orbiter is Europe's first built Laser Altimeter for a planetary mission. Its main objectives are global mapping of Mercury's topography as well as measuring its tidal deformations to learn about the internal structure of this small terrestrial planet [1]. Crucial part of the instrument for this task is the transmitter laser. It must withstand all mission phases till operation in orbit and work within tight parameter margins. To ensure this a dedicated verification program has been performed at DLR Institute for Planetary Research Berlin which is described in the present paper.

  9. Laser altimetry at the centimeter-level

    NASA Astrophysics Data System (ADS)

    Kallenbach, R.; Koch, C.; Christensen, U.; Hilchenbach, M.; Michaelis, H.; Kracht, D.

    2007-08-01

    Laser altimetry is a powerful tool to map planetary surfaces. In addition to the static topography, time-dependent variations such as libration and tidal elevation can be extracted from laser altimeter data in order to investigate the internal structure of the planetary body. In the frame of the BepiColombo Laser Altimeter project, simulations on the extraction of the tidal amplitude on Mercury's surface due to the solar gravitation have been carried out. Based on these results, we evaluate the instrument requirements for a laser altimeter that orbits Jupiter's moon Europa. The tidal bulges of Europa's ice crust should be as high as 30 m, if there is a subsurface ocean, but less than 1 m, if there is solid ice all the way down to the bedrock. The measurement precision achievable with an altimeter applying a miniaturized diode laser-pumped Nd:YAG laser and a single photon counting technique is explored, and the potentials of the integration of the laser altimeter with a high-resolution camera are discussed.

  10. Participation of D.O. Muhleman as a Co-Investigator on the Mars Observer Laser Altimeter (MOLA) Team

    NASA Technical Reports Server (NTRS)

    Muhleman, Duane O.

    2004-01-01

    The Co-I has been a principle member of the MOLA Team since the beginning of the Mars Observer Project and the MOLA Team formation. The basic area of research for the Co-I involved the interactions of the MOLA laser beam with the Mars atmosphere, ice fields and surface in general. The Co-I was assisted by one graduate student, and later a research assistant, Anton Ivanov, throughout the reporting period. Dr. Ivanov received a PhD from Caltech in 2000 from research involving the MOLA project. Dr. Ivanov continued with the MOLA project after receiving his degree as a research assistant to Professor Muhleman. Most of the funding from this grant was used to support Dr. Ivanov during the later years. The primary results of these investigations included the measurement of Mars atmospheric opacity at the 1 micron wavelength of the laser, the effects of dust within the craters and canyons of Mars, and a detailed study of the North Polar Ice Cap in terms of ice sublimation and the current structure of that ice cap. We were able to show that the sublimation of the ice on the polar cap would create the current average shape of the norther cap. Extensive data collection and study were made of the Mars surface 1 micron reflectivity until the laser mechanically failed during the reporting period. Reflectivity maps of Mars were produced although there were serious problems of the laser echo signal strength calibration. After that event the efforts were mainly to complete the older investigations. All of the work supported by this grant was theoretical in nature and did not lead to any patents.

  11. Status of Precise Orbit Determination for Jason-2 Using GPS

    NASA Technical Reports Server (NTRS)

    Melachroinos, S.; Lemoine, F. G.; Zelensky, N. P.; Rowlands, D. D.; Pavlis, D. E.

    2011-01-01

    The JASON-2 satellite, launched in June 2008, is the latest follow-on to the successful TOPEX/Poseidon (T/P) and JASON-I altimetry missions. JASON-2 is equipped with a TRSR Blackjack GPS dual-frequency receiver, a laser retroreflector array, and a DORIS receiver for precise orbit determination (POD). The most recent time series of orbits computed at NASA GSFC, based on SLR/DORIS data have been completed using both ITRF2005 and ITRF2008. These orbits have been shown to agree radially at 1 cm RMS for dynamic vs SLRlDORIS reduced-dynamic orbits and in comparison with orbits produced by other analysis centers (Lemoine et al., 2010; Zelensky et al., 2010; Cerri et al., 2010). We have recently upgraded the GEODYN software to implement model improvements for GPS processing. We describe the implementation of IGS standards to the Jason2 GEODYN GPS processing, and other dynamical and measurement model improvements. Our GPS-only JASON-2 orbit accuracy is assessed using a number of tests including analysis of independent SLR and altimeter crossover residuals, orbit overlap differences, and direct comparison to orbits generated at GSFC using SLR and DORIS tracking, and to orbits generated externally at other centers. Tests based on SLR and the altimeter crossover residuals provide the best performance indicator for independent validation of the NASAlGSFC GPS-only reduced dynamic orbits. For the ITRF2005 and ITRF2008 implementation of our GPS-only obits we are using the IGS05 and IGS08 standards. Reduced dynamic versus dynamic orbit differences are used to characterize the remaining force model error and TRF instability. We evaluate the GPS vs SLR & DORIS orbits produced using the GEODYN software and assess in particular their consistency radially and the stability of the altimeter satellite reference frame in the Z direction for both ITRF2005 and ITRF2008 as a proxy to assess the consistency of the reference frame for altimeter satellite POD.

  12. Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS)

    NASA Astrophysics Data System (ADS)

    Dessler, A. E.; Palm, S. P.; Spinhirne, J. D.

    2006-06-01

    We analyze cloud-top height data obtained at tropical latitudes between 29 September and 17 November, 2003, from the Geoscience Laser Altimeter System (GLAS), carried onboard the Ice, Cloud, and Land Elevation Satellite (ICESat). About 66% of the tropical observations show one or more cloud layers. Of those observations that do show a cloud, about half show two or more cloud layers. Maxima in the cloud-top height distribution occur in the upper troposphere, between 12 and 17 km, and in the lower troposphere, below about 4 km. A less prominent maximum occurs in the midtroposphere, between 6 and 8 km. The occurrence of cloud layers tends to be consistent with the well-known diurnal cycles of continental and oceanic convection, and we find that cloud layers tend to occur more frequently over land than ocean, except in the lower troposphere, where the opposite is true. A particular emphasis of this paper is the convection that penetrates into the so-called tropical tropopause layer (TTL). We find more frequent occurrence of thick clouds in the TTL and above the tropopause than other studies, with 3.0% and 19% of the thick and thin cloud observations, respectively, showing a cloud top in the TTL and 0.34% and 3.1% showing a cloud top above the average level of the tropopause. These values are higher than those found in other data sets and suggest that an upward revision of TTL cloud frequency might be necessary. TTL clouds are observed more frequently in the evening than in the morning and more frequently over land than over ocean.

  13. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    NASA Astrophysics Data System (ADS)

    Helmer, Eileen H.; Lefsky, Michael A.; Roberts, Dar A.

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover.

  14. Global Geometric Properties of Martian Impact Craters: An Assessment from Mars Orbiter Laser Altimeter (MOLA) Digital Elevation Models

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Frawley, J. J.; Sakimoto, S. E. H.; Schnetzler, C.

    2000-01-01

    Global geometric characteristics of topographically fresh impact craters have been assessed, for the first time, from gridded MOLA topography. Global trends of properties such as depth/diameter differ from previous estimates. Regional differences are observed.

  15. Topography of Small Volcanic Edifices in the Mars Northern Polar Region from Mars Orbiter Laser Altimeter Observations

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Garvin, J. B.; Wright, H.

    2000-01-01

    Topography of the Borealis Volcanic Field adjacent to and within Chasma Boreale of the Mars Northern Polar Cap. Results suggest that the volcanic field extent and population is larger than previously thought, with primarily fresh-appearing basaltic shield edifice types.

  16. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1987-01-01

    The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation.

  17. Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Hussmann, H.; Oberst, J.; Dirkx, D.; Mao, D.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; McGarry, J. F.; Smith, D. E.; Zuber, M. T.

    2016-09-01

    We used one-way laser ranging data from International Laser Ranging Service (ILRS) ground stations to NASA's Lunar Reconnaissance Orbiter (LRO) for a demonstration of orbit determination. In the one-way setup, the state of LRO and the parameters of the spacecraft and all involved ground station clocks must be estimated simultaneously. This setup introduces many correlated parameters that are resolved by using a priori constraints. Moreover the observation data coverage and errors accumulating from the dynamical and the clock modeling limit the maximum arc length. The objective of this paper is to investigate the effect of the arc length, the dynamical and modeling accuracy and the observation data coverage on the accuracy of the results. We analyzed multiple arcs using lengths of 2 and 7 days during a one-week period in Science Mission phase 02 (SM02, November 2010) and compared the trajectories, the post-fit measurement residuals and the estimated clock parameters. We further incorporated simultaneous passes from multiple stations within the observation data to investigate the expected improvement in positioning. The estimated trajectories were compared to the nominal LRO trajectory and the clock parameters (offset, rate and aging) to the results found in the literature. Arcs estimated with one-way ranging data had differences of 5-30 m compared to the nominal LRO trajectory. While the estimated LRO clock rates agreed closely with the a priori constraints, the aging parameters absorbed clock modeling errors with increasing clock arc length. Because of high correlations between the different ground station clocks and due to limited clock modeling accuracy, their differences only agreed at the order of magnitude with the literature. We found that the incorporation of simultaneous passes requires improved modeling in particular to enable the expected improvement in positioning. We found that gaps in the observation data coverage over 12 h (≈6 successive LRO orbits

  18. Space Debris-de-Orbiting by Vaporization Impulse using Short Pulse Laser

    SciTech Connect

    Early, J; Bibeau, C; Claude, P

    2003-09-16

    Space debris constitutes a significant hazard to low earth orbit satellites and particularly to manned spacecraft. A quite small velocity decrease from vaporization impulses is enough to lower the perigee of the debris sufficiently for atmospheric drag to de-orbit the debris. A short pulse (picosecond) laser version of the Orion concept can accomplish this task in several years of operation. The ''Mercury'' short pulse Yb:S-FAP laser being developed at LLNL for laser fusion is appropriate for this task.

  19. Global anomaly and undulation recovery using GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1979-01-01

    The data were adjusted to remove orbit error and altimeter bias in a primary adjustment and four regional adjustments. The root mean square crossover discrepancy was about + or - 55 cm after the adjustment. The adjusted altimeter data, now considered to give geoid undulations, was used to predict values at 1 deg intersections from which an oceanic geoid map, with predicted accuracies, was prepared at a two meter contour interval. This geoid was compared to the Gemini 9 geoid over very long profiles to examine the long wavelength error in the altimeter geoid. At a wavelength of 13,010 km the root mean squares difference was 57 cm. The altimeter geoid was also compared to altimeter geoids fixed by precise orbits. A root mean square difference was found of about 1 m with a systematic difference that implied the equatorial radius of the earth was 6,378,137 meters. The adjusted altimeter data was also used to determine a total of 29,479 1 deg x 1 deg anomalies (and undulations).

  20. Simultaneous Laser Ranging and Communication from an Earth-Based Satellite Laser Ranging Station to the Lunar Reconnaissance Orbiter in Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Skillman, David R.; Hoffman, Evan D.; Mao, Dandan; McGarry, Jan F.; Neumann, Gregory A.; McIntire, Leva; Zellar, Ronald S.; Davidson, Frederic M.; Fong, Wai H.; Krainak, Michael A.; Zuber, Maria T.; Smith, David E.

    2013-01-01

    We report a free space laser communication experiment from the satellite laser ranging (SLR) station at NASA Goddard Space Flight Center (GSFC) to the Lunar Reconnaissance Orbiter (LRO) in lunar orbit through the on board one-way Laser Ranging (LR) receiver. Pseudo random data and sample image files were transmitted to LRO using a 4096-ary pulse position modulation (PPM) signal format. Reed-Solomon forward error correction codes were used to achieve error free data transmission at a moderate coding overhead rate. The signal fading due to the atmosphere effect was measured and the coding gain could be estimated.

  1. A Study on Along-Track and Cross-Track Noise of Altimetry Data by Maximum Likelihood: Mars Orbiter Laser Altimetry (Mola) Example

    NASA Astrophysics Data System (ADS)

    Jarmołowski, Wojciech; Łukasiak, Jacek

    2015-12-01

    The work investigates the spatial correlation of the data collected along orbital tracks of Mars Orbiter Laser Altimeter (MOLA) with a special focus on the noise variance problem in the covariance matrix. The problem of different correlation parameters in along-track and crosstrack directions of orbital or profile data is still under discussion in relation to Least Squares Collocation (LSC). Different spacing in along-track and transverse directions and anisotropy problem are frequently considered in the context of this kind of data. Therefore the problem is analyzed in this work, using MOLA data samples. The analysis in this paper is focused on a priori errors that correspond to the white noise present in the data and is performed by maximum likelihood (ML) estimation in two, perpendicular directions. Additionally, correlation lengths of assumed planar covariance model are determined by ML and by fitting it into the empirical covariance function (ECF). All estimates considered together confirm substantial influence of different data resolution in along-track and transverse directions on the covariance parameters.

  2. Orbital analysis of two-color laser ranging

    NASA Astrophysics Data System (ADS)

    Schillak, S. R.

    2013-12-01

    The poster presents the results of analysis of Zimmerwald SLR data for two colors 423nm and 846 nm. Two-color laser ranging were performed by Zimmerwald SLR station from August 2002 to January 2008. The results in each color were treated as two independent stations 7810 Blue and 7810 Infrared. The station positions were determined by NASA Goddard's orbital program GEODYN-II from results of LAGEOS-1 and LAGEOS-2 satellites. The NEU positions stability were equal to 3.5 mm (N), 3.2 mm (E), 16.5 mm (U) for blue and 3.2 mm (N), 2.9 mm (E), 14.6 (U) for infrared. In the period of study were 47 common monthly points for both colors. The difference between N, E, U components in blue and infrared for common points were equal to 0.8×2.0 mm, 0.4×1.9 mm and -4.8×8.7 mm respectively. The differences between Range Biases for both colors independently for LAGEOS-1 and LAGEOS-2 were equal to -5.7×8.6 mm and for -5.0×9.5 mm respectively. The same for both satellites annual wave with amplitude 10 mm was detected. This effect can to be explain by differences in atmospheric correction for each color. This same analysis for station Concepcion (7405) couldn't to be performed due to only 8 common points. In future very important should be laser ranging in two-colors 532 nm and 1064 nm for confirmation presented here results, especially that a new sensitive APD detectors for 1064 nm are now available. The atmospheric correction is critical for SLR accuracy upgrading.

  3. Effects of tropospheric and ionospheric refraction errors in the utilization of GEOS-C altimeter data

    NASA Technical Reports Server (NTRS)

    Goad, C. C.

    1977-01-01

    The effects of tropospheric and ionospheric refraction errors are analyzed for the GEOS-C altimeter project in terms of their resultant effects on C-band orbits and the altimeter measurement itself. Operational procedures using surface meteorological measurements at ground stations and monthly means for ocean surface conditions are assumed, with no corrections made for ionospheric effects. Effects on the orbit height due to tropospheric errors are approximately 15 cm for single pass short arcs (such as for calibration) and 10 cm for global orbits of one revolution. Orbit height errors due to neglect of the ionosphere have an amplitude of approximately 40 cm when the orbits are determined from C-band range data with predominantly daylight tracking. Altimeter measurement errors are approximately 10 cm due to residual tropospheric refraction correction errors. Ionospheric effects on the altimeter range measurement are also on the order of 10 cm during the GEOS-C launch and early operation period.

  4. Precise orbit analysis and global verification results from ERS-1 altimetry

    NASA Technical Reports Server (NTRS)

    Shum, C. K.; Tapley, B. D.; Kozel, B. J.; Visser, P.; Ries, J. C.; Seago, J.

    1994-01-01

    A technique which employs dual satellite crossover measurements from ERS-1 and Topology Ocean Experiment (TOPEX)/Poseidon together with laser tracking data and single satellite crossover measurements for ERS-1 precision orbit determination is described. The accuracy assessment of the resulting ERS-1 orbit is provided. Results of global verification of the ERS-1 Ocean Products (OPR02) and the Interim Geophysical Data Records (IGDR) data products in terms of altimeter bias, time lag bias and sea state bias are presented.

  5. Laser sculpting of atomic sp, sp(2) , and sp(3) hybrid orbitals.

    PubMed

    Liu, Chunmei; Manz, Jörn; Yang, Yonggang

    2015-01-12

    Atomic sp, sp(2) , and sp(3) hybrid orbitals were introduced by Linus Pauling to explain the nature of the chemical bond. Quantum dynamics simulations show that they can be sculpted by means of a selective series of coherent laser pulses, starting from the 1s orbital of the hydrogen atom. Laser hybridization generates atoms with state-selective electric dipoles, opening up new possibilities for the study of chemical reaction dynamics and heterogeneous catalysis. PMID:25257703

  6. Precision Orbit Determination for the Lunar Reconnaissance Orbiter: orbit quality and gravity field estimation

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Lemoine, F. G.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.; Mao, D.

    2010-12-01

    We present results of the Precision Orbit Determination work undertaken by the Lunar Orbiter Laser Altimeter (LOLA) Science Team for the Lunar Reconnaissance Orbiter (LRO) mission, in order to meet the position knowledge accuracy requirements (50-m total position) and to precisely geolocate the LRO datasets. In addition to the radiometric tracking data, one-way laser ranges (LR) between Earth stations and the spacecraft are made possible by a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. The LOLA timing system enables 5-s LR normal points with precision better than 10cm. Other types of geodetic constraints are derived from the altimetric data itself. The orbit geometry can be constrained at the times of laser groundtrack intersections (crossovers). Due to the Moon's slow rotation, orbit solutions and normal equations including altimeter crossovers are processed and created in one month batches. Recent high-resolution topographic maps near the lunar poles are used to produce a new kind of geodetic constraints. Purely geometric, those do not necessitate actual groundtrack intersections. We assess the contributions of those data types, and the quality of our orbits. Solutions which use altimetric crossover meet the horizontal 50-m requirement, and perform usually better (10-20m). We also obtain gravity field solutions based on LRO and historical data. The various LRO data are accumulated into normal equations, separately for each one month batch and for each measurement type, which enables the final weights to be adjusted during the least-squares inversion step. Expansion coefficients to degree and order 150 are estimated, and a Kaula rule is still needed to stabilize the farside field. The gravity field solutions are compared to previous solutions (GLGM-3, LP150Q, SGM100h) and the geopotential predicted from the latest LOLA spherical harmonic expansion.

  7. Determination of the geoid from satellite altimeter data

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1972-01-01

    The characteristics of the geoid surface are quantitatively described. A procedure for calculating the satellite altitude is developed. Error sources are described quantitatively, mathematically modeled, and evaluated in computer simulation. Procedures for maximum likelihood processing of altimeter data for recovery of orbit and geopotential information are presented for several geopotential models.

  8. Orbit Determination of the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-01-01

    We present the results on precision orbit determination from the radio science investigation of the Lunar Reconnaissance Orbiter (LRO) spacecraft. We describe the data, modeling and methods used to achieve position knowledge several times better than the required 50-100m (in total position), over the period from 13 July 2009 to 31 January 2011. In addition to the near-continuous radiometric tracking data, we include altimetric data from the Lunar Orbiter Laser Altimeter (LOLA) in the form of crossover measurements, and show that they strongly improve the accuracy of the orbit reconstruction (total position overlap differences decrease from approx.70m to approx.23 m). To refine the spacecraft trajectory further, we develop a lunar gravity field by combining the newly acquired LRO data with the historical data. The reprocessing of the spacecraft trajectory with that model shows significantly increased accuracy (approx.20m with only the radiometric data, and approx.14m with the addition of the altimetric crossovers). LOLA topographic maps and calibration data from the Lunar Reconnaissance Orbiter Camera were used to supplement the results of the overlap analysis and demonstrate the trajectory accuracy.

  9. New observational evidence of global seismic effects of basin-forming impacts on the Moon from Lunar Reconnaissance Orbiter Lunar Orbiter Laser Altimeter data

    NASA Astrophysics Data System (ADS)

    Kreslavsky, M. A.; Head, J. W.

    2012-06-01

    New maps of kilometer-scale topographic roughness and concavity of the Moon reveal a very distinctive roughness signature of the proximal ejecta deposits of the Orientale basin (the Hevelius Formation). No other lunar impact basin, even the just-preceding Imbrium basin, is characterized by this type of signature although most have similar types of ejecta units and secondary crater structures. The preservation of this distinctive signature, and its lack in basins formed prior to Orientale, is interpreted to be the result of seismically induced smoothing caused by this latest major basin-forming event. Intense seismic waves accompanying the Orientale basin-forming event preceded the emplacement of its ejecta in time and operated to shake and smooth steep and rough topography associated with earlier basin deposits such as Imbrium. Orientale ejecta emplaced immediately following the passage of the seismic waves formed the distinctive roughness signature that has been preserved for almost 4 billion years.

  10. How key periodic orbits drive recollisions in a circularly polarized laser field.

    PubMed

    Kamor, A; Mauger, F; Chandre, C; Uzer, T

    2013-06-21

    We show that a family of key periodic orbits drives the recollision process in a strong circularly polarized laser field. These orbits, coined recolliding periodic orbits, exist for a wide range of parameters, and their relative influence changes as the laser and atomic parameters are varied. We find the necessary conditions for recollision-driven nonsequential double ionization to occur. The outlined mechanism is universal in that it applies equally well beyond atoms: The internal structure of the target species plays a minor role in the recollision process.

  11. How Key Periodic Orbits Drive Recollisions in a Circularly Polarized Laser Field

    NASA Astrophysics Data System (ADS)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2013-06-01

    We show that a family of key periodic orbits drives the recollision process in a strong circularly polarized laser field. These orbits, coined recolliding periodic orbits, exist for a wide range of parameters, and their relative influence changes as the laser and atomic parameters are varied. We find the necessary conditions for recollision-driven nonsequential double ionization to occur. The outlined mechanism is universal in that it applies equally well beyond atoms: The internal structure of the target species plays a minor role in the recollision process.

  12. Integrated Multi-Mission Altimeter Data for Climate Research

    NASA Astrophysics Data System (ADS)

    Beckley, B. D.; Ray, R. D.; Lemoine, F. G.; Zelensky, N. P.; Jacob, D. S.; Holmes, S. A.; Desai, S. D.; Brown, S. T.; Mitchum, G. S.; Nerem, R. S.

    2008-12-01

    The science value of satellite altimeter data has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both current and earlier missions. With the prospect of an observational time series extending into several decades with Jason-1 and the Ocean Surface Topography Mission (OSTM), and later an operational series of altimeters, researchers are pushing the accuracy bounds in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. These stringent accuracy requirements necessitate additional improvements to the present, future, and historical data sets. Our approach is to correct a number of consistency issues in the current and historical record, and in doing so further reduce the overall error budget of the altimeter observations, validate the accuracy of the resultant sea surface height measurement, and to provide a practical 'research ready' product to the community. Under the auspices of the NASA MEaSURE's (Making Earth System data records for Use in Research Environments) program sea surface height Climate Data Records (CDRs) are being enhanced by availing ourselves of the recent remarkable progress made in improving (a) the geoid, (b) orbit geo-location, (c) ocean tide models, (d) calibrations of radiometers needed to remove long period trends in the wet troposphere corrections, (e) sea state algorithms, and (f) in the International Terrestrial Reference Frame. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the

  13. High Resolution Surface Geometry and Albedo by Combining Laser Altimetry and Visible Images

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; vonToussaint, Udo; Cheeseman, Peter C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The need for accurate geometric and radiometric information over large areas has become increasingly important. Laser altimetry is one of the key technologies for obtaining this geometric information. However, there are important application areas where the observing platform has its orbit constrained by the other instruments it is carrying, and so the spatial resolution that can be recorded by the laser altimeter is limited. In this paper we show how information recorded by one of the other instruments commonly carried, a high-resolution imaging camera, can be combined with the laser altimeter measurements to give a high resolution estimate both of the surface geometry and its reflectance properties. This estimate has an accuracy unavailable from other interpolation methods. We present the results from combining synthetic laser altimeter measurements on a coarse grid with images generated from a surface model to re-create the surface model.

  14. Apollo 15 orbital science summary.

    NASA Technical Reports Server (NTRS)

    Esenwein, G. F.; Roberson, F. I.

    1972-01-01

    In this paper, summary results of the Apollo 15 orbital science payload are given, and some quick-look results of Apollo 16 are discussed. Geochemical instruments, consisting of gamma-ray, X-ray, and alpha particle spectrometers, have provided a chemical map of the lunar surface flown over by Apollo 15. The Laser Altimeter and frontside gravity data have shown some unexpected results with regard to the lunar shape, and provided new basis for understanding lunar mascons. A magnetometer, aboard the small subsatellite, has located magnetic anomalies principally on the lunar farside, and has shown that the small lunar magnetic field is smoother on the frontside than on the back. The mass spectrometer, in orbit aboard the Command and Service Modules, has measured unexpectedly large populations of molecules at orbital altitude (110 km), mostly due to spacecraft contamination. Two major camera systems have provided the first systematic metric quality photography and concurrent high resolution stereo coverage of the lunar surface.

  15. Laser ranging network performance and routine orbit determination at D-PAF

    NASA Technical Reports Server (NTRS)

    Massmann, Franz-Heinrich; Reigber, C.; Li, H.; Koenig, Rolf; Raimondo, J. C.; Rajasenan, C.; Vei, M.

    1993-01-01

    ERS-1 is now about 8 months in orbit and has been tracked by the global laser network from the very beginning of the mission. The German processing and archiving facility for ERS-1 (D-PAF) is coordinating and supporting the network and performing the different routine orbit determination tasks. This paper presents details about the global network status, the communication to D-PAF and the tracking data and orbit processing system at D-PAF. The quality of the preliminary and precise orbits are shown and some problem areas are identified.

  16. New Radar Altimeter Missions are Providing a Dramatically Sharper Image of Global Marine Tectonics

    NASA Astrophysics Data System (ADS)

    Sandwell, D. T.; Müller, D.; Garcia, E.; Matthews, K. J.; Smith, W. H. F.; Zaron, E.; Zhang, S.; Bassett, D.; Francis, R.

    2015-12-01

    Marine gravity, derived from satellite radar altimetry, is a powerful tool for mapping tectonic structures, especially in the deep ocean basins where the topography remains unmapped by ships or is buried by thick sediment. The ability to infer seafloor tectonics from space was first demonstrated in 1978 using Seasat altimeter data but the spatial coverage was incomplete because of the short three-month lifetime of the satellite. Most ocean altimeters have repeat ground tracks with spacings of hundreds of kilometers so they do not resolve tectonic structures. Adequate altimeter coverage became available in 1995 when the United States Navy declassified the Geosat radar altimeter data and the ERS-1 altimeter completed a 1-year mapping phase. These mid-1990's altimeter-derived images of the ocean basins remained static for 15 years because there were no new non-repeat altimeter missions. This situation changed dramatically in 2010 when CryoSat-2, with its advanced radar altimeter, was launched into a non-repeat orbit and continues to collect data until perhaps 2020. In addition the Jason-1 altimeter was placed into a 14-month geodetic phase at the end of its lifetime. More recently the 1.5 times higher precision measurements from the AltiKa altimeter aboard the SARAL spacecraft began to drift away from its 35-day repeat trackline. The Chinese HY-2 altimeter is scheduled to begin a dense mapping phase in early 2016. Moreover in 2020 we may enjoy significantly higher resolution maps of the ocean basins from the planned SWOT altimeter mission with its advanced swath mapping ability. All of this new data will provide a much sharper image of the tectonics of the deep ocean basins and continental margins. During this talk we will tour of the new tectonic structures revealed by CryoSat-2 and Jason-1 and speculate on the tectonic views of the ocean basins in 2020 and beyond.

  17. Seasat altimeter height calibration. [related to sea surface heights near bermuda

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.; Martin, C. F.

    1981-01-01

    The Seasat altimeter was calibrated for height bias using four overflight passes of Bermuda which were supported by the Bermuda laser. The altimeter data was corrected for: tides, using recorded tide gauge data; propagation effects, using meteorological data taken around the time of each pass; acceleration lag; and sea state bias, including both surface effects and instrumental effects. Altimeter data for each of the four passes was smoothed and extrapolated across the island. Interpolation between passes then produced an equivalent altimeter measurement to the geoid at the laser site, so that the altimeter bias could be estimated without the use of a geoid model. The estimated height bias was 0.0 + or - 0.07.

  18. Use of pulse-periodic CO2-lasers for orbit corrections of space stations

    NASA Astrophysics Data System (ADS)

    Koterov, V. N.; Krasnovsky, A. G.; Sazhina, N. N.; Sakovets, S. V.; Cheburkin, N. V.

    About 20 years ago it was suggested to use the thrust, arising by evaporation of solid state target by means of directing laser radiation onto the target to accelerate real spacecraft (in particular, to launch them into the satellite orbit). At present, the works are carried out in the USA in the plane of LTD (Lightcraft Technology Demonstrator) conception, concerning detailed researches of all aspects of realization and effectiveness (cost) of launching small (approximately 100 kg) information satellites by means of ground-based laser systems with total average power up to 100 MW. This conception is considered from the point of view of its cost as a serious alternative to the large orbital platforms. The researches of expediency are conducting as well to use laser driven thrusters for far-distance flyings of a man in space (Moon, Mars). Demands for laser source are substantially lower if we consider the maneuvering problem of the spacecrafts in satellite orbit, for example, sustaining the given flying altitude of low orbital inhabitated stations. Experimental and theoretical works have shown that specific impulse of laser jet thruster (LJT) can consist from 500 to 2000 s (depending on the kind of working medium and the mode of irradiation), and at the same time the specific impulse of the common yet thruster does not exceed 250 - 500 s. Therefore the substantial economy of fuel carried from the Earth to sustain the station's working orbit is possible. From this point of view it seems especially promising to use as a working medium of laser jet thruster the debris saved at the station in the process of its manual flying. Evaluations made in USA and by use in the present work, show that we can speak seriously just now about creating experimental complex based on laser jet thruster with ground-based laser for sustaining the given parameters of satellite orbits.

  19. Lasers in Earth and Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Smith, David E.

    1998-01-01

    For over 3 decades, lasers have been a tool of the space programs of the world for accomplishing a variety of engineering and scientific objectives. The majority of these uses have, however, been largely Earth-based and only a few lasers have actually been flown and operated in Earth orbit and even fewer on missions to the planets. However, in the last few years laser altimeters, lidars, and ranging systems have been part of space missions to the moon, an asteroid, and Mars; and more are planned and contemplated in the future exploration of the Earth and solar system. Early in 1994, the Clementine mission was launched to the moon and carried a laser altimeter that made the first systematic topographic survey of the moon during its 2-month observation period. This mission significantly improved our understanding of the shape and topography of the moon and along with gravity information obtained from the tracking data modified some of our thinking about the moon, the thickness of ice crust and the isostatic state of the highlands and basins. On September 11, 1997, the Mars Global Surveyor (MGS) entered into orbit around Mars and the Mars Orbiter Laser Altimeter (MOLA) started to map the topography of the planet to unprecedented accuracy. On its first pass across the planet, MOLA showed large areas of the northern hemisphere to be flatter than any other known surface on Earth or any other body explored to date. In January 1999, the NEAR spacecraft which carries a laser ranger (NLR), will arrive at the S-type asteroid, Eros, and during the following year the NLR will help determine the shape and rotational dynamics of this asteroid. In the Spring of 2000, the Vegetation Canopy Lidar (VCL) mission will be launched and employing a multi-beam laser altimeter (MBLA) will measure the Earth's tree canopy shapes and heights and begin to globally monitor the biomass. The following year, in 2001, the Geoscience Laser Altimeter System, which carries a 2 wavelength laser

  20. NOSS Altimeter Detailed Algorithm specifications

    NASA Technical Reports Server (NTRS)

    Hancock, D. W.; Mcmillan, J. D.

    1982-01-01

    The details of the algorithms and data sets required for satellite radar altimeter data processing are documented in a form suitable for (1) development of the benchmark software and (2) coding the operational software. The algorithms reported in detail are those established for altimeter processing. The algorithms which required some additional development before documenting for production were only scoped. The algorithms are divided into two levels of processing. The first level converts the data to engineering units and applies corrections for instrument variations. The second level provides geophysical measurements derived from altimeter parameters for oceanographic users.

  1. Radar altimeter calibration

    NASA Astrophysics Data System (ADS)

    Francis, C. R.

    1983-02-01

    The operating principles and design of a radar altimeter representative of those proposed of ERS-1 are described and geophysical influences on the measurements are discussed. General aspects of calibration are examined, and the critical areas of time and frequency resolution pointed out. A method of internal calibration of delay and backscatter coefficient, by rerouting the tramsitter signal, is described. External prelaunch calibration can be carried out by airborne trials, or using a return signal simulator. It is established that airborne calibration requires high altitudes and high speeds, and is likely to be difficult and expensive. The design of a return signal simulator is shown to be very difficult. No feasible design is identified.

  2. Comment on satellite altimeter data

    NASA Technical Reports Server (NTRS)

    Bowin, C.

    1974-01-01

    SKYLAB mission SEASAT-B altimeter observations in combination with surface gravity measurements provide useful data on the marine geoid and expected ocean perturbations from analyses of seamount structures.

  3. Space-based laser-powered orbital transfer vehicle (Project SLICK)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A conceptual design study of a laser-powered orbital transfer vehicle (LOTV) is presented. The LOTV, nicknamed SLICK (Space Laser Interorbital Cargo Kite), will be utilized for the transfer of 16000 kg of cargo between Low Earth Orbit (LEO) and either Geosynchronous Earth Orbit (GEO) or Low Lunar Orbit (LLO). This design concentrates primarily on the LEO/GEO scenario, which will have typical LEO-to-GEO trip time of 6 days and two return versions. One version uses an all propulsive return while the other utilizes a ballute aerobrake for the return trip. Furthermore, three return cargo options of 16000 kg, 5000 kg (standard option), and 1600 kg are considered for this scenario. The LEO/LLO scenario uses only a standard, aerobraked version. The basic concept behind the LOTV is that the power for the propulsion system is supplied by a source separate from the LOTV itself. For the LEO/GEO scenario the LOTV utilizes a direct solar-pumped iodide laser and possibly two relay stations, all orbiting at an altitude of one Earth radius and zero inclination. An additional nuclear-powered laser is placed on the Moon for the LEO/LLO scenario. The propulsion system of the LOTV consists of a single engine fueled with liquid hydrogen. The laser beam is captured and directed by a four mirror optical system through a window in the thrust chamber of the engine. There, seven plasmas are created to convert the laser beam energy into thermal energy at an efficiency of at least 50 percent. For the LEO/LLO scenario the laser propulsion is supplemented by LH2/LOX chemical thrusters.

  4. A geopotential model from satellite tracking, altimeter, and surface gravity data: GEM-T3

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Marshall, J. A.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.

    1994-01-01

    An improved model of Earth's gravitational field, Goddard Earth Model T-3 (GEM-T3), has been developed from a combination of satellite tracking, satellite altimeter, and surface gravimetric data. GEM-T3 provides a significant improvement in the modeling of the gravity field at half wavelengths of 400 km and longer. This model, complete to degree and order 50, yields more accurate satellite orbits and an improved geoid representation than previous Goddard Earth Models. GEM-T3 uses altimeter data from GEOS 3 (1975-1976), Seasat (1978) and Geosat (1986-1987). Tracking information used in the solution includes more than 1300 arcs of data encompassing 31 different satellites. The recovery of the long-wavelength components of the solution relies mostly on highly precise satellite laser ranging (SLR) data, but also includes Tracking Network (TRANET) Doppler, optical, and satellite-to-satellite tracking acquired between the ATS 6 and GEOS 3 satellites. The main advances over GEM-T2 (beyond the inclusion of altimeter and surface gravity information which is essential for the resolution of the shorter wavelength geoid) are some improved tracking data analysis approaches and additional SLR data. Although the use of altimeter data has greatly enhanced the modeling of the ocean geoid between 65 deg N and 60 deg S latitudes in GEM-T3, the lack of accurate detailed surface gravimetry leaves poor geoid resolution over many continental regions of great tectonic interest (e.g., Himalayas, Andes). Estimates of polar motion, tracking station coordinates, and long-wavelength ocean tidal terms were also made (accounting for 6330 parameters). GEM-T3 has undergone error calibration using a technique based on subset solutions to produce reliable error estimates. The calibration is based on the condition that the expected mean square deviation of a subset gravity solution from the full set values is predicted by the solutions' error covariances. Data weights are iteratively adjusted until

  5. Modification of Earth-satellite orbits using medium-energy pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    1993-05-01

    Laser impulse space propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors, and improved coefficients for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science -- ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will be best for all scenarios. In this paper, we discuss these most immediate applications, leaving LEO-LISP -- the application requiring the longest reach -- for another venue.

  6. Modification of earth-satellite orbits using medium-energy pulsed lasers

    SciTech Connect

    Phipps, C.R.

    1992-10-01

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coeffici-ents for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science-ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP) (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will be best for all scenarios. In this paper, we will focus on the last two applications.

  7. Modification of earth-satellite orbits using medium-energy pulsed lasers

    SciTech Connect

    Phipps, C.R.

    1992-01-01

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coeffici-ents for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science-ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP) (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will be best for all scenarios. In this paper, we will focus on the last two applications.

  8. Modification of Earth-satellite orbits using medium-energy pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, C. R.

    Laser Impulse Space Propulsion (LISP) has become an attractive concept, due to recent advances in gas laser technology, high-speed segmented mirrors and improved coefficients for momentum coupling to targets in pulsed laser ablation. There are numerous specialized applications of the basic concept to space science - ranging from far-future and high capital cost to the immediate and inexpensive, such as: LEO-LISP (launch of massive objects into low-Earth-Orbit at dramatically improved cost-per-kg relative to present practice); LEGO-LISP (LEO to geosynchronous transfers); LO-LISP (periodic re-boost of decaying LEO orbits); and LISK (geosynchronous satellite station-keeping). It is unlikely that one type of laser will be best for all scenarios. In this paper, we will focus on the last two applications.

  9. Bell-like inequality for the spin-orbit separability of a laser beam

    SciTech Connect

    Borges, C. V. S.; Hor-Meyll, M.; Khoury, A. Z.; Huguenin, J. A. O.

    2010-09-15

    In analogy with Bell's inequality for two-qubit quantum states, we propose an inequality criterion for the nonseparability of the spin-orbit degrees of freedom of a laser beam. A definition of separable and nonseparable spin-orbit modes is used in consonance with the one presented in Phys. Rev. Lett. 99, 160401 (2007). As the usual Bell's inequality can be violated for entangled two-qubit quantum states, we show both theoretically and experimentally that the proposed spin-orbit inequality criterion can be violated for nonseparable modes. The inequality is discussed in both the classical and quantum domains.

  10. The Sonic Altimeter for Aircraft

    NASA Technical Reports Server (NTRS)

    Draper, C S

    1937-01-01

    Discussed here are results already achieved with sonic altimeters in light of the theoretical possibilities of such instruments. From the information gained in this investigation, a procedure is outlined to determine whether or not a further development program is justified by the value of the sonic altimeter as an aircraft instrument. The information available in the literature is reviewed and condensed into a summary of sonic altimeter developments. Various methods of receiving the echo and timing the interval between the signal and the echo are considered. A theoretical discussion is given of sonic altimeter errors due to uncertainties in timing, variations in sound velocity, aircraft speed, location of the sending and receiving units, and inclinations of the flight path with respect to the ground surface. Plots are included which summarize the results in each case. An analysis is given of the effect of an inclined flight path on the frequency of the echo. A brief study of the acoustical phases of the sonic altimeter problem is carried through. The results of this analysis are used to predict approximately the maximum operating altitudes of a reasonably designed sonic altimeter under very good and very bad conditions. A final comparison is made between the estimated and experimental maximum operating altitudes which shows good agreement where quantitative information is available.

  11. Orbit Determination of the SELENE Satellites Using Multi-Satellite Data Types and Evaluation of SELENE Gravity Field Models

    NASA Technical Reports Server (NTRS)

    Goossens, S.; Matsumoto, K.; Noda, H.; Araki, H.; Rowlands, D. D.; Lemoine, F. G.

    2011-01-01

    The SELENE mission, consisting of three separate satellites that use different terrestrial-based tracking systems, presents a unique opportunity to evaluate the contribution of these tracking systems to orbit determination precision. The tracking data consist of four-way Doppler between the main orbiter and one of the two sub-satellites while the former is over the far side, and of same-beam differential VLBI tracking between the two sub-satellites. Laser altimeter data are also used for orbit determination. The contribution to orbit precision of these different data types is investigated through orbit overlap analysis. It is shown that using four-way and VLBI data improves orbit consistency for all satellites involved by reducing peak values in orbit overlap differences that exist when only standard two-way Doppler and range data are used. Including laser altimeter data improves the orbit precision of the SELENE main satellite further, resulting in very smooth total orbit errors at an average level of 18m. The multi-satellite data have also resulted in improved lunar gravity field models, which are assessed through orbit overlap analysis using Lunar Prospector tracking data. Improvements over a pre-SELENE model are shown to be mostly in the along-track and cross-track directions. Orbit overlap differences are at a level between 13 and 21 m with the SELENE models, depending on whether l-day data overlaps or I-day predictions are used.

  12. Precision orbit determination of altimetric satellites

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Ries, John C.; Tapley, Byron D.

    1994-11-01

    The ability to determine accurate global sea level variations is important to both detection and understanding of changes in climate patterns. Sea level variability occurs over a wide spectrum of temporal and spatial scales, and precise global measurements are only recently possible with the advent of spaceborne satellite radar altimetry missions. One of the inherent requirements for accurate determination of absolute sea surface topography is that the altimetric satellite orbits be computed with sub-decimeter accuracy within a well defined terrestrial reference frame. SLR tracking in support of precision orbit determination of altimetric satellites is significant. Recent examples are the use of SLR as the primary tracking systems for TOPEX/Poseidon and for ERS-1 precision orbit determination. The current radial orbit accuracy for TOPEX/Poseidon is estimated to be around 3-4 cm, with geographically correlated orbit errors around 2 cm. The significance of the SLR tracking system is its ability to allow altimetric satellites to obtain absolute sea level measurements and thereby provide a link to other altimetry measurement systems for long-term sea level studies. SLR tracking allows the production of precise orbits which are well centered in an accurate terrestrial reference frame. With proper calibration of the radar altimeter, these precise orbits, along with the altimeter measurements, provide long term absolute sea level measurements. The U.S. Navy's Geosat mission is equipped with only Doppler beacons and lacks laser retroreflectors. However, its orbits, and even the Geosat orbits computed using the available full 40-station Tranet tracking network, yield orbits with significant north-south shifts with respect to the IERS terrestrial reference frame. The resulting Geosat sea surface topography will be tilted accordingly, making interpretation of long-term sea level variability studies difficult.

  13. Laser Tunnel Ionization from Multiple Orbitals in HCl

    NASA Astrophysics Data System (ADS)

    Akagi, H.; Otobe, T.; Staudte, A.; Shiner, A.; Turner, F.; Dörner, R.; Villeneuve, D. M.; Corkum, P. B.

    2009-09-01

    Tunneling, one of the most striking manifestations of quantum mechanics, influences the electronic structure of many molecules and solids and is responsible for radioactive decay. Much of the interaction of intense light pulses with matter commences with electrons tunneling from atoms or molecules to the continuum. Until recently, this starting point was assumed to be the highest occupied orbital of a given system. We have now observed tunneling from a lower-lying state in hydrogen chloride (HCl). Analyzing two independent experimental observables allowed us to isolate (via fragment ions), identify (via molecular frame photoelectron angular distributions), and, with the help of ab initio simulations, quantify the contribution of lower-lying orbitals to the total and angle-dependent tunneling current of the molecule. Our results bolster the emerging tenet that the coherent interaction between different orbitals—which can amplify the impact of lower orbitals—must be considered in tunneling processes.

  14. The role of laser determined orbits in geodesy and geophysics

    NASA Technical Reports Server (NTRS)

    Kolenkiewicz, R.; Smith, D. E.; Dunn, P. J.; Torrence, M. H.; Robbins, J. W.

    1991-01-01

    Some of the results of orbit analysis from the NASA SLR analysis group are presented. The earth's orientation was determined for 5-day intervals to 1.9 mas for the pole and 0.09 msec for length of day. The 3d center of mass station positions was determined to 33 mm over a period of 3 months, and geodesic rates of SLR tracking sites were determined to 5 mm/yr.

  15. Development, Qualification and Integration of the Optical Fiber Array Assemblies for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Robert; Chuska, Richard; LaRocca, Frank; Thomas, William Joe; Macmurphy, Shawn

    2008-01-01

    The NASA Goddard Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufacturing at GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and LIDAR. Described here is an account of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO.

  16. A Laser Optical System to Remove Low Earth Orbit Space Debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Nikolaev, Sergey; Trebes, James E.; George, Victor E.; Marrcovici, Bogdan; Valley, Michael T.

    2013-08-01

    Collisions between existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. As solutions, flying up and interacting with each object is inefficient due to the energy cost of orbit plane changes, while debris removal systems using blocks of aerogel or gas-filled balloons are prohibitively expensive. Furthermore, these solutions to the debris problem address only large debris, but it is also imperative to remove 10-cm-class debris. In Laser-Orbital-Debris-Removal (LODR), a ground-based pulsed laser makes plasma jets on LEO debris objects, slowing them slightly, and causing them to re-enter the atmosphere and burn up. LODR takes advantage of recent advances in pulsed lasers, large mirrors, nonlinear optics and acquisition systems. LODR is the only solution that can address both large and small debris. International cooperation is essential for building and operating such a system. We also briefly discuss the orbiting laser debris removal alternative.

  17. Discrete homoclinic orbits in a laser with feedback

    PubMed

    Pisarchik; Meucci; Arecchi

    2000-12-01

    We provide experimental evidence of the discrete character of homoclinic chaos in a laser with feedback. We show that the narrow chaotic windows are distributed exponentially as a function of a control parameter. The number of consecutive chaotic regions corresponds to the number of loops around the saddle focus responsible for Shilnikov chaos. The characterization of homoclinic chaos is also done through the return map of the return times at a suitable reference point. PMID:11138193

  18. Earth-to-Orbit Laser Launch Simulation for a Lightcraft Technology Demonstrator

    NASA Astrophysics Data System (ADS)

    Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.

    2006-05-01

    Optimized laser launch trajectories have been developed for a 1.4 m diameter, 120 kg (empty mass) Lightcraft Technology Demonstrator (LTD). The lightcraft's combined-cycle airbreathing/rocket engine is designed for single-stage-to-orbit flights with a mass ratio of 2 propelled by a 100 MW class ground-based laser built on a 3 km mountain peak. Once in orbit, the vehicle becomes an autonomous micro-satellite. Two types of trajectories were simulated with the SORT (Simulation and Optimization of Rocket Trajectories) software package: a) direct GBL boost to orbit, and b) GBL boost aided by laser relay satellite. Several new subroutines were constructed for SORT to input engine performance (as a function of Mach number and altitude), vehicle aerodynamics, guidance algorithms, and mass history. A new guidance/steering option required the lightcraft to always point at the GBL or laser relay satellite. SORT iterates on trajectory parameters to optimize vehicle performance, achieve a desired criteria, or constrain the solution to avoid some specific limit. The predicted laser-boost performance for the LTD is undoubtedly revolutionary, and SORT simulations have helped to define this new frontier.

  19. Towards the GEOSAT Follow-On Precise Orbit Determination Goals of High Accuracy and Near-Real-Time Processing

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Zelensky, Nikita P.; Chinn, Douglas S.; Beckley, Brian D.; Lillibridge, John L.

    2006-01-01

    The US Navy's GEOSAT Follow-On spacecraft (GFO) primary mission objective is to map the oceans using a radar altimeter. Satellite laser ranging data, especially in combination with altimeter crossover data, offer the only means of determining high-quality precise orbits. Two tuned gravity models, PGS7727 and PGS7777b, were created at NASA GSFC for GFO that reduce the predicted radial orbit through degree 70 to 13.7 and 10.0 mm. A macromodel was developed to model the nonconservative forces and the SLR spacecraft measurement offset was adjusted to remove a mean bias. Using these improved models, satellite-ranging data, altimeter crossover data, and Doppler data are used to compute both daily medium precision orbits with a latency of less than 24 hours. Final precise orbits are also computed using these tracking data and exported with a latency of three to four weeks to NOAA for use on the GFO Geophysical Data Records (GDR s). The estimated orbit precision of the daily orbits is between 10 and 20 cm, whereas the precise orbits have a precision of 5 cm.

  20. Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes

    NASA Technical Reports Server (NTRS)

    Morris, Charles S.; Gill, Stephen K.

    1994-01-01

    The TOPEX/POSEIDON altimeter measurment system is evaluated for the first 46 repeat cycles (September 23, 1992-December 23, 1992) using tracks over the Great Lakes. The temporal variations in lake level are removed from the altimeter measurements using in-situ lake level measurements, thus permitting the performance of the altimeter system to be assessed. For the NASA altimeter, the root-mean-square (RMS) scatter of the residuals is 3.95 cm using all the tracks over the lakes. However, some of the scatter in this result is probably due to lake tides or seiche, which can amount to a few centimeters amplitude near the ends of the lakes. When the seven best tracks are used, which cross the center of the lakes where tides/seiche effects are minimal, the RMS error is included to either 2.9 or 3.0 cm, depending on whether the Centre National d'Etudes Spatiales (CNES) or NASA orbit is used. This places an upper limit on the error budget of the altimeter system, excluding ocean tides and inverse barometer effect. There are several short-period variations in the residuals. The most pronounced is a 55-day period, with a 1-cm amplitude, which we believe is (at least in part) due to orbit error. When the model-derived wet tropospheric correction is substituted for the TOPEX microwave radiometer correction, the RMS error increases significantly, possibly resulting in an annual cycle of a few centimeters. Evaluation of the ionospheric correction indicates that the dual-frequency correction provides an average improvement of 0.85 cm over the Doppler orbitography and radiopositioning integrated by satellite (DORIS) correction. Although there are insufficient data to directly assess the CNES altimeter, the relative bias between the altimeters is estimated to be either -14.3 or -15.6 cm (NASA altimeter measuring short), depending on whether the DORIS or dual-frequency ionospheric correction is applied to the NASA altimeter.

  1. Global mean sea surface based upon SEASAT altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.

    1984-01-01

    A global mean sea surface based upon the SEASAT altimeter data was derived. A combination of crossing arc techniques, accurate SEASAT reference orbits, and a previously computed GOES-3/SEASAT mean sea surface were used in the computation process. This mean sea surface provides a basis for the determination of global ocean circulation patterns and for detailed analysis of the Earth's internal structure. A contour map of the global mean sea surface is presented.

  2. Precise orbit determination of the Lunar Reconnaissance Orbiter and first gravity field results

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2014-05-01

    The Lunar Reconnaissance Orbiter (LRO) was launched in 2009 and is expected to orbit the Moon until the end of 2014. Among other instruments, LRO has a highly precise altimeter on board demanding an orbit accuracy of one meter in the radial component. Precise orbit determination (POD) is achieved with radiometric observations (Doppler range rates, ranges) on the one hand, and optical laser ranges on the other hand. LRO is the first satellite at a distance of approximately 360 000 to 400 000 km from the Earth that is routinely tracked with optical laser ranges. This measurement type was introduced to achieve orbits of higher precision than it would be possible with radiometric observations only. In this contribution we investigate the strength of each measurement type (radiometric range rates, radiometric ranges, optical laser ranges) based on single-technique orbit estimation. In a next step all measurement types are combined in a joined analysis. In addition to POD results, preliminary gravity field coefficients are presented being a subsequent product of the orbit determination process. POD and gravity field estimation was accomplished with the NASA/GSFC software packages GEODYN and SOLVE.

  3. Radar altimeter calibration using SLR

    NASA Astrophysics Data System (ADS)

    Klosko, Steven M.

    1994-11-01

    Clearly a calibration of the TOPEX altimeter (and future TOPEX-class altimeters) which is more accurate and better prepared to meet the demands of global sea level trend monitoring is warranted. TOPEX/Posideon (T/P) is in its second year of data acquisition. If it survives or surpasses the two to five year projected baseline, an unprecedented opportunity for monitoring global sea level trends at mm/y levels will have been lost due to insufficient accuracy in its altimeter calibration. It is therefore paramount to revisit the design of the T/P calibration experiment and implement a more direct approach which better utilizes the accuracy of SLR to perform this needed bias assessment.

  4. Radar altimeter calibration using SLR

    NASA Technical Reports Server (NTRS)

    Klosko, Steven M.

    1994-01-01

    Clearly a calibration of the TOPEX altimeter (and future TOPEX-class altimeters) which is more accurate and better prepared to meet the demands of global sea level trend monitoring is warranted. TOPEX/Posideon (T/P) is in its second year of data acquisition. If it survives or surpasses the two to five year projected baseline, an unprecedented opportunity for monitoring global sea level trends at mm/y levels will have been lost due to insufficient accuracy in its altimeter calibration. It is therefore paramount to revisit the design of the T/P calibration experiment and implement a more direct approach which better utilizes the accuracy of SLR to perform this needed bias assessment.

  5. Mars Observer Orbit Insertion Briefing

    NASA Technical Reports Server (NTRS)

    1993-01-01

    For the first part of this briefing, see NONP-NASA-VT-2000081556. Marvin Traxler continues his discussion on signal tracking from the Mars Observer. Julie Webster, Lead Engineer, Telecommunications Subsystem, is introduced. She explains how signals coming back from Mars are detected. Dr. Pasquale Esposito talks about flyby orbits and capture orbits. He says that frequencies coming from the spacecraft can determine if the spacecraft has flown by Mars, or if a capture orbit has occurred. Charles Whetsel, System Engineer Spacecraft Team, presents a computer program. He shows where the signal will appear on the computer from the Spacecraft. Suzanne Dodd presents orbit insertion geometry. Dr. Arden Albee, Project Scientist Mars Observer Project, Cal Tech tech, says that Mars is studied to get more data to confirm their hypotheses derived from previous Mars Missions such as the Viking Mars Program and the Mariner Program. Dr. Albee also describes instrumentation on the Mars Observer such as the Ultra Stable Oscillator, Mars Orbiter Laser Altimeter, and Magnetometer. The camera on the spacecraft is similar to a fax machine because it scans one line at a time as the spacecraft orbits Mars. Dr. Michael Malin, Principle Investigator Mars Observer Camera, Malin Space Science Systems, Inc., describe this process.

  6. Orbital analysis of LAGEOS and LAGEOS II laser ranged satellites: relativistic effects and geophysical issues

    SciTech Connect

    Peron, Roberto

    2005-03-16

    We present here the results of a recent analysis of LAGEOS and LAGEOS II laser range data. The higher accuracy in determining the orbits of these satellites makes it possible to see very tiny relativistic effects like frame-dragging and a wide variety of other phenomena at work. In particular, it is apparent the need of better understanding some effects of non-gravitational origin. The importance of these orbital fits as a geophysical probe is also stressed with a particular example. The analysis is carried out with GEODYN II Software, whose broad structure and use is described.

  7. Orbital analysis of LAGEOS and LAGEOS II laser ranged satellites: relativistic effects and geophysical issues

    NASA Astrophysics Data System (ADS)

    Peron, Roberto

    2005-03-01

    We present here the results of a recent analysis of LAGEOS and LAGEOS II laser range data. The higher accuracy in determining the orbits of these satellites makes it possible to see very tiny relativistic effects like frame-dragging and a wide variety of other phenomena at work. In particular, it is apparent the need of better understanding some effects of non-gravitational origin. The importance of these orbital fits as a geophysical probe is also stressed with a particular example. The analysis is carried out with GEODYN II Software, whose broad structure and use is described.

  8. Orbital

    NASA Astrophysics Data System (ADS)

    Hanson, Robert M.

    2003-06-01

    ORBITAL requires the following software, which is available for free download from the Internet: Netscape Navigator, version 4.75 or higher, or Microsoft Internet Explorer, version 5.0 or higher; Chime Plug-in, version compatible with your OS and browser (available from MDL).

  9. Precision Orbit Determination for the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Lemoine, F. G.; Mazarico, E.; Rowlands, D. D.; Torrence, M. H.; McGarry, J. F.; Neumann, G. A.; Mao, D.; Smith, D. E.; Zuber, M. T.

    2010-05-01

    The Lunar Reconnaissance Orbiter (LRO) spacecraft was launched on June 18, 2009. In mid-September 2009, the spacecraft orbit was changed from its commissioning orbit (30 x 216 km polar) to a quasi-frozen polar orbit with an average altitude of 50km (+-15km). One of the goals of the LRO mission is to develop a new lunar reference frame to facilitate future exploration. Precision Orbit Determination is used to achieve the accuracy requirements, and to precisely geolocate the high-resolution datasets obtained by the LRO instruments. In addition to the tracking data most commonly used to determine spacecraft orbits in planetary missions (radiometric Range and Doppler), LRO benefits from two other types of orbital constraints, both enabled by the Lunar Orbiter Laser Altimeter (LOLA) instrument. The altimetric data collected as the instrument's primary purpose can be used to derive constraints on the orbit geometry at the times of laser groundtrack intersections (crossovers). The multi-beam configuration and high firing-rate of LOLA further improves the strength of these crossovers, compared to what was possible with the MOLA instrument onboard Mars Global Surveyor (MGS). Furthermore, one-way laser ranges (LR) between Earth International Laser Ranging Service (ILRS) stations and the spacecraft are made possible by the addition of a small telescope mounted on the spacecraft high-gain antenna. The photons received from Earth are transmitted to one LOLA detector by a fiber optics bundle. Thanks to the accuracy of the LOLA timing system, the precision of 5-s LR normal points is below 10cm. We present the first results of the Precision Orbit Determination (POD) of LRO through the commissioning and nominal phases of the mission. Orbit quality is discussed, and various gravity fields are evaluated with the new (independent) LRO radio tracking data. The altimetric crossovers are used as an independent data type to evaluate the quality of the orbits. The contribution of the LR

  10. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    PubMed

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  11. Clock synchronization by the Symphonie and Laser Synchronization from Stationary Orbit (LASSO) geostationary satellites

    NASA Astrophysics Data System (ADS)

    Brunet, M.

    The use of atomic clocks is described, and the use of satellites to assure their intercontinental synchronization is discussed. The Symphonie satellites assure a transatlantic (France-Canada) synchronization in the 4 to 6 GHz band with nanosec accuracy. Atmospheric and relativistic effects are corrected to within 5 nsec, but instrument delay calibration remains a problem. The Laser Synchronization from Stationary Orbit (LASSO) experiment is based on the measurement of the time it takes a laser pulse to complete the return journey from a ground station to the satellite. The LASSO was designed for the SIRIO-2 satellite, whose launch failed, and is now proposed for Meteosat-2.

  12. Tectonic Motion Monitoring at the Altimeter Calibration Facility on Gavdos, Crete, Greece.

    NASA Astrophysics Data System (ADS)

    Fernandez-Ibanez, F.; Soto, J. I.; Morales, J.; Comas, C.; Evans, K.; Pavlis, E. C.; Cadeddu, M. P.; Mertikas, S. P.

    2004-12-01

    The intense tectonic activity of Eastern Mediterranean is of great interest for many decades. Recently, sea-level monitoring and climate change studies generated great interest as well as for its regional oceanography. A plethora of observations has convincingly demonstrated the importance of the area for regional meteorological and climatologic changes affecting Eurasia and North Africa. GPS monitors tectonics, while tide gauges record the variations in Mean Sea Level (MSL). Continuous monitoring of tide gauge locations with GPS removes the uncertainties introduced by local tectonics, that contaminate the observed sea level variations. Such a global tide gauge network with long historical records is already used to calibrate satellite altimeters (e.g. on TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.), at present, a common IOC-GLOSS-IGS effort --TIGA. Crete hosts two of the oldest tide gauges in the regional network, at Souda Bay and Heraklion. A third site, state-of-the-art MSL monitoring facility in southwestern Crete was established, on the isle of Gavdos, the southernmost European parcel of land, under a joint effort of the European Union, NASA, and the Swiss Federal Government. The site at Souda Bay is only 5 km away from the continuously operating GPS site at TUC, Chania, with a nearly seven year record of operation. The Gavdos facility is an ideal altimeter calibration site if the tectonic motions are monitored precisely and continuously. This presentation focuses on this aspect of the project, the local and regional tectonic motions relative to the "stable" part of the Eurasian plate. The facility hosts in addition to two tide gauges, multiple GPS receivers, a DORIS beacon for positioning and orbit control, and a transponder for direct calibration. During 2003, the French Transportable Laser Ranging System (FTLRS) completed a co-location campaign at Chania, Crete, for improved orbit control over the site, and to ensure the best possible and most reliable

  13. An atlas of 1976 GEOS-3 radar altimeter data for tropical cyclone studies

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Chan, B.; Givens, C.; Taylor, R.

    1979-01-01

    The means for locating and extracting GEOS-3 altimeter data acquired for the analysis of specific hurricanes, typhoons, and other tropical cyclones are presented. These data are also expected to be extremely useful in the analysis of the behavior of the altimeter instrument in the presence of severe meteorological disturbances as well as provide a data base which can be useful in the resolution of apparently anomalous geoid or sea surface characteristics. Geographic locations of 1976 tropical cyclones were correlated with the closest approaching orbits of the GEOS-3 satellite and its radar altimeter. The cyclone locations and altimeter data were correlated for the 1976 season. The area of coverage includes the northern hemisphere. This document is a sequel to NASA TM-X-69364 which covered the majority of the 1975 season.

  14. Mean gravity anomalies and sea surface heights derived from GEOS-3 altimeter data

    NASA Technical Reports Server (NTRS)

    Rapp, R. H.

    1978-01-01

    Approximately 2000 GEOS-3 altimeter arcs were analyzed to improve knowledge of the geoid and gravity field. An adjustment procedure was used to fit the sea surface heights (geoid undulations) in an adjustment process that incorporated cross-over constraints. The error model used for the fit was a one or two parameter model which was designed to remove altimeter bias and orbit error. The undulations on the adjusted arcs were used to produce geoid maps in 20 regions. The adjusted data was used to derive 301 5 degree equal area anomalies and 9995 1 x 1 degree anomalies in areas where the altimeter data was most dense, using least squares collocation techniques. Also emphasized was the ability of the altimeter data to imply rapid anomaly changes of up to 240 mgals in adjacent 1 x 1 degree blocks.

  15. Donut wakefields generated by intense laser pulses with orbital angular momentum

    SciTech Connect

    Mendonça, J. T.; Vieira, J.

    2014-03-15

    We study the wakefields produced in a plasma by intense laser pulses carrying a finite amount of orbital angular momentum. We show that these wakefields have new donut-like shapes, different from those usually considered in the literature, and could be used to accelerate hollow electron beams. Wakefields with a more general angular structure were also considered. The analytical solutions are corroborated by relativistic particle-in-cell simulations using OSIRIS.

  16. Status of the Lunar Reconnaissance Orbiter Geodetic Investigation

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Rowlands, D. D.; Neumann, G. A.; Smith, D. E.; Torrence, M. H.; Lemoine, F. G.; Zuber, M. T.

    2011-12-01

    We present the status of the Precision Orbit Determination work performed at NASA Goddard Space Flight Center by the Lunar Orbiter Laser Altimeter (LOLA) Science Team. LOLA, the multi-beam laser altimeter instrument onboard the Lunar Reconnaissance Orbiter (LRO), has been operating continuously since July 13, 2009 and has provided more than 4.5 billion measurements as of July 2011. The high precision (10cm) and small footprint (5m) of the altimetric data, as well as the high resolution (25cm per pixel) of the LRO Camera (LROC), require high-accuracy orbits of the LRO spacecraft in order to maximize their scientific value and to enable proper coregistration of the various datasets obtained by LRO. Radiometric tracking data are complemented by altimetric crossover constraints derived from individual LOLA profiles. With a pre-LRO a priori gravity field (GLGM-3), the crossovers helped substantially improve the self-consistency of the reconstructed LRO orbits (assessed through orbit overlaps), from ~70m overlap RMS (radiometric-only) down to ~25m.We also used the LRO tracking and altimetric data to obtain a new solution of the lunar gravity field, specifically designed to provide enhanced orbit accuracy. With this preliminary LRO field (LLGM-1), the radiometric-only orbits achieve ~25m overlap precision. When complemented by the altimetric crossovers, the orbit consistency improves to better than 15m. Results from more than 2 years of radiometric tracking data and LOLA altimetry will be shown, including an updated gravity field solution. Current efforts to use very long integration arcs (4 months at a time) will also be presented, with the goal of combining all the available farside crossover constraints to help refine the short-wavelength farside gravity field.

  17. A laser-optical system to re-enter or lower low Earth orbit space debris

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2014-01-01

    Collisions among existing Low Earth Orbit (LEO) debris are now a main source of new debris, threatening future use of LEO space. Due to their greater number, small (1-10 cm) debris are the main threat, while large (>10 cm) objects are the main source of new debris. Flying up and interacting with each large object is inefficient due to the energy cost of orbit plane changes, and quite expensive per object removed. Strategically, it is imperative to remove both small and large debris. Laser-Orbital-Debris-Removal (LODR), is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LODR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. With 20% clear weather, a laser-optical system at either pole could lower the 8-ton ENVISAT by 40 km in about 8 weeks, reducing the hazard it represents by a factor of four. We also discuss the advantages and disadvantages of a space-based LODR system. We estimate cost per object removed for these systems. International cooperation is essential for designing, building and operating any such system.

  18. Ground-to-space optical power transfer. [using laser propulsion for orbit transfer

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Hayes, C. L.; Soohoo, J. F.; Stubbs, R. M.

    1978-01-01

    Using laser radiation as the energy input to a rocket, it is possible to consider the transfer of large payloads economically between low initial orbits and higher energy orbits. In this paper we will discuss the results of an investigation to use a ground-based High Energy Laser (HEL) coupled to an adaptive antenna to transmit multi-megawatts of power to a satellite in low-earth orbit. Our investigation included diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming. For these evaluations we developed vertical profile models of atmospheric absorption, strength of optical turbulence (CN2), wind, temperature, and other parameters necessary to calculate system performance. Our atmospheric investigations were performed for CO2, 12C18O2 isotope, CO and DF wavelengths. For all of these considerations, output antenna locations of both sea level and mountain top (3.5 km above sea level) were used. Several adaptive system concepts were evaluated with a multiple source phased array concept being selected. This system uses an adaption technique of phase locking independent laser oscillators. When both system losses and atmospheric effects were assessed, the results predicted an overall power transfer efficiency of slightly greater than 50%.

  19. Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Intaglietta, N.; Tuscano, P.; Mondaini, C.; Maiello, M.; Doyle, D.; García-Prieto, R.; Navarro-Reyes, D.

    2016-06-01

    The Galileo constellation is a space research and development program of the European Union to help navigate users all over the world. The Galileo IOV (In-Orbit Validation) are the first test satellites of the Galileo constellation and carry satellite laser retroreflectors as part of their payload systems for precision orbit determination and performance assessment. INFN-LNF SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory) has been performing tests on a sample of the laser array segment under the Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of Galileo IOV LRA project, as defined in ESA-INFN Contract No. 4000108617/13/NL/PA. We will present the results of FFDP (Far Field Diffraction Pattern) and thermal relaxation times measurements in relevant space conditions of Galileo IOV CCRs (Cube Corner Retroreflectors) provided by ESA-ESTEC. A reference for the performance of laser ranging on Galileo satellites is the FFDP of a retroreflector in its design specifications and a Galileo retroreflector, in air and isothermal conditions, should have a minimum return intensity within the range [ 0.55 ×106m2- 2.14 ×106m2 ] (ESA-INFN, 2013). Measurements, performed in SCF_Lab facility, demonstrated that the 7 Galileo IOV laser retroreflectors under test were compliant with design performance expectations (Porcelli et al., 2015). The kind of tests carried out for this activity are the first performed on spare Galileo IOV hardware, made available after the launch of the four Galileo IOV satellites (2011 and 2012), which were the operational core of the constellation. The characterisation of the retroreflectors against their design requirements is important because LRAs (Laser Retroreflector Arrays) will be flown on all Galileo satellites.

  20. Project ORION: Orbital Debris Removal Using Ground-Based Sensors and Lasers

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1996-01-01

    About 100,000 pieces of 1 to 10-cm debris in low-Earth orbit are too small to track reliably but large enough to cripple or destroy spacecraft. The ORION team studied the feasibility of removing the debris with ground-based laser impulses. Photoablation experiments were surveyed and applied to likely debris materials. Laser intensities needed for debris orbit modification call for pulses on the order of lOkJ or continuous wave lasers on the order of 1 MW. Adaptive optics are necessary to correct for atmospheric turbulence. Wavelength and pulse duration windows were found that limit beam degradation due to nonlinear atmospheric processes. Debris can be detected and located to within about 10 microrads with existing radar and passive optical technology. Fine targeting would be accomplished with laser illumination, which might also be used for detection. Bistatic detection with communications satellites may also be possible. We recommend that existing technology be used to demonstrate the concept at a loss of about $20 million. We calculate that an installation to clear altitudes up to 800 km of 1 to 10-cm debris over 2 years of operation would cost about $80 million. Clearing altitudes up to 1,500 km would take about 3 years and cost about $160 million.

  1. Precision orbit determination for the Geosat Exact Repeat Mission

    NASA Technical Reports Server (NTRS)

    Shum, C. K.; Yuan, D. N.; Ries, J. C.; Smith, J. C.; Schutz, B. E.

    1990-01-01

    Precise ephemerides have been determined for the U.S. Navy Geosat Exact Repeat Mission (ERM) using an improved gravity-field model, PTGF-4A (Shum et al. 1989). The Geosat orbits were computed in a terrestrial reference system which is tied to the reference system defined by satellite laser ranging (SLR) to Lageos through a survey between the Tranet Doppler receiver and the SLR system located at Wettzell, FRG. The remaining Doppler tracking station coordinates were estimated simultaneously with the geopotential in the PTGF-4A solution. In this analysis, three continuous 17-day Geosat orbits, which were computed using the 46-station Tranet data and global altimeter crossover data, have a crossover residual rms of 20 cm, indicating that the Geosat radial orbit error is of the order of 20 cm. The orbits computed based on data collected by a 7-station OPNET tracking network and crossover data have the same level of accuracy.

  2. SLICER Airborne Laser Altimeter Characterization of Canopy Structure and Sub-canopy Topography for the BOREAS Northern and Southern Study Regions: Instrument and Data Product Description

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Harding, D. J.; Blair, J. B.; Rabine, D. L.; Still, K. L.

    2000-01-01

    SLICER data were acquired in support of BOREAS at all of the TF sites in the SSA and NSA, and along transects between the study areas. Data were acquired on 5 days between 18-Jul and 30-Jul-1996. Each coverage of a tower site is typically 40 km in length, with a minimum of 3 and a maximum of 10 lines across each tower oriented in a variety of azimuths. The SLICER data were acquired simultaneously with ASAS hyperspectral, multiview angle images. The SLICER Level 3 products consist of binary files for each flight line with a data record for each laser shot composed of 13 parameters and a 600-byte waveform that is the raw record of the backscatter laser energy reflected from Earth's surface. The SLICER data are stored in a combination of ASCII and binary data files.

  3. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    SciTech Connect

    Mendonça, J. T.; Vieira, J.

    2015-12-15

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.

  4. Compact, Passively Q-Switched Nd:YAG Laser for the MESSENGER Mission to the Planet Mercury

    NASA Technical Reports Server (NTRS)

    Krebs, Danny J.; Novo-Gradac, Anne-Marie; Li, Steven X.; Lindauer, Steven J.; Afzal, Robert S.; Yu, Antony

    2004-01-01

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter (MLA) instrument which is an instrument on the MESSENGER mission to the planet Mercury. The laser achieves 5.4 percent efficiency with a near diffraction limited beam. It has passed all space flight environmental tests at system, instrument, and satellite integration. The laser design draws on a heritage of previous laser altimetry missions, specifically ISESAT and Mars Global Surveyor; but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury.

  5. Prelaunch performance of the NASA altimeter for the TOPEX/POSEIDON project

    NASA Astrophysics Data System (ADS)

    Marth, Paul C.; Jensen, J. R.; Kilgus, Charles C.; Perschy, James A.; MacArthur, John L.; Hancock, David W.; Hayne, George S.; Purdy, Craig L.; Rossi, Laurence C.; Koblinsky, Chester J.

    1993-03-01

    Validation of in-orbit performance has demonstrated the ability of satellite radar altimetry to measure mesoscale absolute dynamic sea surface topography and to measure the variation in the general circulation on the largest spatial scales. Measurements of basin scale mean circulation, however, have been corrupted by system inaccuracies. The TOPEX/POSEIDON radar altimeter satellite applies recent advances in remote sensing instrumentation to reduce long wavelength measurement errors to dramatically lower levels. The TOPEX altimeter measures the range to the ocean surface with 2-cm precision and accuracy through the use of both Ku- and C-band radars, a high pulse repetition frequency, an agile tracker, and absolute internal height calibration. Dual pulse bandwidths for both frequencies make it possible to quickly acquire the surface and begin tracking after crossing the land/ocean boundary. This paper presents the altimeter requirements and the elements of the altimeter design that have resulted in meeting these requirements. Prelaunch test data, based on the use of a Radar Altimeter System Evaluator to simulate the backscatter from the ocean surface, are presented to demonstrate that the TOPEX altimeter will meet these requirements and provide the data necessary to the understanding of basin scale mean circulation.

  6. Tracking system options for future altimeter satellite missions

    NASA Technical Reports Server (NTRS)

    Davis, G. W.; Rim, H. J.; Ries, J. C.; Tapley, B. D.

    1994-01-01

    Follow-on missions to provide continuity in the observation of the sea surface topography once the successful TOPEX/POSEIDON (T/P) oceanographic satellite mission has ended are discussed. Candidates include orbits which follow the ground tracks of T/P GEOSAT or ERS-1. The T/P precision ephemerides, estimated to be near 3 cm root-mean-square, demonstrate the radial orbit accuracy that can be achieved at 1300 km altitude. However, the radial orbit accuracy which can be achieved for a mission at the 800 km altitudes of GEOSAT and ERS-1 has not been established, and achieving an accuracy commensurate with T/P will pose a great challenge. This investigation focuses on the radial orbit accuracy that can be achieved for a mission in the GEOSAT orbit. Emphasis is given to characterizing the effects of force model errors on the estimated radial orbit accuracy, particularly those due to gravity and drag. The importance of global, continuous tracking of the satellite for reduction in these sources of orbit error is demonstrated with simulated GPS tracking data. A gravity tuning experiment is carried out to show how the effects of gravity error may be reduced. Assuming a GPS flight receiver with a full-sky tracking capability, the simulation results indicate that a 5 cm radial orbit accuracy for an altimeter satellite in GEOSAT orbit should be achievable during low-drag atmospheric conditions and after an acceptable tuning of the gravity model.

  7. Global characteristics of porosity and density stratification within the lunar crust from GRAIL gravity and Lunar Orbiter Laser Altimeter topography data

    NASA Astrophysics Data System (ADS)

    Han, Shin-Chan; Schmerr, Nicholas; Neumann, Gregory; Holmes, Simon

    2014-03-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission is providing unprecedentedly high-resolution gravity data. The gravity signal in relation to topography decreases from 100 km to 30 km wavelength, equivalent to a uniform crustal density of 2450 kg/m3 that is 100 kg/m3 smaller than the density required at 100 km. To explain such frequency-dependent behavior, we introduce rock compaction models under lithostatic pressure that yield radially stratified porosity (and thus density) and examine the depth extent of porosity. Our modeling and analysis support the assertion that the crustal density must vary from surface to deep crust by up to 500 kg/m3. We found that the surface density of megaregolith is around 2400 kg/m3 with an initial porosity of 10-20%, and this porosity is eliminated at 10-20 km depth due to lithostatic overburden pressure. Our stratified density models provide improved fits to both GRAIL primary and extended mission data.

  8. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    NASA Astrophysics Data System (ADS)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  9. On siphons and sediments: A new model for draining active subglacial lakes in Antarctica informed with satellite radar and laser altimeter observations.

    NASA Astrophysics Data System (ADS)

    Carter, S. P.; Fricker, H. A.; Siegfried, M. R.

    2014-12-01

    With the advent of repeat-pass satellite-based surface altimetry over much of Antarctica, approximately 130 new subglacial lakes have been discovered entirely from observations of surface uplift and subsidence; these are commonly referred to as "active lakes". In contrast to the ~160 lakes detected by radar sounding ("RES" lakes), which are typically in mountains bedrock terrain near the ice divide and static with residence times spanning millenia, active lakes are typically located in fast flowing ice streams far from the divides, and have short residence times. To understand how water transfers through active lake systems we have developed a new model based on earlier theoretical work and informed by lake-volume estimates inferred from of ice surface displacements detected by satellite radar and laser altimetry. We find that although the overall pattern of filling and drainage is similar to that for ice dammed lakes in alpine regions via channels thermally eroded into the ice that then creeps shut as water pressure declines, Antarctic lake drainage is better simulated by invoking a channel mechanically eroded into the underlying sediment. The necessity of an erodable deformable substrate to explain lake drainage suggests that the distribution of active lakes is an indicator for the presence of sediment. Furthermore the process of lake drainage appears quite sensitive to the composion and strength of the underlying till. We explore these possibilities by testing the model on subglacial lakes in both East and West Antarctica, including Recovery Glacier and MacAyeal Ice stream.

  10. The significance of the Skylab altimeter experiment results and potential applications. [measurement of sea surface topography

    NASA Technical Reports Server (NTRS)

    Mourad, A. G.; Gopalapillai, S.; Kuhner, M.

    1975-01-01

    The Skylab Altimeter Experiment has proven the capability of the altimeter for measurement of sea surface topography. The geometric determination of the geoid/mean sea level from satellite altimetry is a new approach having significant applications in many disciplines including geodesy and oceanography. A Generalized Least Squares Collocation Technique was developed for determination of the geoid from altimetry data. The technique solves for the altimetry geoid and determines one bias term for the combined effect of sea state, orbit, tides, geoid, and instrument error using sparse ground truth data. The influence of errors in orbit and a priori geoid values are discussed. Although the Skylab altimeter instrument accuracy is about + or - 1 m, significant results were obtained in identification of large geoidal features such as over the Puerto Rico trench. Comparison of the results of several passes shows that good agreement exists between the general slopes of the altimeter geoid and the ground truth, and that the altimeter appears to be capable of providing more details than are now available with best known geoids. The altimetry geoidal profiles show excellent correlations with bathymetry and gravity. Potential applications of altimetry results to geodesy, oceanography, and geophysics are discussed.

  11. Mapping the Topography of Mercury with MESSENGER Laser Altimetry

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Cavanaugh, John F.; Neumann, Gregory A.; Smith, David E..; Zubor, Maria T.

    2012-01-01

    The Mercury Laser Altimeter onboard MESSENGER involves unique design elements that deal with the challenges of being in orbit around Mercury. The Mercury Laser Altimeter (MLA) is one of seven instruments on NASA's MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. MESSENGER was launched on 3 August 2004, and entered into orbit about Mercury on 18 March 2011 after a journey through the inner solar system. This involved six planetary flybys, including three of Mercury. MLA is designed to map the topography and landforms of Mercury's surface. It also measures the planet's forced libration (motion about the spin axis), which helps constrain the state of the core. The first science measurements from orbit taken with MLA were made on 29 March 2011 and continue to date. MLA had accumulated about 8.3 million laser ranging measurements to Mercury's surface, as of 31 July 2012, i.e., over six Mercury years (528 Earth days). Although MLA is the third planetary lidar built at the NASA Goddard Space Flight Center (GSFC), MLA must endure a much harsher thermal environment near Mercury than the previous instruments on Mars and Earth satellites. The design of MLA was derived in part from that of the Mars Orbiter Laser Altimeter on Mars Global Surveyor. However, MLA must range over greater distances and often in off-nadir directions from a highly eccentric orbit. In MLA we use a single-mode diode-pumped Nd:YAG (neodymium-doped yttrium aluminum garnet) laser that is highly collimated to maintain a small footprint on the planet. The receiver has both a narrow field of view and a narrow spectral bandwidth to minimize the amount of background light detected from the sunlit hemisphere of Mercury. We achieve the highest possible receiver sensitivity by employing the minimum receiver detection threshold.

  12. Development of State of the Art Solid State Lasers for Altimetry and other LIDAR Applications

    NASA Technical Reports Server (NTRS)

    Kay, Richard B.

    1997-01-01

    This report describes work performed and research accomplished through the end of 1997. During this time period, we have designed and fabricated two lasers for flight LIDAR applications to medium altitudes (Laser Vegetation Imaging System designs LVIS 1 and LVIS 2), designed one earth orbiting LIDAR transmitter (VCL-Alt), and continued work on a high rep-rate LIDAR laser (Raster Scanned Altimeter, RASCAL). Additionally, a 'White Paper' was prepared which evaluates the current state of the art of Nd:YAG lasers and projects efficiencies to the year 2004. This report is attached as Appendix 1 of this report.

  13. Space Operation of the MOLA Laser

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.

    2000-01-01

    Interest in lasers for space applications such as active remote sensing in Earth orbit, planetary science, and inter-satellite laser communications is growing. These instruments typically use diode-pumped solid state lasers for the laser transmitter. The mission specifications and constraints of space qualification, place strict requirements on the design and operation of the laser. Although a laser can be built in the laboratory to meet performance specifications relatively routinely, tile mission constraints demand unique options and compromises in the materials used, and design to ensure the success of the mission. Presently, the best laser architecture for a light weight, rugged, high peak power and efficient transmitter is a diode laser pumped ND:YAG laser. Diode lasers can often obviate the need for water cooling, reduce the size and weight of the laser, increase the electrical to optical efficiency, system reliability, and lifetime. This paper describes the in-space operation and performance of the Mars Orbiter Laser Altimeter (MOLA) laser transmitter, representing the current state-of-the-art in space-based solid- state lasers.

  14. Simple Laser Communications Terminal for Downlink from Earth Orbit at Rates Exceeding 10 Gb/s

    NASA Technical Reports Server (NTRS)

    Kovalik, Joseph M.; Hemmati, Hamid; Biswas, Abhijit; Roberts, William T.

    2013-01-01

    A compact, low-cost laser communications transceiver was prototyped for downlinking data at 10 Gb/s from Earth-orbiting spacecraft. The design can be implemented using flight-grade parts. With emphasis on simplicity, compactness, and light weight of the flight transceiver, the reduced-complexity design and development approach involves: 1. A high-bandwidth coarse wavelength division multiplexed (CWDM) (4 2.5 or 10-Gb/s data-rate) downlink transmitter. To simplify the system, emphasis is on the downlink. Optical uplink data rate is modest (due to existing and adequate RF uplink capability). 2. Highly simplified and compact 5-cm diameter clear aperture optics assembly is configured to single transmit and receive aperture laser signals. About 2 W of 4-channel multiplexed (1,540 to 1,555 nm) optically amplified laser power is coupled to the optical assembly through a fiber optic cable. It contains a highly compact, precision-pointing capability two-axis gimbal assembly to coarse point the optics assembly. A fast steering mirror, built into the optical path of the optical assembly, is used to remove residual pointing disturbances from the gimbal. Acquisition, pointing, and tracking are assisted by a beacon laser transmitted from the ground and received by the optical assembly, which will allow transmission of a laser beam. 3. Shifting the link burden to the ground by relying on direct detection optical receivers retrofitted to 1-m-diameter ground telescopes. 4. Favored mass and volume reduction over power-consumption reduction. The two major variables that are available include laser transmit power at either end of the link, and telescope aperture diameter at each end of the link. Increased laser power is traded for smaller-aperture diameters. 5. Use of commercially available spacequalified or qualifiable components with traceability to flight qualification (i.e., a flight-qualified version is commercially available). An example is use of Telecordia-qualified fiber

  15. Geopotential models of the Earth from satellite tracking, altimeter and surface gravity observations: GEM-T3 and GEM-T3S

    NASA Technical Reports Server (NTRS)

    Lerch, F. J.; Nerem, R. S.; Putney, B. H.; Felsentreger, T. L.; Sanchez, B. V.; Klosko, S. M.; Patel, G. B.; Williamson, R. G.; Chinn, D. S.; Chan, J. C.

    1992-01-01

    Improved models of the Earth's gravitational field have been developed from conventional tracking data and from a combination of satellite tracking, satellite altimeter and surface gravimetric data. This combination model represents a significant improvement in the modeling of the gravity field at half-wavelengths of 300 km and longer. Both models are complete to degree and order 50. The Goddard Earth Model-T3 (GEM-T3) provides more accurate computation of satellite orbital effects as well as giving superior geoidal representation from that achieved in any previous GEM. A description of the models, their development and an assessment of their accuracy is presented. The GEM-T3 model used altimeter data from previous satellite missions in estimating the orbits, geoid, and dynamic height fields. Other satellite tracking data are largely the same as was used to develop GEM-T2, but contain certain important improvements in data treatment and expanded laser tracking coverage. Over 1300 arcs of tracking data from 31 different satellites have been used in the solution. Reliable estimates of the model uncertainties via error calibration and optimal data weighting techniques are discussed.

  16. GEOSAT Follow-On Radar Altimeter Satellite Performance Studies

    NASA Astrophysics Data System (ADS)

    Finkelstein, J. L.; Rau, M.; McMillan, J. D.

    2002-12-01

    Under a Navy Contract with Ball Aerospace and Technologies Corporation, the first GFO satellite was completed in 1997 and launched on 10 February 1998 on an Orbital Taurus launch vehicle. The satellite was operationally accepted on 29 November 2000. With an anticipated 8-year or more life, GFO (http://gfo.bmpcoe.org/Gfo) is a DoD satellite mission managed by the Space and Naval Warfare Systems Command's (SPAWAR's) Meteorological and Oceanographic (METOC) Systems Program Office (PMW 155) located in San Diego, California. The satellite is in the same Exact Repeat Orbit (ERO) as the original GEOSAT (800 km by 108 degrees inclination). All GFO's data products are available to the scientific community and are distributed by NOAA's Laboratory for Satellite Altimetry. The primary program objective was to develop an operational series of radar altimeter satellites to maintain continuous ocean observation for accurate global measurements of both mesoscale and basin-scale oceanography. Since its acceptance, Computer Sciences Corporation (CSC), under contract with the Navy, has provided a team known as the GFO Cal/Val and assisted by NASA and NOAA personnel has undertaken extensive and continuing calibration and validation activities on an exact repeat cycle basis. This paper will discuss the results of those Cal/Val efforts and present charts showing the performance history of the satellite, its sensors (both the Radar Altimeter and the Water Vapor Radiometer), and other relevant performance measures such as orbit accuracy.

  17. Evaluation of Gravitational Field Models Based on the Laser Range Observation of Low Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Hong-bo, Wang; Chang-yin, Zhao; Wei, Zhang; Jin-wei, Zhan; Sheng-xian, Yu

    2016-07-01

    The Earth gravitational field model is one of the most important dynamic models in satellite orbit computation. Several space gravity missions made great successes in recent years, prompting the publishing of several gravitational filed models. In this paper, two classical (JGM3, EGM96) and four latest (EIGEN-CHAMP05S, GGM03S, GOCE02S, EGM2008) models are evaluated by employing them in the precision orbit determination (POD) and prediction. These calculations are performed based on the laser ranging observation of four Low Earth Orbit (LEO) satellites, including CHAMP, GFZ-1, GRACE-A, and SWARM-A. The residual error of observation in POD is adopted to describe the accuracy of six gravitational field models. The main results we obtained are as follows. (1) For the POD of LEOs, the accuracies of 4 latest models are at the same level, and better than those of 2 classical models; (2) Taking JGM3 as reference, EGM96 model's accuracy is better in most situations, and the accuracies of the 4 latest models are improved by 12%-47% in POD and 63% in prediction, respectively. We also confirm that the model's accuracy in POD is enhanced with the increasing degree and order if they are smaller than 70, and when they exceed 70, the accuracy keeps constant, implying that the model's degree and order truncated to 70 are sufficient to meet the requirement of LEO computation of centimeter precision.

  18. 13 Years of TOPEX/POSEIDON Precision Orbit Determination and the 10-fold Improvement in Expected Orbit Accuracy

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Zelensky, N. P.; Luthcke, S. B.; Rowlands, D. D.; Beckley, B. D.; Klosko, S. M.

    2006-01-01

    Launched in the summer of 1992, TOPEX/POSEIDON (T/P) was a joint mission between NASA and the Centre National d Etudes Spatiales (CNES), the French Space Agency, to make precise radar altimeter measurements of the ocean surface. After the remarkably successful 13-years of mapping the ocean surface T/P lost its ability to maneuver and was de-commissioned January 2006. T/P revolutionized the study of the Earth s oceans by vastly exceeding pre-launch estimates of surface height accuracy recoverable from radar altimeter measurements. The precision orbit lies at the heart of the altimeter measurement providing the reference frame from which the radar altimeter measurements are made. The expected quality of orbit knowledge had limited the measurement accuracy expectations of past altimeter missions, and still remains a major component in the error budget of all altimeter missions. This paper describes critical improvements made to the T/P orbit time series over the 13-years of precise orbit determination (POD) provided by the GSFC Space Geodesy Laboratory. The POD improvements from the pre-launch T/P expectation of radial orbit accuracy and Mission requirement of 13-cm to an expected accuracy of about 1.5-cm with today s latest orbits will be discussed. The latest orbits with 1.5 cm RMS radial accuracy represent a significant improvement to the 2.0-cm accuracy orbits currently available on the T/P Geophysical Data Record (GDR) altimeter product.

  19. Four Years on Orbit at the Moon with LOLA

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Lemoine, F. G.

    2013-12-01

    After four years of near-continuous operation at the Moon, the Lunar Orbiter Laser Altimeter (LOLA) continues to collect altimetry, surface roughness, slope and normal reflectance data. Although the instrument is beginning to show the effects of tens of thousands of thermal cycles and the natural process of the aging of the laser transmitters, LOLA continues to acquire data on the sunlit portion of every orbit on all 5 laser beams when below 100-km altitude. LOLA has acquired over 6x10^9 altimeter measurements, all geodetically controlled to the center-of-mass of the Moon with a radial precision of around 10 cm and an accuracy of about 1 meter. The position of the measurements on the lunar surface is primarily limited by the knowledge of the position of the spacecraft in orbit; in the last year the LRO orbit accuracy has improved significantly as a result of the availability of an accurate gravity model of the Moon from the GRAIL Discovery mission. Our present estimate of positional accuracy is less than 10 m rms but is only achievable with a GRAIL gravity model to at least degree and order 600 because of the perturbing gravitational effect of the Moon's surface features. Significant improvements in the global shape and topography have assisted the Lunar Reconnaissance Orbiter Camera (LROC) stereo mapping program, and the identification of potential lunar landing sites for ESA and Russia, particularly in the high-latitude polar regions where 5- and 10-meter average horizontal resolution has been obtained. LOLA's detailed mapping of the polar regions has improved the delineation of permanently-shadowed areas and assisted in the understanding of the LEND neutron data and its relationship to surface slopes. Recently, a global, calibrated LOLA normal albedo dataset at 1064 nm has been developed and is being combined with analysis and modeling by the Diviner team for the identification of the coldest locations in the polar regions.

  20. ALT space shuttle barometric altimeter altitude analysis

    NASA Technical Reports Server (NTRS)

    Killen, R.

    1978-01-01

    The accuracy was analyzed of the barometric altimeters onboard the space shuttle orbiter. Altitude estimates from the air data systems including the operational instrumentation and the developmental flight instrumentation were obtained for each of the approach and landing test flights. By comparing the barometric altitude estimates to altitudes derived from radar tracking data filtered through a Kalman filter and fully corrected for atmospheric refraction, the errors in the barometric altitudes were shown to be 4 to 5 percent of the Kalman altitudes. By comparing the altitude determined from the true atmosphere derived from weather balloon data to the altitude determined from the U.S. Standard Atmosphere of 1962, it was determined that the assumption of the Standard Atmosphere equations contributes roughly 75 percent of the total error in the baro estimates. After correcting the barometric altitude estimates using an average summer model atmosphere computed for the average latitude of the space shuttle landing sites, the residual error in the altitude estimates was reduced to less than 373 feet. This corresponds to an error of less than 1.5 percent for altitudes above 4000 feet for all flights.

  1. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris.

    PubMed

    Li, Bin; Sang, Jizhang; Zhang, Zhongping

    2016-01-01

    A critical requirement to achieve high efficiency of debris laser tracking is to have sufficiently accurate orbit predictions (OP) in both the pointing direction (better than 20 arc seconds) and distance from the tracking station to the debris objects, with the former more important than the latter because of the narrow laser beam. When the two line element (TLE) is used to provide the orbit predictions, the resultant pointing errors are usually on the order of tens to hundreds of arc seconds. In practice, therefore, angular observations of debris objects are first collected using an optical tracking sensor, and then used to guide the laser beam pointing to the objects. The manual guidance may cause interrupts to the laser tracking, and consequently loss of valuable laser tracking data. This paper presents a real-time orbit determination (OD) and prediction method to realize smooth and efficient debris laser tracking. The method uses TLE-computed positions and angles over a short-arc of less than 2 min as observations in an OD process where simplified force models are considered. After the OD convergence, the OP is performed from the last observation epoch to the end of the tracking pass. Simulation and real tracking data processing results show that the pointing prediction errors are usually less than 10″, and the distance errors less than 100 m, therefore, the prediction accuracy is sufficient for the blind laser tracking. PMID:27347958

  2. A Real-Time Orbit Determination Method for Smooth Transition from Optical Tracking to Laser Ranging of Debris

    PubMed Central

    Li, Bin; Sang, Jizhang; Zhang, Zhongping

    2016-01-01

    A critical requirement to achieve high efficiency of debris laser tracking is to have sufficiently accurate orbit predictions (OP) in both the pointing direction (better than 20 arc seconds) and distance from the tracking station to the debris objects, with the former more important than the latter because of the narrow laser beam. When the two line element (TLE) is used to provide the orbit predictions, the resultant pointing errors are usually on the order of tens to hundreds of arc seconds. In practice, therefore, angular observations of debris objects are first collected using an optical tracking sensor, and then used to guide the laser beam pointing to the objects. The manual guidance may cause interrupts to the laser tracking, and consequently loss of valuable laser tracking data. This paper presents a real-time orbit determination (OD) and prediction method to realize smooth and efficient debris laser tracking. The method uses TLE-computed positions and angles over a short-arc of less than 2 min as observations in an OD process where simplified force models are considered. After the OD convergence, the OP is performed from the last observation epoch to the end of the tracking pass. Simulation and real tracking data processing results show that the pointing prediction errors are usually less than 10″, and the distance errors less than 100 m, therefore, the prediction accuracy is sufficient for the blind laser tracking. PMID:27347958

  3. ENVISAT Radar Altimeter Individual Echoes

    NASA Astrophysics Data System (ADS)

    Zanifé, O. Z.; Roca, M.; Rémy, F.; Legrèsy, B.; Chapron, B.; Laxon, S.; Pilar Milagro, M.; Benveniste, J.

    2006-07-01

    A unique feature of the ENVISAT RA-2 is to provide bursts of individual, unav eraged Ku band echo s ample data in phase (I) and quadrature (Q), at the full rate 1800 Hz. This data offers a unique possibility to assess the full capabilities of altimeter measurements. Both technically and scientifically, much can be expected fro m these bursts o f individual echoes, e.g., speckle characteristics over different altimeter scen es, o cean , ice, land, but also, potential blurring effects associat ed with range windo w changes during the 100 echoes on-board av eraging. Moreover, for the first time in altimetry fro m space, investigations can be carried on the direct use of phase information from backscatter signals. ENVISAT RA-2 also features a second frequency in S band. The co mbination bet ween absolutely calibrated Ku and S b and d ata can yield interesting improvement for wind speed, wav e period, g as exchang e estimates , etc. ESA has launched a study on this topic to seed the use of individual echoes by s cientists. This study is reaching completion and reconstructed echoes will be made available for the first time to the scientific community. Results fro m the technical and s cientific application of individual echoes will be pres ented.

  4. Evaluation of Gravitational Field Models Based on the Laser Range Observation of Low Earth Orbit Satellites

    NASA Astrophysics Data System (ADS)

    Wang, H. B.; Zhao, C. Y.; Zhang, W.; Zhan, J. W.; Yu, S. X.

    2015-09-01

    The Earth gravitational filed model is a kind of important dynamic model in satellite orbit computation. In recent years, several space gravity missions have obtained great success, prompting a lot of gravitational filed models to be published. In this paper, 2 classical models (JGM3, EGM96) and 4 latest models, including EIGEN-CHAMP05S, GGM03S, GOCE02S, and EGM2008 are evaluated by being employed in the precision orbit determination (POD) and prediction, based on the laser range observation of four low earth orbit (LEO) satellites, including CHAMP, GFZ-1, GRACE-A, and SWARM-A. The residual error of observation in POD is adopted to describe the accuracy of six gravitational field models. We show the main results as follows: (1) for LEO POD, the accuracies of 4 latest models (EIGEN-CHAMP05S, GGM03S, GOCE02S, and EGM2008) are at the same level, and better than those of 2 classical models (JGM3, EGM96); (2) If taking JGM3 as reference, EGM96 model's accuracy is better in most situations, and the accuracies of the 4 latest models are improved by 12%-47% in POD and 63% in prediction, respectively. We also confirm that the model's accuracy in POD is enhanced with the increasing degree and order if they are smaller than 70, and when they exceed 70 the accuracy keeps stable, and is unrelated with the increasing degree, meaning that the model's degree and order truncated to 70 are sufficient to meet the requirement of LEO orbit computation with centimeter level precision.

  5. Variable fidelity robust optimization of pulsed laser orbital debris removal under epistemic uncertainty

    NASA Astrophysics Data System (ADS)

    Hou, Liqiang; Cai, Yuanli; Liu, Jin; Hou, Chongyuan

    2016-04-01

    A variable fidelity robust optimization method for pulsed laser orbital debris removal (LODR) under uncertainty is proposed. Dempster-shafer theory of evidence (DST), which merges interval-based and probabilistic uncertainty modeling, is used in the robust optimization. The robust optimization method optimizes the performance while at the same time maximizing its belief value. A population based multi-objective optimization (MOO) algorithm based on a steepest descent like strategy with proper orthogonal decomposition (POD) is used to search robust Pareto solutions. Analytical and numerical lifetime predictors are used to evaluate the debris lifetime after the laser pulses. Trust region based fidelity management is designed to reduce the computational cost caused by the expensive model. When the solutions fall into the trust region, the analytical model is used to reduce the computational cost. The proposed robust optimization method is first tested on a set of standard problems and then applied to the removal of Iridium 33 with pulsed lasers. It will be shown that the proposed approach can identify the most robust solutions with minimum lifetime under uncertainty.

  6. Dynamic test of radio altimeter based on IQ modulation

    NASA Astrophysics Data System (ADS)

    Pan, Hongfei; Tian, Yu; Li, Miao

    2010-08-01

    This paper based on the analysis and research of radio altimeter and its basic principles, it introduces a design for I/Q modulator's radio altimeter testing system. Further, data got from the test had been analyzed. Combined with the testing data of the altimeter, a construction of the I/Q modulator's radio altimeter testing system is built.

  7. NASA Wallops Flight Center GEOS-3 altimeter data processing report

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Dwyer, R. E.

    1980-01-01

    The procedures used to process the GEOS-3 radar altimeter data from raw telemetry data to a final user data product are described. In addition, the radar altimeter hardware design and operating parameters are presented to aid the altimeter user in understanding the altimeter data.

  8. Relative vertical positioning using ground-level transponders with the ERS-1 altimeter

    NASA Astrophysics Data System (ADS)

    Powell, R. J.

    1986-05-01

    The use of the ERS-1 satellite altimeter to measure the relative vertical position of land-based transponders and the ocean geoid on 2000-km-long segments of the satellite ground track is proposed. The procedures and equations for calculating delay measurements, evaluating their accuracy, and converting the delay data to range measurements are described. The usefulness of this technique is tested by obtaining measurements from aircraft using the RAL altimeter over ground-based corner reflectors; the experiment revealed the accuracy of the vertical positioning data and the validity of the predicted delay resolution. The vertical positioning data are applicable for altimeter calibration, measurements of sea-state bias effects, seismic and geodetic studies, and satellite orbit measurements.

  9. JASON-1: a New Reference for Precise Orbit Determination

    NASA Astrophysics Data System (ADS)

    Berthias, Jean-Paul; Broca, Patrick; Ferrier, Christophe; Gratton, Serge

    - The French-American satellite Jason-1 was launched in December 2001 to continue the mission of the TOPEX/Poseïdon satellite. Following the same ground track as its famous predecessor since January 14, 2002, Jason-1 continues the collection of high precision altimeter data over the oceans that contributes to our understanding of how oceans influence global climate processes. One of the key features of both the TOPEX/Poseïdon and the Jason missions is the precision of the orbit determination, better than 3 cm RMS on the radial component, which is without equal today. This is the result of many years of improvements in the knowledge of the Earth gravity field, as well as a very important efforts in the design of the satellites and in the modeling of the surface forces. It also benefits from the use of the most sophisticated tracking instrument available today . Equipped with the most advanced DORIS receiver, with a high quality Laser retroreflector array and with a top of the line dual frequency GPS receiver, Jason has become the new laboratory for precision orbit determination and for comparing the performances of tracking systems. The availability of the altimeter data offers a valuable additional source of validation of the orbits. Results show that these combined efforts are paying off. Orbits computed by many POD groups associated with the Jason project compare to the few centimeter level. Furthermore, orbits computed independantly with each of the available data types compare to within 2 cm RMS radially without any tuning of spacecraft models or excessive use of empirical accelerations. The combination of DORIS, SLR and GPS data now appears feasible and meaningful. In this paper, we will present the principles behind the Jason precise orbit determination, the current results and the efforts underway to improve the orbit precision.

  10. Millimeter Laser Ranging to the Moon: prospects and challenges in improving the orbital and rotational dynamics

    NASA Astrophysics Data System (ADS)

    Kopeikin, S.; Pavlis, E.; Pavlis, D.

    2008-09-01

    ABSTRACT Lunar Laser Ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics as well as for future human and robotic missions to the Moon. The corner-cube reflectors (CCR) currently on the Moon require no power and still work perfectly since their installation during the project Apollo era. Current LLR technology allows us to measure distances to the Moon with a precision approaching one millimeter [1]. As NASA, ESA, and other space agencies pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. for multiple scientific and technical purposes [2]. Since this effort involves humans in space, then in all situations the accuracy, fidelity, and robustness of the measurements, their adequate interpretation, and any products based on them, are of utmost importance. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis [3]. This talk discusses theoretical ideas, methods and challenges in developing such an advanced mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the millimeter precision. The model is supposed to be implemented as a part of the computer code underlying NASA Goddard's orbital analysis and geophysical parameter estimation package GEODYN [4]. The new model will allow us to make more precise altimetry of

  11. The ERS-1 radar altimeter mission

    NASA Astrophysics Data System (ADS)

    Francis, C. R.

    The radar altimeter, an integral part of the ERS-1 satellite (scheduled for launch in 1989) payload, will provide a measurement of sea state along with measurements over ice and major ocean currents. The instrument and its operating environment are described as well as mission objectives and calibration/validation problems. Consideration is also given to the synergystic nature of radar altimeter data with respect to data from other sources.

  12. Orbit determination and gravity field recovery from tracking data to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Maier, Andrea; Baur, Oliver

    2015-04-01

    The Lunar Reconnaissance Orbiter (LRO), launched in 2009, is well suited for the estimation of the long wavelengths of the lunar gravity field due to its low altitude of 50 km. Further, the orbit of LRO was polar for two years providing global coverage. The satellite has been primarily tracked via S-band (mainly two-way Doppler range-rates and two-way radiometric ranges) from the dedicated station in White Sands and from the Universal Space Network (USN). Due to the onboard altimeter the orbital precision requirement in the radial direction was rigorously defined as 1m. Because simulation studies before LRO's launch showed that this precision could not be reached with S-band observations alone, it was decided to additionally track LRO via optical laser ranges. It is worthwhile to point out that LRO is the first spacecraft in interplanetary space routinely tracked with optical one-way laser ranges. Gravity field recovery from orbit perturbations is intrinsically related to precise orbit determination. This is why considerable effort was made to find the optimum settings for orbit modeling. For a time span of three months we conducted a series of orbit overlapping tests based on Doppler observations to find the optimum arc length and the optimum set of empirical parameters. The analysis of observation residuals and orbit overlap differences showed that the estimated orbits are most precise when subdividing the time span into 2.5 days and estimating one constant empirical acceleration in along track direction. These settings were then used to analyze 13 months of Doppler data to LRO. The processing of the optical one-way laser was difficult due to the involvement of two non-synchronous clocks in one measurement (one clock at the ground station and one clock onboard LRO). The NASA software GEODYN, which was used for orbit determination and parameter estimation, models the LRO clock using a drift rate (first-order term) and an aging rate (second-order term). It seems

  13. Ocean topography experiment (TOPEX) radar altimeter

    NASA Astrophysics Data System (ADS)

    Rossi, L. C.; Hancock, D. W.; Hayne, G. S.

    A spaceflight qualified Radar Altimeter capable of achieving the TOPEX Mission measurement precision requirement of 2-centimeters, is provided and its performance (Engineering Assessment) will be evaluated after launch and continuously during its 3-year mission operational period. Information will be provided to JPL about the calibration of the TOPEX Radar Altimeter. The specifications for the required data processing algorithms which will be necessary to convert the Radar Altimeter mission telemetry data into the geophysical data will also be provided. The stringent 2 cm precision requirement for ocean topography determination from space necessitated examining existing Radar Altimeter designs for their applicability towards TOPEX. As a result, a system configuration evolved using some flight proven designs in conjunction with needed improvements which include: (1) a second frequency or channel to remove the range delay or apparent height bias caused by the electron content of the ionosphere; (2) higher transmit pulse repetition frequencies for correlation benefits at higher sea states to maintain precision; and (3) a faster microprocessor to accommodate two channels of altimetry data. Additionally, examination of past altimeter programs associated data processing algorithms was accomplished to establish the TOPEX-class Radar Altimeter data processing algorithms, and the necessary direction was outlined to begin to generate these for the TOPEX Mission.

  14. Preliminary design of a smart composite telescope for space laser communication on a satellite for the Geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Ghasemi-Nejhad, Mehrdad N.; Antin, Nicolas

    2011-03-01

    This paper presents a preliminary design of a smart composite telescope for space laser communication. The smart composite telescope will be mounted on a smart composite platform with Simultaneous Precision Positioning and Vibration Suppression (SPPVS), and then mounted on a satellite. The laser communication is intended for the Geosynchronous orbit. The high degree of directionality increases the security of the laser communication signal (as opposed to a diffused RF signal), but also requires sophisticated subsystems for transmission and acquisition. The shorter wavelength of the optical spectrum increases the data transmission rates, but laser systems require large amounts of power, which increases the mass and complexity of the supporting systems. In addition, the laser communication on the Geosynchronous orbit requires an accurate platform with SPPVS capabilities. Therefore, this work also addresses the design of an active composite platform to be used to simultaneously point and stabilize an inter-satellite laser communication telescope with micro-radian pointing resolution. The telescope is a Cassegrain receiver that employs two mirrors, one convex (primary) and the other concave (secondary). The distance, as well as the horizontal and axial alignment of the mirrors, must be precisely maintained or else the optical properties of the system will be severely degraded. The alignment will also have to be maintained during thruster firings, which will require vibration suppression capabilities of the system as well. The innovative platform has been designed to have tip-tilt pointing and simultaneous multi-degree-of- freedom vibration isolation capability for pointing stabilization.

  15. Nonadiabatic tunnel ionization of current-carrying orbitals of prealigned linear molecules in strong circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Liu, Kunlong; Barth, Ingo

    2016-10-01

    We derive the analytical formula of the ratio of the ionization rates of degenerate valence π± orbitals of prealigned linear molecules in strong circularly polarized (CP) laser fields. Interestingly, our theory shows that the ionization ratio for molecular orbitals with opposite azimuthal quantum numbers ±|m | (e.g., π±) is identical to that for atomic orbitals with the same ±|m | (e.g., p±). In general, the electron counter-rotating to the CP laser field tunnels more easily, not only for atoms but also for linear molecules. Our theoretical predictions are then verified by numerically solving the three-dimensional time-dependent Schrödinger equation for the ionization of the prealigned nitric oxide (NO) molecule in strong CP laser fields. Due to the spin-orbital coupling in the electronic ground state of NO and the sensitivity of ionization to the sense of electron rotation, the ionization of NO in CP fields can produce spin-polarized photoelectrons with high controllability of spin polarization up to 100 % .

  16. Manipulating femtosecond spin-orbit torques with laser pulse sequences to control magnetic memory states and ringing

    NASA Astrophysics Data System (ADS)

    Lingos, P. C.; Wang, J.; Perakis, I. E.

    2015-05-01

    Femtosecond (fs) coherent control of collective order parameters is important for nonequilibrium phase dynamics in correlated materials. Here, we propose such control of ferromagnetic order based on using nonadiabatic optical manipulation of electron-hole (e -h ) photoexcitations to create fs carrier-spin pulses with controllable direction and time profile. These spin pulses are generated due to the time-reversal symmetry breaking arising from nonperturbative spin-orbit and magnetic exchange couplings of coherent photocarriers. By tuning the nonthermal populations of exchange-split, spin-orbit-coupled semiconductor band states, we can excite fs spin-orbit torques that control complex magnetization pathways between multiple magnetic memory states. We calculate the laser-induced fs magnetic anisotropy in the time domain by using density matrix equations of motion rather than the quasiequilibrium free energy. By comparing to pump-probe experiments, we identify a "sudden" out-of-plane magnetization canting displaying fs magnetic hysteresis, which agrees with switchings measured by the static Hall magnetoresistivity. This fs transverse spin-canting switches direction with magnetic state and laser frequency, which distinguishes it from the longitudinal nonlinear optical and demagnetization effects. We propose that sequences of clockwise or counterclockwise fs spin-orbit torques, photoexcited by shaping two-color laser-pulse sequences analogous to multidimensional nuclear magnetic resonance (NMR) spectroscopy, can be used to timely suppress or enhance magnetic ringing and switching rotation in magnetic memories.

  17. Electromagnetic launch, then lessening chemical thrust over time as laser beam powered ion thrust grows{emdash}to any orbit

    SciTech Connect

    Morse, T.M.

    1996-03-01

    The ElectroMagnetic (EM) Launch Tube (LT), using High-Temp SuperConduction (HTSC) EM launch coils if developed, will be built in a tall building, or, if not, at a steep angle up the west slope of an extinct volcano. The Reusable Launch Vehicle (RLV) exits the LT at such high velocity that the otherwise violent entry into the atmosphere is made possible by Special-Laser-Launch-Assist (SLLA), which ionizes and expands the atmosphere immediately ahead of the RLV. At first a brief period of chemical thrust is followed by a long period of ion thrust during ascent to orbit. As decades pass and greater ion thrust is developed, the period of chemical thrust shortens until it is no longer needed. The RLV{close_quote}s ion thrusters are powered by laser/maser, beamed first from the launch site, then from two large Solar-Power-Satellites (SPS) 180{degree} apart in Medium Earth Orbit (MEO) orbit. In orbit, the RLV is limited in where it can go only by the amount of propellant it carries or is stored in various orbits. The RLV can land at a launch site on Earth by using both chemical and ion thrust at first, and later by ion thrust alone as developments cause a far lighter RLV to carry no chemical engines/fuel/tanks. {copyright} {ital 1996 American Institute of Physics.}

  18. Photon self-induced spin-to-orbital conversion in a terbium-gallium-garnet crystal at high laser power

    SciTech Connect

    Mosca, S.; De Rosa, R.; Milano, L.; Canuel, B.; Genin, E.; Karimi, E.; Piccirillo, B.; Santamato, E.; Marrucci, L.

    2010-10-15

    In this paper, we present experimental evidence of a third-order nonlinear optical process, self-induced spin-to-orbital conversion (SISTOC) of the photon angular momentum. This effect is the physical mechanism at the origin of the depolarization of very intense laser beams propagating in isotropic materials. The SISTOC process, like self-focusing, is triggered by laser heating leading to a radial temperature gradient in the medium. In this work we tested the occurrence of SISTOC in a terbium-gallium-garnet rod for an impinging laser power of about 100 W. To study the SISTOC process we used different techniques: polarization analysis, interferometry, and tomography of the photon orbital angular momentum. Our results confirm, in particular, that the apparent depolarization of the beam is due to the occurrence of maximal entanglement between the spin and orbital angular momentum of the photons undergoing the SISTOC process. This explanation of the true nature of the depolarization mechanism could be of some help in finding novel methods to reduce or to compensate for this usually unwanted depolarization effect in all cases where very high laser power and good beam quality are required.

  19. Dynamics of quantized vortices in Bose-Einstein condensates with laser-induced spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi

    2015-12-01

    We study vortex dynamics in trapped two-component Bose-Einstein condensates with a laser-induced spin-orbit coupling using the numerical analysis of the Gross-Pitaevskii equation. The spin-orbit coupling leads to three distinct ground-state phases, which depend on some experimentally controllable parameters. When a vortex is put in one or both of the two-component condensates, the vortex dynamics exhibits very different behaviors in each phase, which can be observed in experiments. These dynamical behaviors can be understood by clarifying the stable vortex structure realized in each phase.

  20. The Development of a Sea Surface Height Climate Data Record from Multi-mission Altimeter Data

    NASA Astrophysics Data System (ADS)

    Beckley, B. D.; Ray, R. D.; Lemoine, F. G.; Zelensky, N. P.; Desai, S. D.; Brown, S.; Mitchum, G. T.; Nerem, R.; Yang, X.; Holmes, S. A.

    2011-12-01

    The determination of the rate of change of mean sea level (MSL) has undeniable societal significance. The science value of satellite altimeter observations has grown dramatically over time as improved models and technologies have increased the value of data acquired on both past and present missions enabling credible MSL estimates. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global and regional sea level rates at an accuracy of a few tenths of a mm/yr. GRACE data analysis suggests that the ice melt from Alaska alone contributes 0.3 mm/y to global sea level rise. The measurement of MSL change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical not only to satellite altimeter measurement accuracy across one mission, but also for the seamless transition between missions (Beckley, et. al, 2005). The analysis of altimeter data for TOPEX/Poseidon, Jason-1, and OSTM requires that the orbits for all three missions be in a consistent reference frame, and calculated with the best possible standards to minimize error and maximize the data return from the time series, particularly with respect to the demanding application of measuring sea level trends. In this presentation we describe the development and utility of the MEaSURE's TPJAOS V1.0 sea surface height Climate Data Record (http://podaac.jpl.nasa.gov/dataset/MERGED_TP_J1_OSTM

  1. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Kirchengast, G.; Proschek, V.

    2011-10-01

    LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss these influences, assessing effects from refraction, trace species absorption, aerosol extinction and Rayleigh scattering in detail, and addressing clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation as well. We show that the influence of refractive defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle with a close frequency spacing of LIO absorption and reference signals within 0.5%. The influences of Rayleigh scattering and terrestrial thermal radiation are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions, but this influence can be made negligible by a close time spacing (within 5 ms) of interleaved laser-pulse and background signals. Cloud extinction loss generally blocks SWIR signals, except very thin or sub-visible cirrus clouds, which can be addressed by retrieving a cloud layering profile and exploiting it in the trace species retrieval. Wind can have a small influence on the trace species absorption, which can be made negligible by using a simultaneously retrieved or a moderately accurate background wind speed profile. We conclude that

  2. Simulation and assimilation of satellite altimeter data at the oceanic mesoscale

    NASA Technical Reports Server (NTRS)

    Demay, P.; Robinson, A. R.

    1984-01-01

    An improved "objective analysis' technique is used along with an altimeter signal statistical model, an altimeter noise statistical model, an orbital model, and synoptic surface current maps in the POLYMODE-SDE area, to evaluate the performance of various observational strategies in catching the mesoscale variability at mid-latitudes. In particular, simulated repetitive nominal orbits of ERS-1, TOPEX, and SPOT/POSEIDON are examined. Results show the critical importance of existence of a subcycle, scanning in either direction. Moreover, long repeat cycles ( 20 days) and short cross-track distances ( 300 km) seem preferable, since they match mesoscale statistics. Another goal of the study is to prepare and discuss sea-surface height (SSH) assimilation in quasigeostrophic models. Restored SSH maps are shown to meet that purpose, if an efficient extrapolation method or deep in-situ data (floats) are used on the vertical to start and update the model.

  3. In-orbit verification of small optical transponder (SOTA): evaluation of satellite-to-ground laser communication links

    NASA Astrophysics Data System (ADS)

    Takenaka, Hideki; Koyama, Yoshisada; Akioka, Maki; Kolev, Dimitar; Iwakiri, Naohiko; Kunimori, Hiroo; Carrasco-Casado, Alberto; Munemasa, Yasushi; Okamoto, Eiji; Toyoshima, Morio

    2016-03-01

    Research and development of space optical communications is conducted in the National Institute of Information and Communications Technology (NICT). The NICT developed the Small Optical TrAnsponder (SOTA), which was embarked on a 50kg-class satellite and launched into a low earth orbit (LEO). The space-to-ground laser communication experiments have been conducted with the SOTA. Atmospheric turbulence causes signal fadings and becomes an issue to be solved in satellite-to-ground laser communication links. Therefore, as error-correcting functions, a Reed-Solomon (RS) code and a Low-Density Generator Matrix (LDGM) code are implemented in the communication system onboard the SOTA. In this paper, we present the in-orbit verification results of SOTA including the characteristic of the functions, the communication performance with the LDGM code via satellite-to-ground atmospheric paths, and the link budget analysis and the comparison between theoretical and experimental results.

  4. Orbital angular momentum of a laser beam in a turbulent medium: preservation of the average value and variance of fluctuations

    NASA Astrophysics Data System (ADS)

    Aksenov, V. P.; Kolosov, V. V.; Filimonov, G. A.; Pogutsa, C. E.

    2016-05-01

    The process of the propagation of vortex laser beams in a turbulent atmosphere with recording of the total orbital angular momentum (OAM) and determination of the beam’s statistical characteristics, such as the average over realizations of the turbulent medium and the variance of fluctuations, has been simulated numerically. The dependences of OAM fluctuations on the turbulence intensity and the initial topological charge of the beam have been obtained. Numerical results are compared with the earlier asymptotic estimates.

  5. Effects of electromagnetic wiggler and ion channel guiding on equilibrium orbits and waves propagation in a free electron laser

    NASA Astrophysics Data System (ADS)

    Amri, Hassan Ehsani; Mohsenpour, Taghi

    2016-02-01

    In this paper, an analysis of equilibrium orbits for electrons by a simultaneous solution of the equation of motion and the dispersion relation for electromagnetic wave wiggler in a free-electron laser (FEL) with ion-channel guiding has been presented. A fluid model has been used to investigate interactions among all possible waves. The dispersion relation has been derived for electrostatic and electromagnetic waves with all relativistic effects included. This dispersion relation has been solved numerically. For group I and II orbits, when the transverse velocity is small, only the FEL instability is found. In group I and II orbits with relatively large transverse velocity, new couplings between other modes are found.

  6. Verification and Improvement of ERS-1/2 Altimeter Geophysical Data Records for Global Change Studies

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2000-01-01

    This Final Technical Report summarizes the research work conducted under NASA's Physical Oceanography Program entitled, Verification And Improvement Of ERS-112 Altimeter Geophysical Data Recorders For Global Change Studies, for the time period from January 1, 2000 through June 30, 2000. This report also provides a summary of the investigation from July 1, 1997 - June 30, 2000. The primary objectives of this investigation include verification and improvement of the ERS-1 and ERS-2 radar altimeter geophysical data records for distribution of the data to the ESA-approved U.S. ERS-1/-2 investigators for global climate change studies. Specifically, the investigation is to verify and improve the ERS geophysical data record products by calibrating the instrument and assessing accuracy for the ERS-1/-2 orbital, geophysical, media, and instrument corrections. The purpose is to ensure that the consistency of constants, standards and algorithms with TOPEX/POSEIDON radar altimeter for global climate change studies such as the monitoring and interpretation of long-term sea level change. This investigation has provided the current best precise orbits, with the radial orbit accuracy for ERS-1 (Phases C-G) and ERS-2 estimated at the 3-5 cm rms level, an 30-fold improvement compared to the 1993 accuracy. We have finalized the production and verification of the value-added ERS-1 mission (Phases A, B, C, D, E, F, and G), in collaboration with JPL PODAAC and the University of Texas. Orbit and data verification and improvement of algorithms led to the best data product available to-date. ERS-2 altimeter data have been improved and we have been active on Envisat (2001 launch) GDR algorithm review and improvement. The data improvement of ERS-1 and ERS-2 led to improvement in the global mean sea surface, marine gravity anomaly and bathymetry models, and a study of Antarctica mass balance, which was published in Science in 1998.

  7. Determination of orbits and SLR stations’ coordinates on the basis of laser observations of the satellites Starlette and Stella

    NASA Astrophysics Data System (ADS)

    Lejba, P.; Schillak, S.; Wnuk, E.

    Orbits of two low satellites Starlette and Stella have been determined on the basis of the observational data collected in 2001 from the best 14 Satellite Laser Ranging stations. The coordinates of seven SLR stations have been determined in the ITRF2000 coordinates frame and compared with the results calculated for the same stations on the basis of Lageos data. All the calculations have been made assuming two models of the Earth gravity field EGM96 and EIGEN-GRACE02S. It has been shown that the best results of satellite orbits determination are obtained with the latest model of the Earth gravity field proposed on the basis of the GRACE mission results. With respect to the results obtained assuming the EGM96 model, the improvement reaches 10-50% both in the values of orbital RMS, and the station coordinates. All the calculations have been performed with the use of GEODYN-II program. The RMS of the orbits of Starlette and Stella varies from 1.02 to 1.90 cm. Such RMS values permit determination of the laser stations to a high accuracy. The results presented in this work show that the data obtained for low satellites such as Starlette or Stella can be successfully applied for determination of the SLR station coordinates.

  8. An analysis of a satellite multibeam altimeter

    NASA Technical Reports Server (NTRS)

    Bush, G. B.; Dobson, E. B.; Matyskiela, R.; Kilgus, C. C.; Walsh, E. J.

    1984-01-01

    Since the GEOS-3 and SEASAT-1 radar altimeters measured altitude over a narrow swath along the satellite subtrack, ocean current and mesoscale feature maps could only be generated after a large number of satellite revolutions. The present paper analyzes a new multibeam altimeter technique that has the potential to cover wide swaths. The multibeam altimeter uses two antenna elements, simple parabolic dishes with offset feeds, deployed cross-track on singly hinged booms into a fixed measurement geometry to generate an interferometer pattern over the desired swath extent. Range gating allows the isolation of a single interferometeric lobe, and the desired altitude measurements are extracted by using a modified altitude tracker design. Implementing this sensor on future altimetry missions would allow the timely generation of ocean current and mesoscale feature maps for the first time.

  9. Multiple-Zone Diffractive Optic Element for Laser Ranging Applications

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis A.

    2011-01-01

    A diffractive optic element (DOE) can be used as a beam splitter to generate multiple laser beams from a single input laser beam. This technology has been recently used in LRO s Lunar Orbiter Laser Altimeter (LOLA) instrument to generate five laser beams that measure the lunar topography from a 50-km nominal mapping orbit (see figure). An extension of this approach is to use a multiple-zone DOE to allow a laser altimeter instrument to operate over a wider range of distances. In particular, a multiple-zone DOE could be used for applications that require both mapping and landing on a planetary body. In this case, the laser altimeter operating range would need to extend from several hundred kilometers down to a few meters. The innovator was recently involved in an investigation how to modify the LOLA instrument for the OSIRIS asteroid mapping and sample return mission. One approach is to replace the DOE in the LOLA laser beam expander assembly with a multiple-zone DOE that would allow for the simultaneous illumination of the asteroid with mapping and landing laser beams. The proposed OSIRIS multiple-zone DOE would generate the same LOLA five-beam output pattern for high-altitude topographic mapping, but would simultaneously generate a wide divergence angle beam using a small portion of the total laser energy for the approach and landing portion of the mission. Only a few percent of the total laser energy is required for approach and landing operations as the return signal increases as the inverse square of the ranging height. A wide divergence beam could be implemented by making the center of the DOE a diffractive or refractive negative lens. The beam energy and beam divergence characteristics of a multiple-zone DOE could be easily tailored to meet the requirements of other missions that require laser ranging data. Current single-zone DOE lithographic manufacturing techniques could also be used to fabricate a multiple-zone DOE by masking the different DOE zones during

  10. Time-transfer experiments between satellite laser ranging ground stations via one-way laser ranging to the Lunar Reconnaissance Orbiter

    NASA Astrophysics Data System (ADS)

    Mao, D.; Sun, X.; Skillman, D. R.; Mcgarry, J.; Hoffman, E.; Neumann, G. A.; Torrence, M. H.; Smith, D. E.; Zuber, M. T.

    2014-12-01

    Satellite laser ranging (SLR) has long been used to measure the distance from a ground station to an Earth-orbiting satellite in order to determine the spacecraft position in orbit, and to conduct other geodetic measurements such as plate motions. This technique can also be used to transfer time between the station and satellite, and between remote SLR sites, as recently demonstrated by the Time Transfer by Laser Link (T2L2) project by the Centre National d'Etudes Spatiaes (CNES) and Observatorire de la Cote d'Azur (OCA) as well as the Laser Time Transfer (LTT) project by the Shanghai Astronomical Observatory, where two-way and one-way measurements were obtained at the same time. Here we report a new technique to transfer time between distant SLR stations via simultaneous one-way laser ranging (LR) to the Lunar Reconnaissance Orbiter (LRO) spacecraft at lunar distance. The major objectives are to establish accurate ground station times and to improve LRO orbit determination via these measurements. The results of these simultaneous LR measurements are used to compare the SLR station times or transfer time from one to the other using times-of-flight estimated from conventional radio frequency tracking of LRO. The accuracy of the time transfer depends only on the difference of the times-of-flight from each ground station to the spacecraft, and is expected to be at sub-nano second level. The technique has been validated by both a ground-based experiment and an experiment that utilized LRO. Here we present the results to show that sub-nanosecond precision and accuracy are achievable. Both experiments were carried out between the primary LRO-LR station, The Next Generation Satellite Laser Ranging (NGSLR) station, and its nearby station, Mobile Laser System (MOBLAS-7), both at Greenbelt, Maryland. The laser transmit time from both stations were recorded by the same event timer referenced to a Hydrogen maser. The results have been compared to data from a common All

  11. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; Milikh, G. M.; Namkung, M.; Nandikotkur, G.; Neumann, G.; Smith, D.; Sagdeev, R.; Sanin, A. G.; Starr, R. D.; Trombka, J. I.

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  12. Remote sensing of Gulf Stream using GEOS-3 radar altimeter

    NASA Technical Reports Server (NTRS)

    Leitao, C. D.; Huang, N. E.; Parra, C. G.

    1978-01-01

    Radar altimeter measurements from the GEOS-3 satellite to the ocean surface indicated the presence of expected geostrophic height differences across the the Gulf Stream. Dynamic sea surface heights were found by both editing and filtering the raw sea surface heights and then referencing these processed data to a 5 minute x 5 minute geoid. Any trend between the processed data and the geoid was removed by subtracting out a linear fit to the residuals in the open ocean. The mean current velocity of 107 + or - 29 cm/sec calculated from the dynamic heights for all orbits corresponded with velocities obtained from hydrographic methods. Also, dynamic topographic maps were produced for August, September, and October 1975. Results pointed out limitations in the accuracy of the geoid, height anomaly deteriorations due to filtering, and lack of dense time and space distribution of measurements.

  13. Spaceflight laser development for future remote sensing applications

    NASA Astrophysics Data System (ADS)

    Yu, Anthony W.; Krainak, Michael A.; Stephen, Mark A.; Abshire, James B.; Harding, David J.; Riris, Haris; Li, Steven X.; Chen, Jeffrey R.; Allan, Graham R.; Numata, Kenji; Wu, Stewart T.; Camp, Jordan B.

    2011-11-01

    At NASA's Goddard Space Flight Center we are developing next generation laser transmitters for future spaceflight, remote instruments including a micropulse altimeter for ice-sheet and sea ice monitoring, laser spectroscopic measurements of atmospheric CO2 and an imaging lidar for high resolution mapping of the Earth's surface. These laser transmitters also have applicability to potential missions to other solar-system bodies for trace gas measurements and surface mapping. In this paper we review NASA spaceflight laser transmitters used to acquire measurements in orbit around Mars, Mercury, Earth and the Moon. We then present an overview of our current spaceflight laser programs and describe their intended uses for remote sensing science and exploration applications.

  14. An atlas of 1975 GEOS-3 radar altimeter data for hurricane/tropical disturbance studies, volume 1

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Chan, B.; Munson, J. R.

    1977-01-01

    Geographic locations of 1975 hurricanes and other tropical disturbances were correlated with the closest approaching orbits of the GEOS-3 satellite and its radar altimeter. The disturbance locations and altimeter data were gathered for a seven-month period beginning with GEOS-3 launch in mid-April 1975. Areas of coverage were the Atlantic Ocean, the Carribean, the Gulf of Mexico, the west coast of the continental United States, and the central and western Pacific Ocean. Volume 1 contains disturbance coverage data for the Atlantic Ocean, Gulf of Mexico, and Eastern Pacific Ocean. Central and Western Pacific coverage is documented in Volume II.

  15. Laser-induced radial birefringence and spin-to-orbital optical angular momentum conversion in silver-doped glasses

    SciTech Connect

    Amjad, Jafar Mostafavi; Khalesifard, Hamid Reza; Slussarenko, Sergei; Karimi, Ebrahim; Santamato, Enrico; Marrucci, Lorenzo

    2011-07-04

    Samples of Ag{sup +}/Na{sup +} ion-exchanged glass that have been subject to intense laser irradiation may develop novel optical properties, as a consequence of the formation of patterns of silver nanoparticles and other structures. Here, we report the observation of a laser-induced permanent transverse birefringence, with the optical axis forming a radial pattern, as revealed by the spin-to-orbital angular momentum conversion occurring in a probe light beam. The birefringence pattern can be modeled well as resulting from thermally-induced stresses arising in the silver-doped glass during laser exposure, although the actual mechanism leading to the permanent anisotropy is probably more complex.

  16. Improved strong-field approximation and quantum-orbit theory: Application to ionization by a bicircular laser field

    NASA Astrophysics Data System (ADS)

    Milošević, D. B.; Becker, W.

    2016-06-01

    A theory of above-threshold ionization of atoms by a strong laser field is formulated. Two versions of the strong-field approximation (SFA) are considered, the direct SFA and the improved SFA, which do not and do, respectively, take into account rescattering of the freed electron off the parent ion. The atomic bound state is included in two different ways: as an expansion in terms of Slater-type orbitals or as an asymptotic wave function. Even though we are using the single-active-electron approximation, multielectron effects are taken into account in two ways: by a proper choice of the ground state and by an adequate definition of the ionization rate. For the case of the asymptotic bound-state wave functions, using the saddle-point method, a simple expression for the T -matrix element is derived for both the direct and the improved SFA. The theory is applied to ionization by a bicircular field, which consists of two coplanar counterrotating circularly polarized components with frequencies that are integer multiples of a fundamental frequency ω . Special emphasis is on the ω -2 ω case. In this case, the threefold rotational symmetry of the field carries over to the velocity map of the liberated electrons, for both the direct and the improved SFA. The results obtained are analyzed in detail using the quantum-orbit formalism, which gives good physical insight into the above-threshold ionization process. For this purpose, a specific classification of the saddle-point solutions is introduced for both the backward-scattered and the forward-scattered electrons. The high-energy backward-scattering quantum orbits are similar to those discovered for high-order harmonic generation. The short forward-scattering quantum orbits for a bicircular field are similar to those of a linearly polarized field. The conclusion is that these orbits are universal, i.e., they do not depend much on the shape of the laser field.

  17. Atmospheric influences on infrared-laser signals used for occultation measurements between Low Earth Orbit satellites

    NASA Astrophysics Data System (ADS)

    Schweitzer, S.; Kirchengast, G.; Proschek, V.

    2011-05-01

    LEO-LEO infrared-laser occultation (LIO) is a new occultation technique between Low Earth Orbit (LEO) satellites, which applies signals in the short wave infrared spectral range (SWIR) within 2 μm to 2.5 μm. It is part of the LEO-LEO microwave and infrared-laser occultation (LMIO) method, recently introduced by Kirchengast and Schweitzer (2011), that enables to retrieve thermodynamic profiles (pressure, temperature, humidity) and accurate altitude levels from microwave signals and profiles of greenhouse gases and further variables such as line-of-sight wind speed from simultaneously measured LIO signals. For enabling trace species retrieval based on differential transmission, the LIO signals are spectrally located as pairs, one in the centre of a suitable absorption line of a target species (absorption signal) and one close by but outside of any absorption lines (reference signal). Due to the novelty of the LMIO method, detailed knowledge of atmospheric influences on LIO signals and of their suitability for accurate trace species retrieval did not yet exist. Here we discuss the atmospheric influences on the transmission and differential transmission of LIO signals. Refraction effects, trace species absorption (by target species, and cross-sensitivity to foreign species), aerosol extinction and Rayleigh scattering are studied in detail. The influences of clouds, turbulence, wind, scattered solar radiation and terrestrial thermal radiation are discussed as well. We show that the influence of defocusing, foreign species absorption, aerosols and turbulence is observable, but can be rendered small to negligible by use of the differential transmission principle and by a design with close frequency spacing of absorption and reference signals within 0.5 %. The influences of Rayleigh scattering and thermal radiation on the received signal intensities are found negligible. Cloud-scattered solar radiation can be observable under bright-day conditions but this influence can

  18. SEASAT radar altimeter measurements over the Florida Everglades

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.; Norcross, G. A.

    1983-01-01

    The SEASAT satellite radar altimeter traversed the Florida Everglades on August 14, 1978. Analysis of the measurements disclosed that the altimeter pulses from 800 km above the Earth's surface penetrated the vegetation canopies to provide land and water surface elevations with accuracies better than + or - 50 cm. The altimeter waveforms required retracking over the specular Everglades surface. The altimeter-derived land elevations were correlated with large-scale topographic maps while the altimeter-derived water elevations were correlated with water gauge records of the U.S. Geological Survey. Examination of the altimeter waveforms also revealed reflections from the Everglades' surface occurring earlier than the surface reflections. These earlier surface reflections are interpreted to be from vegetation canopies, and may provide a measure of vegetation canopy heights. Future satellite radar altimeters could provide supplemental vertical control in relatively inaccessible swamp areas, could monitor water levels, and perhaps could monitor vegetation growth.

  19. Determination of the orbit of the CHAMP satellite based on the laser observations

    NASA Astrophysics Data System (ADS)

    Lejba, P.

    This work presents the results of orbit determination of the CHAMP satellite from observations of 14 the best SLR stations for year 2002 All computations were based on the Earth combined gravity field model EIGEN-CG01C Reigber et al 2005 In computations was taken the orbital programme GEODYN-II created and accesibled by NASA The got RMS value of the orbit of the CHAMP satellite is better than 30 cm The obtained results show that the orbit of the CHAMP satellite is highly perturbed by the Earth s gravity field and by the atmosphere of the Earth

  20. Feasibility Study for a Near Term Demonstration of Laser-Sail Propulsion from the Ground to Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E., IV; Johnson, Les; Thomas, Herbert D.

    2016-01-01

    This paper adds to the body of research related to the concept of propellant-less in-space propulsion utilizing an external high energy laser (HEL) to provide momentum to an ultra-lightweight (gossamer) spacecraft. It has been suggested that the capabilities of Space Situational Awareness assets and the advanced analytical tools available for fine resolution orbit determination make it possible to investigate the practicalities of a ground to Low Earth Orbit (LEO) demonstration at delivered power levels that only illuminate a spacecraft without causing damage to it. The degree to which this can be expected to produce a measurable change in the orbit of a low ballistic coefficient spacecraft is investigated. Key system characteristics and estimated performance are derived for a near term mission opportunity involving the LightSail 2 spacecraft and laser power levels modest in comparison to those proposed previously by Forward, Landis, or Marx. [1,2,3] A more detailed investigation of accessing LightSail 2 from Santa Rosa Island on Eglin Air Force Base on the United States coast of the Gulf of Mexico is provided to show expected results in a specific case.

  1. Interplanetary space weather effects on Lunar Reconnaissance Orbiter avalanche photodiode performance

    NASA Astrophysics Data System (ADS)

    Clements, E. B.; Carlton, A. K.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Sun, X.; Cahoy, K.

    2016-05-01

    Space weather is a major concern for radiation-sensitive space systems, particularly for interplanetary missions, which operate outside of the protection of Earth's magnetic field. We examine and quantify the effects of space weather on silicon avalanche photodiodes (SiAPDs), which are used for interplanetary laser altimeters and communications systems and can be sensitive to even low levels of radiation (less than 50 cGy). While ground-based radiation testing has been performed on avalanche photodiode (APDs) for space missions, in-space measurements of SiAPD response to interplanetary space weather have not been previously reported. We compare noise data from the Lunar Reconnaissance Orbiter (LRO) Lunar Orbiter Laser Altimeter (LOLA) SiAPDs with radiation measurements from the onboard Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. We did not find any evidence to support radiation as the cause of changes in detector threshold voltage during radiation storms, both for transient detector noise and long-term average detector noise, suggesting that the approximately 1.3 cm thick shielding (a combination of titanium and beryllium) of the LOLA detectors is sufficient for SiAPDs on interplanetary missions with radiation environments similar to what the LRO experienced (559 cGy of radiation over 4 years).

  2. Orbit determination using dual crossing arc altimetry

    NASA Technical Reports Server (NTRS)

    Born, G. H.; Tapley, B. D.; Santee, M. L.

    1986-01-01

    Accurate knowledge of the position of an altimetric satellite is required for the altimeter range data to be effective in measuring ocean topography. This study addresses the use of high-precision altimeter data from NASA's TOPEX Mission in reducing the radial component of the orbit of the U.S. Navy's N-ROSS satellite. Simulated altimeter crossing arc residuals between the TOPEX and N-ROSS orbits are minimized using both geometric and dynamic techniques in an effort to reduce the N-ROSS radial error to a level comparable to that of TOPEX. Tracking of N-ROSS by the Navy's NAVSPASUR system is simulated, and crossover residuals are created from the TOPEX and N-ROSS orbits. A simple geometric fit is shown to reduce the radial component of the NAVSPASUR N-ROSS orbit error from 350 m RMS to below 10 m RMS. In comparison, the dynamic approach of estimating the initial conditions of the N-ROSS orbit using a twentieth degree and order gravity field and a combined data set of tracking and altimeter crossover data yields a 6 m RMS residual error. Sub-meter accuracy can be attained by geometrically fitting these residuals to remove long wavelength orbit error.

  3. Tests and comparisons of satellite-derived geoids with Skylab altimeter data

    NASA Technical Reports Server (NTRS)

    Marsh, J. G.; Douglas, B. C.; Vincent, S.; Walls, D. M.

    1976-01-01

    During the Skylab 4 mission, the S-193 radar altimeter was operated nearly continuously for a revolution around the world on Jan. 31, 1974. This direct measurement to the sea surface has provided an independent basis for the evaluation of the precision of global geoids computed from satellite-derived earth gravity models. This paper presents comparisons between the Skylab data and several recent gravity models published by Goddard Space Flight Center, the Smithsonian Astrophysical Observatory, and the National Oceanic and Atmospheric Administration. The differences between the altimeter geoid and the satellite geoids were as large as 20 m, rms values ranging from 8 to 10 m. These differences also indicated a systematic long-wavelength variation (about 100 deg) not related to error in the Skylab orbits. Truncation of the models to degree and order 8 did not eliminate the long-wavelength variation, but in every case the rms agreement between the satellite geoids and the altimeter geoid was slightly improved. Orbits computed with the truncated models were found to be inferior to those computed with the complete models.

  4. An atlas of 1977 and 1978 GEOS-3 radar altimeter data for tropical cyclone studies

    NASA Technical Reports Server (NTRS)

    Stanley, H. R.; Taylor, R. L.

    1980-01-01

    All of the GEOS 3 satellite altimeter schedule information were collected with all of the available 1977 and 1978 tropical cyclone positional information. The time period covers from March 23, 1977 through Nov. 23, 1978. The geographical region includes all ocean area north of the equator divided into the following operational areas: the Atlantic area (which includes the Caribbean and Gulf of Mexico); the eastern Pacific area; the central and western Pacific area; and the Indian Ocean area. All available source material concerning tropical cyclones was collected. The date/time/location information was extracted for each disturbance. This information was compared with the GEOS 3 altimeter ON/OFF history information to determine the existence of any altimeter data close enough in both time and location to make the data potentially useful for further study (the very liberal criteria used was time less than 24 hours and location within 25 degrees). Geographic plots (cyclone versus GEOS 3 orbit track) were produced for all of the events found showing the approximate location of the cyclone and the GEOS 3 orbit traces for the full day.

  5. TOPEX orbit determination using GPS signals plus a sidetone ranging system

    NASA Technical Reports Server (NTRS)

    Bender, P. L.; Larden, D. R.

    1982-01-01

    The GPS orbit determination was studied to see how well the radial coordinate for altimeter satellites such as TOPEX could be found by on board measurements of GPS signals, including the reconstructed carrier phase. The inclusion on altimeter satellites of an additional high accuracy tracking system is recommended. It is suggested that a sidetone ranging system is used in conjunction with TRANET 2 beacons.

  6. Influence of atmospheric turbulence on the transmission of orbital angular momentum for Whittaker-Gaussian laser beams.

    PubMed

    Zhang, Yixin; Cheng, Mingjian; Zhu, Yun; Gao, Jie; Dan, Weiyi; Hu, Zhengda; Zhao, Fengsheng

    2014-09-01

    We analyze the effects of turbulence on the detection probability spectrum and the mode weight of the orbital angular momentum (OAM) for Whittaker-Gaussian (WG) laser beams in weak non-Kolmogorov turbulence channels. Our numerical results show that WG beam is a better light source for mitigating the effects of turbulence with several adjustable parameters. The real parameters of WG beams γ and W0, which have significant effects on the mode weight, have no influence on the detection probability spectrum. Larger signal OAM quantum number, shorter wavelength, smaller beamwidth and coherence length will lead to the lower detection probability of the signal OAM mode.

  7. Orbital-angular-momentum crosstalk and temporal fading in a terrestrial laser link using single-mode fiber coupling.

    PubMed

    Funes, Gustavo; Vial, Matías; Anguita, Jaime A

    2015-09-01

    Using a mobile experimental testbed, we perform a series of measurements on the detection of laser beams carrying orbital angular momentum (OAM) to evaluate turbulent channel distortions and crosstalk among receive states in an 84-m roofed optical link. We find that a receiver assembly using single-mode fiber coupling serves as a good signal selector in terms of crosstalk rejection. From the recorded temporal channel waveforms, we estimate average crosstalk profiles and propose an appropriate probability density function for the fluctuations of the detected OAM signal. Further measurements of OAM crosstalk are described for a horizontal 400-m link established over our campus.

  8. Comparison of ice-sheet satellite altimeter retracking algorithm

    SciTech Connect

    Davis, C.H.

    1996-01-01

    The NASA and ESA retracking algorithms are compared with an algorithm based upon a combined surface and volume (S/V) scattering model. First, the S/V, NASA, and ESA algorithms were used to retrack over 1.3 million altimeter return waveforms from the Greenland and Antarctic ice sheets. The surface elevations from the S/V algorithm were compared with the elevations produced by the NASA and ESA algorithms to determine the relative accuracy of these algorithms when subsurface volume scattering occurs. The results show that the ESA{sub 25%} algorithm produced slightly higher surface elevations than the S/V algorithm. The NASA retracking algorithm produced lower surface elevations than the S/V retracking algorithm, with average differences ranging from {minus}0.3 to {minus}0.9 m. The lower NASA elevations can only account for a portion of previously reported differences between altimeter and geoceiver surface elevations, suggesting that the remainder is probably due to orbital differences. Next, by analyzing several thousand satellite crossover points from the Greenland and Antarctic ice sheets, the author estimated the repeatability of the surface elevations derived from the different retracking algorithms. The elevations derived from the ESA{sub 25%} and S/V algorithm had the smallest standard deviations for the crossover differences for a time period where no significant change in surface elevation should occur. The NASA standard deviations were approximately 0.2 m larger than those from the ESA{sub 25%} and S/V algorithm, which represents an average increase in error of approximately 0.5 m in the datasets.

  9. Spaceborne Laser Altimetry On Icesat

    NASA Astrophysics Data System (ADS)

    Schutz, B.

    The Geoscience Laser Altimeter System (GLAS) is planned for launch on ICESat in 2002, into a 600 km altitude, near polar orbit from Vandenberg, California. The sys- tem is designed to operate up to five years in orbit. GLAS is under development by NASA Goddard and it will be delivered to the spacecraft contractor, Ball Aerospace, for mating and testing with the spacecraft bus. The GLAS instrument will transmit both near infrared (1064 nm) and green (532 nm) pulses using a diode-pumped, Q- switched Nd:YAG laser. The 1064 wavelength will be used for surface altimetry, in- cluding dense clouds, and the 532 wavelength will be used for atmospheric backscat- ter measurements. The altitude measurement will produce elevation time series of the Greenland and Antarctic ice sheets, which will enable determination of present-day elevation change and mass balance. Other applications of the altimetry channel in- clude precise measurements of land topography and vegetation canopy heights, sea ice roughness and thickness, and ocean surface elevations. The atmospheric channel will provide information on the vertical distribution of clouds and aerosols. The laser pulse energy at 1064 nm is about 75 mJ with a width of about 5 ns and the pulse has a divergence of about 0.11 mrad, which illuminates a spot on the surface with a 66 m diameter. Three lasers are available (two are required for lifetime requirements and the third provides redundancy). The pulse echo is captured with a 1 m telescope mounted on the rigid GLAS optical bench. A Si analog detector receives the return pulse and an A/D converter digitizes the pulse with a 1 GHz sampling rate. Two detectors and two digitizers are available for redundancy. Unlike wide pulse radar altimeters, accurate knowledge of the laser beam direction is required for the laser altimeter. The pointing will be determined with the assistance of an innovative system of CCD cameras that will measure the direction of each laser pulse with respect to

  10. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    NASA Astrophysics Data System (ADS)

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  11. Altimetry, Orbits and Tides

    NASA Technical Reports Server (NTRS)

    Colombo, O. L.

    1984-01-01

    The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.

  12. Large icebergs characteristics from altimeter waveforms analysis

    NASA Astrophysics Data System (ADS)

    Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F.

    2015-03-01

    Large uncertainties exist on the volume of ice transported by the Southern Ocean large icebergs, a key parameter for climate studies, because of the paucity of information, especially on iceberg thickness. Using icebergs tracks from the National Ice Center (NIC) and Brigham Young University (BYU) databases to select altimeter data over icebergs and a method of analysis of altimeter waveforms, a database of 5366 icebergs freeboard elevation, length, and backscatter covering the 2002-2012 period has been created. The database is analyzed in terms of distributions of freeboard, length, and backscatter showing differences as a function of the iceberg's quadrant of origin. The database allows to analyze the temporal evolution of icebergs and to estimate a melt rate of 35-39 m·yr-1 (neglecting the firn compaction). The total daily volume of ice, estimated by combining the NIC and altimeter sizes and the altimeter freeboards, regularly decreases from 2.2 104km3 in 2002 to 0.9 104km3 in 2012. During this decade, the total loss of ice (˜1800 km3·yr-1) is twice as large as than the input (˜960 km3·yr-1) showing that the system is out of equilibrium after a very large input of ice between 1997 and 2002. Breaking into small icebergs represents 80% (˜1500 km3·yr-1) of the total ice loss while basal melting is only 18% (˜320 km3·yr-1). Small icebergs are thus the major vector of freshwater input in the Southern Ocean.

  13. Accuracy Assessment of Altimeter Derived Geostrophic Velocities

    NASA Astrophysics Data System (ADS)

    Leben, R. R.; Powell, B. S.; Born, G. H.; Guinasso, N. L.

    2002-12-01

    Along track sea surface height anomaly gradients are proportional to cross track geostrophic velocity anomalies allowing satellite altimetry to provide much needed satellite observations of changes in the geostrophic component of surface ocean currents. Often, surface height gradients are computed from altimeter data archives that have been corrected to give the most accurate absolute sea level, a practice that may unnecessarily increase the error in the cross track velocity anomalies and thereby require excessive smoothing to mitigate noise. Because differentiation along track acts as a high-pass filter, many of the path length corrections applied to altimeter data for absolute height accuracy are unnecessary for the corresponding gradient calculations. We report on a study to investigate appropriate altimetric corrections and processing techniques for improving geostrophic velocity accuracy. Accuracy is assessed by comparing cross track current measurements from two moorings placed along the descending TOPEX/POSEIDON ground track number 52 in the Gulf of Mexico to the corresponding altimeter velocity estimates. The buoys are deployed and maintained by the Texas Automated Buoy System (TABS) under Interagency Contracts with Texas A&M University. The buoys telemeter observations in near real-time via satellite to the TABS station located at the Geochemical and Environmental Research Group (GERG) at Texas A&M. Buoy M is located in shelf waters of 57 m depth with a second, Buoy N, 38 km away on the shelf break at 105 m depth. Buoy N has been operational since the beginning of 2002 and has a current meter at 2m depth providing in situ measurements of surface velocities coincident with Jason and TOPEX/POSEIDON altimeter over flights. This allows one of the first detailed comparisons of shallow water near surface current meter time series to coincident altimetry.

  14. 25 Years of Altimeter Developments at ALCATEL Alenia Space

    NASA Astrophysics Data System (ADS)

    Phalippou, L.; Caubet, E.; Rey, L.; Calvary, P.; Murat, D.; Richard, J.; Angino, G.; Thouvenot, E.; Carayon, G.; Steunou, N.; Mavrocordatos, C.; Escudier, P.

    2006-07-01

    T he first preliminary stud ies on the definition of radar altimeter for Sea Surface Height (SSH) measurements started in the 80 ' s in Alcatel Alenia Space under CNES and ESA contracts. A t that time CNES contemp lated the possib il ity of flying an ocean topography mission on its own . It was eventually decided to fly a NASA /CNES jo in t mission , Topex/Po seidon ( T/ P) , embarking a US radar altimeter and a French experimental altimeter Poseidon . In parallel ESA decided to fly an altimeter on the European Remo te Sensing Satelli te (ERS-1) and in itiated the preliminary stud ies. Thu s A lcatel A lenia Space is invo lved in altimeters design and manufacturing for more than 25 years. A lcatel A lenia Space develops state of the art altimeters for ocean, ice and land application s wh ich are presented in th is paper.

  15. Five years of LRO laser altimetry at the Moon

    NASA Astrophysics Data System (ADS)

    Smith, David E.; Zuber, Maria T.

    After five years of near-continuous operation at the Moon, the Lunar Orbiter Laser Altimeter (LOLA) on LRO continues to collect altimetry, surface roughness, slope and normal reflectance data. LOLA has acquired over 6 billion altimeter measurements, all geodetically controlled to the center-of-mass of the Moon with a radial precision of around 10 cm and an accuracy of about 1 meter. The position of the measurements on the lunar surface is primarily limited by the knowledge of the position of the spacecraft in orbit and in the last few years the LRO orbit accuracy has improved significantly as a result of the accurate gravity model of the Moon developed by the GRAIL Discovery mission. Our present estimate of positional accuracy is less than 10 m rms but is only achievable with a GRAIL gravity model to at least degree and order 600 because of the perturbing gravitational effect of the Moon’s surface features. Significant improvements in the global shape and topography have assisted the Lunar Reconnaissance Orbiter Camera (LROC) stereo mapping program, and the identification of potential lunar landing sites for ESA and Russia, particularly in the high-latitude polar regions where 5- and 10-meter average horizontal resolution has been obtained. LOLA’s detailed mapping of these regions has improved the delineation of permanently-shadowed areas and assisted in the understanding of the LEND neutron data, and its relationship to surface slopes. Recently a global, calibrated LOLA normal albedo dataset at 1064 nm has been developed.

  16. Initial test results using the GEOS-3 engineering model altimeter

    NASA Technical Reports Server (NTRS)

    Hayne, G. S.; Clary, J. B.

    1977-01-01

    Data from a series of experimental tests run on the engineering model of the GEOS 3 radar altimeter using the Test and Measurement System (TAMS) designed for preflight testing of the radar altimeter are presented. These tests were conducted as a means of preparing and checking out a detailed test procedure to be used in running similar tests on the GEOS 3 protoflight model altimeter systems. The test procedures and results are also included.

  17. Preparations for Lunar Reconnaissance Orbiter gravity and altimetry missions

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Lemoine, F. G.; Neumann, G. A.; Smith, D. E.; Rowlands, D. D.; Zuber, M. T.

    2008-12-01

    The launch of the Lunar Reconnaissance Orbiter is expected in early 2009. We present results of the preparations undertaken at the NASA Goddard Space Flight Center for the Lunar Orbiter Laser Altimeter (LOLA) instrument and the Radio Science experiment. A new lunar reference frame, vital to current exploration efforts for a return to the Moon, will be developed from the combined data sets collected by both experiments. In addition to collecting topographic data, LOLA will assist the Precision Orbit Determination of the LRO spacecraft. The 50-m total positioning requirement is very challenging due to the low altitude (50km on average) and the lack of radio tracking over most of the lunar far side. While commercial S-band tracking data will be the principal measurements used for orbit reconstruction, the unique five-beam altimeter enables the use of the altimetric cross-over technique with unprecedented accuracy. Previous simulations showed that the more numerous (by a factor of 25) crossings could greatly help in reducing the uncertainties in the recovered orbit. We show here that cross-track information contained in the acquired topographic swaths (compared to multiple two-dimensional profiles) can constrain orbits to a few meters horizontally and better than 50cm vertically. Swath cross-overs will be most valuable in mid-latitudes, where cross-overs are sparse and tracks intersect at shallow angles. A spacecraft physical model, for use in the GEODYN II orbit determination program, includes inter-plate self- shadowing in the calculation of the spacecraft cross-sectional area for solar radiation pressure. Simulations indicate that solar radiation effects on the orbit can be on the order of 10-20m. Because the thermal radiation forces are larger and more variable than on Mars, the current model of the thermal flux map was updated, with effects on the order of 1-5m. The benefit of using the self-shadowing model for the albedo and thermal forces is currently being

  18. TOPEX NASA Altimeter Operations Handbook, September 1992. Volume 6

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III; Hayne, George S.; Purdy, Craig L.; Bull, James B.; Brooks, Ronald L.

    2003-01-01

    This operations handbook identifies the commands for the NASA radar altimeter for the TOPEX/Poseidon spacecraft, defines the functions of these commands, and provides supplemental reference material for use by the altimeter operations personnel. The main emphasis of this document is placed on command types, command definitions, command sequences, and operational constraints. Additional document sections describe uploadable altimeter operating parameters, the telemetry stream data contents (for both the science and the engineering data), the Missions Operations System displays, and the spacecraft and altimeter health monitors.

  19. Effect of induced spin-orbit coupling for atoms via laser fields.

    PubMed

    Liu, Xiong-Jun; Borunda, Mario F; Liu, Xin; Sinova, Jairo

    2009-01-30

    We propose an experimental scheme to observe spin-orbit coupling effects of a two-dimensional Fermi atomic gas cloud by coupling its internal electronic states (pseudospins) to radiation in a Lambda configuration. The induced spin-orbit coupling can be of the Dresselhaus and Rashba type with a Zeeman term. We show that the optically induced spin-orbit coupling can lead to a spin-dependent effective mass under appropriate conditions with one of them able to be tuned between positive and negative effective masses. As a direct observable we show that in the expansion dynamics of the atomic cloud the initial atomic cloud splits into two clouds for the positive effective mass case regime, and into four clouds for the negative effective mass regime.

  20. Compact, passively Q-switched Nd:YAG laser for the MESSENGER mission to Mercury.

    PubMed

    Krebs, Danny J; Novo-Gradac, Anne-Marie; Li, Steven X; Lindauer, Steven J; Afzal, Robert S; Yu, Anthony W

    2005-03-20

    A compact, passively Q-switched Nd:YAG laser has been developed for the Mercury Laser Altimeter, an instrument on the Mercury Surface, Space Environment, Geochemistry, and Ranging mission to the planet Mercury. The laser achieves 5.4% efficiency with a near-diffraction-limited beam. It passed all space-flight environmental tests at subsystem, instrument, and satellite integration testing and successfully completes a postlaunch aliveness check en route to Mercury. The laser design draws on a heritage of previous laser altimetry missions, specifically the Ice Cloud and Elevation Satellite and the Mars Global Surveyor, but incorporates thermal management features unique to the requirements of an orbit of the planet Mercury. PMID:15813276

  1. Effects of spin-orbit coupling on laser cooling of BeI and MgI

    SciTech Connect

    Wan, Mingjie Huang, Duohui; Shao, Juxiang; Li, Yuanyuan; Yu, You; Li, Song

    2015-10-28

    We present the ab initio study of spin-orbit coupling effects on laser cooling of BeI and MgI molecules. Potential energy curves for the X{sup 2}Σ{sup +}{sub 1/2}, A{sup 2}Π{sub 1/2,3/2}, and 2{sup 2}Π{sub 3/2,1/2} states are calculated using multi-reference configuration interaction method plus Davidson corrections. Spectroscopic parameters of BeI and MgI are in excellent agreement with available experimental and theoretical values. The A{sup 2}Π{sub 3/2} state of MgI is a repulsive state. It is an unsuitable scheme for the A{sup 2}Π{sub 3/2}(υ′)← X{sup 2}Σ{sup +}{sub 1/2} (υ″) transition for laser cooling of MgI. Highly diagonally distributed Franck-Condon factors f{sub 00} for the A{sup 2}Π{sub 1/2,3/2} (υ′ = 0) ← X{sup 2}Σ{sup +}{sub 1/2} (υ″ = 0) transitions and suitable radiative lifetimes τ for the A{sup 2}Π{sub 1/2,3/2} (υ′ = 0) of BeI and MgI are obtained. Three laser wavelength drives are required for the A{sup 2}Π{sub 1/2,3/2}(υ′)←X{sup 2}Σ{sup +}{sub 1/2} (υ″) transitions of BeI and MgI. The proposed cooling wavelengths of BeI and MgI are both in the violet region. The results imply the feasibility of laser cooling of BeI and MgI, and that laser cooling of BeI is more possible.

  2. Time-dependent renormalized-natural-orbital theory applied to laser-driven H2 +

    NASA Astrophysics Data System (ADS)

    Hanusch, A.; Rapp, J.; Brics, M.; Bauer, D.

    2016-04-01

    Recently introduced time-dependent renormalized-natural-orbital theory (TDRNOT) is extended towards a multicomponent approach in order to describe H2 + beyond the Born-Oppenheimer approximation. Two kinds of natural orbitals, describing the electronic and the nuclear degrees of freedom are introduced, and the exact equations of motion for them are derived. The theory is benchmarked by comparing numerically exact results of the time-dependent Schrödinger equation for an H2 + model system with the corresponding TDRNOT predictions. Ground-state properties, linear-response spectra, fragmentation, and high-order harmonic generation are investigated.

  3. Space-based application of the CAN laser to LIDAR and orbital debris remediation

    NASA Astrophysics Data System (ADS)

    Quinn, M. N.; Jukna, V.; Ebisuzaki, T.; Dicaire, I.; Soulard, R.; Summerer, L.; Couairon, A.; Mourou, G.

    2015-10-01

    Development of pulsed lasers for space-based science missions entail many additional challenges compared to terrestrial experiments. For systems requiring short pulses ≪1 ns with energies >100 mJ and fast repetition rates >10 kHz there are currently few if no laser architectures capable of operating with high electrical efficiency >20% and have good system stability. The emergence of a mulit-channel fiber-based Coherent-Amplifying-Network or CAN laser potentially enables such capability for space based missions. Here in this article we present an analysis of two such missions scaling up in pulse energy from ≈100 mJ for a supercontinuum LIDAR application utilising atmospheric filamentation to the higher energy demands needed for space debris remediation requiring ≈10 J pulses. This scalability of the CAN laser provides pathways for development of the core science and technology where many new novel space applications can be made possible.

  4. Orbit Modification of Earth-Crossing Asteroids/Comets Using Rendezvous Spacecraft and Laser Ablation

    NASA Technical Reports Server (NTRS)

    Park, Sang-Young; Mazanek, Daniel D.

    2005-01-01

    This report describes the approach and results of an end-to-end simulation to deflect a long-period comet (LPC) by using a rapid rendezvous spacecraft and laser ablation system. The laser energy required for providing sufficient deflection DELTA V and an analysis of possible intercept/rendezvous spacecraft trajectories are studied in this analysis. These problems minimize a weighted sum of the flight time and required propellant by using an advanced propulsion system. The optimal thrust-vector history and propellant mass to use are found in order to transfer a spacecraft from the Earth to a targeted celestial object. One goal of this analysis is to formulate an optimization problem for intercept/rendezvous spacecraft trajectories. One approach to alter the trajectory of the object in a highly controlled manner is to use pulsed laser ablative propulsion. A sufficiently intense laser pulse ablates the surface of a near-Earth object (NEO) by causing plasma blowoff. The momentum change from a single laser pulse is very small. However, the cumulative effect is very effective because the laser can interact with the object over long periods of time. The laser ablation technique can overcome the mass penalties associated with other nondisruptive approaches because no propellant is required to generate the DELTA V (the material of the celestial object is the propellant source). Additionally, laser ablation is effective against a wide range of surface materials and does not require any landing or physical attachment to the object. For diverting distant asteroids and comets, the power and optical requirements of a laser ablation system on or near the Earth may be too extreme to contemplate in the next few decades. A hybrid solution would be for a spacecraft to carry a laser as a payload to a particular celestial body. The spacecraft would require an advanced propulsion system capable of rapid rendezvous with the object and an extremely powerful electrical generator, which is

  5. Photon-Counting Microlaser Rangers, Transponders, and Altimeters

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2000-01-01

    Unlike current manned systems, NASA's next generation SLR2000 Satellite Laser Ranging (SLR) station is fully autonomous. eye-safe, relatively compact and inexpensive. and, during daytime tracking operates at signal-to-noise ratios several orders of magnitude below unity. Tiny, passively Q-switched microlasers generate ultra-short pulses with output energies on the order of 100 micron-J at few kHz rates to achieve mm-level ranging precision to satellite altitudes of 20,000 km. Special ranging receivers, combined with Poisson statistical analysis of the received photon distribution, enable the system to rapidly and reliably identify and extract the single photon laser echoes from the solar background. The enhanced rate of return, combined with a uniform signal strength, can actually drive down both systematic and random range errors. The new SLR2000 technology has already spawned exciting new applications. Compact microlaser altimeters, capable of mapping the surface of a planet or other celestial body at multikilohertz rates, is one such application, and a high altitude, airborne version is currently being developed under NASA's Instrument Incubator Program. Interplanetary microlaser transponders would be capable of performing decimeter ranging or subnanosecond time transfer to spacecraft throughout the inner Solar System. resulting in improved knowledge of planetary motions and liberations and enhanced General Relativity experiments.

  6. Quality assessment of altimeter data through tide gauge comparisons

    NASA Astrophysics Data System (ADS)

    Prandi, Pierre; Valladeau, Guillaume; Ablain, Michael; Picot, Nicolas; Desjonquères, Jean-Damien

    2015-04-01

    Since the first altimeter missions and the improvements performed in the accuracy of sea surface height measurements from 1992 onwards, the importance of global quality assessment of altimeter data has been increasing. Global CalVal studies usually assess this performance by the analysis of internal consistency and cross-comparison between all missions. The overall quality assessment of altimeter data can be performed by analyzing their internal consistency and the cross-comparison between all missions. As a complementary approach, tide gauge measurements are used as an external and independent reference to enable further quality assessment of the altimeter sea level and provide a better estimate of the multiple altimeter performances. In this way, both altimeter and tide gauge observations, dedicated to climate applications, require a rigorous quality control. The tide gauge time series considered in this study derive from several networks (GLOSS/CLIVAR, PSMSL, REFMAR) and provide sea-level heights with a physical content comparable with altimetry sea level estimates. Concerning altimeter data, the long-term drift assessment can be evaluated thanks to a widespread network of tide gauges. Thus, in-situ measurements are compared with altimeter sea level for the main altimeter missions. If altimeter time series are long enough, tide gauge data provide a relevant estimation of the global Mean Sea Level (MSL) drift calculated for all the missions. Moreover, comparisons with sea level products merging all the altimeter missions together have also been performed using several datasets, among which the AVISO delayed-time Sea Level Anomaly grids.

  7. Regional CalVal of Altimeter Range at Non-Dedicated Sites in Preparation f Sentinel-3

    NASA Astrophysics Data System (ADS)

    Cancet, M.; Watson, C.; Haines, B.; Bonnefond, P.; Lyard, F.; Femenias, P.; Guinle, T.

    2015-12-01

    In situ calibration ensures regular and long-term control of the altimeter sea surface height (SSH) time series through comparisons with independent records. Usually, in situ calibration and validation of altimeter SSH is undertaken at specific CALVAL sites through the direct comparison of the altimeter data with in situ data [1]. However, NOVELTIS has developed a regional CALVAL technique, which aims at increasing the number and the repeatability of the altimeter bias assessments by determining the altimeter bias both on overflying passes and on satellite passes located far away from the calibration site. In principle this extends the single site approach to a wider regional scale, thus reinforcing the link between the local and the global CALVAL analyses. It also provides a means to maintain a calibration time series through periods of data-outage at a specific dedicated calibration site. The regional method was initially developed at the Corsican calibration sites of Senetosa and Ajaccio. The method was used to compute the biases of Jason-1, Jason-2 and Envisat (before and after the orbit change in 2010) at both sites, and proved its stability and generality through this cross-calibration exercise [2]. These last years, the regional method was successfully implemented at the Californian site of Harvest and at the Australian site of Bass Strait, in close collaboration with JPL and the University of Tasmania, respectively. These recent studies gave the first Envisat absolute bias estimates at non-dedicated sites using the same method, and showed high consistency with the analyses of the global CALVAL teams and the work of the in situ CALVAL teams. These results highlight the numerous advantages of this technique for monitoring missions on any orbits such as the future Sentinel-3 and Jason-CS/Sentinel-6 missions.

  8. Test of an orbiting hydrogen maser clock system using laser time transfer

    NASA Technical Reports Server (NTRS)

    Vessot, Robert F. C.; Mattison, Edward M.; Nystrom, G. U.; Decher, Rudolph

    1992-01-01

    We describe a joint Smithsonian Astrophysical Laboratory/National Aeronautics and Space Administration (SAO/NASA) program for flight testing a atomic hydrogen maser clock system designed for long-term operation in space. The clock system will be carried by a shuttle-launched EURECA spacecraft. Comparisons with earth clocks to measure the clock's long-term frequency stability (tau = 10(exp 4) seconds) will be made using laser time transfer from existing NASA laser tracking stations. We describe the design of the maser clock and its control systems, and the laser timing technique. We describe the precision of station time synchronization and the limitations in the comparison between the earth and space time scales owing to gravitational and relativistic effects. We will explore the implications of determining the spacecraft's location by an on-board Global Position System (GPS) receiver, and of using microwave techniques for time and frequency transfer.

  9. Topography of the Lunar Poles and Application to Geodesy with the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan; Neumann, Gregory A.; Rowlands, David D.; Smith, David E.; Zuber, Maria T.

    2012-01-01

    The Lunar Orbiter Laser Altimeter (LOLA) [1] onboard the Lunar Reconnaissance Orbiter (LRO) [2] has been operating continuously since July 2009 [3], accumulating approx.5.4 billion measurements from 2 billion on-orbit laser shots. LRO s near-polar orbit results in very high data density in the immediate vicinity of the lunar poles, which are each sampled every 2h. With more than 10,000 orbits, high-resolution maps can be constructed [4] and studied [5]. However, this requires careful processing of the raw data, as subtle errors in the spacecraft position and pointing can lead to visible artifacts in the final map. In other locations on the Moon, ground tracks are subparallel and longitudinal separations are typically a few hundred meters. Near the poles, the track intersection angles can be large and the inter-track spacing is small (above 80 latitude, the effective resolution is better than 50m). Precision Orbit Determination (POD) of the LRO spacecraft [6] was performed to satisfy the LOLA and LRO mission requirements, which lead to a significant improvement in the orbit position knowledge over the short-release navigation products. However, with pixel resolutions of 10 to 25 meters, artifacts due to orbit reconstruction still exist. Here, we show how the complete LOLA dataset at both poles can be adjusted geometrically to produce a high-accuracy, high-resolution maps with minimal track artifacts. We also describe how those maps can then feedback to the POD work, by providing topographic base maps with which individual LOLA altimetric measurements can be contributing to orbit changes. These direct altimetry constraints improve accuracy and can be used more simply than the altimetric crossovers [6].

  10. Pulsed laser propulsion for low cost, high volume launch to orbit

    SciTech Connect

    Kare, J.

    1989-06-02

    Pulsed laser propulsion offers the prospect of delivering high thrust at high specific impulse (500-1000 seconds) from a very simple thruster, using the energy of a remote ground-based laser to heat an inert propellant. Current analyses indicate that payloads of approximately 1 kg per megawatt of average laser power can be launched at a rate of one payload every 15 minutes and a marginal cost of $20 to $200 per kg. A 20 MW entry-level launch system could be built using current technology at a cost of $500 million or less; it would be capable of placing 600 tons per year into LEO. The SDIO Laser Propulsion Program has been developing the technology for such a launch system since 1987. The program has conducted theoretical and experimental research on a particular class of laser-driven thruster, the planar double-pulse LSD-wave thruster, which could be used for a near-term launcher. The double-pulse thruster offers several advantages, including extreme simplicity, design flexibility, and the ability to guide a vehicle remotely by precise control of the laser beam. Small-scale experiments have demonstrated the operation of this thruster at a specific impulse of 600 seconds and 10% efficiency; larger experiments now under way are expected to increase this to at least 20% efficiency. Systems-level issues, from guidance and tracking to possible unique applications, have also been considered and will be briefly discussed. There appear to be no fundamental obstacles to creating, in the next five to ten years, a new low-cost ''pipe-line to space.'' 7 refs., 2 figs., 1 tab.

  11. Strategies for estimating the marine geoid from altimeter data

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Kahn, W. D.; Garza-Robles, R.

    1976-01-01

    Altimeter data from a spacecraft borne altimeter was processed to estimate the fine structure of the marine geoid. Simulation studies show that, among several competing parameterizations, the mean free air gravity anomaly model exhibited promising geoid recovery characteristics. Using covariance analysis techniques, quantitative measures of the orthogonality properties are investigated.

  12. The resolution capability of an irregularly sampled dataset: With application to Geosat altimeter data

    NASA Technical Reports Server (NTRS)

    Chelton, Dudley B.; Schlax, Michael G.

    1994-01-01

    A formalism is presented for determining the wavenumber-frequency transfer function associated with an irregularly sampled multidimensional dataset. This transfer function reveals the filtering characteristics and aliasing patterns inherent in the sample design. In combination with information about the spectral characteristics of the signal, the transfer function can be used to quantify the spatial and temporal resolution capability of the dataset. Application of the method to idealized Geosat altimeter data (i.e., neglecting measurement errors and data dropouts) concludes that the Geosat orbit configuration is capable of resolving scales of about 3 deg in latitude and longitude by about 30 days.

  13. On the Evaluation of the GEOSAT Follow On (GFO) Altimeter

    NASA Technical Reports Server (NTRS)

    Hancock, D. W., III; Hayne, G.S.

    1998-01-01

    The NAVY GFO satellite was launched on February 10, 1998. The spacecraft system and the GPS instrument have experienced a number of problems that have prevented the mission from entering normal operations. However the GFO radar altimeter has been turned on a number of times and does appear to be performing well. We have been approved to help monitor the long term trends in the altimeter similar to the functions we have been performing for the Ocean Topography Experiment POSEIDON (TOPEX) radar altimeter. We will present some analysis of the pre-launch test data from the GFO altimeter to indicate the characteristics of the instrument. We will also present analysis of in-flight data indicating that the altimeter performance appears to be nominal. The current in-flight trends based on the calibration mode will be discussed.

  14. The lunar laser communication demonstration time-of-flight measurement system: overview, on-orbit performance, and ranging analysis

    NASA Astrophysics Data System (ADS)

    Stevens, M. L.; Parenti, R. R.; Willis, M. M.; Greco, J. A.; Khatri, F. I.; Robinson, B. S.; Boroson, D. M.

    2016-03-01

    The Lunar Laser Communication Demonstration (LLCD) flown on the Lunar Atmosphere and Dust Environment Explorer (LADEE) satellite achieved record uplink and downlink communication data rates between a satellite orbiting the Moon and an Earth-based ground terminal. In addition, the high-speed signals of the communication system were used to accurately measure the round-trip time-of-flight (TOF) of signals sent to the Moon and back to the Earth. The measured TOF data, sampled at a 20-kS/s rate, and converted to distance, was processed to show a Gaussian white noise floor typically less than 1 cm RMS. This resulted in a precision for relative distance measurements more than two orders-of-magnitude finer than the RF-based navigation and ranging systems used during the LADEE mission. This paper presents an overview of the LLCD TOF system, a summary of the on-orbit measurements, and an analysis of the accuracy of the measured data for the mission.

  15. Probing Orbital Symmetry of Molecules Via Alignment-Dependent Ionization Probability and High-Order Harmonic Generation by Intense Lasers

    NASA Astrophysics Data System (ADS)

    Zhao, Song-Feng; Zhou, Xiao-Xin; Lin, C. D.

    It is shown that measurement of alignment-dependent ionization probability and high-order harmonic generation (HHG) of molecules in an intense laser field can be used to probe the orbital symmetry of molecules. In this review, recent progress of molecular tunneling ionization (MO-ADK) model of Tong et al. [Phys. Rev. A 66, 033402 (2002)] is first reviewed. In particular, an efficient method to obtain wavefunctions of linear molecules in the asymptotic region was developed by solving the time-independent Schrödinger equation with B-spline functions, and molecular potential energy surfaces were constructed based on the density functional theory. The accurate wavefunctions are used to extract improved structure parameters in the MO-ADK model. The loss of accuracy of the MO-ADK model in the low intensity multiphoton ionization regime is also addressed by comparing with the molecular Perelomov-Popov-Terent'ev (MO-PPT) model, the single-active-electron time-dependent Schrödinger equation (SAE-TDSE) method, and the experimental data. Finally, how the orbital symmetry affects the HHG of molecules within the strong-field approximation (SFA) was reviewed.

  16. Satellite height determination using satellite-to-satellite tracking and ground laser systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1972-01-01

    The height of the GEOS-C spacecraft was utilized as measured by the onboard radar altimeter, for an improved determination of the earth's gravitational field and for the determination of the variation of the physical surface of the oceans. Two tracking system approaches to accurately determine the spacecraft height (orbit) are described and their results stated. These are satellite-to-satellite tracking (SST) and ground laser tracking (GLT). Height variations can be observed in the dm-regions using SST and in the m-region using present GLT.

  17. Satellite height determination using satellite-to-satellite tracking and ground laser systems

    NASA Technical Reports Server (NTRS)

    Vonbun, F. O.

    1972-01-01

    An attempt was made to use GEOS-C spacecraft height, as measured by the onboard radar altimeter, for an improved determination of the earth's gravitational field and for the determination of the variation of the physical surface of the oceans. Two tracking system approaches to accurately determine the spacecraft height (orbit) are described and their results stated. These are satellite-to-satellite tracking (SST) and ground-laser tracking (GLT). Height variations can be observed in the dm-regions using SST and in the m-region using present GLT.

  18. SELENE: The Moon-Orbiting Observatory Mission

    NASA Astrophysics Data System (ADS)

    Mizutani, H.; Kato, M.; Sasaki, S.; Iijima, Y.; Tanaka, K.; Takizawa, Y.

    The Moon-orbiting SELENE (Selenological and Engineering Explorer) mission is prepared in Japan for lunar science and technology development. The launch target has been changed from 2005 to 2006 because of the launch failure of H2A rocket in 2003. The spacecraft consists of a main orbiting satellite at about 100 km altitude in the polar orbit and two sub-satellites in the elliptical orbits. The scientific objectives of the mission are; 1) study of the origin and evolution of the Moon, 2) in-situ measurement of the lunar environment, and 3) observation of the solar-terrestrial plasma environment. SELENE carries the instruments for scientific investigation, including mapping of lunar topography and surface composition, measurement of the gravity and magnetic fields, and observation of lunar and solar-terrestrial plasma environment. The total mass of scientific payload is about 300 kg. The mission period will be 1 year. If extra fuel is available, the mission will be extended in a lower orbit around 50 km. The elemental abundances are measured by x-ray and gamma-ray spectrometers. Alpha particles from the radon gas and polonium are detected by an alpha particle spectrometer. The mineralogical abundance is characterized by a multi-band imager. The mineralogical composition is identified by a spectral profiler which is a continuous spectral analyzer. The surface topographic data are obtained by a high resolution terrain camera and a laser altimeter. The inside structure up to 5 km below the lunar surface is observed by the radar sounder experiment using a 5 MHz radio wave. A magnetometer and an electron reflectometer provides data on the lunar surface magnetic field. Doppler tracking of the orbiter via the sub-satellite when the orbiter is in the far side is used to determine the gravity field of the far side. Radio sources on the two sub-satellites are used to conduct differential VLBI observation from the ground stations. The lunar environment of high energy particles

  19. Precise satellite orbit determination with particular application to ERS-1

    NASA Astrophysics Data System (ADS)

    Fernandes, Maria Joana Afonso Pereira

    The motivation behind this study is twofold. First to assess the accuracy of ERS-1 long arc ephemerides using state of the art models. Second, to develop improved methods for determining precise ERS-1 orbits using either short or long arc techniques. The SATAN programs, for the computation of satellite orbits using laser data were used. Several facilities were added to the original programs: the processing of PRARE range and altimeter data, and a number of algorithms that allow more flexible solutions by adjusting a number of additional parameters. The first part of this study, before the launch of ERS-1, was done with SEAS AT data. The accuracy of SEASAT orbits computed with PRARE simulated data has been determined. The effect of temporal distribution of tracking data along the arc and the extent to which altimetry can replace range data have been investigated. The second part starts with the computation of ERS-1 long arc solutions using laser data. Some aspects of modelling the two main forces affecting ERS-l's orbit are investigated. With regard to the gravitational forces, the adjustment of a set of geopotential coefficients has been considered. With respect to atmospheric drag, extensive research has been carried out on determining the influence on orbit accuracy of the measurements of solar fluxes (P10.7 indices) and geomagnetic activity (Kp indices) used by the atmospheric model in the computation of atmospheric density at satellite height. Two new short arc methods have been developed: the Constrained and the Bayesian method. Both methods are dynamic and consist of solving for the 6 osculating elements. Using different techniques, both methods overcome the problem of normal matrix ill- conditioning by constraining the solution. The accuracy and applicability of these methods are discussed and compared with the traditional non-dynamic TAR method.

  20. Fluid flow vorticity measurement using laser beams with orbital angular momentum.

    PubMed

    Ryabtsev, A; Pouya, S; Safaripour, A; Koochesfahani, M; Dantus, M

    2016-05-30

    Vorticity is one of the most important dynamic flow variables and is fundamental to the basic flow physics of many areas of fluid dynamics, including aerodynamics, turbulent flows and chaotic motion. We report on the direct measurements of fluid flow vorticity using a beam with orbital angular momentum that takes advantage of the rotational Doppler shift from microparticles intersecting the beam focus. Experiments are carried out on fluid flows with well-characterized vorticity and the experimental results are found to be in excellent agreement with the expected values. This method allows for localized real-time determination of vorticity in a fluid flow with three-dimensional resolution. PMID:27410101

  1. Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging

    NASA Astrophysics Data System (ADS)

    Kopeikin, S. M.; Pavlis, E.; Pavlis, D.; Brumberg, V. A.; Escapa, A.; Getino, J.; Gusev, A.; Müller, J.; Ni, W.-T.; Petrova, N.

    2008-10-01

    Lunar laser ranging (LLR) measurements are crucial for advanced exploration of the laws of fundamental gravitational physics and geophysics as well as for future human and robotic missions to the Moon. The corner-cube reflectors (CCR) currently on the Moon require no power and still work perfectly since their installation during the project Apollo era. Current LLR technology allows us to measure distances to the Moon with a precision approaching 1 mm. As NASA pursues the vision of taking humans back to the Moon, new, more precise laser ranging applications will be demanded, including continuous tracking from more sites on Earth, placing new CCR arrays on the Moon, and possibly installing other devices such as transponders, etc. for multiple scientific and technical purposes. Since this effort involves humans in space, then in all situations the accuracy, fidelity, and robustness of the measurements, their adequate interpretation, and any products based on them, are of utmost importance. Successful achievement of this goal strongly demands further significant improvement of the theoretical model of the orbital and rotational dynamics of the Earth-Moon system. This model should inevitably be based on the theory of general relativity, fully incorporate the relevant geophysical processes, lunar librations, tides, and should rely upon the most recent standards and recommendations of the IAU for data analysis. This paper discusses methods and problems in developing such a mathematical model. The model will take into account all the classical and relativistic effects in the orbital and rotational motion of the Moon and Earth at the sub-centimeter level. The model is supposed to be implemented as a part of the computer code underlying NASA Goddard's orbital analysis and geophysical parameter estimation package GEODYN and the ephemeris package PMOE 2003 of the Purple Mountain Observatory. The new model will allow us to navigate a spacecraft precisely to a location on the

  2. Spin-orbit laser mode transfer via a classical analogue of quantum teleportation

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, B.; Astigarreta Leal, M.; Souza, C. E. R.; Galvão, E. F.; Khoury, A. Z.

    2016-03-01

    We translate the quantum teleportation protocol into a sequence of coherent operations involving three degrees of freedom of a classical laser beam. The protocol, which we demonstrate experimentally, transfers the polarization state of the input beam to the transverse mode of the output beam. The role of quantum entanglement is played by a non-separable mode describing the path and transverse degrees of freedom. Our protocol illustrates the possibility of new optical applications based on this intriguing classical analogue of quantum entanglement.

  3. Photon-counting multikilohertz microlaser altimeters for airborne and spaceborne topographic measurements

    NASA Astrophysics Data System (ADS)

    Degnan, John J.

    2002-11-01

    We consider the optimum design of photon-counting microlaser altimeters operating from airborne and spaceborne platforms under both day and night conditions. Extremely compact, passively Q-switched microlaser transmitters produce trains of low energy pulses at multi-kHz rates and can easily generate subnanosecond pulsewidths for precise ranging. To guide the design, we have modeled the solar noise background and developed simple algorithms, based on post-detection Poisson filtering (PDPF), to optimally extract the weak altimeter signal from a high noise background during daytime operations. The advantages of photon-counting detector arrays followed by multichannel timing receivers for high resolution topographic mapping are discussed. Practical technology issues, such as detector and/or receiver dead times and their impact on signal detection and ranging accuracy and resolution, have also been considered in the analysis. The theoretical results are reinforced by data from an airborne microlaser altimeter, developed under NASA's Instrument Incubator Program. The latter instrument has operated at several kHz rates from aircraft cruise altitudes up to 6.7 km with laser pulse energies on the order of a few microjoules. The instrument has successfully recorded decimeter accuracy or better single photon returns from man-made structures, tree canopies and underlying terrain and has demonstrated shallow water bathymetry at depths to a few meters. We conclude the discussion by analyzing a photon counting instrument designed to produce, over a mission life of 3 years, a globally contiguous map of the Martian surface, with 5 m horizontal resolution and decimeter vertical accuracy, from an altitude of 300 km. The transmitter power-receive aperture product required is comparable to the Geoscience Laser Altimeter System (GLAS) but the number of individual range measurements to the surface is increased by three to four orders of magnitude. For more modest scientific goals, on a

  4. Advanced Laser Architecture for Two-Step Laser Tandem Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Fahey, Molly E.; Li, Steven X.; Yu, Anthony W.; Getty, Stephanie A.

    2016-01-01

    Future astrobiology missions will focus on planets with significant astrochemical or potential astrobiological features, such as small, primitive bodies and the icy moons of the outer planets that may host diverse organic compounds. These missions require advanced instrument techniques to fully and unambiguously characterize the composition of surface and dust materials. Laser desorptionionization mass spectrometry (LDMS) is an emerging instrument technology for in situ mass analysis of non-volatile sample composition. A recent Goddard LDMS advancement is the two-step laser tandem mass spectrometer (L2MS) instrument to address the need for future flight instrumentation to deconvolve complex organic signatures. The L2MS prototype uses a resonance enhanced multi-photon laser ionization mechanism to selectively detect aromatic species from a more complex sample. By neglecting the aliphatic and inorganic mineral signatures in the two-step mass spectrum, the L2MS approach can provide both mass assignments and clues to structural information for an in situ investigation of non-volatile sample composition. In this paper we will describe our development effort on a new laser architecture that is based on the previously flown Lunar Orbiter Laser Altimeter (LOLA) laser transmitter for the L2MS instrument. The laser provides two discrete midinfrared wavelengths (2.8 m and 3.4 m) using monolithic optical parametric oscillators and ultraviolet (UV) wavelength (266 nm) on a single laser bench with a straightforward development path toward flight readiness.

  5. Elevation Change of the Southern Greenland Ice Sheet from Satellite Radar Altimeter Data

    NASA Technical Reports Server (NTRS)

    Haines, Bruce J.

    1999-01-01

    Long-term changes in the thickness of the polar ice sheets are important indicators of climate change. Understanding the contributions to the global water mass balance from the accumulation or ablation of grounded ice in Greenland and Antarctica is considered crucial for determining the source of the about 2 mm/yr sea-level rise in the last century. Though the Antarctic ice sheet is much larger than its northern counterpart, the Greenland ice sheet is more likely to undergo dramatic changes in response to a warming trend. This can be attributed to the warmer Greenland climate, as well as a potential for amplification of a global warming trend in the polar regions of the Northern Hemisphere. In collaboration with Drs. Curt Davis and Craig Kluever of the University of Missouri, we are using data from satellite radar altimeters to measure changes in the elevation of the Southern Greenland ice sheet from 1978 to the present. Difficulties with systematic altimeter measurement errors, particularly in intersatellite comparisons, beset earlier studies of the Greenland ice sheet thickness. We use altimeter data collected contemporaneously over the global ocean to establish a reference for correcting ice-sheet data. In addition, the waveform data from the ice-sheet radar returns are reprocessed to better determine the range from the satellite to the ice surface. At JPL, we are focusing our efforts principally on the reduction of orbit errors and range biases in the measurement systems on the various altimeter missions. Our approach emphasizes global characterization and reduction of the long-period orbit errors and range biases using altimeter data from NASA's Ocean Pathfinder program. Along-track sea-height residuals are sequentially filtered and backwards smoothed, and the radial orbit errors are modeled as sinusoids with a wavelength equal to one revolution of the satellite. The amplitudes of the sinusoids are treated as exponentially-correlated noise processes with a

  6. Laser altimetry simulator. Version 3.0: User's guide

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Mcgarry, Jan F.; Pacini, Linda K.; Blair, J. Bryan; Elman, Gregory C.

    1994-01-01

    A numerical simulator of a pulsed, direct detection laser altimeter has been developed to investigate the performance of space-based laser altimeters operating over surfaces with various height profiles. The simulator calculates the laser's optical intensity waveform as it propagates to and is reflected from the terrain surface and is collected by the receiver telescope. It also calculates the signal and noise waveforms output from the receiver's optical detector and waveform digitizer. Both avalanche photodiode and photomultiplier detectors may be selected. Parameters of the detected signal, including energy, the 50 percent rise-time point, the mean timing point, and the centroid, can be collected into histograms and statistics calculated after a number of laser firings. The laser altimeter can be selected to be fixed over the terrain at any altitude. Alternatively, it can move between laser shots to simulate the terrain profile measured with the laser altimeter.

  7. Precise Orbit Determination for the GEOSAT Follow-On Spacecraft

    NASA Technical Reports Server (NTRS)

    Lemoine, Frank G.; Rowlands, David D.; Zelensky, Nikita P.; Luthcke, Scott B.; Cox, Christopher M.; Marr, Gregory C.

    1999-01-01

    The US Navy's GEOSAT Follow-On spacecraft was launched on February 10, 1998 with its primary mission objective to map the oceans using a radar altimeter. The spacecraft tracking complement consists of GPS receivers, a laser retroreflector and Doppler beacons. Since the GPS receivers have not yet returned reliable data, the only means of providing high-quality precise orbits has been though satellite laser ranging (SLR). SLR has tracked the spacecraft since April 22, 1998, and an average of 7 passes per day have been obtained from US and foreign stations. Since the predicted radial orbit error due to the gravity field is only two to three cm, the largest contributor to the high SLR residuals (10 cm) is the mismodelling of the non-conservative forces. The SLR residuals show a clear correlation with beta prime (solar elevation) angle, peaking in mid-August 1998 when the beta prime angle reached -80 to -90 degrees. We report in this paper on the analysis of the GFO tracking data (SLR, Doppler, and if available GPS) using GEODYN, and on the tuning of the non-conservative force model and the gravity model using these data.

  8. State-of-the-art satellite laser range modeling for geodetic and oceanographic applications

    NASA Technical Reports Server (NTRS)

    Klosko, Steve M.; Smith, David E.

    1993-01-01

    Significant improvements have been made in the modeling and accuracy of Satellite Laser Range (SLR) data since the launch of LAGEOS in 1976. Some of these include: improved models of the static geopotential, solid-Earth and ocean tides, more advanced atmospheric drag models, and the adoption of the J2000 reference system with improved nutation and precession. Site positioning using SLR systems currently yield approximately 2 cm static and 5 mm/y kinematic descriptions of the geocentric location of these sites. Incorporation of a large set of observations from advanced Satellite Laser Ranging (SLR) tracking systems have directly made major contributions to the gravitational fields and in advancing the state-of-the-art in precision orbit determination. SLR is the baseline tracking system for the altimeter bearing TOPEX/Poseidon and ERS-1 satellites and thus, will play an important role in providing the Conventional Terrestrial Reference Frame for instantaneously locating the geocentric position of the ocean surface over time, in providing an unchanging range standard for altimeter range calibration, and for improving the geoid models to separate gravitational from ocean circulation signals seen in the sea surface. Nevertheless, despite the unprecedented improvements in the accuracy of the models used to support orbit reduction of laser observations, there still remain systematic unmodeled effects which limit the full exploitation of modern SLR data.

  9. Switching ferromagnetic spins by an ultrafast laser pulse: Emergence of giant optical spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; Bai, Y. H.; George, Thomas F.

    2016-09-01

    Faster magnetic recording technology is indispensable to massive data storage and big data sciences. All-optical spin switching offers a possible solution, but at present it is limited to a handful of expensive and complex rare-earth ferrimagnets. The spin switching in more abundant ferromagnets may significantly expand the scope of all-optical spin switching. Here by studying 40000 ferromagnetic spins, we show that it is the optical spin-orbit torque that determines the course of spin switching in both ferromagnets and ferrimagnets. Spin switching occurs only if the effective spin angular momentum of each constituent in an alloy exceeds a critical value. Because of the strong exchange coupling, the spin switches much faster in ferromagnets than weakly coupled ferrimagnets. This establishes a paradigm for all-optical spin switching. The resultant magnetic field (65 T) is so big that it will significantly reduce high current in spintronics, thus representing the beginning of photospintronics.

  10. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  11. Laser altimetry of Mercury, Moon, and Mars

    NASA Astrophysics Data System (ADS)

    Neumann, G. A.; Mazarico, E.; Smith, D. E.; Zuber, M. T.; Torrence, M. H.; Barnouin, O. S.; Solomon, S. C.

    2011-12-01

    Since March 29 of this year, the Mercury Laser Altimeter (MLA) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has been ranging twice daily to the surface of Mercury from orbit, collecting more than 1 million ranges each month. Mercury joins Earth, Moon, and Mars as a planetary body mapped precisely by laser altimetry from orbit. Ranging covers nearly all of the northern hemisphere. The southern hemisphere largely lies beyond the 1800-km range of MLA from MESSENGER's eccentric orbit, but the 10-cm-precision MLA data will eventually be complemented by less precise radio occultation and limb profiling measurements by the MESSENGER spacecraft, as well as by digital topographic models produced by stereo photogrammetry. Mercury topography is distinguished from its larger and smaller counterparts by a relatively low (<10 km) dynamic range, less than half that of Earth, Moon, and Mars, and two-thirds that of its nearest neighbor, Venus. There are ample indications from the topography of Mercury impact structures as well as from its low-degree shape that Mercury's thermal evolution was complex and differed from those of other terrestrial planets. Central to the thermal history are the extensive contractional tectonic features for which altimetry quantifies accommodated strain. As well, MLA profiles of extensional graben within more than two dozen impact craters and basins, together with topographic and gravity field observations, will constrain the evolution of Mercury's upper crust and lithosphere. Lidar topographic data provide a wealth of geological contextual information regarding impact crater formation and modification, tectonics, volcanism, lithospheric strength, thermal evolution, and internal structure. Topography is essential for orthorectification of images and calibration of reflectance data. Geodetic topography, referenced to the center of mass, in conjunction with gravity, allows an assessment of the distribution of

  12. A comprehensive study of Mercury and MESSENGER orbit determination

    NASA Astrophysics Data System (ADS)

    Genova, Antonio; Mazarico, Erwan; Goossens, Sander; Lemoine, Frank G.; Neumann, Gregory A.; Nicholas, Joseph B.; Rowlands, David D.; Smith, David E.; Zuber, Maria; Solomon, Sean C.

    2016-10-01

    The MErcury, Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury for more than 4 years. The probe started its science mission in orbit around Mercury on 18 March 2011. The Mercury Laser Altimeter (MLA) and radio science system were the instruments dedicated to geodetic observations of the topography, gravity field, orientation, and tides of Mercury. X-band radio-tracking range-rate data collected by the NASA Deep Space Network (DSN) allowed the determination of Mercury's gravity field to spherical harmonic degree and order 100, the planet's obliquity, and the Love number k2.The extensive range data acquired in orbit around Mercury during the science mission (from April 2011 to April 2015), and during the three flybys of the planet in 2008 and 2009, provide a powerful dataset for the investigation of Mercury's ephemeris. The proximity of Mercury's orbit to the Sun leads to a significant perihelion precession attributable to the gravitational flattening of the Sun (J2) and the Parameterized Post-Newtonian (PPN) coefficients γ and β, which describe the space curvature produced by a unit rest mass and the nonlinearity in superposition of gravity, respectively. Therefore, the estimation of Mercury's ephemeris can provide crucial information on the interior structure of the Sun and Einstein's general theory of relativity. However, the high correlation among J2, γ, and β complicates the combined recovery of these parameters, so additional assumptions are required, such as the Nordtvedt relationship η = 4β - γ - 3.We have modified our orbit determination software, GEODYN II, to enable the simultaneous integration of the spacecraft and central body trajectories. The combined estimation of the MESSENGER and Mercury orbits allowed us to determine a more accurate gravity field, orientation, and tides of Mercury, and the values of GM and J2 for the Sun, where G is the gravitational constant and M is the solar mass

  13. ERS-1 radar altimeter: Performance, calibration and data validation

    NASA Astrophysics Data System (ADS)

    Francis, C. R.

    1986-08-01

    Key characteristics of the ERS-1 radar altimeter and of the overall measurement system are described. Operating modes include ocean and ice. Calibration is based on ground test and simulation data and onboard, independent measures. Performance will be established once the hardware implementation is complete. The altimeter is not sensitive to yaw, but a roll tilt mode used when calibrating the wind scatterometer leads to loss of altimeter data. Science data are tape recorded and telemetered in a high speed dump in real time to ground stations.

  14. Assimilation of altimeter topography into oceanic models

    NASA Technical Reports Server (NTRS)

    Demey, Pierre; Menard, Yves; Pinardi, Nadia; Schroeter, J.; Verron, J.

    1991-01-01

    The primary goals of the authors are to build an intuition for assimilation techniques and to investigate the impact of variable altimeter topography on simple or complex oceanic models. In particular, applying various techniques and sensitivity studies to model and data constraints plays a key role. We are starting to use quasi-geostrophic, semigeostrophic, and primitive-equation (PE) models and to test the schemes in regions of interest to the World Ocean Circulation Experiment (WOCE), as well as in the northeast Atlantic and the Mediterranean. The impact of scatterometer wind forcing on the results is also investigated. The use of Geosat, European Remote Sensing satellite (ERS-1), and TOPEX/POSEIDON altimetry data is crucial in fine tuning the models and schemes to the selected areas of interest.

  15. Ionospheric calibration for single frequency altimeter measurements

    NASA Astrophysics Data System (ADS)

    Schreiner, William S.; Born, George H.; Markin, Robert E.

    1994-03-01

    This study is a preliminary analysis of the effectiveness (in terms of altimeter calibration accuracy) of various ionosphere models and the Global Positioning System (GPS) to calibrate single frequency altimeter height measurements for ionospheric path delay. In particular, the research focused on ingesting GPS Total Electron Content (TEC) data into the physical Parameterized Real-Time Ionospheric Specification Model (PRISM), which estimates the composition of the ionosphere using independent empirical and physical models and has the capability of adjusting to additional ionospheric measurements. Two types of GPS data were used to adjust the PRISM model: GPS receiver station data mapped from line-of-sight observations to the vertical at the point of interest and a grid map (generated at the Jet Propulsion Laboratory) of GPS derived TEC in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by the International Reference Ionosphere (IRI-90), a climatological (monthly mean) model of the ionosphere, were compared to TOPEX dual-frequency TEC measurements (considered as truth) for a number of TOPEX sub-satellite tracks. For a 13.6 GHz altimeter, a Total Electron Content (TEC) of 1 TECU 10(exp 16) electrons/sq m corresponds to approximately 0.218 centimeters of range delay. A maximum expected TEC (at solar maximum or during solar storms) of 10(exp 18) electrons/sq m will create 22 centimeters of range delay. Compared with the TOPEX data, the PRISM predictions were generally accurate within the TECU when the sub-satellite track of interest passed within 300 to 400 km of the GPS TEC data or when the track passed through a night-time ionosphere. If neither was the case, in particular if the track passed through a local noon ionosphere, the PRISM values differed by more than 10 TECU and by as much as 40 TECU. The IRI-90 model, with no current ability to unseat GPS data, predicted TEC to a slightly higher error of 12 TECU. The performance of

  16. Ionospheric calibration for single frequency altimeter measurements

    NASA Technical Reports Server (NTRS)

    Schreiner, William S.; Born, George H.; Markin, Robert E.

    1994-01-01

    This study is a preliminary analysis of the effectiveness (in terms of altimeter calibration accuracy) of various ionosphere models and the Global Positioning System (GPS) to calibrate single frequency altimeter height measurements for ionospheric path delay. In particular, the research focused on ingesting GPS Total Electron Content (TEC) data into the physical Parameterized Real-Time Ionospheric Specification Model (PRISM), which estimates the composition of the ionosphere using independent empirical and physical models and has the capability of adjusting to additional ionospheric measurements. Two types of GPS data were used to adjust the PRISM model: GPS receiver station data mapped from line-of-sight observations to the vertical at the point of interest and a grid map (generated at the Jet Propulsion Laboratory) of GPS derived TEC in a sun-fixed longitude frame. The adjusted PRISM TEC values, as well as predictions by the International Reference Ionosphere (IRI-90), a climatological (monthly mean) model of the ionosphere, were compared to TOPEX dual-frequency TEC measurements (considered as truth) for a number of TOPEX sub-satellite tracks. For a 13.6 GHz altimeter, a Total Electron Content (TEC) of 1 TECU 10(exp 16) electrons/sq m corresponds to approximately 0.218 centimeters of range delay. A maximum expected TEC (at solar maximum or during solar storms) of 10(exp 18) electrons/sq m will create 22 centimeters of range delay. Compared with the TOPEX data, the PRISM predictions were generally accurate within the TECU when the sub-satellite track of interest passed within 300 to 400 km of the GPS TEC data or when the track passed through a night-time ionosphere. If neither was the case, in particular if the track passed through a local noon ionosphere, the PRISM values differed by more than 10 TECU and by as much as 40 TECU. The IRI-90 model, with no current ability to unseat GPS data, predicted TEC to a slightly higher error of 12 TECU. The performance of

  17. The ERS-1 radar altimeter: An overview

    NASA Astrophysics Data System (ADS)

    Francis, C. R.

    1984-08-01

    The ERS-1 (ESA) radar altimeter implementation, parameter estimation, autocalibration, data flow, and operating principles are summarized. The microwave subsystem contains an ultrastable oscillator and a chirp generator. A traveling wave tube amplifier and its electronic power conditioner form the high power amplifier (the radar transmitter output). The signal processor subassembly has a spectrum analyzer and a microcomputer. The microcomputer also handles real time parameter estimation, with center of gravity tracking in the ice mode and suboptimal maximum likelihood estimation (SMLE) in the ocean mode. The curve-fitting SMLE is used in calibrating the signal path of the instrument to a precision of 0.7 nsec. Command and housekeeping data use an S band telemetry link, scientific data are delivered via X band, in real time and as a dump.

  18. South African TOPEX/Poseidon altimeter experiment

    NASA Technical Reports Server (NTRS)

    Gruendlingh, Marten L.; Shannon, L. V.; Lutjeharms, J. R.

    1991-01-01

    The area surrounding the southern tip of Africa contains a juxtaposition of a variety of interesting and climatically relevant features. On the Indian Ocean side, the Agulhas Current with its tributaries form a conduit through which much of the southern Indian Ocean surface flow is focused. South of the continent, this flow is fragmented and partially injected into the Atlantic Ocean and across the Subtropical Convergence into the Southern Ocean. To the west of the subcontinent, the circulation of the South Atlantic subtropical gyre in the Cape Basin interacts with the vigorous Benguela upwelling regime. The creation, transformation, and transport of water masses and the intra-annual and climatic importance of all these processes have been specifically recognized by the World Ocean Circulation Experiment (WOCE). The South African TOPEX/POSEIDON Altimeter Experiment addresses many of these issues through four mutually complementary and interrelated subprojects.

  19. The Optical Fiber Array Bundle Assemblies for the NASA Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Switzer, Rob; Thomes, William Joe; Chuska, Richard; LaRocca, Frank; MacMurphy, Shawn

    2008-01-01

    The United States, National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), Fiber Optics Team in the Electrical Engineering Division of the Applied Engineering and Technology Directorate, designed, developed and integrated the space flight optical fiber array hardware assemblies for the Lunar Reconnaissance Orbiter (LRO). The two new assemblies that were designed and manufactured at NASA GSFC for the LRO exist in configurations that are unique in the world for the application of ranging and lidar. These assemblies were developed in coordination with Diamond Switzerland, and the NASA GSFC Mechanical Systems Division. The assemblies represent a strategic enhancement for NASA's Laser Ranging and Laser Radar (LIDAR) instrument hardware by allowing light to be moved to alternative locations that were not feasible in past space flight implementations. An account will be described of the journey and the lessons learned from design to integration for the Lunar Orbiter Laser Altimeter and the Laser Ranging Application on the LRO. The LRO is scheduled to launch end of 2008.

  20. The determination of a one year mean sea surface height track from Geosat altimeter data and ocean variability implications

    NASA Technical Reports Server (NTRS)

    Wang, Yan M.; Rapp, Richard H.

    1992-01-01

    Results are presented for determinations of mean sea surface along a reference Geosat altimeter tracking, using Geosat data from the first year of the exact repeat mission (ERM) and improved orbits. The results were used to study the time variability of the ocean surface, and a map was constructed of the major current structure. The data included 21 complete and one incomplete ERMs, with the sea surface heights being referenced to the single reference track through the application of geoid gradient corrections. This Geosat surface can be used as a reference surface to which other altimeter data could be incorporated; the data could then be used for the recovery of geoid undulations and gravity anomalies in the ocean areas.

  1. Wallops waveform analysis of SEASAT-1 radar altimeter data

    NASA Astrophysics Data System (ADS)

    Hayne, G. S.

    1980-07-01

    Fitting a six parameter model waveform to over ocean experimental data from the waveform samplers in the SEASAT-1 radar altimeter is described. The fitted parameters include a waveform risetime, skewness, and track point; from these can be obtained estimates of the ocean surface significant waveheight, the surface skewness, and a correction to the altimeter's on board altitude measurement, respectively. Among the difficulties encountered are waveform sampler gains differing from calibration mode data, and incorporating the actual SEASAT-1 sampled point target response in the fitted wave form. There are problems in using the spacecraft derived attitude angle estimates, and a different attitude estimator is developed. Points raised in this report have consequences for the SEASAT-1 radar altimeter's ocean surface measurements are for the design and calibration of radar altimeters in future oceanographic satellites.

  2. Evaluation of the Seasat altimeter time tag bias

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Tapley, B. D.; Shum, C.

    1982-01-01

    Two methods were used in analyses of Seasat altimeter data, aimed at the corroboration of an inherent altimeter microprocessor delay compensation value of -79.4 msec, which benefited from a global data distribution in the oceanic areas: (1) the crossover method, using altimeter data differenced at points where the Seasat ground track intersected with itself, and (2) the direct use of the altimeter data. Because the former method is independent of errors in the geoid model, it is considered the more reliable. For all crossover method results, the adopted value of -79.4 msec is within the bounds of the standard deviation associated with the estimates, of which -78.1 + or - 2.0 msec is considered the best representative.

  3. Time-dependent multiconfiguration theory for ultrafast electronic dynamics of molecules in an intense laser field: Electron correlation and energy redistribution among natural orbitals

    NASA Astrophysics Data System (ADS)

    Kato, Tsuyoshi; Kono, Hirohiko

    2009-12-01

    We propose a new definition of molecular orbital energy in order to investigate the energetics of constituent molecular orbitals in the many-electron wave function calculated based on time-dependent multiconfiguration theory. It is shown that when energies are assigned to natural orbitals by a similar manner to that used in the Hartree-Fock theory, we can quantify a correction energy to the total electronic energy that represents electron correlation, and thus we can evaluate the time-dependence of the correlation energy. Our attempt is illustrated by numerical results on the time-dependence of the spatial density of the correlation energy and the orbital energies for a H 2 molecule interacting with an intense, near-infrared laser field. We compared the energy ζj( t) supplied by the applied field with the net energy gain Δɛ(t) for respective natural orbitals ϕj( t). ϕj and found that the natural orbitals with Δɛ(t)>ζj(t) play a key role in the ionization process.

  4. Noise characteristics of the Skylab S-193 altimeter altitude measurements

    NASA Technical Reports Server (NTRS)

    Hatch, W. E.

    1975-01-01

    The statistical characteristics of the SKYLAB S-193 altimeter altitude noise are considered. These results are reported in a concise format for use and analysis by the scientific community. In most instances the results have been grouped according to satellite pointing so that the effects of pointing on the statistical characteristics can be readily seen. The altimeter measurements and the processing techniques are described. The mathematical descriptions of the computer programs used for these results are included.

  5. Realizing the Harper Hamiltonian and Spin-Orbit Coupling with Laser-Assisted Tunneling in an Optical Lattice

    NASA Astrophysics Data System (ADS)

    Kennedy, Colin; Miyake, Hiro; Burton, Cody; Chung, Woo Chang; Siviloglou, Georgios; Ketterle, Wolfgang

    2014-05-01

    The study of charged particles in a magnetic field has led to paradigm shifts in condensed matter physics including the discovery of topologically ordered states like the quantum Hall and fractional quantum Hall states. Quantum simulation of such systems using neutral atoms has drawn much interest recently in the atomic physics community due to the versatility and defect-free nature of such systems. We discuss our recent experimental realization of the Harper Hamiltonian and strong, uniform effective magnetic fields for neutral particles in an optical lattice. Additionally, our scheme represents a promising system to realize spin-orbit coupling and the quantum spin Hall states without flipping atomic spin states and thus without the intrinsic heating that comes with near-resonant Raman lasers. We point out that our scheme can be implemented all optically through the use of a period-tripling superlattice, offering faster switching times and more precise control than with magnetic field gradients. Finally, we show that this method is very general for engineering novel single particle spectra in an optical lattice and can be used to map out Hofstadter's butterfly.

  6. Application of compressive sensing to radar altimeter design

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Dong, Xiao; Zhai, Wenshuai

    2015-10-01

    We propose to apply the compressive sensing technique to the design of satellite radar altimeter for increasing the sampling time window (STW) while keeping the same data rate so as to enhance the tracking robustness of an altimeter. A satellite radar altimeter can measure the range between the satellite platform where it is aboard and the averaged sea surface with centimeter level accuracy. The rising slope of the received waveform by altimeter contains important information about the sea surface, e.g. the larger the slope of the waveform, means the smoother the sea surface. Besides, the half-power point of the slope refers to the range information. For satellite altimeter, due to the rising slope just occupies fewer range bins compared with the whole range bins illuminated by the long pulse signal, i.e. the signal is sparse in this sense, thus compressive sensing technique is applicable. Altimeter echoes are simulated and the waveforms are constructed by using the traditional method as well as by compressive sensing (CS) method, they are very well agreed with each other. The advantage of using CS is that we can increase the sampling time window without increasing the data, thus the tracking capability can be enhanced without sacrificing the resolution.

  7. Precision orbit determination for Topex

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Ries, J. C.; Shum, C. K.

    1990-01-01

    The ability of radar altimeters to measure the distance from a satellite to the ocean surface with a precision of the order of 2 cm imposes unique requirements for the orbit determination accuracy. The orbit accuracy requirements will be especially demanding for the joint NASA/CNES Ocean Topography Experiment (Topex/Poseidon). For this mission, a radial orbit accuracy of 13 centimeters will be required for a mission period of three to five years. This is an order of magnitude improvement in the accuracy achieved during any previous satellite mission. This investigation considers the factors which limit the orbit accuracy for the Topex mission. Particular error sources which are considered include the geopotential, the radiation pressure and the atmospheric drag model.

  8. Apollo 17 Command/Service modules photographed from lunar module in orbit

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A view of the Apollo 17 command and service modules photographed from the lunar module (LM) Challenger during rendezvous and docking maneuvers in lunar orbit. The LM ascent stage, with astronauts Eugene A. Cernan and Harrison H. Schmitt aboard, had just returned from the Taurus-Littrow landing site on the lunar surface. Note the exposed Scientific Instrument Module (SIM) bay in sector 1 of the service module. Three experiments are carried in the bay: S-209 lunar sounder, S-171 infrared scanning spectrometer, and the S-169 far-ultraviolet spectrometer. Also mounted in the SIM bay are the panoramic camera, mapping camera and laser altimeter used in service module photographic tasks. A portion of the LM is on the right.

  9. Precise topography assessment of Lop Nur Lake Basin using GLAS altimeter

    NASA Astrophysics Data System (ADS)

    Wang, Longfei; Gong, Huaze; Shao, Yun

    2014-03-01

    Lop Nur is a dried-up salt lake lying in the eastern part of Tarim basin, which used to be the second largest lagon in China. The "ear" rings in Lop Nur attract many interests and are regarded as the lake shorelines during its recession. The topography of the lake basin is important in understanding the formation of the "ear" rings. In this paper, elevation data along three transects obtained from laser altimeter were taken as the basic material of the topography in Lop Nur. Elevation data of laser altimeter show great consistency between adjacent passes. Orthometric height (OH) derived from altimetry data and the geoid model are used to analyze the elevation characteristic along "ear" rings. The result shows the "ear" rings are basically identical in elevation, supporting the statement that "ear" rings are former lake shorelines. A discrepancy of approximately 1 meter in OH is observed on the same "ear" ring, lower in the north and higher in the south, which is found for the first time. Possible explanations could be deformation of ground surface due to earthquake or tectonic movement after the "ear" rings are formed, or tilt of water surface due to wind stress or lake current during the formation of the rings.

  10. Lunar Reconnaissance Orbiter (LRO): Observations for Lunar Exploration and Science

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard; Keller, John; Chin, Gordon; Garvin, James

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO) was implemented to facilitate scientific and engineering-driven mapping of the lunar surface at new spatial scales and with new remote sensing methods, identify safe landing sites, search for in situ resources, and measure the space radiation environment. After its successful launch on June 18,2009, the LRO spacecraft and instruments were activated and calibrated in an eccentric polar lunar orbit until September 15, when LRO was moved to a circular polar orbit with a mean altitude of 50 km. LRO will operate for at least one year to support the goals of NASA's Exploration Systems Mission Directorate (ESMD), and for at least two years of extended operations for additional lunar science measurements supported by NASA's Science Mission Directorate (SMD). LRO carries six instruments with associated science and exploration investigations, and a telecommunications/radar technology demonstration. The LRO instruments are: Cosmic Ray Telescope for the Effects of Radiation (CRaTER), Diviner Lunar Radiometer Experiment (DLRE), Lyman-Alpha Mapping Project (LAMP), Lunar Exploration Neutron Detector (LEND), Lunar Orbiter Laser Altimeter (LOLA), and Lunar Reconnaissance Orbiter Camera (LROC). The technology demonstration is a compact, dual-frequency, hybrid polarity synthetic aperture radar instrument (Mini-RF). LRO observations also support the Lunar Crater Observation and Sensing Satellite (LCROSS), the lunar impact mission that was co-manifested with LRO on the Atlas V (401) launch vehicle. This paper describes the LRO objectives and measurements that support exploration of the Moon and that address the science objectives outlined by the National Academy of Science's report on the Scientific Context for Exploration of the Moon (SCEM). We also describe data accessibility by the science and exploration community.

  11. Lunar Lava Tubes - The Promise of New Orbital Data

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2009-01-01

    The basaltic plains of the Moon contain lava channels on scales of tens of meters to hundreds of kilometers. Many of these channels are segmented, strongly suggesting that some portions include covered lava tubes. Lunar lava tubes are expected to provide unique environments below the harsh lunar surface, maintaining near-isothermal conditions and substantial shielding from solar and galactic radiation. A lava tube has often been suggested as natural shelter for a future human outpost. Previous searches for lunar lava tubes have been limited by a combination of image resolution and completeness of coverage. The five robotic Lunar Orbiter spacecraft combined to photograph essentially the entire lunar surface with a resolution of 60 m, and covered selected sites with resolutions as high as 2 m. The highest-resolution Apollo images, from the mapping and panoramic cameras, covered swaths totaling 16% of the lunar surface, at resolutions of approximately 5 m. The Lunar Reconnaissance Orbiter -- launched in June 2009 to a polar orbit -- carries a suite of instruments that will revolutionize lunar remote sensing, including the identification and characterization of lava tubes. The Lunar Reconnaissance Orbiter Camera (LROC) system includes a multi-spectral wide-angle camera with a resolution of 70 m, allowing a comprehensive survey of the entire lunar surface. The LROC narrow-angle camera is providing targeted images at resolutions of 0.5 - 2 m, including stereo coverage, which should allow detection of tube entrances and breakdown structures. The Lunar Orbiter Laser Altimeter is producing a global topographic map with a vertical resolution of 1 m and a horizontal resolution of 50 m. These data will be critical to understanding lava dynamics and tube emplacement.

  12. Analysis of microwave backscatter measured by radar altimeter on land to study surface aerodynamic roughness

    NASA Astrophysics Data System (ADS)

    Yang, Le; Liu, Qinhuo

    2012-10-01

    The aerodynamic surface roughness z0 is a key parameter for climate and land-surface models to study surfaceatmosphere exchanges of mass and energy. The roughness length is difficult to estimate without wind speed profile data, which is intractable at regional to global scale. Theoretical formulations of roughness have been developed in terms of canopy attributes such as frontal area, height, and drag coefficient. This paper discusses the potential of radar altimetry, which provides the backscatter coefficient of the land surface at nadir view, to characterise the surface roughness at km scale. The AIEM model and ProSARproSIM are employed to simulate the backscatter coefficient under different surface condition and different observation geometry at bare soil and at pine forest, respectively. The altimetry backscatter decreases with increase of geometric roughness. The microwave backscatter measured at the nadir view is more sensitive to the surface roughness than that at the oblique observation, especially for the smooth surface. The direct forest return is the dominated scattering mechanism for normal incidence at forest area. Since we failed to collect the z0 measurement at arid and semi-arid area with sparse vegetation, the backscatter measurements at Ku and C band of altimeter Jason1 were analyzed with the ground measured aerodynamic surface roughness at three vegetated sites (Da yekou, Yin ke, and Chang Baisan) of China. The relationships we found between Jason1 sigma0 and z0 is not significant, since Jason1 lost track seriously at the three sites. Further research using the altimeter data of Jason2 and Cryosat is possible to demonstrate the potential to map z0 from orbit using radar altimeters.

  13. Determination of ocean tides from the first year of TOPEX/POSEIDON altimeter measurements

    NASA Technical Reports Server (NTRS)

    Ma, X. C.; Shum, C. K.; Eanes, R. J.; Tapley, B. D.

    1994-01-01

    An improved geocentric global ocean tide model has been determined using 1 year of TOPEX/POSEIDON altimeter measurements to provide corrections to the Cartwright and Ray (1991) model (CR91). The corrections were determined on a 3 deg x 3 deg grid using both the harmonic analysis method and the response method. The two approaches produce similar solutions. The effect on the tide solution of simultaneously adjusting radial orbit correction parameters using altimeter measurements was examined. Four semidiurnal (N(sub 2), M(sub 2), S(sub 2) and K(sub 2)), four diurnal (Q(sdub 1), O(sub 1), P(sub 1), and K(sub 1)), and three long-period (S(sub sa), M(sub m), and M(sub f)) constituents, along with the variations at the annual frequency, were included in the harmomnic analysis solution. The observed annual variations represents the first global measurement describing accurate seasonal changes of the ocean during an El Nino year. The corrections to the M(sub 2) constituent have an root mean square (RMS) of 3.6 cm and display a clear banding pattern with regional highs and lows reaching 8 cm. The improved tide model reduces the weighted altimeter crossover residual from 9.8 cm RMS, when the CR91 tide model is used, to 8.2 cm on RMS. Comparison of the improved model to pelagic tidal constants determined from 80 tide gauges gives RMS differences of 2.7 cm for M(sub 2) and 1.7 cm for K(sub 1). Comparable values when the CR91 model is used are 3.9 cm and 2.0 cm, respectively. Examination of TOPEX/POSEIDON sea level anomaly variations using the new tide model further confirms that the tide model has been improved.

  14. The GLAS Algorithm Theoretical Basis Document for Precision Orbit Determination (POD)

    NASA Technical Reports Server (NTRS)

    Rim, Hyung Jin; Yoon, S. P.; Schultz, Bob E.

    2013-01-01

    The Geoscience Laser Altimeter System (GLAS) was the sole instrument for NASA's Ice, Cloud and land Elevation Satellite (ICESat) laser altimetry mission. The primary purpose of the ICESat mission was to make ice sheet elevation measurements of the polar regions. Additional goals were to measure the global distribution of clouds and aerosols and to map sea ice, land topography and vegetation. ICESat was the benchmark Earth Observing System (EOS) mission to be used to determine the mass balance of the ice sheets, as well as for providing cloud property information, especially for stratospheric clouds common over polar areas. The GLAS instrument operated from 2003 to 2009 and provided multi-year elevation data needed to determine changes in sea ice freeboard, land topography and vegetation around the globe, in addition to elevation changes of the Greenland and Antarctic ice sheets. This document describes the Precision Orbit Determination (POD) algorithm for the ICESat mission. The problem of determining an accurate ephemeris for an orbiting satellite involves estimating the position and velocity of the satellite from a sequence of observations. The ICESatGLAS elevation measurements must be very accurately geolocated, combining precise orbit information with precision pointing information. The ICESat mission POD requirement states that the position of the instrument should be determined with an accuracy of 5 and 20 cm (1-s) in radial and horizontal components, respectively, to meet the science requirements for determining elevation change.

  15. FPGA Sequencer for Radar Altimeter Applications

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.; Pollard, Brian D.; Chen, Curtis W.

    2011-01-01

    A sequencer for a radar altimeter provides accurate attitude information for a reliable soft landing of the Mars Science Laboratory (MSL). This is a field-programmable- gate-array (FPGA)-only implementation. A table loaded externally into the FPGA controls timing, processing, and decision structures. Radar is memory-less and does not use previous acquisitions to assist in the current acquisition. All cycles complete in exactly 50 milliseconds, regardless of range or whether a target was found. A RAM (random access memory) within the FPGA holds instructions for up to 15 sets. For each set, timing is run, echoes are processed, and a comparison is made. If a target is seen, more detailed processing is run on that set. If no target is seen, the next set is tried. When all sets have been run, the FPGA terminates and waits for the next 50-millisecond event. This setup simplifies testing and improves reliability. A single vertex chip does the work of an entire assembly. Output products require minor processing to become range and velocity. This technology is the heart of the Terminal Descent Sensor, which is an integral part of the Entry Decent and Landing system for MSL. In addition, it is a strong candidate for manned landings on Mars or the Moon.

  16. Bathymetric prediction from Seasat altimeter data

    NASA Technical Reports Server (NTRS)

    Dixon, T. H.; Naraghi, M.; Mcnutt, M. K.; Smith, S. M.

    1983-01-01

    The linear response function technique is used to analyze two 1300 km tracks of Seasat altimeter data and corresponding bathymetry in the Musician Seamounts region north of Hawaii. A predictive filter is developed which can operate on Seasat altimetry in poorly surveyed oceanic regions to indicate the presence of major bathymetric anomalies. Modelling of the bathymetry-geoid correlation in the Musician region is attempted using the elastic plate model. The flexural rigidity of the plate is not well constrained by the data but appears to be in the range 5 x 10 to the 21st N m up to 5 x 10 to the 22nd N m at the time of loading. Since the Musician Seamounts and the crust on which they lie are both Late Cretaceous in age, this value represents the effective flexural rigidity of very young lithosphere that was 'frozen in' at the time of volcanism. The modelling indicates that the general form of a predictive filter will strongly depend on various geologic parameters, especially the effective flexural rigidity.

  17. Comparative analysis of planetary laser ranging concepts

    NASA Astrophysics Data System (ADS)

    Dirkx, D.; Bauer, S.; Noomen, R.; Vermeersen, B. L. A.; Visser, P. N.

    2014-12-01

    Laser ranging is an emerging technology for tracking interplanetary missions, offering improved range accuracy and precision (mm-cm), compared to existing DSN tracking. The ground segment uses existing Satellite Laser Ranging (SLR) technology, whereas the space segment is modified with an active system. In a one-way system, such as that currently being used on the LRO spacecraft (Zuber et al., 2010), only an active detector is required on the spacecraft. For a two-way system, such as that tested by using the laser altimeter system on the MESSENGER spacecraft en route to Mercury (Smith et al., 2006), a laser transmitter system is additionally placed on the space segment, which will asynchronously fire laser pulses towards the ground stations. Although the one-way system requires less hardware, clock errors on both the space and ground segments will accumulate over time, polluting the range measurements. For a two-way system, the range measurements are only sensitive to clock errors integrated over the the two-way light time.We investigate the performance of both one- and two-way laser range systems by simulating their operation. We generate realizations of clock error time histories from Allan variance profiles, and use them to create range measurement error profiles. We subsequently perform the orbit determination process from this data to quanitfy the system's performance. For our simulations, we use two test cases: a lunar orbiter similar to LRO and a Phobos lander similar to the Phobos Laser Ranging concept (Turyshev et al., 2010). For the lunar orbiter, we include an empirical model for unmodelled non-gravitational accelerations in our truth model to include errors ihe dynamics. We include the estimation of clock parameters over a number of arc lengths for our simulations of the one-way range system and use a variety of state arc durations for the lunar orbiter simulations.We perform Monte Carlo simulations and generate true error distributions for both

  18. Impact of Altimeter Data Processing on Sea Level Studies

    PubMed Central

    Fernandes, M. Joana; Barbosa, Susana; Lázaro, Clara

    2006-01-01

    This study addresses the impact of satellite altimetry data processing on sea level studies at regional scale, with emphasis on the influence of various geophysical corrections and satellite orbit on the structure of the derived interannual signal and sea level trend. The work focuses on the analysis of TOPEX data for a period of over twelve years, for three regions in the North Atlantic: Tropical (0°≤φ≤25°), Sub-Tropical (25°≤φ≤50°) and Sub-Arctic (50°≤φ≤65°). For this analysis corrected sea level anomalies with respect to a mean sea surface model have been derived from the GDR-Ms provided by AVISO by applying various state-of-the-art models for the geophysical corrections. Results show that sea level trend determined from TOPEX altimetry is dependent on the adopted models for the major geophysical corrections. The main effects come from the sea state bias (SSB), and from the application or not of the inverse barometer (IB) correction. After an appropriate modelling of the TOPEX A/B bias, the two analysed SSB models induce small variations in sea level trend, from 0.0 to 0.2 mm/yr, with a small latitude dependence. The difference in sea level trend determined by a non IB-corrected series and an IB-corrected one has a strong regional dependence with large differences in the shape of the interannual signals and in the derived linear trends. The use of two different drift models for the TOPEX Microwave Radiometer (TMR) has a small but non negligible effect on the North Atlantic sea level trend of about 0.1 mm/yr. The interannual signals of sea level time series derived with the NASA and the CNES orbits respectively, show a small departure in the middle of the series, which has no impact on the derived sea level trend. These results strike the need for a continuous improvement in the modelling of the various effects that influence the altimeter measurement.

  19. Development of Software for a Lidar-Altimeter Processor

    NASA Technical Reports Server (NTRS)

    Rosenberg, Jacob S.; Trujillo, Carlos

    2005-01-01

    A report describes the development of software for a digital processor that operates in conjunction with a finite-impulse-response (FIR) chip in a spaceborne lidar altimeter. Processing is started by a laser-fire interrupt signal that is repeated at intervals of 25 ms. For the purpose of discriminating between returns from the ground and returns from such things as trees, buildings, and clouds, the software is required to scan digitized lidar-return data in reverse of the acquisition sequence in order to distinguish the last return pulse from within a commanded ground-return range window. The digitized waveform information within this range window is filtered through 6 matched filters, in the hardware electronics, in order to maximize the probability of finding echoes from sloped or rough terrain and minimize the probability of selecting cloud returns. From the data falling past the end of the range window, there is obtained a noise baseline that is used to calculate a threshold value for each filter. The data from each filter is analyzed by a complex weighting scheme and the filter with the greatest weight is selected. A region around the peak of the ground return pulse associated with the selected filter is placed in telemetry, as well as information on its location, height, and other characteristics. The software requires many uplinked parameters as input. Included in the report is a discussion of major software-development problems posed by the design of the FIR chip and the need for the software to complete its process within 20 ms to fit within the overall 25-ms cycle.

  20. Lasers.

    ERIC Educational Resources Information Center

    Schewe, Phillip F.

    1981-01-01

    Examines the nature of laser light. Topics include: (1) production and characteristics of laser light; (2) nine types of lasers; (3) five laser techniques including holography; (4) laser spectroscopy; and (5) laser fusion and other applications. (SK)

  1. Laser altimetry on Bepi Colombo

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Thomas, N.

    A consortium led by Physikalisches Institut, Universität Bern and the DLR Institut für Planetenforschung Berlin will be proposing a Laser Altimeter for the upcoming Bepi Colombo mission to Mercury. The Laser Altimeter will be measuring the figure of the planet to 10m accuracy and the topography to an accuracy of 1m with a grid spacing of a few hundred meter along-track. In addition, attempts will be made to measure the tidal deformation of the planet which, as calculations have shown, should be on the order of a meter. The Laser Altimeter data will also provide constraints on the surface roughness from the divergence of the reflected laser signal, terrain slopes, and the surface albedo. It is even possible that the Laser Altimeter may provide constraints on the possible existence of ice in permanently shaded craters near the poles. Here, the Laser Altimeter will profit from providing its own illumination source. The instrument will work synergetically with both the radio science experiment and the stereo camera on Bepi Colombo. The radio science experiment will measure the gravity field. The Laser Altimeter topography data will be used to correct these measurements for the effects of surface topography and thereby allow a more reliable assessment of the interior structure of the planet including the lateral variations of the crust thickness and of the core radius. The Laser Altmeter and the stereo camera will work together to provide an accurate digital terrain model. This model will be used to assess the morphology, the volcanism and the tectonics of the planet. Prominent features of the topography know to us today such as lobate scarps will be measured accurately and provide important constraints on the cooling history of the planet.

  2. The Accuracies of Smoothed SSH Fields and Geostrophic Velocity Estimates from the Tandem TOPEX/POSEIDON and Jason Altimeter Mission

    NASA Astrophysics Data System (ADS)

    Chelton, D. B.; Schlax, M. G.

    2002-12-01

    Jason-1 was launched on 7 December 2001 and the altimeter data record began on 15 January 2002. The Jason altimeter operated in phase with TOPEX/POSEIDON (T/P) for 7 months, sampling the same 10-day exact-repeat ground track 72 seconds ahead of T/P. On 15 August 2002, a series of maneuvers was initiated to shift T/P to a different 10-day exact-repeat orbit with ground tracks half way between the ground track pattern established during the first 10 years of the mission and continued with the Jason mission. The interleaved sampling pattern with evenly spaced ground tracks afforded by this coordinated tandem mission will enable scientific investigations that have not heretofore been possible. Examples include significant improvements in the understanding of the wavenumber-frequency spectral characteristics of sea surface height (SSH) variability and the effects of eddy Reynolds stresses on the slowly varying background currents. A prerequisite to such scientific studies is a quantitative assessment of the errors of SSH fields and geostrophic velocity estimates obtainable from the coordinated tandem T/P-Jason altimeter mission. The root mean squared (rms) errors of smoothed SSH fields constructed from the tandem dataset are more than a factor of two smaller than those obtainable from T/P or Jason data alone. The rms errors of each geostrophic velocity component estimated by the parallel-track method with this track spacing are larger than 80% of the signal standard deviation between latitudes 10° and 45°, even with residual orbit errors as small as 1 cm. With suitable along-track smoothing, the rms errors of crossover estimates of both geostrophic velocity components are smaller than 30% of the signal standard deviation between latitudes 5° and 60°. The quadrupling of the number of crossovers from the sampling pattern of the tandem T/P-Jason mission compared with what is obtained from a single altimeter will greatly enhance the ability to investigate eddy-mean flow

  3. TOPEX Project Radar Altimeter Development Requirements and Specifications, Version 6.0

    NASA Technical Reports Server (NTRS)

    Rossi, Laurence C.

    2003-01-01

    This document provides the guidelines by which the TOPEX Radar Altimeter hardware development effort for the TOPEX flight project shall be implemented and conducted. The conduct of this activity shall take maximum advantage of the efforts expended during the TOPEX Radar Altimeter Advanced Technology Model development program and other related Radar Altimeter development efforts. This document complies with the TOPEX Project Office document 633-420 (D-2218), entitled, "TOPEX Project Requirements and Constraints for the NASA Radar Altimeter" dated December 1987.

  4. Radar altimeter waveform modeled parameter recovery. [SEASAT-1 data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Satellite-borne radar altimeters include waveform sampling gates providing point samples of the transmitted radar pulse after its scattering from the ocean's surface. Averages of the waveform sampler data can be fitted by varying parameters in a model mean return waveform. The theoretical waveform model used is described as well as a general iterative nonlinear least squares procedures used to obtain estimates of parameters characterizing the modeled waveform for SEASAT-1 data. The six waveform parameters recovered by the fitting procedure are: (1) amplitude; (2) time origin, or track point; (3) ocean surface rms roughness; (4) noise baseline; (5) ocean surface skewness; and (6) altitude or off-nadir angle. Additional practical processing considerations are addressed and FORTRAN source listing for subroutines used in the waveform fitting are included. While the description is for the Seasat-1 altimeter waveform data analysis, the work can easily be generalized and extended to other radar altimeter systems.

  5. The evolutionary trend in airborne and satellite radar altimeters

    NASA Technical Reports Server (NTRS)

    Fedor, L. S.; Walsh, E. J.

    1984-01-01

    The manner in which airborne and satellite radar altimeters developed and where the trend is leading was investigated. The airborne altimeters have progressed from a broad beamed, narrow pulsed, nadir looking instrument, to a pulse compressed system that is computer controlled, to a scanning pencil beamed system which produce a topographic map of the surface beneath the aircraft in real time. It is suggested that the airborne systems lie in the use of multiple frequencies. The satellite altimeters evolve towards multifrequency systems with narrower effective pulses and higher pulse compression ratios to reduce peak transmitted power while improving resolution. Applications indicate wide swath systems using interferometric techniques or beam limited systems using 100 m diameter antennas.

  6. The Multiple Altimeter Beam Experimental Lidar (MABEL), an Airborne Simulator for the ICESat-2 Mission

    NASA Technical Reports Server (NTRS)

    McGill, Matthew; Markus, Thorsten; Scott, V. Stanley; Neumann, Thomas

    2012-01-01

    The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission is currently under development by NASA. The primary mission of ICESat-2 will be to measure elevation changes of the Greenland and Antarctic ice sheets, document changes in sea ice thickness distribution, and derive important information about the current state of the global ice coverage. To make this important measurement, NASA is implementing a new type of satellite-based surface altimetry based on sensing of laser pulses transmitted to, and reflected from, the surface. Because the ICESat-2 measurement approach is different from that used for previous altimeter missions, a high-fidelity aircraft instrument, the Multiple Altimeter Beam Experimental Lidar (MABEL), was developed to demonstrate the measurement concept and provide verification of the ICESat-2 methodology. The MABEL instrument will serve as a prototype for the ICESat-2 mission and also provides a science tool for studies of land surface topography. This paper outlines the science objectives for the ICESat-2 mission, the current measurement concept for ICESat-2, and the instrument concept and preliminary data from MABEL.

  7. NASA Ocean Altimeter Pathfinder Project. Report 1; Data Processing Handbook

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.; Beckley, Brian D.; Ray, Richard D.; Wang, Yan-Ming; Tsaoussi, Lucia; Brenner, Anita; Williamson, Ron

    1998-01-01

    The NOAA/NASA Pathfinder program was created by the Earth Observing System (EOS) Program Office to determine how satellite-based data sets can be processed and used to study global change. The data sets are designed to be long time-sedes data processed with stable calibration and community consensus algorithms to better assist the research community. The Ocean Altimeter Pathfinder Project involves the reprocessing of all altimeter observations with a consistent set of improved algorithms, based on the results from TOPEX/POSEIDON (T/P), into easy-to-use data sets for the oceanographic community for climate research. This report describes the processing schemes used to produce a consistent data set and two of the products derived f rom these data. Other reports have been produced that: a) describe the validation of these data sets against tide gauge measurements and b) evaluate the statistical properties of the data that are relevant to climate change. The use of satellite altimetry for earth observations was proposed in the early 1960s. The first successful space based radar altimeter experiment was flown on SkyLab in 1974. The first successful satellite radar altimeter was flown aboard the Geos-3 spacecraft between 1975 and 1978. While a useful data set was collected from this mission for geophysical studies, the noise in the radar measured and incomplete global coverage precluded ft from inclusion in the Ocean Altimeter Pathfinder program. This program initiated its analysis with the Seasat mission, which was the first satellite radar altimeter flown for oceanography.

  8. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  9. The S-193 radar altimeter experiment. [onboard Skylab for earth surface profile measurement

    NASA Technical Reports Server (NTRS)

    Mcgoogan, J. T.; Miller, L. S.; Brown, G. S.; Hayne, G. S.

    1974-01-01

    The Skylab S-193 altimeter experiment utilizes a 10- and 100-ns pulse length, 13.9-GHz earth-pointed radar system to obtain earth-surface backscatter measurements from the Skylab spacecraft. Objectives of the experiment are to obtain precision measurements of surface profile for uses in geodesy, oceanography, and earth physics, and to measure radar-signal characteristics from an earth-orbit geometry to provide design information for future radar remote-sensors. The technical approach is that of measuring the power impulse response of the scattering surface. The hardware is designed to operate in five modes: waveform or impulse-response measurement and altitude determination; radar cross-section experiment; signal correlation experiment; 10-nsec pulse-compression evaluation; and nadir-seeker experiment.

  10. C-band station coordinate determination for the Geos-C altimeter calibration area

    NASA Technical Reports Server (NTRS)

    Klosko, S. M.; Krabill, W. B.

    1974-01-01

    Dynamical orbital techniques were employed to estimate the center-of-mass station coordinates of six C-band radars located in the designated primary Geos-C radar altimeter calibration area. This work was performed in support of the planned Geos-C mission (December 1974 launch). The sites included Bermuda, Grand Turk, Antigua, Wallops Island (Virginia), and Merritt Island (Florida). Two sites were estimated independently at Wallops Island yielding better than 40 cm relative height recovery, with better than 10 cm and 1m (relative) recovery for phi and lambda, respectively. The tracking data used in this analysis were taken during 1969 when the radars tracked the Geos-II transponder. In all, over 120 passes of data were used. Range biases were estimated. Error analysis and comparisons with other investigators indicate that better than 2m (1 sigma) relative recovery has been achieved at all sites.

  11. On the wave number spectrum of oceanic mesoscale variability observed by the SEASAT altimeter

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.

    1983-01-01

    The wave number spectrum of mesoscale variability in various parts of the oceans is computed on the basis of sea surface height variations measured by the SEASAT altimeter in nearly repeat orbits during the last 24 days of its mission, and it is noted that oceanic spectrum characteristics are dependent on the energy level of the mesoscale variability. On the basis of an assumed horizontal isotropy of mesoscale variability, scalar-wave number spectra of sea surface height and geostrophic kinetic energy are presented and the dynamical implications of these spectra are discussed. A rigorous examination of the effects of residual geoid and atmospheric water vapor on the computed oceanic spectra indicates that the general characteristics of the spectra were not significantly affected by them.

  12. Operation of a Radar Altimeter over the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Grund, Matthew D.

    1996-01-01

    This thesis presents documentation for the Advanced Application Flight Experiment (AAFE) pulse compression radar altimeter and its role in the NASA Multisensor Airborne Altimetry Experiment over Greenland in 1993. The AAFE Altimeter is a Ku-band microwave radar which has demonstrated 14 centimeter range precision in operation over arctic ice. Recent repairs and improvements were required to make the Greenland missions possible. Transmitter, receiver and software modifications, as well as the integration of a GPS receiver are thoroughly documented. Procedures for installation, and operation of the radar are described. Finally, suggestions are made for further system improvements.

  13. The Lunar Laser Ranging Experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information.

    PubMed

    Bender, P L; Currie, D G; Poultney, S K; Alley, C O; Dicke, R H; Wilkinson, D T; Eckhardt, D H; Faller, J E; Kaula, W M; Mulholland, J D; Plotkin, H H; Silverberg, E C; Williams, J G

    1973-10-19

    The lunar ranging measurements now being made at the McDonald Observatory have an accuracy of 1 nsec in round-trip travel time. This corresponds to 15 cm in the one-way distance. The use of lasers with pulse-lengths of less than 1 nsec is expected to give an accuracy of 2 to 3 cm in the next few years. A new station is under construction in Hawaii, and additional stations in other countries are either in operation or under development. It is hoped that these stations will form the basis for a worldwide network to determine polar motion and earth rotation on a regular basis, and will assist in providing information about movement of the tectonic plates making up the earth's surface. Several mobile lunar ranging stations with telescopes having diameters of 1.0 m or less could, in the future, greatly extend the information obtainable about motions within and between the tectonic plates. The data obtained so far by the McDonald Observatory have been used to generate a new lunar ephemeris based on direct numerical integration of the equations of motion for the moon and planets. With this ephemeris, the range to the three Apollo retro-reflectors can be fit to an accuracy of 5 m by adjusting the differences in moments of inertia of the moon about its principal axes, the selenocentric coordinates of the reflectors, and the McDonald longitude. The accuracy of fitting the results is limited currently by errors of the order of an arc second in the angular orientation of the moon, as derived from the best available theory of how the moon rotates in response to the torques acting on it. Both a new calculation of the moon's orientation as a function of time based on direct numerical integration of the torque equations and a new analytic theory of the moon's orientation are expected to be available soon, and to improve considerably the accuracy of fitting the data. The accuracy already achieved routinely in lunar laser ranging represents a hundredfold improvement over any

  14. The Lunar Laser Ranging Experiment: Accurate ranges have given a large improvement in the lunar orbit and new selenophysical information.

    PubMed

    Bender, P L; Currie, D G; Poultney, S K; Alley, C O; Dicke, R H; Wilkinson, D T; Eckhardt, D H; Faller, J E; Kaula, W M; Mulholland, J D; Plotkin, H H; Silverberg, E C; Williams, J G

    1973-10-19

    The lunar ranging measurements now being made at the McDonald Observatory have an accuracy of 1 nsec in round-trip travel time. This corresponds to 15 cm in the one-way distance. The use of lasers with pulse-lengths of less than 1 nsec is expected to give an accuracy of 2 to 3 cm in the next few years. A new station is under construction in Hawaii, and additional stations in other countries are either in operation or under development. It is hoped that these stations will form the basis for a worldwide network to determine polar motion and earth rotation on a regular basis, and will assist in providing information about movement of the tectonic plates making up the earth's surface. Several mobile lunar ranging stations with telescopes having diameters of 1.0 m or less could, in the future, greatly extend the information obtainable about motions within and between the tectonic plates. The data obtained so far by the McDonald Observatory have been used to generate a new lunar ephemeris based on direct numerical integration of the equations of motion for the moon and planets. With this ephemeris, the range to the three Apollo retro-reflectors can be fit to an accuracy of 5 m by adjusting the differences in moments of inertia of the moon about its principal axes, the selenocentric coordinates of the reflectors, and the McDonald longitude. The accuracy of fitting the results is limited currently by errors of the order of an arc second in the angular orientation of the moon, as derived from the best available theory of how the moon rotates in response to the torques acting on it. Both a new calculation of the moon's orientation as a function of time based on direct numerical integration of the torque equations and a new analytic theory of the moon's orientation are expected to be available soon, and to improve considerably the accuracy of fitting the data. The accuracy already achieved routinely in lunar laser ranging represents a hundredfold improvement over any

  15. Lidar Altimeter Measurements of Canopy Structure: Methods and Validation for Closed Canopy, Broadleaf Forests

    NASA Technical Reports Server (NTRS)

    Harding, D. J.; Lefsky, M. A.; Parker, G. G.; Blair, J. B.

    1999-01-01

    Lidar altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne lidar altimeter data was acquired using the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) for a successional sequence of four, closed-canopy, deciduous forest stands in eastern Maryland. The four stands were selected so as to include a range of canopy structures of importance to forest ecosystem function, including variation in the height and roughness of the outer-most canopy surface and the vertical organization of canopy stories and gaps. The character of the SLICER backscatter signal is described and a method is developed that accounts for occlusion of the laser energy by canopy surfaces, transforming the backscatter signal to a canopy height profile (CHP) that quantitatively represents the relative vertical distribution of canopy surface area. The transformation applies an increased weighting to the backscatter amplitude as a function of closure through the canopy and assumes a horizontally random distribution of the canopy components. SLICER CHPs, averaged over areas of overlap where lidar ground tracks intersect, are shown to be highly reproducible. CHP transects across the four stands reveal spatial variations in vegetation, at the scale of the individual 10 m diameter laser footprints, within and between stands. Averaged SLICER CHPs are compared to analogous height profile results derived from ground-based sightings to plant intercepts measured on plots within the four stands. Tbe plots were located on the segments of the lidar ground tracks from which averaged SLICER CHPs were derived, and the ground observations were acquired within two weeks of the SLICER data acquisition to minimize temporal change. The differences in canopy structure between the four stands is similarly described by the SLICER and ground-based CHP results, however a Chi-square test of similarity

  16. A next generation altimeter for mapping the sea surface height variability: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Fu, Lee-Lueng; Morrow, Rosemary

    2016-07-01

    The global observations of the sea surface height (SSH) have revolutionized oceanography since the beginning of precision radar altimetry in the early 1990s. For the first time we have continuous records of SSH with spatial and temporal sampling for detecting the global mean sea level rise, the waxing and waning of El Niño, and the ocean circulation from gyres to ocean eddies. The limit of spatial resolution of the present constellation of radar altimeters in mapping SSH variability is approaching 100 km (in wavelength) with 3 or more simultaneous altimetric satellites in orbit. At scales shorter than 100 km, the circulation contains substantial amount of kinetic energy in currents, eddies and fronts that are responsible for the stirring and mixing of the ocean, especially from the vertical exchange of the upper ocean with the deep. A mission currently in development will use the technique of radar interferometry for making high-resolution measurement of the height of water over the ocean as well as on land. It is called Surface Water and Ocean Topography (SWOT), which is a joint mission of US NASA and French CNES, with contributions from Canada and UK. SWOT promises the detection of SSH at scales approaching 15 km, depending on the sea state. SWOT will make SSH measurement over a swath of 120 km with a nadir gap of 20 km in a 21-day repeat orbit. A conventional radar altimeter will provide measurement along the nadir. This is an exploratory mission with applications in oceanography and hydrology. The increased spatial resolution offers an opportunity to study ocean surface processes to address important questions about the ocean circulation. However, the limited temporal sampling poses challenges to map the evolution of the ocean variability that changes rapidly at the small scales. The measurement technique and the development of the mission will be presented with emphasis on its science program with outlook on the opportunities and challenges.

  17. Basin-scale variability in the Labrador Sea from TOPEX/POSEIDON and Geosat altimeter data

    NASA Astrophysics Data System (ADS)

    Han, Guoqi; Ikeda, Moto

    1996-12-01

    The TOPEX/POSEIDON altimeter data and the Geosat altimeter data from the Exact Repeat Mission (ERM) have been analyzed to show the basin-scale features of annual sea surface height anomalies in the Labrador Sea. A complex empirical orthogonal function (CEOF) analysis is used to extract spatial and temporal patterns of altimetric sea surface height anomalies. The analysis of TOPEX/POSEIDON data has revealed that the first eigenmode has an annual variation with amplitudes of ˜5 cm, positive in summer and negative in winter. The Geosat data analysis implies similar results but shows only the sea surface height variabilities relative to those of the subtropical gyre circulation and the North Atlantic Current due to an orbit error correction. The steric height anomalies of the climatological monthly-mean Levitus data and the sea surface height anomalies of a wind-driven barotropic model are also analyzed using the CEOF technique. The annual cycle in the Levitus data, dominated by thermal expansion, has an amplitude of ˜4 cm and is nearly in phase with the TOPEX/POSEIDON data. The wind-driven annual signal is approximately in phase with the TOPEX/POSEIDON and Levitus data, but its amplitude is less than ˜1 cm. A correlation analysis suggests that the basin-scale features deduced from TOPEX/POSEIDON data are dominated by the steric height variability of the Levitus data, supplemented to much less extent by the wind-driven response of the barotropic model. The Geosat results are found to represent the steric effect only. It is modified by the orbit error correction so much that the phase changes by 180°.

  18. Validating NASA's Airborne Multikilohertz Microlaser Altimeter (Microaltimeter) by Direct Comparison of Data Taken Over Ocean City, Maryland Against an Existing Digital Elevation Model

    NASA Technical Reports Server (NTRS)

    Abel, Peter

    2003-01-01

    NASA's Airborne Multikilohertz Microlaser Altimeter (Microaltimeter) is a scanning, photon-counting laser altimeter, which uses a low energy (less than 10 microJuoles), high repetition rate (approximately 10 kHz) laser, transmitting at 532 nm. A 14 cm diameter telescope images the ground return onto a segmented anode photomultiplier, which provides up to 16 range returns for each fire. Multiple engineering flights were made during 2001 and 2002 over the Maryland and Virginia coastal area, all during daylight hours. Post-processing of the data to geolocate the laser footprint and determine the terrain height requires post- detection Poisson filtering techniques to extract the actual ground returns from the noise. Validation of the instrument's ability to produce accurate terrain heights will be accomplished by direct comparison of data taken over Ocean City, Maryland with a Digital Elevation Model (DEM) of the region produced at Ohio State University (OSU) from other laser altimeter and photographic sources. The techniques employed to produce terrain heights from the Microaltimeter ranges will be shown, along with some preliminary comparisons with the OSU DEM.

  19. Ionospheric calibration for single frequency altimeter measurements

    NASA Astrophysics Data System (ADS)

    Schreiner, William S.; Born, George H.

    1993-08-01

    This report investigates the potential of using Global Positioning System (GPS) data and a model of the ionosphere to supply a measure of the sub-satellite Total Electron Current (TEC) of the required accuracy (10 TECU rms) for the purpose of calibrating single frequency radar altimeter measurements. Since climatological (monthly mean) models are known to be in error by as much as 50 percent, this work focused on the Parameterized Real-Time Ionospheric Specification Model (PRISM) which has the capability to improve model accuracy by ingesting (adjusting to) in situ ionospheric measurements. A set of globally distributed TEC measurements were generated using GPS data and were used as input to improve the accuracy of the PRISM model. The adjusted PRISM TEC values were compared to TOPEX dual frequency TEC measurements (which are considered truth) for a number of TOPEX sub-satellite tracks. The adjusted PRISM values generally compared to the TOPEX measurements within the 10 TECU accuracy requirements when the sub-satellite track passed within 300 to 400 km of the GPS TEC data or when the track passed through a night time ionosphere. However, when the sub-satellite points were greater than 300 to 400 km away from the GPS TEC data or when a local noon ionosphere was sampled, the adjusted PRISM values generally differed by greater than 10 TECU rms with data excursions from the TOPEX TEC measurements of as much as 40 TECU (an 8 cm path delay error at K band). Therefore, it can be concluded from this analysis that an unrealistically large number of GPS stations would be needed to predict sub-satellite TEC at the 10 TECU level in the day time ionosphere using a model such as PRISM. However, a technique currently being studied at the Jet Propulsion Laboratory (JPL) may provide a means of supplying adequate TEC data to meet the 10 TECU ionospheric correction accuracy when using a realistic number of ionospheric stations. This method involves using global GPS TEC data to

  20. Ionospheric calibration for single frequency altimeter measurements

    NASA Technical Reports Server (NTRS)

    Schreiner, William S.; Born, George H.

    1993-01-01

    This report investigates the potential of using Global Positioning System (GPS) data and a model of the ionosphere to supply a measure of the sub-satellite Total Electron Current (TEC) of the required accuracy (10 TECU rms) for the purpose of calibrating single frequency radar altimeter measurements. Since climatological (monthly mean) models are known to be in error by as much as 50 percent, this work focused on the Parameterized Real-Time Ionospheric Specification Model (PRISM) which has the capability to improve model accuracy by ingesting (adjusting to) in situ ionospheric measurements. A set of globally distributed TEC measurements were generated using GPS data and were used as input to improve the accuracy of the PRISM model. The adjusted PRISM TEC values were compared to TOPEX dual frequency TEC measurements (which are considered truth) for a number of TOPEX sub-satellite tracks. The adjusted PRISM values generally compared to the TOPEX measurements within the 10 TECU accuracy requirements when the sub-satellite track passed within 300 to 400 km of the GPS TEC data or when the track passed through a night time ionosphere. However, when the sub-satellite points were greater than 300 to 400 km away from the GPS TEC data or when a local noon ionosphere was sampled, the adjusted PRISM values generally differed by greater than 10 TECU rms with data excursions from the TOPEX TEC measurements of as much as 40 TECU (an 8 cm path delay error at K band). Therefore, it can be concluded from this analysis that an unrealistically large number of GPS stations would be needed to predict sub-satellite TEC at the 10 TECU level in the day time ionosphere using a model such as PRISM. However, a technique currently being studied at the Jet Propulsion Laboratory (JPL) may provide a means of supplying adequate TEC data to meet the 10 TECU ionospheric correction accuracy when using a realistic number of ionospheric stations. This method involves using global GPS TEC data to

  1. On an assessment of surface roughness estimates from lunar laser altimetry pulse-widths for the Moon from LOLA using LROC narrow-angle stereo DTMs.

    NASA Astrophysics Data System (ADS)

    Muller, Jan-Peter; Poole, William

    2013-04-01

    Neumann et al. [1] proposed that laser altimetry pulse-widths could be employed to derive "within-footprint" surface roughness as opposed to surface roughness estimated from between laser altimetry pierce-points such as the example for Mars [2] and more recently from the 4-pointed star-shaped LOLA (Lunar reconnaissance Orbiter Laser Altimeter) onboard the NASA-LRO [3]. Since 2009, the LOLA has been collecting extensive global laser altimetry data with a 5m footprint and ?25m between the 5 points in a star-shape. In order to assess how accurately surface roughness (defined as simple RMS after slope correction) derived from LROC matches with surface roughness derived from LOLA footprints, publicly released LROC-NA (LRO Camera Narrow Angle) 1m Digital Terrain Models (DTMs) were employed to measure the surface roughness directly within each 5m footprint. A set of 20 LROC-NA DTMs were examined. Initially the match-up between the LOLA and LROC-NA orthorectified images (ORIs) is assessed visually to ensure that the co-registration is better than the LOLA footprint resolution. For each LOLA footprint, the pulse-width geolocation is then retrieved and this is used to "cookie-cut" the surface roughness and slopes derived from the LROC-NA DTMs. The investigation which includes data from a variety of different landforms shows little, if any correlation between surface roughness estimated from DTMs with LOLA pulse-widths at sub-footprint scale. In fact there is only any perceptible correlation between LOLA and LROC-DTMs at baselines of 40-60m for surface roughness and 20m for slopes. [1] Neumann et al. Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness. Geophysical Research Letters (2003) vol. 30 (11), paper 1561. DOI: 10.1029/2003GL017048 [2] Kreslavsky and Head. Kilometer-scale roughness of Mars: results from MOLA data analysis. J Geophys Res (2000) vol. 105 (E11) pp. 26695-26711. [3] Rosenburg et al. Global surface slopes and roughness of the

  2. The importance of altimeter and scatterometer data for ocean prediction

    NASA Technical Reports Server (NTRS)

    Hurlburt, H. E.

    1984-01-01

    The prediction of ocean circulation using satellite altimeter data is discussed. Three classes of oceanic response to atmospheric forcing are outlined and examined. Storms, surface waves, eddies, and ocean currents were evaluated in terms of forecasting time requirements. Scatterometer and radiometer applications to ocean prediction are briefly reviewed.

  3. Altimeter Data for Operational Use in the Marine Environment

    NASA Technical Reports Server (NTRS)

    Digby, Susan; Antczak, Thomas; Leben, Robert; Born, George; Barth, Suzanne; Cheney, Robert; Foley, David; Goni, Gustavo Jorge; Jacobs, Gregg; Shay, Nick

    1999-01-01

    TOPEX/Poseidon has been collecting altimeter data continuously since October 1992. Altimeter data have been used to produce maps of sea surface height, geostrophic velocity, significant wave height, and wind speed. This information is of proven use to mariners as well as to the scientific community. Uses of the data include commercial and recreational vessel routing, ocean acoustics, input to geographic information systems developed for the fishing industry, identification of marine mammal habitats, fisheries management, and monitoring ocean debris. As with sea surface temperature data from the Advanced Very High Resolution Radiometer (AVHRR) in the late 1980s and early 1990s, altimeter data from TOPEX/Poseidon and ERS-1 and -2 are in the process of being introduced to the marine world for operational maritime use. It is anticipated that over the next few years companies that specialize in producing custom products for shipping agencies, fisheries and yacht race competitors will be incorporating altimeter data into their products. The data are also being incorporated into weather and climate forecasts by operational agencies both in the US and Europe. This paper will discuss these products, their uses, operational demonstrations and means of accessing the data.

  4. Satellite Laser Ranging in the 1990s: Report of the 1994 Belmont Workshop

    NASA Technical Reports Server (NTRS)

    Degnan, John J. (Editor)

    1994-01-01

    An international network of 43 stations in 30 countries routinely collects satellite ranging data which is used to study the solid Earth and its interactions with the oceans, atmosphere, and Moon. Data products include centimeter accuracy site positions on a global scale, tectonic plate motions, regional crustal deformation, long wavelength gravity field and geoid, polar motion, and variations in the Earth's spin rate. By calibrating and providing precise orbits for spaceborne microwave altimeters, satellite laser ranging also enables global measurement of sea and ice surface topography, mean sea level, global ocean circulation, and short wavelength gravity fields and marine geoids. It provides tests of general relativity and a means or subnanosecond time transfer. This workshop was convened to define future roles and directions in satellite laser ranging.

  5. C-band station coordinate determination for the GEOS-C altimeter calibration area

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Klosko, S. M.

    1974-01-01

    Dynamical orbital techniques were employed to estimate the center-of-mass station coordinates of six C-band radars located in the designated primary GEOS-C radar altimeter calibration area. This work was performed in support of the planned GEOS-C mission (December, 1974 launch). The sites included Bermuda, Grand Turk, Antigua, Wallops Island (Virginia), and Merritt Island (Florida). Two sites were estimated independently at Wallops Island yielding better than 40 cm relative height recovery, with better than 10 cm and 1 m (relative) recovery for phi and gamma respectively. Error analysis and comparisons with other investigators indicate that better than 2 m relative recovery was achieved at all sites. The data used were exclusively that from the estimated sites and included 18 orbital arcs which were less than two orbital revolutions in length, having successive tracks over the area. The techniques employed here, given their independence of global tracking support, can be effectively employed to improve various geodetic datums by providing very long and accurate baselines. The C-band data taken on GEOS-C should be employed to improve such geodetic datums as the European-1950 using similar techniques.

  6. Space Shuttle Orbiter entry through landing navigation

    NASA Technical Reports Server (NTRS)

    Ewell, J. J., Jr.

    1982-01-01

    The Space Shuttle Orbiter navigation system must be capable of determining its position and velocity throughout a variety of operational regimes. The design and operation of the entry through landing navigation system is described as it operates during a nominal end of mission from the orbital coasting phase throughout atmospheric flight and landing. Design and operation of the Kalman filter is described. Stabilization of the altitude channel prior to acquisition of external measurement data is described. Utilization of the Tactical Air Navigation (TACAN), barometric altimeter, and Microwave Scan Beam Landing System external measurement data is described. A comparison is made between predicted performance and the navigation accuracy observed during flight.

  7. Space rocket engine on the base of the reactor-pumped laser for the interplanetary flights and earth orbital applications

    NASA Astrophysics Data System (ADS)

    Gulevich, Andrey V.; Dyachenko, Peter P.; Kukharchuk, Oleg F.; Zrodnikov, Anatoly V.

    2000-01-01

    In this report the concept of vehicle-based reactor-laser engine for long time interplanetary and interorbital (LEO to GEO) flights is proposed. Reactor-pumped lasers offer the perspective way to create on the base of modern nuclear and lasers technologies the low mass and high energy density, repetitively pulsed vehicle-based laser of average power 100 kW. Nowadays the efficiency of nuclear-to-optical energy conversion reached the value of 2-3%. The demo model of reactor-pumped laser facility is under construction in Institute for Physics and Power Engineering (Obninsk, Russia). It enable us to hope that using high power laser on board of the vehicle could make the effective space laser engine possible. Such engine may provide the high specific impulse ~1000-2000 s with the thrust up to 10-100 n. Some calculation results of the characteristics of vehicle-based reactor-laser thermal engine concept are also presented. .

  8. Validating the satellite altimeter sea level climate record

    NASA Astrophysics Data System (ADS)

    Watson, C. S.; White, N. J.; Church, J. A.; King, M. A.; Burgette, R. J.

    2013-12-01

    The global tide gauge network has long been used to provide an independent validation of trends in global mean sea level (GMSL), as observed using satellite altimetry. The process involves forming the difference between altimeter and tide gauge derived sea surface heights, at many comparison points, effectively increasing degrees of freedom and allowing the precise estimation of bias drift in the evolving altimeter climate record. Central to the technique is the mitigation of residual tidal energy between the tide gauge and comparison point, as well as accounting for vertical land motion (VLM) of the tide gauge. Validation of the climate data record remains particularly important in the lead up to the launch of Jason-3, next in the series of Jason-class precision altimeters. We present the development of a refined validation strategy that is insensitive to outliers such as sites affected by earthquakes or unresolved datum changes, and not overly influenced by any specific small subset of sites in the network. We assess the sensitivity of the technique to a range of processing strategies used to mitigate effects such as the influence of tides and across track gradients in sea surface height. The effects of introducing a new GPS-derived vertical land movement correction for TGs are also investigated. We apply our preferred bias drift estimation strategy to investigate a number of variants in altimeter datasets across TOPEX, Jason-1 and OSTM/Jason-2, all derived from standard geophysical data records (GDR) and commonly used within the literature to estimate trends in GMSL. Results suggest subtle differences in bias drift between different altimeter datasets, with implications approaching the 1 mm/yr level for parts of the climate data record depending on the chosen dataset.

  9. Space Shuttle Orbiter descent navigation

    NASA Technical Reports Server (NTRS)

    Montez, M. N.; Madden, M. F.

    1982-01-01

    The entry operational sequence (OPS 3) begins approximately 2 hours prior to the deorbit maneuver and continues through atmospheric entry, terminal area energy management (TAEM), approach and landing, and rollout. During this flight phase, the navigation state vector is estimated by the Space Shuttle Orbiter onboard navigation system. This estimate is computed using a six-element sequential Kalman filter, which blends inertial measurement unit (IMU) delta-velocity data with external navaid data. The external navaids available to the filter are tactical air navigation (TACAN), barometric altimeter, and microwave scan beam landing system (MSBLS). Attention is given to the functional design of the Orbiter navigation system, the descent navigation sensors and measurement processing, predicted Kalman gains, correlation coefficients, and current flights navigation performance.

  10. Simultaneous determination of global topography, tidal Love number and libration amplitude of Mercury by laser altimetry

    NASA Astrophysics Data System (ADS)

    Koch, Christian; Christensen, Ulrich; Kallenbach, Reinald

    2008-07-01

    Solar tidal forces generate elevation changes of Mercury's surface of the order 1 m within one Hermean year, and solar torques on the non-symmetric permanent mass distribution of the planet cause an uneven rotation of Mercury's surface with a libration amplitude of the order of 40 arcsec. Knowledge of the precise reaction of the planet to tidal forcing, expressed by the Love numbers h2 and k2, as well as accurate knowledge of the amplitude of forced libration Φlib, puts constraints on the internal structure, for example the state and the size of the core. The MESSENGER and BepiColombo missions to Mercury carry laser altimeters, whose primary goal is to accurately map the topography. Here we investigate if the Love number h2 and the amplitude of forced libration can be determined together with the static topography of the planet from a global altimetry record. We do this by creating synthetic altimeter data for the nominal orbit of BepiColombo over the nominal mission duration of approximately four Mercury years and inverting them for the static and time-dependent parts of the topography. We assume purely Gaussian noise. We find that it is possible to extract both parameters h2 and Φlib with an accuracy of approximately 10%, while the static topography coefficients of a spherical harmonic expansion can be determined simultaneously with an accuracy at the centimetre level. Extraction of the static topography to higher harmonic degrees improves the precision of the measurement of h2 and Φlib. The simulation results demonstrate that it seems feasible to test current models on Mercury's interior with sufficient precision using BepiColombo Laser Altimeter data.

  11. Visualization of atom's orbits.

    PubMed

    Kim, Byungwhan

    2014-02-01

    High-resolution imaging techniques have been used to obtain views of internal shapes of single atoms or columns of atoms. This review article focuses on the visualization of internal atomic structures such as the configurations of electron orbits confined to atoms. This is accomplished by applying visualization techniques to the reported images of atoms or molecules as well as static and dynamic ions in a plasma. It was found that the photon and electron energies provide macroscopic and microscopic views of the orbit structures of atoms, respectively. The laser-imaged atoms showed a rugged orbit structure, containing alternating dark and bright orbits believed to be the pathways for an externally supplied laser energy and internally excited electron energy, respectively. By contrast, the atoms taken by the electron microscopy provided a structure of fine electron orbits, systematically formed in increasing order of grayscale representing the energy state of an orbit. This structure was identical to those of the plasma ions. The visualized electronic structures played a critical role in clarifying vague postulates made in the Bohr model. Main features proposed in the atomic model are the dynamic orbits absorbing an externally supplied electromagnetic energy, electron emission from them while accompanying light radiation, and frequency of electron waves not light. The light-accompanying electrons and ionic speckles induced by laser light signify that light is composed of electrons and ions.

  12. Strategies for estimating the marine geoid from altimeter data

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Kahn, W. D.; Garza-Robles, R.

    1974-01-01

    In processing altimeter data from a spacecraft borne altimeter to estimate the fine structure of the marine geoid, a problem is encountered. In order to describe the geoid fine structure, a large number of parameters must be employed and it is not possible to simultaneously estimate all of them. Unless the parameterization exhibits good orthogonality in the data, serious aliasing results. From simulation studies it has been found that amongst several competing parameterizations, the mean free air gravity anomaly model (i.e., Stokes' formula) exhibited promising geoid recovery characteristics. Using covariance analysis techniques, this report provides quantitative measures of the orthogonality properties associated with the above mentioned parameterization. It has been determined that a 5 deg x 5 deg area mean free air gravity anomaly can be estimated with an uncertainty of 1 mgal (40 cm undulation) provided that all free air gravity anomalies within a spherical radius of 10 arc degrees are simultaneously estimated.

  13. Satellite Altimeter Observations of Black Sea Level Variations

    NASA Technical Reports Server (NTRS)

    Korotaev, G. K.; Saenko, O. A.; Koblinsky, C. J.

    1998-01-01

    Satellite altimeter data from TOPEX/POSEIDON and ERS-1 are used to examine seasonal and mesoscale variability of the Black Sea level. Consistent processing procedures of the altimeter measurements make it possible to determine the dynamical Black Sea level with an rms accuracy about 3 cm. It is shown that the Black Sea circulation intensifies in the winter-spring seasons and attenuates in summer-autumn. The seasonal variability of sea level is accompanied by a radiation of Rossby waves from the eastern coast of the basin. Mesoscale oscillations of the dynamical sea level are found to vary spatially and temporarily. Usually, strong eddy intensity is associated with instabilities of the Rim Current. Away from this circulation feature, in the deep basin, mesoscale variability is much smaller. Mesoscale variability has a strong seasonal signal, which is out of phase with the strength of the Rim Current.

  14. Planetary dynamics from laser altimetry: Spin and tidal deformation of the Moon and Mercury

    NASA Astrophysics Data System (ADS)

    Barker, M. K.; Mazarico, E.; Smith, D. E.; Zuber, M. T.

    2015-12-01

    The dynamics of planetary bodies can provide valuable, and often unique, information on their interior structure. For instance, surface tidal deformation indicates how a body responds to the gravitational tidal forcing, and can thus give an indication of how the internal structure and temperature varies with depth. In addition, the orientation and spin rate of a planetary body are affected by its interior mass distribution and thermal evolution. In this contribution, we describe recent work to constrain the tidal deformation of the Moon and spin state and orientation of Mercury using altimetric crossovers measured by the Lunar Orbiter Laser Altimeter (LOLA) and MESSENGER Laser Altimeter (MLA). Altimetric crossovers are ideal for detecting the desired small surface changes, as they avoid the problem of aliasing topographic changes due to small-scale, unpredictable and uncorrelated, geologic relief. On the Moon, the tidal surface deformation is small (amplitude ~10 cm), but, using the highest quality LOLA crossovers, Mazarico et al. (2014) made the first measurement of the radial Love number h2 from an orbiting spacecraft. In a follow-up to that work, we are incorporating more crossovers to improve the temporal sampling of the tidal signal, thus enabling analysis of the spatial variation of the tidal amplitude, as might be expected given the thicker and cooler far side crust and the potential presence of a partial melt region below the PKT. Due to tidal torques from the Sun, Mercury experiences longitudinal librations about its 3:2 spin-orbit resonance with an amplitude of ~450 m at the equator. This amplitude is significantly larger than the geolocation uncertainty of the MLA altimetry (~10/100 m in radial/horizontal), and could, thus, be detectable from crossovers alone. However, given the sparse coverage near the equator, where the libration amplitude is largest, it may be necessary to incorporate into the analysis stereo-derived DEMs from the Mercury Dual Imaging

  15. Tides on the Patagonian shelf from the Seasat radar altimeter

    NASA Technical Reports Server (NTRS)

    Parke, M. E.

    1981-01-01

    The purpose of the study described here is to show comparisons between measurements of the sea surface height by the Seasat radar altimeter and tidal elevations based on gauge data along the coast for two passes by the satellite along the shelf. The results provide initial confirmation that tides can be detected in this region by way of satellite altimetry. The study extends a similar presentation by Parke (1980).

  16. Can We Infer Ocean Dynamics from Altimeter Wavenumber Spectra?

    NASA Technical Reports Server (NTRS)

    Richman, James; Shriver, Jay; Arbic, Brian

    2012-01-01

    The wavenumber spectra of sea surface height (SSH) and kinetic energy (KE) have been used to infer the dynamics of the ocean. When quasi-geostrophic dynamics (QG) or surface quasi-geostrophic (SQG) turbulence dominate and an inertial subrange exists, a steep SSH wavenumber spectrum is expected with k-5 for QG turbulence and a flatter k-11/3 for SQG turbulence. However, inspection of the spectral slopes in the mesoscale band of 70 to 250 km shows that the altimeter wavenumber slopes typically are much flatter than the QG or SQG predictions over most of the ocean. Comparison of the altimeter wavenumber spectra with the spectra estimated from the output of an eddy resolving global ocean circulation model (the Hybrid Coordinate Ocean Model, HYCOM, at 1/25 resolution), which is forced by high frequency winds and includes the astronomical forcing of the sun and the moon, suggests that the flatter slopes of the altimeter may arise from three possible sources, the presence of internal waves, the lack of an inertial subrange in the 70 to 250 km band and noise or submesoscales at small scales. When the wavenumber spectra of SSH and KE are estimated near the internal tide generating regions, the resulting spectra are much flatter than the expectations of QG or SQG theory. If the height and velocity variability are separated into low frequency (periods greater than 2 days) and high frequency (periods less than a day), then a different pattern emerges with a relatively flat wavenumber spectrum at high frequency and a steeper wavenumber spectrum at low frequency. The stationary internal tides can be removed from the altimeter spectrum, which steepens the spectral slopes in the energetic internal wave regions. Away from generating regions where the internal waves

  17. Improved LRO orbit determination and LOLA science using the GRAIL gravity field

    NASA Astrophysics Data System (ADS)

    Mazarico, E.; Lemoine, F. G.; Goossens, S. J.; Neumann, G. A.; Torrence, M. H.; Zuber, M. T.; Smith, D. E.

    2012-12-01

    The Gravity Recovery And Interior Laboratory (GRAIL) spacecraft mission has enabled the recovery of the global lunar gravity field to better accuracy and better spatial resolution (degree and order 420) than previous missions (150, and with poorer farside coverage). A solution produced at GSFC with the GEODYN software was evaluated with the tracking data from the Lunar Reconnaissance Orbiter (LRO) and the altimetric data from the onboard Lunar Orbiter Laser Altimeter (LOLA). We show that the overlaps between adjacent reconstructed trajectory arcs, indicative of the accuracy of the orbit reconstruction, are significantly improved, from the 10-20m level with the LLGM-1 field to the 5-10m level. This is especially notable because the GRAIL field is completely independent of LRO data. Radially, the overlap study indicates accuracies better than 50cm, compared to 1-1.5m previously using LRO-based gravity fields. The gravity field can also be tuned to LRO orbits by including the LRO tracking data in the gravity inversion. This will allow lower-degree fields to perform well, but it will not improve the absolute accuracy is not improved. With more than three years of continuous data collected by LOLA, there exist tens of millions of altimetric crossovers. While most of the crossovers occur near the poles, the expected tidal deformation is larger outside of the polar regions. In addition, we focus on crossovers occurring between two five-beam (dayside) tracks because they provide strong constraints on their relative positions, which combine remaining orbital errors and tidal signal. We discuss the implications of having very accurate trajectories thanks to GRAIL for the analysis of the LOLA topographic data.

  18. A Stochastic Approach to Noise Modeling for Barometric Altimeters

    PubMed Central

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2013-01-01

    The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes), we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM) random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA) system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions. PMID:24253189

  19. Altimeter error sources at the 10-cm performance level

    NASA Technical Reports Server (NTRS)

    Martin, C. F.

    1977-01-01

    Error sources affecting the calibration and operational use of a 10 cm altimeter are examined to determine the magnitudes of current errors and the investigations necessary to reduce them to acceptable bounds. Errors considered include those affecting operational data pre-processing, and those affecting altitude bias determination, with error budgets developed for both. The most significant error sources affecting pre-processing are bias calibration, propagation corrections for the ionosphere, and measurement noise. No ionospheric models are currently validated at the required 10-25% accuracy level. The optimum smoothing to reduce the effects of measurement noise is investigated and found to be on the order of one second, based on the TASC model of geoid undulations. The 10 cm calibrations are found to be feasible only through the use of altimeter passes that are very high elevation for a tracking station which tracks very close to the time of altimeter track, such as a high elevation pass across the island of Bermuda. By far the largest error source, based on the current state-of-the-art, is the location of the island tracking station relative to mean sea level in the surrounding ocean areas.

  20. A stochastic approach to noise modeling for barometric altimeters.

    PubMed

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2013-01-01

    The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes), we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM) random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA) system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions. PMID:24253189

  1. A stochastic approach to noise modeling for barometric altimeters.

    PubMed

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2013-11-18

    The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes), we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM) random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA) system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions.

  2. Wind waves in tropical cyclones: satellite altimeter observations and modeling

    NASA Astrophysics Data System (ADS)

    Golubkin, Pavel; Kudryavtsev, Vladimir; Chapron, Bertrand

    2016-04-01

    Results of investigation of wind-wave generation by tropical cyclones using satellite altimeter data are presented. Tropical cyclones are generally relatively small rapidly moving low pressure systems that are capable of generating severe wave conditions. Translation of a tropical cyclone leads to a prolonged period of time surface waves in the right sector remain under high wind forcing conditions. This effect has been termed extended fetch, trapped fetch or group velocity quasi-resonance. A tropical cyclone wave field is thus likely more asymmetrical than the corresponding wind field: wind waves in the tropical cyclone right sector are more developed with larger heights than waves in the left one. A dataset of satellite altimeter intersections of the Western Pacific tropical cyclones was created for 2010-2013. Data from four missions were considered, i.e., Jason-1, Jason-2, CryoSat-2, SARAL/AltiKa. Measurements in the rear-left and front-right sectors of tropical cyclones were examined for the presence of significant wave asymmetry. An analytical model is then derived to efficiently describe the wave energy distribution in a moving tropical cyclone. The model essentially builds on a generalization of the self-similar wave growth model and the assumption of a strongly dominant single spectral mode in a given quadrant of the storm. The model provides a criterion to anticipate wave enhancement with the generation of trapped abnormal waves. If forced during a sufficient timescale interval, also defined from this generalized self-similar wave growth model, waves can be trapped and large amplification of the wave energy will occur in the front-right storm quadrant. Remarkably, the group velocity and corresponding wavelength of outrunning wave systems will become wind speed independent and solely relate to the translating velocity. The resulting significant wave height also only weakly depends on wind speed, and more strongly on the translation velocity. Satellite

  3. Use of a spacecraft borne altimeter for determining the mean sea surface and the geopotential

    NASA Technical Reports Server (NTRS)

    Kahn, W. D.; Bryan, J. W.

    1972-01-01

    An experiment is proposed to test a first generation spacecraft-borne radar altimeter's capability to measure the topography of the sea surface. The initial radar altimeter will have an instrumental error of one meter and an overall accuracy to two to five meters. This instrument will thus improve the accuracy of the geoid from the present 10 to 20 meters to better than 5 meters. In order to detect storm surges, tidal forces, and ocean currents, an altimeter with an overall accuracy of at least ?1 meter will be required. The overall accuracy of the initial radar altimeter will thus primarily provide geodetic information and possible oceanographic information such as sea state.

  4. GEOSAT Follow-on (GFO) Altimeter Document Series. Volume 3; GFO Altimeter Engineering Assessment Report, Version 1

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III; Hayne, George S.; Brooks, Ronald E.; Lockwood, Dennis W.

    2002-01-01

    The U.S. Navy's Geosat Follow-On (GFO) Mission, launched on February 20, 1998, is one of a series of altimetric satellites which include Seasat, Geosat, ERS-1, and TOPEX/POSEIDON (T/P). The purpose of this report is to document the GFO altimeter performance determined from the analyses and results performed by NASA's GSFC and Wallops altimeter, calibration team. It is the second of an anticipated series of NASA's GSFC and Wallops GFO performance documents, each of which will update assessment results. This report covers the performance from instrument acceptance by the Navy on November 29, 2000, to the end of Cycle 20 on November 21, 2001. Data derived from GFO will lead to improvements in the knowledge of ocean circulation, ice sheet topography, and climate change. In order to capture the maximum amount of information from the GFO data, accurate altimeter calibrations are required for the civilian data set which NOAA will produce. Wallops Flight Facility has provided similar products for the Geosat and T/P missions and is doing the same for GFO.

  5. GFO-1 Geophysical Data Record and Orbit Verifications for Global Change Studies

    NASA Technical Reports Server (NTRS)

    Shum, C. K.

    2000-01-01

    This final report summarizes the research work conducted under NASA's Physical Oceanography Program, entitled, GFO-1 Geophysical Data Record And Orbit Verifications For Global Change Studies, for the investigation time period from December 1, 1997 through November 30, 2000. The primary objectives of the investigation include providing verification and improvement for the precise orbit, media, geophysical, and instrument corrections to accurately reduce U.S. Navy's Geosat-Followon-1 (GFO-1) mission radar altimeter data to sea level measurements. The status of the GFO satellite (instrument and spacecraft operations, orbital tracking and altimeter) is summarized. GFO spacecraft has been accepted by the Navy from Ball Aerospace and has been declared operational since November, 2000. We have participated in four official GFO calibration/validation periods (Cal/Val I-IV), spanning from June 1999 through October 2000. Results of verification of the GFO orbit and geophysical data record measurements both from NOAA (IGDR) and from the Navy (NGDR) are reported. Our preliminary results indicate that: (1) the precise orbit (GSFC and OSU) can be determined to approx. 5 - 6 cm rms radially using SLR and altimeter crossovers; (2) estimated GFO MOE (GSFC or NRL) radial orbit accuracy is approx. 7 - 30 cm and Operational Doppler orbit accuracy is approx. 60 - 350 cm. After bias and tilt adjustment (1000 km arc), estimated Doppler orbit accuracy is approx. 1.2 - 6.5 cm rms and the MOE accuracy is approx. 1.0 - 2.3 cm; (3) the geophysical and media corrections have been validated versus in situ measurements and measurements from other operating altimeters (T/P and ERS-2). Altimeter time bias is insignificant with 0-2 ms. Sea state bias is about approx. 3 - 4.5% of SWH. Wet troposphere correction has approx. 1 cm bias and approx. 3 cm rms when compared with ERS-2 data. Use of GIM and IRI95 provide ionosphere correction accurate to 2-3 cm rms during medium to high solar activities; (4

  6. The 1997 Spring Regression of the Martian South Polar Cap: Mars Orbiter Camera Observations

    USGS Publications Warehouse

    James, P.B.; Cantor, B.A.; Malin, M.C.; Edgett, K.; Carr, M.H.; Danielson, G.E.; Ingersoll, A.P.; Davies, M.E.; Hartmann, W.K.; McEwen, A.S.; Soderblom, L.A.; Thomas, P.C.; Veverka, J.

    2000-01-01

    The Mars Orbiter cameras (MOC) on Mars Global Surveyor observed the south polar cap of Mars during its spring recession in 1997. The images acquired by the wide angle cameras reveal a pattern of recession that is qualitatively similar to that observed by Viking in 1977 but that does differ in at least two respects. The 1977 recession in the 0?? to 120?? longitude sector was accelerated relative to the 1997 observations after LS = 240??; the Mountains of Mitchel also detached from the main cap earlier in 1997. Comparison of the MOC images with Mars Orbiter Laser Altimeter data shows that the Mountains of Mitchel feature is controlled by local topography. Relatively dark, low albedo regions well within the boundaries of the seasonal cap were observed to have red-to-violet ratios that characterize them as frost units rather than unfrosted or partially frosted ground; this suggests the possibility of regions covered by CO2 frost having different grain sizes. ?? 2000 Academic Press.

  7. Effect of Ocean Tide Models on the Precise Orbit Determination of Geodetic Satellites

    NASA Astrophysics Data System (ADS)

    Kubo-Oka, T.; Matsumoto, K.; Otsubo, T.; Gotoh, T.

    2005-12-01

    Several ocean tide models are tested with precise observation data of satellite laser ranging to geodetic satellites, Starlette and Stella. Four ocean models, NAO.99b, CSR 3.0 (standard model in IERS Conventions 2003), CSR 4.0, and GOT99.2b were implemented in our orbit analysis software "concerto ver. 4". NAO.99b model was developed by assimilating tidal solutions from TOPEX/POSEIDON altimeter data into hydrodynamical model. Eight constituents (M2, S2, K1, O1, N2, P1, K2, Q1) were taken into account in each ocean tide model. Moreover, eight additional constituents (M1, J1, OO1, 2N2, Mu2, Nu2, L2, T2) can be included in NAO.99b model. Effect of ocean tides on geopotential coefficients were computed to 20th order. SLR data to Starlette and Stella were divided into arcs of 7 days length and 52 arcs (Jan. 2 - Dec. 30, 2004) were analyzed. Using different ocean tide model, orbits of these satellites were determined and weighted rms of postfit residuals are compared. We found that the NAO.99b model with 16 constituents can reduce weighted rms of postfit residuals using to the level of about 6.0 cm (Starlette) and 9.6 cm (Stella). These values are about 3-5 % smaller compared to other ocean tide models.

  8. Topography of Mercury from stereo images: Regional terrain models from MESSENGER orbital mapping

    NASA Astrophysics Data System (ADS)

    Preusker, F.; Oberst, J.; Head, J. W.; Robinson, M. S.; Watters, T. R.; Solomon, S. C.

    2012-09-01

    In March 2011 the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft entered orbit about Mercury [1]. The spacecraft is equipped with the Mercury Dual Imaging System (MDIS) [2] consisting of a wide-angle camera (WAC) and a narrow-angle camera (NAC) coaligned on a pivot platform. During its first Mercury solar day (~176 Earth days), MESSENGER acquired several thousand images to create a monochrome base map using the WAC for the northern hemisphere and NAC for the southern hemisphere, respectively, from its highly eccentric near-polar orbit. In September 2011, with the beginning of the second Mercury day, MESSENGER started acquiring a complementary image dataset under high emission angles (by tilting the camera) but similar Sun elevation and azimuth. The combination of both base maps enables us to analyze the images stereoscopically and to generate digital terrain models (DTMs). The DTMs are particularly important for the southern hemisphere, most parts of which are out of range of MESSENGER's Mercury Laser Altimeter (MLA).

  9. Jupiter Magnetospheric Orbiter and Trojan Asteroid Explorer in EJSM

    NASA Astrophysics Data System (ADS)

    Sasaki, Sho; Fujimoto, Masaki; Yano, Hajime; Takashima, Takeshi; Kasaba, Yasumasa; Funase, Ryu; Tsuda, Yuichi; Kawaguchi, Junichiro; Kawakatsu, Yasuhiro; Mori, Osamu; Morimoto, Mutsuko; Yoshida, Fumi; Takato, Naruhisa

    The international mission to explore the Jovian system is planned as Europa Jupiter System Mission (EJSM) aiming at the launch in 2020. EJSM consists of (1) the Jupiter Europa Orbiter (JEO) by NASA, (2) the Jupiter Ganymede Orbiter (JGO) by ESA, and (3) the Jupiter Magnetospheric Orbiter (JMO) studied by JAXA (Japan Aerospace Exploration Agency). In February 2009, NASA and ESA decided to continue the study of EJSM as a candidate of the outer solar system mission. In JAXA, a mission plan combining Trojan asteroid explorer with JMO started. According to the mission plan, as the main spacecraft flies by Jupiter, it will deploy the JMO satellite around Jupiter. Then the main will target one (or two) Trojan asteroids. JMO is a spin-stabilized satellite which will have magnetometers, low-energy plasma spectrome-ters, medium energy particle detectors, energetic particle detectors, electric field / plasma wave instruments, an ENA imager, an EUV spectrometer, and a dust detector. Collaborating with plasma instruments on board JEO and JGO, JMO will investigate the fast-rotating huge mag-netosphere to clarify the energy procurement from the rotation of Jupiter to the magnetosphere and to clarify the interaction between the solar wind and the magnetosphere. JAXA started the study of a solar power sail for deep space explorations. In addition to the function of a solar sail (photon propulsion), the solar power sail system has very efficient ion engines where electric power is produced solar panels within the sail. Currently we are studying a mission to Jupiter and Trojan asteroids using a large (100m-scale) solar power sail that can transfer large payload as far as Jupiter. Trojan asteroids, which orbit around Jupiter's Lagrangian points, are primitive bodies with information of the early solar system as well as raw solid materials of Jovian system. Proposed instruments for the Trojan spacecraft are cameras, IR spectrometers, XRS, a laser altimeter, and a small surface rover

  10. MESSENGER at Mercury: Early orbital operations

    NASA Astrophysics Data System (ADS)

    McNutt, Ralph L.; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; Phillips, Roger J.; Prockter, Louise M.; Slavin, James A.; Zuber, Maria T.; Finnegan, Eric J.; Grant, David G.; MESSENGER Team

    2014-01-01

    angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20°S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012-2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.

  11. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr.; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; Slavin, James A.

    2012-01-01

    . Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 201S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within Mercury's magnetosphere and in Mercury's solar wind environment at an instrument sampling rate of up to 20 samples/s. The UVVS is determining the three-dimensional, time-dependent distribution of Mercury's exospheric neutral and ionic species via their emission lines. During each spacecraft orbit, the Energetic Particle Spectrometer measures energetic electrons and ions, and the Fast Imaging Plasma Spectrometer measures the energies and mass per charge of thermal plasma components, both within Mercury's magnetosphere and in Mercury's solar-wind environment. The primary mission observation sequence will continue for one Earth year, until March 2012. An extended mission, currently under discussion with NASA, would add a second year of orbital observations targeting a set of focused follow-on questions that build on observations to date and take advantage of the more active Sun expected during 2012-2013. MESSENGER's total primary mission cost, projected at $446 M in real-year dollars, is comparable to that of Mariner 10 after adjustment for inflation.

  12. MESSENGER at Mercury: Early Orbital Operations

    NASA Technical Reports Server (NTRS)

    McNutt, Ralph L., Jr; Solomon, Sean C.; Bedini, Peter D.; Anderson, Brian J.; Blewett, David T.; Evans, Larry G.; Gold, Robert E.; Krimigis, Stamatios M.; Murchie, Scott L.; Nittler, Larry R.; Philips, Roger J.; Prockter, Louise M.; Slavin, James A.; Zuber, M. T.; Finnegan, Eric J.; Grant, David G.

    2013-01-01

    angles. Targeted areas have been selected for spectral coverage into the ultraviolet with the Ultraviolet and Visible Spectrometer (UVVS). MESSENGER's Mercury Laser Altimeter is acquiring topographic profiles when the slant range to Mercury's surface is less than 1800 km, encompassing latitudes from 20 deg. S to the north pole. Topography over the remainder of the southern hemisphere will be derived from stereo imaging, radio occultations, and limb profiles. MESSENGER's radio science experiment is determining Mercury's gravity field from Doppler signals acquired during frequent downlinks. MESSENGER's Magnetometer is measuring the vector magnetic field both within